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Form 101 Part II: Research Proposal

Synopsis

Provide a concise overview of the scientific and technical objectives, approach, and the new
knowledge, expertise, or technology that could be transferred to Canadian industry. Indicate
the benefits expected to accrue to Canadian industry, to the academic institution, and to the
scientific or engineering discipline.

The industrial partner for this project is Waterloo Maple Inc., a Canadian based company
owned by Cybernet Systems Inc. of Japan whose main commercial product is Maple. Maple
is a mathematical software system with tools for exact algebraic computation and numerical
computation. It is used by scientists and engineers in Canada, the US, and worldwide, for
research and development. Our university has a campus wide site license for Maple. Many
members of our department of mathematics use Maple for their teaching and research.

Maple’s main algebraic capability is polynomial computation over various rings, most
importantly, the integers, finite fields, algebraic number fields, and function fields. Most
user level application facilities in Maple, such as solving systems of algebraic and differential
equations, make extensive use of polynomial operations. These include (i) polynomial mul-
tiplication and division, (ii) polynomial greatest common divisors (GCDs), (iii) polynomial
factorization over various fields, and (iv) Gröbner basis computation.

Perhaps the biggest single challenge facing the developers of computer algebra systems
like Maple is whether we can retool them to take full advantage of multi-core processors.

In previous work we improved Maple’s speed for multiplication and division of multivari-
ate polynomials with integer coefficients by a factor of more than 200 (over Maple 13) on
a quad-core desktop (see [24, 27]). We achieved this by developing improved heap based
algorithms in [24] and then by parallelizing them in [25, 26]. This work was integrated into
Maple 14 and Maple 16. This means some parts of Maple can handle much larger polyno-
mials. But it also means that Maple now multiplies and divides more than 200 times faster
than it computes GCDs and so GCD computation is now a bottleneck.

The main objectives of this proposal are (i) to design and implement new efficient algo-
rithms for polynomial GCD computation which can be parallelized, (ii) to build a new 63 bit
software library for polynomial operations in Zn[x] for implementing modular algorithms,
(iii) to design and implement, in C, parallel algorithms for polynomial operations for multi-
core computers, and (iv) to begin exploiting GPUs as Intel and AMD are now moving away
from multi-core CPUs to hybrid chips with CPU and GPU capabilities.

If successful, this will make many of Maple’s core algebraic facilities the fastest available
for general purpose algebraic computation, and much faster than Maple’s main commercial
competitor, Mathematica. Because the focus of this proposal is the “core” algebraic facilities,
this project will benefit many Maple users and it will provide Maple with a solid platform for
future research and development in computer algebra. The main research contribution will be
the development and implementation of efficient algorithms for computing with polynomials
on multi-core platforms.
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Background

Relate the proposal to current scientific, technical and commercial developments in the field,
referring to the current literature and market conditions. Describe the background research
on which the project is built.

The four main problems addressed in this project proposal are

1. Polynomial GCD computation and sparse polynomial interpolation.

2. Software libraries for arithmetic in Zp[x] for implementing modular algorithms.

3. Exact sparse linear algebra and Gröbner basis computation.

4. Data structures for multivariate polynomials with parallel speedup.

1: The polynomial GCD problem.

The first effective algorithm for multivariate polynomial GCD computation over Z was
Brown’s algorithm [1] in 1971. Subsequent research focused on improving the complexity
of Brown’s algorithm for sparse polynomials because multivariate polynomials occurring in
applications are mostly sparse. Some key results include Zippel’s SMGCD algorithm [2] from
1979 which uses sparse interpolation, Wang’s EEZ-GCD algorithm [3] from 1980 which uses
Hensel lifting, and Kaltofen and Trager’s black box GCD algorithm [4] from 1990. Zippel’s
algorithm is currently used in Mathematica, Maple and Magma. Maple uses our version of
Zippel’s algorithm from 2005 (see [5]) which solves the leading coefficient problem.

Although Brown’s algorithm is naturally parallel, the sparse methods are not. Hensel
lifting is sequential; one recovers the coefficients of the GCD one variable at a time and for
each variable, one degree at a time. Zippel’s algorithm also recovers the coefficients of the
gcd one variable at a time. However, the sparse interpolations needed for each variable can
be done in parallel. In 1994 Rayes, Wang and Weber in [6] parallelized this and other parts
of Zippel’s algorithm with some success. As far as we know, no parallel work has been done
since then and no computer algebra system has a parallel sparse GCD implementation.

Subsequent research in polynomial GCD computation focused mainly on number fields.
For Q(α)[x], Maple and Magma use Encarnacion’s algorithm ([7], 1995) which uses ra-
tional number reconstruction, a tool developed by Wang, Guy and Davenport in [8]. For
Q(α1, α2, ..., αk)[x1, x2, ..., xn], Maple uses our generalization of Encarnacion’s algorithm from
[45]. For polynomials over an algebraic function field van Hoeij and Monagan ([9], 2004)
showed how to interpolate the polynomial variables and parameters one at a time using uni-
variate rational function reconstruction. But this is a dense method. In 2007, [10] Monagan
and Javadi modified the algorithm to use Zippel’s sparse interpolation and also to handle
multiple field extensions. To implement our algorithms we developed a recursive dense poly-
nomial data structure (see [45, 11]) that supports multiple algebraic extensions over Q and
Zp. This work was integrated into Maple 14. However, there is no parallel support.

Zippel’s sparse interpolation [2] is central in several of the GCD algorithms mentioned.
It interpolates a polynomial in n variables with t terms of degree d using O(ndt) points. The
interpolations are done modulo a prime p and require p� dt to work with high probability.
In [12] 1988, Ben-Or and Tiwari devised a deterministic sparse interpolation algorithm for
characteristic 0 that requires only O(t) points. One evaluates at (2i, 3i, 5i, ..., pin) for i =
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0, 1, ..., 2T − 1 where pn is the n’th prime for a term bound T ≥ t. To use their algorithm
modulo p requires p > pdn which can be large. E.g. for 10 variables and d = 100, we would
need p > 29100, a 147 digit prime which would make the modular arithmetic very slow.

Several authors have modified the Ben-Or/Tiwari algorithm to work over smaller finite
fields. In [13] 2000, Kaltofen, Lee, and Lobo replace the dense interpolation step in Zippel’s
algorithm with Ben-Or/Tiwari interpolation. Their algorithm requires O(nt) points and
can be used with small primes. However, the modification serializes the interpolation of
each variable. In [14] 2010, Monagan and Javadi modify the Ben-Or/Tiwari algorithm to
interpolate the variables in the monomials in parallel, also using O(nt) points. As far as we
know, no one has tried Ben-Or/Tiwari interpolation for polynomial GCD computation.

2: Software libraries for arithmetic in Zp[x].

Algorithms for computing GCDs and resultants of polynomials with integer coefficients use
modular algorithms. One computes the GCD (resultant) modulo a prime p. For efficiency one
uses machine primes so that arithmetic in Zp can be done by the hardware of the machine.
One reduces to a univariate problem in Zp[x] by evaluation. One needs to implement polyno-
mial multiplication, division with remainder, and the Euclidean algorithm. Asymptotically
fast algorithms for these operations are well known (see von zur Gathen and Gerhard [15]).

Each computer algebra system has its own library for Zp[x]. This library is also used for
factoring polynomials with integer coefficients. In Maple it is the modp1 library which we
developed in 1992 (see [16]). It uses machine arithmetic for primes less than

√
231 on a 32

bit machine and
√

263 on a 64 bit machine. It has Karatsuba multiplication but no FFT.

The best open source library for Zp[x] is Victor Shoup’s C++ library NTL (see [17]).
Though the just released FLINT 2.3 ([19]) claims to be competitive. Both Magma and NTL
support the FFT and Magma has fast gcd. Because of this, Magma is faster than Maple
for polynomials with high degree. A new experimental library is David Harvey’s C library
see [18]. It supports 63 bit primes and has an FFT for multiplication but no fast gcd. We
are also developing a new C library for 63 bit primes with an FFT for multiplication. Our
student Soo Go has implemented the fast Euclidean algorithm. A drawback of all these Zp[x]
libraries is that none have multi-core or GPU support.

Related work includes Maple’s modpn library which uses the FFT extensively. It was
developed by Xin, Moreno Maza, Rasheed and Schost in 2009 (see [21]) for fast arithmetic
modulo triangular sets over Zp. Some work has also been done for multi-core computers (see
[22]) and for GPUs (see [23]).

3: Gröbner basis computation.

Many of the early algorithmic developments in Gröbner basis computation were variants of
Buchberger’s original algorithm that reduced the number of S-polynomial pairs considered.
We mention Buchberger’s “normal” strategy [30], and the “sugar” strategy of Traverso et.
al. [31]. The bottleneck in these algorithms is division of S-polynomials by the partial basis.
These divisions were expensive and often produced zero, i.e., no new information.

In 1999 [32], Faugère used sparse linear algebra to simultaneously reduce polynomials in
batches. This produced a two orders of magnitude speedup because (i) the cost of searching
for a divisor for each monomial was amortized over many polynomials, and (ii) the division
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algorithm for even a single polynomial had been inefficient. Sequential implementations of
Faugère’s algorithm, known as F4, are used in Magma and Maple.

The problem with the division algorithm was recognized by Yan [33], and starting from
much earlier work of Johnson [34], we created an algorithm with lower arithmetic, sorting,
and storage costs in [24], and a parallel version with superlinear speedup in [26]. In [35] 2012,
Roune and Stillman tried ours and other data structures and showed that the improvements
to division close the gap between division based methods and F4.

Faugère went on to develop the F5 algorithm in [36], which reduces the amount of work
in Gröbner basis computations by the use of a signature scheme. The criteria permitted by
these schemes has been the subject of intense investigation, recently culminating in [35].

In [38], Faugère and Sylvain describe one way to parallelize the sparse linear algebra in
F4/F5, which consists of direct elimination of large structured sparse systems. Faugère’s new
implementation of F5 is much faster than existing Gröbner basis routines, beating Magma
by a factor of 88 on 8 cores on one benchmark. This year has seen the first workshop devoted
exclusively to this problem: “Efficient Linear Algebra for Gröbner Basis Computations” at
Kaiserslautern (see http://wiki.lmona.de/events/elagb).

4: Multivariate polynomial data structures.

Arguably, the most important data structure in a computer algebra system is the one used
for multivariate polynomials. Maple, Magma, Mathematica and Singular all use a sparse
distributed representation in which only non-zero terms are stored. For example, on the
left of the figure below is Maple’s current data structure. It is a sum-of-products. Each
monomial is stored as a separate object labelled a PROD. The data structures in Magma,
Mathematica and Singular are similar; they all contain pointers to monomials or terms.
But these are not suitable for modern processors which need sequential memory access for
maximum performance. Moreover, monomial multiplications are expensive; each requires
allocation of memory and a loop. This slows down polynomial multiplication.

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Maple’s sum-of-products representation
has irregular Maple dags for each term.

Representations for the polynomial
9 xy3z − 4 y3z2 − 6 xy2z − 8 x3 − 5.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

Our packed distributed representation
uses bit fields and sorts by total degree.

The figure on the right shows our new data structure for polynomials. The second word
is a pointer to the variables. This is followed by monomials and coefficients where the
monomials encode the total degree and the exponents in a single machine word. E.g. for
xy3z we store the total degree 5 and the exponents (1, 3, 1) as 5 · 248 + 232 + 3 · 216 + 1 on a
64 bit machine. This encoding means the terms can be sorted into graded lex ordering by
comparing monomials as unsigned integers. Monomial multiplications are done by integer
addition which also only costs one machine instruction!
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Initially we used this data structure to implement our heap based multiplication and
division algorithms in [24, 25, 26]. When we integrated our software into Maple (see [27]),
we also saw a huge speedup in multivariate polynomial factorization (compare Maple 16 with
Maple 13 in Table 1). This is because most of the time in factoring polynomials is in Hensel
lifting and most of the time in Hensel lifting is in polynomial multiplication.

Maple 13 Maple 16 new POLY dag Magma Mathem-
benchmark 1 core 4 cores 1 core 4 cores 2.16-8 atica 7.0

#1 31.10 2.66 2.54 1.06 0.93 6.15 11.82
#3 391.44 15.70 13.47 8.22 6.13 117.53 164.50
#4 2953.54 56.68 44.06 26.43 16.17 332.86 655.49

Table 1: Timings (in seconds) for three multivariate factorizations from [28].

But there is little parallel speedup. We noticed that conversion overhead was often over
50% of the multiplication time which ruins parallel speedup. In current work [28], we have
tried making the new POLY data structure the default in the Maple kernel to eliminate
conversions. To do this, we coded many Maple kernel operations. Some are now very fast.
The results (see new POLY dag timings in Table 1) are very promising. We are now 13x,
27x and 40x faster than Mathematica, respectively.

How much faster can we factor these multiviarate polynomials on a multi-core com-
puter? What about factoring polynomials over algebraic number fields and function fields?
The multivariate algorithm of Javadi and Monagan in [29] also uses Hensel lifting. It uses
repeated pseudo-division to reduce modulo a triangular set. We think we should be able to
achieve similar speedups there as well by using better data structures, improving the division
algorithm, and adding multi-core support.

Detailed Proposal

Discuss the scientific issues, research problems or technical complexities, and describe the
research methodology and experimental design proposed to explain or resolve them. Provide
a workplan and relate it to the milestone schedule. Describe the roles of any undergraduate
or graduate students, or postdoctoral fellows who will be involved in the project.

1: Polynomial GCD sub-project.

We propose to develop a new sparse GCD algorithm based on a modified Ben-Or Tiwari
interpolation for polynomials with integer coefficients and attempt a parallel implementation
for multi-core platforms.

Let f1, f2 be polynomials in n + 1 variables and let g = gcd(f1, f2) be their GCD. Let t
be the number of terms of g and d be the total degree of g. To compute g modulo a prime
p, Zippel’s algorithm uses O(ndt) points and the algorithms of Kaltofen, Lee, and Lobo in
[13], and Monagan and Javadi in [14] both use O(nt) points. We propose here to develop a
deterministic algorithm that would require only O(t) points, thus optimal up to a constant
factor and hence good for dense polynomials too. We outline the method here.

We pick relatively prime integers q1, ..., qn satisfying qi > d until p = q1q2 · · · qn + 1 is
prime. This is easy to do. This choice means that we can now compute a discrete logarithm
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in Zp efficiently (in time no worse than O(n
√
d) arithmetic operations in Zp using the Pohlig-

Helman algorithm [39]). We pick a primitive element α ∈ Zp (again, easy to do since we
have a factorization for p − 1) and let ωk := αp−1/qk so that ωk is a primitive qk’th root of
unity. The idea is to replace the (2i, 3i, 5i, . . . , pin) in Ben-Or Tiwari with (ωi1, ω

i
2, . . . , ω

i
n).

Suppose M = xe11 x
e2
2 · · ·xen

n is a monomial in g and m = ωe11 ω
e2
2 × ... × ωen

n is its value,
obtained in the Ben-Or Tiwari algorithm. Then the discrete logarithm of m satisfies

logαm ≡ e1 logαw1 + ...+ en logαwn ≡ e1
p−1
q1

+ ...+ en
p−1
qn

(mod p− 1).

Since the qk are relatively prime and divide p−1, the exponents e1, e2, ..., en can be obtained
by computing y := logαm then solving y ≡ ek

p−1
qk

(mod qk) for ek. The advantages of this

approach are that we reduce the number of points needed to O(t) and we can compute

gi := gcd(f1(x0, ω
i
1, . . . , ω

i
n), f2(x0, ω

i
1, . . . , ω

i
n)) for i = 0, 1, 2, . . . , 2T − 1

in parallel. The disadvantages are several and these problems need efficient solutions.

First, the method requires p to be substantially larger than for Zippel’s method. E.g., for
n = 10 variables and degree d = 50, we will need p > 509, a 51 bit prime whereas Zippel’s
method could use a 31 bit prime (or even smaller). The Maple library for arithmetic in Zp[x]
only supports 31.5 bit primes on a 64 bit machine. Larger primes are done using software
arithmetic which is slow. We address this problem in sub-project 2 below.

Second, whereas it is easy to get good degree bounds for g, good term bounds for t are
not available. One must run the algorithm for T = 2, 4, 8, 16, 32, ... until we “know” t. This
serializes that part of the algorithm and complicates the parallel implementation.

Third, we cannot solve the “leading coefficient problem” using our univariate methods in
[5] since Ben-Or/Tiwari interpolates all variables together. Let g = adx

d
0 + ...+ a1x0 + a0 be

the gcd of f1 and f2. To interpolate g from monic gi ∈ Zp[x0] we must attach ad(ω
i
1, . . . , ω

i
n)

(the image of the leading coefficient) to gi. But we do not know ad(x1, . . . , xn). Zippel’s own
implementation in Macsyma computes ∆ the gcd of the leading coefficients of f1 and f2 and
uses ∆(ωi1, . . . , ω

i
n) instead. But ∆ can be a non-trivial multiple of ad. And factoring ∆ and

identifying which factors of ∆ are in ad using Wang’s coefficient determination algorithm
(see [40]) will limit parallel speedup. This problem needs a new solution.

Remark: We got the idea for the method presented here after studying the algorithm for
interpolating polynomials with numerical coefficients of Giesbrecht, Labahn and Lee in [41]
and through correspondence with Kaltofen. Giesbrecht told us he was also aware of the
method and that Kaltofen was aware of it in 1988 but did not realize at that time that the
discrete logarithms could be computed efficiently.

Remark: most of the time in the new GCD algorithm will often be evaluating the input
polynomials f1 and f2 at (ωi1, . . . , ω

i
n) modulo p. This task appears to be ideal for a GPU.

Recently, Vershelde and Yoffe in [44] looked at this problem for floating point evaluations.

This project is suitable for a PhD student interested in mathematics and computing. A
prototype sequential implementation in Maple would be made by the student in the first year
of the project. A prototype parallel implementation using Cilk could then be attempted in
the second year. The student will need to do some experimentation, code optimization and
algorithm analysis.
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We propose to use Cilk for this and the other sub-projects because we find it easy to
parallelize existing C code using Cilk. To integrate parallel software into the Maple kernel,
which is programmed in C, we would need to either develop our own parallel support infras-
tructure for C, or, simulate Cilk’s model of parallel programming in Maple. We propose,
together with Maplesoft personnel, to develop a prototype Maple kernel which supports
the Cilk parallel primitives cilk, spawn and sync. If successful this will make it easier to
integrate Cilk code into Maple.

2: Zp[x] library sub-project.

We propose to develop a C library for polynomial arithmetic for Zp[x] in the spirit of the
GMP library [42] that has been developed for integer arithmetic. Our first goal is to sup-
port 63 bit primes on a 64 bit machine to support sub-project 1. We will also implement
known asymptotically fast algorithms which will improve Maple’s performance for polyno-
mial factorization over Zp[x] and hence also Z[x]. Our second goal is support for multi-core
platforms. We will attempt to parallelize polynomial multiplication, division, gcd and root
finding for Zp[x]. In the space available we outline one approach for fast root finding. Our
goal is to be 50 times faster than Magma on a quad-core desktop.

Let M(d) be the cost of multiplying two polynomials in Zp[x] of degree d. To compute
the roots of the generating polynomial Λ(x) = xd + . . .+λ1x+λ0 over a finite field Zp (here
Λ(x) is known to be a product of linear factors), one computes

g(x) = gcd(
[
(x+ α)(p−1)/2 mod Λ(x)

]
− 1,Λ(x)) (1)

for some α chosen randomly from Zp. This computation can be reduced to polynomial
multiplication (see [15]) with asymptotic cost O(M(d) log p) for computing the power modulo
Λ(x) and and O(M(d) log d) for computing the gcd. The gcd splits Λ(x) into g(x) and
Λ(x)/g(x) for which we compute the roots recursively. The total cost for the root finding is
O(M(d) log d log p+M(d) log2 d) arithmetic operations in Zp.

In [43] we developed our own library for Zp[x] for 31.5 bit primes. We implemented an
FFT based multiplication and fast division. To compute the power (x+α)(p−1)/2 mod Λ(x),
we tried the following approach. Instead of reducing the computation to a sequence of
multiplications which are computed with the FFT, we instead stay inside FFT co-ordinates
where multiplication is linear, but also other operations are linear. Theoretically we reduced
the number of FFTs by a factor of 2. With this and other improvements, we are 6× faster
than Magma for computing all roots of polynomials in Zp[x] for 31.5 bit primes.

To parallelize the root finding, after we have split Λ(x) we can compute the roots of
g(x) and Λ(x)/g(x) in parallel, and as we keep splitting, there is “as much parallelism as
you want” according to von zur Gathen. However this doesn’t work because the first power
and gcd becomes a sequential bottleneck. So we must also parallelize the powering and gcd.
For large d, some parallelism is available in the fast Euclidean algorithm – a factor of 8 is
available in the matrix-matrix and two matrix-vector multiplications of polynomials.

This project is suitable for a PhD student and/or PDF interested in asymptotically fast
algorithms and parallel algorithms. In the first year the students and researchers would
implement 63 bit prime support for Zp[x] in C. In the second year we would look at parallel
speedup. For this the student would do a parallel implementation in Cilk.
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We also want to support Fq[x] for small finite fields Fq. Currently Maple has no special
support for small finite fields or finite fields of characteristic 2. Arithmetic in Fq is done
using polynomials over Zp which is slow for small q. As an application of the library for
Fq[x] we will develop a module for Coding Theory (algebraic error correcting codes). Such
codes are nowadays critical in Engineering in the design of devices that communicate over
noisy channels such as Internet or wireless networks. Cyclic codes, the most important
family of algebraic codes, are encoded and decoded as polynomials over finite fields. (This
includes BCH codes, Reed-Solomon codes, as well as other important families of codes.) This
functionality has never been available in Maple whereas it is implemented extensively in its
competitors such as Magma.

This project is suitable for a Masters student interested in coding theory, finite fields and
computing. Maplesoft will participate in the design for the representation of elements of Fq.

3: Linear algebra for Gröbner bases sub-project.

Maplesoft, our industrial partner, has asked us to help them develop a parallel C library for
solving structured sparse linear systems to be used in Maple’s Gröbner basis package. Our
interest in sparse linear algebra is broader than this, and we think it could be a powerful
tool for handling large scale algebraic problems. Maplesoft, also has an interest in the
simplification of sparse algebraic models with tens of thousands of variables. Sparse linear
algebra should be useful there.

We propose to solve the Gröbner basis problem as follows. Given a batch of S-polynomials
in the F4 or F5 algorithms, we shall first divide each one by the basis using a heap. This is
easily done in parallel, but we will need a cache to decide in O(1) time which basis elements’
leading monomials divide a given monomial. We will then use sparse linear algebra on the
remainders to inter-reduce them and find new basis elements with new leading terms.

We believe this approach will scale and parallelize better than existing methods because
the matrices in F4/F5 are extremely large and mostly triangular. The columns which have
a triangular structure correspond to the reducible monomials, and step-by-step elimination
will have very low arithmetic intensity, which is hard to parallelize. The heap based divi-
sion process effectively combines all of the row operations for an entire column into a single
step using storage proportional to the number of rows. It has high arithmetic intensity and
very low storage costs, needing only O(#q + #r) storage where the number of quotient
terms/reducible monomials/matrix rows is #q, and there are #r remainder terms corre-
sponding to the irreducible monomials. This cost is paid for each S-polynomial separately,
so the overall storage can be tightly controlled.

What we give up, in this formulation, is the flexibility to subtract two partially reduced
polynomials and cancel lower order terms. We believe that opportunity is rare. The gain
is that we avoid the construction of extremely large sparse matrices and all of the problems
associated with them.

This leaves the problem of what to do with the remainders. The picture we should have
in mind is a large sparse rectangular matrix, with many columns and few rows. Our goal is
to compute its reduced row echelon form. The standard method is to invert a leading block
and multiply through. That is, working mod p, identify and extract the submatrix of pivots
and compute its inverse using p-adic lifting. Multiplying by this inverse produces the result.
This could be a basic building block for sparse linear algebra computations.
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We propose to develop this new approach to Gröbner basis computation, with an eye
towards improving the sparse linear algebra steps which can not be completely eliminated.

This project is suitable for a PhD student and/or PDF interested in computing Gröbner
bases and high-performance computing. In the first year the student would implement, in C,
division by a set of polynomials. We propose to modify our heap based fraction-free division
algorithm from [24] to accomplish this. This would also give Maple division by a triangular
set which would improve the Hensel lifting in [29] for polynomial factorization over number
and function fields. In the second year we would look at the sparse linear algebra and the
Gröbner basis algorithm. In the third year we anticipate having to redesign the algorithm
and try again. Maplesoft personnel would provide help with the sparse linear algebra and
parallel infrastructure support.

4: Multivariate polynomial data structure sub-project.

Table 1 shows that the polynomial data structures used by Magma, Maple, and Mathematica
limit their performance on modern computers. With our new POLY data structure we see
an opportunity for a quantitative leap in overall performance. This sub-project would first
integrate POLY into the Maple kernel as the default. One goal is to improve parallel speedup
of Maple library routines like polynomial factorization by reducing sequential overhead by
improving the efficiency of Maple kernel routines.

Secondly, we propose to design high-performance routines for POLY. For example, we
have identified the operation of extracting the coefficient of (x − a)k from a polynomial in
x for a given integer a as key in the multivariate Hensel lifting algorithm which is used for
polynomial factorization. Also, there are many operations in the Maple kernel for polynomi-
als that could be parallelized in principle. For example, sorting, coefficient extraction, and
multi-point evaluation. Some of these, e.g., multi-point evalutation, are suitable for a GPU.
For sorting we currently use American flag sort, a version of radix sort, but this still takes
up most of the time for several operations. We would like to try a parallel radix sort.

Thirdly, we propose also to extend the POLY data structure so that we can encode not
only monomials like x2y3z4 in a single machine word, but also terms like x3exy′(x), that is, to
support functions, as well as variables, e.g., sin(x), fx(x, y), and RootOf(Z2−2). This means
that we can represent differential equations compactly and manipulate them more efficiently
too. This would potentially benefit Maplesoft’s other main product MapleSim which is used
for industrial modelling and simulation. By inclusion of RootOf(Z2 − 2), which is Maple’s
representation for the algebraic number

√
2, we propose to include support for algebraic

numbers. Currently Maple has no kernel support for computing with algebraic numbers.
These extensions would involve a significant amount of coding but would potentially yield a
ten-to-hundred-fold speedup for more general symbolic objects.

This project is suitable for a Masters student and/or PhD student interested in the
design of symbolic computation systems and high-performance computing. In the first year
the student(s) would focus on high-performance routines then in the second year supporting
either derivatives or algebraic numbers. In the third year the student(s) and we will need to
integrate the software into the Maple library. Maplesoft will participate in the design and
integration of the new data structure, and parallel infrastructure support needed.
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Team Expertise

Explain how the knowledge and experience of each team member relates to the expertise
needed to accomplish the project objectives, and how the contributions of the team members
(and company personnel) will be integrated.

The research area of each team member below includes computer algebra. Dr. Michael
Monagan has expertise in all areas of this proposal. He has worked on the Maple and Magma
computer algebra systems. Dr. Petr Lisonek has expertise in algebraic combinatorics. He
will contribute to sub-project 2. Dr. Jürgen Gerhard is head of the Research Group at
Maplesoft. He is co-author of the text Modern Computer Algebra [15]. He will contribute to
the design of all four sub-projects. Dr. Allan Wittkopf of Maplesoft has expertise in solving
differential equations. He is the author of Maple’s library for linear algebra over finite fields.
He would participate in the design of sub-projects 2 and 3. Mr. Darin Ohashi of Maplesoft
will help with the design and implementation of the parallel support infrastructure needed
for all four sub-projects. Ms. Clare So of Maplesoft will oversee the code (Maple and C)
integration and testing.

Training of Highly Qualified Personnel

Describe how the knowledge and experience gained by graduate students, postdoctoral fellows,
research assistants or others, including company personnel, is relevant to the advancement
of the field, to developing practical applications of knowledge, or strengthening the industrial
research base.

There are four good research and development problems in the scope of this proposal. For
students, company personnel, and other research personnel, this project will provide excel-
lent training in computational algebra with a balance between algorithm development and
practical implementation. It involves writing software for polynomial computations over dif-
ferent rings from scratch. Few students will have such an opportunity. The work on parallel
algorithm design and implementation will advance the field of computer algebra and benefit
industry.

Each of the four sub-projects is suitable for one PhD student. The total number of
students we anticipate supporting is 1 PDF, 4 PhDs, 1 Masters and 1 undergraduate student.
Students we have in mind include: Mr. Lucas Jiaxiong, a current PhD student, has started
working on sub-project 1. Mr. Baris Tuncer, a new PhD student, will work on sub-project
2 or 4. Mr. Roman Pearce, a possible PhD student, who has worked on the POLY data
structure, could work on subproject 3 or 4. Mr. Rafid Abdullah, a possible PhD student,
could work on sub-projects 2 or 4. Dr. Mahdi Javadi (PhD 2011), a possible PDF, could
work on sub-projects 1, 2 and 3. He would help lead the parallel algorithm development.

Dr. Monagan will be teaching our Computer Algebra course in January 2013 to senior
undergraduate students and graduate students and Dr. Lisonek plans to teach our Cryptog-
raphy course in the Fall of 2013, also to senior undergraduate and graduate students. We
expect to attract at least one undergraduate student and possibly one graduate student to
the project through these courses.
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Value of the Results and Industrial Relevance

Describe the anticipated value of the project results, highlighting the relevance of the scien-
tific or technical advances, or the innovative techniques, processes or products that will be
developed. Show how the outcome will address a current or future industrial or market need.
Describe how the exploitation of the project results will benefit the Canadian economy within
a reasonable time.

The main expected results of this project are

1. Fast modular algorithms for sparse polynomial GCD computation and with parallel
support for multi-core platforms. This is necessary to enable computation with larger
polynomials in Maple than is currently possible.

2. A new C library for polynomial arithmetic in Zp[x] which has asymptotically fast
algorithms and supports multi-core platforms. This is needed for 1 above but will also
improve performance of root finding and factorization over finite fields.

3. A new C library for structured sparse linear system solving with application to fast
Gröbner basis computation via the F4/F5 algorithms. A new heap based division code
for division by a set of polynomials (possibly with parameters) with application to fac-
torization over number and function fields and Maple’s Groebner and RegularChains

packages for solving systems of polynomial equations.

4. Incorporation of new polynomial data structure as the default will provide a big boost
to Maple’s overall efficiency thereby giving Maple a clear advantage over other com-
puter algebra systems. Extending the new polynomial data structure to support func-
tions will increase the range of applications in Maple which will benefit. Supporting
derivatives will improve MapleSim’s efficiency for industrial modelling and simulation.

Maple has very limited parallel support right now. This project would add another
significant amount of parallelism to Maple, which is very important because the sequential
speed of computers will not increase much in the future, but the number of cores will.

Each of these four sub-projects will improve the performance of one or more of Maple’s
core algebraic facilities which will contribute to improving Maple’s competitiveness. This will
bring immediate and sustained benefit to Canadian industry because Maple is Maplesoft’s
main product. It will also make Maple more attractive to the research community as a
vehicle for research and development.

Benefit to Canada

Outline any additional economic, social, and/or environmental benefits that will or could be
realized in Canada.

The project will help train Canadian HQP with skills in parallel and high performance
computing, skills in high demand in Canadian industry. We believe that the training in
computational mathematics will also be of value to Canadian industry. Another indirect
benefit is that by improving Maple (and also MapleSim) we will help improve STEM educa-
tion in Canada as Maple is used in many mathematics, science and engineering departments
in colleges and universities across Canada for training students in mathematics.
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