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Multicore

What can they do?

I 1010 instructions per second

I very good at branching (if ... then ... else ...)

I low latency, fast communication (shared cache)



Multicore

Fine-grained parallelism:

I must be done “on the chip”

I work in cache – tight code

I use very little memory

I switch tasks – don’t wait

f = (1 + x + y + z + t)30 g = f + 1

46376× 46376 = 635376 terms, W (f , g) = 3332
threads Core i7 Core 2 Quad

sdmp

4 11.48 s 6.15x 14.15 s 4.25x
3 16.63 s 4.24x 19.43 s 3.10x
2 28.26 s 2.50x 28.29 s 2.13x
1 70.59 s 60.25 s

Magma 2.15-8 1 526.12 s
Pari/GP 2.3.3 1 642.74 s 707.61 s
Singular 3-1-0 1 744.00 s 1048.00 s
Maple 13 1 5849.48 s 9343.68 s

32K L1

256K L2

32K L1

256K L2

32K L1

256K L2

32K L1

256K L2

8MB Shared L3

Core i7
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parallel speedup −→
1.7 2.9 4.9 8.4 14.2 24.1
1.8 3.2 5.8 10.5 18.9 34.0
1.9 3.6 6.8 13.0 24.7 47.0
2.0 4.0 8.0 16.0 32.0 64.0

2.1 4.4 9.3 19.5 40.8 85.7
2.2 4.8 10.6 23.4 51.5 113.4
2.3 5.3 12.2 28.0 64.4 148.0
2.4 5.7 13.8 33.2 79.6 191.1
2.5 6.2 15.6 39.0 97.6 244.1

Optimization pays off.

I sequential code: 10− 100x faster

I parallel code: 50− 10000x faster

Challenge: quasi-linear time algorithms
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Multicore

Fine-grained parallelism.

Fast and nimble algorithms.

Large structures that can’t be broken up.

I sparse polynomials

I sparse linear algebra

I sparse graphs and networks

I integer computations



Graphics Processors

Nvidia GT200
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Today:

I GPUs in some laptops

I $100 – 500 add in card for desktops

I 4 to 8 cards in compute servers

I Nvidia’s CUDA

End of 2009:

I cross platform, cross vendor library: OpenCL

I flood of development

End of 2010:

I CPU + GPUs on a single chip
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Graphics Processors

What can they do?

I 1012 FLOPS (single precision)

I incredible bandwidth (150 GB/sec)

I uniform execution across cores
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I process small blocks of data independently

I simple operations, massive parallelism

I create thousands of threads

I rely on throughput
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Visualization

I Adaptive Marching Points
(Singh & Narayanan 2008)

I Real Time Ray Tracing
(Reimers & Seland 2008)

Industrial Linear Systems

I 163840× 163840 dense
2.5 hrs → 5.5 min
(Ibragimov 2009)

Simulations

I Stochastic Differential Equations
(Januszewski & Kostur 2009)
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Figure 2: The ensemble of 524288 Brownian particles, modeling the noisy dynamics of phase
in a Josephson junction described by Eq. 1 is simulated for time t ∈ (0, 2000 2π

ω
) with time

step ∆t = 0.01 2π
ω

. On the left panel sample trajectories are drawn with black lines and
the background colors represent the coarse-grained (averaged over a potential period) density
of particles in the whole ensemble. The right panel shows the coarse-grained probability
distribution of finding a particle at time t = 2000 2π

ω
obtained by means of a histogram with

200 bins. The histogram is calculated with both single and double precision on a GPU with
Compute Capability v1.3. The same calculation has also been performed on the CPU but
their identical results are not presented for clarity purposes. The total simulation times were:
20 seconds and 13 minutes on NVIDIA Tesla 1060C when using single and double precision
floating-point arithmetics, respectively. The CPU based version of the same algorithm needed
over three hours. Used parameters: a = 4.2, γ = 0.9, ω = 4.9, D0 = 0.001, f = 0.1 correspond
to the anomalous response regime (cf. [17]).

Algorithm 3 The AdvanceSystem CUDA kernel.
1: local i← blockIdx.x · blockDim.x + threadIdx.x
2: local mv ← 0
3: local mx← xi

4: for all tiles do
5: local tix← threadIdx.x
6: j ← tile · blockDim.x + threadIdx.x
7: shared sxtix ← xj

8: synchronize with other threads in the block
9: for k = 1 to blockDim.x do

10: mv ← mv + sin(mx− sxk)
11: end for
12: synchronize with other threads in the block
13: end for
14: vi ← mv

7



Graphics Processors

Uniform computations.

Massive throughput.

Dense structures.

I dense polynomials

I dense linear algebra

I dense graphs and networks

I signal processing

I visualization

I simulation

I etc.



Larrabee

Intel “Larrabee”



Larrabee

Coming in early 2010.

Many-core x86:

I 32 cores initially

I 4 threads per core

I 512-bit vector units

I 1012 FLOPS at 2GHz

Fully programmable “graphics” processor.

I coherent shared cache

I supports recursion
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Larrabee

Divide-and-conquer.

Adaptive algorithms.

High throughput applications.

I numerical solving

I numerical integration

I sparse linear algebra

I visualization

I simulation

I etc.



Questions?


