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Abstract 

 
To complement the existing descriptions of amplitude functions for the hydrogen atom in the coordinate 
representation in various systems, we present all known and well characterised amplitude functions in the 
corresponding momentum representation, specifically according to the treatments of Podolsky and 
Pauling on transformation from spherical polar coordinates, of Klein on a transformation analogous to 
that from paraboloidal coordinates, and of Lombardi on transformations from both spherical polar and 
paraboloidal coordinates. Figures depicting surfaces of the functions in their real and imaginary parts or 
their squares illustrate the diversity of shapes of these surfaces according to the various momentum 

variables. 
 
 

Resumen 
 

Para complementar la descripción de las funciones de amplitud existentes para el átomo de hidrógeno, en 
las representaciones de varios sistemas de coordenadas, se presentan todas las funciones de amplitud 
conocidas y caracterizadas. Específicamente, se muestran los tratamientos de Podolsky y Pauling 
transformando a partir de las coordenadas polares esféricas, las de Klein, transformadas a partir de 
coordenadas paraboloides, y las de Lombardi, transformadas a partir de coordenadas polares esféricas y 
paraboloides. Las imágenes que representan las superficies de las funciones en sus partes reales e 
imaginarias o sus funciones cuadradas, muestran la diversidad de las formas de estas superficies según las 
diversas variables en el espacio de momentos. 
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I INTRODUCTION 
 

The hydrogen atom was the subject of treatments in quantum mechanics within two of its first three 
formulations. Pauli first applied a symbolic approach in which commutation relations were imposed; 
Schroedinger's wave mechanics then relied on a fact that a coordinate quantity and its derivative fail to 
commute -- x dy/dx ≠ d(xy)/dx.  This commutation condition was recognised, and named, by Dirac as the 
distinguishing characteristic of quantum mechanics, which is a collection of at least thirteen methods of 
calculation, or algorithms, that are applicable to systems on an atomic scale; the original method was matrix 
mechanics but Heisenberg could not devise a procedure to encompass the coulombic potential energy in his 
attempted solution of the hydrogen atom.  Ever since Balmer derived, purely numerologically, his intriguing 
formula for the wave lengths of four lines in the visible spectrum attributed to atomic hydrogen, physicists 
have sought a theoretical approach to rationalise the revolutionary status of that formula:  it contains a 
parameter that assumes only integer values; a discrete nature is hence implied for the internal energies 
accessible to an atom in a manner unfamiliar in traditional physics. 
_______________________________ 
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When Schroedinger (1926) published his four renowned papers that introduced wave mechanics, the 
community of physicists so appreciated this approach based on the solution of partial-differential equations 
that their interest in a development of alternative methods of quantum mechanics greatly waned.  In the first 
of those papers Schroedinger solved his equation independent of time to generate the discrete energies of a 
hydrogen atom in bound states and produced amplitude functions in spherical polar coordinates; although 
this work had significant novelty, the energy formula was already known to be inaccurate, because the 
distinct features in the Balmer series were discovered to be not single lines but multiplets, and the derived 
amplitude functions were clearly artefacts of that particular solution.  The second paper presented the 
solutions to a few formal problems, including a quadratic harmonic oscillator and a rigid rotor. The third 
paper was, in contrast, a monumental achievement because Schroedinger, in solving the hydrogen atom in 
paraboloidal coordinates, succeeded in calculating accurately not only the frequencies but also the intensities 
and polarisations of the spectral lines under the Stark effect.  Heisenberg had previously stated that the 
observable properties of an atom or molecule are the frequencies and intensities of its spectral lines. The 
fourth paper was concerned primarily with the solution of an equation incorporating a dependence on time.  
In all these cases the kinetic energy of the electron in a hydrogen atom was treated in terms of a laplacian 
operator that resulted from momentum being represented as a derivative of a coordinate; for instance  px → − 
i  ћ d/dx in cartesian coordinates, in which i = √−1 and ћ denotes the Dirac constant, or Planck constant h 

divided by 2 π.  Mathematicians and physicists eventually recognised that the Schroedinger partial-
differential equation for the hydrogen atom was solvable, through a separation of the spatial variables to 
yield ordinary-differential equations in coordinates in a manner that Schroedinger himself extolled in his 
third seminal article, in four systems in total -- ellipsoidal and spheroconical coordinates in addition to the 
original spherical polar and paraboloidal systems (Kalnins et alii, 1976). 

One property involved in achieving Schroedinger's solutions that differs from a treatment in matrix 
mechanics, for instance, is a necessity to transform a mechanical variable, either a position or momentum for 
instance, into a differential operator of the other mechanical variable, either momentum or position 
respectively.  That transformation involves the coordinate being replaced by a derivative with respect to 
momentum, for instance either x → − i ћ d/dpx or px → i ћ d/dx, all in cartesian coordinates.  As a 
fundamental condition according to Schroedinger's approach, an application of either the momentum 
representation or the coordinate representation must yield the same result for an observable property in the 
form of an expectation value, such as the accessible internal energies of a system under consideration. There 
must hence exist solutions to the Schroedinger equation for the hydrogen atom in momentum variables that 
are equivalent to the corresponding solutions in coordinate variables for every purpose. In this article we 
present and illustrate these solutions in momentum space. 

 
 

II. FUNCTIONS OF PODOLSKY AND PAULING, OF HYLLERAAS AND OF FOCK 
 
Weyl (1927) stated first an accomplishment of a derivation of momentum eigenfunctions as 

a prospective solution for an integral equation for the hydrogen atom, but that claim was disputed 
by Podolsky and Pauling (1929); as an associate of Schroedinger in Zurich, Weyl was likely the 
first to state explicitly that the relation between amplitude functions in coordinate and momentum 
spaces might takes the form of a Fourier transformation. Podolsky (1928) recognised subsequently 
the essential validity of Dirac's replacement of each momentum variable ηr, conjugate to coordinate 
variable ξr, by its differential operator, ηr → − i  ћ d/dξr; the crucial condition here is that conjugacy 
between the variables in the separate sets, which precedes an application of a Fourier transformation 
between the conjugate variables. When Podolsky worked subsequently with Pauling (1929) to 
derive "the momentum distribution in hydrogen-like atoms", Pauling apparently perverted Podolsky 
into the use of momentum variables as P(pr), Θ(θp), Φ(φp) that failed to conform to those essential 
conjugacy conditions. pr denotes the radial component having the magnitude of the momentum 
vector but is a scalar quantity,  pr = (px

2 + py
2 + pz

2)½, with domain 0 ... ∞; its associated angular 
coordinates are θp and φp, of domains 0..π and 0..2π respectively, referred to the same cartesian axes 
as the position coordinates. Not only did those angular-momentum variables fail to obey that 
conjugacy property with respective coordinate variables θ, φ in the spherical polar system, contrary 
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to Podolsky's previously stated and correct understanding, but also they were effectively not even 
subjected to a Fourier transformation. The momentum amplitude functions derived by Podolsky and 
Pauling (1929) are expressible in this form, generated with Maple symbolic mathematical software, 
 

 

 
in which appear associated Legendre functions P of the first kind and Gegenbauer (ultraspherical) 
functions C; these amplitude functions are proved to be normalised and orthogonal.  The angular 

factors P in terms of cos(θp) and have exactly the same forms as their presence in the 
amplitude functions in coordinate space, proving a lack of Fourier transformation, whereas the C 
functions might constitute an acceptable transform of radial function R(r) in spherical polar 

coordinates because a transform of an exponential function, of form multiplied by a 
polynomial in r in the coordinate representation, yields on Fourier transformation a function with an 

argument in a form resembling a lorentzian formula, . That equation contains also the 

atomic unit of momentum, p0 = ћ/a0 with Bohr radius a0. Three quantum numbers k, l, m appear 
with the same meanings as in the solutions in spherical polar coordinates; explicitly, k indicates the 
number of radial nodes of P(pr), with energy quantum number n = k + l + 1, whereas l and m specify 
the numbers of angular nodes.  Although the resulting amplitude functions might appear to be 
useful for the calculation of various expectation values <pn>, they can not be considered to be truly 
expressed in the momentum representation, even before the falsity of the total transformation was 
recognised.  In fact, even though <p2> calculated with the above amplitude functions yields a 
correct value, values of <pn> for n≠2 are incorrect, as are expectation values of radial distance, 
<rn>, for n≠2.  Plots of surfaces of these functions in momentum space at a selected value of ψp 
have, necessarily, exactly the same shapes and relative sizes, for given energy quantum number n, 
as their counterparts in spherical polar coordinate space, except that the figures contract with 
increasing n rather than expand as in coordinate space.We present just one figure, for χ1,1,0(px,py,pz), 
to illustrate a momentum amplitude function as a surface of constant momentum amplitude χ 
selected such that the volume within contains about 0.99 of the total momentum density; a similar 
criterion is applied in plots of other momentum amplitude functions to follow. The axes are the 
cartesian components of momentum in units of p0.  Comparison of this figure with a corresponding 
plot of ψ1,1,0(r,θ,φ), likewise in a frame of cartesian axes, indicates an identical shape and geometric 
characteristics. 
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Figure 1. Surface of χ1,1,0 within a frame of cartesian components (px,py,pz) of momentum; these 
components are in units divided by p0, the atomic unit of momentum. 
 
 A practical approach to derive the amplitude functions for the hydrogen atom would seem to 
involve the direct solution of the appropriate differential Schroedinger equation in momentum space 
in terms of momentum variables; because the coulombic potential energy is proportional to r−1, 
which causes complications in the replacement of r by a differential operator, such an equation is 
difficult to handle.  An alternative approach involves rewriting the Schroedinger equation in the 
form of an integral equation in momentum space; although this scheme is also difficult to 
implement, it was undertaken by Hylleraas (1932), who generated the following formula for the 
amplitude function in momentum space, not normalised, containing Legendre functions for both 
variables pr and θp, apparently accepting uncritically the angular parts proffered by Podolsky and 
Pauling (1929).   
 

 
 

Fock (1935) adopted an integral-equation approach to derive the eigenfunctions of the total 
momentum variable (pr).  He recognized that, if r had momentum-space analogue − i ћ d/dpr, the 
inverse operator r−1 associated with the coulombic potential energy should be expressed as an 
integral operator.  To solve this integral equation containing electronic mass µ, 
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Fock resorted to a four-dimensional scheme of hyperspherical polar coordinates, obtaining  
 
                                                    χn,l,m(α,θ,φ)  =  Πl(n,α) Yl,m(θ,φ) 
 
in which radial function Πl(n,α) that appears as a product with spherical harmonics, Yl,m(θ,φ), as in 
preceding work, was not elaborated explicitly.  Therein angles α, θ, φ are spherical coordinates of a 
point on a hypersphere, but angles θ and φ are equally ordinary spherical coordinates characterizing 
the momentum direction. On projection back to three-dimensional space, he apparently recovered 
the results of Hylleraas (1932).  
 
III FUNCTIONS OF KLEIN 
 
 After that moderate activity during the first decade after the origin of wave mechanics, no 
further pertinent development occurred until another three decades had elapsed.  Klein (1966) 
solved the amplitude functions in momentum space in what he called toroidal coordinates, but these 
correspond to cylindrical coordinates of Kalnins et alii (1976).  The relations between cartesian 
coordinates x, y, z and toroidal coordinates ξ, η, φ follow: 
 

                 
 

Figures 2, 3 and 4 illustrate surfaces of constant ξ, η and φ in these toroidal coordinates, 
respectively.  A surface of constant ξ = ½ π has the shape of a finite double cylinder joined at the 
top. A surface of constant η = ½ π has the shape of a dome, closed at the top, or perhaps a 
paraboloid opening downward.  In contrast, the surface of constant φ = 0 comprises one plane 
perpendicular to axis py.  In all cases the surfaces are generated in toroidal coordinates but Maple 
software translates the figure into cartesian coordinates px, py, pz for conventional viewing.  We 
expect accordingly that amplitude functions in these momentum coordinates comprise domes, tori 
and planes in various combinations. 

 
Figure 2. Surface of constant ξ = ½ π in toroidal coordinates translated to cartesian coordinates, cut 
open to exhibit the internal structure 
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Figure 3. Surface of constant η = ½ π in toroidal coordinates translated to cartesian coordinates 

 
Figure 4. Surface of constant φ = ½ π in toroidal coordinates translated to cartesian coordinates, 
showing a planar surface with contours around two foci 
 
 Klein's function for momentum amplitude, with symbolic normalisation factor N and 
containing Jacobi polynomials P as a function of η, is expressible as 
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Parameters k, l, m that appear in this equation are quantum numbers as arguments of the Jacobi 
function and as exponents of hyperbolic trigonometric functions tanh and sech, but their meanings 
differ from those of quantum numbers in spherical polar coordinates denoted with the same 
symbols; in this case energy quantum number n = k + 2 l + m + 1. 
 We proceed to display figures of these momentum amplitude functions, never previously 
reported.  The first function, unnormalised, is for the ground state of the hydrogen atom: 
 

 

 
All these functions are complex, even without exponential term eimφ for φ when m≠0, because of the 
exponential term eiξ for ξ. For this reason we display separately surfaces of the real and imaginary 
parts of χ1,0,0 and its square, |χ1,0,0|2, in figures 5, 6 and 7.  In all cases of these surfaces, a value of χ 
is chosen to present a fair representation of the shape and size of the respective surface, similarly to 
the criterion for the function of Podolsky and Pauling (1929) in figure 1. 

 
Figure 5. Surface of the real part of χ1,0,0(ξ,η,φ) showing an incomplete circular torus under a 
connected dome, cut open to show the internal structure; the axes are px, py and pz. 
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Figure 6. Surface of the imaginary part of χ1,0,0(ξ,η,φ), cut open to show the internal structure; the 
axes are px, py and pz. 

 
Figure 7. Surface of the square of χ1,0,0(ξ,η,φ), i.e. |χ1,0,0|2   = χ1,0,0* χ1,0,0; the axes are px, py and pz. 
 
 Compared with the surfaces of amplitude functions in coordinate space, these surfaces of 
χ1,0,0 in momentum space exhibit astonishing properties.  For instance, for the real part of χ1,0,0 an 
external view might seem to imply merely a circular torus with a nearly circular cross section, but 
cutting open the torus shows that two layers of surface exist for pz>0, but only one layer for pz<0.  
In contrast, the surface of the imaginary part of χ1,0,0 in figure 6 partly resembles a dome, such as 
for constant η in figure 3, but with angular rather than curved surfaces and some strange small 
structure along axis pz; there is also a torus of a sort with angular rather than curved surfaces 
beneath the dome.  In further contrast, the surface of |χ1,0,0|2 in figure 7 closely resembles, but is not, 
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half a torus, sliced perpendicularly to axis pz, at pz=0; by its nature, this surface can not exist for 
pz<0.   
 The surfaces of χ2,0,0(η,ξ,φ), of unnormalised formula,  
 

=  

 
 as the real and imaginary parts and its square are depicted in figures 8, 9, 10. 

 
Figure 8. Surface of the real part of χ2,0,0(ξ,η,φ) showing part of a large dome above a small torus; 
the axes are px, py and pz. 

 
Figure 9. Surface of the imaginary part of χ2,0,0(ξ,η,φ), cut open to show the internal structure; the 
axes are px, py and pz. 
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Figure 10. Total surface of the square of χ2,0,0(ξ,η,φ), i.e. |χ2,0,0|2   = χ2,0,0* χ2,0,0; the axes are px, py 
and pz. 
 
 Comparison of figures 8, 9, 10 for χ2,0,0(ξ,η,φ) with the corresponding figures 5, 6, 7 for 
χ1,0,0(ξ,η,φ) indicates some evolution between these respective functions.  For the real part of 
χ2,0,0(ξ,η,φ) a small torus replaces the large torus of χ1,0,0(ξ,η,φ) under a dome that has a circular 
shaft at its centre and that extends downward to the centre of the torus.  For the imaginary part of  
χ2,0,0(ξ,η,φ), the gap between parts of the surface of  χ1,0,0(ξ,η,φ) in figure 6 near the periphery 
exists no longer in figure 9, as the two sheets of the surface are visibly connected; a small torus near 
the base of the figure lies below some small structure along axis pz.  For |χ2,0,0|2 in figure 10, the 
dome is opened along axis pz to resemble an architectural oculus, namely a dome with a large 
opening at its centre and a cylindrical shaft protruding downward. 
       For χ2,1,0(ξ,η,φ), the surfaces of unnormalised formula,  
 

 

 
 as its real and imaginary parts and its square are depicted in figures 11, 12, 13. 
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Figure 11. Surface of the real part of χ2,1,0(ξ,η,φ) showing part of a large dome above a small torus; 
the axes are px, py and pz. 

 
Figure 12. Surface of the imaginary part of χ2,1,0(ξ,η,φ), cut open to show the internal structure; the 
axes are px, py and pz. 
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Figure 13. Total surface of the square of χ2,1,0(ξ,η,φ), i.e. |χ2,1,0|2   = χ2,1,0* χ2,1,0; the axes are px, py 
and pz. 
 

Of these surfaces pertaining to χ2,1,0(ξ,η,φ), the square |χ2,1,0|2 is a perfect instance of an 
architectural oculus, whereas the real part has a torus under the closed area of an oculus; the 
imaginary part has angular outer features but a torus underneath them. 
 As a final instance of these momentum functions in toroidal space derived by Klein (1966), 
we present this function, 
 

 

 
of which the surfaces of the real and imaginary parts and its square are displayed in figures 14, 15, 
16, respectively. 

 
Figure 14. Surface of the real part of χ3,2,0(ξ,η,φ) cut open to show two small tori beneath an 
internal dome, under a further dome; the axes are px, py and pz. 
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Figure 15. Surface of the imaginary part of χ3,2,0(ξ,η,φ), cut open to show the internal structure 
comprising a small torus under an angular dome; the axes px, py, pz, omitted for clarity, have the 
same orientations as in figure 14; the axes are px, py and pz.   
 

 
Figure 16. Total surface of the square of χ3,2,0(ξ,η,φ), i.e. |χ3,2,0|2   = χ3,2,0* χ3,2,0; the axes are px, py 
and pz.  
  

 The shape of the surfaces of the squares of both χ2,1,0(ξ,η,φ) and χ3,2,0(ξ,η,φ) again 
resemble an architectural oculus.  According to the same criterion for the chosen value of χ, the 
maximum diameter of χ3,2,0(ξ,η,φ) is slightly larger than that of χ2,1,0(ξ,η,φ).  In contrast, the real 
part of χ3,2,0(ξ,η,φ) has no opening in its double dome and the imaginary part has only a small 
opening there. In all cases of these surfaces of toroidal momentum amplitude functions the surfaces 
are axially symmetric with respect to axis pz. 

 

IV. FUNCTIONS OF LOMBARDI  

Lombardi (1980) recognised serious deficiencies in the derivation by Podolsky and Pauling 
(1929) of their amplitude functions in the momentum representation:  their variables are not formed 
to be conjugate to any relevant spatial variables, so precluding a commutation relation with an 
appropriate spatial variable that leads to a Heisenberg relation of indeterminacy, and the angular 
coordinates are not chosen to be hermitian, which is a requirement of a quantum-mechanical 
system.  Based not only on Podolsky's (1928) correct criteria but even more strongly on the work of 
De Witt (1952) who showed that, for any coordinate system, the conjugate momentum is the 
hermitian part of p = i d/dq, for only cartesian coordinates does a direct Fourier transform of an 
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amplitude function in coordinate space produce a correct amplitude function in momentum space.  
Otherwise, for variables (q1, q2, …, qn) in position space in n dimensions of any set, the volume 
element becomes dV = g(q1, q2, …, qn) dq1 dq2 … dqn, in which g(q1, q2, …qn) is the jacobian of the 
transformation between variables in the two sets.  The most general transform between position 
space and momentum space is  

               ���� … ��� = �
	
ℏ � 
��� … ��, �� … ��� ���� … ��� � ��� … ���

�
��   

 
in which      

                                            
��� … ��, �� … ��� = �
√� ���� ℏ� ��∗�

   

The correct hermitian form of a momentum space variable is then  

     � → −#ℏ � $
$%&

+ �
	�

$�
$%&
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Lombardi (1980) considered three momentum variables (specified here as pr, θp, φp), which 
were chosen to be conjugate to proper position variables (r, θ, φ) in spherical polar coordinates for 
the spatial amplitude function expressed as ψk,l,m(r, θ, φ) = R(r) Θ(θ) Φ(φ). As the hydrogen atom is 
hence separable in the position representation in those coordinates, Lombardi transformed 
separately the radial equation and the angular equations, denoting the radial eigenfunctions in the 
momentum representation as α(pr). Recalling that the eigenfunctions of the angular momentum 
operators, L2 and Lz, in position space are the spherical harmonics, Yl,m(θ,φ), with eigenvalues l(l+1) 
and m, respectively, he denoted the corresponding angular eigenfunctions in the momentum 
representation as β(θp) ρ(φp). These functions must satisfy these expressions, 

 
          L2 β(θp) ρ(φp) = l(l + 1) ћ2 β(θp) ρ(φp)         
    Lz ρ(φp) = m ћ ρ(φp) 
         

The total momentum amplitude function for the hydrogen atom in momentum space was then 
written as 
       

 
For momentum space variable pr, which is conjugate to position space radial variable r, the value of 
g for the transformation from R(r) to α(pr) is r2. The resulting expression for the radial component 
was then derived to be 

     

This radial function is fully normalised for all n,l such that  
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(φp

2 − m2 ћ2) ρ(φp) = 0 
 

with the constant of separation chosen to be m2, for which a simple solution, 
 
          ρm(φp) = δ(φp ± m ћ) 
   

 
contains Dirac delta function δ; m must be an integer (positive, negative or zero). This result is 

exactly as expected for a direct Fourier transform of coordinate function Φ(φ) = /  , as 

g = 1 for this φ dimension. The Dirac delta function is formally a distribution, not a true 
mathematical function; its square, or product with itself, is hence undefined. For this reason, a 
normalisation integral is impracticable -- i.e., unlike for αn,l(pr) above or βl,m(θp) below, the quantity 
ρm(φp) as defined above is not square integrable. 
 With g = θp for the transformation from Θ(θ), the solution of the equation for βl,m(θp) is 
ultimately expressed, separately for l − |m|  = even integer, 

                         

and for l − |m| = odd integer; 

  

These formulae that contain Bessel function J and Pochhammer function ph (here expressed as 
ph(x,y) but commonly written (x)y, in either case equal to Γ(x+y)/Γ(y) ), are fully normalised 
according to 
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 We present some plots of the squares of χn,l,m(pr,θp,φp) without ρ(φp), i.e. |αn,l(pr) βl,m(θp)|2 
because ρ(φp)  as a Dirac δ function defies its incorporation into such a square that can yield a plot. 
We display first such a square of χ2,0,0(pr,θp,φp) without ρ(φp) is expressed with this formula, 

 = α2,0(pr) β0,0(θp) =  

of which the surface of the square appears in figure 17. 
 

 
Figure 17. |α2,0(pr) β0,0(θp)|2 as a surface for −3 < pr/p0  <  3 and 0 < θp < 10 
 
This surface exhibits a decreasing sequence of maxima along axis θp of which only three appear 
within the region for 0 < θp < 10, and of which the absolute maximum is at θp = 0.  The surface of 
|α1,0(pr) β0,0(θp)|2 is similar to that in figure 17 but the two subsidiary maxima are less prominent; 
correspondingly for n > 2, the sequence of subsidiary maxima along axis θp are increasingly 
prominent.  In figure 18 is displayed the surface of |α2,1(pr) β1,0(θp)|2, according to this formula for 
χ2,1,0(pr,θp,φp) without the delta function containing φp.    
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Figure 18.  |α2,1(pr) β1,0(θp)|2 as a surface for  −3 < pr/p0 < 3 and 0 < θp < 13 
 
This surface of |α2,1(pr) β1,0(θp)|2 resembles the surface of |α2,0(pr) β0,0(θp)|2 except that the 
subsidiary maxima are here more prominent and the principal maximum is shifted to near θp=2.  
Other surfaces of |αn,l(pr) βl,m(θp)|2 have analogous characteristics. 
 Lombardi (2019) derived functions for the momentum amplitude of the hydrogen atom also 
for the momentum space related to the coordinate space in paraboloidal coordinates u,v,φ, defined 
in figure 19.  In this coordinate system, the jacobian of the transformation is �(, )� = ¼ �u + v�2, 
which is not separable into a product of one-dimensional terms.  Because of the symmetry between 
the two coordinates u and v, the resulting amplitude function in momentum space is expressible as 
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In this formula appear ph for a Pochhammer function, defined above, hg for a hypergeometric 
function and ce that denotes the ceiling or smallest integer greater than or equal to the number that 
is the argument of this function.  Quantum number n pertains to energy and nj, as n1 or n2, to 
momentum variable pj as either pu or pv corresponding to coordinate variable either u or v, 
respectively.  Also in this formula appears l as a dummy variable defined with |m| = 2 l + 1, distinct 
from quantum number l in functions in spherical polar coordinates above; l assumes values of 
integer (for m even) and half integer (for m odd) because quantity l (l + 1) of spherical polar 
coordinates is replaced with (m2 − 1) such that n = n1 + n2 + |m| + 1.  The third factor in χ(pu,pv,φp) 
has exactly the same form as in the transformation from spherical polar coordinates, explicitly, 
 

ρm(φp) = δ(φp ± m ћ)
 

 
Figure 19. Surfaces of constant coordinates (u,v,φ) in the paraboloidal system; a surface for u = 1 is 
a red paraboloid opening downward; a surface for v = 1 is a blue paraboloid opening upward; a 
surface for φ = 0 is a half-plane extending from the vertical symmetry axis. 
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 We present some figures exhibiting surfaces of amplitude functions in momentum space 
transformed from amplitude functions in paraboloidal coordinates  for selected values of n1 and n2 
with m = 0, so without factor ρm(φp) of which the Dirac delta function is problematic for purposes of 
plotting; the plots are thus simply the product of two α functions, displaying how that product 
varies as a function of pu and pv.  Although the above formula for αn,n1,l(pu) or the analogous 
αn,n2,l(pv) appears complicated, the actual formulae for particular values of n, n1, n2 and m have 
simple forms, as demonstrated below, and like the functions transformed from spherical polar 
coordinates above.  The first function is for the ground state of the hydrogen atom, of which the 
pertinent product is 
 

 =     

 
As this product is complex, the most meaningful plot depicts its square, presented in figure 

20, which shows a surface with a single maximum value at the origin, and four-fold symmetry 
about an axis through the origin and perpendicular to the momentum axes, rather than cylindrical 
symmetry.   

 
Figure 20.  as a function of momentum variables pu/p0 and pv/p0 

 
 Figure 21 presents an analogous plot of the square of a product of two α functions with 
disparate values of quantum numbers, n1 = 1 and n2 = 0; that product has this formula: 
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=  

 
The surface of the square of this momentum amplitude function exhibits two maxima 

slightly displaced from the origin on either side along axis pu, and a greater extension along this axis 
than along axis pv.  The analogous surface for a product with n1 = 0 and n2 = 1 shows also two 
maxima slightly displaced from the origin but on either side along axis pv, as expected. 

 
 
 

Figure 21.  as a function of momentum variables pu/p0 and pv/p0 

 
 Figure 22 presents an analogous plot of the square of a product of two α functions with 
quantum numbers at equal values, n1 = 1 and n2 = 1, according to this formula: 
 

=    

 
The surface of the square of this momentum amplitude function exhibits four maxima, each slightly 
displaced from the origin on either side along axis pu and axis pv, and a similar extension along both 
axes.  
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Figure 22.   as a function of momentum variables pu/p0 and pv/p0 

 
 Plots of squares of products α(pu) α(pv) of other amplitude functions with m = 0 appear to 
have either one or two maxima, either one at the origin or two slightly displaced from the origin, 
along each axis pu or pv, independent of the values of n and n1 or n2.  As n increases, the width of 
the curved surfaces becomes increasingly smaller and hence with increasing maximum squared 
amplitude at or near the origin. 
 
V. DISCUSSION 

 
These four amplitude functions for the hydrogen atom in the momentum representation -- 

those of Podolsky and Pauling (1929), apparently reproduced by Hylleraas (1932) and by Fock 
(1935), of Klein (1966) and of Lombardi (1980, 2020) in two systems -- comprise all such sets of 
known functions that have been fully characterised.  A direct comparison of the plotted shapes of 
the surfaces in the various figures is meaningful only between the functions of Podolsky and 
Pauling transformed from spherical polar coordinates and of Klein transformed apparently from 
paraboloidal coordinates, or between the functions of Lombardi transformed from spherical polar 
coordinates and from paraboloidal coordinates.  In each case the functions have disparate variables, 
even though in the plots the variables become displayed apparently in conventional cartesian 
momentum coordinates.   
 An essential ramification of the existence and quantitative definition of these multiple 
functions within the momentum representation is that they are all artefacts of both a particular 
method of quantum mechanics, specifically wave mechanics, and a particular momentum 
representation within wave mechanics.  For a particular purpose of a calculation involving this 
method, functions in one set of momentum variables might prove more convenient than in another 
set of momentum variables, or than in one or other set of coordinate variables.  The functions of 
Podolsky and Pauling (1929) are, however, deprecated for all purposes because they are incorrect; 
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although they result from a correct solution of the Schroedinger equation in coordinate space, its 
improper transformation into momentum variables makes their applicability generally worthless.  
For the same reason the functions of Hylleraas (1932) and Fock (1935), despite the skill of their 
derivations, suffer from the same fundamental deficiency, which those authors failed to recognise.  
For the functions of Klein (1966), that author admitted that whether his toroidal system would be 
useful for calculations is unclear, but their pedagogical value emphasises the presence of the 
Coulomb degeneracy in the hydrogen atom.  The functions of Lombardi (1980, 2020) transformed 
from both spherical polar and paraboloidal coordinates are satisfactorily derived and well defined; 
the presence in each case of the questionable Dirac delta functions hinders plots of the surfaces of 
these functions at a selected value of amplitude χ, as is practicable for all amplitude functions in 
coordinate space at a selected value of amplitude ψ (Ogilvie, 2016), but might not impede 
calculations of properties of the hydrogen atom:  for particular values of the pertinent quantum 
numbers, Lombardi's functions have no more complicated nature than the corresponding functions 
in coordinate space. 
 
VI. CONCLUSION 

 
How many separate sets of momentum amplitude functions are possible?  In principle, for 

each set of coordinate amplitude functions there might exist a corresponding set of momentum 
functions, implying four such sets; other means of generating a momentum function can not be 
excluded.  The present plots of amplitude functions, in four sets, in momentum variables in their 
real and imaginary parts and as their squares, presented in the various figures above, are available 
for comparison with plots of surfaces of amplitude functions in coordinate variables in four sets, 
reported previously (Ogilvie, 2016).  The momentum amplitude functions in four sets here, 
however, claim their origins in only two sets of the amplitude functions in coordinate variables. 
These amplitude functions in momentum variables combined with the various amplitude functions 
in coordinate variables constitute at present a complete inventory of amplitude functions for the 
hydrogen atom as solutions to the Schroedinger equation.   
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