
Fast Parallel Multi-point Evaluation of Sparse Polynomials

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C., Canada. V5A 1S6
mmonagan@cecm.sfu.ca

Alan Wong
Department of Mathematics

Simon Fraser University
Burnaby, B.C., Canada. V5A 1S6

cawong@sfu.ca

ABSTRACT
We present a parallel algorithm and implementation to eval-
uate a sparse polynomial in Zp[x0, . . . , xn] into many bivari-
ate images, based on the fast multi-point evaluation tech-
nique described by van der Hoeven and Lecerf [12]. We
have implemented the fast parallel algorithm in Cilk C. We
present benchmarks demonstrating good parallel speedup
for multi-core computers.

Our algorithm was developed with a specific application in
mind, namely, the sparse polynomial GCD algorithm of Hu
and Monagan [6] which requires evaluations of this form. We
present benchmarks showing a large speedup for the poly-
nomial GCD problem.

1. INTRODUCTION
We begin with a description of the motivation for and

setup of our problem. Let A and B be two multivariate
polynomials with integer coefficients and let G = gcd(A,B).
The general idea of the GCD algorithm of [6] is to evaluate
the input polynomials A,B into many univariate or bivari-
ate images (we focus on the latter only), compute the GCD
of the images with a dense algorithm, then use sparse in-
terpolation to recover the coefficients of G. The algorithm
computes G modulo a sequence of primes then reconstructs
the integer coefficients of G using Chinese remaindering. So
from this point forward we work over Zp.

Let A =
∑s
i=1 aiMi(x0, x1, . . . , xn), where ai ∈ Zp and

Mi is a monomial (write B similarly). We use #f to denote
the number of non-zero terms of a sparse polynomial f . For
convenience let us assume #A ≥ #B. Let G = gcd(A,B) =∑
i

∑
j gijx

i
0x
j
1 with gij ∈ Zp[x2, . . . , xn].

First a Kronecker substitution is applied on the variables

x2, . . . , xn to map A 7→ Â(x0, x1, y) and B 7→ B̂(x0, x1, y).

The images of G are obtained by evaluating Â, B̂ at y = αk

and then computing their GCD, for k = 0, 1, 2, . . . where α
is a primitive root of Zp.

Using a modified version of the Ben-Or/Tiwari method
[2] to interpolate G, we require t = 2τ images where τ is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PASCO ’17 Kaiserslautern, Germany
c© 2017 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

the maximum of the number of terms in gij over all i, j.
However, the value of τ is not known a priori and the strat-
egy is to first obtain T images (T is some guess for the
number of required images). Then the Berlekamp-Massey
Algorithm [8] is used to generate the feedback polynomial
from the images. If that polynomial stabilizes, then T ≥ t
with high probability (see Theorem 3 of Kaltofen, Lee and
Lobo [7]) so we have enough images. Otherwise we increase
T and repeat until it stabilizes.

We note that in most GCD problems, the number of im-
ages that we need is very small compared to the size of the
inputs. This is because #G is typically much smaller than
#A + #B and τ = max(#gij) is much smaller than #G.
Because of this, Hu and Monagan [6] observed that the eval-
uations were the most costly part of their GCD algorithm,
as the cost of the other parts of the algorithm depends on
the size of G not A and B. Hence we focus on the case s� t
in the paper.

Their approach to obtain the evaluations γk = Â(x0, x1, α
k)

is as follows: Let Â =
∑s
i=1 aiXi(x0, x1)ymi where Xi is a

monomial in x0, x1. Their algorithm first computes βi :=
αmi for 1 ≤ i ≤ s using at most D + ns multiplications in
Zp where D =

∑n
i=2 degxi A. Then computing γk is equiv-

alent to the following matrix-vector multiplication:


1 1 · · · 1
β1 β2 · · · βs
...

...
...

βT−1
1 βT−1

2 · · · βT−1
s



a1X1

...

...
asXs

 =


γ0
γ1
...

γT−1

 (1)

This may be done with sT multiplications. To parallelize
this on a computer withN cores, compute Γ = [βN1 , β

N
2 , . . . , β

N
s ]

and N vectors Ei = [a1β
i
1, a2β

i
2, . . . , asβ

i
s] for 0 ≤ i < N

from which we obtain the first N evaluations. To obtain
the next N evaluations multiply Ei by Γ for 0 ≤ i < N in
parallel to obtain Ei = [a1β

i+N
1 , a2β

i+N
2 , . . . , asβ

i+N
s ].

In this paper we present a parallel algorithm and imple-
mentation to perform these evaluations that uses the fast
multi-point evaluation described by van der Hoeven and
Lecerf in [12] which reduces the sT term to O(s log2 T ).
In Section 2 we provide background on the fast multi-point
evaluation technique for sparse polynomials. We give details
on our design and implementation in Section 3, including
some optimizations, our parallelization with Cilk Plus, and
a note on the algorithm complexity. In Section 5 we present
benchmarks comparing our implementation with the matrix
method above and investigate what improvement this makes



for the GCD problem that we described.

2. FAST MULTI-POINT EVALUATION
Our approach uses the sparse evaluation algorithm from

Section 5.1 and 5.2 of [12]. Analogous formulas and algo-
rithms for multi-point evaluation of dense polynomials can
be found in [4] and [1]. In the literature, fast evaluation
is presented as evaluating the polynomial down to the base
field rather than evaluating to a bivariate polynomials (i.e.

in our definition of Â, corresponds to the case where all

Xi = 1, and the evaluations γk are simply Â(αk)). For com-
patibility we make this assumption and address the general
case in Section 3.

The main idea of the fast evaluation algorithm is the ob-
servation that γ0, . . . , γT−1 are the first T coefficients in the
power series expansion of the rational function

f(u) =

s∑
i=1

ai
1− αmiu

. (2)

We illustrate this using the well-known series expansion
1− βu−1 = 1 + βu+ β2u2 + · · ·+ βTuT + · · · . We have

f =
a1

1− β1u
+

a2
1− β2u

+ · · ·+ as
1− βsu

=a1(1 + β1u+ β2
1u

2 + · · · )+
a2(1 + β2u+ β2

2u
2 + · · · ) + · · ·+

as(1 + βsu+ β2
su

2 + · · · )
=(a1 + · · ·+ as) + (a1β1 + · · ·+ asβs)u+

(a1β
2
1 + · · ·+ asβ

2
s )u2 + · · ·

=γ0 + γ1u+ γ2u
2 + · · ·+ γTu

T + · · ·

The sum f can be split intom = ds/T e blocks f = B1(u)+
B2(u) + · · ·+Bm(u) of size ≤ T . To recover the evaluations
of the whole polynomial after the series expansion, simply
sum the coefficients over all the blocks.

A divide-and-conquer strategy (see [13]) can be applied
to efficiently put the terms of each block over a common
denominator, as we can split the terms of a block into two
halves:

B1(u) =

dT/2e∑
i=1

ai
1− αmiu

+

T∑
i=dT/2e+1

ai
1− αmiu

= BL(u) +BR(u)

=
NL
DL

+
NR
DR

(compute recursively)

=
NLDR +NRDL

DLDR
=
N1

D1
(3)

The 3 multiplications NLDR, NRDL, and DLDR can be
computed using fast univariate multiplication. We then ex-
pand Bi(u) up to O(uT ) to get the coefficients using fast
series inversion [13].

In total this method does O(d s
T
eM(T )logT ) multiplica-

tions in Zp [12], where M(T ) denotes the cost of dense uni-
variate polynomial multiplication of degree T . If an FFT
is used and the prime p is chosen so that 2k|(p − 1) with
2k > 2T then the FFT can run in the field Zp and M(T ) ∈
O(T logT ) and we obtain a bound of O(slog2T ) multiplica-
tions in Zp.

3. OUR IMPLEMENTATION
We now address the general case, where Xi can be any

monomial xj0x
k
1 . Note that the formulas in Section 2 are

still valid here (replacing instances of ai with aiXi), however
this leads to the multiplications NLDR and NRDL requiring
trivariate polynomial multiplication. Alternatively, we chose

to sort the terms of Â ∈ Zp[y][x0, x1] into buckets on the
monomials xj0x

k
1 as follows:

Â =

d0∑
j=0

d1∑
k=0

(

sjk∑
i=0

aiy
mi)︸ ︷︷ ︸

Bjk:=

xj0x
k
1

where d0 = degx0(Â), d1 = degx1(Â), and we denote sjk

as the size of bucket Bjk (i.e. the number of terms of Â
which contain the monomial xj0x

k
1). To ease notation we

relabel bucket Bjk to Bi where i = j(d1 + 1) + k. Let
d = d0(d1 + 1) be the maximum value of i. We operate on
each Bi as a sparse univariate evaluation problem. Observe
that the computations within each bucket are independent,
giving us a natural way to run the computations in parallel.
Subsection 3.3 contains further details about the parallelism
in our implementation.

Initialization: given α primitive in Zp we precompute

α2k mod p for k = 0 . . . blog2(p)c. Let fi be the rational
function as defined by Equation (2) corresponding to Bi.
We use the precomputed powers of α to initialize fi.

We then proceed to split fi = Bi,0 +Bi,1 + . . . into blocks
of size T , which raises the question of how we should choose
T . Since we don’t know the number of images that we need,
instead of using a top-down recursive approach as outlined
in Section 2, we go from the bottom up.

Starting with a relatively small guess T , we obtain T im-
ages and test for stabilization as described previously. Our
strategy is to repeatedly double the value of T if we need
more images. This comes from the observation that two ad-
jacent blocks of size T can be combined into a block of size
2T using Equation (3). To take advantage of this we save
the rational functions Ni/Di computed at each step, and
simply re-use them at the next step.

As we use FFT polynomial multiplication, we have to be
somewhat careful of our starting value of T . Since we double
T at every iteration, a natural choice would be T = 2k.
However, the denominator of a block of size 2k has degree
2k. An ordinary FFT of size 2k+1 would be wasteful. While
truncated FFT algorithms are available [11], it was easier to
stick with an ordinary FFT and start with T = 63, using
T = 63 · 20, 63 · 21, 63 · 22, . . . instead.

Notice that even when T is large we may still need to mul-
tiply large polynomials with small ones. We need a threshold
on when to use FFT or classical multiplication. Based on
our experiments, we settled on using the FFT if one of the
polynomials has degree at least 250, and the other has de-
gree at least 32. We note that tweaking these numbers did
not make much of a difference to the total running time.

Figure 1 gives a demonstration of the computation for Â =
(3y6)x20x1+(y13+8y2+14y14+12)x30+(5y7+y4+11y)x0x1,
p = 17, α = 3. Note that the figure is somewhat misleading,
as we stop at T = 4 which is the biggest bucket size, leading
to each bucket ending up as a single block. In most cases
we actually stop well before this point.



x2
0x1 x3

0
x0x1

3y6 y13 8y2 14y14 12 5y7 y4 11y

T = 1
3

1− α6u

1

1− α13u

8

1− α2u

14

1− α14u

12

1− u
5

1− α7u

1

1− α4u

11

1− αu

3 +O(u) 1 +O(u) 8 +O(u) 14 +O(u) 12 +O(u) 5 +O(u) 1 +O(u) 11 +O(u)

T = 2
14u+ 9

6u2 + 13u+ 1

13u+ 9

2u2 + 14u+ 1

9u+ 6

7u2 + 10u+ 1
3+

11u+O(u2) 9 + 16u+O(u2) 9 + 6u+O(u2) 6 + 0u+O(u2)

11+

16u+O(u2)

T = 4
4u3 + 12u2 + 15u+ 1

12u4 + 8u3 + 3u2 + 10u+ 1

16u2 + 16u

13u3 + 11u2 + 7u+ 13+

11u+ 12u2+
10u3 +O(u4) 1 + 5u+ 10u2 + 0u3 +O(u4) 0 + 16u+ 6u2 + 3u3 +O(u4)

Figure 1: Computation example

3.1 Space Used
Our implementation uses 2 arrays of size s to store the

rational function, one for each of the numerators and de-
nominators. To see why this is sufficient, we observe that
the block Bj,k = N

D
of size T corresponds to exactly T terms

of Â. N has degree ≤ T − 1 in u and the D has degree ex-
actly T (both can be proved by induction). Hence N has
≤ T terms and D has T + 1 terms, however as the constant
term of D is always 1, it can be stored implicitly and we
only explicitly store the non-constant terms in an array of
size T . An example of how our data structure changes as
the computation progresses is shown in Figure 2, using the
computations of Figure 1.

T
=

1 N

D

3 1 8 14 12 5 1 11

−α6 −α13 −α2 −α14 −α0 −α7 −α4 −α1

T
=

2 N

D

3 9 14 9 13 6 9 11

2 13 6 14 2 10 7 14

T
=

4 N

D

3 1 15 12 4 0 16 16

2 10 3 8 12 7 11 13

Figure 2: Space example

3.2 Optimizations
To compute N

D
= N1D2+N2D1

D1D2
and then expand N

D
to

O(u2n) (where 2n is the smallest power of 2 greater than the

block size T ) we can do the following: multiply N1D2, N2D1

and D1D2 with a cost of 3M(n), invert D to O(u2n) with a
cost of 2M(2n), and multiply N ·D−1 with cost M(2n). The
total cost is 4 1

2
M(2n) for this method. However, if we use

the FFT to multiply polynomials it is obvious that we can
save the forward transforms of D1 and D2 in N1D2+N2D1

D1D2
.

Also rather than doing two inverse transforms for each sum-
mand of N1D2 + N2D1, followed by adding the resulting
polynomials, we can add the transforms and do only one
inverse. Further savings are possible. In this subsection
we describe and provide pseudocode for our optimizations
which reduce the cost down to 2 1

6
M(2n).

Notation: Let r = r0 + r1u + · · · + rn−1u
n−1 be a poly-

nomial of degree < n. To represent r we let R = [r0, r1, . . .]
be an array of its coefficients with zeros padded. We use
FFTn(R,ω) to denote performing the FFT of order n on R
with an nth root of unity ω, and let FnR be the resulting
transform. For A,B ∈ Znp , let the Hadamard product of A
and B be denoted by A⊗B = [A0B0, A1B1, . . . , An−1Bn−1].

At several points in our algorithm we need to do the fol-
lowing: given FnR with deg(R) < n, obtain F2nR (doubling
the order of the transform). The naive method is to do an
inverse FFT−1

n to get the original R, then do FFT2n for the
desired transform. We present a trick below that replaces
the FFT2n with an FFTn.

Consider applying the decimation-in-frequency FFT2n (as
described in [13]) to R = [r0, r1, . . . , rn−1, 0, . . . , 0] of order
2n. In the butterfly phase of the main call we do:

for i from 0 to n− 1 do:

Bi := Ri +Rn+i

Ci := ωi(Ri −Rn+i)

and we then return the concatenation of the recursive calls
[FFTn(B), FFTn(C)]. In this case, Rn+i = 0 for all 0 ≤
i < n, so Bi = Ri and Ci = ωiRi. Hence FFT2n(R) =
[FnR,FnC]. If we are given FnR, it only remains to recover



R (using one FFT−1
n ), compute C, and do one FFTn to

obtain FnC.

Procedure 1 Transform doubling

1: procedure DO(FnR,n, ω) . ω: 2nth root
2: R := 1

n
FFTn(FnR,ω−2)

3: C := array(n)
4: for i := 0 to n− 1 do C[i] := ωi ·R[i] end do

5: FnC := FFTn(C,ω2)
6: return [FnR,FnC]

Note that in our implementation we use an array W =
[1, ω, ω2, . . .] of powers of ω so that Step 4 needs only a
single multiplication for each iteration, for a total of n mul-
tiplications.

We now present our pseudocode for computing and ex-
panding N

D
. We will split our algorithm into three parts:

Part 1 computes the transforms of N and D, Part 2 inverts
D to obtain D−1 to O(u2n), and Part 3 computes N ·D−1 to
get the evaluations. With this optimization, we do not save
the actual rational function N

D
between iterations. Instead

we save the associated transforms and avoid/delay comput-
ing inverse transforms whenever possible. Hence our main
input below comprises solely of transforms computed in the
previous iteration.

Main Input: F2nN1, F2nN2, FnD1, FnD2, F2nD
−1
1 ,

F2nD
−1
2 , a 4nth root of unity ω

Main Output: expansion of N
D

to O(u2n), F4nN , F2nD,

F4nD
−1

Part 1 computes the transforms of N := N1D2 + N2D1

and D := D1D2. Since N,D have degree ≤ T < 2n we need
transforms of order 2n. As we are only given the forward
transforms of D1, D2 to order n, we need to use the doubling
trick as described above.

Part 1 Input: F2nN1, F2nN2, FnD1, FnD2, a 2nth root
of unity ω2

Part 1 Output: F2nN , F2nD
1: Obtain the transforms of D1, D2 to order 2n. Com-

pute F2nD1 := DO(FnD1, n, ω
2) and F2nD2 :=

DO(FnD2, n, ω
2).

2: Compute F2nN := F2nN1 ⊗ F2nD2 + F2nN2 ⊗ F2nD1,
and F2nD := F2nD1 ⊗F2nD2.

3: return F2nN , F2nD

To obtain D−1 = b0 + b1u + · · · + bn−1u
n−1 + · · · mod

u2n, we use the series inversion algorithm with the middle
product optimization of [5]. Recursively computing yk =
D−1 mod un (where n = 2k), the inversion algorithm uses
Newton’s iteration to compute yk+1 = yk+yk(1−Dyk) mod
u2n = D−1 mod u2n. We make a modification to replace the
recursive call using the observation that

D−1
1 D−1

2 +O(un) = (D1D2)−1 +O(un)

= D−1 +O(un)

= yk +O(un).

Hence we can use transforms of D−1
1 , D−1

2 (an input from
previous iteration) to obtain yk, shown in steps 4 and 5
below. Note that due to the middle product optimization,
all computations in this part require only order 2n precision.

Part 2 Input: F2nD
−1
1 , F2nD

−1
2 , F2nD (from Part 1), a

2nth root of unity ω2

Part 2 Output: yk+1

4: Compute F2nD
−1
1 D−1

2 := F2nD
−1
1 ⊗F2nD

−1
2 .

5: Set y := 1
2n
FFT2n(F2nD

−1
1 D−1

2 , ω−2) and extract the
first n entries: yk := [yi, i = 0, . . . , n− 1].

6: Compute F2nyk := FFT2n(yk, ω
2).

7: Compute F2nDyk := F2nD ⊗F2nyk.
8: Extract the “middle product” from the n highest or-

der entries of P := 1
2n
FFT2n(F2nDyk, ω

−2), MP :=
[Pi, i = n, . . . , 2n− 1].

9: Compute F2nMP := FFT2n(MP,ω2), negate it and
multiply with the transform of yk: F2nγ := F2nyk ⊗
−F2nMP .

10: To get yk(1−Dyk), compute γ := first n coefficients of
1
2n
FFT2n(F2nγ, ω

−2).
11: Combine yk+1 := [yk, γ], and return yk+1.

Finally, Part 3 computes N ·D−1 mod u2n using the trans-
form of N from Part 1 and yk = D−1 mod u2n from Part
2. The “big” multiplication has degree ≤ 2T < 4n so the
computations will need precision of order 4n.

Part 3 Input: F2nN , yk+1, a 4nth root of unity ω
Part 3 Output: N ·D−1 mod u2n, F4nN , F4nD

−1

1: Double the order of the transform of the numerator N
for the big multiplication: F4nN := DO(F2nN, 2n, ω).

2: Compute F4nD
−1 := FFT4n(D−1, ω), multiply with

the transform of N : F4nND
−1 := F4nN ⊗F4nD

−1.
3: Set Y := first 2n entries of 1

4n
FFT4n(F4nND

−1, ω−1).

4: return Y,F4nN,F4nD
−1.

Counting the total number of transforms done (recall that
DOn(. . .) requires 2FFTn), we get 4FFTn + 7FFT2n +
2FFT4n ≤ 6 1

2
FFT4n ≡ 2 1

6
M(2n). We get more than a

factor of 2 gain compared to the 4 1
2
M(2n) cost by doing

the computations naively. There is a space-time tradeoff for
this optimization: we need five arrays of size between s and
2s (worst case scenario occurs if we have to pad ≈ s zeros)
to save these transforms. So this uses at least 2.5x more
space (worst case 5x) compared to the two arrays of size s
described in Section 3.1.

A note on when we use this optimization: due to the space
required being proportional to T rather than the bucket size,
if T exceeds the size of a bucket we revert back to the original
method for that bucket. Based on our data in Figure 3 of
Section 5, it seems that the optimization is an improvement
starting at T ≥ 504.

3.3 Parallelization
This subsection describes how we divide up the work in

each iteration for C cores. We consider the work in each
iteration in two phases. The first phase is adding adjacent
blocks N

D
= NL

DL
+ NR

DR
(corresponding to Part 1 of Subsec-

tion 3.2) and the second is getting the series expansion of N
D

(Parts 2 and 3). We will parallelize the algorithm differently
depending on which phase we are doing.



Notation: Suppose that our previous block size is T , and
we are now combining them into 2T -blocks. Recall that we
denote the size of bucket Bi by si, and Bi,0, Bi,1, . . . denotes
the T -blocks of the rational function corresponding to the
terms of Bi.

To count the number of blocks additions we have to do
in bucket Bi, observe that the number of T -blocks from the
previous iteration is dsi/T e. If that quantity is even then we
can pair up all adjacent blocks, if it is odd them we pair up

all but the last block. Hence, we have bi =

⌊
dsi/T e

2

⌋
pairs

and so we need to compute bi block additions.
In total, over all the buckets we need

btotal =

d∑
i=0

bi

block additions at this iteration. To parallelize this, we as-
sign a canonical ordering to each pair of blocks that we have
to add, and let each core handle ≈ btotal

C
pairs. In an at-

tempt to increase cache locality, we use the ordering of which
the blocks are stored in our data structure.

Input: list of bucket sizes s0, . . . , sd, list of blocks
B0,1, B0,2, . . . , B1,0, . . ., number of cores C

1: for i := 0 to d do bi := bdsi/T e/2c end do

Pair up the blocks into P = (BL, BR) and give the pairs
an ordering:

2: Initialize σ := 0, which keeps track of the ordering
3: for i := 0 to d do
4: for j := 0 to bi − 1 do
5: Pσ+j := (Bi,2j , Bi,2j+1)

6: end do
7: σ += bi
8: end do
9: Distribute P0, . . . , Pbtotal among C cores, each core will

do the block addition for the pairs that they are given.

In the second phase, instead of parallelizing on all the
blocks, we will just parallelize on the buckets. Our idea is to
form C subsets of buckets which require roughly equal work
(this will be estimated based on the bucket size). When we
“evaluate” a bucket Bi, we are referring to obtaining the T
evaluations by series expansion.

3.4 Complexity
Suppose that the total number of evaluations needed is

t. Recall that the matrix method will do O(st + nd + ns)
multiplications in Zp. For convenience we will assume that
the fast algorithm computes in powers of two for the com-
plexity analysis. So each iteration computes Tk = 2k eval-
uations for k = 0, 1, . . . and let K be the smallest integer
s.t. Tk = 2K ≥ t (i.e. K is the number of iterations to get
t images). Note that K = d log2(t))e. The cost depends on

how the terms of Â are distributed over the buckets, since
if we have very small buckets Bi with size si < clog2t (for
some constant c), then using fast evaluation and FFT mul-
tiplication is slower than using the matrix method. These
small buckets can be identified before the algorithm starts
and omitted from the fast evaluation, so we assume that all
block sizes si are at least clog2t.

Input: list of buckets B0, . . . ,Bd and their sizes s0, . . . , sd,
number of cores C

Sort the buckets by their sizes, rounding up to the next
power of 2:

1: Initialize R as an array of empty sets
2: for i := 0 to d do
3: s := dlog2(si)e
4: Rs := Rs ∪ i
5: end do

6: while not all buckets have been evaluated do
7: Let h be the highest index j s.t. Rj is non-empty.
8: Divide Rh into C subsets of size d|Rh|/Ce.
9: If some subsets are not full, greedily add buckets

from Rh−1, Rh−2, . . ., using the approximation that a
bucket in Rj is worth two buckets in Rj−1.

10: Send off one subset to each core to be evaluated.
11: Remove all evaluated buckets from R.
12: end do

We first count the number of multiplications done in an
individual bucket Bi with size si. At the kth iteration, we
get Tk = 2k evaluations for d si

Tk
e blocks. Each block requires

M(Tk) multiplications to add the rational functions and get
the series expansion. To determine the cost of for Bi we
consider two cases:

• Case 1 si ≥ t and M(Tk) = O(TklogTk) (using FFT
multiplication):

K∑
k=0

O(

⌈
si
Tk

⌉
M(Tk)) =

K∑
k=0

O(

⌈
si
Tk

⌉
TklogTk)

=

K∑
k=0

O(silogTk)

⊆
K∑
k=0

O(silogt)

= O(logt · silogt)

= O(silog2t).

• Case 2 si < t and M(TK) = O(TklogTk):

K∑
k=0

O(

⌈
si
Tk

⌉
M(Tk)) ⊆

K∑
k=0

O(M(Tk))

⊆ O(tlog2t)

If we assume that there are a negligible number of buckets
that fall into Case 2, then we get a total cost of O(slog2t+
snlogd), where O(snlogd) is the cost of initializing the ra-
tional function (nlogd multiplications to compute αm where
m < dn−2). We remark that in certain contexts we are al-
lowed some flexibility in choosing the special variables x0
and x1, so that swapping x0, x1 with two other variables
may yield more buckets in Case 1.



4. IMPLEMENTATION
We implemented two versions of our algorithm in C, one

using 64-bit integer types and 63-bit primes, the second us-
ing the 128-bit integer __int128_t and 127-bit primes. We
use primes with one less bit than the maximum size for a
couple of reasons. The main consideration is that we want to
reduce the nubmer of division operations performed in our
implementation. A division of a 128-bit integer by a 64-bit
integer is very expensive as it costs 66.602 CPU cycles, com-
pared to 2.665 cycles for multiplying two 64-bit integers. To
compute the linear combination c = a1b1 +a2b2 + . . .+anbn
mod p (where p is 63-bit), instead of dividing though by p
after every sum, we can accumulate the value of −c mod
p with an 128-bit integer, and do a single division at the
end to recover the value of c (the case for a 127-bit prime is
analogous). Also, by leaving an unused bit we can represent
every number mod p with signed integers and use the sign
bit to do addition and subtraction mod p without overflow.

While the above handles the case of linear combinations,
the majority of the cost of our algorithm comes from com-
puting a×b mod p for many different values of a and b, so we
still need to optimize this operation. The division algorithm
of Möller and Granlund [9] uses an approximate reciprocal
to transform a division operation into a multiplication along
with some relatively cheap adjustments. Using the imple-
mentation of this division algorithm by Roman Pearce, we
first precompute the reciprocal of p, and reuse it whenever
possible. Using a precomputed reciprocal reduces the cost
to only 6.106 CPU cycles. As we compute a×b mod p many
times in our algorithm for the same prime p, we see a large
gain when using this optimization.

Our parallel code uses the -fcilkplus option in the gcc

compiler, which enables Intel Cilk Plus. We make use of
the options cilk_spawn, which allows Cilk to branch off the
execution of a function in parallel, and cilk_sync, which
signals the main thread to wait until all preceding spawned
jobs have been completed. Our memory management with
respect to the parallel jobs can be illustrated with the fol-
lowing example; to run N tasks in parallel for N cores we
do:

for( i=0; i<N; i++ )

{

spawn Task(Input[i], // space for inputs

Output[i], // space for outputs

Temp[i]); // working storage

}

sync;

So our model is that we always pre-allocate all heap space
needed for outputs and working storage, for each parallel
task. For example, neither Task(. . .) nor its subroutines
allocates heap space.

5. BENCHMARKS
We generated random sparse polynomials in n = 9 vari-

ables, with degree at most 10 in x1, . . . , xn and total degree
at most 60. Each timing represents running our algorithm on
a polynomial with s terms, until we obtain T ≥ t images for
some test parameter t (for the fast times T ∈ {63, 126, . . .}).

All timings were made on the gaby server in the CECM at
Simon Fraser University. This machine has two Intel Xeon
E-2660 8 core CPUs running at 3.0 GHz on one core and 2.2

GHz on 8 cores. The maximum theoretical parallel speedup
is 11.73 = 2.2/3.0 × 16.

Figure 3 shows the timings for the matrix method and the
fast method (with and without the transform optimizations
from Subsection 3.2). The timing that is fastest for each t is
shown in bold. The fast algorithm with the optimization is
clearly superior when we need at least 504 evaluations. The
Diff column in the table shows the difference in the timings
compared to the entry above (i.e. the extra time it takes for
the algorithm to get the next set of evaluations). We observe
that, starting at t = 504 the optimized version takes about
half as much time as the non-optimized version to get the
next set of evaluations, which matches the factor of 2 gain
in the analysis of Section 3.2.

s t Matrix Fast Diff FastOpt Diff
107 63 1.261 1.656 - 2.248 -
107 126 2.149 2.367 0.711 3.181 0.933
107 252 3.900 3.568 1.201 4.140 0.959
107 504 7.165 5.681 2.113 5.177 0.977
107 1008 15.678 7.870 2.189 6.284 1.107

Figure 3: Break-even for fast implementations

We collected data for a larger input size and larger t,
shown in Figure 4. The timings for both 1 core and 16 cores
are presented to show the parallel speedup that we get.

The distribution of bucket sizes for the polynomials are
relevant since fast evaluation is most effective when t is
strictly smaller than each bucket. The bucket sizes for the
above polynomials with 108 terms were fairly large and uni-
form, as they ranged from 51263, 72018, 86445, . . . , 1876418,
1899002, 2131494, and we have 114 of the 121 buckets with
size between 217 = 131072 and 221. To test our algorithm
on polynomials with a much different distribution of bucket
size, we homogenize the above polynomials on x0 (this op-
eration also has a specific application to computing GCDs).
The homogenization increases the number of buckets to 554.
The bucket sizes now range from 1, 1, 1, . . . , 818007, 831529, 833626,
and we have 316 buckets with size under 105. Due to the
presence of these small buckets, we observe below that fast
evaluation does not perform as well compared to the non-
homogenized polynomials, for the cases of t = 105 and t =
106. Figure 5 reports our data for using the fast method to
evaluate these polynomials (the data for the matrix method
omitted as it is clear that homogenizing does not affect the
dominating term O(st)).

5.1 Polynomial GCD Benchmarks
To show the improvement that this fast evaluation algo-

rithm makes to the GCD algorithm of Hu and Monagan
[6], we display timings for the GCD algorithm using our
fast evaluation implementation in Figure 6. The timings in
columns Fast and Matrix are for 16 cores. The GCD algo-
rithm of Hu and Monagan is in Cilk C.

We randomly generated polynomialsA,B,G and constructed
A := A · G, B := B · G. Each of G,A,B has 9 variables,
degree in each variable at most 20, and total degree at most
60.

The timings for the parameters dubbed as the“benchmark
problem” in Hu and Monagan [6] where ( #A = 106, #G =
104 ) are shown in bold. Our timing of 0.6s is faster than the



Matrix FastOpt
s t 1 core 16 cores Speedup 1 core 16 cores Speedup

107 103 90.73 7.06 12.9x 40.81 3.39 12.0x
107 104 898.87 66.40 13.5x 77.18 6.50 11.9x
107 105 8804.57 682.53 12.9x 130.03 11.70 11.1x
108 104 8149.87 669.49 12.2x 671.35 57.38 11.7x
108 105 - 6608.95 - 974.70 84.11 11.6x
108 106 - - - 1497.60 131.95 11.3x

Figure 4: Timings (in seconds) for T > t evaluations of A with s terms

FastOpt-Homogeneous
s t 1 core 16 cores Speedup

107 103 41.13 3.26 12.6x
107 104 84.50 6.92 12.2x
107 105 221.90 21.84 10.2x
108 104 679.35 54.85 12.4x
108 105 1055.49 88.78 11.9x
108 106 2462.27 259.83 9.5x

Figure 5: Timings (in seconds) for homogeneous A

timing of 4.47s reported in [6] even though we are running
on the same machine. The reason is that here we evaluate
to bivariate images which reduced t from 2396 evaluations
to 264.

As can be seen in Figure 6, most of the time is spent in
evaluation. For the largest case #A = 108,#G = 107 terms,
most of the time is in computing the roots of the feedback
polynomial which has degree τ = t/2. The algorithm being
used for root finding is the randomized root finding algo-
rithm of Berlekamp [3]. See also Rabin [10].

Shown also for comparison are timings for the GCD algo-
rithm in Maple 2016 and Magma 2.22-5. Maple and Magma
are both using Zippel’s sparse modular GCD algorithm from
[14]. Both implementations are serial implementations in C.

6. REFERENCES
[1] A. Aho, J. Hopcroft, and J. Ullman. The design and

analysis of computer algorithms. Addison-Wesley
series in computer science and information processing.
Addison-Wesley Pub. Co., 1974.

[2] M. Ben-Or and P. Tiwari. A deterministic algorithm
for sparse multivariate polynomial interpolation. In
Proceedings of STOC ’20, STOCK ’20, pages 301–309.
ACM, 1988.

[3] E. Berlekamp. Factoring polynomials over large finite
fields. Mathematics of Computation, 24(111):713–735,
1970.

[4] A. Bostan, G. Lecerf, and E. Schost. Tellegen’s
principle into practice. In Proceedings of the 2003
International Symposium on Symbolic and Algebraic
Computation, ISSAC ’03, pages 37–44. ACM, 2003.

[5] G. Hanrot, M. Quercia, and P. Zimmermann. The
middle product algorithm i. Appl. Algebra Eng.,
Commun. Comput., 14(6):415–438, Mar. 2004.

[6] J. Hu and M. Monagan. A fast parallel sparse
polynomial gcd algorithm. In Proceedings of the ACM
on International Symposium on Symbolic and

Algebraic Computation, ISSAC ’16, pages 271–278.
ACM, 2016.

[7] E. Kaltofen, W. shin Lee, and A. Lobo. Early
termination in ben-or/tiwari sparse interpolation and
a hybrid of zippel’s algorithm. In Proceedings of
ISSAC 2000, pages 192–201. ACM Press, 2000.

[8] J. Massey. Shift-register synthesis and bch decoding.
IEEE transactions on Information Theory,
15(1):122–127, 1969.

[9] N. Moller and T. Granlund. Improved division by
invariant integers. IEEE Transactions on Computers,
60(2):165–175, 2011.

[10] M. Rabin. Probabilistic algorithms in finite fields.
SIAM Journal of Computing, 9:273 – 280, 1979.

[11] J. van der Hoeven. The truncated fourier transform
and applications. In Proceedings of the 2004
International Symposium on Symbolic and Algebraic
Computation, ISSAC ’04, pages 290–296. ACM, 2004.

[12] J. van der Hoeven and G. Lecerf. On the
bit-complexity of sparse polynomial and series
multiplication. Journal of Symbolic Computation,
50:227 – 254, 2013.

[13] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, 2nd edition,
2003.

[14] R. Zippel. Probabilistic algorithms for sparse
polynomials. In Proceedings of EUROSAM ’79,
volume 72 of Lecture Notes in Computer Science,
pages 216–226. Springer-Verlag, 1979.



#A #G t Fast (eval) Matrix (eval) Maple Magma
105 103 36 0.1 (76%) 0.1 (55%) 210.9 60.2
106 103 40 0.5 (88%) 0.2 (66%) 2135.9 207.6
106 104 264 0.8 (82%) 0.6 (74%) 22111.6 1611.5
106 105 2336 4.9 (45%) 6.1 (57%) - 876.9
107 104 256 5.8 (90%) 4.5 (88%) - 8334.9
107 105 2334 13.5 (77%) 36.1 (91%) - 72341.0
107 106 24214 91.1 (32%) 395.7 (85%) - -
108 104 246 46.2 (89%) 45.8 (91%) - -
108 105 2328 96.3 (92%) 369.2 (98%) - -
108 106 24214 214.9 (69%) 3691.1 (98%) - -
108 107 242574 3058.1 (11%) 39643.0 (93%) - -

Figure 6: Gcd Timings (in seconds) with #A = #B


