
Strongly Connected Graph Components and Computing
Characteristic Polynomials of Integer Matrices in Maple

Simon Lo ∗, Michael Monagan ∗, Allan Wittkopf ∗

{sclo,mmonagan,wittkopf}@cecm.sfu.ca
Centre for Experimental and Constructive Mathematics,
Department of Mathematics, Simon Fraser University,

Burnaby, B.C., V5A 1S6, Canada.

Abstract

Let A be an n× n matrix of integers. We present details of our Maple implemen-
tation of a simple modular method for computing the characteristic polynomial of A.
We consider several different representations for the computation modulo primes, in
particular, the use of double precision floats.

The algorithm used in Maple releases 7–10 is the Berkowitz algorithm. We present
some timings comparing the two algorithms on a sequence of matrices arising from
an application in combinatorics of Jocelyn Quaintance. These matrices have a hidden
block structure. Once identified, we can further reduce the computing time dramati-
cally.

This work has been incorporated into Maple 11’s LinearAlgebra package.

1 Introduction

Let A be an n × n matrix of integers and let c(x) be the characteristic polynomial of A.
The algorithm used in Maple releases 7–10 to compute c(x) is the Berkowitz algorithm [2].
The Berkowitz algorithm is a division free algorithm and thus can be used to compute the
characteristic polynomial of a square matrix over any commutative ring R. It does O(n4)
multiplications in R. The Berkowitz algorithm is not the fastest algorithm for matrices of
integers, nor is it asymptotically the fastest division free algorithm, but it is a good method
for matrices of multivariate polynomials and general formulae.

In [1], Abdeljaoued compares a Maple implementation of the Berkowitz algorithm with
several other “classical” methods for computing characteristic polynomials. The data ob-
tained shows the Berkowitz algorithm to be best for for a variety of coefficient rings R.

In section 2 we present details of our Maple implementation of a modular method for com-
puting c(x), the characteristic polynomial of an integer matrix A. The algorithm computes

∗Supported by NSERC of Canada and the MITACS NCE of Canada.

1

the characteristic polynomial modulo a sequence of primes and applies the Chinese remain-
der theorem. For each prime we use the “Hessenberg algorithm” as described in Chapter 2
of Cohen’s book [3]. This is an O(n3) algorithm.

In section 3 we consider several different representations for computation modulo primes,
including the use of double precision floats and delayed floating point divisions. Some timings
are presented comparing the different representations on different hardware for a 364× 364
sparse matrix given to us by Jocelyn Quaintance [8]. This matrix, which motivated our
work on computing characteristic polynomials of integer matrices, arises from a problem in
combinatorics involving 3-dimensional lego blocks. It is one of sequence of moderately sparse
integer matrices of dimension 72×72, 364×364 and 1916×1916. The matrices are available
from

http://www.cecm.sfu.ca/CAG/products2005.shtml.

They all have hidden block structures, such that, once identified, can easily be exploited to
reduce the time further. In section 4 we describe the command
StronglyConnectedBlocks, a new command in Maple 11’s LinearAlgebra package, which
identifies the block structure. We present some timings for this command applied to the ma-
trices from Quaintance, as well as timings for computation of the characteristic polynomial,
eigenvalues, and determinant for these matrices utilizing the block structure.

For the 1916 by 1916 matrix, if we compute c(x) using our modular algorithm only, we
get a speedup of a factor of ≈ 80 in comparison with Maple’s Berkowitz algorithm. By
identifying the blocks we get a further speed up of a factor of ≈ 600.

2 Characteristic Polynomial Algorithms

2.1 A dense deterministic modular algorithm.

Let A ∈ Zn×n be the input matrix. To compute the characteristic polynomial c(x) ∈ Z[x]
we compute c(x) modulo a sequence of primes p1, p2, p3, ... and apply the Chinese remainder
theorem to reconstruct the integer coefficients of c(x). To compute c(x) modulo a prime p
we use the “Hessenberg matrix algorithm” (see Chapter 2 of Cohen [3] for a description).
The cost is O(n3) arithmetic operations in Zp.

The Hessenberg algorithm proceeds in two steps. In the first step the matrix is moved
into upper Hessenberg form (i.e. only the first subdiagonal can be nonzero in the lower
triangular part of the matrix) with a sequence of elementary row and corresponding column
operations that preserves c(x). This requires O(n3) operations in Zp. In the second step,
the characteristic polynomial c(x) = pn+1(x) ∈ Zp[x] of the upper Hessenberg form can be
efficiently computed bottom up (using O(n3) arithmetic operations in Zp) from the following
recurrence for pk(x) :

pk+1(x) =

1 k = 0

(x− Ak,k) pk(x)−
k−1∑
i=1

(
k−1∏
j=i

Aj+1,j) Ai,k pi(x) 1 ≤ k ≤ n + 1

2

2.2 Complexity and related work.

Let A be an n × n matrix of integers. To compare the running times of the Berkowitz
algorithm and the modular algorithm, we suppose that the entries of A are bounded by Bm

in magnitude where B is the base (usually 231 or 232 on a 32 bit machine) of the integer
representation, that is, they are bounded by m base B digits in length. For both algorithms,
we need a bound S on the size of the coefficients of the characteristic polynomial c(x). A
generic bound on the size of the determinant of A is sufficient since, in general, this is the
largest coefficient of c(x). The magnitude of the determinant of A is bounded by S = n!Bmn

and its length is bounded by n logB n + mn base B digits. Tighter bounds are available but
they will not affect the asymptotics. If B = 231 then we may assume logB n < 1 in practice,
hence, the length of the determinant is bounded by O(mn) base B digits.

The Berkowitz algorithm does O(n4) integer multiplications, additions and subtractions
on integers of average size O(mn) base B digits, hence, it’s complexity is O(n4M(mn))
where M(mn) is the cost of multiplying integers of length O(mn) base B digits. Maple 9
and subsequent versions use the GMP integer arithmetic package, which uses the FFT for
integer multiplication. Thus the complexity of Maple’s Berkowitz implementation is Õ(n5m).

In the modular algorithm, we will need O(mn) machine primes. The cost of reducing
the n2 integers in A modulo one prime is O(mn2). The cost of computing the characteristic
polynomial modulo each prime p is O(n3). The cost of the Chinese remaindering assuming
a classical method for the Chinese remainder algorithm (because that is what Maple uses) is
O(n(mn)2). Thus the total complexity is O(mnmn2 + mnn3 + n(mn)2) = O(m2n3 + mn4).

If we assume m = O(n), that is, the size of the integers grow proportionately with the
size of the matrix, the complexity of Maple’s Berkowitz algorithm is Õ(n6) and that of the
modular algorithm is O(n5).

Another special case of interest is m = 1, that is, |Ai,j| < B for all n. In this case the
complexity of the Berkowitz algorithm is Õ(n5) and that of the modular algorithm is O(n4).

Asymptotically faster algorithms for computing c(x) are known. Within the computer
algebra community, quite a bit of work, both theoretical and practical has been done on
this problem. Here we mention the algorithm of Kehller-Gehrig [6] which computes the
characteristic polynomial of a matrix A in O(nω log n) field operations where nω is the cost
of matrix matrix multiplication. Combining this algorithm with the Chinese remainder
algorithm gives an O(mnω+1 log n) algorithm.

Another general approach is to look for a linear dependency amongst the Krylov iterates,
Av, A2v, A3v, The paper [4] by Dumas, Pernet, and Wan compares several approaches
for computing characteristic polynomials modulo p and shows that the authors Krylov based
algorithm, which is O(n3), is very good on dense matrices. Their algorithm takes advantage
of a BLAS implementation of matrix-matrix multiplication.

Also Kaltofen and Villard in [5] give two algorithms, one using classical matrix multipli-
cation in Õ(mn3.2) and one (sub-cubic in n) assuming fast matrix multiplication in Õ(mn2.6).
They also give two division free algorithms for an arbitrary commutative ring. Again, one
assuming classical matrix multiplication in Õ(n3.2) ring operations and one assuming fast
matrix multiplication in O(n2.6) ring operations.

We have not implemented any of the fast algorithms.

3

3 Timings and Implementations

For a machine prime p, in order to improve the running time of our implementation, we’ve
implemented the Hessenberg algorithm over Zp in the C programming language and the rest
of the algorithm in Maple. We used the Maple external function interface to call the C code
(see Ch. 6 of [7]). We’ve implemented a 32-bit integer version, a 64-bit integer version, and
several versions using 64-bit double precision floating point values for comparison.

The following table consists of timings (in CPU seconds) of our C implementation of
the Hessenberg algorithm for the 364 × 364 input matrix from Quaintance [8]. Rows 1-9
below are for the modular algorithm using different implementations of arithmetic for Zp.
The accelerated floating point version fprem using 25-bit primes generally gives the best
times. The performance of 64 bit integer arithmetic is disappointing.

Versions Xeon Opteron AXP2800 Pentium M Pentium 4
2.8 GHz 2.0 GHz 2.08 GHz 2.00 GHz 2.80 GHz

64int 100.7 107.4
32int 66.3 73.0 76.8 35.6 57.4
new 32int 49.7 54.7 56.3 25.5 39.6
fmod 29.5 32.1 33.0 35.8 81.1
trunc 67.8 73.7 69.6 88.5 110.6
modtr 56.3 62.5 59.5 81.0 82.6
new fmod 11.0 11.6 14.5 15.2 28.8
fprem 10.4 10.9 13.7 13.9 26.8
fLA 17.6 19.9 21.9 26.2 27.3
Berkowitz 2053.6 2262.6

Implementations

64int The 64-bit integer version is implemented using the long long int datatype in C, or
equivalently the integer[8] datatype in Maple. We use 32-bit primes. All modular
arithmetic first executes the corresponding 64-bit integer machine instruction, then
reduces the result mod p.

32int The 32-bit integer version is similar, but implemented using the long int datatype in
C, or equivalently the integer[4] datatype in Maple. 16-bit primes are used here.

new 32int This is an improved 32int, with various hand/compiler optimizations.

fmod This 64-bit float version is implemented using the double datatype in C, or equivalently
the float[8] datatype in Maple. 64-bit float operations are used to simulate integer
operations. Operations such as additions, subtractions, multiplications are followed by
a call to the C library function fmod() to reduce the results mod p. We allow both
positive and negative floating point representations of integers with magnitude less
than p.

4

trunc This 64-bit float version is similar to above, but uses the C library function trunc()
instead of fmod(). To compute b← a mod p, we first compute c← a− p× trunc(a/p),
then b ← c if c 6= ±p, b ← 0 otherwise. The trunc() function rounds towards zero to
the nearest integer.

modtr A modified trunc version where we do not do the extra check for equality to ±p at
the end. So to compute b ← a mod p, we actually compute b ← a − p × trunc(a/p),
which results in −p ≤ b ≤ p.

new fmod An improved fmod version, where we have reduced the number of times fmod()
is called - we reduce the results mod p only when the number of accumulated arithmetic
operations on an entry exceeds a certain threshold. To allow this we are restricted to
use 25-bit primes. We call this delayed mod acceleration. See the next subsection.

fprem Equivalent to new fmod version, but via direct assembly programming using fprem
instruction, removing the function call overhead and making some efficiency improve-
ments.

fLA An improved trunc version using delayed mod acceleration. It is the default used in
Maple’s LinearAlgebra:-Modular routines in Maple 10 and earlier.

3.1 Efficiency considerations.

There are a few considerations for use of floating point for mod p computations. Keeping
these in mind, one can implement faster code for the algorithms than is possible with the
integer codes, and still have the advantage of using larger primes on 32-bit machines. These
ideas are used by Maple’s LinearAlgebra:-Modular package since Maple 8 for floating point
modular operations.

1. Although floating point integer computations can represent 53-bit numbers accurately,
restricting the modulus to p < 225 allows for more efficient mod operations, and multiple
mod operations (up to 8 for maximal sized primes) to occur before having to reduce
modulo p. We call this the delayed mod acceleration.

2. Leveraging the smaller primes allows up to 8 computations (using a maximal size prime)
to occur before we must perform a mod. This can be efficiently utilized in row-based
algorithms, as a counter associated with each row can count the number of operations
performed, and the algorithms can be made to only perform the mod once the maximal
number of computations is reached. Note, one can use level 1 BLAS here for single
row/column operations but this did not improve the efficiency.

In our experiments we found the following: Use of the smaller primes, and delayed mod,
mentioned in items 1 and 2 above increased performance by a factor of 2-3. With these
modifications, use of floating point modular arithmetic demonstrated better performance
than integer modular arithmetic.

The use of the C-library fmod function or direct assembly programming using the fprem
instruction (essentially equivalent modulo function call overhead and some efficiency im-
provements made available for our specific use of fmod) showed better performance than the

5

other floating point schemes, except on the Pentium 4, on which it was approximately equal.
Note also that on Pentium M the fprem performance was nearly a factor of 2 times better.

3.2 Timings for dense matrices.

The following table consists of some timings (in seconds) of our modular Hessenberg algo-
rithm using float (fprem) and integer (new 32int) implementations on dense n×n matrices,
with uniformly random integer entries between −999 and 999. We also compare with Maple’s
Berkowitz algorithm. The timings were made on an AMD Opteron 2.2 GHz processor. From
the above data, we can see that the float version is always faster than the integer version
(about 3 times faster).

n float integer Berkowitz

50 <0.1 0.13 7.85
100 0.61 1.85 128.6
200 8.82 30.8 2248.1
300 45.4 153.2
400 173.5 493.4
600 1195.2 2973.1
800 4968.8

3.3 Making the algorithm output sensitive.

In [4], Dumas et. al. propose the use of early termination to recover the characteristic
polynomial and they observe a 25% improvement on one set of data. Our implementation
also uses early termination and the following example suggests that we should always do this
because the improvement could be arbitrary. Consider the following matrix

A =

1 u v w
0 2 x y
0 0 3 z
0 0 0 4

 .

The characteristic polynomial of A is c(x) = (x − 1)(x − 2)(x − 3)(x − 4) = x4 − 10x3 +
35x2 − 50x + 24. Notice that the largest coefficient of c(x) does not depend on any of the
entries u, v, w, x, y, z. So if u, v, w, x, y, z are large, a bound S for the largest coefficient of
c(x) could be arbitrarily far off and our modular algorithm would use many more primes
than are necessary.1

This suggests that we use an output sensitive version of the algorithm and not use a
bound at all. We incrementally apply the Chinese remainder theorem to reconstruct c(x)
and stop when the output of applying Chinese remaindering on K consecutive modular
images “remains the same”. On the sparse 364× 364 example in the previous section, using
K = 4, the timings improve by about 50%.

1Yes, we could improve the algorithm for computing the bound S to “notice” that this matrix is upper
triangular. But we could fool such a bound algorithm by, for example, permuting the rows and columns of
A

6

4 Strongly Connected Graph Components

Consider again the matrix

A =

1 u v w
0 2 x y
0 0 3 z
0 0 0 4

 .

The Hessenberg algorithm does not need to do any work since A is already in upper Hessen-
berg form. However, it would do work if the input were AT even though the characteristic
polynomial would be the same. Consider the block upper-triangular matrix

B =

a b w x
c d y z
0 0 e f
0 0 g h

 .

Let cB(x) be the characteristic polynomial of B. Then cB(x) = cB1(x)cB2(x) where

B1 =

(
a b
c d

)
and B2 =

(
e f
g h

)
.

If the input matrix is block upper (lower) triangular, then the computation of the charac-
teristic polynomial reduces to the product of the characteristic polynomials of the diagonal
blocks which are easier to compute. But what if the input matrix is a row and column
permutation of a block upper (lower) triangular matrix? For example,

P =

h 0 g 0
z d y c
f 0 e 0
x b w a

is the matrix B with rows 1,4 and columns 1,4 interchanged. Since simultaneous row and
column interchanges do not change the characteristic polynomial, if we could efficiently
determine the permutation that would make P block upper (lower) triangular, we could
compute c(x) faster. It turns out that we can compute this permutation in linear time by
finding the strongly connected components of a directed graph.

Let A be a n × n matrix. We denote by Graph(A) the weighted directed graph with n
vertices such that A is the adjacency matrix of Graph(A). Recall that a directed graph G
is strongly connected if for each pair of vertices u, v ∈ G, u 6= v, there exists a path u v.
Also, every directed graph can be partitioned into maximal strongly connected components.

Denote by A(u1,u2,...,ur),(v1,v2,...,vs) the r × s submatrix of A such that

(A(u1,u2,...,ur),(v1,v2,...,vs))i,j = Aui,vj
.

The method works as follows:

1. Compute (see below) the k strongly connected components of Graph(A) : V1, V2, ..., Vk

where Vi = {vi1, vi2, ..., vini
}.

7

2. For 1 ≤ i ≤ k, compute the characteristic polynomial of the matrix AVi,Vi
which is the

ni by ni submatrix A(vi1,vi2,...,vini
),(vi1,vi2,...,vini

).

3. Output (the characteristic polynomial c(x) of A) the product of the characteristic
polynomials computed in step 2.

For the matrix P above, the strongly connected components of Graph(P) are V1 = {1, 3}
and V2 = {2, 4}. To see this, it might help the reader to draw Graph(P). Next we compute
the product of the characteristic polynomials of(

h g
f e

)
and

(
d c
b a

)
.

Clearly we would get the characteristic polynomial of P, which is also the characteristic
polynomial of B. Observe that V2 ≺ V1. Suppose we choose the ordering 2,4,1,3, then we
obtain the matrix

P′ =

d c z y
b a x w
0 0 h g
0 0 f e

 .

It doesn’t quite look like B, but the characteristic polynomial of P′ is the same as B above.
The difference is that the vertices in V1 and V2 are permuted. If we choose the ordering
4,2,3,1, then we obtain B.

4.1 LinearAlgebra[StronglyConnectedBlocks]

Computation of the strongly connected component blocks of a Matrix is implemented in
the LinearAlgebra package in Maple 11 as the command StronglyConnectedBlocks. It
computes the strongly connected components of G = Graph(A) using the algorithm of Tarjan
[9]. The running time is linear in the number of edges of G, that is, linear in the number of
non-zero entries of A. The syntax for the Maple command is:

LinearAlgebra[StronglyConnectedBlocks](M, [returnsingular=truefalse])

where M is the input and the option returnsingular is provided to allow one to avoid
reconstruction of the block matrices if the input matrix can be determined to be singular
(useful for determinant computation).

The output of StronglyConnectedBlocks is a list of non-zero square matrices A1,A2,
..., Ar. If the input M is an n × n matrix, and m =

∑r
i=1 dim(Ai), the output satisfies

cM(x) = xn−m
∏r

i=1 cAi
(x) where cA(x) is the characteristic polynomial of A.

We now provide data comparing the run-time and memory usage for the computation
of the strongly connected blocks of the 72 × 72, 364 × 364, and 1916 × 1916 matrices from
Quaintance [8]. Note that the 364 × 364 matrix decomposes into 12 blocks of sizes 5, 5, 9,
10, 10, 10, 22, 22, 48, 54, 76, 93 while the 72 × 72 matrix decomposes into 6 blocks of sizes
4, 4, 8, 13, 20, 23, and the 1916×1916 matrix decomposes into 31 blocks of sizes 6, 6, 6, 6, 6, 6,
11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 32, 32, 59, 70, 70, 70, 103, 103, 241, 260, 306, 378.

8

Note that one bottleneck in the implementation of the algorithm is the extraction of the
nonzero entries in the input matrix, so the timings table compares a Maple implementation
v.s. a C implementation for both the SCC and extract steps.

The timings below are for an AMD Athlon(tm) 64 X2 4400+ (2.2GHz) with 2GB memory
under 64-bit Linux.

Matrix Maple SCC Maple SCC C SCC C SCC
Maple Extract C Extract Maple Extract C Extract

72× 72 0.01s 0.52M 0.02s 0.13M 0.01s 0.39M .004s <.001M
364× 364 0.20s 5.24M 0.06s 2.75M 0.09s 5.11M .004s 0.26M
1916× 1916 5.20s 51.1M 1.06s 12.8M 3.57s 46.4M 0.11s 5.11M

From this we can see that the C implemented extraction process provides a significant re-
duction in the run time and memory usage of the implementation, and the combination of
the two reduces the time and memory usage for the difficult example by factors of ≈ 50, 10
respectively.

4.2 Final timings.

To complete the section on improvements we provide a timing comparison for computation
of the characteristic polynomial, the eigenvalues and the determinant of the three matrices
of the prior section (72× 72, 364× 364, and 1916× 1916).

In the following table, the Maple 11 Berkowitz implementation is compared with the new
Maple 11 Hessenberg implementation (with early termination), computing both with and
without block decomposition. Timings were obtained on an AMD Athlon(tm) 64 X2 Dual
Core 4400+ (2.2GHz) with 2GB memory under 64-bit Linux.

Matrix Berkowitz Berkowitz Hessenberg Hessenberg
No blocks With blocks No blocks With blocks

72× 72 2.18 0.04 0.16 0.02
364× 364 966.43 9.59 28.45 0.16
1916× 1916 2,349,828.7 16594.79 28468.55 46.87

It is clear from the timings that block decomposition is very effective.
The block decomposition algorithm has also been integrated into the LinearAlgebra:-

Determinant code for the non-floating point cases. This integration took some care, as in
cases where no decomposition is possible, the time for the check is simply added to the
overall run-time. In the original integration, before converting the block algorithm to C
code, most determinant tests in the Maplesoft test suite slowed down, and the overall hit
was approximately 20% on average. After the conversion of the block algorithm to C code,
most tests ran faster, and the average speedup was 4%, with the largest speed up at 88%
(a test that ran in 10.7 sec. was reduced to 1.3 sec.), and the largest slowdown was 4.1% (a
test that ran in 12.87 sec. increased to 13.39 sec.). The latter was simply a case where the
Matrix was large and dense, and no block decomposition could be performed.

Note that the improvements to LinearAlgebra:-CharacteristicPolynomial also improve the
timings for LinearAlgebra:-Eigenvalues, to the point where the majority of the time is spent

9

extracting the eigenvalues from the characteristic polynomial, i.e., factoring the c(x) and
expressing roots in terms of radicals where possible.

Determinant CharPoly Eigenvalues
Matrix Old New Old New Old New

72× 72 0.03 0.02 2.18 0.02 2.34 0.14
364× 364 0.60 0.12 966.43 0.16 964.91 1.57
1916× 1916 24.97 2.37 27 days 46.87 N/A* 335.61

The old eigenvalue timing (N/A*) was deemed too expensive to bother measuring as it
will be on the same order as the old characteristic polynomial timing (27 days).

We note that there is also a significant improvement in the determinant computation
in Maple 11 that is independent of the block decomposition. Maple 11 is using a modular
algorithm for determinant of integer matrices. For the 1916×1916 Matrix, Maple 10 required
4500 seconds and memory usage of 1.4 gigabytes, while in Maple 11 (prior to the block
decomposition changes) the same computation only required 24.97 seconds with no excessive
memory usage. The block decomposition has further improved this timing to 2.37 seconds.

References

[1] J. Abdeljaoued. The Berkowitz Algorithm, Maple and Computing the Characteristic
Polynomial in an Arbitrary Commutative Ring. MapleTech 5(1), pp. 21–32, Birkhauser,
1997.

[2] S. J. Berkowitz. On Computing the Determinant in Small Parallel time using a Small
Number of Processors. Inf. Processing Letters 18(3) pp. 147–150, 1984.

[3] H. Cohen. A Course in Computational Algebraic Number Theory. Graduate texts in
mathematics, 138, Springer-Verlag, 1995.

[4] J.-G. Dumas, C. Pernet, Z. Wan. Efficient Computation of the Characteristic Polynomial.
Proceedings of ISSAC 2005, pp. 140–147, ACM Press, 2005

[5] E. Kaltofen, G. Villard. On the Complexity of Computing Determinants. Journal of
Computational Complexity 13 pp. 91–130, 2004.

[6] W. Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theoretical Com-
puter Science 36 309-317, Elsevier, 1985.

[7] M. Monagan, K. Geddes, K. Heal, G. Labahn, S. Vorkoetter, J. McCarron, P. deMarco.
Maple 9 Advanced Programming Guide, Maplesoft, 2003.

[8] J. Quaintance. m×n Proper Arrays: Geometric Construction and the Associated Linear
Cellular Automata. Proceedings of the 2004 Maple Summer Workshop, 2004.

[9] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Comput-
ing 1(2) pp. 146–160, 1972.

10

