
Cryptography using Chebyshev polynomials

G. J. Fee and M. B. Monagan
Centre for Experimental and Constructive Mathematics,

Simon Fraser University,
Burnaby, Canada, V5A 1S6

gfee@cecm.sfu.ca and mmonagan@cecm.sfu.ca

Abstract

We consider replacing the monomial xn with the Chebyshev poly-
nomial Tn(x) in the Diffie-Hellman and RSA cryptography algorithms.
We show that we can generalize the binary powering algorithm to com-
pute Chebyshev polynomials, and that the inverse problem of com-
puting the degree n, the discrete log problem for Tn(x) mod p, is as
difficult as that for xn mod p.

1 Introduction

If Alice wants to send a secret message to Bob, using a conventional secret
key cryptographic algorithm such as the DES (Data Encryption Standard)
[1] [2] [4], or the AES (Advanced Encryption Standard) [3], then Alice and
Bob must first agree on a common secret key. If Alice emails Bob the secret
key, a wiretapper might copy the key and decrypt the secret message that
Alice sent to Bob. How can Alice and Bob agree on their common secret key?
The Diffie-Hellman [1] [2] [4] key agreement protocol solves this problem.

The Diffie-Hellman Key Agreement Algorithm

1. Alice creates positive integers g and prime p such that g < p.
2. Alice chooses a secret integer exponent m such that 0 < m < p.
3. Alice calculates a = gm mod p.
4. Alice emails p, g, and a to Bob.
5. Bob chooses n, a secret integer exponent such that 0 < n < p.

1

6. Bob calculates b = gn mod p.
7. Bob emails b to Alice.
8. Alice computes the secret key k = c with c = bm mod p.
9. Bob computes the secret key k = d with d = an mod p.

The common secret key k is c for Alice and d for Bob, but c = d as
(gn)m = gnm = (gm)n mod p. In the above protocol, one uses binary pow-
ering modulo p to compute quickly the powers gm, gn, bm, and an modulo p.
As the base and exponent are bounded by p, one can compute the powers
in O(log p) multiplications and divisions, with numbers that contain at most
O(log p) bits in their binary representation. Using classical algorithms we
can multiply or divide in O(log(p)2) bit operations, this yields a time com-
plexity of O(log(p)3) bit operations to compute gm mod p, which corresponds
to polynomial time in the length of the input.

We can assume that Eve, an eavesdropper knows p, g, a, and b, and needs
to compute the secret key k which is either c or d in the above protocol. One
method for doing this is to solve the discrete log problem a = gm mod p for
secret exponent m, and then to compute c = bm mod p, just as Alice would
do in step 8. As known methods to solve the discrete log problem have a
much larger time complexity, it is presently computationally infeasible to
solve the discrete log problem for the secret exponent. For example, for
both the Pollard ρ algorithm and the index calculus method [4], the time
complexity is O(

√
p), which is of exponential time in log(p) the length of

the inputs. For this reason the above algorithm hinders eavesdroppers from
discovering the secret key.

For maximum security it is recommended in [4] that p should be a safeprime,
that is (p − 1)/2 should also be a prime, and that g should be a primitive
root of p so that the period of the sequence of powers of g is maximal. In
current practice p is chosen to have at least 200 decimal digits.

The generalized Diffie-Hellman Key Agreement Algo-
rithm

This algorithm has been generalized from the multiplicative group of integers
modulo p, a prime, to any finite group, such as the multiplicative group of
non-zero elements in the finite field GF (2k) [3], the group of points on an
elliptic curve under addition [1] [4] [3] or the XTR public key system [5].
Alice chooses a group G and a random element g from the group. As the

2

binary powering algorithm can be used in any group, both Alice and Bob can
quickly compute a common secret group element. For this procedure to be
useful, we also require that known algorithms for the discrete log problem be
of exponential time in the length of the inputs. One simple example for which
this condition does not hold is in the additive group of integers modulo p, for
which binary powering becomes multiplication modulo p, and the discrete
log problem is solved by doing one division modulo p.

In this work we replace the polynomial xn that appears in the Diffie-
Hellman key agreement protocol with the Chebyshev polynomial of the first
kind Tn(x) and show also how to use this in the RSA algorithm. In section
3 we show how to compute Tn(g) mod p rapidly. This is the analogue of
computing gn mod p using a binary decomposition of n. In section 4 we
study properties of the sequence of values of Tn(x) mod p, and in section 5
we show that the discrete log problem for Chebyshev polynomials can be
mapped into the classical discrete log problem. Finally, in section 6, we give
an RSA encryption algorithm based on Chebyshev polynomials.

2 Diffie-Hellman Key Agreement with Cheby-

shev polynomials

We generalize the Diffie-Hellman key agreement protocol as follows. Instead
of generalizing the basic rule of exponents (gm)n = gmn = (gn)m to an
arbitrary group, we consider it as a polynomial identity (xm)n = xmn =
(xn)m, in which x is an indeterminate. We ask the question: Can polynomials
in any class other than the pure monomial xn can satisfy such a commutative
composition identity? A similar identity holds for Chebyshev polynomials of
the first kind:

Tm(Tn(x)) = Tmn(x) = Tn(Tm(x)).

We see that this holds by using the classical formula [6], Tn(x) = cos(n arccos(x))
which is valid for all real x in the interval [−1, 1]. Using this formula we have

Tm(Tn(x)) = cos(m arccos(cos(n arccos x)))

= cos(mn arccos x)

= cos(nm arccos x)

= cos(n arccos(cos(m arccos x)))

= Tn(Tm(x))

3

For x > 1 we can use the formula Tn(x) = cosh(n cosh−1 x) to verify the iden-
tity. Up to a linear transformation the pure monomial xn and the Chebyshev
polynomials are the only classes of polynomials that satisfy the commuta-
tive composition relation Pn(Pm(x)) = Pm(Pn(x)) with Pn(x) a polynomial
of degree n. See pages 33-34 exercise E.5 in reference [7] for a proof. Thus
we present the Diffie-Hellman Key Agreement algorithm using Chebyshev
polynomials:

1. Alice creates positive integers g and prime p such that g < p.
2. Alice chooses a secret integer degree m such that 0 < m < p.
3. Alice calculates a = Tm(g) mod p.
4. Alice emails p,g, and a to Bob.
5. Bob chooses a secret integer degree n such that 0 < n < p.
6. Bob calculates b = Tn(g) mod p.
7. Bob emails b to Alice.
8. Alice computes the secret key k = c with c = Tm(b) mod p.
9. Bob computes the secret key k = d with d = Tn(a) mod p.

The integer c for Alice and the integer d for Bob constitute the common
secret key k as both have computed Tmn(g) mod p.

Example 1: Here is a simple example of this algorithm in which m = 2 and
n = 3 are chosen hence we need to evaluate T2(x) = 2x2−1, T3(x) = 4x3−3x,
and T6(x) = 32x6 − 48x4 + 18x2 − 1.

1. Alice chooses p = 89 and g = 7.
2. Alice chooses m = 2.
3. Alice computes a = T2(7) = 2(72)− 1 mod 89 = 97 mod 89 = 8.
4. Alice emails Bob p = 89, g = 7, and a = 8.
5. Bob chooses n = 3.
6. Bob computes b = T3(7) = 4(73)− 3(7) mod 89 = 1351 mod 89 = 16.
7. Bob emails b = 16 to Alice.
8. Alice computes c = T2(16) = 2(162)− 1 mod 89 = 511 mod 89 = 66.
9. Bob computes d = T3(8) = 4(83)− 3(8) mod 89 = 2024 mod 89 = 66.

Both Alice and Bob have generated the same secret key k = 66, which is also
T6(7) mod 89 = 3650401 mod 89 = 66. To make the above protocol practical
we require an efficient algorithm for computing Tn(x) mod p, with both n
and p large. We discuss methods for doing this in the next section. For
maximum security p should be a safeprime and g should be chosen such that
the period is large. We study this in the following section. For p a prime

4

greater than three, five known cases in which the period is small occur when
g is one of 0, 1, (p− 1)/2, (p + 1)/2 and p− 1, with periods of length 4, 1, 3, 6
and 2 respectively.

3 Binary powering for Chebyshev polynomi-

als

We seek to generalize the binary powering algorithm, so that we can quickly
compute values of the Chebyshev polynomials modulo p. First we rewrite
the recurrence for Chebyshev polynomials Tn+1(x) = 2xTn(x)−Tn−1(x) from
[8] formula 22.7.4, page 782, as a matrix equation:[

Tn(x)

Tn+1(x)

]
=

[
0 1

−1 2 x

] [
Tn−1(x)

Tn(x)

]

This equation with n diminished by 1 becomes[
Tn−1(x)

Tn(x)

]
=

[
0 1

−1 2 x

] [
Tn−2(x)

Tn−1(x)

]

Combining the above equations yields[
Tn(x)

Tn+1(x)

]
=

[
0 1

−1 2 x

]2 [
Tn−2(x)

Tn−1(x)

]

We continue to replace the vector on the right side until the index is 0,
yielding [

Tn(x)

Tn+1(x)

]
=

[
0 1

−1 2 x

]n [
T0(x)

T1(x)

]
As T0(x) = 1 and T1(x) = x, the vector on the right is just the transpose
of the row vector [1, x]. Hence we just compute the above using matrix
binary powering, perform one matrix-vector product, and then extract the
first element of the resulting vector to obtain Tn(x). Using the classical
matrix-matrix multiplication algorithm, we can do one matrix multiplication
with individual elements reduced modulo p using 8 integer multiplications, 4
integer additions, and 4 integer remainder operations. As the exponent n < p

5

we use O(log(p)) matrix multiplications modulo p to compute the value of
the degree n Chebyshev polynomial modulo p. This calculation would take
about 4 to 8 times more C.P.U. time than the conventional Diffie-Hellman
algorithm, depending on the cost of a large integer division relative to a large
integer multiplication.

We can improve the above binary matrix powering algorithm by comput-
ing λn modulo the characteristic polynomial of the above recurrence relation
matrix. As the determinant is 1 and as the trace is 2x, the characteris-
tic polynomial is λ2 − 2xλ + 1. The Cayley-Hamilton theorem states that
a matrix satisfies its own characteristic polynomial, so instead of powering
a matrix, we just compute the indeterminate λn modulo the characteris-
tic polynomial using binary powering. A basic step in the above algorithm
would be multiplying two linear polynomials, finding the remainder from the
division by the characteristic polynomial, and then reducing the coefficients
modulo p. We can multiply two linear polynomials using four integer multi-
plications of single-length numbers and one integer addition of double-length
numbers, in which a single-length number is one that is less than p and a
double-length number is one that is less than p2. The remainder is calculated
by doing a substitution for λ2, which would cost another multiplication and
2 additions. This other multiplication would be a product of a double-length
number and a single-length number, so we might reduce the double-length
number by performing a division by p before doing the other multiplication.
Whether we do this reduction modulo p would depend on the relative cost
of our division algorithm and our multiplication algorithm. In practice we
implement both versions, time them, and select the faster version. Then we
would reduce the two coefficients modulo p at a cost of two integer divisions.
If we omitted the intermediate reduction, one of our divisions would have
a triple-length number divided by a single-length number. We have found
the above algorithm to be slightly quicker than the other matrix powering
algorithm.

6

Timings

We implemented the classical binary powering algorithm, computing gn mod
p, the Chebyshev matrix powering algorithm, computing Tn(g) mod p, and
the Chebyshev characteristic polynomial algorithm, computing Tn(g) mod p,
with g = 7233, n = 13178 and p = 97100+528. The calculations were performed
with Maple 8 [9], on a 180 MHz Silicon Graphics computer.

algorithm time in seconds
binary powering 0.686
matrix powering 4.527

characteristic polynomial 3.197

The Chebyshev matrix powering algorithm requires 6.60 times the duration of
the classical binary powering algorithm, and the other Chebyshev algorithm
4.66 times that duration.

7

4 Properties of Chebyshev polynomial sequences

modulo a prime

To investigate the difficulty of inverting x = Tn(g) mod p, with n unknown,
we generate some experimental data. Choosing a small p, we can compute
the sequence Tn(x) mod p for n = 0, 1, 2, ... until we discover the period of
the sequence. The result is that the period is at most p + 1 for any given
input argument x = 0, 1, 2, ..., p − 1. For example, when x = 3 and p = 11,
the sequence Tn(3) mod 11 for n = 0, 1, 2, ..., 23 is:

1, 3, 6, 0, 5, 8, 10, 8, 5, 0, 6, 3, 1, 3, 6, 0, 5, 8, 10, 8, 5, 0, 6, 3

which is of period 12. By doing this for each x = 0, 1, 2, ..., 10 we find the
following sequences:

x sequence
0 1, 0, 10, 0, 1, 0, 10, 0, 1, 0, 10, 0
1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2 1, 2, 7, 4, 9, 10, 9, 4, 7, 2, 1, 2
3 1, 3, 6, 0, 5, 8, 10, 8, 5, 0, 6, 3
4 1, 4, 9, 2, 7, 10, 7, 2, 9, 4, 1, 4
5 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5
6 1, 6, 5, 10, 5, 6, 1, 6, 5, 10, 5, 6
7 1, 7, 9, 9, 7, 1, 7, 9, 9, 7, 1, 7
8 1, 8, 6, 0, 5, 3, 10, 3, 5, 0, 6, 8
9 1, 9, 7, 7, 9, 1, 9, 7, 7, 9, 1, 9
10 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10

Table 1: Example 2

with periods 4, 1, 10, 12, 10, 3, 6, 5, 12, 5, 2 respectively.

8

Theorem 1 Let p be an odd prime and g ∈ Z such that 0 ≤ g < p. Let k
be the period of the sequence Tn(g) mod p for n = 0, 1, 2, Let λ2−2gλ+1
have roots λ = α1, α2.
Then (i) k|p − 1 if the roots are in GF (p), otherwise, (ii) k|p + 1 when the
roots are in GF (p2).

Proof: We have already shown that we can compute Tn(g) mod p by com-
puting the nth power of the recurrence relation matrix which has character-
istic polynomial f(λ) = λ2 − 2gλ + 1, performing one matrix-vector product
modulo p, and then selecting the first element in the resulting vector. The
determinant of this matrix is also equal to the coefficient of λ0 of f(λ), which
is 1; thus the matrix is non-singular. As the 0th power of the matrix is the
identity matrix, the period k is the smallest positive integer such that the
kth power of the matrix is the identity matrix. We can compute powers of a
matrix by finding its Jordan canonical form, computing powers of the Jordan
canonical form, then transforming back. Recall that the Jordan canonical
form is either a diagonal matrix with distinct eigenvalues on the diagonal,
or an upper triangular matrix with repeated eigenvalues on the diagonal;
these eigenvalues are also roots of the characteristic polynomial. In the case
that the characteristic polynomial has repeated roots, they both must be
±1 mod p because the only least-residue solutions of x2 − 1 = 0 mod p are
x = ±1. In the case that 1 is a double root, g = 1 and our sequence is 1, 1, 1, ...
which has period 1. In the other case, the repeated root is −1 with g = −1;
our sequence is 1, p−1, 1, p−1, ... which has period 2 and is a divisor of p−1,
as p is odd. We consider the case that the distinct roots lie in GF (p). From
Fermat’s theorem, a(p−1) = 1 mod p for any non-zero a < p. The (p − 1)st

power of the Jordan canonical form matrix is the identity matrix, so our
sequence has period at most p − 1. If a smaller exponent k < p − 1 exists
such that the kth power of our Jordan canonical form matrix is the identity,
k must be a divisor of p − 1, because, by Lagrange’s theorem for the order
of a subgroup of a finite group, the period must be a divisor of p − 1. The
other case is that the roots exist only in a quadratic extension of GF (p).
We can still diagonalize our matrix as long as we do our arithmetic in that
quadratic extension field. First we raise our diagonal Jordan canonical form
matrix to power p; such raising a number to the power p is an automorphism
in the quadratic extension field. Hence the two roots just swap position on
the diagonal, as we have only one non-identity automorphism in a quadratic
extension field. Then we multiply by our original Jordan canonical-form ma-

9

trix to complete the calculation of the (p + 1)st power. This just multiples
two pairs of conjugate roots. As the product of the conjugate roots is also
the coefficient of λ0 in the characteristic polynomial, which is 1, the (p+1)st

power is the identity matrix. Thus the period is at most p + 1. Again, by
Lagrange’s theorem, the period must be a divisor of p + 1. �

We recommend choosing p to be a safeprime, and check that p + 1 has a
large prime factor or that it is hard to factor.

We also noticed a mirror symmetry about the midpoint in each sequence
in example 2, which occurs because the roots are reciprocals of each other.
Because of this mirror symmetry only about half the elements can occur in
any given sequence. As our sequences contain some duplicates before the
period is complete, our sequence cannot be explained as being obtained from
the powers of an element from a group. For this reason we have a generaliza-
tion of the Diffie-Hellman algorithm different from the group generalization,
even though a matrix group occurs in our algorithm.

5 The discrete log problem for Chebyshev

polynomials

How does an eavesdropper try to break our algorithm? We can assume that
the eavesdropper knows p, g, a, b but not the secret degrees m and n. One
way that an eavesdropper can break our algorithm would be first to solve
the equation a = Tm(g) mod p for the unknown degree m. We call this the
Chebyshev discrete log problem. Then the eavesdropper would just compute
c = Tm(b) mod p the same way that Alice would. We map the Chebyshev
discrete log problem onto the conventional discrete log problem by recalling
the hyperbolic definition of Chebyshev polynomials and solving it for m. We
have the following theorem.

Theorem 2 Let a and g be integers and p a prime. If a = Tm(g) mod p then
m is one of the values log

g+
√

g2−1
(a +

√
a2 − 1) in which the square roots lie

in the quadratic extension field GF (p2) and the logarithm is the discrete log
in the field GF (p) or its quadratic extension field.

Proof: a = Tm(g) = cosh(m cosh−1(g)) so m = cosh−1(a)

cosh−1(g)
. We convert this to

logarithms to find m = log(a+
√

a2−1)

log(g+
√

g2−1)
. Recalling the change of base formula, we

10

write this as m = log
g+
√

g2−1
(a +

√
a2 − 1). In the case that both the square

roots
√

g2 − 1 and
√

a2 − 1 exist in GF (p) we have a conventional discrete log
problem; otherwise, at least one square root exists in the quadratic extension
field GF (p2), which yields a quadratic extension field generalization of the
discrete log problem. To compute a square root in GF (p) or in GF (p2) we can
use the O(log3 p) probabilistic polynomial time method of Rabin, described
in [4].

Example 3 Alice chooses p = 9973, g = 65 and m = 1871. Alice computes
a = Tm(g) mod p = 1063. The eavesdropper has seen p, g, a but not m and
needs to determine m. The eavesdropper computes

h =
√

g2 − 1 = ±923, and s =
√

a2 − 1 = ±3296.

The eavesdropper then computes the discrete logarithms

logg±h(a± s) = ±1871 mod 9972.

The eavesdropper has also seen b = Tn(g) mod p that was sent from Bob to
Alice. He proceeds to compute k = Tm(b) mod p and obtains the secret key.
Both values of m yield the same key k.

Example 4 Alice chooses p = 9973, g = 73 and m = 1259. Alice computes
a = Tm(g) mod p = 1659. The eavesdropper has seen p, g, a but not m
and needs to determine m. The eavesdropper attempts to compute h =√

g2 − 1 mod p, which exists only in the quadratic extension field Zp(
√

5328).
Next the eavesdropper attempts to compute s =

√
a2 − 1 mod p, but this

may be expressed as s = 5200
√

5328. The eavesdropper then computes the
discrete logarithms

logg±h(a± s) = ±1259 mod 9974.

6 The Chebyshev polynomial RSA algorithm

Recall the RSA cryptographic algorithm [4].

1. Alice chooses two large primes p and q which are kept secret.
2. Alice computes the public modulus M = pq.
3. Alice chooses a random encryption exponent 0 < e < M .
4. Alice computes the secret modulus L = (p− 1)(q − 1).

11

5. Alice computes a secret decryption exponent d = 1/e mod L.
6. Alice emails Bob M and e.
7. Bob encodes his secret message as a number x, such that 0 ≤ x < M .
8. Bob computes y = xe mod M and sends y to Alice.
9. Alice decrypts Bob’s y by computing z = yd mod M .

Now Alice has z = x and then decodes z to read Bob’s message.
We modify the above algorithm to use Chebyshev polynomials instead of

monomials, as follows.

1. Alice chooses two large primes p and q which are kept secret.
2. Alice computes the public modulus M = pq.
3. Alice chooses a random encryption degree 0 < e < M .
4. Alice computes the secret modulus L = (p2 − 1)(q2 − 1).
5. Alice computes a secret decryption degree d = 1/e mod L.
6. Alice emails Bob M and e.
7. Bob encodes his secret message as a number x, such that 0 ≤ x < M .
8. Bob computes y = Te(x) mod M and sends y to Alice.
9. Alice decrypts Bob’s y by computing z = Td(y) mod M .

Alice has z = x and then decodes z to read Bob’s message. This algorithm
works because the period in the sequence of Chebyshev polynomials was
shown to be a divisor of p− 1 or a divisor p + 1, so is always a divisor of the
product p2 − 1 for an odd prime modulus p. As our modulus is M = pq we
use the Chinese remainder theorem to show that if a message is recovered
modulo each of the primes p and q then it can be recovered modulo M .
First working modulo p, we find that z = Td(y) = Td(Te(x)) = Tde(x) =
Tk(p2−1)(q2−1)+1(x) = T1(x) = x mod p. As the same equation holds modulo
q Alice can recover Bob’s encoded message x. In our case the decryption
degree d is about twice the length of the decryption exponent in the classical
RSA algorithm. As this condition doubles the decryption time as compared
to RSA, the total time should be about 8 to 16 times longer than the time
for the conventional RSA algorithm. Our timings in Maple 8 show that
encrypting is 4.01 times slower than RSA, and decrypting is 8.39 times slower
than RSA, when p is a random 100 digit prime, q is a random 101 digit prime,
and e a random 100 digit integer.

12

7 Appendix

Here are two maple procedures for computing Tn(x) mod m.

Tnm2 := proc(n,x,m)
local e,a11,a12,a21,a22,s11,s12,s21,s22,r,t1,t2;
description ‘Tnm2(n,x,m) computes T[n](x) mod m‘,
‘where T[n](x) is the n’th degree Chebyshev‘,
‘ polynomial of the first kind‘,
‘It use the right-to-left matrix binary powering algorithm‘;
if n=0 then 1;
elif n=1 then x mod m;
else
e := n-1;
a11 := 1; a12 := 0;
a21 := 0; a22 := 1;
s11 := 0; s12 := 1;
s21 := -1; s22 := 2*x mod m;
while e>1 do
e := iquo(e,2,’r’);
if r=1 then
t1 := a11*s11+a12*s21 mod m;
a12 := a11*s12+a12*s22 mod m;
a11 := t1;
t2 := a21*s11+a22*s21 mod m;
a22 := a21*s12+a22*s22 mod m;
a21 := t2;
fi;
t1 := s11+s22;
t2 := s12*s21;
s11 := s11^2+t2 mod m; s12 := s12*t1 mod m;
s21 := s21*t1 mod m; s22 := s22^2+t2 mod m;
od;
t1 := a21*s11+a22*s21 mod m;
t2 := a21*s12+a22*s22 mod m;
t1+t2*x mod m;
fi;

end:

13

Tnm4 := proc(n,x,m)
local e,a0,a1,s0,s1,x2,r,t1,t2;
description ‘Tnm4(n,x,m) computes T[n](x) mod m‘,
‘where T[n](x) is the n’th degree Chebyshev‘,
‘ polynomial of the first kind‘,
‘It computes L^n mod the characteristic polynomial‘,
‘by using a right-to-left binary powering algorithm‘;
if n=0 then 1;
elif n=1 then x mod m;
else
e := n-1;
a0 := 1; a1 := 0;
s0 := 0; s1 := 1;
x2 := 2*x mod m;
while e>1 do
e := iquo(e,2,’r’);
if r=1 then
t1 := a1*s1;
t2 := a0*s0-t1;
a1 := a0*s1+a1*s0+x2*t1 mod m;
a0 := t2 mod m;
fi;
t1 := s1^2;
t2 := s0^2-t1;
s1 := 2*s0*s1+x2*t1 mod m;
s0 := t2 mod m;
od;
t1 := a1*s1;
t2 := a0*s0-t1;
a1 := a0*s1+a1*s0+x2*t1 mod m;
a0 := t2 mod m;
x*(x2*a1+a0)-a1 mod m;

fi;
end:

14

References

[1] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone Hand-
book of Applied Cryptography CRC Press, New York, 1997

[2] Douglas R. Stinson Cryptography Theory and Practice CRC Press, New
York, 1995.

[3] Douglas R. Stinson Cryptography Theory and Practice, second edition
Chapman and Hall/CRC Press, Boca Raton, Florida, 2002.

[4] Randall K. Nichols, ICSA guide to Cryptography, McGraw-Hill, New
York, 1999.

[5] Arjen K. Lenstra and Eric R. Verheul The XTR Public Key System, in
CRYPTO 2000 Proceedings, pages 1-19 Springer, Berlin, 2000.

[6] E.J. Borowski, and J.M. Borwein, The Harper Collins Dictionary of
Mathematics, Harper Collins Publishers, New York, 1991.

[7] Peter Borwein and Tamas Erdelyi, Polynomials and Polynomial Inequal-
ities, Springer, New York, 1995.

[8] M. Abramowitz and A. Stegun, Handbook of Mathematical Functions,
Dover Publications, New York, 1965.

[9] M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M. Vorkoetter,
J. MacCarron Maple 6 Programming Guide Waterloo Maple, Waterloo,
Canada, 2000.

[10] Arto Salomaa Public-Key Cryptography, second edition Springer, Berlin,
1996.

15

