
Generic Linear Algebra and Quotient Rings in

Maple

Simon Lo, Michael Monagan, Roman Pearce∗

Department of Mathematics, Simon Fraser University,
8888 University Drive,

Burnaby, BC, Canada V5A 1S6.
sclo@sfu.ca, mmonagan@cecm.sfu.ca, rpearcea@cecm.sfu.ca

Abstract

The algorithms for linear algebra in the Magma and Axiom computer
algebra systems work over an arbitrary ring. For example, the imple-
mentation of Gaussian elimination for reducing a matrix to (reduced) row
Echelon form works over any field that the user constructs. In contrast,
Maple’s facilities for linear algebra in its LinearAlgebra package only
work for specific rings. If the input matrix contains general expressions,
the algorithms may work incorrectly.

Motivated by a need to do linear algebra over quotient rings and finite
fields in Maple, we have designed a simple to use facility that permits the
Maple user to define a field, Euclidean domain, integral domain or ring so
that our “generic” algorithms for linear algebra are immediately available.
These algorithms comprise a package called GenericLinearAlgebra which
is being integrated into Maple 11.

We have also implemented a package for computing in quotient rings.
This package, called QuotientRings, exports all the necessary operations
so that one can immediately do linear algebra over a quotient ring, for
example, the trigonometric polynomial ring Q[s, c]/〈s2 + c2 − 1〉. The
package also includes a new algorithm for simplifying fractions over a
quotient ring to canonical form that we discuss.

1 Introduction

The GenericLinearAlgebra package implements linear algebra operations over
abstract commutative rings, fields, Euclidean domains, and integral domains.
This means that if one can do arithmetic in a given ring R, such as a finite
field GF(pk), then one can multiply matrices, compute determinants, and solve
linear systems over R as well. The package exports the following commands.

∗This work was supported by NSERC and MITACS NCE of Canada.

1

> with(GenericLinearAlgebra);

[BareissAlgorithm, BerkowitzAlgorithm, CharacteristicPolynomial,

Determinant, GaussianElimination, HermiteForm, HessenbergAlgorithm,

HessenbergForm, LinearSolve, MatrixInverse, MatrixMatrixMultiply,

MatrixV ectorMultiply, MinorExpansion, NullSpace, RREF,

ReducedRowEchelonForm, SmithForm, StronglyConnectedBlocks]

As a first example, we will construct the domain of rational numbers. The repre-
sentation for a domain is either a table of Maple functions and constants, or a module
that exports Maple functions and constants. Now the rational numbers are a field, so
we must define +, −, ×, ÷. We must also define = for testing if two elements of a
field are equal, and specify the constants 0 and 1. In our design, we require that the
definitions for + and × are n-ary, that is, we can add/multiply zero or more inputs.
Here is code for defining the rationals using the table representation.1

> Q[‘-‘] := proc(a,b) a-b end:

> Q[‘+‘] := proc() local x; add(x, x=[args]) end;

> Q[‘*‘] := proc() local x; mul(x, x=[args]) end;

> Q[‘/‘] := proc(a,b) a/b end:

> Q[‘=‘] := proc(a,b) evalb(a=b) end proc:

> Q[‘0‘] := 0:

> Q[‘1‘] := 1:

It is now possible to use this ‘domain’ with the GenericLinearAlgebra package.
The domain is passed as an index to the command, as shown below.

> A := Matrix([[1,2,3],[4,5,6],[7,8,9]]);

A :=

24 1 2 3
4 5 6
7 8 9

35
> GaussianElimination[Q](A); 24 1 2 3

0 1 2
0 0 0

35
> ReducedRowEchelonForm[Q](A);24 1 0 −1

0 1 2
0 0 0

35
For ‘fraction-free’ elimination over an integral domain, one must define an opera-

tion for exact division. The function Divide(a, b) should return true if b divides a, and
Divide(a, b, q) should assign the quotient to q. The following Maple code works.

1Note, since ‘+‘, ‘−‘, ‘*‘, and ‘/‘ are built-in Maple functions with the required functionality,
we could also use Q[‘+‘] := ‘+‘;, Q[‘-‘] := ‘-‘;, etc.

2

> Q[‘Divide‘] := proc(a,b,q::name) evalb(irem(a,b,q)=0) end:

We will run the Bareiss fraction-free algorithm over Z. This algorithm reduces a matrix
to row Echelon form using exact division. It is used by default by the LinearSolve

command, although fractions are constructed during back substitution. The reason
the Bareiss algorithm is used intead of Gaussian elimination when reducing a matrix to
row Echelon form is that the size of an inverse of a matrix element may be very large.
See section 3 for an example. Note that both algorithms perform the same number of
arithmetic operations, namely, O(n3) where n is the dimension of the matrix.

> b := Vector([5,3,1]);

b :=

24 5
3
1

35
> BareissAlgorithm[Q](Matrix([A,b]));24 1 2 3 5

0 −3 6 −17
0 0 0 0

35
> LinearSolve[Q](A,b,output=[solution],free=[t]);26666664

−19

3
+ t

17

3
− 2t

t

37777775
1.1 Coding Style

Coding algorithms for the generic linear algebra package is straight-forward. Below
is the code for the RREF command which illustrates how one accesses operations from
a domain, in this case from the field F. As remarked above, to avoid computing in-
verses, by default, the code uses the Bariess algorithm if exact division – if the Divide

operation – is available, otherwise it uses ordinary Gaussian elimination.

proc(B::Matrix,rank::{name,equation},det::{name,equation})

local F,i,j,c,m,n,r,A,alg,opts;

opts := select(type, [args[2..nargs]], ’equation’);

hasoption(opts,’method’={identical(GaussianElimination),

identical(’BareissAlgorithm’)},’alg’,’opts’);

if opts<>[] then error "unrecognized option(s): %1", opts fi;

if not assigned(alg) then

if HasOperation(F,Divide) then alg := BareissAlgorithm

else alg := GaussianElimination; end if;

end if;

F := GenericCheck(procname, FieldOperations);

n,m := LinearAlgebra:-Dimensions(B);

3

if alg=GaussianElimination then

A := GaussianElimination[F](op(remove(type, [args], equation)));

r := 1;

for c to m while r <= n do

for i from r to n while F[‘=‘](A[i,c],F[‘0‘]) do od;

if i > n then next fi;

for i to r-1 do

if F[‘=‘](A[i,c],F[‘0‘]) then next fi;

for j from c+1 to m do

A[i,j] := F[‘-‘](A[i,j],F[‘*‘](A[i,c],A[r,j])) od;

A[i,c] := F[‘0‘]

od;

r := r + 1 # go to next row

od; # go to next column

else

A := BareissAlgorithm[F](op(remove(type, [args], equation)));

for r from n to 1 by -1 do

for c from min(r,m) to m while F[‘=‘](A[r,c],F[‘0‘]) do od;

if c > m then next end if;

for j from c+1 to m do A[r,j] := F[‘/‘](A[r,j],A[r,c]) od;

A[r,c] := F[‘1‘];

for i to r-1 do

for j from c+1 to m do

A[i,j] := F[‘-‘](A[i,j], F[‘*‘](A[i,c], A[r,j])) od;

A[i,c] := F[‘0‘]

od;

od;

fi;

A

end:

Note, one must not use Maple’s = operation to test for equality because the test in if

A[i,c]=F[‘0‘] then ... assumes that the representation for the 0 in the domain
is unique. Our design does not assume a unique representation for 0.

In the Maple library there is an older package called the Domains package that
was designed by Monagan [6] in the early 1990s. The design of the representation for
rings and fields, and the way one implements algorithms in our generic linear algebra
package is similar to that used in the Domains package. What are the differences
between the Domains package and our new package?

In Domains, a field has many operations. Everything that you might conceivably
do with a field needs to be there. And since a field is a Euclidean domain, and a
Euclidean domain is a unique factorization domain (UFD) which is an integral domain,
which is a ring, everything that you might do in a ring, integral domain, UFD, and
Euclidean domain is also there. The main difference between the Domains package
and our generic linear algebra package is that we have deliberately kept the number of
operations that the user needs to define for a domain to a minimum. The operations

4

needed are largely determined by the algorithm. For example, in order to run the
Bareiss algorithm over an integral domain, we do not want the user to have to define
the characteristic of the domain, provide a test for whether an element is a unit or
not, etc. etc.

Another advantage of the new design is that it is much easier to modify and
repackage existing parts of the Maple library so that they can work with our generic
linear algebra package. The next example illustrates this.

1.2 Finite Fields

Although Maple has had routines for linear algebra modulo n for quite some time, it
was historically difficult to do linear algebra over GF(pk) where k > 1. This is no longer
the case, as Maple’s GF package has been modified to work with GenericLinearAlgebra

for Maple 11. The modification needed was almost trivial. The GF package already
exported ‘+‘, ‘-‘, ‘*‘, ‘/‘ so we needed only to add ‘0‘, ‘1‘ and ‘=‘. Below we con-
struct GF(24) as polynomials in Z2[x] modulo x4 + x + 1. Notice that this time the
representation of the domain is a module with the required exports.

> GF16 := GF(2,4,x^4+x+1);

GF16 := Z2[x]/〈x4 + x + 1〉

> print(GF16);

module()

export ‘+‘, ‘-‘, ‘*‘, ‘/‘, ‘^‘, ‘0‘, ‘1‘, ‘=‘, input, output,

inverse, extension, variable, factors, norm, trace, order, random,

size, isPrimitiveElement, PrimitiveElement, ConvertIn, ConvertOut,

zero, one, init;

end module

The GF package uses a special representation for the elements of the field. It
encodes the polynomials as ‘modp1’ polynomials. The modp1 facility was added to
the Maple kernel by Monagan [5] in the early 1990s to support efficient computation
in Zm[x]. See ?modp1 in Maple for details of this representation. So it is necessary to
first convert our matrix entries into the desired format.

> A := Matrix([[x^3, x^2+1, x], [x, x+1, 0], [x+1, 0, x^2+1]]):

> A := map(GF16:-ConvertIn, A);

A :=

24 x3 mod 2 (x2 + 1) mod 2 x mod 2
x mod 2 (x + 1) mod 2 0 mod 2

(x + 1) mod 2 0 mod 2 (x2 + 1) mod 2

35
> B := MatrixInverse[GF16](A); # from GenericLinearAlgebra package

B :=

24 1 mod 2 (x + 1) mod 2 (x2 + 1) mod 2
(x3 + x2 + x + 1) mod 2 (x3 + x2) mod 2 (x2 + x) mod 2

(x3 + x2 + x) mod 2 1 mod 2 x3 mod 2

35
> MatrixMatrixMultiply[GF16](A,B);24 1 mod 2 0 mod 2 0 mod 2

0 mod 2 1 mod 2 0 mod 2
0 mod 2 0 mod 2 1 mod 2

35

5

2 Algorithms and Commands

Many of the known algorithms for linear algebra are generic in the class of rings they
work for. For example, the Hessenberg algorithm (see [3]) computes the characteristic
polynomial of a matrix of dimension n over any field F in O(n3) arithmetic operations.
The Berkowitz algorithm (see [1]) computes the characteristic polynomial over any ring
R. It is division free, and so can be applied to a matrix over any ring R. The Berkowitz
algorithm does O(n4) multiplications in R.

In our design of the GenericLinearAlgebra package, we have separated algorithms
like BerkowitzAlgorithm from commands like CharacteristicPolynomial cleanly; we
export both algorithms and commands. The code for the algorithms is unembellished,
it executes the pure algorithm. The code for commands can be smart. It may inspect
the matrix (vector), do something clever, and select the appropriate algorithm to
use. Consider, for example, the computation of the characteristic polynomial of the
following matrix over the integers.

> A := Matrix([[1,1,3,2],[0,6,0,1],[3,2,1,2],[0,7,0,2]]);

A :=

2664
1 1 3 2
0 6 0 1
3 2 1 2
0 7 0 2

3775
We compute the characteristic polynomial using the Berkowitz algorithm. The

output is a vector of coefficients. The reason for this output format, instead of out-
putting a Maple polynomial x4−10x3+13x2+54x−40 is firstly, of necessity; we permit
the user of GenericLinearAlgebra to use any data representation for the elements of
the ring that the user chooses, for example, the user could use hash tables as the
data representation for polynomials. Secondly, it is more convenient for programming
purposes to get the output as a vector of coefficients.

> BerkowitzAlgorithm[Q](A); 266664
1
−10
13
54
−40

377775
When computing determinants using the Determinant command or characteristic

polynomials using the CharacteristicPolynomial command, an algorithm is first
applied to search for ‘strongly connected’ blocks in the input matrix. Recall that the
directed graph G corresponding to a matrix A has the directed edge i → j if and
only if the matrix entry Ai,j 6= 0. The strongly connected blocks in A correspond to
the strongly connected components in G. The algorithm for computing the strongly
connected components of a graph, originally due to Tarjan [10], is linear time in the
number of edges in the graph, that is, linear time in the number of non-zero entries in
the matrix.

These components would appear as blocks along the diagonal of the matrix if
rows and columns were swapped to put the matrix into block upper triangular form.
Observe that if you swap rows 2 and 3 and swap columns 2 and 3, the matrix A

6

becomes 2664
1 3 1 2
3 1 2 2
0 0 6 1
0 0 7 2

3775
The determinant of A is the product of the determinants of the blocks. The same
holds for characteristic polynomials. This block decomposition catches upper and lower
triangular matrices as special cases. The command also outputs an integer denoting the
number of zero blocks that it found. The block decomposition has been implemented
as part of the LinearAlgebra package as the StronglyConnectedBlocks function.

> k, B := StronglyConnectedBlocks[Q](A);

k, B := 0,

»»
6 1
7 2

– »
1 3
3 1

––
> CharacteristicPolynomial[Q](A, output=factored);

0,

2424 1
−8
5

35 24 1
−2
−8

3535
> CharacteristicPolynomial[Q](A, lambda, output=factored);

(λ2 − 8λ + 5)(λ2 − 2λ− 8)

3 Quotient Rings

We have implemented a Maple package called QuotientRings for computing in poly-
nomial quotient rings or affine algebras [2, 4]. It exports the following commands.

> with(QuotientRings);

[Associate, Coefficients, Divide, Inverse, IsF ield, IsIntegralDomain, IsUnit,

IsZeroDivisor, KrullDimension, MonomialBasis, MultiplicationMatrix,

Normal, QuotientRing, Reduce, RingPolynomial, V ectorSpaceDimension]

Below we construct the affine algebra Q[x, y, z]/〈x2+y, z3−x, xy2−2〉 and compute
it’s dimension as a vector space over Q. We will also test whether this domain is a
field.

> Q := QuotientRing(x^2+y, z^3-x, x*y^2-2);

Q := Q[x, y, z]/〈x2 + y, z3 − x, xy2 − 2〉

> VectorSpaceDimension(Q);

15

> IsField(Q);

true

7

Because this domain is a field we can do linear algebra over it. The monomials
which appear in the polynomials are the following.

> MonomialBasis(Q);

[xyz2, y2z2, xyz, y2z, xz2, yz2, xy, y2, xz, yz, z2, x, y, z, 1]

> A := Matrix([[x*z^2 + 1, y^2 + x], [x*y-2, x+z+5]]);

A :=

»
xz2 + 1 y2 + x
xy − 2 x + z + 5

–
For solving linear systems over affine algebras, it is usually a good idea to avoid

inverting elements until the very end, that is, instead of using Gaussian elimination,
one should use the Bareiss algorithm. The reason is that inverses are typically dense
polynomials with very large coefficients.

> d := Determinant[Q](A);

5 + 3x + z − z2y + 5z2x− 3y + 3y2

> Q:-Inverse(d);

718434477151

44610774984795
+

1630819510808

44610774984795
x− 690116075912

44610774984795
xy +

1494832352321

44610774984795
y + . . .

The QuotientRings package also supports computations over integral domains
and their fields of fractions. In the example below, we construct the trigonometric
polynomial ring Q[s, c]/〈s2 + c2 − 1〉 and compute the characteristic polynomial of a
matrix.

> Q := QuotientRing(s^2+c^2-1);

Q[s, c]/〈s2 + c2 − 1〉

> IsField(Q);

false

> IsIntegralDomain(Q);

true

> A := Matrix([[s+1,c*s-1,s],[c*s+c,s^2,c],[1,c+s,c-s]]);

A :=

24 s + 1 cs− 1 s
cs + c s2 c

1 c + s c− s

35
> CharacteristicPolynomial[Q](A, x, method=BerkowitzAlgorithm);

x3 + (−2 + c2 − c)x2 + (−2s + sc− 2c2 + 3c− sc2 − c3 + c4)x

+1 + 2s + c + sc4 − 5sc2 − c5 − 4c2 + c3 + 3sc3 + 3c4.

There is also a nice algorithm for reducing fractions to a canonical form.

8

> f := (-c^4+c^2+s*c)/(1+s*c^4-s*c^2+c^3-c+s*c);

f :=
−c4 + c2 + sc

1 + sc4 − sc2 + c3 − c + sc

> Q:-Normal(f)
sc

c3 − c + 1

The algorithm, see [7, 9], works over any quotient ring that is an integral domain. It
constructs a Gröbner basis for a module of dimension 2 over the polynomial ideal ring.
This results in a canonical representation for the simplified fraction that is unique up
to the monomial order used for the polynomial ideal. We discovered that, depending
on the ideal, the output from this algorithm may or may not have a common factor
present in the numerator and denominator. For the trigonometric polynomial ring
shown in the above example, it is true that there can be no common factor between
the numerator and denominator in the output. This is because in the trigonometric
polynomial ring, we have the following ‘degree sum property’ [8].

Lemma: Let R = Q[s, c]/〈s2 + c2 − 1〉. Let φ : R → R with φ(x) replacing s2 by
1− c2 in x. Then for all a, b ∈ R satisfying φ(a) 6= 0 and φ(b) 6= 0 we have

deg φ(ab) = deg φ(a) + deg φ(b).

However, for some quotient rings, it can happen that the ‘simplified’ result has a
common factor in the numerator and denominator. Consider the following example.
> R := QuotientRing(x*y^5-x-y):

> f := (y^5+x+y)/(x-y);

f :=
y5 + x + y

x− y

> g := Normal[R](f);

g :=
x + y + x2 + yx

x2 − yx

> IsUnit[R](x);
false

What has happened is that the numerator and denominator have both been mul-
tiplied by x, which is not a unit in R. The result g is nevertheless simpler than f in
that the total degree of the fraction f is 6 and of g is 4.

References

[1] J. Abdeljaoued. The Berkowitz Algorithm, Maple and Computing the Character-
istic Polynomial in an Arbitrary Commutative Ring. MapleTech, 5(1), pp. 21–32,
Birkhauser, 1997.

[2] T. Becker and V. Weispfenning. Gröbner Bases. Springer-Verlag, 1993.

[3] H. Cohen. A Course in Computational Algebraic Number Theory. Graduate texts
in mathematics, 138, Springer-Verlag, 1995.

9

[4] D. Cox, J. Little, D. O’Shea. Ideals, Varieties, and Algorithms. Second Edition.
Springer-Verlag, 1996.

[5] M. B. Monagan. In-place arithmetic for polynomials over Zn. Proceedings of
DISCO ’92, Springer-Verlag LNCS, 721, pp. 22–34, 1993.

[6] M. B. Monagan. Gauss: a Parameterized Domain of Computation System with
Support for Signature Functions. Proceedings of DISCO ’93, Springer-Verlag
LNCS, 722, pp. 81–94, 1993.

[7] M.B. Monagan, R. Pearce. Rational Simplification Modulo a Polynomial Ideal. To
appear in the 2006 proceedings of ISSAC, ACM Press, 2006.

[8] J. Mulholland, M.B. Monagan. Algorithms for Trigonometric Polynomials. Pro-
ceedings of ISSAC ’2001, ACM Press, pp. 245–252, 2001.

[9] R. Pearce. Rational Expression Simplification with Polynomial Side Relations.
M.Sc. Thesis, Simon Fraser University, 2005.

[10] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing, 1(2) pp. 146–160, 1972.

10

