
Optimizing and Parallelizing the Modular GCD Algorithm

Matthew Gibson
Department of Mathematics

Simon Fraser University
Burnaby, B.C., Canada. V5A 1S6

mdg583@gmail.com

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C., Canada. V5A 1S6
mmonagan@cecm.sfu.ca

ABSTRACT
Our goal is to design and implement a high performance
modular GCD algorithm for polynomial GCD computation
in Zp[x1, x2, ..., xn] for multi-core computers which will be
used to compute the GCD of polynomials over Z.

For n = 2 we have designed and implemented in C a highly
optimized serial code for primes p < 263. For n > 2 we par-
allelized in Cilk C Brown’s dense modular GCD algorithm
using our serial bivariate code at the base. For n = 3, we
obtain good parallel speedup on multi-core computers with
16 and 20 cores. We also compare our code with the GCD
codes in Maple and Magma.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms

Keywords
Polynomial GCD computation, Parallel Algorithms

1. INTRODUCTION
Consider the multivariate polynomial GCD problem over

the integers; that is, compute G = Gcd(A,B) where A,B ∈
Z[x1, x2, . . . xn]. The modular GCD algorithm computes the
Gcd(A mod p, B mod p) in Zp[x1, x2, . . . , xn] for primes
p1, p2, . . . (we use 63 bit primes for convenience) then re-
constructs G over Z using Chinese Remaindering. We could
do the computation for each prime in parallel, but since we
don’t know how many primes we need in advance (we don’t
know how big the coefficients in G are) and because many
large multivariate problems in practice have small integer
coefficients, we need to also parallelize the GCD computa-
tion for each prime.

The only work in the literature attempting to do this that
we know of is that of Rayes and Wang [10] and Wang [11]
which parallelize Zippel’s sparse GCD algorithm [12, 13].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PASCO ’15, July 10 - 12, 2015, Bath, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3599-7/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2790282.2790293

Other works, e.g. Emeliyanenko [6] and Haque and Moreno
Maza [7], parallelize univariate GCD computation. Let

G =
∑d

i=0 ci(x1, . . . , xn−1)xdn.

Zippel’s algorithm interpolates the coefficient polynomials
c0, c1, . . . , cd from univariate images in Zp[xn] using a sparse
interpolation one variable at a time. Rayes and Wang [10]
compute the univariate images for each variable in parallel.
Letting #A denote the number of non-zero terms of a poly-
nomialA, if degG = d and t = max(#c0,#c1, . . . ,#cd) then
Zippel’s algorithm uses O(ndt) univariate images to interpo-
late the coefficients. Hu and Monagan [3] propose instead
to use Ben-Or/Tiwari sparse interpolation which needs only
O(t) images but needs special primes and larger primes.

However, ignored in these works is the computation of the
contents. Let

A =
∑d

i=0 ai(x1, . . . , xn−1)xin.

In the modular GCD algorithm one first computes the con-
tent C = GCD(a0, a1, . . . , ad) and divides out A by C. Simi-
larly for B. Then one computes the GCD of the two contents
and the GCD of the leading coefficients of A and B for lead-
ing coefficient correction. All these GCD computations are
in Zp[x1, . . . , xn−1]. They can ruin parallel speedup when A
and B are not monic in xn. We propose instead to interpo-
late G from bivariate images. Let

G =
∑

0≤j,k≤d bjk(x1, . . . , xn−2)xjn−1x
k
n.

Thus we will interpolate the bjk from images in Zp[xn−1, xn].
This simplifies the content computations because the coeffi-
cients in Zp[x1, . . . , xn−2] ofA andB are likely much smaller.
Let s = max #bjk and t = max #ci. We have s ≤ t but of-
ten s will be much smaller than t. This reduces the cost of
sparse interpolation when t is large. The extra cost of com-
puting bivariate images is offset by the reduction in number
of images by a factor of t/s.

The proposed approach then is to interpolate the coeffi-
cients of G from bivariate images and to compute them as
fast as possible. In this paper we compute multiple bivari-
ate images in parallel. For each image we use an optimized
serial implementation of Brown’s algorithm [1].

In Section 2 we reproduce details of Brown’s algorithm, in-
cluding pseudo-code for Brown’s algorithm so that the paper
can be understood. Our contribution is a series of optimiza-
tions to the serial algorithm and a parallel implementation
of a dense multivariate GCD algorithm in Cilk C in Section
3. In Section 4 we compare our parallel GCD algorithm with
that of Maple and Magma for problems in Zp[x1, x2, x3].

A note about asymptotics.
We reduce GCD computation in Zp[x1, x2, . . . , xn] to bivari-
ate GCD computations which are then reduced to univariate
GCD computations in Zp[x1]. Do we need to use the fast
Euclidean algorithm (see Chapter 11 of [2]) which has com-
plexity O(d log2 d)? Or is the O(d2) classical Euclidean al-
gorithm sufficient? Since the Fast Euclidean algorithm does
not break even with the classical Euclidean algorithm until
d > 1000, and since most large multivariate GCD problems
in several variables have degree d < 100 in practice, it seems
to us that we should try to optimize the classical Euclidean
algorithm rather than the fast Euclidean algorithm.

1.1 Definitions and Notations
Let R be a ring and let A ∈ R[x1, x2, . . . , xn] be non-zero.

Let lc(A) ∈ R be the leading coefficient of A and lm(A)
be the leading monomial of A. The term ordering that we
use is lexicographical order with x1 < x2 < · · · < xn. For
example, if R = Zp and A = 3x21x2+5x1x

3
2 is a polynomial in

Zp[x1, x2] then x1x
3
2 > x21x2 in this ordering hence lc(A) = 5

and lm(A) = x1x
3
2.

Let A,B ∈ Zp[x1, x2, . . . , xn]. The GCD of A and B is
unique up to a scalar in Zp. We impose uniqueness by fixing
G = Gcd(A,B) to be the monic GCD with lc(G) = 1. We
also define the co-factors Ā, B̄ by GĀ = A and GB̄ = B.

In the algorithm we view A ∈ Zp[x1][x2, . . . , xn] as a mul-
tivariate polynomial in the variables x2 . . . xn with coeffi-
cients in the ring Zp[x1]. Then lm(A) is a monomial in
x2 . . . xn and lc(A) ∈ Zp[x1]. We define the content of A,
denoted cont(A) to be the monic GCD of the coefficients
of A in Zp[x1]. If cont(A) = 1 we say A is primitive. We
define the primitive part of A, denoted pp(A), to satisfy
pp(A) cont(A) = A.

The algorithm will evaluate A and B at x1 = αi ∈ Zp.
We use φi : Zp[x1][x2 . . . xn]→ Zp[x2, . . . , xn] to denote the
evaluation homomorphism φi(A) = A(αi, x2, . . . , xn).

2. BROWN’S MODULAR GCD ALGORITHM
In developing a modular GCD algorithm, several compli-

cating issues arise. Consider the following inputs in Z11[y][x]:

A(x, y) = (y2 + 3y)x3 + (y2 + y + 2)x2 + (y + 8)x

B(x, y) = (y2 + 3y)x3 + yx2

We wish to evaluate y = α1, α2, · · · ∈ Zp and interpolate G
from Gcd(A(x, αi), B(x, αi)). The degree in y of the GCD
must be no more than 2 so 3 points are sufficient. Picking
y = 1, 2, 3 we get the results in the table below.

αi Ai = φi(A) Bi = φi(B) Gcd(Ai, Bi)

1 4x3 + 4x2 + 9x 4x3 + x2 x2 + 3x
2 10x3 + 8x2 + 10x 10x3 + 2x2 x2 + 9x
3 7x3 + 3x2 7x3 + 3x2 x3 + 2x2

The true GCD is G = (y+ 3)x2 + x. Observe that simply
interpolating the coefficients of the images Gcd(Ai, Bi) will
not give us G. The first problem is that we will not be
able to reconstruct the y + 3 coefficient of x2 in G since
the images are all monic. Recovering y + 3 is called the
leading coefficient problem. The second problem is that the
image GCD for y = 3 has the wrong degree in x because
the cofactors Ā = yx+ y + 8 and B̄ = xy are not relatively
prime at y = 3. We must detect and discard this image.

In general, consider inputs A,B in Zp[x1][x2 . . . xn]. For
φi(A) = A(αi, x2, . . . , xn) we have

Gcd(φi(A), φi(B)) = Gcd(φi(Ā)φi(G), φi(B̄)φi(G))

If we pick αi ∈ Zp such that φi(lc(A)) 6= 0, since the function
Gcd gives a monic result, this means:

Gcd(φi(A), φi(B)) =
φi(G)

lc(φi(G))
Gcd(φi(Ā), φi(B̄)) (1)

We say that αi is unlucky if Gcd(φi(Ā), φi(B̄)) 6= 1. Note,
in order to formally prove termination, one must determine
how many αi ∈ Zp could be unlucky since we can not use
them to interpolate G. We will not go into details about
this here.

To solve the leading coefficient problem we will assume
that the inputs A,B ∈ Zp[x1][x2 . . . xn] have been made
primitive at the beginning of the algorithm by computing
and dividing out by their content in Zp[x1]. Further, a con-
sequence of Gauss’ Lemma is that

Gcd(A,B) = Gcd(pp(A), pp(B))×Gcd(cont(A), cont(B))

so we can compute the GCD and co-factors of the con-
tent and primitive parts separately. Then we compute γ =
Gcd(lc(A), lc(B)), where lc(A) and lc(B) are in Zp[x1]. Now
G |A and G |B implies lc(G) | lc(A) and lc(G) | lc(B) and
therefore lc(G) | γ. Let γ = lc(G)∆ for some ∆ ∈ Zp[x1].
Then for each evaluation point αi, if φi(γ) = 0 we discard
it. Otherwise, we multiply each image GCD by φi(γ) =
φi(lc(G))φi(∆). We know φi(γ) 6= 0 implies φi(lc(G)) =
lc(φi(G)), and therefore (1) implies

φi(γ) Gcd(φi(A), φi(B)) = φi(∆)φi(G) Gcd(φi(Ā), φi(B̄)).
(2)

If no evaluation point is unlucky, then after computing
degx1

(∆) + max(degx1
A,degx1

B) + 1 image GCDs, we will
have enough information to interpolate the polynomial ∆×
G, where degx1

(∆) is bounded by degx1
(γ). Since the in-

puts were assumed to be primitive, it follows that G is also
primitive, so it can be recovered as G = pp(∆G).

2.1 Detecting unlucky evaluation points
Recall that A,B,G are in Zp[x1][x2 . . . xn] and that lm(A)

is a monomial in x2 . . . xn. Thus lm(φi(∆)) = 1 since ∆ is in
Zp[x1] and lm(φi(G)) = lm(G) when φi(lm(G)) 6= 0. Then if
we let g∗i = φi(γ) Gcd(φi(A), φi(B)) for each αi, then by (2)

lm(g∗i) = lm(G) lm(Gcd(φi(Ā), φi(B̄))).

Then we have lm(g∗i) > lm(G) if and only if αi is unlucky;
otherwise, lm(g∗i) = lm(G). Using this fact, Brown rules out
unlucky evaluation points with a high probability using the
following test after we compute g∗i :

1. If lm(g∗i) > lm(g∗i−1), then αi is unlucky so choose a
new evaluation point.

2. If lm(g∗i) < lm(g∗i−1), then discard all previous evalu-
ation points; they are unlucky.

Once we obtain degx1
(γ)+max(degx1

A,degx1
B)+1 im-

ages for g∗i with the same leading monomial, then either all
evaluation points are unlucky or none are. While the proba-
bility of all αi being unlucky is often very small, Brown tests
whether the interpolated GCD (E in the following theorem)
divides the inputs. If it does then the αi used cannot be
unlucky.

Theorem 1. Let E,G be in Zp[x1][x2 . . . xn], G 6= 0 and
G primitive so cont(G) = 1 in Zp[x1]. Let φ be an evalu-
ation homomorphism evaluating x1 = α for some α in Zp

such that lc(G) does not vanish under φ. Then if E |G and
φ(G) |φ(E), it follows that G |E.

Proof. Recall that the leading monomial of a polyno-
mial in Zp[x1][x2 . . . xn] is the monomial in x2 . . . xn of the
leading term. Since E |G, we know that G = KE for some
K ∈ Zp[x1][x2 . . . xn]. Also, since G is primitive, either K
is a unit or degxi

(K) > 0 for some 2 ≤ i ≤ n. Then
φ(G) = φ(K)φ(E) so that lm(φ(E)) ≤ lm(φ(G)). Since
φ(G) |φ(E) by assumption and φ(E) 6= 0, we further get
that lm(φ(G)) ≤ lm(φ(E)) so that lm(φ(G)) = lm(φ(E)).

Since E |G, we know that the leading term of E does not
vanish under φ, and so lm(φ(E)) = lm(E) and lm(φ(G)) =
lm(G). Then it follows that:

lm(G) = lm(φ(G)) = lm(φ(E)) = lm(E)

Since G = KE, this means lm(K) = 1 and so K ∈ Zp[x1].
Then since G is primitive, K is a unit and G |E.

Using this theorem, if an interpolated GCD divides the
true GCD and if at least one of its images is divisible by the
corresponding image of the true GCD, then it must be equal
to the true GCD up to a unit.

2.2 MGCD algorithm
Brown’s MGCD algorithm from [1] outputsG = Gcd(A,B)

and the cofactors Ā and B̄. After computing and removing
contents from the inputs it computes γ = Gcd(lc(A), lc(B))
in Zp[x1] and a bound bnd = 1 + min(degx1

A,degx1
B) +

degx1
(γ). Then it picks evaluation points αi ∈ Zp for which

φi(γ) 6= 0 and computes g∗i = φi(γ) Gcd(φi(A), φi(B)).
We know that g∗i |φi(γA) and g∗i |φi(γB), which means

that we can define unique ā∗i and b̄∗i satisfying:

φi(γA)− g∗i ā∗i = 0

φi(γB)− g∗i b̄∗i = 0
(3)

Using congruence notation, this is

γA− g∗i ā∗i ≡ 0 mod (x1 − αi)

γB − g∗i b̄∗i ≡ 0 mod (x1 − αi).
(4)

The recursive call to MGCD computes g∗i , ā
∗
i and b̄∗i . Using

g∗i , ā
∗
i and b̄∗i we will iteratively build the interpolants G∗

k,
Ā∗

k and B̄∗
k to satisfy the following

G∗
k ≡ g∗i mod (x1 − αi)

Ā∗
k ≡ ā∗i mod (x1 − αi)

B̄∗
k ≡ b̄∗i mod (x1 − αi)

 for i = 1 . . . k. (5)

Further, since (x1 − αi) and (x1 − αj) are relatively prime
for i 6= j, we can define Mk = (x1−α1)(x1−α2) . . . (x1−αk)
and get from (4) and (5) that:

γA−G∗
kĀ

∗
k ≡ 0 mod Mk

γB −G∗
kB̄

∗
k ≡ 0 mod Mk.

(6)

As we interpolate, we know thatMk | γA−G∗
kĀ

∗
k andMk | γB−

G∗
kB̄

∗
k . Then when we have interpolated at least bnd =

degx1
(γ) + max(degx1

A,degx1
B) + 1 images, we know that

degx1
(γA) < bnd and degx1

(γB) < bnd, and since degx1
(Mk) =

k ≥ bnd, we know the following:

1. If degx1
(G∗

kĀ
∗
k) < bnd then γA = G∗

kĀ
∗
k

2. If degx1
(G∗

kB̄
∗
k) < bnd then γB = G∗

kB̄
∗
k

If these conditions are satisfied then G∗
k | γG. Since G is

primitive with respect to x2 . . . xn, we know further that
pp(G∗

k) |G. For each αi, we ensured that φi(γ) 6= 0 so that
the leading term of G doesn’t vanish under φi. By (2) and
since g∗i = φi(G

∗
k) we know that φi(G) |φi(G

∗
k) and there-

fore φi(G) |φi(pp(G∗
k)). Then by Theorem 1 we know that

G | pp(G∗
k) and so pp(G∗

k) is equal to G up to a unit. Fur-
ther, pp(G∗

k) will be monic. The corresponding primitive
co-factors can be found as Ā = pp(Ā∗

k) and B̄ = pp(B̄∗
k).

Finally the contents of the original inputs (see Steps 3 and
18) are put back on the GCD and cofactors.

2.3 Pseudocode for Non-optimized MGCD
Algorithm MGCD takes as inputs polynomials A,B ∈

Zp[x1][x2] . . . [xn] where n ≥ 1. The output is [G, Ā, B̄],
the GCD and two co-factors.

Our implementation stores polynomials in a recursive dense
representation which takes the form of a tree with n levels
where the leaves of the tree are polynomials in Zp[x1]. Note,
in the algorithm, all GCD computations in Zp[x1] are done
using the Euclidean algorithm.

Begin:
1. If n = 1 compute G := GCD(A,B) using the Eu-

clidean algorithm then compute cA := B/G and cB :=
B/G using univariate division and return [G, cA, cB].

2. Compute and remove content in Zp[x1] from A and B:
cA := cont(A), cB := cont(B), A := A/cA, B := B/cB .

3. Compute the content GCD and co-factors as
cG := GCD(cA, cB), cĀ := cA/cG and cB̄ := cB/cG.

4. Compute γ := GCD(lc(A), lc(B)) ∈ Zp[x1].
5. Set bnd := deg(γ) + max(degx1

A,degx1
B) + 1.

6. Set G∗, A∗, B∗ := 0 to clear interpolants and i := 0.
Loop:

7. Pick a new αi ∈ Zp at random such that φi(γ) 6= 0.
8. Evaluate at x1 = αi. Compute [g∗, ā∗, b̄∗] :=
MGCD(φi(A), φi(B)) ∈ Zp[x2, . . . , xn].

9. If lm(g∗) = 1 set G∗ := 1, cA∗ := A, cB∗ := B and
goto End, since A and B must be relatively prime.

10. If i > 0 and lm(g∗) > lm(G∗) goto Loop (α is unlucky).
If i > 0 and lm(g∗) < lm(G∗) set G∗, A∗, B∗ := 0,
i := 0 (all previous evaluations were unlucky).

11. Multiply g∗ := φi(γ)× g∗.
12. Extend G∗, Ā∗, B̄∗ by interpolating into them the new

images g∗, ā∗ and b̄∗ respectively.
13. Set i := i+ 1.
14. If i < bnd then goto Loop.
15. If degx1

(γ) + degx1
(A) = degx1

(G∗) + degx1
(Ā∗) and

degx1
(γ) + degx1

(B) = degx1
(G∗) + degx1

(B̄∗) then
goto End since the degree condition guarantees divisi-
bility and we are done.

16. Otherwise, set G∗, A∗, B∗ := 0 and i := 0 and goto
Loop as all evaluation points were unlucky.

End:
17. Remove the content from the interpolants:

G∗ := G∗/ cont(G∗), Ā∗ := Ā∗/ cont(Ā∗), B̄∗ :=
B̄∗/ cont(B̄∗).

18. Add the correct content to the GCD and co-factors:
G∗ := cG×G∗, Ā∗ := cĀ× Ā∗, B̄∗ := cB̄ × B̄∗.

19. Return [G∗, Ā∗, B̄∗].

3. OPTIMIZATIONS TO THE ALGORITHM

3.1 Division in the Images
In the MGCD algorithm, the validity of the interpolated

GCD is verified by checking divisibility. This is done by com-
puting images and doing interpolations for bnd = degx1

(γ)+
max(degx1

A,degx1
B) + 1 evaluation points. Since the de-

gree of ∆G could be much smaller than bnd, we could use
a probabilistic test for the completeness of the interpolated
GCD and find another way to test divisibility.

Monagan and Wittkopf did this in [5]. They compute a
tight degree bound for G∗

k in x1 by computing one univari-
ate image of G in x1 and then compute enough image GCDs
to interpolate only G. Then division is used to check divis-
ibility and acquire Ā∗

k and B̄∗
k . However, division is slow if

a classical algorithm is used and neither the divisor nor the
quotient is small.

We present an alternative optimization for the bivariate
case where A and B are in Zp[x1, x2]. If, after k images,
one of the interpolants G∗

k, Ā∗
k or B̄∗

k doesn’t change with
the addition of the next image, we say the interpolant has
stabilized. Then, for each additional evaluation point αi, we
do one of the following.

1. If the stabilized interpolant is G∗
k, we evaluate φi(G

∗
k)

to obtain g∗i and φi(γ)φi(A) and φi(γ)φi(B) as before.
Then we use univariate division in Zp[x2] to compute
ā∗i and b̄∗i according to (3) and then continue interpo-
lation of Ā∗

i and B̄∗
i .

2. If the stabilized interpolant is B̄∗
k (or symmetrically

Ā∗
k), we evaluate φi(γ)φi(A), φi(γ)φi(B) and b̄∗i =

φi(B̄
∗
k) and use univariate division to compute first

g∗i and then ā∗i to satisfy (3). As before, we continue
interpolation of G∗

i and Ā∗
i with the new image.

If these univariate divisions ever have a non-zero remainder,
then G∗

k - G so it is either built from all unlucky α’s, or the
stabilized interpolant was not actually complete. Otherwise,
once we have performed this image division for the rest of
the evaluation points up to the bound, we use the same
degree check as before to verify divisibility and thereby the
correctness of the GCD and co-factors.

Normally, we would have to evaluate φi(A), φi(B), com-
pute Gcd(φi(A), φi(B)) and then use two divisions to get ā∗i
and b̄∗i . This optimization replaces at least half of the uni-
variate GCD computations with bivariate polynomial eval-
uations one of G, Ā and B̄ of least degree in x1. Optimiza-
tion 3.3 will reduce this cost further.

Figure 1 compares different strategies for verifying divis-
ibility. The plot is for dense inputs A, B of degree 600
in both x1 and x2, where the degree of the GCD G is
0, 10, 20, . . . , 600. The plot compares our implementation
of the non-optimized modular GCD algorithm (Brown’s Al-
gorithm) and the early G∗

k and B̄∗
k stabilization here. Also

shown are results of our algorithm using a classical division
test and Maple 18’s built-in GCD mod p command which
also uses a classical division test. The two humps in Fig-
ure 1 show classical division dominating the cost. We can
see that the optimization gives the most benefit compared
to the non-optimized algorithm when deg(G) is small, and
that classical division is very slow when deg(G) is neither
very small nor very large.

Figure 1: Image Division Optimizations

0 100 200 300 400 500 600
0

2

4

6

8

deg(G)

T
im

e
(s

ec
)

Brown’s Algorithm Classical Division Method

Maple 18 Early G∗
k and B̄∗

k stabilization

3.2 Eliminating Integer Divisions
Our implementation uses 63 bit primes. Therefore a mul-

tiplication a× b in Zp needs to multiply two 63 bit integers
and divide a 126 bit product by a 63 bit prime p. 64 bit
computers have hardware instructions for this multiplica-
tion and for the division. The cost of the hardware division
instruction, however, is prohibitive. On an Intel E5-2680 v2
processor, the integer multiplication a × b costs 2.655 cy-
cles but one division of ab by p costs 66.602 cycles. There
are many papers in the literature that address this problem.
The main idea is to replace division with two multiplications
and other cheap operations. We are using the algorithm de-
scribed by Möller and Torbjorn in [4]. Our implementation
for computing ab mod p for a 63 bit prime takes 6.016 cy-
cles. Compared with 66.602 cycles this is a huge gain, nev-
ertheless, division is still relatively expensive compared with
multiplication so we try to eliminate divisions.

There are several places in the MGCD algorithm where we
need to compute a sum of products. For example, consider
evaluating B ∈ Zp[x1][x2] at x1 = α ∈ Zp and let a =∑d

i=0 aix
i
1 be a coefficient of B. Horner’s rule

a0 + α(a1 + α(a2 + . . . α(ad−1 + αad) . . .))

uses d multiplications and d additions. But because the
multiplications are nested we must reduce mod p after each
one to prevent overflow.

Suppose instead we pre-compute an array X of the powers
of α modulo p so that X[k] = αk mod p and suppose the
coefficients of a are stored in the array A. The following C
code snippet assumes p is a 31 bit prime. It accumulates
−a(α) in a signed 64 bit integer T then does one division
by p at the end. We accumulate −a(α) instead of a(α) to
eliminate the branch.

long M = (long) p << 32; // = 2^32 x p

long T = M;

for(k=0; k <= d; k++)

{

T -= (long) A[k] * X[k];

T += (T>>63) & M; // if(T < 0) T += M;

}

T = M-T;

return T % p;

One may optimize this further since we may accumulate
two products without overflow. Our implementation for 63-

bit primes uses assembler macros to manage a 128-bit ac-
cumulator. The performance improvement that we obtain
by doing this is a factor of 3.1 for p = 1924145348627. This
optimization is used in univariate polynomial evaluation, in-
terpolation, division, multiplication and gcd. For univariate
gcd we explain what we did.

Algorithm MGCD computes many GCDs in Zp[x1]. We
use the Euclidean algorithm which performs a sequence of
divisions each to acquire a new remainder. If we call the
inputs to a division A of degree m and B of degree n, then
it is normally the case that m = n+1 for all divisions except
the first. We can write this as:

A = a0 + a1x+ · · ·+ anx
n + an+1x

n+1

B = b0 + b1x+ · · ·+ bnx
n

When using a standard division routine, the terms of the
quotient are computed one at a time in a loop and then in a
nested loop terms are subtracted from A. We optimize this
computation by first computing the quotient Q = ax+ b of
A÷B and then subtracting QB from A in a simple for loop.

This following C code snippet illustrates how to do this
for a 31 bit prime p using a long int (64 bits) for the accu-
mulator. It does n divisions by p.

void div1(int *A, int *B, int n,

long a, long b, int p)

{ /* compute A(x) = A(x) - (ax+b) B(x) */

long M = (long) p << 32;

A[0] = (M+A[0]-b*B[0]) % p;

for(i=1; i<n; i++)

A[i] = (M+A[i]-a*B[i-1]-b*B[i]) % p;

A[n] = 0;

A[n+1] = 0;

return;

}

Figure 2 shows the performance gain for our 63 bit prime
implementation over the unoptimized Euclidean algorithm
for inputs of degree 100 whose GCD degree varies from 0 to
100. The average savings is 43%.

Figure 2: Univariate GCD Optimization

0 20 40 60 80 100
0

0.05

0.1

deg(G)

T
im

e
(m

se
c)

Univariate Gcd With Optimization

3.3 Partial FFT
Along with the univariate GCD, the other main contribu-

tion to the time of the MGCD algorithm is evaluation and
interpolation in Zp[x1]. An initial optimization is to evalu-
ate at pairs of points ±α. This reduces the cost of evaluation
almost in half. We separate f ∈ Zp[x1] into coefficients with
even and odd powers of x1 and evaluate each term in f
once at x1 = α. Then f(α) and f(−α) can be found using

an addition and subtraction. Interpolation can similarly be
cut almost in half. We have experimented with generalizing
this to a partial FFT to further reduce the evaluation and
interpolation cost which we now describe.

Given the field Zp, let j be a power of 2 such that j | p−1.
Let f ∈ Zp[x] be a polynomial of degree n > j − 1. We will
evaluate f in batches of size j. For each evaluation point α,
we will find a polynomial f∗ of degree less than j satisfying

f∗ ≡ f mod (xj − αj)

The term (xj − αj) factors as

(xj − αj) =
∏j−1

i=0 (x− αωi)

where each ωi is a distinct jth root of unity in Zp. Because
each of these factors is relatively prime, we know that

f∗ ≡ f mod (x− αωi) for i = 0, 1, . . . , j − 1

This means that f and f∗ evaluate to the same points at
all of the values in S = {αωi}j−1

i=0 . So to evaluate f at
the j distinct points in S, we compute f∗ by substituting
xj = αj , and then evaluate at the j points using the FFT.
The cost involves first computing {1, xj , x2j . . . } and then
using deg(f) multiplications and additions to compute f∗.
Then the FFT has a cost in j log j.

The strategy for interpolation is similar. We interpolate
g ∈ Zp[x] using a modification of Newton’s method. Let

mk =
∏k

i=0(xj − αj
i). The kth interpolant of g satisfies

gk ≡ g mod mk and may be written

gk = c0 + c1m0 + · · ·+ ckmk−1

where each ci is a polynomial of degree less than j. Given a
new batch of j images of g at the points x ∈ {αk+1ωi}j−1

i=0 ,
we first use the inverse FFT to get a polynomial g∗ ≡ g
mod (xj − αj

k+1). Then because g ≡ gk+1 mod mk+1 and

gk+1 = gk + ck+1mk, and further since mk+1 = mk(xj −
αj
k+1) we get the next coefficient polynomial as:

ck+1 ≡
g∗ − gk
mk

mod (xj − αj
k+1)

according to the normal form of Newton interpolation.
The cost of interpolating a batch of size j involves first

using the inverse FFT to interpolate a polynomial of degree
at most j−1, with a cost in j log j. Next we need to evaluate
the basis functions {1,m0,m1 . . . } by substituting xj = αj

and then use these to reduce gk and mk mod (xj − αj
k+1).

This can all be done in a cost linear in deg(g). Thus the
cost per point for both evaluation and interpolation of a
polynomial of degree n is

C =
n

j
+ log j (7)

where j is a power of 2. We can see that as we increase j
from 1, the linear part of this cost drops quickly, while the
logarithmic part grows slowly. While it is hard to use the
FFT in the GCD algorithm due to the cost of computing
extra image GCDs, the partial FFT with small j can still
get much of the performance gains in evaluation and inter-
polation while only computing a few extra image GCDs.

Table 1 shows the results for using various values of j
for two different problems. Tests are for triangular dense
inputs of total degree 300 with GCD of total degree 150,
with p = 167772161. Table 1a uses blocks of size j for

Table 1: Partial FFT Optimizations

Time for evaluation for image GCDs Total
j and interpolation in Zp[x2, x3] Time
1 7.5481 28.9039 36.5883
2 3.9039 27.8351 31.8288
4 2.9636 27.9806 31.0109
8 2.5036 27.9426 30.5034
16 2.1192 27.9491 30.1215
32 2.1517 29.4514 31.6592
Table 1a: GCD timings (seconds) for A,B ∈ Zp[x1][x2, x3]

Time for evaluation for image GCDs Total
j and interpolation in Zp[x3] time
1 0.0538 0.0703 0.1277
2 0.0267 0.0687 0.0975
4 0.0196 0.0699 0.0910
8 0.0189 0.0702 0.0903
16 0.0160 0.0753 0.0923
32 0.0159 0.0811 0.0981
Table 1b: GCD timings (secconds) for A,B ∈ Zp[x2][x3]

evaluation and interpolation of the variable x1 only. Table
1b shows the results of blocks of size j for the sub-problem in
Zp[x2, x3]. Using j = 8 for the variable x1 in the trivariate
problem gives a performance gain of about 20 %, and using
j = 8 for the variable x2 in the bivariate problem gives a
gain of 41%. The results suggest that we use j = 2 or j = 4
which realizes most of the benefit.

3.4 Parallelization
The modular GCD algorithm is well suited to parallel

computation provided one does not use explicit multivari-
ate polynomial division checks which is what Maple and
Magma do. This was implemented using the CILK frame-
work which uses a work stealing algorithm and a fixed num-
ber of worker threads.1 CILK uses two basic commands.
cilk_spawn branches a thread of execution into two, cre-
ating a new job, while cilk_sync collects multiple threads
back together, ending any branched jobs. We do not make
use of the third CILK command, cilk_for.

Our implementation only uses parallelization for 3 or more
variables, providing a fairly large bivariate problem at the
base of parallelization. In the parallel version of MGCD we
perform the bnd evaluations and image GCDs in parallel.
We do this by first spawning dbnd/je jobs of blocks of size j.
For each block the j input evaluations are performed in serial
(using the partial FFT), and then j more jobs are spawned
for the recursive calls to MGCD on the input images. This
call will involve further parallelization if it is also in 3 or
more variables. When all of this is complete, a cilk_sync

command waits for the parallel threads to terminate then
interpolation begins.

To parallelize interpolation if we think of the interpolation
image φi(G) as being in Zp[x2 . . . xn−1][xn], then degxn

φi(G)
jobs are spawned on the coefficients in xn, which are in-
terpolated in Zp[x1 . . . xn−1]. Further, the GCD and two
co-factors are interpolated in parallel.

An issue when trying to parallelize large memory-intensive
programs is the fact that implementations of malloc for

1typically set to the number of cores on the machine.

memory allocation in C use mutexes to protect against mem-
ory allocation contention. Since the modular multivariate
GCD algorithm breaks a large problem into many smaller
problems, if all memory allocations were performed using
malloc throughout the recursive algorithm, there is poten-
tial for thread contention. To prevent this situation, and to
avoid the somewhat costly calls to malloc, we attempt to
pre-allocate memory for the algorithm as much as possible.

To do this, pre-computations were performed on the in-
puts to get memory usage bounds, also making some basic
decisions for execution of the recursive algorithm that would
affect memory usage. We pre-allocate a large contiguous
block of memory in the form of an array. During execution,
memory is drawn from this pool in the recursive algorithm
by treating it as a stack.

To avoid making assumptions about the number of worker
threads available to CILK, memory needed to be allocated
to allow all image GCDs of a set of inputs to be calculated
simultaneously. The result was that the amount of memory
required often could not be pre-allocated in one block for
reasonably large inputs. Therefore we used a compromise
by allocating large blocks of memory several times dynami-
cally throughout the MGCD algorithm. Each call to MGCD
for n > 2 variables was given enough memory for the com-
putations in n variables, but not for the recursive calls in
n− 1 variables. When n = 2, each call to MGCD was given
enough memory for the entire bivariate problem.

4. PERFORMANCE TIMINGS
Timings were obtained on two Intel Xeon servers gaby and

jude. Both servers are running CentOS Unix. gaby has two
E5-2660 CPUs, each with 8 cores running at 2.2 GHz (3.0
GHz turbo). jude has two E5-2680 v2 CPUs, each with 10
cores running at 2.8 GHz (3.6 GHz turbo). So the theoretical
maximum parallel speedup on gaby is 2.2/3.0× 16 = 11.7×
and on jude is 2.8/3.6× 20 = 15.5×.

Parallel Performance and Optimization Tests
The first set of tests in Tables 2, 3 and 4 investigate the
effectiveness of the optimizations in sections 3.1, 3.2 and 3.3
and the performance of our parallel code. These tests were
run on the jude machine, and are on monic trivariate inputs
A and B of total degree d in which G, Ā and B̄ are dense
with random coefficients from Zp. In each set of tests, the
total degree of G varies while the total degree d of the inputs
A and B is held constant. There are three sets of tests, one
for p = 230 − 35 and d = 200, and one for p = 262 − 57 and
d = 200 and one for p = 262 − 57 and d = 400.

For each generated input, tests were run on a fully opti-
mized non-parallel version of code (column No CILK). Then
three separate tests were run with each of the optimizations
turned off (columns 3.1,3.2,3.3). Further tests were used to
find what percentage of No CILK time was spent on the uni-
variate GCD part of the recursive algorithm. Finally, tests
were run on the parallel version of the code with 1,2,4,8,16
and 20 worker threads.

For each of these tests, the MGCD algorithm was com-
piled as a Maple extension and called from Maple. When
run in this way, the input and output of the MGCD algo-
rithm needs to be converted between Maple’s internal inte-
ger polynomial structure called POLYDAG and the recur-
sive array structure used in the MGCD algorithm. Timings

for this conversion were taken separately, and are shown in
the columns POLYDAG:In/Out. To get the real times of
each Maple call, the POLYDAG conversion times should be
added to the other columns.

Notes on Tables 2, 3 and 4
1. Optimization 3.1 is the most significant of the three.

It is greatest when deg(G) is small, since this is when
the univariate GCD problems are most expensive. In
this case the gain is a speedup of a factor of 2 to 3.

2. Optimization 3.2 is most effective when G is mid-sized,
that is when deg(G) = deg(Ā) = deg(B̄), which is
when the problem requires the most univariate GCDs.
This is because optimization 3.1 reduces the number of
needed univariate GCDs to approximately min(degG,
deg Ā,deg B̄).

3. The benefit of doing evaluation and interpolation in
blocks using the partial FFT method (optimization 3.3)
was more than expected. This is partly because opti-
mization 3.1 replaces univariate GCDs with evalua-
tions. The gain is most when % UniGcd is small and
more time is spent on evaluation and interpolation.

4. Comparing the No CILK results to the parallel ver-
sion with 1 core indicates that the CILK overhead is
minimal for this problem.

5. Column % UniGcd shows that a surprisingly small per-
centage of the time is in the univariate GCD problem.
This is due to optimization 3.1 and optimization 3.2.
Notice that the portion of time reduces to just a few
percent as deg(G) increases, since the univariate GCD
problem is least expensive when the GCD is large.

6. Using multiple cores, not counting input and output
conversions, we obtain parallel speedups of 6.01/0.48
= 12.5 and 6.72/0.50 = 13.4 when deg(G) is mid-
sized. This is a good result for inputs of degree 200.
For inputs of degree 400 parallel speedup improves to
86.89/5.93 = 14.6 which is close to the maximum the-
oretical speedup of 15.55 for this machine.

Comparison with Maple and Magma
The second set of tests in Tables 5 and 6 compares the par-
allel MGCD algorithm to the modular GCD algorithms in
Maple 18 and Magma 2.19-6. These tests were run on the
gaby machine. Inputs were generated in the same manner
as for those in Tables 2 and 3.

The Maple and Magma GCD timings include a Mult and
Div column. The Mult column measures the polynomial
multiplication cost of generating the two inputs as A = GĀ
and B = GB̄, while the Div column measures the time to
compute the co-factors as Ā = A/G and B̄ = B/G using
polynomial division. These allow us to compare the rela-
tive cost of a GCD with multiplication and division. Note,
our MGCD algorithm constructs and returns the co-factors
without a division.

The Magma tests are run twice. In the columns under
MagmaR, the tests are run on a Magma ring constructed in
the recursive polynomial structure GF (p)[x][y][z] as follows.

F := GaloisField(p);

S<x> := PolynomialRing(F);

T<y> := PolynomialRing(S);

P<z> := PolynomialRing(T);

The columns under MagmaM instead run the tests in the
multivariate polynomial ring GF (p)[x, y, z] constructed with

F := GaloisField(p);

P<x,y,z> := PolynomialRing(F,3);

Notes on Tables 5 and 6
1. Maple 18 uses Hensel Lifting to compute Gcd(A,B)

mod p with 3 or more variables. Maple 18 is using
the parallel multivariate polynomial multiplication and
division algorithms of Monagan and Pearce [8, 9] which
improve the performance of the Hensel Lifting. This
is also the reason why Maple’s multiplication timings
(column Mult) are much faster than Magma’s.

2. The time for MGCD on one core is typically 20-50
times faster than Maple’s Gcd time and is faster than
multiplication and division in Maple. This is partly
because we are using a modular Gcd algorithm which
has complexity is O(d4) for the case degG = deg Ā =
deg B̄ = d/2 whereas Maple’s multiplication is O(d6).

3. Both Maple and Magma perform better when coeffi-
cients are less than 231. MGCD performed well on the
62 bit prime. This can mostly be attributed to the
optimized integer division in section 3.2.

4. Maple and Magma perform best when G has very low
degree or the cofactors have very low degree. This
is because they use trial divisions G |A and G |B to
terminate and to obtain the cofactors Ā and B̄.

5. The POLYDAG conversion time for the MGCD inputs
remains constant for each test set, since input degrees
are not changing. Since there are two co-factors, out-
put conversion time when deg(Ā) = deg(B̄) is large is
roughly twice that of when deg(G) is large.

5. REFERENCES
[1] W. S. Brown. On Euclid’s Algorithm and the

Computation of Polynomial Greatest Common Divisors.
J. ACM 18 (1971), 478-504.

[2] J. von zur Gathen and J. Gerhard, Modern Computer
Algebra, 3rd ed., Cambridge University Press, 2013.

[3] J. Hu and M. B. Monagan. A Parallel Algorithm to
Compute the Greatest Common Divisor of Sparse
Multivariate Polynomials Extended Abstract. Comms.
in Comp. Algebra 47:3, 108−109, 2013.

[4] Niels Möller and Torbjorn Granlund. Improved division
by invariant integers IEEE Transactions on Computers,
60, 165–175, 2011.

[5] M. B. Monagan and A. D. Wittkopf. On the Design
and Implementation of Brown’s Algorithm over the
Integers and Number Fields. Proceedings of ISSAC
’2000, ACM Press, pp. 225–233, 2000.

Table 2: jude Tests, p = 230 − 35, degA = degB = 200, inputs have 1373701 terms
Without Opt MGCD, #CPUs POLYDAG

deg(G) deg(Ā) 3.1 3.2 3.3 No CILK % UniGcd 1 2 4 8 16 20 In Out
10 190 10.86 4.90 8.57 4.38 10.4 4.43 2.31 1.26 0.74 0.47 0.42 0.13 0.13
40 160 10.30 6.53 8.90 5.19 25.0 5.27 2.70 1.43 0.82 0.49 0.44 0.13 0.08
70 130 9.42 7.69 9.18 5.82 33.0 5.78 2.98 1.56 0.88 0.50 0.46 0.13 0.05
100 100 8.41 8.40 9.20 6.00 37.8 6.01 3.09 1.62 0.90 0.51 0.48 0.13 0.03
130 70 7.29 6.18 8.00 4.84 25.0 4.83 2.49 1.31 0.74 0.42 0.37 0.13 0.03
160 40 5.75 4.44 7.00 3.82 11.9 3.84 1.99 1.06 0.60 0.36 0.32 0.13 0.04
190 10 3.93 3.36 6.65 3.13 1.8 3.17 1.67 0.90 0.52 0.33 0.29 0.13 0.07

Table 3: jude Tests, p = 262 − 57, degA = degB = 200, inputs have 1373701 terms
Without Opt MGCD, #CPUs POLYDAG

deg(G) deg(Ā) 3.1 3.2 3.3 No CILK % UniGcd 1 2 4 8 16 20 In Out
10 190 13.10 5.39 8.79 4.77 11.9 4.79 2.53 1.39 0.84 0.54 0.48 0.13 0.24
40 160 12.39 7.22 9.42 5.73 28.8 5.79 3.00 1.61 0.92 0.55 0.49 0.13 0.14
70 130 11.29 8.26 9.74 6.42 36.9 6.47 3.33 1.76 0.99 0.56 0.49 0.13 0.08
100 100 9.93 9.00 9.87 6.74 41.0 6.72 3.45 1.82 1.00 0.57 0.50 0.13 0.05
130 70 8.38 6.58 8.19 5.29 27.5 5.29 2.73 1.44 0.80 0.46 0.40 0.13 0.05
160 40 6.52 4.71 7.14 4.14 14.4 4.16 2.16 1.16 0.66 0.39 0.34 0.13 0.07
190 10 4.50 3.59 6.58 3.42 1.8 3.44 1.82 0.99 0.58 0.37 0.33 0.13 0.12

Table 4: jude Tests, p = 262 − 57, degA = degB = 400, inputs have 10827401 terms
Without Opt MGCD, #CPUs POLYDAG

deg(G) deg(Ā) 3.1 3.2 3.3 No CILK % UniGcd 1 2 4 8 16 20 In Out
20 380 157.34 69.68 126.29 60.09 12.0 60.42 32.39 17.74 10.54 6.80 6.17 1.04 1.96
80 320 150.20 93.84 130.85 73.94 27.5 73.68 38.77 20.67 11.55 6.88 5.91 1.05 1.15
140 260 140.62 109.51 132.04 83.87 35.6 82.86 43.16 22.61 12.33 7.08 6.49 1.04 0.67
200 200 125.47 119.31 124.88 87.81 39.8 86.69 44.96 23.38 12.80 7.15 5.93 1.05 0.42
260 140 104.64 87.65 106.24 72.44 25.9 68.85 35.93 18.85 10.41 5.83 5.30 1.04 0.41
320 80 82.53 64.89 93.16 57.32 13.1 61.46 28.79 15.24 8.52 4.90 4.17 1.06 0.60
380 20 55.38 45.37 99.01 47.33 3.2 44.01 23.79 12.86 7.38 4.54 4.02 1.04 0.98

Table 5: gaby Tests, p = 230 − 35, degA = degB = 200, inputs have 1373701 terms
Maple MagmaR MagmaM MGCD, #CPUs POLYDAG

deg(G) deg(Ā) Mult GCD Div Mult GCD Mult GCD 1 2 4 8 16 In Out
10 190 2.21 41.22 3.66 61.20 9.60 31.16 1.83 5.82 3.05 1.64 0.94 0.62 0.17 0.17
40 160 15.12 120.80 19.75 301.71 20.44 1100.0 4.83 7.03 3.64 1.92 1.06 0.67 0.17 0.10
70 130 15.21 220.25 41.95 350.77 46.81 2971.7 9.72 7.89 4.05 2.12 1.14 0.71 0.17 0.06
100 100 15.00 234.40 65.43 315.78 102.00 4454.7 16.31 8.25 4.24 2.19 1.18 0.71 0.17 0.04
130 70 15.34 217.53 47.08 336.02 3118.2 3129.7 5544.3 6.53 3.36 1.75 0.95 0.61 0.17 0.04
160 40 15.15 118.54 17.13 282.25 3159.4 1037.0 5249.6 5.12 2.65 1.40 0.78 0.48 0.17 0.05
190 10 2.23 33.42 5.38 41.18 2050.2 33.75 3578.1 4.18 2.20 1.18 0.67 0.43 0.17 0.08

Table 6: gaby Tests, p = 262 − 57, degA = degB = 200, inputs have 1373701 terms

Maple MagmaR MagmaM MGCD, #CPUs POLYDAG
deg(G) deg(Ā) Mult GCD Div Mult GCD Mult GCD 1 2 4 8 16 In Out

10 190 2.22 70.98 3.51 77.22 33.34 62.65 10.03 6.35 3.34 1.83 1.06 0.71 0.17 0.30
40 160 25.65 267.16 20.24 920.48 159.71 2436.5 39.64 7.75 4.01 2.13 1.18 0.75 0.17 0.18
70 130 25.62 439.80 42.44 1624.6 462.09 6567.4 85.97 8.72 4.48 2.35 1.27 0.75 0.17 0.11
100 100 25.43 453.27 64.85 1526.2 900.65 10425 85.97 9.11 4.67 2.43 1.32 0.79 0.17 0.07
130 70 25.69 436.11 50.46 1559.2 14254. 7096.7 11050. 7.11 3.66 1.92 1.04 0.62 0.17 0.06
160 40 25.44 282.04 17.18 934.45 7084.3 2393.0 6608.8 5.63 2.89 1.52 0.83 0.51 0.17 0.09
190 10 2.23 77.28 4.29 90.30 2229.8 72.63 2075.2 4.69 2.41 1.29 0.74 0.47 0.17 0.15

[6] P. Emeliyanenko. High-performance Polynomial GCD
Computations on Graphics Processors. Proceedings of
HPCS 2011, IEEE, pp. 215–224, 2011.

[7] S. A. Haque and M. Moreno Maza. Plain Polynomial
Arithmetic on GPU. J. Physics Conference Series 385
2012.

[8] M. B. Monagan and R. Pearce. Parallel Sparse
Polynomial Multiplication using Heaps. Proceedings of
ISSAC ’09, pp. 263-269, ACM Press, 2009.

[9] M. B. Monagan and R. Pearce. Sparse Polynomial
Division Using a Heap. J. Symb. Cmpt. 46 (7) 807–822,
2011.

[10] M. O. Rayes and P. S. Wang. Parallelization of the
Sparse Modular GCD Algorithm for Multivariate
Polynomials on SMP. Proceeding of ISSAC 1994, ACM
Press, 66–73.

[11] Paul S. Wang. Parallel Polynomial Operations on
SMPs: An Overview. J. Symb. Cmpt. 21 397–410, 1996.

[12] R. Zippel. Probabilistic Algorithms for Sparse
Polynomials, Proceedings of EUROSAM ’79,
Springer-Verlag LNCS, 2 pp. 216–226, 1979.

[13] R. Zippel. Interpolating Polynomials from their
Values. J. Symb. Cmpt. 9, 3 (1990), 375-403.

