
A high-performance algorithm for calculating cyclotomic
polynomials.

Andrew Arnold
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

ada26@sfu.ca.

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

mmonagan@cecm.sfu.ca.

ABSTRACT
The nth cyclotomic polynomial, Φn(z), is the monic poly-
nomial whose φ(n) distinct roots are the nth primitive roots
of unity. Φn(z) can be computed efficiently as a quotient of
terms of the form (1− zd) by way of a method the authors
call the Sparse Power Series algorithm. We improve on this
algorithm in three steps, ultimately deriving a fast, recur-
sive algorithm to calculate Φn(z). The new algorithm, which
we have implemented in C, allows us to compute Φn(z) for
n > 109 in less than one minute.

1. INTRODUCTION
The nth cyclotomic polynomial, Φn(z), is the minimal

polynomial over Q of the nth primitive roots of unity.

Φn(z) =

nY
j=1

gcd(j,n)=1

`
z − e

2πi
n
j´. (1.1)

We let the index of Φn(z) be n and the order of Φn(z) be the
number of distinct odd prime divisors of n. The nth inverse
cyclotomic polynomial, Ψn(z), is the polynomial whose roots
are the nth non-primitve roots of unity:

Ψn(z) =

nY
j=1

gcd(j,n)>1

`
z − e

2πi
n
j´ =

zn − 1

Φn(z)
. (1.2)

We denote by A(n) the height of Φn(z), that is, the largest
coefficient in magnitude of Φn(z). It is well known that for
n < 105, A(n) = 1 but for n = 105, A(n) = 2. The smallest
n with A(n) > 2 is n = 385 where A(n) = 3. Although
the heights appear to grow very slowly, Paul Erdős proved
in [2] that A(n) is not bounded above by any polynomial in
n, that is, for any constant c > 0, there exist n such that
A(n) > nc. A natural question to ask is, what is the first
n for which A(n) > n, that is the the height exceeds the
index?

In earlier work [1], we developed two asymptotically fast
algorithms to compute Φn(z). The first algorithm, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

we call the FFT algorithm, uses the Fast Fourier Transform
to perform a sequence of polynomial exact divisions in Z[z]
modulo a prime q. Using this algorithm we found the small-
est n such that A(n) > n, namely for n = 1, 181, 895, the
height A(n) = 14, 102, 773. Here n = 3 · 5 · 11 · 13 · 19 · 29. To
find Φn(z) with larger height, we tried simply multiplying
this n by additional primes. In this way we found an n with
A(n) > n2 and several n > 109 with A(n) > n4, the latter
requiring the use of a supercomputer with a lot of RAM.

The second algorithm, which we call the Sparse Power Se-
ries (SPS) algorithm, does a sequence of sparse series multi-
plications and divisions in O(2kφ(n)) integer arithmetic op-
erations. Although not asymptotically faster than the FFT
algorithm, it turns out that because the SPS algorithm only
needs integer additions and subtractions, it is considerably
faster (more than 20 times - see section 4) than the FFT
algorithm. Using the SPS algorithm we found the small-
est n with A(n) > n2, A(n) > n3 and A(n) > n4, namely
n = 43, 730, 115, n = 416, 690, 995, and 1, 880, 394, 945, re-
spectively, as well as other new results. One of the difficulties
when n > 109 is space. For such n, even storing Φn(z) re-
quires many gigabytes of memory. The SPS algorithm has a
substantial space advantage over the FFT algorithm. It has
now been implemented in the Sage and Maple 13 computer
algebra systems.

In this paper we present a fast recursive algorithm to cal-
culate Φn(z) and Ψn(z). It improves on the sparse power
series (SPS) algorithm by approximately another factor of
10 (see section 4). To give one specific benchmark; Yoichi in
[4, 5] found A(n) for n the product of the first 7 odd primes
but was unable to determine A(n) for n the product of the
first 8 primes. We used the FFT algorithm to find A(n) for
n the product of the first 9 odd primes in approx. 12 hours.
The SPS algorithm takes 7 minutes and our new algorithm
takes 50 seconds. A challenge problem given to us by Noe
[6] is to compute Φn(z) for n = 99, 660, 932, 085 which we
expect will have a huge height. The main difficulty now is
space; for the mentioned unsolved problem, storing Φn(z)
to 64-bit precision requires over 150 GB of space.

Our paper is organized as follows. Section 2 presents iden-
tities involving zn − 1, Φn(z) and Ψn(z) used in the algo-
rithms, and the basic algorithm used for the FFT approach.
Section 3 details the Sparse Power Series algorithm for com-
puting Φn(z) and introduces a similar algorithm for com-
puting Ψn(z), then develops improvements in three steps.
The third step makes the algorithm recursive. Section 4
presents some timings comparing the FFT algorithm, the
original SPS algorithm, and the three improvements.

2. USEFUL IDENTITIES OF CYCLOTOMIC
POLYNOMIALS

Before describing the algorithms, we establish some basic
identities of cyclotomic polynomials. First, as the roots of
Φn(z) and Ψn(z) consist of all nth roots of unity, we have
that

Φn(z)Ψn(z) =

n−1Y
j=0

(z − e
2πj
n
i) = zn − 1. (2.1)

Every nth root of unity is a dth primitive root of unity
for some unique d|n, d > 0. Conversely, if d|n, every dth
primitive root of unity is trivially an nth root of unity. As
such,

Y
d|n

Φd(z) = zn − 1. (2.2)

Applying the Möbius inversion formula to (2.2), we have

Φn(z) =
Y

d|n,d>0

(zd − 1)µ(
n
d

), (2.3)

where µ is the Möbius function. For non squarefree m,
µ(m) = 0. As the number of positive squarefree divisors
of n > 1 is even, it is oftentimes convenient to write, for
n > 1,

Φn(z) =
Y
d|n

(1− zd)µ(
n
d

). (2.4)

From (2.1) and (2.3) we obtain a similar identity for Ψn(z):

Ψn(z) =
Y

d|n,0<d<n

(zd − 1)−µ(
n
d

), (2.5)

Since the product in (2.5) contains every positive squarefree
divisor of n except for n, it has an odd number of terms for
n > 1. That is, for n > 1,

Ψn(z) = −
Y

d|n,0<d<n

(1− zd)−µ(
n
d

). (2.6)

From (2.1) and (2.2), we have that

Ψn(z) =
Y

d|n,0<d<n

Φd(z). (2.7)

Indeed, every nth nonprimitive root of unity is a dth primi-
tive root of unity for some d|n, d < n.

Given Φ1(z) = z − 1 and Ψ1(z) = 1, we can compute all
cyclotomic polynomials using the following lemma:

Lemma 1. Let p, q be primes such that p - n, and q|n.
Then

Φnp(z) =
Φn(zp)

Φn(z)
, (2.8a)

Φnq(z) = Φn(zq), (2.8b)

Ψnp(z) = Ψn(zp)Φn(z), and (2.8c)

Ψnq(z) = Ψn(zq). (2.8d)

Proof. By (2.1), Φnp(z)Ψnp(z) = Φn(zp)Ψn(zp) = znp−
1. Thus if (2.8a) holds, we have

Ψnp(z) =
znp − 1

Φnp(z)
=

(znp − 1)

Φn(zp)
Φn(z) = Ψn(zp)Φn(z).

(2.9)

Thus (2.8a) is a sufficient condition for (2.8c). Similarly,
(2.8d) follows from (2.8b).

As µ(d) is nonzero only if d is squarefree, we can rewrite
(2.4) as

Φn(z) =
Y∗

(1− z
n
d)µ(d), (2.10)

where the product
Q∗ is over all squarefree divisors d of n.

Suppose d is a squarefree divisor of np, then either d is a
squarefree divisor of n, or d is of the form d = d′p, where d′

is a squarefree divisor of n. Thus

Φnp(z) =
Y∗

(1− z
np
d)µ(d) ·

Y∗
(1− z

np
dp)µ(dp) (2.11)

The first product is exactly Φn(zp). Since the divisors of
n and p are coprime, µ(dp) = −µ(d), and thus

Φnp(z) = Φn(zp) ·
Y∗

(1− z
np
dp)−µ(d)

= Φn(zp) · Φn(z)−1,
(2.12)

proving (2.8a).
To prove (2.8b), we observe that as q divides n, the square-

free divisors of nq are exactly the squarefree divisors of q,
and thus

Φnq(z) =
Y∗

(1− z
nq
d)µ(d) = Φn(zq). (2.13)

Lemma 1 effectively gives us a means to calculate Φn(z).
For instance, for n = 75 = 3 · 52, we have that

Φ3(z) = Φ1(z3)
Φ1(z)

= z3−1
z−1

= z2 + z + 1, and

Φ15(z) = Φ3(z5)
Φ3(z)

= z10+z5+1
z2+z+1

= z8 − z7 + z5 − z4 + z3 − z + 1, by (2.8a).

Φ75(z) = Φ15(z5),

= z40 − z35 + z25 − z20 + z15 − z5 + 1, by (2.8b).

We describe this approach in algorithm 1 below:

While algorithm 1 is beautifully simple, it is not nearly the
fastest way to compute Φn(z), particularly if we use classi-
cal polynomial division to calculate the quotient of Φd(z

pi)
divided by Φd(z). For even though the numerator is sparse,
the denominator and quotient are typically dense.

We implemented algorithm 1 using the discrete fast Fourier
transform (FFT) to divide Φm(zpi) by Φm(z) fast. This is
done modulo suitably chosen primes qj . The cost per prime
qj is O(n logn). For a detailed description of the discrete
FFT, we refer the reader to [3]. We compute images of
Φn(z) modulo sufficiently many primes and recover the in-
teger coefficients of Φn(z) using Chinese remaindering. In
order to apply the FFT modulo q, we need a prime q with
2k|q − 1 and 2k > φ(n), the degree of the resulting poly-
nomial Φn(z). For n > 109 since there are no such 32 bit
primes, we cannot directly apply the FFT on a 64 bit ma-
chine using machine integer arithmetic. For n > 109 we used
42-bit primes with arithmetic modulo q coded using 64-bit
machine integer arithmetic.

Algorithm 1: Computing Φn(z) by repeated polyno-
mial division

Input: n = pe11 p
e2
2 · · · pe

k

k , where p1 < · · · < pk and
ei > 0 for 1 ≤ i ≤ k

Output: Φn(z)
//Applying (2.8a):
m←− 1
Φm(z)←− z − 1
for i = 1 to k do

Φmpi(z)←− Φm(zpi)
Φm(z)

,m←− m · pi
//m is the largest squarefree divisor of n now

s←− n/m
//Applying (2.8b):
Φn(z)←− Φm(zs)
return Φn(z)

3. A HIGH-PERFORMANCE ALGORITHM
FOR COMPUTING ΦN (Z)

For the purposes of this section we only consider Φn(z)
and Ψn(z) where n is odd and squarefree.

If n is odd, then ω is an nth primitive root of unity if and
only if −ω is a 2nth primitive root of unity. Given such, one
can verify the first identity of following lemma by showing
both sides of the equality have the same roots:

Lemma 2. Let n > 1 be odd, then

Φ2n(z) = Φn(−z) and (3.1)

Ψ2n(z) = −Ψn(−z)(zn + 1). (3.2)

The identity (3.2) follows from (3.1). As

Φ2n(z)Ψ2n(z) = z2n − 1 = (zn − 1)(zn + 1) and (3.3)

Φn(−z)Ψn(−z) = (−z)n − 1 = −(zn + 1), (3.4)

we thus have by (3.1) that

Ψ2n(z) = −Ψn(−z)(zn + 1) for odd n. (3.5)

If n is a nonsquarefree integer with largest odd squarefree
divisor n̄, lemmas 1 and 2 provides an easy means of obtain-
ing Φn(z) and Ψn(z) from Φn̄(z) and Ψn̄(z) respectively.

From (2.4), we have that Φn(z) is a quotient of terms of
the form (1− zd). Given that the power series expansion of
(1− zd)−1 is (1 + zd + z2d + z3d + . . .), it becomes equally
easy to either multiply or divide by (1−zd). As we will refer
to the terms 1− zd of the quotient (2.4) often, we call them
the subterms of Φn(z). We can rewrite (2.4) as

Φn(z) =
Y

µ(
n
d

)=1

(1− zd) ·
Y

µ(
n
d

)=−1

(1 + zd + z2d + . . .). (3.6)

Φn(z) can be computed as a truncated power series by
this approach, as described in procedure SPS.

Note that while 1−zn appears in (2.4), we do not multiply
by 1− zn is algorithm SPS, as it does not affect our result.
This is because 1− zn ≡ 1 (mod zD) for D = φ(n)/2.

Given (2.6), we derive an analgous method for Ψn(z), de-
scribed by procedure SPS-Psi.

As n = p1p2 . . . pk has 2k positive divisors, the SPS algo-
rithm takes O(2k · φ(n)) operations in Z to calculate Φn(z),
and O(2k · (n− φ(n)) operations to calculate Ψn(z).

Procedure SPS(n), computing Φn(z) as a quotient of
sparse power series

The Sparse Power Series (SPS)
Algorithm

Input: n a squarefree, odd integer

Output: a(0), . . . , a(φ(n)
2

), the first half of the
coefficients of Φn(z)

//we compute terms up to degree D

D ←− φ(n)
2

, a(0)←− 1
for 1 ≤ i ≤M do a(i)←− 0
for d|n such that 0 < d < n do

if µ(n
d

) = 1 then
//multiply by 1− zd
for i = D down to d by −1 do
a(i)←− a(i)− a(i− d)

else
//divide by 1− zd
for i = d to D do a(i)←− a(i) + a(i− d)

return a(0), a(1), . . . a(D)

Procedure SPS-Psi(n), computing Ψn(z) as a quotient
of sparse power series

The Sparse Power Series (SPS)
Algorithm for Ψn(z)

Input: n a squarefree, odd integer

Output: b(0), . . . , b(bn−φ(n)
2
c), the first half of the

coefficients of Ψn(z)

D ←− bn−φ(n)
2
c, b(0)←− 1

for 1 ≤ i ≤ D do b(i)←− 0
for d|n such that 0 < d < n do

if µ(n
d

) = 1 then
//multiply by 1− zd
for i = D down to d by −1 do
b(i)←− b(i)− b(i− d)

else
//divide by 1− zd
for i = d to D do b(i)←− b(i) + b(i− d)

return b(0), b(1), . . . , b(D)

We need only truncate to half the degree of Φn(z) (or
Ψn(z)) because of the following lemma.

Lemma 3. Suppose n > 1 and set
Pφ(n)
i=0 aiz

i = Φn(z)

and
Pn−φ(n)
i=0 biz

i = Ψn(z), then

ai = aφ(n)−i and bj = bn−φ(n)−j . (3.7)

That is, the coefficients of Φn(z) are palindromic and the
coefficients of Ψn(z) are antipalindromic.

Proof. If ω is a primitive root of unity, then ω−1 is too.
Thus

zφ(n)Φn(z−1) =

φ(n)X
i=0

aφ(n)−iz
i (3.8)

is a polynomial of degree φ(n) with leading term a0z
φ(n)

whose roots are exactly the roots of Φn(z). From the identity

(3.6) we have that the constant term of Φn(z), a0, is 1. Thus
Φn(z) = zφ(n)Φn(z−1) =

P
aφ(n)−iz

i, and so ai = aφ(n)−i.

Similarly, if ω is a nonprimitive root of unity, then ω−1

is as well. Thus zn−φ(n)Ψn(z−1) is a polynomial of degree

φ(n) with leading term b0z
n−φ(n) whose roots are the roots

of Ψn(z). Since

φ(n)X
i=0

aiz
i ·

n−φ(n)X
j=0

bjz
j = Φn(z)Ψn(z) = zn − 1, (3.9)

it follows from the expansion of
P
aiz

iP bjz
j that a0b0 =

−1. That is, b0 = −1, and thus Ψn(z) = −zn−φ(n)Ψn(z) =P
−bn−φ(n)−jz

j . It follows that bj = bn−φ(n)−jz
j .

Note that lemma 3 does not hold for Φ1(z) = z−1, which
is antipalindromic and Ψn(z) = 1, which is trivially palin-
dromic. We can generalize lemma 3 to products of cyclo-
tomic polynomials:

Lemma 4. Let

f(z) = Φn1(z) · Φn2(z) · · ·Φnk (z) =

DX
i=0

ciz
i (3.10)

be a product of cyclotomic polynomials such that nj is odd
for 1 ≤ j < k. Then if D is odd ci = −cD−i for 0 ≤ i < D.
If n is even, ci = cD−i for 0 ≤ i < D. In other words, if
D is odd f(z) is antipalindromic, and if D is even f(z) is
palindromic.

Proof. Clearly f(z) is monic. As before, we observe that
if ω is a root of f , then ω−1 is too. Set

g(z) = zDf(z−1) =

DX
i=0

cD−i(z). (3.11)

g(z) is a polynomial of degree D with leading coefficient c0
whose roots are the roots of f . Thus f(z) and g(z) only
differ by a constant factor. We need only resolve c0. To
that end, we observe that φ(n) is even for odd n > 1, and
φ(1) = 1. Thus r ≡ D mod 2, where r is the cardinality of

{j : 1 ≤ j ≤ k and nj = 1}. (3.12)

Note that the constant term of f , c0, is the product of the
constant terms of the Φnj (z) in (3.10). Since the constant
term of Φ1(z) = z−1 is −1, and by (2.4), the constant term
of Φn(z) is 1 for n > 1, we have that c0 = (−1)r = (−1)D.

Thus if D is even, c0 = 1, thus g(z) is monic and equal to
f(z). It follows from (3.11) that ci = cD−i. If D is odd, c0 =
−1 and so f(z) = −g(z). In which case, ci = −cD−i.

We note that lemma 4 does not hold if we relax the re-
striction that nj must be odd in (3.10). Consider the trivial
counterexample Φ2(z) = z+1. By (2.7), we have that lemma
4 applies to Ψn(z) for odd n, or any product of the form

Ψn1(z) ·Ψn2(z) · · ·Ψnk (z), (3.13)

where n1, n2, . . . , nk are all odd.

3.1 Improving the sparse power series method
by further truncating degree

The sparse power series algorithm slows appreciably as
we calculate Φn(z) for n with increasingly many factors.

The slowdown in computing Φnp(z) compared to Φn(z) is
twofold. By introducing a new prime factor p we double
the number of subterms (1 − zd) in our quotient (2.4). In
addition, the degree of Φnp(z) is p− 1 times that of Φn(z),
and thus the algorithm exhibits poorer locality for Φnp(z)
than Φn(z).

In procedure SPS, we effectively compute 2k distinct power
series, each a quotient of subterms 1 − zd, each truncated

to degree φ(n)
2

. We can improve the SPS algorithm if we
truncate any intermediate power series to the minimal de-
gree necessary, thereby reducing the number of arithmetic
operations and leveraging locality where possible. Towards
that end, we let n = mp, where p is the largest prime divisor
of n and m > 1. In which case

Φmp(z) =
Φm(zp)

Φm(z)
by lemma 1,

=−Ψm(z) · Φm(zp) · 1

1− zm .
(3.14)

By (2.4) and (2.6), we can rewrite equation (3.14) as:

Φn(z) = Y
d|m,d<m

(1− zd)−µ(
m
d

)

!
·

 Y
d|m

(1− zdp)µ(
m
d

)

!
· 1

(1− zm)
,

=

 Y
d|m,d<m

(1−zd)µ(
n
d

)

!
·

 Y
d|m

(1−zdp)µ(
n
dp

)

!
· 1

(1− zm)
.

(3.15)

Thus to compute Φn(z), we can compute Ψm(z), the left-

most product of (3.15) to degree m−φ(m)
2

, use the antipalin-
dromic property of Ψm(z) to reconstruct its remaining coef-
ficients, and then multiple or divide the remaining subterms
(1 − zd) as we would in algorithm SPS. Algorithm SPS2
describes the method.

This new procedure does less work to handle subterms

1−zd appearing in Ψm(z), as we truncate to degree m−φ(m)
2

as opposed to φ(n)
2

.

3.2 Calculating Φn(z) by way of a product of
inverse cyclotomic polynomials

In algorithm SPS2 we reduce the degree to which we com-
pute the first 2k−1−1 intermediate power series of procedure
SPS. We are able to further bound the degree to which we
must compute any intermediate power series of algorithm
SPS2. To that end we establish the next identity. Let
n = p1p2 · · · pk, a product of k distinct odd primes. For
1 ≤ i ≤ k, let mi = p1p2 · · · pi−1 and ei = pi+1 · · · pk. We
set m1 = ek = 1, and let e0 = n. Note that n = eipini for
1 ≤ i ≤ k. In addition, ei−1 = piei and mi+1 = mipi. Then
by repeated application of lemma 1, we have

Procedure SPS2(n) : The first revision of the SPS al-
gorithm

The Improved Sparse Power Series
(SPS) Algorithm

Input: n = mp, a squarefree, odd integer with greatest
prime divisor p

Output: a(0), . . . , a(φ(n)
2

), the first half of the
coefficients of Φn(z)

//Compute first half of Ψm(z)

a(0), a(1), . . . , a(b(n−φ(m)
2
c)←− SPS-Psi(m)

//Construct other half of Ψm(z) using lemma 3

D ←− max(m− φ(m), φ(n)
2

)

for i = dm−φ(m)
2
e to D do a(i)←− −a(m− φ(m)− i)

//Multiply by Φm(zp)

D ←− φ(n)
2

a(m− φ(m) + 1), a(m− φ(m) + 2), . . . , a(D)←− 0
for d|m such that 0 < d < m do

if µ(n
d

) = −1 then
for i = D down to dp by −1 do
a(i)←− a(i)− a(i− dp)

else
for i = dp to D do a(i)←− a(i) + a(i− dp)

//Divide by 1− zm
for i = m to D do a(i)←− a(i) + a(i−m)
return a(0), a(1), . . . a(D)

Φn(z) =
Ψmk (zek)

1− zn/pk
Φmk (zek−1)

=
Ψmk (zek)

(1− zn/pk)

Ψmk−1(zek−1)

(1− zn/pk−1)
Φmk−1(zek−2)

. . .

=
Ψmk (zek)

(1− zn/pk)
· · · Ψm2(ze2)

1− zn/p2
Ψm1(ze1)

1− zn/p1
Φ1(ze0)

=

kY
j=1

Ψmj (zej)

1− zn/pj
· (1− zn).

(3.16)

As Ψm1(ze1) = Ψ1(ze1) = 1, we have

Φn(z) =

kY
j=1

Ψmj (zej) ·
kY
j=1

(1− zn/pj)−1 · (1− zn)

=

kY
j=2

Ψmj (zej) ·
kY
j=1

(1− zn/pj)−1 mod (zφ(n)).

(3.17)

For example, for n = 105 = 3 · 5 · 7,

Φ105(z) =

Ψ15(z)Ψ3(z7) ·(1−z15)−1(1−z21)−1(1−z35)−1 ·(1−z105)
(3.18)

As with algorithm SPS2, we first calculate half the terms
of Ψmk (zek) = Φp1p2...pk−1(z), those with degree at most

bφ(mk)
2
c. We then iteratively compute the product

Ψmk (zek) · · ·Ψm2(ze2). (3.19)

When calculating the degree of Ψmj (zej) we truncate to
degree at most $

1

2

kY
i=j

φ(mi)ei

%
, (3.20)

half the degree of the product in (3.19). As our intermediate
product grows larger we have to truncate to larger degree.
The term Ψmi(zei), comprises 2i−1−1 subterms of the form
1 − zd. We compute Ψmk (zek) first because that contains
nearly half of the 2k − 1 subterms we must handle to ob-
tain Φn(z), so it is best that we not have to truncate to a
comparatively large degree for these terms.

Note that the degree of the product in (3.19) is, by (3.17),

φ(n)−
X
p|n

n/p. (3.21)

Thus (3.19) potentially has degree greater than that of Φn(z),
provided

1/p1 + 1/p2 + · · ·+ 1/pk > 1. (3.22)

Thus at some point we are forced to truncate to degree φ(n)
2

.
For n = p1p2 · · · pk for which Φn(z) is presently feasible to
compute, however, it is seldom the case that (3.22) holds.
The smallest odd, squarefree n for which (3.22) holds is
n = 3, 234, 846, 615, the product of the first nine odd primes.
In any case, we still truncate to a lower degree than in pro-
cedure SPS (or SPS2) when calculating Ψmi(zei) for

k − 8 < i ≤ k
(k − 8 < i < k, respectively).

. As Ψmk (zek) · · ·Ψmk−7(zek−7) comprise 2k − 2k−8 − 8 of

the 2k−1 subterms, so we expect there to be some speed-up
compared to procedures SPS and SPS2 regardless. This is
consistent with our timings (see section 4).

Let

f(z) =
X

a(i)zi = Ψmk (zek) · · ·Ψmj (zej) (mod zbD/2c+1),

g(z) = f(z) ·Ψmj+1(zej+1),

(3.23)

and let D and Dg be the degrees of f and g, respectively.
Suppose we have a(0), a(1), . . . , a(bD/2c), the terms of f
truncated to degree bD/2c, and we want to compute the
terms of the product g = f(z) · Ψmj+1(zej+1) to as min-
imal degree as necessary with the aim of eventually com-
puting Φn(z). We need not immediately compute terms of

g with degree greater than bDg

2
c, as we can use lemma 4

to retrieve higher-degree terms of g. In addition, for our
purposes of computing Φn(z) we need not consider terms

of degree greater than φ(n)
2

. In tandem with the fact that
a(i) = 0 for i > D, we need to retrieve a(i) for i at most

min(D, bDg

2
c, φ(n)

2
). We do this repeatedly while construct-

ing the product
Once we have the product (3.19), we divide by 1− zn/pj

for 1 ≤ j ≤ k. We detail this approach in procedure SPS3.

Procedure SPS3(n) : The second revision of the SPS
algorithm

The Iterative Sparse Power Series
(SPS) Algorithm

Input: n = p1p2 . . . pk, a squarefree, odd integer with
prime divisors p1 < p2 < · · · < pk

Output: a(0), . . . , a(φ(n)
2

), the first half of the
coefficients of Φn(z)

m1 ←− 1, ek ←− 1
for j = 1 to k do

mj+1 ←− mj · pj
ek−j ←− ek−j+1 · pk−j+1

//D is the degree of our current polynomial f
//Dg is the degree of the next polynomial g
//DΦ is the degree to which we truncate our

final result

D ←− 0, Dg ←− φ(mk), DΦ ←− φ(n)
2

a(0), a(1), a(2), . . . , a(DΦ)←− 1, 0, 0, . . . , 0
for j = k down to 2 do

D ←− Dg
//Multiply by Φmj (zej):

for d|mj such that 0 < d < mj do
if µ(n

d
) = 1 then

for i = min(bD
2
c, DΦ) down to dej by −1

do
a(i)←− a(i)− a(i− dej)

else
for i = dej to min(bD

2
c, DΦ) do

a(i)←− a(i) + a(i− dej)

//Use lemma 4 to construct terms of higher

degree:

Dg ←− D + φ(mj−1)emj−1

if D ≡ 0 (mod 2) then

for i = D
2

+ 1 to min(D,
Dg

2
, DΦ) do

a(i)←− a(D − i)
else

for i = D+1
2

to min(D,
Dg

2
, DΦ) do

a(i)←− a(D − i)

//Divide by (1− zn/pj):
for j = 1 to k do

d←− n
pj

for i = d to DΦ do a(i)←− a(i− d)

return a(0), a(1), . . . , a(DΦ)

3.3 Calculating Φn(z) and Ψn(z) recursively.
Algorithm SPS3 depended on the identity (3.17), which

describes Φn(z) in terms of a product of inverse cyclotomic
polynomials of decreasing order and index. We derive an
analog for Ψn(z). Let mi and ei be as defined in section 3.2,
and again let n = p1p2 · · · pk be a product of k distinct odd
primes where p1 < p < 2 < . . . pk.

Then by repeated application of lemma 1:

Ψn(z) = Φmk (zek)Ψmk (zek−1)

= Φmk (zek)Ψmk−1(zek−1)Φmk−1(zek−2)

. . .

= Φmk (zek) · · ·Φm1(ze1)Ψm1(ze1).

(3.24)

As m1 = 1 and Ψ1(z) = 1, we thus have that

Ψn(z) =

kY
j=1

Φmj (zej). (3.25)

(3.17) and (3.25) suggest a recursive method of computing
Φn(z). For purposes of simplicity we will not leverage the
palindromic properties. Consider the example of Φ105(z)
from section 3.2 (equation (3.18)). To calculate Φ105(z) via
algorithm SPS3, we would calculate the product in (3.18)
from left to right. However, in light of (3.25), we can treat
Ψmi(zei) as a product of cyclotomic polynomials of smaller
index:

Ψ15(z) = Φ5(z)Φ1(z3),

Ψ3(z7) = Φ1(z7);
(3.26)

and one can use (3.17) yet again and apply it to Φ5(z):

Φ5(z) = (1− z1)−1 · (1− z5). (3.27)

We compute Φn(z) by recursing into the factors of n.
As we recurse we can potentially lower the degree up to

which we must compute terms. Suppose, again, that we have
some product of cyclotomic polynomials f(z), truncated to
degree Dmax

2
, and we want to compute the terms of

g(z) = f(z) ·Ψm(ze), (3.28)

up to degree Dmax
2

. By (3.25) we can express Ψm(ze) as
a product of cyclotomic polynomials of descending order.
Suppose that Dg < Dmax. Then as we multiply by the

subterms of Ψm(ze), we need only truncate to degree
Dg

2
,

after which we can apply lemma 4 to retrieve higher-degree
terms of g(z). Procedure SPS4 describes this method.

To calculate the first half of the coefficients of Φn(z), one
would merely set

a(0) = 1, a(i) = 0 for 0 < i ≤ φ(n), (3.29)

and call SPS4(n,1,true,0,φ(n), a). Similarly, to calculate
the first half of Ψn(z) we would call SPS4(n,1,false,0,n −
φ(n),a).

4. PERFORMANCE AND TIMINGS
We timed our implementations on a system with a 2.67GHz

Intel Core i7 quad-core processor and 6 GB of memory.
All of our aglorithms are implemented in C and are single-
threaded. Here we time our 64-bit precision implementa-
tions of procedures SPS1-4, each of which check for integer
overflow using inline assembly.

Our implementation of algorithm 1 calculates Φn(z) mod-
ulo two 32-bit primes and reconstructs Φn(z) by Chinese
remaindering.

As the number of distinct prime factors of n plays a signif-
icant role in the cost of computing Φn(z), we list the factors
of n (table 2) and A(n) (table 3) for n appearing in table 1.

For the SPS and SPS4 algorithms, we have implemented,
in addition to the 64-bit version, 8-bit, 32-bit, and 128-bit

Procedure SPS4(m, e, λ, D, Dmax, a) : Multiply by
Φm(ze) or Ψm(ze)

A recursive algorithm to multiply by
Φm(z) or Ψm(z)
Input:

• m, a positive, squarefree odd integer
• λ, a boolean
• a, an array of integers a(0), a(1), . . . satisfying

f(z) ≡
P
a(i)zi (mod zb

Dmax
2
c+1) modulo

zb
1
2
Dmaxc + 1, where f(z) is some product of

cyclotomic polynomials
• D, the degree of f(z)
• Dmax, a bound on the degree

Output:
D∗, the degree of the resulting polynomial. If λ is true,
we compute g(z) = f(z)Φm(ze), truncated to degree
1
2
Dmax. Otherwise, we compute g(z) = f(z)Ψm(ze),

truncated to degree 1
2
Dmax. We write the coefficients of

g to array a, and return the degree of g, Dg.

if λ then Dg ←− D + φ(m)e else
Dg ←− D + (m− φ(m))e
//D∗max is our new degree bound

D∗max ←− min(Dg, Dmax)

e∗ ←− e, m∗ ←− m, D∗ ←− D
while m∗ > 1 do

p←− largest prime divisor of m∗

m∗ ←− m
p

//multiply by Φm∗(ze
∗
) (or Ψm∗(ze

∗
))

D∗ ←− SPS4(m∗, e∗, not λ, D∗, D∗max, a)
e∗ ←− e∗p

if λ then
for each prime p|m do

d←− m·e
p

//Divide by 1− zm·e/p

for i = d to bD
∗
max
2
c do a(i)←− a(i− d)

d←− m · e //Multiply by 1− zm·e

for i = bD
∗
max
2
c down to d do a(i)←− a(i− d)

//Get higher-degree terms of g(z) as necessary

if Dg ≡ 0 mod 2 then

for i = bDg

2
c+ 1 to min(Dg,

Dmax
2

) do
a(i)←− a(Dg − i)

else

for i = bDg

2
c+ 1 to min(Dg,

Dmax
2

) do
a(i)←− −a(Dg − i)

return Dg

precision versions. We also have a version of SPS and SPS4
which calculates images of Φn(z) modulo 32-bit primes, writes
the images to the harddisk, and then reconstruct Φn(z) from
the images by way of Chinese remaindering. This implemen-
tation is most useful for Φn(z) which we cannot otherwise
fit in main memory. We do not use GMP multiprecision
integer arithmetic; it is too slow for our specfic purposes.

Table 1: Time to calculate Φn(z) (in seconds*)
algorithm

n FFT SPS SPS2 SPS3 SPS4
255255 0.40 0.00 0.00 0.00 0.00

1181895 1.76 0.01 0.00 0.00 0.00
4849845 7.74 0.12 0.06 0.02 0.01

37182145 142.37 1.75 0.95 0.23 0.19
43730115 140.62 1.69 0.93 0.23 0.19

111546435 295.19 6.94 3.88 1.45 0.94
1078282205 - 105.61 58.25 12.34 9.29
3234846615 - 432.28 244.44 81.32 49.18

*times are rounded to the nearest hundredth of a second

Table 2: Factorization of n, for n from table 1
n factorization of n

255255 3 · 5 · 7 · 11 · 13 · 17
1181895 3 · 5 · 11 · 13 · 19 · 29
4849845 3 · 5 · 7 · 11 · 13 · 17 · 19

37182145 5 · 7 · 11 · 13 · 17 · 19 · 23
43730115 3 · 5 · 11 · 13 · 19 · 29 · 37

111546435 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23
1078282205 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29
3234846615 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29

Table 3: A(n) for n from table 1
n height A(n)

255255 532
1181895 14102773
4849845 669606

37182145 2286541988726
43730115 862550638890874931

111546435 1558645698271916
1078282205 8161018310
3234846615 2888582082500892851

5. CURRENT WORK
We have implemented the algorithms in this paper to cre-

ate a library of data on the heights and lengths of cyclotomic
polynomials. This data is available at

http://www.cecm.sfu.ca/~ada26/cyclotomic/

A 64-bit implementation of the SPS4 algorithm, written in
C but without overflow check, is also made available at the
website.

We aim to compute the coefficients of Φn(z), for

n = 3 · 5 · 11 · 13 · 19 · 29 · 37 · 43 · 53 = 99660932085.

We expect that this cyclotomic polynomial will have very
large height. We have previously verified that

A(n
53

) = 64540997036010911566826446181523888971563 and

A(n
43

) = 67075962666923019823602030663153118803367

are the smallest two examples of k such that A(k) > k4.
Both A(n

53
) and A(n

43
) are greater than 2135.

We previously attempted to compute Φn(z) using an im-
plementation of the SPS algorithm. We computed images
of Φn(z) modulo 32-bit primes. Storing half of Φn(z) to
32-bit precision takes roughly 76 GB of space. We do not
have enough RAM to store these images in main memory,

so we read and wrote intermediate results to the hard disk.
This proved to be slow, as each image required us to make
29 = 512 passes over the hard disk. We computed four im-
ages of Φn(z), after which the hard disk crashed.

In light of the development of the new variants of the SPS
algorithms, we have a new approach to compute Φn(z). We
want to minimize hard disk reads and writes. This is because
performing the computation on the harddisk is appreciably
slower and potentially more error-prone than in memory. We
are limited to 16 GB of RAM. We expect that A(n) < 2320;
that is, 320-bit precision will be sufficient to construct Φn(z).
Towards our aim, let

f(z) = Ψm9(z)Ψm8(z53). (5.1)

where

m9 = n
53

= 1, 880, 394, 945 and

m8 = n
43·53

= 43, 730, 115.

By (3.16), we have

Φn(z) = f(z)(1− zn/53)−1(1− zn/43)−1Φm8(z43·53). (5.2)

f(z) has degree less than 2.55 · 109. We can compute
images of f(z) modulo 64-bit primes using roughly 10 GB
of RAM, then extract f(z) from its images by way of Chinese
remaindering. After which we will compute the coefficients
of the truncated power series

g(z) ≡ f(z)(1− zn/53)−1(1− zn/43)−1 (mod z
φ(n)

2
+1)

=

φ(n)
2X
i=0

ciz
i.

(5.3)

This will entail two passes over the hard disk, one per di-
vision by subterms 1 − zn/53 and 1 − zn/43. We produce
the coefficients of g(z) in order of ascending degree during
the second pass of the harddisk. Storing g(z) or Φn(z) at

this precision up to degree φ(n)
2

requires more than 750 GB
of storage. We can reorganize the terms of g(z) in a man-
ner which allows us to compute the coefficients of Φn(z) in
memory. For 0 ≤ j < 43 · 53 = 2279, let

gj(z) =
X

0≤i·2279+j≤
φ(n)

2

ciz
i (5.4)

We can construct the gj(z) as we sequentially produce the
terms of g(z). We have that

g(z) =
2278X
j=0

zj · gj(z2279), (5.5)

and thus by (5.2),

Φn(z) ≡
2278X
j=0

zj · gj(z2279)Φm8(z2279) (mod z
φ(n)

2
+1).

(5.6)
Thus to produce the first half of the coefficients of Φn(z),
it suffices to compute gj(z) · Φm8(z), for 0 ≤ j < 2279.
Each of these polynomials has degree less than 2.6 ·106, and
be computed to 320-bit precision with less than a GB of
memory.

Figure 1: The coefficients of Φn(z) =
P
a(k)zk, for

n = 43730115.

Figure 2: The coefficients of Φn(z) =
P
a(k)zk, for

n = 2317696095.

We are also interested in the behaviour of the coefficients
of terms in order of ascending degree. From figures 1 and 2,
we see that cyclotomic polynomials coefficients can exhibit
interesting structure.

If this computation of Φn(z) proves to be reasonably fast,
we will also attempt to compute A(n), for

n = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 = 100280245065,

the product of the first ten odd primes, by a similar ap-
proach.

6. REFERENCES
[1] A. Arnold and M. Monagan. Calculating cyclotomic

polynomials. Submitted to Mathematics of
Computation, available at
http://www.cecm.sfu.ca/~ada26/cyclotomic/.

[2] P. Erdős and R.C. Vaughn. On the coefficients of the
cyclotomic polynomial. Bull. Amer. Math. Soc.,
52:179–184, 1946.

[3] K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms
for Computer Algebra. Kluwer Academic Publishers,
Boston, 1992.

[4] Y. Koshiba. On the calculations of the coefficients of
the cyclotomic polynomials. Rep. Fac. Sci. Kagoshima
Univ., (31):31–44, 1998.

[5] Y. Koshiba. On the calculations of the coefficients of
the cyclotomic polynomials. II. Rep. Fac. Sci.
Kagoshima Univ., (33):55–59, 2000.

[6] T.D. Noe. Personal communication.

