
Maximal Quotient Rational Reconstruction: An Almost
Optimal Algorithm for Rational Reconstruction

Michael Monagan
∗

Department of Mathematics, Simon Fraser University,
Burnaby, B.C., V5A 1S6, Canada.

ABSTRACT
Let n/d ∈ Q, m be a positive integer and let u = n/d mod
m. Thus u is the image of a rational number modulo m. The
rational reconstruction problem is; given u and m find n/d.
A solution was first given by Wang in 1981. Wang’s algo-
rithm outputs n/d when m > 2M2 where M = max(|n|, d).
Because of the wide application of this algorithm in com-
puter algebra, several authors have investigated its practical
efficiency and asymptotic time complexity.

In this paper we present a new solution which is almost
optimal in the following sense; with controllable high prob-
ability, our algorithm will output n/d when m is a modest
number of bits longer than 2|n|d. This means that in a mod-
ular algorithm where m is a product of primes, the modular
algorithm will need one or two primes more than the mini-
mum necessary to reconstruct n/d; thus if |n| ¿ d or d ¿ |n|
the new algorithm saves up to half the number of primes.
Further, our algorithm will fail with high probability when
m < 2|n|d.

Categories and Descriptors: I.1.2 [Symbolic and Alge-
braic Manipulation]: Algorithms – Algebraic algorithms;
F.2.1 [Analysis of Algorithms and Problem Complexity]:
Numerical algorithms and problems – Number-theoretic com-
putations.
General Terms: Algorithms
Keywords: Euclidean Algorithm, Modular Algorithms, Ra-
tional Reconstruction

1. INTRODUCTION
Rational reconstruction, originally developed by Wang in

[16] to recover a partial fraction decomposition of a ra-
tional function in Q(x) from its image modulo m = pk,
a prime power, has become an important and useful tool
for the development of efficient algorithms in computer al-
gebra. It enables modular algorithms to recover rational

∗Supported by NSERC and the MITACS NCE of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’04, July 4–7, 2004, Santander, Spain.
Copyright 2004 ACM 1-58113-827-X/04/0007 ...$5.00.

numbers from their images modulo a large integer modulus
m, usually a prime power or product of primes. For ex-
ample, Encarnacion’s modular GCD algorithm in [3] com-
putes the monic gcd g(x) of two univariate polynomials
f1(x), f2(x) over an algebraic number field Q(α) by com-
puting the gcd(f1(x), f2(x)) modulo m = p1×p2× ...×pk, a
product of primes. It does this by computing the gcd modulo
each prime and applying the Chinese remainder theorem.
The rational coefficients of g(x) are then recovered from
their images modulo m using rational reconstruction. If ra-
tional reconstruction succeeds on all coefficients with output
h(x), the algorithm tests if h(x)|f1(x) and h(x)|f2(x). If it
does then h(x) = g(x) and the algorithm terminates.

The main advantage of Encarnacion’s algorithm over the
modular GCD algorithms of Langemyr and MacCallum in
[10] and Langemyr in [11], which do not use rational recon-
struction, is that Encarnacion’s algorithm is output sensi-
tive, that is, the number of primes needed depends on the
size of the rational coefficients in the output g(x) and not
on bounds based on the size of the inputs f1(x), f2(x) and
the minimal polynomial for α which may be much too large.
A second advantage of using rational reconstruction is that
we do not require a denominator bound, that is, a multiple
of the LCM of the denominators of the rational coefficients
appearing in g(x). Such a denominator bound may be much
too large and may be expensive to compute.

Some other applications where rational reconstruction is
used, central to Computer Algebra, include solving linear
systems over Q (see [13]), early detection of factors in the
Berlekamp-Hensel procedure (see [18]), and Gröbner basis
computation over Q (see [1] and [8]).

Let n, d ∈ Z with d > 0 and gcd(n, d) = 1. Let m be a
positive integer satisfying gcd(m, d) = 1. Let u = n/d mod
m. The rational reconstruction problem is: given u and m
find n and d. One aspect of the problem is how large m
has to be before the algorithm will output n/d. It is not
hard to see that if the algorithm is to recover all rational
numbers with numerators ≤ |n| and denominators ≤ d, then
the modulus m > 2|n|d. A solution to this problem without
proof was first given by Wang in [16]. Wang’s algorithm, a
simple modification of the (extended) Euclidean algorithm,

outputs n/d provided |n| and d are both less than
√

m/2,
that is, m > 2 max(|n|, d)2. A proof was subsequently given
by Wang, Guy and Davenport in [17].

To motivate the design of a more efficient solution we
develop an example. Let p1, p2, p3, ... be a sequence of near
constant length primes being used by a modular algorithm
such as Encarnacion’s modular GCD algorithm [3]. Suppose

we wish to recover the polynomial

g = x2 +
123456789

5
x − 4115

226317
α + 12345654321

from its image u modulo m = mk where mk = p1 × p2 ×
... × pk. In the modular GCD algorithm, because we do not
know in advance how large the coefficients of g(x) are, we
design the modular algorithm to attempt recovery of g(x)
after we have computed g(x) modulo each prime so that it
can terminate as soon as possible. Suppose, for example, we
use 3 digit primes 997, 991, 983, How many primes will
we need to recover g(x) in our example? Wang’s algorithm
will recover the coefficients of g(x) for

m = mk > 2 max
n/d∈g(x)

(|n|, d)2,

which depends on the largest integer appearing in the ratio-
nal coefficients of g(x), namely, 12345654321. Wang’s algo-
rithm needs seven 3 digits primes on this example, namely,
997, 991, 983, 977, 971, 967, 953. However, the rationals in
g(x) are not uniform in shape which is typical of real prob-
lems. Our new algorithm requires m be a modest number
of bits longer than maxn/d∈g(|n|d) = 12345654321; it needs
only five 3 digit primes on this example.

Let j be the smallest integer such that mj = p1×...×pj >
2|n|d. Thus mj is the smallest modulus for which rational
reconstruction could recover g(x). The main result of our
paper is a new algorithm for rational reconstruction with
the following properties:

(i) it will succeed with high probability for moduli mk

with k > j, thus, we need approximately one more
prime than the minimum possible,

(ii) it will succeed with probability 1 for moduli mk >
9n2d2, and

(iii) it will fail with high probability for moduli mk with
k < j primes.

For Encarnacion’s modular GCD algorithm (i) means a re-
duction of the number of primes needed to reconstruct g(x)
by up to a factor of 2, (ii) guarantees that the algorithm will
not fail indefinitely, and (iii) means rational reconstruction
will fail early when m is too small thus avoiding the trial
divisions which fail in Encarnacion’s algorithm.

Outline of Paper
In section 2 we explain Wang’s rational reconstruction algo-
rithm and we reference subsequent work by several authors
to accelerate Wang’s algorithm. In section 3 we present
our new algorithm. We show that our algorithm outputs
n/d with high probability when m > T |n|d where T =
2cdlog2 me for c = 20. In the conclusion, we make some
remarks about our implementation of the algorithm and
briefly outline the modifications needed to our algorithm
so that it may be applied to solve the related problem of
rational function reconstruction in one parameter t over a
finite field.

2. RATIONAL RECONSTRUCTION
As in the introduction let n, d ∈ Z, d > 0 and gcd(n, d) = 1.
Let m be a positive integer satisfying gcd(m, d) = 1 and let
u = n/d mod m. Thus n/d is the rational we are trying
to reconstruct from its image u modulo m. To explain how

Wang’s rational reconstruction algorithm works and how our
new algorithm works we need to refer to the integers appear-
ing in the Euclidean algorithm. Let ba/bc denote the inte-
ger quotient of a divided by b with remainder r satisfying
0 ≤ r < b. On input of m and u the Euclidean algorithm
computes integers ri, si, ti for i = 0, 1, ..., n, n + 1 and quo-
tients qi+1 for i = 1, ..., n as follows:

Euclidean Algorithm.
Input: integers m > u ≥ 0.

Set (r0, s0, t0) = (m, 1, 0).
Set (r1, s1, t1) = (u, 0, 1).
Set n = 0, k = 1.
While rk 6= 0 do

Set qk+1 = brk−1/rkc
Set rk+1 = rk−1 − qk+1rk.
Set sk+1 = sk−1 − qk+1sk.
Set tk+1 = tk−1 − qk+1tk.
Set n = k, k = k + 1.

Let g = gcd(m, u). At the end of the algorithm we have

(i) r0 > r1 > ... > rn = g > rn+1 = 0, and,

(ii) t0 < t1 ≤ |t2| < ... < |tn| < |tn+1| = m/g, and

(iii) sim + tiu = ri for i = 0, 1, ..., n + 1.

where (ii) and (iii) follow by induction on n. Solving (iii)
for u modulo m there are two cases to consider depending
on whether gcd(m, ti) = 1 or not.

Case 1 gcd(m, ti) = 1: we have ri/ti ≡ u mod m.

Case 2 gcd(m, ti) > 1: let di = gcd(m, ti). We have di|m
and di|ti and sim + tiu = ri implies di|ri, and hence,
(ri/d)/(ti/d) ≡ u mod (m/d).

In a modular algorithm m will be either a single large prime
or a product of machine primes or a power of a machine
prime. By machine primes we mean primes that allow arith-
metic in Zp to be done directly by the hardware of the
machine. Obviously one wants to use the largest machine
primes available but there are other considerations. Magma,
for example, uses 30 bit primes on a 32 bit machine. Some
parts of Maple are now using 26 bit primes because dou-
ble precision floating point arithmetic can be used to arith-
metic in Zp and it is considerably faster than integer arith-
metic on most hardware. In either case the primes are suf-
ficiently large so that case 2 will be exceptional. Therefore
the Euclidean algorithm computes a sequence of rationals
r1/t1, ..., rn/tn almost all of which are congruent to u mod-
ulo m. We state the following result from [17] which allows
us to “select the right solution” for sufficiently large m.

Theorem 1 (Wang, Guy, Davenport, 1982). Let
n, d ∈ Z with d > 0 and gcd(n, d) = 1. Let m ∈ Z with m >
0 and gcd(m, d) = 1. Let u = n/d mod m. Let N, D ∈ Z

such that N ≥ n and D ≥ d. Then

(i) if m > 2 ND the modular map φ : Q → Zm given
by φ(x) = x mod m is injective, that is, for any 0 ≤
u < m there is at most one rational number n/d ≡
u mod m, and,

(ii) if m > 2 ND then on input of m and u there exists
a unique index i in the Euclidean algorithm such that
ri/ti = n/d. Moreover, i is the first index such that
ri ≤ N .

We refer the reader to von zur Gathen and Gerhard [4] for a
more accessible reference for the proof of this result. Wang’s
algorithm follows.

Algorithm Rational Reconstruction (RR).
Input: Integers m, u, N, D with m > u ≥ 0, N, D > 0 and
2 ND < m.
Output: Either n, d ∈ Z s.t. |n| ≤ N , 0 < d ≤ D,
gcd(n, d) = 1, and n/d ≡ u mod m, or FAIL implying no
such rational n/d exists.

Set (r0, t0) = (m, 0).
Set (r1, t1) = (u, 1).
While r1 > N do

Set q = br0/r1c
Set (r0, r1) = (r1, r0 − q r1).
Set (t0, t1) = (t1, t0 − q t1).

Set (n, d) = (r1, t1).
If d < 0 then set (n, d) = (−n,−d).
If d ≤ D and gcd(n, d) = 1 then output (n, d).
Otherwise output FAIL.

Remark 1: In Wang’s original presentation of the algo-
rithm he sets N = D = b

√

m/2c where m is assumed
to be odd. Thus algorithm RR will output n/d for all
m > 2max(|n|, d)2. This choice for N and D means that
as the modulus m grows in a modular algorithm, the size of
the numerators and denominators of the rational numbers
that can be reconstructed is growing at an equal rate.

Example: Running algorithm RR with m = 19 on all in-
puts 0 < u < m with (N, D) = (3, 3), (N, D) = (2, 4) and
(N, D) = (4, 2) we obtain the following output where F in-
dicates that the output was FAIL.

u = 1 2 3 4 5 6 7 8 9
3, 3 1 2 3 F F -1/3 2/3 -3/2 -1/2
2, 4 1 2 F F -1/4 -1/3 2/3 F -1/2
4, 2 1 2 3 4 F F F -3/2 -1/2

u = 10 11 12 13 14 15 16 17 18
3, 3 1/2 3/2 -2/3 1/3 F F -3 -2 -1
2, 4 1/2 F -2/3 1/3 -1/4 F F -2 -1
4, 2 1/2 3/2 F F F -4 -3 -2 -1

Remark 2: The requirement that the gcd(n, d) = 1 is
not present in the original description of the algorithm in
[16] and [17]. In [2], Collins and Encarnacion point out
that because the original algorithm fails to establish that
gcd(d, m) = 1, if case 2 above occurs, the original algorithm
can output an invalid result. For example, taking m = 12,
u = 5, N = 2 and D = 2 we find the relation 2m − 2u = 2
and n = −2, d = 2 would not satisfy n/d ≡ u mod m. Hence
case 2 must be detected. Collins and Encarnacion also point
out that since gcd(n, d) = 1 iff gcd(d, m) = 1, it is more ef-
ficient to make the test gcd(n, d) = 1 since m > d.

Remark 3: The requirement that gcd(m, d) = 1 must be
resolved by the modular algorithm which is using rational
reconstruction. That is, if a prime p divides a denomina-
tor of a coefficient of the polynomial being reconstructed,
the modular algorithm must either not use p or eventually
discard p from consideration.

Suppose u is chosen uniformly at random on 0 ≤ u < m.
In [2], Collins and Encarnacion show that if N = D =

b
√

m/2c, the probability that algorithm RR succeeds ap-
proaches 6/π2 = 0.6079 as m increases. This means that
when we attempt to reconstruct the rational coefficients of
a polynomial g(x) and m is not yet large enough, algorithm
RR will successfully reconstruct 1/(1 − 6/π2) = 2.55 co-
efficients on average before it fails. In practice, the ratio-
nal coefficients of g(x) are usually not of uniform size, that
is, the numerators and denominators are of different sizes.
Thus when algorithm RR succeeds in reconstructing all co-
efficients for the first time, there is a significant probability
that we do not have the right answer. One way to ensure
that the output from algorithm RR is right with high proba-
bility is to select N and D such that the 2ND is significantly
smaller than m. In Magma (versions 2.8, 2.9, and 2.10), Steel
[15] does the following for his implementation of Encarna-
cion’s modular GCD algorithm; he tries N = m/24, D = 1
and then N =

√
m/2, D = m/N/24. The reason for the first

setting is that if g(x) is monic with integer coefficients this
halves the number of primes needed for this case.

2.1 Complexity of Rational Reconstruction
The asymptotic time complexity of the classical extended

Euclidean algorithm, and therefore also of algorithm RR,
is O(log2 m). The (extended) Euclidean algorithm may be
accelerated by a constant factor using Lehmer’s GCD algo-
rithm (see Knuth [9]). A further factor of 2 improvement
on Lehmer’s GCD algorithm is obtained by Jebelean in [7].
In [2], Collins and Encarnacion show how to modify both
Lehmer’s algorithm and Jebelean’s algorithm for rational
reconstruction. For a modulus m of 1550 bits in length
(437 decimal digits), the speedup they obtained (see Table
1 in [2]) using Lehmer’s algorithm instead of the ordinary
(extended) Euclidean algorithm was a factor of 3.6 and a
further factor of 2 speedup using Jebelean’s algorithm was
obtained.

An asymptotically fast version of rational reconstruction,
with the same complexity as the asymptotically fast integer
GCD algorithm of Schönhage ([14]), is described by Pan and
Wang in [13]. Thus the theoretical bit complexity of ratio-
nal reconstruction is O(n log2 n log log n) where n = log m
here. The authors did not implement their algorithm and
remarked that it may not be practical. However, previ-
ously, in unpublished work, Allan Steel [15] implemented
in Magma a fast rational reconstruction algorithm based on
the fast half-gcd algorithm for F [x] in Peter Montgomery’s
PhD thesis [12]. The algorithm is effective in practice for
very large m. For m below 500 bits in length, Magma uses
Lehmer’s algorithm (see Knuth [9]). At 500 bits, Steel’s
Magma implementation switches to the fast rational recon-
struction algorithm where Karatsuba’s algorithm is being
used for integer multiplication. An FFT multiplication kicks
in at 20,000 bits. We demonstrate the effectiveness of this
implementation in the following experiment. The following
Maple session constructs first a 50,000 digit modulus m, an

integer B satisfying 2B2 < m, a positive fraction n/d satis-
fying n < B and d < B, and the image u = n/d mod m and
the integer c = um.

> p,q,r := 10^10+19, 10^10-33, 10^10-57;

> k := 5000: m := p^k: B := isqrt(iquo(m,2));

> n := q^(k/2) mod B: d := r^(k/2) mod B:

> u := n/d mod m: c := u*m:

The tables below include timings, in CPU seconds, com-
paring Magma 2.10 and Maple 9 on various arithmetic com-
putations for k = 5000, 10000 and 20000 which corresponds
to integers of size 50,000, 100,000 and 200,000 decimal dig-
its. Maple 9 is using the GNU multiple precision integer
arithmetic package [5], which, like Magma, includes an FFT
based integer multiplication routine for large integer multi-
plication, but, unlike Magma does not include an asymptot-
ically fast Euclidean algorithm. The timings demonstrate
the effectiveness of the accelerated Euclidean algorithm in
Magma and its application to computing gcds in Z, inverses
in Zm, and rational reconstruction (RR) of u mod m.

k u × m c / m gcd(u, m) u−1 mod m RR
5000 0.03s 0.09s 0.41s 1.26s 1.1s

10000 0.06s 0.25s 1.22s 3.63s 3.2s
20000 0.15s 0.64s 3.41s 9.80s 9.0s

Table 1: Magma 2.10 timings

k u × m c / m gcd(u, m) u−1 mod m RR
5000 0.01s 0.04s 0.27s 5.91s 6.2s

10000 0.03s 0.10s 1.07s 17.70s 24.0s
20000 0.08s 0.25s 4.25s 70.40s 97.7s

Table 2: Maple 9 timings

Remark 4: The data for Magma 2.10 for the latter three
operations suggests that Karatsuba multiplication is being
used in this range because the timings increase consistently
by a factor of 3 as the integers double in length. The data
for Maple 9 for the gcd operation increases consistently by
a factor of 4 as the integers double in length which confirms
that integer gcd in Maple 9 (in GMP) is O(log2 m).

3. MAXIMAL QUOTIENT RATIONAL RE-
CONSTRUCTION

In practice we have observed that for polynomial compu-
tations over a number field Q(α), the rational coefficients
of polynomials often have much smaller denominators than
numerators. One reason for this is that if the minimal poly-
nomial for α is monic over Z, as is often the case, it only
contributes to the growth of numerators in Q(α) when we
multiply elements of Q(α). This observation about the rel-
ative size of numerators and denominators is not specific to
polynomials over number fields; it is most often the case that
rational coefficients have different sizes in real problems.

On such problems rational reconstruction with N = D =
b
√

m/2c will require up to twice as many primes as are
necessary. A practical improvement that we tried was to
allocate 2/3 of the bits of m to the numerators and 1/3 to the
denominators, i.e., to use D = b3√mc and N = bm/(2D2)c.
The problem with this is that it may be wrong for a given

problem. We usually just don’t know in advance what the
best choice for N and D is. We say that the “shape” of the
rationals is unknown. It turns out that this does not matter
for we can make the Euclidean algorithm work with high
probability regardless of the shape of the rational numbers.
We first make an observation about the Euclidean algorithm
which relates the size of the quotient qi+1 to the size of the
rational ri/ti and the modulus m.

Lemma 1. m/3 < qi+1|ti|ri ≤ m for i = 1, 2, ..., n.

Proof: The proof of Lemma 1 follows from the following
known property of the Euclidean algorithm which may be
established by induction on i:

(−1)im = riti−1 − ri−1ti for i = 1, 2, ..., n.

Let Ui denote the quantity qi+1 |ti| ri/m. We need to show
1/3 < Ui ≤ 1. Substituting for m we have

Ui =
|qi+1tiri|

|ri−1ti − riti−1|
.

Dividing through by ri and ti we have

Ui =
qi+1

|ri−1/ri − ti−1/ti|
.

Now 0 ≤ |ti−1| < |ti| and ti−1 has opposite sign to ti which
imply 0 ≤ −ti−1/ti < 1. Hence we have

qi+1

1 + ri−1/ri
< Ui ≤

qi+1

ri−1/ri
.

Now substituting for ri−1/ri from ri+1 = ri−1 − qi+1ri we
have

qi+1

qi+1 + ri+1/ri + 1
< Ui ≤

qi+1

qi+1 + ri+1/ri
.

Since 0 ≤ ri+1 < ri =⇒ 0 ≤ ri+1/ri < 1 we have

qi+1

qi+1 + 2
< Ui ≤

qi+1

qi+1 + 0
= 1.

The left-hand-side is minimized when qi+1 = 1 which gives
us 1/3 < Ui ≤ 1 as required.

Remark 5: For input m, u with u = 1 we have at step i = 1,
qi+1|ti|ri = m/1× 1× 1 = m and hence the right hand side
of the inequality in Lemma 1 is tight. For the left-hand-
side of the inequality we have computed the smallest ratio
Ui = qi+1|ti|ri/m appearing in the Euclidean algorithm for
each modulus 1 < m < 105 over all inputs 0 < u < m.
The data shows that the smallest ratio approaches 1/3, from
above, linearly, as m increases.

The inequality on the left of Lemma 1 tells us that if
ri/ti is small relative to m, that is, ri|ti| ¿ m, that is,
our algorithm should be able to recover this rational from
u = ri/ti mod m, then the quotient qi+1 computed in the
next step of the Euclidean algorithm is necessarily large,
namely, qi+1 > m/|3tiri|.

Example: Table 3 tabulates ri, ti, qi+1 and the quantity
1/3 < Ui ≤ 1 appearing in the proof of Lemma 1 for a run
of the Euclidean algorithm with input m = 106 − 17 and
u = 137613.

i ri ti qi+1 Ui

1 137613 1 7 .9633
2 36692 -7 3 .7705
3 27537 22 1 .6058
4 9155 -29 3 .7965
5 72 109 127 .9967
6 11 -13872 6 .9156
7 6 83341 1 .5001
8 5 -97213 1 .4861
9 1 180554 5 .9028

Table 3: Rationals in the Euclidean algorithm

The quotients are small, which is typical for the Euclidean
algorithm except one, namely q6 = 127, which corresponds
(by Lemma 1) to the only small fraction, r5/t5 = 72/109.
This observation suggests that rational reconstruction sim-
ply output the rational ri/ti for which qi+1 is the maximal
quotient. We will refer to this algorithm as Maximal Quo-
tient Rational Reconstruction (MQRR). The main question
to ask is whether there can be more than one large quotient?
For if there could be then the algorithm might not find the
right rational. The following lemma tells us that there can
only be one large quotient if m is large enough.

Lemma 2. Let n, d ∈ Z with d > 0 and gcd(n, d) = 1. Let
m ∈ Z with m > 0 and gcd(m, d) = 1. Let u = n/d mod
m and let i be an index with qi+1 a maximal quotient in
the Euclidean algorithm when given input (m, u). Thus u ≡
ri/ti mod m. If |n|d <

√
m/3 then i is unique and ri/ti =

n/d.

Proof: Let N = |n| and D = d. Since 3|n|d <
√

m implies
2|n|d = 2ND < m, then from Theorem 1 there exists a
unique index i in the Euclidean algorithm with input (m, u)
such that ri/ti = n/d. Let q = qi+1 be the next quotient.
Then inequality (1) implies m/3 < q|n|d which implies q >
m/(3|n|d). But

√
m > 3|n|d which implies q >

√
m. Now

the product of the quotients of the Euclidean algorithm also
satisfies Πn

i=1qi+1 ≤ m, hence, if q >
√

m it is the largest
quotient. Therefore the index i of the maximal quotient
implies ri/ti = n/d.

Remark 6: For m = 1020 − 1 and u = 1010 there are two
distinct rationals r1/t1 = 1010 and r3/t3 = 10−10 for which
the corresponding quotients q2 = 1010 − 1 and q4 = 1010 − 1
are both large. Since they are very close to

√
m in length,

the statement of lemma 2 is almost tight.

Lemma 2 says that for n/d fixed algorithm MQRR will
output n/d provided m is large enough, that is, when m >
9n2d2. This guarantees that as the modulus m is increas-
ing, algorithm MQRR will eventually succeed but it requires
that the modulus m be more than twice as long as the length
of nd before it must succeed. This means that algorithm
MQRR yields no improvement over Wang’s rational recon-
struction algorithm in the worst case. However, this is not
what happens in the average case. The new algorithm will
output n/d with high probability when the length of the
modulus m is only a modest number of bits longer than the

length of nd. The basic reason for this is that large quo-
tients in the Euclidean algorithm are rare. This motivates
the following design for an improved rational reconstruction
algorithm where the input parameter T gives the user con-
trol over the probability that the algorithm will succeed on
random input.

Algorithm MQRR (Maximal Quotient Rational Recon-
struction)
Input: Integers m > u ≥ 0 and T > 0.
Output: Either n, d ∈ Z s.t. d > 0, gcd(n, d) = 1,

n/d ≡ u mod m, and T |n|d < m, or FAIL.

If u = 0 then if m > T then output 0 else output FAIL.
Set (n, d) = (0, 0).
Set (t0, r0) = (0, m).
Set (t1, r1) = (1, u).
While r1 6= 0 and r0 > T do

Set q = br0/r1c.
If q > T then set (n, d, T) = (r1, t1, q).
Set (r0, r1) = (r1, r0 − q r1).
Set (t0, t1) = (t1, t0 − q t1).

end while.
If d = 0 or gcd(n, d) 6= 1 then output FAIL.
If d < 0 then set (n, d) = (−n,−d).
Output (n, d).

We wish now to determine a good value for T such that
algorithm MQRR works with high probability, that is, if
m > |a| b T and gcd(b, m) = 1 the algorithm on input of m
and u = a/b mod m will output a/b with high probability.
To do this we need to study the distribution of the largest
quotient that appears in the Euclidean algorithm.

Let Q = maxn
i=1 qi+1 denote the largest quotient of the

Euclidean algorithm with input m > u ≥ 0. We have made
the following experiment using m = 264 − 59 the largest
64 bit prime and using m = 2128 − 159 the largest 128 bit
prime. We computed Q for 108 random inputs u on [0, m)
and tabulated, in Table 4, fk the number of largest quotients
in the range [2k−1, 2k) that is, the number of quotients of
length k bits. Also tabulated are the ratios rk = fk−1/fk.

The data in Table 4 shows that the probability of obtain-
ing a large quotient drops off exponentially by a factor of
2 past the median value. For m = 264 − 59, using linear
interpolation for the interval 26 ≤ Q < 27 we find that the
median maximal quotient is approximately 26.276 = 77.5.
For m = 2128 − 159, using linear interpolation for the in-
terval 27 ≤ Q < 28 we approximate the median maximal
quotient with 27.289 = 156.

This means that for m = 264, if the parameter T is set
to 77, algorithm MQRR will, with probability 1/2, succeed
on random input. If we are using 30 bit primes in the mod-
ular GCD algorithm and we set T = 230 corresponding to
one prime more than the minimum necessary to reconstruct,
then the probability of obtaining a maximal quotient longer
than 30 bits is less than one in ten million.

However, we must not fix T to be 230 because the median
value of Q increases as m increases. Thus the value of T
used by algorithm MQRR must increase as m increases. We
seek a result of the following form: given an error tolerance
0 < ε = 2−k ¿ 1, find q as a function of m such that
Pr(Q ≥ q) = ε. This is too difficult to obtain. Instead we
obtain the weaker result, sufficient for our purposes, based
on the median value of Q.

m = 264 − 59 m = 2128 − 159

k fk rk k fk rk

3 27064 .0117 3 5 .0011
4 2317747 .1545 4 46496 .0174
5 15006123 .5736 5 2672302 .1770
6 26163579 1.113 6 15100610 .5920
7 23499297 1.531 7 25507027 1.104
8 15346618 1.782 8 23097400 1.505
9 8613460 1.912 9 15349534 1.750

10 4506037 1.976 10 8772209 1.881
11 2280491 2.006 11 4662860 1.952
12 1136600 2.027 12 2389109 1.983
13 560838 2.032 13 1204725 1.998
14 276037 2.040 14 602994 2.012
15 135283 2.031 15 299765 2.019
16 66600 2.033 16 148508 2.015
17 32757 2.030 17 73717 2.018
18 16140 2.105 18 36532 2.003
19 7669 1.988 19 18241 2.025
20 3858 2.002 20 9007 1.981
21 1927 2.127 21 4547 2.100
22 906 1.801 22 2165 1.935
23 503 2.140 23 1119 1.929
24 235 2.061 24 580 2.014
25 114 2.235 25 288 2.087
26 51 1.594 26 138 2.421
27 32 1.882 27 57 2.478
28 17 1.889 28 23 1.533
29 9 1.800 29 15 .9375
30 5 5. 30 16 3.200
31 1 1. 31 5 1.250
32 1 − 32 4 4.000

34 1 −.

Table 4: Lengths of maximal quotients.

Lemma 3. Let Q be the maximal quotient of the Euclidean
algorithm for random input u on [0, m). Then, for suffi-
ciently large m

Pr(Q ≤ q) = 0.5 =⇒ log2 q = log2 log2 m + O(1).

This, together with the observation that the beyond the
median value of Q the ratios rk are close to 2 means that
we should set log2 T = dlog2 log2 me + c for some constant
c, say c = 20 or c = 30 or possibly larger depending on how
certain we wish to be that the output is correct. For our
Maple implementation of the modular GCD algorithm for
polynomials over number fields (see van Hoeij and Monagan
[6]), we are using c = 20, that is, T = 220dlog2 me, which
works well from experiment.

3.1 The Maximal Quotient
We investigate the distribution of the largest quotient ap-

pearing in the Euclidean algorithm to justify Lemma 3. If
one assumes that the remainder ri+1 of ri−1 divided by ri

is randomly distributed on [0, ri) then

Pr(qi+1 = q) = f(q) = 1/q − 1/(q + 1), and

Pr(qi+1 ≤ q) = F (q) =

q
∑

k=1

f(k) = 1 − 1/(q + 1).

The probabilities f(q) underestimate the size of the quo-
tients that appear, in particular, f(1) is too big. A more
accurate approximation for the probability that a quotient
qi+1 in the Euclidean algorithm is q is given in [9], section
4.5.3, namely

Pr(qi+1 = q) = g(q) = log2

[

1 +
1

q(q + 2)

]

and hence

Pr(qi+1 ≤ q) = G(q) =

q
∑

k=1

g(k) = 1 − log2

q + 2

q + 1
.

Some values for f(q) and g(q) and their cumulative proba-
bilities are tabulated below. We remark that g(q) is accurate
except when q is very large, e.g., q = m. Let n be the number

q 1 2 3 4 5 8 16
f(q) .500 .167 .083 .050 .033 .014 .0037
g(q) .415 .170 .093 .059 .041 .018 .0050
F (q) .500 .667 .750 .800 .833 .889 .9412
G(q) .415 .585 .678 .737 .778 .848 .9175

of steps in the Euclidean algorithm and let Q = maxn
i=1 qi+1

be the largest quotient. If n is independent of Q then

Pr(Q ≤ q) = Pr(qi+1 ≤ q)n.

The independence assumption is not true, however, because
larger quotients will correlate with smaller n. If m À Q the
assumption is approximately true. In which case we have

Pr(Q ≤ q) ∼ G(q)n = (1 − log2

q + 2

q + 1
)n.

We need also an approximation for n. For a given value of m
we may run the Euclidean algorithm on random inputs u ∈
[0, m) and use the average number of steps as an estimate
for n. From experiment we observe that this approximation
for n is quite stable. For m = 264−59 we obtained n = 37.8
after 106 values of u. A theoretical estimate1 for n is given
in Knuth [9], namely,

n = 12 ln 2/π2 ln m + C + ... = 0.8428 ln m + 0.4671 +

Using this formula for n we find that the average number
of steps of the Euclidean algorithm for input m, u where
m = 264−59 and u is chosen at random from [0, m−1) is n =
37.85. This agrees with our value above from experiment.
We now estimate the median largest quotient as a function
of m, that is, the value of q such that

G(q)n = 1/2.

Taking logarithms of both sides we obtain log2 G(q) = −1/n

and hence G(q) = 2−1/n. Substituting for G(q) we obtain

log2

q + 2

q + 1
= 1 − 2−1/n.

If m is large then n is also large and hence 1 − 2−1/n is
approximated well by ln 2/n. Similarly, since q is large we

1Note that the formulae in Knuth on page 370 and 372 are
based on the input to the Euclidean algorithm being u, m
instead of m, u. This order of input means that the first
quotient is always 0 and the formulae in Knuth count this
as one step.

approximate log2
q+2
q+1

with 1/(q ln 2). Substituting for these
approximations we have

1/(q ln 2) ≈ ln 2/n =⇒ q ≈ n/ ln2 2.

Substituting 12 ln 2/π2 ln m for n we obtain

q ≈ 12/ ln 2/π2 ln m + ... = 12/π2 log2 m + ...

which gives us the result that we wanted, namely,

log2 q ≈ log2 log2 m + 0.2820 +

Using this approximation we can now estimate the median
largest quotient for m = 264 − 59. We obtain log2 q = 6.282
which is in very good agreement with the observed value of
6.276. For m = 2128 −159 we calculate log2 q = 7.282 which
also is in very good agreement with the observed value 7.289.

4. CONCLUSION
We have presented a new algorithm for rational recon-

struction. Our algorithm improves on Wang’s algorithm by
reducing the size of the modulus m needed to reconstruct a
rational n/d when n and d have different length. Our algo-
rithm is almost optimal in the sense that it requires that m
be only a modest number bits longer than 2|n|d. Thus we
improve the efficiency of modular algorithms when we don’t
have tight bounds on the size and shape of the rational num-
bers we are trying to reconstruct. For modular algorithms
where m = p1 × p2 × ...× pk the improvement is a reduction
of the number of primes needed by up to a factor of 2.

Algorithm MQRR is based on the classical extended Eu-
clidean algorithm and thus has time complexity O(log2 m).
We expect that the efficiency improvements made to Wang’s
algorithm by the authors in [2] and [13] should be applicable
to our algorithm because both algorithms are based on the
Euclidean algorithm.

The new algorithm can be applied to the problem of ratio-
nal function reconstruction in one parameter t over a finite
field GF(q) with q elements. Let n, d ∈ GF (q)[t] be rela-
tively prime with d 6= 0. Let m ∈ GF (q)[t] be relatively
prime to d. Let u = n/d mod m. We run the extended
Euclidean algorithm with inputs m, u ∈ GF (q)[t]. Lemma 1
becomes deg ri + deg ti + deg qi+1 = deg m. The algorithm
outputs the rational function ri/ti for Q a quotient of max-
imal degree (provided gcd(ti, m) = 1). If we impose that
2 deg Q > deg m then the algorithm will output n/d with
probability 1. If we impose that deg Q > 1 then the proba-
bility it outputs n/d will be high provided q is not small. We
conjecture that the probability of error is O(q1−deg Q deg m)
and have some computational evidence to support this con-
jecture.

Acknowledgement
We gratefully acknowledge the help of Alf van der Poorten
for pointing us to facts about continued fractions for proving
Lemma 1.

5. REFERENCES
[1] E. A. Arnold. Modular algorithms for computing

Gröbner bases. J. Symbolic Computation 35,
pp. 403–419, 2003.

[2] G. E. Collins and M. J. Encarnacion. Efficient Rational
Number Reconstruction. J. Symbolic Computation 20,
pp. 287–297, 1995.

[3] M. J. Encarnacion. Computing GCDs of Polynomials
over Algebraic Number Fields. J. Symbolic Computation
20, pp. 299–313, 1995.

[4] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. University of Cambridge Press, 1999.

[5] The GNU Multiple Precision Arithmetic Library.
Copyright, Free Software Foundation, Inc. (2002).
http://www.gnu.org/software/gmp/gmp.html

[6] M. van Hoeij, M. Monagan. A Modular GCD
Algorithm over Number Fields Presented with Multiple
Field Extensions. Proceedings of ISSAC ’2002, ACM
Press, pp. 109–116, 2002.

[7] T. Jebelean. Improving the Multiprecision Euclidean
Algorithm. Proceedings of DISCO ’93, Springer-Verlag
LNCS 722, pp. 45–58, 1993.

[8] J. de Kleine, M. Monagan. A Modular Design and
Implementation of Buchberger’s Algorithm. Proceedings
of the Rhine Workshop on Computer Algebra, 2002.

[9] D. E. Knuth. The Art of Computer Programming:
Volume 2 Seminumerical Algorithms Third Edition.
Addison Wesley, section 4.5.3., 1998.

[10] L. Langemyr, S. McCallum. The Computation of
Polynomial GCD’s over an Algebraic Number Field. J.
Symbolic Computation 8, pp. 429–448, 1989.

[11] L. Langemyr. An Asymptotically Fast Probabilistic
Algorithm for Computing Polynomial GCD’s over an
Algebraic Number Field. Proc. of AAECC ’90,
Springer-Verlag LNCS 508, pp. 222–233, 1991.

[12] P .L Montgomery. An FFT Extension of the Elliptic
Curve Method of Factorization. PhD thesis, University
of California, Los Angeles, 1992.

[13] V .Y Pan, X. Wang. Acceleration of the Euclidean
Algorithm and Extensions. Proceedings of ISSAC ’02,
ACM Press, pp. 207–213, 2002.

[14] A. Schönhage. Schnelle Berechnung von
Kettenbruchenwicklungen. Acta Infomatica 1 pp.
139–144, 1971.

[15] A. Steel (2003). Private communication.

[16] P. S. Wang. A p-adic Algorithm for Univariate Partial
Fractions. Proceedings of SYMSAC ’81, ACM Press, pp
212-217, 1981.

[17] P. S. Wang, M. J. T. Guy, J. H. Davenport. p-adic
Reconstruction of Rational Numbers. SIGSAM Bulletin,
16, No 2, 1982.

[18] P. S. Wang, M. J. T. Guy, J. H. Davenport. Early
detection of true factors in Univariate Polynomial
Factorization. Proceedings of EUROCAL ’83,
Springer-Verlag LNCS 162, pp. 225–235.

