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Abstract

Let Fq be a finite field with q elements and let g(x) =∏d
i=1(x − αi) where the roots αi ∈ Fq are distinct.

The classical root finding algorithm splits g(x) into two
factors of degree approximately d/2 then factors the
two factors recursively. In this work we investigate how
to parallelize the root finding algorithm.

The recursive factorizations may be done in paral-
lel. However, we show that, assuming fast polynomial
arithmetic, parallel speedup obtained by doing this is
very limited. Therefore we parallelize the individual
polynomial operations in the root finding algorithm,
including hgcd, the fast Euclidean algorithm. We also
consider an alternative splitting formula which we show
yields a modest serial speedup but little additional par-
allel speedup. We have implemented our algorithms in
Cilk C using asymptotically fast polynomial arithmetic.
The paper includes experimental data demonstrating a
modest parallel speedup.

1 Introduction

Let Fq be a finite field with q elements and let f(x) be
polynomial in Fq[x] of degree d > 0. A basic problem in
computer algebra is to compute the roots of f(x) that
are in Fq. Letting M(d) denote the cost of multiplying
two polynomials of degree d in Fq[x] it is classical that
the roots of f(x) can be computed in O(M(d)[log2 d+
log2 q]) (see Chapter 8 of [6]).

Our interest in root finding arises from the work
of Hu and Monagan in [5] where the authors devel-
oped a modular GCD algorithm which computes the
greatest common divisor of two polynomials A and B
in Z[x0, x1, . . . , xn]. Let G = gcd(A,B) and let Γ =
LC(A) ∈ Z[x1, . . . , xn] be the leading coefficient of A.
The GCD algorithm in [5] interpolates H = ∆G where
∆ = Γ/LC(G). It does this by computing H modulo a
sequence of primes then uses Chinese remaindering to
recover the integer coefficients of H. The first prime q is
also used to determine the support of H. The algorithm
evaluates A and B at a sequence of points αi ∈ Fnq ,
computes monic images gi = gcd(A(x0, αi), B(x0, αi))
of G then interpolates the coefficients of H from scaled
images Γ(αi)× gi using a sparse interpolation.

The sparse interpolation used is modification of the
Ben-Or Tiwari interpolation from [1] for Fq. If di =
degxi

H the method requires q >
∏n
i=1 di, and, because

the method computes discrete logarithms in Fq, it re-
quires q to be a smooth prime. In the literature, this
sparse interpolation approach is first described by Mu-
rao and Fujise in [11]. A description of the method may
also be found in [9, 5].

In Ben-Or Tiwari sparse interpolation the most ex-
pensive step is to factor a polynomial λ(z) ∈ Fq[z] into
linear factors. The roots of λ(z) determine the support
of the polynomial being interpolated, thus deg λ(z) is
the number of terms in the polynomial. Since factor-
ization of λ(z) is the most expensive step in the sparse
interpolation, we propose to parallelize it.

In [9], Kochtali, Roche and Tian write that “it is not
clear how to efficiently parallelize this factorization”.
Their work was aimed at interpolating super sparse
polynomials which have very high degree but with rel-
atively few terms, that is, d = deg λ(z) is not too large.
For example, their benchmarks interpolate polynomials
up to degree 20320 for which we would need q > 20320

and for d up to 6561. Their approach, which they call
the “small primes approach”, recovers these large ex-
ponents from images modulo many word-sized primes
and they parallelize the algorithm on these primes. In
our work we want to allow d = 106 and larger and we
know that one word sized prime (63 bits) are sufficient
for most GCD problems.

Section 2 presents the details of the classical root
finding algorithm in Fq[z]. The root finding algorithm
is a divide and conquer algorithm. It splits λ(z) into
two factors of approximately the same degree and fac-
tors them recursively. Thus there is some natural paral-
lelism available. However, if one uses classical quadratic
polynomial arithmetic, we show that parallel speedup
is limited to at most a factor of 2. The situation is bet-
ter when fast polynomial arithmetic is used but parallel
speedup is still very limited (see Table 2).

Splitting λ(z) involves two operations, a modular
powering operation which has no natural parallelism
and a gcd computation in Fq[z] which we investigate in
Section 3. We find that the fast Euclidean algorithm
(algorithm hgcd) has natural parallelism of asymptot-
ically a factor of 4. To inject more parallelism into the
root finding algorithm, in Section 2 we also study an
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alternative formula to split λ(z) for smooth q. This for-
mula was first suggested by Cantor and Zassenhaus in
[3]. It was subsequently used by Murao and Fujise in
[11] without randomization but no comparison with the
classical root finding method was made. We show that
if one uses this alternate formula with fast polynomial
arithmetic, we get a modest serial speedup of about a
factor of 2 (see Table 3) but little additional parallel
speedup for N = 2j cores (see Table 4). If the num-
ber of cores N is not a power of 2 but N divides q − 1
then we do get better parallelization. This is relevant
because Intel’s flagship multi-core CPUs, the Xeon E5
v4 series, come with 6,8,10,12,14,16,18,20,22 cores.

In general, it appears that parallelizing root finding
is difficult. In Section 4, we compare a parallel imple-
mentation of the classical root finding with a parallel
implementation of the root finding algorithm using the
alternative formula and our parallel hgcd. Our par-
allel implementations are in Cilk C and are aimed at
multi-core computers. In an attempt to inject more
parallelism into the first modular powering step we also
parallelize the FFT (see [10]). Our benchmarks show
that this is effective for deg λ(z) over 50, 000. Although
we obtain good results for our 16 and 20 core servers
that we have access to, our approach will not scale up
to hundred’s of cores.

2 Parallelizing root finding

Let Fq be a finite field with q elements and let f(x)
be a non-zero polynomial in Fq[x]. Fermat’s little the-
orem asserts that for any element a ∈ Fq, aq = a and
consequently the polynomial xq − x factors as follows

xq − x =
∏
a∈Fq

(x− a)

It follows that g = gcd(f(x), xq−x) is the product of all
the linear factors of f(x). To factor g we use random-
ization to split g(x) into two factors of approximately
the same degree. For odd q, consider the factorization

xq − x = x(xq−1 − 1) = x(x(q−1)/2 − 1)(x(q−1)/2 + 1).

Thus the polynomial x(q−1)/2 − 1 has half the linear
factors of xq−1 − 1 and x(q−1)/2 + 1 has the other half.
Suppose we pick α ∈ Fq at random. Then

xq −x = (x+α)((x+α)(q−1)/2− 1)((x+α)(q−1)/2 + 1)

thus the polynomial h = gcd(g(x), (x + α)(q−1)/2 − 1)
is likely to have about half the linear factors of g(x) in
it and the quotient h/g will have the other half. To
complete the factorization of g(x) one factors h(x) and
g(x)/h(x) recursively, splitting them using different α′s
and stopping when a degree 1 or 0 factor is obtained.
This leads to the following randomized algorithm.

Algorithm split
Input g ∈ Fq[x] a product of linear factors over Fq
Output set of roots of g in Fq
1. if deg g = 1 then g = ax+ b so return {−b/a}

if deg g = 0 then return ∅
2. Pick α ∈ Fq at random

3. h← gcd(g, (x− α)
q−1
2 − 1)

4. return( split(h)
⋃

split(g/h) )

This idea of splitting g(x) using randomization for
q a large prime first appeared in Berlekamp’s factor-
ization paper [2] from 1970. The idea is extended to a
general finite field Fq by Rabin [12] in 1980. However,
as von zur Gathen and Gerhard write in [6], “Legendre
(1785) already knew the basics of the probabilistic root
finding method”.

Obviously the two recursive calls in Algorithm split
can be done in paralllel. In order to describe the cost
algorithm split we need to refer to the polynomials
appearing in the computation tree of the algorithm.

Let h
(0)
0 = g, and let h

(0)
0 = h

(1)
0 h

(1)
1 where h

(1)
0 =

gcd(h
(0)
0 , (x + α)(q−1)/2 − 1) and h

(1)
1 = h

(0)
0 /h

(1)
0 . At

level k > 0 in the computation tree, if deg h
(k−1)
i > 1

the algorithm factors

h
(k−1)
i = h

(k)
2i h

(k)
2i+1 for i = 0, 1, . . . , 2k−1

using h
(k)
2i = gcd(h

(k−1)
i , (x+ α)(q−1)/2 − 1) where α is

chosen randomly from Fq. For deg h
(k−1)
i = d if we let

X be the number of factors in h
(k)
2i then the random

variable X approximates a binomial distribution with
d trials and probability p = 0.5. Thus E[X] ≈ d/2 and
the standard deviation of X is σ ≈

√
d/2.

Example 1 Consider the prime p = 231 − 1 with p −
1 = (2)(32)(7)(11)(31)(151)(331). Thus g(x) = x(31)(331)−
1 = x10261− 1 factors into linear factors over Fp. Using

α = 3, we find that g(x) splits into two factors h
(1)
0 (x)

of degree 5050 and h
(1)
1 (x) of degree 5211. Using α = 5

we find that h
(1)
0 (x) splits into h

(2)
0 (x) of degree 2531

and h
(1)
1 (x) of degree 2519 and h

(1)
1 = h

(2)
2 h

(2)
3 of de-

grees 2612 and 2599. Figure 1 depicts the computa-
tional tree. Thus we are have with four polynomials of
degrees 2519, 2531, 2519 and 2599 to factor which we
may factor in parallel.

To determine the parallel speedup we can obtain by

simply factoring the h
(k)
i in parallel, we need to know

the relative cost of computing 2k−1 gcds at level k. Let
A mod B denote the remainder of A(x)÷B(x) in Fq[x].
Then

gcd(g(x), (x+α)(q−1)/2−1) = gcd(g(x), w(x)−1) (1)
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Figure 1: The top 3 levels of the computation tree for
factoring x10261 − 1 over Fp with p = 231 − 1. Shown
in ( ) is the degree of the polynomial.

where w(x) = (x+ α)n mod g(x). The modular power
(x + 1)(q−1)/2 mod g(x) can be computed efficiently
using the repeated squaring algorithm (Algorithm 4.8
from [6]) modulo g(x). Because this computation is the
most expensive part of algorithm split, and because
it is a sequential bottleneck, we present the algorithm
below with an example illustrating how it works.

Example 2 Let q = 41 so that n = (q − 1)/2 = 21
which is 10101 in binary. The the power (x + α)21

mod g(x) is computed as

((((x+ α)2)2(x+ α))2)2(x+ α)

where after each multiplication we reduce modulo g(x)
to keep the degree down.

Algorithm powmod(α,n,g(x))
Input α ∈ Fq, n > 0 and g(x) ∈ Fq[x] of degree d > 0.
Output (x+ α)n mod g(x).

1 Let n = blbl−1 . . . b1 be the binary representation
of n with bl = 1.

2 r ← 1.

3 for i = l, l − 1, . . . , 2, 1 do

4 r ← r2 mod g.
5 if bi = 1 then r ← (x+ α)r mod g.

end for.

6 return r.

Let d = deg(g), q be an odd prime and let n =
(q − 1)/2. If classical quadratic polynomial multiplica-
tion and division is used, the modular power (x + α)n

mod g(x) can be computed using at most 2d2 log2(q/2)
multiplications in Fq. If the classical quadratic Eu-
clidean algorithm is used to compute the gcd in (1)
it costs at most d2 multiplications in Fq. For d over
about 500, fast FFT based multiplication can be used
to speed up both operations. In Table 1 below M(d)
denotes the cost of multiplying two polynomials of de-
gree d. If q − 1 = 2rs + 1 with 2r > 2d then the FFT
can be used to implement fast multiplication directly
in Fq thus M(d) = 3F (2d) + O(d) where F (n) is the
number of arithmetic operations in Fq needed for an

FFT. For n = 2k we have F (n) = 3
2n log2 n arithmetic

operations in Fq (see Theorem 8.15 of [6]). In Table 1
below we have expressed the cost of the modular power
operation and gcd operation in terms of the number of
FFTs of size 2d.

Fast with FFT in Fq
w(x) O(M(d) log2 q) c1F (2d) log2

q
2 +O(d log2 q)

h(x) O(M(d) log2 d) c2F (2d) log2 d+O(d log2 d)

Table 1: Number of arithmetic operations Fq for com-
puting w(x) = (x + α)(q−1)/2 mod g(x) and h(x) =
gcd(g(x), w(x) − 1).

In [13] Shoup showed how to do step 4 of algorithm
powmod with only 6 FFTs of size 2d, thus c1 = 6. Let
H(d) be the number of number of arithmetic operations
in Fq needed to compute the gcd of two polynomials of
degree d using algorithm hgcd (see section 3). In Sec-
tion 3 we show that H(d) = 10F (d) log d + O(d log d)
hence H(d) < 5F (2d) log d + O(d log d) thus the con-
stant c2 < 5.

Let S(l) be the number of arithmetic operations in
Fq at level l in the computation tree. We are interested
in the ratio S(l)/S(l+1). In the best case the gcd splits

h
(l)
i of degree d into h

(l+1)
2i and h

(l+1)
2i+1 of equal degree

d/2. In the classical quadratic model of arithmetic

S(l)/S(l + 1) =
2d2 log2(q/2) + d2

2 [2(d/2)2 log2(q/2) + (d/2)2]
∼ 2.

This means that the first modular power (x+α)(q−1)/2

mod g in algorithm split accounts for half the total
work and hence the natural parallel speedup of the root
finding algorithm is at most 2 on N cores.

In the fast model of polynomial arithmetic

S(l)/S(l+1) ∼ c1F (2d) log2(q/2) + c2F (2d) log2 d

2c1F (d) log2(q/2) + 2c2F (d) log2(d/2)
.

Now under the assumption that q � d, with c1 = 6
and c2 < 5, we have c1 log2 q > c2 log2 d thus modular
powering operation dominates the cost of all levels in
the computation tree. The cost of level l + 1 is almost
the same as level l. There is a log2 factor of the degree
inside the FFT thus for d = 2k we have

S(l)/S(l + 1) ∼ log2(2d)

log2(d)
=
k + 1

k
.

If we assume that at each level the polynomials split
into two factors of the same degree, then cost of the
modular powers at all levels is dominated by

c1(2d) [(k + 1) + k + · · ·+ 2] log2(q/2).
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For N = 2j cores, if we employ 2i cores at level i for
levels 0 ≤ i < j and all N cores for levels i ≥ j, parallel
speedup is at most

(k + 1) + k + · · ·+ 2
k+1
1 + k

2 + k−1
4 + · · ·+ k+2−j

N/2 + (k+1−j)+(k−j)+···+2
N

Table 2 below shows how limited the parallel speedup
is for various k and j.

number of cores N = 2j

deg g = 2k 2 4 8 16 32
212 1.75 2.55 3.16 3.50 3.65
216 1.80 2.78 3.64 4.21 4.51
220 1.83 2.94 4.04 4.84 5.31
224 1.86 3.06 4.36 5.41 6.07

Table 2: Maximum parallel speedup for N cores.

This is a best case scenario. If h
(l)
i does not split evenly,

parallel speedup is reduced. On machines with N 6= 2i

cores, the work cannot be distributed evenly among the
cores. To increase parallel speedup for N = 2j cores we
need to parallelize the first j − 1 levels. At each level
we compute

h
(k)
2i = gcd(h

(k−1)
i , (x+ α)(q−1)/2 mod h

(k−1)
i − 1)

Algorithm powmod does a sequence of multiplications

modulo h
(k−1)
i which cannot be parallelized. The fast

Euclidean algorithm (see Chapter 11 of [6]) is also se-
quential. It makes two recursive calls on problems of
half the original degree but the first must be completed
before the second can start so there is no easy paral-
lelism. Therefore we need to look elsewhere.

In the GCD application in [5] the prime q needs to
be a smooth prime but we are otherwise free to choose
q. Consider the following factorization from [3] and
[11].

Lemma 2.1 Let n|q − 1 and let ω be a primitive n’th
root of unity in Fq. Then

xq − x = x

n∏
k=1

(x(q−1)/n − ωk).

Suppose we pick β ∈ Fq at random. Then

xq − x = (x+ β)

n∏
k=1

((x+ β)(q−1)/n − ωk). (2)

Thus to split g(x) of degree d > 1, we compute

w := (x+ β)(q−1)/n mod g then
gk := gcd(g(x), w(x)−ωk) for k = 1, 2, . . . , n (*).

This splits g(x) into n factors of degree approximately
d/n. Thus if our computer has N cores and N |q−1 then
after computing w(x) we haveN tasks of approximately
the same size which we may run in parallel.

Example 3 Consider again the root finding problem
from example 1 where p = 231 − 1 andx g = x10261 − 1
which factors into 10261 linear factors over Fp. Sup-
pose our computer has N = 6 cores. Since 6|p − 1
we choose n = 6. We found α = 7 is the smallest
generator of F∗p thus ω = α(p−1)/n = 1513477736 is a
primitive 6’th root of unity in Fp. Picking β = 106 + 1
to “randomize the splitting”, we compute w := (x +
β)(p−1)/6 mod g then gk := gcd(g, w − ωk) for k =
1, 2, . . . , 6. We obtain factors g1, g2, . . . , g6 of degree
1727, 1751, 1725, 1730, 1642, 1686 respectively. Note, this
example illustrates why we must randomize for if we use
β = 0, we obtain factors g1, g2, . . . , g6 of degrees 0, 0,
0, 0, 0, 10261 respectively.

If we use formula (2) there is a significant savings
in serial work if n = 2j > 2 because we eliminate j − 1
levels of modular power operations and gcd operations.
But there is a tradeoff, namely, we must compute n
gcds of degree d. Let us determine the value of j that
minimizes the serial work.

Suppose deg g = d = 2k � 1. Then the work to
compute w(x) and n gcds at the first level is

Cnew(j) = c1F (2d) log2 p/n+O(d log2 p)

+
n

2
c2F (2d) log2 d+O(nd log2 d).

The factor of 2 in n
2 is because of an optimization we

will present in Section 4. The gcds gcd(g(x), w(x)−ωk)
for 1 ≤ k ≤ n differ only be a constant and this can be
exploited to reduce the cost by a factor of 2.

Assuming that n� d the top j levels in the compu-
tation tree take approximately the same time thus the
serial cost of the classical splitting algorithm is

Cold(j) ≈ j[c2F (2d) log2 p/2 +O(d log2 p)

+c2F (2d) log2 d+O(d log2 d)].

Substituting n = 2j , the serial speedup is given by

S(j) =
Cold(j)

Cnew(j)
∼ j c1 log2 p/2 + c2 log2 d

c1 log2 p/2
j + 2j−1c2 log2 d

.

Now maximum speedup occurs when S′(j) = 0. Substi-
tuting c1 = 6, c2 = 5 and considering 63 bit primes and
127 bit primes for various degrees between 210 ≤ d ≤
220 Table 3 shows for what value of j we get maximum
speedup and what that speedup is.

Notice in Table 3 that if we use the formula (2) re-
cursively, serial speedup improves slightly as we recurse
and the degree decreases.
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degree 63 bit primes 127 bit primes
d j speedup j speedup

210 3.43 2.25 (j = 3) 4.06 2.83 (j = 4)
212 3.28 2.15 (j = 3) 3.89 2.67 (j = 4)
216 3.05 1.98 (j = 3) 3.64 2.42 (j = 4)
220 2.90 1.85 (j = 3) 3.44 2.24 (j = 3)
224 2.76 1.74 (j = 3) 3.37 2.14 (j = 3)

Table 3: Choosing n = 2j to minimize serial work

The new formula yields a modest serial speedup.
Does it also yield a parallel speedup? Let n = 2i yield
the best serial cost and suppose we use the alternate
on N = 2j cores for various values of j where we al-
ways do a n = max(2i, 2j) split. Appendix A contains
a Maple program to compute the parallel speedup on
N = 2j cores for various primes and degrees. The par-
allel speedup data is presented in Table 4 which should
be compared with the data in Table 2. We are disap-
pointed by the improvement.

number of cores N
blog2 pc n d 2 4 8 16 32

62 8 212 1.59 2.27 2.87 3.31 3.56
62 8 216 1.69 2.57 3.47 4.13 4.52
62 8 220 1.75 2.80 4.00 4.91 5.46
62 8 224 1.81 3.00 4.51 5.72 6.54

126 16 212 1.51 2.04 2.47 2.76 2.92
126 16 216 1.62 2.35 3.03 3.54 3.82
126 8 220 1.69 2.57 3.47 4.21 4.62
126 8 224 1.74 2.77 3.93 4.95 5.56

Table 4: Parallel speedup on N cores for n way split.

3 Parallelizing HGCD

A key component of the root-finding algorithm is the
computation of polynomial GCD, for which we use the
algorithm discussed by Knuth [15], Strassen [14], Lehmer
[7] and Moenck [8] which we call the half-gcd algorithm,
or hgcd. Given a field F and A,B ∈ Fp[x], one can
find the greatest common divisor of A,B by construct-
ing a Euclidean remainder sequence (a0 . . . an) where
a0 = A and a1 = B and successive remainders are
found by Euclidean division, with q1 . . . qn the corre-
sponding quotients:

a0 = a1q1 + a2

a1 = a2q2 + a3

...

an−1 = anqn

The algorithm hgcd notices that a quotient qi can
be computed using only the highest degree portion of

terms of ai−1 and ai. Specifically, a quotient qi of de-
gree k can be computed using the leading 2k terms of
ai−1 and the leading k terms of ai, see [8]. The utiliza-
tion of this idea can be described with some notation
(see [14]). For a ∈ Fp[x], deg a = m, let a � r be defined:

a � r =


0 if r < 0

a quo xm−r if 0 ≤ r ≤ m
a× xr−m if r ≥ m

Then for a, b, a∗, b∗ ∈ Fp[x] with deg a ≥ deg b and
deg a∗ ≥ deg b∗ we say that (a, b) and (a∗, b∗) coincide
up to r iff a � r = a∗ � r and b � r−(deg a−deg b) = b∗ �
r − (deg a∗ − deg b∗). For a given Euclidean remainder
sequence (a0, a1, . . . an) and quotients (q1, q2, . . . qn) we
define η(k) to be the maximum j such that 0 ≤ j ≤ n
and

∑
(deg(q1) . . . deg(qj)) ≤ k (see Sect. 11.1 of [6]).

Then for pairs of polynomials (a, b) and (a∗, b∗) co-
inciding up to 2k for k ≥ deg a − deg b ≥ 0 with the
Euclidean division

a =bq + r

a∗ =b∗q∗ + r∗

we will have q = q∗. Further, we will have (b, r), (b∗, r∗)
coincide up to 2(k−deg q) or r = 0 or k−deg q < deg g−
deg r (see [6] and [14]). This leads to the following
lemma which forms the basis of the hgcd algorithm.

Lemma 3.1 For k ∈ N let (a0, a1) and (a∗0, a
∗
1) coin-

cide up to 2k, and let h = η(k) and h∗ = η∗(k) cor-
respond to the quotients qi and q

∗
i of the Euclidean re-

mainder sequences of (a0, a1) and (a∗0, a
∗
1) respectively.

Then h = h∗ and qi = q∗i for 1 ≤ i ≤ h.

For a proof of this lemma see [6] and [14]. Given a
quotient qi we can relate consecutive remainder pairs
by (

ai
ai+1

)
=

(
0 1
1 −qi

)(
ai−1
ai

)
We may also compose these relations for Qi =

(
0 1
1 −qi

)
as
(
ai
ai+1

)
= QiQi−1 . . . Q1

(
a0
a1

)
= Ri

(
a0
a1

)
for Ri ∈

Fp[x]2×2. Using these ideas a divide-and-conquer al-
gorithm is constructed by choosing d a desired partial
sum of quotient degrees, and acquiring the correspond-
ing R matrix using recursion on a truncated part of the
inputs. Then an intermediate remainder pair is com-
puted and the process is repeated. We present psue-
docode for algorithm hgcd so that the reader may see
where to parallelize it.

A proof and analysis of this algorithm is provided
by Gathen and Gerhard in [6], noting that we have
here set r0 � d = r0 for d ≥ deg r0. They show that the
cost of this algorithm in additions and multiplications is
bounded by (22 M(d0)+O(k)) log(k) where M(n) is the
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cost of a multiplication of input size n. They also show
that when the degree sequence is normal, this bound
becomes (10 M(k) +O(k)) log(k).

Algorithm hgcd
Input: r0, r1 ∈ Fp[x], d0 = deg r0 ≥ deg r1 = d1, and
k ∈ N with 0 ≤ k ≤ d0.
Output: Ri = Qi . . . Q1 ∈ Fp[x]2×2 for i = η(k).

1. if r1 = 0 or k < d0 − d1 then return

(
1 0
0 1

)
if k = d0 − d1 = 0 then return R =

(
0 1

1 − lc(r0)
lc(r1)

)
2. d← dk/2e − 1

τ ← max(d0 − 2d, 0)

R← hgcd(r0 quo xτ , r1 quo xτ , d)

δ1 ← deg(R2,2)

3.

(
r̃j−1
r̃j

)
← R

(
r0
r1

)
4. if r̃j = 0 or k < δ1 + deg(r̃j−1)− deg(r̃j) return R

5. qj ← r̃j−1 quo r̃j , Qj ←
(

0 1
1 −qj

)
r̃j+1 ← r̃j−1 rem r̃j

6. d∗ ← k − δ1 − deg(qj)

τ̂ ← max(deg(r̃j)− 2d∗, 0)

S ← hgcd(r̃j quo xτ̂ , r̃j+1 quo xτ̂ , d∗)

δ2 ← deg(S2,2)

7. return SQjR

To parallelize the hgcd algorithm, we will first seek
an efficient serial implementation. We use the Fast
Fourier Transform in steps 3 and 7. We perform the en-
tire Matrix-Vector and Matrix-Matrix multiplications
on Fourier coefficients since the image homomorphism
given by the Fourier transform allows both addition and
multiplication.

Let F(n) be the cost of a Fourier transform of de-
gree n. At step 3 of the algorithm we will compute
transforms of r0, r1 and the four polynomials in R,
and inverse transforms of r̃j−1 and r̃j , all of the size of
deg r̃j−1.1 Since R is used in both step 3 and step 7,
we will compute the Fourier transform of R for the
larger operation and extract those coefficients corre-
sponding to lower-order roots of unity for the smaller
operation. The size of the output of step 7 is bounded
by k, so that the transforms needed for step 3 are
4 F(deg r̃j−1)+4 F(max(deg r̃j−1, k)). At step 7 we need
a transform of qi, as well as 4 transforms for S and 4 in-
verse transforms for the output. We expect qi of small

1When taking a fourier transform of size n = 2j where the
input degrees are larger than n−1 we first reduce modulo xn−1

degree, so that its Fourier transform can be found in lin-
ear time using evaluation at the Fourier points. Then
the FFTs needed for step 7 are 8 F(k).

We introduce a base case after step 1 so that when
k is less than a threshold, we call a modified classical
extended Euclidean algorithm with the same input and
output definition as hgcd. The optimal value of the
threshold of k = 120 was large enough to allow us to
avoid the need for classical multiplication alternatives
at steps 3 and 7.

3.1 Algorithm Behaviour Analysis

Since we choose d =
⌈
k
2

⌉
− 1 algorithm hgcd satisfies

k

2
− 1 ≤ d < k

2
≤ d0

2
(3)

If the algorithm doesn’t return at step 4, then we also
have

0 ≤ δ1 ≤ d < δ1 + deg(qj) (4)

which means d∗ = k − δ1 − deg(qj) < k − d =
⌊
k
2

⌋
+ 1

and so d∗ ≤ k
2 .

Let k(1) and d
(1)
0 be the values of k, d0 in the re-

cursive call of step 2, and k(2) and d
(2)
0 in the recur-

sive call of step 6. Then we have k(1) = d and d
(1)
0 =

min(2d, d0). By (3) we know that 2d < d0 so that k(1) =
1
2d

(1)
0 . At step 6 consider two cases. First if hgcd

is called with k = d0 then since d0 − δ1 = deg(r̃j−1)
we have d∗ = d0 − δ1 − deg(qj) = deg(r̃j) so that

d
(2)
0 = deg r̃j = d∗ and k(2) = d

(2)
0 . Second, if hgcd is

called with k = 1
2d0 then 2d∗ = deg(r̃j)−δ1−deg(qj) <

deg(r̃j) so that k(2) = 1
2d

(2)
0 . This leads to predictable

behaviour when the algorithm is called with k = d0.
There will be a series of second recursive calls each with
k = d0 for their respective inputs, while the rest of the
calls in the algorithm satisfy k = 1

2d0 for their respec-
tive inputs.

Let H(k) be the cost of hgcd and let us consider
two scenarios. First, let H2(k) be the cost when the
inputs satisfy d0 = 2k. We assume deg qj is small, so
that deg r̃j−1 = d0 − δ1 ≈ 3

2k. Thus step 3 will be of
cost 8 F( 3

2k) + O(k) and step 7 of cost 8 F(k) + O(k).
Letting F (k) = k log2 k the total cost is given

H2(k) = 20 k log2 k +O(k) + 2H2(k/2)

Solving for H2(k) with H2(0) = 0 we obtain

H2(k) = 10 k log2
2 k +O(k log2 k).

Second, let H1(k) be the cost of hgcd when d0 = k.
Then deg r̃j−1 ≈ 1

2k and step 3 will be of cost 4 F( 1
2k)+

4 F(k) + O(k), and step 7 of cost 8 F(k) + O(k). Thus
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the cost is

H1(k) = 14 k log2 k +O(k) +H2(k/2) +H1(k/2)

= 5 k log2
2 k +O(k log2 k) +H1(k/2)

Solving for H1(k) with H1(0) = 0 we obtain

H1(k) = 10 k log2
2 k +O(k log2 k)

Then the cost in either case is

H(k) = 10F (k) log2 k +O(k log2 k)

3.2 Splitting at powers of 2

When using FFT based multiplications, computations
may not generally be powers of two. Rather than im-
plement the Truncated FFT, we will modify the choice
of d in the algorithm at step 2 as

d← 2blog2 kc − 1

Then when hgcd is called with d0 = 2k and k = 2i− 1
for some i, then d = 2i−1−1 and d∗ ≤ 2i−1−1, so that
d0 and k will be just under a power of two for the ma-
jority of the algorithm. When the remainder sequence
is nearly normal and d0 = 2k and k = 2i − 1, then
deg r̃j−1 ≈ d0 − d = 2i + 2i−1 − 1 ≈ 3

4d0. To optimize
for this we implemented a Fourier transform for input
sizes 3/4 a power of two using the cross relationships of
the Truncated FFT [4] for a single level. This allows
effective use of FFTs for the majority of the algorithm.
Figure 2 shows timing of the hgcd algorithm with each
choice for d, for GCD degree 10, r0, r1 of degree varying
up to 1 million where coefficients are random so that
the degree sequence is normal.
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Figure 2: hgcd GCD Timings, deg gcd = 10

3.3 Paralleizing HalfGCD

Parallelization of the hgcd algorithm is difficult due
to the dependency between the two recursive calls. We
gain some limited parallelization in computationally in-
tensive steps 3 and 7. For d0 = 2k, at step 3 we compute

six FFTs in parallel followed by two inverse transforms
in parallel, all of size 3

2k. At step 7 we compute four
forward transforms in parallel followed by four inverse
transforms in parallel, all of size k. The work excluding
recursion is approximately 8 F( 3

2k) + 8 F(k) < 20 F(k)

while the span is 2 F( 3k
2 ) + 2 F(k) < 5 F(k). Thus the

theoretical speedup is 20/5 = 4.00. For d0 = k, at
step 3 we compute six FFTs in parallel, four of which
are of size k and two of size k

2 , followed by two inverse

transforms in parallel of size k
2 . At step 7 we compute

four forward transforms in parallel followed by four in-
verse transforms in parallel, all of size k. The work
excluding recursion is approximately 4 F(k) + 4 F(k2 ) +

8 F(k) < 14 F(k) while the span is F(k)+ F(k2 )+2 F(k) <
7
2 F(k). Thus the theoretical speedup is 14/3.5 = 4.00.
On four cores these theoretical speedups are 3.08 and
3.50 respectively.

4 Parallel experiments

The parallel root finding algorithm is implemented in
C with the CilkPlus extension of gcc 6.2.1. Compu-
tations are over Zp for 63-bit prime p = 249325272 + 1.
Our experiments were run on two Intel Xeon servers
gaby and jude in the CECM at Simon Fraser Univer-
sity. The gaby server has two E5 2660 8 core cpus run-
ning at 2.2/3.0 GHz (base/turbo). The jude server has
two E5 2680 v2 10 core cpus running at 2.8/3.6 GHz
(base/turbo). Thus the maximum parallel speedup on
these servers is a factor of 2.2/3.0 × 16 = 11.7 and
2.8/3.6× 20 = 15.5 respectively. The rootfinding algo-
rithm swaysplit is as follows:

Algorithm swaysplit
Input g ∈ Fq[x] a product of linear factors over Fq

S ∈ N where S|q − 1
Output set of roots of g in Fq
1. if deg g = 1 then g = ax+ b so return {−b/a}

if deg g = 0 then return ∅
2. Pick α ∈ Zq at random

3. W ← (x− α)
q−1
S mod g

4. if degW = 0 then goto 2 as W = ωi for some i
and gi = g in step 5

5. In parallel for i = 1 . . . S do
gi ← gcd(g,W − ωi)
ui ← swaysplit(gi, S)

end for

6. R←
⋃S
i=1 ui

7. if g(α) = 0 then R← R ∪ {α}
8. return R
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Step 2 is computed with the repeated squaring al-
gorithm powmod of Section 2. GCDs are computed
using the hgcd algorithm, but with right-hand calls of
step 6 of hgcd unwrapped into a loop, avoiding one
sequence of matrix-matrix multiplications and return-
ing the GCD rather than a matrix. In the Cilk model
of parallelism, each of N workers looks for work using
a job-stealing algorithm. If S = N , all work will be
distributed at step 5, and each core will continue the
algorithm in serial. For S > N , parallelism will con-
tinue for additional levels.

Our implementation of swaysplit makes use of an
additional serial optimization. Consider the computa-
tions of gcd(g,W −ωi) at step 4. We note that for each
i the inputs differ only by a constant, so that accord-
ing to Lemma 3.1 the first η

(
1
2 (deg g − 1)

)
quotients of

each remainder sequence will be equal. To use this we
compute R̂ = hgcd(g,W, k = 1

2 (deg g−1)) after step 3

and then
(
r̂j−1

r̂j

)
= R̂

(
g
W

)
where

R̂

(
g

W − ωi
)

=

(
r̂j−1
r̂j

)
− ωi

(
R̂1,2

R̂2,2

)
Then in step 5 we compute gcd(r̂j−1 − ωiR̂1,2, r̂j −
ωiR̂2,2) = gcd(g,W−ωi). The savings in serial work for
GCD computations is about 1/2, though parallelization
is made more difficult.

We test the swaysplit algorithm on inputs of de-
gree d constructed from random distinct linear factors.
In Table 5 we investigate serial performance of the algo-
rithm for different values of S, with the classical 2-way
split represented by S = 2. We also show for S = 2
the time taken to compute the first powmod operation
and the first GCD, showing a cost ratio between 6.8:1
to 4.7:1, reflecting the asymptotic difference of log2 p
to log2 d. As we increase S from 2 we effectively skip
computations of powmod, computing Si powmods of
size d/Si for levels i = 0 . . . logS d. The tradeoff is in-
creased GCD computations. We see that the optimal
split for the given prime and input degrees is S = 8
which agrees with our theoretical estimate in Section
2, see Table 3.

We test parallelization of the classical 2-way split
against the new algorithm, in Tables 6 and 7. In Ta-
ble 6 we split the linear factors of g 2-ways (i.e. S = 2)
and parallelize the 2 recursive calls on dlog2Ne levels,
until all N threads have been assigned. In Table 7, we
split the factors S ways and parallelize each of the S
recursive calls on the first level, and then continue in
serial, splitting S ways throughout. Parallel times are
given, and parallel speedups are against the correspond-
ing serial timings for the same choice of S, see Table 5.
The results show that we have not achieved any addi-
tional parallelism for S > 2, though raw timings are
improved due to serial speedup.

In Tables 8 to 9 we attempt to add parallelism to
the powmod and hgcd algorithms in steps 2 and 4
of swaysplit. For the repeated squaring algorithm,
we parallelize in the FFT computations. For an FFT
computation of size n with t cores, at the levels i =
0 . . . log2(t) we break up the n

2 butterfly operations into
blocks of size n

2tk , or k blocks per thread. We found
k = 4 to give optimal parallelization for FFT sizes up
to 4 million. Parallelism is also added to the hgcd
algorithm as described in Section 2. The results are
shown in Table 8. We see moderate success, with a
speedup of 4.44 on 5 cores for input size 2 million. In
Table 9 we test on jude with 20 cores using first a 5-way
split followed by 4-ways splits, and we see a speedup of
12.28. In Table 10 we test on gaby with 16 cores using
16-way splits on inputs of sizes up to 8 million, with a
speedup of 11.42. These are quite good in comparison
to the maximum speedups on these machines described
at the beginning of Section 4.

5 Concluding remarks

We have shown that the natural parallelism of the clas-
sical root-finding algorithm using a two-way split is lim-
ited. In an effort to increase parallelism we designed an
efficient parallel version of the hgcd algorithm, and
found that the natural parallel speedup is limited to
4.0. We also experimented with a factorization algo-
rithm which splits more than 2 ways, which gives a se-
rial speedup without losing parallelism. Finally, since
powmod is a sequential bottleneck, we add some paral-
lelism to the large FFT computations it performs. The
results show that we have achieved good parallelization
on 10-20 cores, though these methods won’t scale up to
many more cores.
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S = 2 S = 4 S = 8 S = 16
d time p1 g1 time (×) time (×) time (×)

64000 40.26 3.14 0.46 22.09 (1.82) 17.97 (2.24) 20.31 (1.98)
128000 88.76 6.50 1.06 54.55 (1.63) 42.52 (2.09) 52.80 (1.68)
256000 191.90 13.47 2.37 107.47 (1.79) 106.60 (1.80) 100.49 (1.91)
512000 417.98 27.76 5.54 261.55 (1.60) 202.39 (2.07) 228.70 (1.83)

1024000 901.99 57.06 11.62 516.46 (1.75) 466.17 (1.93) 527.16 (1.71)
2048000 1952.02 117.06 24.95 1226.41 (1.59) 1118.90 (1.74) 1269.21 (1.54)

Table 5: Serial root-finding timings in seconds on ‘gaby’. Inputs polynomials with d random distinct linear factors. p1

and g1 show times for powmod and GCDs at the first level. Speedups are against classical S = 2.
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Table 6: Parallel root-finding timings with classical S = 2 splits on ‘gaby’, with parallelism on first log2(#cores) levels.
Speedups are against corresponding serial timings, see column S = 2 of Table 5.

2 cores 4 cores 8 cores 16 cores
d time (×) time (×) time (×) time (×)

64000 21.84 (1.84) 8.18 (2.70) 5.45 (3.30) 4.61 (4.41)
128000 48.03 (1.85) 19.26 (2.83) 12.00 (3.54) 10.90 (4.84)
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Table 7: Parallel root-finding timings of new algorithm with S = #cores splits on ‘gaby’. Speedups are against
corresponding serial timings, seen in Table 5.

Serial Parallel
d time p1 hgcd1 time (×) p1 (×) hgcd1 (×)
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Table 8: Serial and parallel root-finding timings with S = 5 splits and 5 cores on ‘jude’. Parallel timings include
parallelization of powmod (p1) and shared HalfGCD (hgcd1) on the first level, with timings and speedups given.

Serial Parallel
d time p1 hgcd1 time (×) p1 (×) hgcd1 (×)
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1024000 467.26 40.82 8.18 38.63 (12.10) 7.71 (5.29) 4.20 (1.95)
2048000 981.26 83.63 17.97 79.92 (12.28) 15.31 (5.46) 8.94 (2.01)

Table 9: Serial and parallel root-finding timings with S = 5 splits on the first level and S = 4 on remaining levels on
‘jude’. Parallel timings are on 20 cores.
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Serial Parallel
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Appendix A

Maple code to compute the parallel speedup using the
n way splitting formula (2).

c1 := 6;

c2 := 5;

for p in [2^62,2^126] do

for d from 24 to 12 by -4 do

for i from 1 to 6 do

n := 2^i; # n way split

S := 0;

for k from d by -i to i do

M := c1*(k+1)*log[2](p/n); # modular power

G := c2*(k+1)*k; # fast gcd

S := S+M+n*(G/2); # serial work

od:

if i=1 then minn,minS := n,S;

elif S<minS then minn,minS := n,S;

fi;

od;

printf("d=2^%d p>2^%d S=%d n=%d\n",

d,log[2](p),minS,minn);

for j from 1 to 5 do

N := 2^j; # number of cores

n := max(minn,N);

i := log[2](n);

P := 0; # parallel time

lev := 0;

for k from d by -i to i do

M := c1*(k+1)*log[2](p/n);

G := c2*(k+1)*k;

P := P+M/min(n^lev,N)+

(n*G/2)/min(n^(lev+1),N);

lev := lev+1;

od:

pspeedup := evalf(minS/P);

printf(" N=%d S/P=%8.3f\n",N,pspeedup);

od;

od:

od;
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