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We present the first results from quantum-chemical calculation of a vibrational g-factor; the calculations were
performed at the level of full configuration interaction using a basis set of aug-cc-pVQZ quality. The theoretical
results are consistent with experimental results from analysis of pure rotational and vibration-rotational spectra
of dihydrogen in six isotopic variants, in which calculated results for either the rotational g-factor or adiabatic
corrections are employed to constrain fits of coefficients of radial functions from wave numbers of transitions.
When fits are constrained with data for the rotational g-factor, we reproduce also the radial dependence of
adiabatic corrections relative to their value at equilibrium internuclear separation.

Introduction

According to a theoretical description, coupling between elec-
tronic and nuclear motions in molecules produces terms of two
types, called adiabatic if they involve expectation values of
electronic operators on nuclear wave functions within a parti-
cular electronic state, or nonadiabatic if they involve matrix
elements of the same operators between separate electronic
states.1–6 When van Vleck derived these terms,1 he distin-
guished between nonadiabatic vibrational terms, which con-
nect states with symmetries of the same class, and nonadiabatic
rotational terms, which connect electronic states with symme-
tries of distinct classes, but he made no association between
these nonadiabatic rotational terms and the rotational g-factor
of which experimental measurements had been first made a few
years earlier.7 When Herman and Asgharian2 rederived an
effective molecular Hamiltonian for nuclear motion, they
described a relation between nonadiabatic rotational terms
and the rotational g-factor, which they interpreted in terms
of electrons ‘slipping’ as nuclei rotate about the molecular
centre of mass; the nonadiabatic vibrational term has an
analogous physical interpretation. These authors noted2 that
there is no magnetic effect of low order that can yield experi-
mental manifestation of this nonadiabatic vibrational term,
comparable to a Zeeman effect, for instance, connected to the
rotational g-factor that produces splitting of spectral lines for
rotational transitions.8,9 Despite the consequently lacking as-
sociation with a ‘proper’ vibrational g-factor, i.e. a dimension-
less magnetogyric ratio between a magnetic dipolar moment
and an angular momentum, the nonadiabatic vibrational term
is called the vibrational g-factor,6 a convention that we accept
here. Whereas the rotational g-factor, gr, is a quantity well

understood from both experiment and theoretical calcula-
tion,10–13 especially for a diatomic molecular species in elec-
tronic state 1S,14 apart from those formal theoretical deriva-
tions1,2,4–6 little was known about the vibrational g-factor, gv,
before the present work. In an earlier calculation15 of the
vibrational g-factor for the degenerate bending mode of
HCN, this quantity was obtained from the rotational g-factor
evaluated at a distorted geometry and therefore not from the
original expressions of Herman and Asgharian.2

From a theoretical point of view, we define pertinent quan-
tities through a Hamiltonian. For two atoms interacting as
point masses or lacking internal structure, a conventional
Hamiltonian to describe their motion, relative to axes fixed
in space with the origin at the centre of molecular mass, is
expressed as

Ĥ Rð Þ ¼ � �h2

2m
@2

@R2
þ �h2

J J þ 1ð Þ
2mR2

þ V Rð Þ ð1Þ

in which the first term on the right side of the equality denotes
kinetic energy of two atoms with linear momentum,

P̂ ¼ �i�h @

@R
ð2Þ

along an axis connecting their centres a distance R apart, with
Dirac’s constant �h¼ h/2p; a second term denotes kinetic energy
of atoms moving perpendicularly to that axis or energy of
rotation about the centre of molecular mass in a state with
quantum number J for angular momentum, and a third term
denotes interatomic potential energy V(R), generally referred
to a minimum at equilibrium internuclear distance Re. The
former two terms contain atomic reduced mass,

m ¼ MaMb

Ma þMb
ð3Þw Occasional visiting professor at University of Southern Denmark,
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of a system comprising two atoms of masses Ma and Mb,
whereas the other term is formally independent of mass. To
take into account that a real diatomic molecule contains no
explicit atom, merely two atomic nuclei and their associated
electrons, and that electrons follow imperfectly the motion of
one or other nucleus, we include a correction to each term in
the preceding primitive Hamiltonian to achieve an effective
molecular Hamiltonian1–6,16 neglecting magnetic effects, for
relative motion of two atomic nuclei in a field of their asso-
ciated electrons:

Ĥeff Rð Þ ¼ � �h2

2m
@

@R
1þ me

mp
gv Rð Þ

� �
@

@R

þ �h2

2m
1þ me

mp
gr Rð Þ

� �
J J þ 1ð Þ

R2
þ V Rð Þ þ V 0 Rð Þ

ð4Þ

Radial functions gv(R) for the vibrational g-factor and gr(R)
for the rotational g-factor each have as coefficient a ratio of
electronic me and protonic mp rest masses, according to con-
vention, and are associated with nonadiabatic corrections to
the vibrational and rotational reduced mass,2,4�6 respectively,
as explained below. A further radial function V 0(R) takes into
account a small dependence of internuclear potential energy on
separate nuclear masses, known as an adiabatic correction
Vad(R), whereby total internuclear potential energy depends
not only on static coulombic interactions but also, through
reactions of nuclear motions, on electronic motions in an
attempt to conserve linear momentum.6 Further nonadiabatic
corrections4 Vnon-ad(R) to potential energy that involve a ratio
of electronic mass to nuclear mass to a power greater than for
any term in the latter equation are neglected.6 Although one can
move the radial function for the vibrational g-factor from
between the momentum operators,6 such a shift produces a
further contribution to V0(R); as we can work with that function
for the vibrational g-factor equally well between the momentum
operators,17 we avoid generation of such further terms.

Experiments to determine the rotational g-factor of parti-
cular molecular species have been performed since 1933,7–9,14

for instance to evaluate an expectation value hv,J |gr,R) |v,Ji in
a particular vibration-rotational state, typically only for v ¼ 0
and J ¼ 1, through a Zeeman effect on molecular beams or in
microwave spectra.

When van Vleck made the first derivation of a nonadiabatic
vibrational term,1 he also extended Dunham’s expressions18

for eigenvalues of an effective Hamiltonian to include these
corrections to a primitive Hamiltonian equivalent to that in
eqn. (1). For a diatomic molecular species in which each atomic
nucleus has the same atomic number, such as dihydrogen with
Z ¼ 1 in any isotopic variant, a convenient formula for these
eigenvalues, or spectral terms, has the following form:16

EvJ ¼
X1
k¼0

X1
l¼0

Ykl þ Zklð Þ vþ 1

2

� �k

J J þ 1ð Þð Þl ð5Þ

Here term coefficients Ykl incorporate mechanical effects18

reflecting terms in only the primitive Hamiltonian, eqn. (1),
corresponding to classical oscillation and rotation; further
term coefficients Zkl reflect extra-mechanical effects,16 arising
from nonadiabatic vibrational, nonadiabatic rotational and
adiabatic effects according to corrections within an extended
effective Hamiltonian, eqn. (4). Term coefficients Zkl can be
formally partitioned into Zv

kl for vibration-rotational contribu-
tions that arise from adiabatic and nonadiabatic vibrational
contributions to the effective Hamiltonian, specifically V0(R)
and gv(R), respectively; coefficients Zr

kl reflect further rotational
contributions that arise from both nonadiabatic rotational and
nonadiabatic vibrational contributions, thus gr(R) and gv(R).

16

From analysis of experimental data comprising wave numbers

of pure rotational and vibration-rotational spectra of a single
isotopic species, one might in suitable circumstances evaluate
not only parameters contained in expressions for Ykl but also
some parameters, or their combinations, in Zr

kl, whereas with
spectra also of isotopic variants one might evaluate also
parameters in Zv

kl. From such experimental data measured
for samples without externally applied electric or magnetic
field, parameters related to only two of three kinds of extra-
mechanical effects might in general be evaluated; to evaluate
separately parameters for adiabatic, nonadiabatic vibrational
and nonadiabatic rotational effects, either further experimental
data for the only directly measurable quantity, the rotational
g-factor, must be included during reduction of frequency data
to parameters in radial functions V(R), V0(R), gv(R) and gr(R),
or results of quantum-chemical calculations must be employed.
The latter course of action was followed in the first such
evaluation of separate effects,19 involving calculation of the
rotational g-factor to simulate prospective experimental data
for LiH.
Although we are confident that such an approach is sound, a

rigorous test has been generally impracticable because adia-
batic effects corresponding to V0(R) have generally not been
calculated over a range of R, and because no explicit indepen-
dent calculation of a vibrational g-factor is known before our
present work. For our analysis of spectral data of dihydrogen
here according to Dunham’s approach18 with extensions fol-
lowing van Vleck,1 we not only compare our results with well
established calculations of adiabatic effects20,21 but also present
for the first time explicit calculations of the vibrational g-factor
employing the method of configuration interaction with all
configurations included (full CI) and a basis set of valence
quadruple zeta quality augmented with polarization and dif-
fuse functions, aug-cc-pVQZ.22 There exist few accurate ex-
perimental values of the rotational g-factor of H2

23 to
complement and to confirm our own extensive and accurate
calculations of this quantity; extensive published data on
adiabatic effects20,21 combined with our newly calculated va-
lues of the vibrational g-factor make dihydrogen well charac-
terised for these extra-mechanical effects, and thus an excellent
test case in relation to spectral reduction. Our results provide
not only fundamental data about the vibrational g-factor of
dihydrogen from both calculation and spectral data but also an
unequivocal justification of our method of spectral analysis,
based ultimately on Dunham’s formalism. This analysis is
naturally limited by both the quality and quantity of available
spectral data.

Theory of vibrational and rotational g-factors

Expressions for the nonadiabatic corrections to the rotational
and vibrational reduced masses have been derived several
times.2,4–6 In this section we briefly review a derivation given
by Bunker and Moss4 before we discuss a relation to rotational
and vibrational g-factors in detail. In the following section we
show how the vibrational g-factor is obtained by quantum-
chemical calculations.
We assume that spectral data of interest pertain primarily to

the electronic ground state of a particular diatomic molecular
species that might have multiple isotopic variants. After se-
paration of the translation of the whole diatomic molecule, the
isomorphic Hamiltonian for a molecule in an electronic state
classified as 1S becomes written in centre-of-nuclear-mass
coordinates as24

Ĥ ~rif g;Rð Þ ¼ Ĥ0 ~rif g;Rð Þ þ Ĥ
0
~rif g;Rð Þ ð6Þ

in which {~ri} denotes the set of electronic coordinates. The
zeroth-order electronic Hamiltonian,

Ĥ0 ~rif g;Rð Þ ¼ � �h2

2

1

me

X
i

r̂2

i þ V ~rif g;Rð Þ ð7Þ
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is the electronic Hamiltonian in the Born–Oppenheimer
approximation of which eigenvalues EBO

n (R), i.e. the solutions
of the electronic Schrödinger equation,

Ĥ0ðf~rig;RÞCnðf~rig;RÞ ¼ EBO
n ðRÞCnðf~rig;RÞ ð8Þ

are the energies of electronic states in the Born–Oppenheimer
approximation. The potential V({~ri},R) includes the electron–
electron, electron–nuclear and nuclear–nuclear potential
energy and r̂ i is the gradient operator with respect to the
coordinates of electron i. The remaining three terms in the
Hamiltonian,

Ĥ
0
~rif g;Rð Þ ¼ � �h2

2mnuc

@2

@R2
þ 1

2mnucR2

� ~̂J � ~̂L ~RNCM

� �� �2
� �h2

2

1

ma þmb

X
i;j

~̂ri � ~̂rj

ð9Þ

are first the kinetic-energy operator along the internuclear axis
of two nuclei of masses ma and mb, second the energy of
rotation of the nuclei about the centre of nuclear mass and
third a mass polarization term, in which

mnuc ¼
mamb

ma þmb
ð10Þ

is the nuclear reduced mass. The angular momentum operator
for rotationof the whole molecule about the molecular centre of
mass is denoted ~̂J, and

~̂L ~RNCM

� �
¼
X
i

~̂li ¼
X
i

~ri � ~RNCM

� �
� ~̂pi

n o
ð11Þ

is the operator for total angular momentum of the electrons
about the nuclear center of mass.

An effective Hamiltonian for vibration-rotational motion of
the nuclei, as given in eqn. (4), is obtained on projecting the
molecular Hamiltonian, eqn. (6), onto the corresponding elec-
tronic state C0({~ri},R). As the Born–Oppenheimer energies
depend on the internuclear distance R, Bunker and Moss4

employed therefore a contact transformation, according to
which the transformed Hamiltonian is given as

~̂H ¼ e�iŜĤeiŜ ¼ ~̂H0 þ ~̂H1 þ ~̂H2 þ � � � ð12Þ

and in which Ŝ is chosen such that the transformed Hamilto-
nian ~̂H couples no separate electronic states through first
order, i.e.

C0 ~rif g;Rð Þ ~̂H1

��� ���Cn ~rif g;Rð Þ
D E

¼ 0 ð13Þ

The effective vibration-rotational Hamiltonian is then
obtained as an expectation value of the transformed Hamilto-
nian in eqn. (12) over the electronic ground-state wave-
function

Ĥeff ¼ C0 ~rif g;Rð Þ ~̂H
��� ���C0 ~rif g;Rð Þ

D E
ð14Þ

which after manipulation4 yields the following expression for
an effective vibration-rotational Hamiltonian:

Ĥeff ¼�
�h2

2mnuc

@

@R
1þ bðRÞf g @

@R
þ 1

2mnucR2

� 1þ aðRÞf g~̂J
2

þ EBO
0 ðRÞ þ VadðRÞ þ Vnon-adðRÞ

ð15Þ

The non-adiabatic corrections to the vibrational and rotational
reduced masses are then given as

bðRÞ ¼ � 2

mnuc

X
n 6¼0

C0 ~rif g;Rð Þh j �i�h @
@R Cn ~rif g;Rð Þj i

� �� �2
EBO
0 ðRÞ � EBO

n ðRÞ

ð16Þ

aðRÞ ¼ 1

mnucR2

X
n6¼0

C0 ~rif g;Rð Þ L̂x
~RNCM

� ���� ���Cn ~rif g;Rð Þ
D E��� ���2

EBO
0 ðRÞ � EBO

n ðRÞ

þ 1

mnucR2

X
n6¼0

C0 ~rif g;Rð Þh j L̂y
~RNCM

� ���� ��� Cn ~rif g;Rð Þj i
��� ���2

EBO
0 ðRÞ � EBO

n ðRÞ

ð17Þ

whereas the adiabatic correction to the nuclear potential
energy is

VadðRÞ ¼ �
�h2

2

1

ma þmb
C0 ~rif g;Rð Þ

X
i;j
~̂ri � ~̂rj

��� ���C0 ~rif g;Rð Þ
D E

þ 1

2mnucR2
C0 ~rif g;Rð Þ L̂2

��� ���C0 ~rif g;Rð Þ
D E

� �h2

2mnuc
C0 ~rif g;Rð Þh j @2

@R2
jC0 ~rif g;Rð Þi

� �
ð18Þ

The non-adiabatic corrections to the nuclear potential energy
are complicated and are neglected in the following.
As �i�hq/qR is an Hermitian operator and therefore

C0 ~rif g;Rð Þh j �i�h @

@R
Cn ~rif g;Rð Þj i

� �

¼ Cn ~rif g;Rð Þh j �i�h @

@R
C0 ~rif g;Rð Þj i

� �� ��

¼ � Cn ~rif g;Rð Þh j �i�h @

@R
C0 ~rif g;Rð Þj i

� �
ð19Þ

we rewrite the nonadiabatic vibrational correction alternatively
as

bðRÞ ¼ 2�h2

mnuc

X
n6¼0

C0 ~rif g;Rð Þh j @
@R jCn ~rif g;Rð Þi
� ��� ��2

EBO
0 ðRÞ � EBO

n ðRÞ
ð20Þ

or

bðRÞ ¼ � 2�h2

mnuc

�
X
n6¼0

C0 ~rif g;Rð Þh j @
@R jCn ~rif g;Rð Þi
� �

Cn ~rif g;Rð Þh j @
@R jC0 ~rif g;Rð Þi
� �

EBO
0 ðRÞ � EBO

n ðRÞ

ð21Þ

The relation between b(R) and the corresponding properties
dd and ge2(R) discussed by van Vleck1 and Herman and
Asgharian,2 respectively, are

b Rð Þ ¼ 2dd ¼
me

mp
ge2 Rð Þ ð22Þ

Herman and Asgharian2 as well as Bunker and Moss4 recog-
nized that the nonadiabatic rotational correction a(R) is
proportional to the electronic contribution to the rotational
g-factor15 gelr,nuc(R)

a Rð Þ ¼ me

mp
gelr;nuc Rð Þ ð23Þ
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Even though a corresponding magnetic property for the non-
adiabatic vibrational correction b(R) is lacking, Herman and
co-workers2,4 defined a corresponding vibrational g-factor
gelv,nuc(R) as

b Rð Þ ¼ me

mp
gelv;nuc Rð Þ ð24Þ

The effective Hamiltonian for vibration-rotational motion of
nuclei, eqn. (15), thus contains a term (1/mnuc){1 þ gelnucme/mp},
in which gelnuc is either a rotational or vibrational g-factor; the
subscript ‘‘nuc’’ indicates that each quantity is calculated with
the nuclear reduced mass mnuc. However, as atomic massesMa,b

are measured accurately, with minimum relative uncertainty
B10�11, whereas nuclear masses are calculated from atomic
masses with much less accurate corrections, for all practical
purposes involving precise spectral data of type frequency, for
which relative uncertainty might approach 2 � 10�10, usage of
atomic masses is essential. Herman and Ogilvie6 showed how
the above expression involving nuclear masses can be con-
verted to depend on atomic masses Ma and Mb. The inverse of
the atomic reduced mass m, in eqn. (3), is expressed in terms of
nuclear masses and atomic numbers Za,b as

1

m
¼ ma þ Zameð Þ þ mb þ Zbmeð Þ

ma þ Zameð Þ mb þ Zbmeð Þ

¼ ma þ Zameð Þ þ mb þ Zbmeð Þ
mamb 1þme

Za
ma
þ Zb

mb

� �h i
þm2

eZaZb

ð25Þ

Neglecting the term proportional to m2
e and expanding the

remaining denominator as

1þme
Za

ma
þ Zb

mb

� �� 	�1
� 1�me

Za

ma
þ Zb

mb

� �
ð26Þ

leads to

1

m
� ma þmb

mamb
1�me

Zam
2
b þ Zbm

2
a

ma þmbð Þmamb

� 	

�m2
e

Za þ Zb

mamb

Za

ma
þ Zb

mb

� �
ð27Þ

Neglecting once more the term proportional tom2
e Herman and

Ogilvie obtained the following approximate relation between
the atomic and nuclear reduced masses

1

m
� 1

mnuc
1�me

Zam
2
b þ Zbm

2
a

ma þmbð Þmamb

� 	
ð28Þ

Tests of the corresponding error for H2 or HeH1 in various
isotopic species indicate a maximum difference of order 10�7 u
or smaller, and even smaller for molecules with more massive
atomic centres, hence negligible. Recalling the definition of the
nuclear contribution to the rotational g-factor2,6,11 of a dia-
tomic molecule expressed in terms of nuclear masses,

gnunuc ¼ mp
Zam

2
b þ Zbm

2
a

ma þmbð Þmamb
ð29Þ

which is independent of internuclear distance and invariably a
positive quantity, we rewrite eqn. (28) as

1

mnuc
� 1

m
1þ me

mp
gnunuc

� 	
ð30Þ

The terms for the vibrational and rotational reduced masses in
eqn. (15) thereby become approximated as

1

mnuc
1þ me

mp
gelnuc


 �
� 1

m
þ 1

mnuc

me

mp
gnuc ð31Þ

in which gnuc is the total vibrational or rotational g-factor
defined with nuclear masses

gnuc ¼ gelnuc þ gnunuc (32)

The change from nuclear to atomic masses thus introduces a
term that is equal to the nuclear contribution to the rotational
g-factor of diatomic molecules. Herman and Ogilvie6 defined
analogously the total vibrational g-factor to include the same
nuclear contribution, as given in eqn. (29). The non-adiabatic
corrections to the vibrational and rotational reduced masses in
eqn. (31) still depend on the nuclear masses. From eqn. (16)
and (17) we discern that the electronic contributions to the
g-factors include a second factor 1/mnuc. Furthermore, the
electronic contribution to the rotational g-factor, eqn. (17), de-
pends also on the masses, because the angular momentum

operator ~̂L ~RNCM

� �
is defined with respect to the centre of

nuclear mass. We ignore this dependence here, although this
dependence on masses allows the determination of the electric
dipolar moment from the rotational g-factors of isotopic
variants.25,26 The mass dependence of the nuclear g-factor,
eqn. (29), is more complicated.
Table 1 shows that for dihydrogen in all isotopic variants the

ratio gnunuc/g
nu is almost equal to m/mnuc; we hence approximate

the non-adiabatic corrections to vibrational and rotational
reduced masses as

1

mnuc

me

mp
gnuc �

1

m
m

mnuc

� �2
me

mp
g ð33Þ

Neglecting also the ratio (m/mnuc)
2, which introduces an error at

most 0.1%, we achieve an ultimate expression for non-adia-
batic corrections to the vibrational and rotational reduced
masses. The effective vibration-rotational Hamiltonian in
eqn. (15) therefore becomes written approximately as

Ĥeff ¼�
�h2

2m
@

@R
1þ me

mp
gv Rð Þ


 �
@

@R
þ 1

2mR2
1þ me

mp
gr Rð Þ


 �

� ~̂J þ EBO
0 ðRÞ þ VadðRÞ þ Vnon-adðRÞ

ð34Þ

The rotational and vibrational g-factors defined with
respect to atomic masses Ma,b are then given in the following
expressions:

gv,r ¼ gelv,r þ gnuv,r (35)

gnuv;r ¼ mp
ZaM

2
b þ ZbM

2
a

Ma þMbð ÞMaMb
ð36Þ

Table 1 Ratio of atomic and nuclear reduced masses and nuclear g-

factors defined with atomic and nuclear masses for isotopic variants of

dihydrogen

Variant m/mnuc gnunuc/g
nu (m/mnuc)

2

1H1H 1.000 54 1.000 54 1.001 09
1H2H 1.000 45 1.000 53 1.000 91
1H3H 1.000 45 1.000 56 1.000 91
2H2H 1.000 27 1.000 27 1.000 54
2H3H 1.000 24 1.000 25 1.000 47
3H3H 1.000 18 1.000 18 1.000 36
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gelv ðRÞ ¼ �
mp

me

2�h2

m

X
n 6¼0

C0 ~rif g;Rð Þh j @
@R jCn ~rif g;Rð Þi
� �

Cn ~rif g;Rð Þh j @
@R jC0 ~rif g;Rð Þi
� �

EBO
0 ðRÞ � EBO

n ðRÞ
ð37Þ

gelr ðRÞ ¼
mp

me

1

mR2

X
n6¼0

C0 ~rif g;Rð Þ L̂x
~RCM

� ���� ���Cn ~rif g;Rð Þ
D E��� ���2

EBO
0 ðRÞ � EBO

n ðRÞ

þmp

me

1

mR2

X
n6¼0

C0 ~rif g;Rð Þ L̂y
~RCM

� ���� ���Cn ~rif g;Rð Þ
D E��� ���2

EBO
0 ðRÞ � EBO

n ðRÞ

ð38Þ

Because previous treatment of the vibrational g-factor is lack-
ing, we consider the sign of its electronic component. Accord-
ing to eqn. (20) the sum contains only real positive numbers in
the numerator and a denominator that is negative: the electro-
nic contribution gelv is therefore invariably negative. Whether
the net value gv¼ gelv þ gnuv is positive or negative at a particular
value of internuclear distance R depends thus on relative
magnitudes of these contributions. An analogous argument
applies to the total electronic contribution to gr, and thus to its
net value at a particular R.

Computation of the vibrational g-factor

We employed a local development version of the general-
purpose quantum-chemistry program Dalton27 to calculate
the electronic contributions to the vibrational and rotational
g-factors, gelv (R) and gelr (R), as a function of internuclear
distance. The implementation of the rotational g-factor, gelr (R),
has been described,28 whereas the electronic contribution to the
vibrational g-factor gelv (R) is newly implemented for multi-
configurational self-consistent-field (MCSCF) wave func-
tions29 in our local development version of Dalton. Both
Hartree–Fock and full-configuration-interaction wave func-
tions are special cases of the general MCSCF wave function.
For this reason our implementation covers also these two
models, although it might not be considered efficient for these
special cases.

Recalling the definition of the polarization propagator30,31

or linear response function32 for two operators A and B,

Ahh ;Biio¼
X
n6¼0

C0h ðRÞjAjCnðRÞi Cnh ðRÞjBjC0ðRÞi
�hoþ EBO

0 ðRÞ � EBO
n ðRÞ

�

þ C0h ðRÞjBjCnðRÞi Cnh ðRÞjAjC0ðRÞi
��hoþ EBO

0 ðRÞ � EBO
n ðRÞ

� ð39Þ

we identify the electronic contribution to the vibrational
g-factor, eqn. (37), as the following polarization propagator

gelv ðRÞ ¼ �
mp

me

�h2

m
@

@R

��
;
@

@R


o¼0

ð40Þ

For the sake of brevity we do not specify explicitly the
dependence of the wavefunctions |C(~ri,R)i on the electronic
coordinates {~ri} in this section.

To outline how this propagator is evaluated in our imple-
mentation, we rewrite it as

@

@R

��
;
@

@R


o¼0
¼ C0ðRÞh j @

@R
EBO
0 1�H

� ��1 @
@R

C0ðRÞj i

ð41Þ

in which symbols 1 and H, in bold, define matrices for the
super-operator identity and the super-operator Hamiltonian,
respectively.33,34

On introduction of a complete set of orthonormal wave
functions { |Cb(R)i}, the propagator becomes

@

@R

��
;
@

@R


o¼0
¼
X
ab

C0ðRÞ
@

@R

����
����CaðRÞ

� 
� CaðRÞh j

� EBO
0 1�H

� ��1
CbðRÞ
�� �

� CbðRÞ
@

@R

����
����C0ðRÞ

� 
ð42Þ

Defining a vector Va as

Va ¼
X
b

CaðRÞh j EBO
0 1�H

� ��1
CbðRÞ
�� �

CbðRÞ
� �� @

@R
C0ðRÞj i

ð43Þ

the propagator in eqn. (41), and thus the electronic contribu-
tion to the vibrational g-factor, is calculated as

@

@R

��
;
@

@R


o¼0
¼
X
a

C0ðRÞ
@

@R

����
����CaðRÞ

� 
Va ð44Þ

The components of Va are obtained from the following set of
linear equations

X
a

CbðRÞ
� �� EBO

0 1�H
� �

CaðRÞj iVa ¼ CbðRÞ
@

@R

����
����C0ðRÞ

� 
ð45Þ

In the approximate MCSCF model, wave functions at an
internuclear distance R are given as35

C Rð Þj i ¼ exp
X
i4j

kijðRÞ q
y
ij ðRÞ � qijðRÞ

� �" #

� exp
X
m 6¼0

PmðRÞ T ym ðRÞ � TmðRÞ
� �" #

�
X
g

Cg0ðR0Þ F Rð Þj i

ð46Þ

in which the configuration state functions |F(R)i are fixed
linear combinations of Slater determinants,

|FSD(R)i ¼ awi (R)� � �awi (R) � � � awN (R) |vacuumi (47)

in which the creation operator awi (R) creates an electron in the
MCSCF spin orbital ji(R), which itself is expanded in a finite
set of basis functions. The state-transfer Tw

m(R) and orbital
rotation operators qwij(R) are then defined as

T ym ðRÞ ¼ Cm Rð Þj i C0 Rð Þh j

q
y
ij ðRÞ ¼ a

y
i ðRÞajðRÞ

ð48Þ

in which Tm(R), qij(R) and ai(R) are the Hermitian conjugate
operators of Tw

m(R), q
w
ij(R) and awi (R).

A requirement for both setting up the linear equations, eqn.
(45), and evaluating the propagator in eqn. (44) is that the
matrix elements hC0(R) |(q/qR) |Cai be available. For MCSCF
wave functions eqn. (46), we find from preceding work35 that
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these matrix elements are expressible as

C0ðRÞ
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@R

����
����CaðRÞ
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i4j

@kijðRÞ
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@R
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@jiðRÞ
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� 

� C0ðRÞh jqijðRÞ CaðRÞj i

ð49Þ

When the natural connection of orthonormal molecular orbi-
tals is used, the last term in eqn. (49) vanishes,36 yielding the
result

C0ðRÞ
@

@R

����
����CaðRÞ

� 
¼
X
i4j

@kijðRÞ
@R

C0ðRÞh j � q
y
ij ðRÞ � qijðRÞ

� �

� CaðRÞj i þ
X
m6¼0

@PmðRÞ
@R

C0ðRÞh j

� T ym ðRÞ � TmðRÞ
� �

CaðRÞj i
ð50Þ

The geometrical derivatives of the coefficients qkij(R)/qR for
orbital rotations and of the configurational amplitudes qPm(R)/
qR are obtained from standard equations for the geometrical
response, which are also solved when the molecular Hessian is
calculated.32

In summary, the flow of calculations that we have imple-
mented in Dalton to evaluate the electronic contribution to the
vibrational g-factor with multi-configuration self-consistent-
field wave functions is first to calculate the wave function
|C0(R)i for the electronic ground state, then to solve the
equations for geometric response using the natural connection
of orthonormal molecular orbitals to obtain the geometric
derivatives of the coefficients qky(R)/qR for orbital rotations
and of the configurational amplitudes qPm(R)/qR, to form and
solve the linear equations, eqn. (45), for vector Va, and
eventually to calculate the polarisation propagator from com-
ponents of that vector through eqn. (44).

Details of the calculation

The electronic energy as well as the electronic contributions to
the rotational and vibrational g-factors were calculated with
full CI wave functions using the aug-cc-pVQZ basis set of
Dunning and co-workers.22 In preceding calculations we tested
the cc-pVXZ, aug-cc-pVXZ and daug-cc-pVXZ series of basis
sets22 at the equilibrium geometry and found that no further
significant changes in the desired properties were observed
beyond the employed aug-cc-pVQZ basis set. All calculations
were performed with our local development version of
Dalton.27

In Table 2 and Figs. 1 and 2 we present calculated values
of total electronic energy EBO

0 and of rotational and vibrational
g-factors as a function of internuclear distance R from nearly a
putative united atom to barely interacting H atoms far apart.
Each g-factor comprises two contributions, one from nuclei,
eqn. (36), that depends on only atomic numbers and masses
and that has hence for 1H2 the same value 0.9995 at all
internuclear distances, and another from electrons that is
related formally to nonadiabatic effects of either type. For
gv the total value at a particular R is just the sum of an

electronic contribution, eqn. (37), that is invariably negative,
and that positive nuclear contribution; the net result is either
positive or negative depending on the relative magnitudes. For
gr the same positive nuclear contribution sums with a diamag-
netic term, which is invariably positive, and a paramagnetic
term, which is invariably negative. For 1H2 net values of gr are
invariably positive, but another molecular species might have a
negative or positive value;14 for 1H2 the sign of gv alters from
positive at small R to negative at large R. For either gv or gr the
magnitude must approach zero at large R because under such a
condition electrons follow perfectly one or other atomic nu-
cleus: there can exist no slippage. Our result for gr at Re is
identical to the earlier full CI value reported by Ruud et al. 37,38

using the same basis set.
The most striking feature of the radial function, gv(R), for

the vibrational g-factor is the minimum at an internuclear
distance about 2 � 10�10 m. We learn about the origin of this
minimum by the sum-over-excited-states expression for the
electronic contribution to the vibrational g-factor in eqn.
(37). For that purpose we need to calculate the excitation

Table 2 Calculated properties of 1H2 as a function of internuclear

distance R: electronic energy, vibrational g-factor, diamagnetic and

paramagnetic electronic contributions to rotational g-factor, and total

molecular rotational g-factor

R/10�10 m Energy/Eh gv gdiar gparar gr

0.1 2.483 037 89 0.6939 0.0165 �0.0265 0.9895

0.2 0.007 031 88 0.4462 0.0035 �0.0160 0.9870

0.3 �0.700 132 72 0.3346 0.0015 �0.0243 0.9767

0.4 �0.980 874 17 0.2822 0.0004 �0.0377 0.9622

0.45 �1.054 557 97 0.2677 0.0003 �0.0458 0.9540

0.5 �1.103 420 22 0.2581 0.0003 �0.0548 0.9450

0.55 �1.135 317 18 0.2515 0.0005 �0.0646 0.9354

0.6 �1.155 363 06 0.2465 0.0006 �0.0751 0.9250

0.65 �1.166 996 54 0.2420 0.0007 �0.0865 0.9137

0.7 �1.172 592 14 0.2372 0.0008 �0.0987 0.9016

0.741 382 �1.173 867 20 0.2325 0.0008 �0.1095 0.8908

0.8 �1.171 904 08 0.2240 0.0008 �0.1258 0.8745

0.85 �1.167 708 96 0.2146 0.0008 �0.1407 0.8596

0.9 �1.161 894 89 0.2028 0.0009 �0.1566 0.8438

0.95 �1.154 952 51 0.1883 0.0010 �0.1735 0.8270

1.0 �1.147 253 16 0.1705 0.0010 �0.1915 0.8090

1.1 �1.130 649 98 0.1238 0.0013 �0.2308 0.7700

1.2 �1.113 652 13 0.0603 0.0015 �0.2748 0.7262

1.3 �1.097 195 54 �0.0215 0.0017 �0.3233 0.6779

1.4 �1.081 839 24 �0.1207 0.0019 �0.3763 0.6251

1.5 �1.067 904 89 �0.2330 0.0020 �0.4332 0.5683

1.6 �1.055 555 98 �0.3496 0.0022 �0.4930 0.5087

1.7 �1.044 844 27 �0.4583 0.0023 �0.5542 0.4476

1.75 �1.040 095 31 �0.5055 0.0024 �0.5848 0.4171

1.8 �1.035 738 73 �0.5457 0.0024 �0.6151 0.3868

1.85 �1.031 761 05 �0.5778 0.0025 �0.6449 0.3571

1.9 �1.028 146 04 �0.6009 0.0025 �0.6739 0.3281

1.95 �1.024 875 23 �0.6146 0.0026 �0.7019 0.3002

2.0 �1.021 928 47 �0.6189 0.0026 �0.7287 0.2734

2.05 �1.019 284 45 �0.6143 0.0026 �0.7542 0.2479

2.1 �1.016 921 21 �0.6016 0.0027 �0.7782 0.2240

2.15 �1.014 816 59 �0.5820 0.0027 �0.8007 0.2015

2.2 �1.012 948 64 �0.5567 0.0027 �0.8216 0.1806

2.25 �1.011 295 95 �0.5270 0.0027 �0.8408 0.1614

2.3 �1.009 837 96 �0.4943 0.0027 �0.8585 0.1437

2.4 �1.007 429 18 �0.4243 0.0028 �0.8893 0.1130

2.49 �1.005 581 10 �0.3545 0.0028 �0.9143 0.0880

3.0 �1.001 251 29 �0.1134 0.0029 �0.9795 0.0229

4.0 �0.999 98 758 �0.0060 0.0028 �1.0010 0.0013

5.0 �0.999 90 935 0.0023 0.0028 �1.0022 0.0001

7.5 �0.999 89 752 0.0029 0.0028 �1.0023 0.0000

10.0 �0.999 89 679 0.0029 0.0028 �1.0023 0.0000

15.0 �0.999 89 666 0.0029 0.0028 �1.0023 0.0000
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energies, DEBO
0n (R) ¼ EBO

n (R) � EBO
0 (R), of the lowest excited

states of same symmetry as the ground state and the corres-
ponding transition moments hCn({~ri},R) |(q |C0({~ri},R)i/qR).
Excitation energies are easily obtained as poles of a polariza-
tion propagator,30–32,34 whereas the transition moments are
known as first-order nonadiabatic coupling matrix elements
(NACME) of which the calculation is also implemented in the
Dalton program.34

In Fig. 3 the energies and NACME for the first three excited
states and in Fig. 4 the contributions of these excited states to
the electronic contribution of the vibrational g-factor, eqn.
(37), are shown. With empty symbols the terms with n ¼ 1,2,3
in eqn. (37) are given, whereas the solid symbols and lines are
the the result of the summation over n from 1 to 2, n from 1 to 3
and all n in eqn. (37). From Fig. 3 we see that the energy of the
first three excited states exhibits no atypical behaviour, but that
the NACME to the first excited state has a clear maximum at
an internuclear distance 2.05 � 10�10 m. The NACME to the
second and third excited state show quite disparate behviour:
the first falls steeply whereas the latter increases. The maximum
in the NACME to the first excited state produces a minimum in
the contribution to the vibrational g-factor from this state (see
Fig. 4). However, due to the variation of the excitation energy
which enters the denominator in eqn. (37), the minimum is
slightly shifted to an internuclear distance 2.10 � 10�10 m. The
contribution from the second excited state exhibits no extre-
mum in the given range of internuclear distance, but adding it

to the n ¼ 1 contribution diminishes the curvature and shifts
the minimum to an internuclear distance 1.95 � 10�10 m.
Finally the third excited state shifts the minimum to an inter-
nuclear distance 2.0 � 10�10 m and increases slightly the
curvature again. With only the first three excited states we
thus obtain about 75% of the total electronic contribution and
reproduce the position of the minimum and the curvature
around the minimum. It is therefore safe to state that the
minimum in the vibrational g-factor is due to an extremum in
the first-order nonadiabatic coupling matrix element to the first
excited state and not in the energy of the excited state. The
exact position of the minimum in the vibrational g-factor is,
however, influenced by the excitation energy and by more
highly excited states.

Analysis of spectral data

Spectral data of dihydrogen in pure rotational and vibration-
rotational transitions exist for six isotopic species, but data are
sparse for species containing 3H. After extensive tests, data
accepted for inclusion in a final set for reduction to parameters
of radial functions originate in 32 papers from at least 16
laboratories, with widely varying optical resolution, yielding
uncertainties of individual measurements of wave numbers/
m�1 in the range [0.003,50], and varied conditions of gaseous
samples, such as pressure with unknown effect of collisional

Fig. 1 Energy of H2 as a function of internuclear distance R; circles
denote points from quantum-chemical calculations; the curve denotes
V(R) deduced from spectral analysis within the range of its validity.

Fig. 2 Rotational and vibrational g-factors of 1H2 as a function of
internuclear distance R; points from quantum-chemical calculations
(J for gv and & for gr) and a point marked þ for gv deduced from
spectral data.

Fig. 3 Calculated energies and first-order nonadiabatic coupling
matrix elements (NACME) of the first three excited states in 1H2 as
a function of internuclear distance R.

Fig. 4 Contributions from the lowest three excited states to the
electronic contribution to the vibrational g-factor gv eqn. (38) of

1H2

as a function of internuclear distance R. Dashed lines and empty
symbols are contributions from a particular excited state whereas solid
lines and symbols are the sum of the contributions up to and including
the given excited state.
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broadening and shift of wave number of spectral lines. Analysis
of 390 spectral lines yielded internally consistent results; we
rejected 30 data of further prospective spectral lines, those for
band 4–0 of 1H3H 39 that showed a systematic deviation�3.35�
0.22 m�1, or about 17 times the nominal precision of their
measurement, from back-calculated wave numbers, and bands
1–0 of 1H2,

40 1–0 of 1H2H,41 0–0 of 1H3H,42 and 1–0 of 1H3H,
2H3H 43 and 3H2,

39 that show much larger systematic devia-
tions, indicating problems of calibration of wave number scale.
Data included in our analysis are specified in Table 3.

To achieve a global fit of those spectral data we applied
procedure Radiatom,69 in either its traditional Fortran version
with precision 32 decimal digits for which expressions70 were
derived with Reduce through a JWKB treatment,15,71 or a new
version in Maple with precision 24 decimal digits in which all
expressions are freshly evaluated symbolically according to
hypervirial perturbation theory.17,72 We verified that algebraic
expressions of term coefficients Ykl derived by either method
are identical, but the latter method17,72 is computationally
more efficient. Numerical values of parameters derived through
either version of Radiatom are not quite identical, because the
algorithm for non-linear regression according to the approach
of Levenberg and Marquardt has slightly different implemen-
tations, but differences in values are within specified uncertain-
ties, as presented in Table 4 from the Fortran version. Initial
estimates of all unconstrained parameters were set at zero
except rough estimates of U1,0 and U0,1 and generic values of
c1 and c2;

16 during progress towards convergence throughB16
iterations, weighted w2 decreased from B1013 to B103. The
duration of a given fit with Maple, for which code is partially
interpreted, is 10–30 times larger than with the fully compiled
Fortran procedure on comparable computers. All other fitting
was performed with Maple procedures.

We fit those data in terms of coefficients of reduced variable
z 17 for displacement of instantaneous internuclear separation
R from equilibrium internuclear distance Re,

z ¼ 2
R� Re

Rþ Re
ð52Þ

in four radial functions, with coefficients cj for potential energy
independent of mass,

VðRÞ ¼ EBO
0 ðRÞ ! VðzÞ ¼ hcc0z

2 1þ
X
j¼1

cjz
j

 !
ð53Þ

sj for nonadiabatic vibrational effects in the vibrational
g-factor,

gvðRÞ !
mp

m

X
j¼0

sjz
j ð54Þ

tj for nonadiabatic rotational effects in the rotational g-fac-
tor,26

grðRÞ !
mp

m

X
j¼0

tjz
j ð55Þ

and uj for adiabatic effects.

VadðRÞ ! hc
me

m

X
j¼0

ujz
j ð56Þ

Because for available data of H2 we are able to fit significantly
coefficients sj and tj, with j Z 0, and uj, with j Z 1, for extra-
mechanical effects of at most two of those three types, we
employed first calculated values of the rotational g-factor to
constrain coefficients tj,

26 and fitted values of coefficients cj, sj
and uj, in addition to U0,1 and U1,0, so to produce results in
Table 4 according to fit T. As an alternative approach we
employed calculated values of adiabatic effects20,21 to constrain
coefficients uj, and fitted values of coefficients cj, sj and tj in

addition to U0,1 and U1,0, to produce results in Table 4
according to fit U. For values within brackets, uncertainties

Table 3 Vibrational quantum numbers v0 and v00, number of lines N

and source of data for each isotopic variant included in our spectral

analysis

Variant v0,v00 N Ref.

1H2 0,0 1 44

0,0 5 45

0,0 6 46

0,0 1 47

0,0 4 48

0,0 6 49

0,0 2 50

0,0 4 41

0,0 1 51

0,0 6 52

1,0 8 53

1,0 13 54

1,0 7 55

1,0 8 56

1,0 6 46

1,0 5 48

1,0 4 57

1,0 4 41

1,0 17 52

2,0 4 52

2,0 8 53

2,0 2 55

4,0 2 58

5,0 1 58

2,1 8 56

3,2 11 56

4,3 7 56

5,4 3 56
1H2H 0,0 3 59

0,0 5 41

1,0 4 60

1,0 1 61

1,0 4 62

1,0 12 63

1,0 5 52

2,0 1 64

2,0 1 61

3,0 8 65

4,0 8 65

5,0 1 66

5,0 6 65

6,0 5 65
2H2 0,0 9 46

0,0 7 48

0,0 5 41

0,0 9 52

1,0 1 40

1,0 14 54

1,0 9 58

1,0 5 57

1,0 11 67

1,0 5 41

1,0 19 52

2,0 5 52
1H3H 1,0 5 52

1,0 7 39

5,0 6 39
2H3H 0,0 4 42

0,0 6 68

1,0 7 52

1,0 13 68
3H2 0,0 4 43

0,0 12 52

1,0 9 52

1754 P h y s . C h e m . C h e m . P h y s . , 2 0 0 5 , 7 , 1 7 4 7 – 1 7 5 8 T h i s j o u r n a l i s & T h e O w n e r S o c i e t i e s 2 0 0 5



specified for coefficients tt in fit T and uj in fit U are standard
errors arising from fitting available data from quantum-che-
mical calculations, and play no role in fits of spectral data.
Each other uncertainty in Table 4 denotes an estimated single
standard error associated with a parameter, appearing gener-
ally in a non-linear manner in expressions for Ykl and Zkl,

16 in
the best fits of available spectral data described above. Other
values in that table are either constrained to zero, as implied by

notation ‘‘[0]’’, or are indeterminate from available spectral
data, indicated with ellipsis, like any further coefficients in the
various radial functions.

Discussion

Our approach in fit T is analogous to that practised in our
original work on LiH.19 Fit T has seven set parameters – tj, 0r
j r 6, related to the rotational g-factor – and 17 other
adjustable parameters evaluated significantly; three other para-
meters that occur linearly had values that, when floated freely,
hovered near zero with larger standard errors than magnitudes,
and that were accordingly fixed to zero. In Fig. 1 we plot points
calculated for electronic energy according to Table 2, but
relative to that energy at Re and converted to wave number
unit, and a curve of V(z) based on Re and coefficients cj, 0 r
j r 10, in Table 4 and fit T; according to spectral data the
curve is defined over a range of internuclear distance R
indicated in that figure. Fit U involves only six set parameters:
uj, 1 r j r 6 – because u0 plays no part in the fit, and 18
adjustable parameters, with one further linear parameter s2
that in lieu of significant evaluation was set to zero. In Fig. 5
we plot a curve of function for V0(R) from coefficients uj, 1 r
j r 4, from fit T in Table 4 for comparison with points
calculated by Kolos and Wolniewicz20,21 for adiabatic effects;
for a constant term for the curve, being a contribution to
residual energy, which is undetectable from spectral observa-
tions, we employed for plotting purpose a value 11 458.5
m�1.20 The curve conforms closely to points calculated in a

Table 4 Coefficients of radial functions and other molecular parameters of H2 X
1Sþg

Fit T Fit U

c0/m
�1 7970 836.8 � 79 7970 784.5 � 77

c1/m
�1 �0.604 167 � 0.000 118 �0.603 753 � 0.000 135

c2/m
�1 0.210 30 � 0.000 24 0.209 73 � 0.000 33

c3/m
�1 �0.144 41 � 0.001 87 �0.148 89 � 0.001 86

c4/m
�1 0.012 76 � 0.0025 0.021 64 � 0.0026

c5/m
�1 �0.1404 � 0.0085 �0.1308 � 0.0086

c6/m
�1 0.1973 � 0.0102 0.1737 � 0.0100

c7/m
�1 �0.0524 � 0.0106 �0.0614 � 0.0109

c8/m
�1 �0.0737 � 0.0178 �0.0459 � 0.0173

c9/m
�1 0.0880 � 0.0092 0.0694 � 0.0082

c10/m
�1 �0.1074 � 0.0172 �0.1055 � 0.0169

s0/m
�1 0.1569 � 0.0023 0.1301 � 0.0043

s1/m
�1 [0] �0.528 � 0.026

s2/m
�1 [0] [0]

s3/m
�1 6.69 � 0.69 9.59 � 0.83

t0/m
�1 [0.445 62 � 0.000 44] 0.4523 � 0.0030

t1/m
�1 [�0.098 58 � 0.0025] �0.0836 � 0.0174

t2/m
�1 [�0.095 58 � 0.0066] �0.603 � 0.108

t3/m
�1 [�0.092 19 � 0.021] � � �

t4/m
�1 [�0.1354 � 0.0140] � � �

t5/m
�1 [�0.0468 � 0.043] � � �

t6/m
�1 [0.4275 � 0.027] � � �

u0/10
6 m�1 � � � [10.524 72 � 0.000 72]

u1/10
6 m�1 �4.025 � 0.024 [�4.0384 � 0.0049]

u2/10
6 m�1 2.007 � 0.061 [2.1451 � 0.0197]

u3/10
6 m�1 [0] [1.728 � 0.033]

u4/10
6 m�1 2.75 � 0.23 [1.384 � 0.086]

u5/10
6 m�1 � � � [0.353 � 0.053]

u6/10
6 m�1 � � � [�0.727 � 0.109]

U0,1/m
�1 ua 3066.7339 � 0.0110 3066.7074 � 0.0124

U1,0/m
�1 u2a 312694.3 � 2.1 312691.95 � 2.15

Re/10
�10 m 0.741 413 01 � 0.000 001 33 0.741 416 20 � 0.000 001 50

ke/N m�1 576.0898 � 0.0078 576.0810 � 0.0079

ŝ 1.458 1.457

a In this table, apart from coefficients in radial functions defined through formulae above, appear U1,0 and U0,1, which correspond to Y1,0 and Y0,1,

respectively, without dependence on mass, equilibrium force coefficient ke and reduced standard deviation of the fit ŝ.

Fig. 5 Adiabatic correction for 1H2 as a function of internuclear
distance R; curve from spectral analysis (present work) and points from
refs. 20 and 21.
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range of internuclear distance/10�10 m [0.45, 1.05] correspond-
ing to classical turning points of V(R) for v B 2 for 1H2;
although spectral data for isotopic species are available for
greater energies, their quality precludes agreement over a great
range. Coefficients of z for that polynomial fitted from quan-
tum-chemical results 20,21 over their total range appear as
values uj in a column for fit U of Table 4; values of u1 and u2
in the two columns of that table agree satisfactorily within
experimental error of values for fit T that reflect error propa-
gated from measurement of experimental wave numbers. The
value 0.8976 � 0.0060 for gr at Re derived from spectral data
according to fit U agrees satisfactorily with the calculated value
0.8908 in Table 2. Fig. 2 shows points of calculated values of
gr(R) according to Table 2.

For that reason we employed values of coefficients uj fitted
from results of quantum-chemical calculations as constraints
and made a second fit of spectral data with adjustable coeffi-
cients tj. The values of t0 and t1 for fit U are comparable with
those fitted from calculated values of gr but values of t2 differ
by more than the larger standard error; the varied degrees of
polynomials are likely responsible for this condition. Fits T
and U have essentially the same reduced standard deviation ŝ;
that the values of this quantity significantly exceed unity
reflects the diverse origins and quality of spectral data, which
are beyond control in the present work. Our values of t0, t1 and
t2 obtained from fit U yield an expectation value 0.8852 �
0.0060 of gr(R) in vibration-rotational state |0,1i for 1H2 that is
within experimental error of the measured value 0.882 91 �
0.000 07.23 For this reason our value Re/10

�10 m ¼ 0.741 4144
� 0.000 0020, as a weighted mean from fits T and U, represents
the first truly direct and accurate experimental measurement of
the equilibrium internuclear separation of dihydrogen inde-
pendent of nuclear mass, as practically all extra-mechanical
effects are taken explicitly into account in deriving this value.
This value is, within three standard errors, equal to that, 0.741
4196 � 10�10 m with no estimate of uncertainty, obtained with
80-term functions by Kolos and Wolniewicz20 who included
relativistic corrections that are redundant to experimental
results; for comparison, polynomial interpolation of electronic
energies in Table 2 yields a minimum near 0.741 94 � 10�10 m,
depending on the degree of polynomial. Likewise our value
ke ¼ (576.0855 � 0.0111) N m�1 is the first accurate experi-
mental measurement of the equilibrium force coefficient for
dihydrogen independent of nuclear mass. For these calcula-
tions we employ contemporary values (CODATA 2003) of
fundamental physical constants h, a0 and NA and include their
known uncertainties in the estimated standard errors of our
analysis of experimental results.

Values of coefficient s0 from fits T and U are less consistent,
likely because of the varying nature of other coefficients sj
between the two fits, than other common parameters; the mean
indicates a value of the vibrational g-factor gv ¼ s0mp/mB 0.30
� 0.03 for 1H2 at Re. Because all these reductions of spectral
data were completed before quantum-chemical calculations of
the vibrational g-factor were undertaken, this experimental
value is a genuine prediction, which differs appreciably from
the calculated value 0.2325 in Table 2. In Fig. 2 we denote by
circles values of gv according to calculations of molecular
electronic structure and presented in Table 2, with a single
point marked with a cross for gv at Re from our spectral
analysis. A difference between values of gv from experiment
and calculation is evidently an artefact reflecting the moderate
quality of spectral data, as further nonadiabatic effects, asso-
ciated with V0(R), are unlikely to be significant at this level; we
thus attribute this difference to experimental error propagated
from measurements of wave numbers of transitions. The
magnitude of gv at Re differs much from that of gr there,
B0.9, in an apparently unpredictable manner; such a large
difference shown by the results of our quantum-chemical
calculations is qualitatively confirmed from our fit U of

spectral data, even if not quantitatively accurate. These
g-factors are supposed to indicate the extent to which electro-
nic distributions slip1 when following the respective nuclear
motions, but there is no particular reason to expect that
electrons might follow rapidly vibrating atomic nuclei much
better than the same rotating nuclei.
In Table 4, all values of coefficients deduced from reduction

of spectral data, apart from those fitted from quantum-chemi-
cal calculations, must be regarded as fitting parameters. For
instance, according to Dunham’s approach18 to which we
conform, term coefficients Ykl in a finite set are optimally
evaluated to reproduce wave numbers of available spectral
transitions; because 60 values of Ykl implied by fitting coeffi-
cients in V(z) up to c10 for 390 spectral data are not all
independent, a significant improvement in data reduction is
achieved on directly fitting instead 12 parameters, namely U0,1,
U1,0 and cj with 1r jr 10, or equivalently Re and cj with 0r j
r 10. The rotational g-factor, being a factor of proportionality
in the splitting of spectral lines according to a Zeeman effect,
can be regarded as a quantity observable from experiment; a
measured value of gr in a particular vibration-rotational state
can be calculated as an expectation value hv,J |(R) |v,Ji of radial
function gr(R) that is not an observable. In contrast, potential
energy V(R) is merely a function that is an artefact of a
theoretical approach, namely separate treatment of electronic
and nuclear motions, and no expectation value of potential
energy is directly observable. Likewise, adiabatic and nonadia-
batic vibrational effects, represented with radial functions
V0(R) and gv(R), respectively, constitute merely corrections to
that approach to take into account that electrons fail to follow
perfectly atomic nuclei in their supposed vibrational and
rotational motions. In fact, as well as reproducing wave
numbers of 390 specified vibration-rotational transitions with-
in a factor 1.46 times their uncertainties of measurement on
average in conjunction with radial functions for extra-mechan-
ical effects, V(z), according to Re and coefficients cj in either
column of Table 4, as a plot in Fig. 1 exhibits a typical curve
expected for a function of potential energy, with no divergence
within a range of internuclear distance defined by classical
turning points of the state of greatest vibrational quantum
number sampled by spectral observations included in our fits.
Moreover, values of coefficients tj derived in fit U and values of
coefficients uj in fit T to some extent conform to values derived
from accurate calculation; likewise a value of s0 implies a value
of vibrational g-factor comparable with that derived from
accurate calculation. In that sense our fitting parameters
possess physical significance, within a limit set by the quality
of a fit that reflects data from diverse sources.

Conclusion

Whereas calculations of molecular electronic structure of 1H2

are readily and rapidly performed with almost arbitrary accu-
racy on common computers, the quality of spectral data for
this molecular species in its several isotopic variants leaves
much to be desired. In this work our emphasis in calculations
of molecular electronic structure centred on the vibrational and
rotational g-factors, which we have calculated over almost the
entire range of internuclear distance relevant to molecular
properties. Our calculation of the molecular vibrational g-
factor of 1H2 is the first such explicit theoretical evaluation
of this quantity for any species. Combined with already
published data for adiabatic corrections, we have an unprece-
dented collection of quantitative information about extra-
mechanical effects of H2.
Wolniewicz remarked21 that for refinement of theoretical

predictions of vibration-rotational spectra of dihydrogen in its
isotopic variants ‘‘new [calculations of] nonadiabatic correc-
tions are needed’’. In the present work we have practically
achieved this objective, as our calculations of vibrational and
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rotational g-factors encompass the major part of these non-
adiabatic corrections, leaving only a much smaller contribution
to Vnon-ad(R) in eqn. (15). The quality of our calculation of gr is
proved by our agreement with accurate experimental data.23

On the basis of calculations of electronic energy, as in Table 2,
that serves as potential energy for nuclear vibrational motion,
combined with separate calculations of the dependence of
adiabatic corrections, rotational and vibrational g-factors on
internuclear distance, one can accurately predict frequencies of
spectral lines for vibration-rotational transitions of H2 in its
several isotopic variants over the entire range of energies up to
the dissociation limit. An alternative approach,73 in which the
authors claim to make rigorous and fully variational calcula-
tions, involving all particles, of only the vibrational spectrum is
computationally much more laborious, requiring protracted
computations for each selected vibrational state, and has not
been applied to states with angular momentum. The nature of
those calculations73 precludes assessment of any component or
contribution, and fortuitous cancellation might hypothetically
yield an apparently accurate result; in contrast our approach
enables the testing of separate contributions relative to experi-
mental data, within a framework of separate treatment of
electronic and nuclear motions. We concur that much im-
proved experimental measurements on vibration-rotational
spectra of dihydrogen in its several isotopic variants are
needed; available measurements are generally greatly inferior
to what has been achieved for other and polar diatomic
molecular species.
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