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abstract
The impact of computers on teaching of mathematics is reviewed, to demonstrate a need to

reorganise curriculum in mathematics to meet the needs of students of science and engineering in
an era of abundant computers and sophisticated software for symbolic computation.  Examples are
presented of graphical enhancement of teaching of various mathematical concepts.

introduction
Mathematics is the language of science, technology, commerce – of almost every aspect of

organised human activity.  An acquaintance with mathematics beyond arithmetic is desirable for
every adult citizen of any country, but a working knowledge of mathematics is essential for any
person involved in a technical career.  Although, for some degree courses in science and
engineering in the past, study of higher mathematics over several years was compulsory, despite an
increasingly theoretical or mathematical content of such courses, in many cases the degree
regulations have become relaxed so as to require fewer courses than formerly.  How can we, as
instructors of mathematics and of other subjects that depend heavily on mathematics, respond to
this situation, so as to provide present and future students with a proper and sound foundation for
technical mathematical capabilities that they will require in a technical career?

nature  of  problems  in  teaching  mathematics
As a subject or discipline, mathematics is perceived to be difficult.  In recent years I have

attended many research lectures or seminars in mathematics, and questions posed to the lecturer
afterwards tended to emanate almost exclusively from professors or students with expertise in the
same field of mathematics, apart from one or two extraordinary individuals who seem able to
proffer intelligent comments or queries across many fields; hence mathematics at the research level
is difficult even for professional mathematicians.  This situation differs substantially from the
situation in research lectures in chemistry and physics, which I have also attended in the same
universities over many years, in which questions arise not merely from specialists in the same field.
Of course all those professors of mathematics are deemed capable of instructing basic courses
constituting a standard undergraduate curriculum.  At least at the undergraduate level or below, the
difficulty of mathematics lies more in technical details than in fundamental concepts such as a



derivative or definite integral, although there are undoubtedly subtleties in even those concepts that
a user of mathematics should encounter and appreciate.  Especially for students of science and
engineering, or economics and other subjects in which mathematical methods play an important
role in certain fields, the most important aspect of mathematics is knowledge of what mathematical
techniques might be brought to bear on the solution of various problems and of how those
techniques might be implemented.  If a student understands the mathematical principles and the
basis of implementation of a particular approach, including the existence of pathological conditions
limiting its effectiveness, details of a particular implementation become subsidiary.  For instance,
an instructor can emphasize the concept and basis of an indefinite or definite integral; whether a
method of partial fractions or substitutions or repeated integration by parts, or some combination of
these, serves to evaluate that integral is immaterial when a command to a computer suffices to yield
an exact result.

As a simple but non-trivial example, let us consider calculating the square root of a decimal
number.  When I was a wee lad, my peers and I in Canadian schools were taught by rote how to
extract manually such a square root, involving placing the original number in the internal angle of a

corneru and subsequently undertaking multiplications and subtractions, introducing two additional
digits of the operand at a time, until sufficient precision in the answer is attained.  Doubtless many
of those present at this conference might still be able to effect this operation, tedious as it is.  A few
years later we pupils encountered logarithms, involving simple division of a logarithm by two with
conversions to obtain that square root with four or five decimal digits, or perhaps two or three digits
on a slide rule.  Only fifty years after I learned that original procedure did I happen to discover the
underlying theory, essentially a binomial expansion, but for half a century I might have blissfully
extracted square roots of decimal numbers in ignorance thereof.  Somebody mentioned that there is
an analogous manual method, but more complicated, for extraction of a cube root.  Can anybody
here execute that operation?  What matters it now?  Since 1974 in a major Canadian educational
jurisdiction, that manual method to yield even a square root has been eliminated from formal
arithmetical curriculum.  For both pedagogical and practical purposes, the accepted way to extract a
square root of a number is to depress a pertinent button on an ubiquitous and essentially costless
pocket calculator.  I expect that few persons would doubt my understanding of what is a square
root, proper operations on it and its various properties, but all these conditions apply regardless of
my capability to undertake manually a particular and monotonous arithmetical procedure.  This
example involves mere arithmetic.  No responsible educator – especially a mathematical educator –
can dismiss the value of a child becoming adept at mental arithmetic involving the four standard
operations, for which purpose as a child I was exposed to regular drill for several months, or the
value of each person being able mentally to estimate roughly either the amount of purchase tax
associated with a specified price of a desired article or the net salary after income tax is deducted at
a certain rate, or even a square root of a number, but for all practical purposes, when a reasonably
precise numerical value is required, a calculator is called into action.  Literacy and numeracy
remain crucial components of education for life of each and every individual in a modern
democratic society; computers must assist such personal development, not replace abilities of
independent thinking, in the same way that, despite our individual dependence on private motorcar
or public transit to commute between home and place of work or shopping, each of us must
maintain personal physical fitness as a requisite of a comfortable and healthy life.

A few decades ago in some countries, for each cashier at a station for payment in a
commercial establishment the employer provided an abacus, and not many years ago in other



countries even a teller in a chartered bank verified the result from a desk calculator on an abacus.
Does an abacus, like a slide rule, exist now outside a museum? During a few decades before 1990,
many students were attracted to mathematical studies precisely to avoid computers.  Such students
have progressed in their careers to become professors who now form likely a majority of academic
staff in departments of mathematics in most universities.  Even whilst they unhesitatingly employ
electronic mail and ‘word processors’ to prepare their personal and professional documents, their
antipathy towards computers for mathematical purposes remains unabated, consciously or
subconsciously; such reactionary academic staff have much power directly or indirectly to stifle
educational innovation, particularly as it would require their own major reassessment and
reorganisation of their own methods of teaching standard courses.  A few years from now, will such
a professor exist outside a museum? Until recently, an instructor of mathematics might be able to
employ, when presenting a lecture, notes essentially based on lectures that he or she might have
collected as a student a few decades earlier.  Mathematics might be timeless, but the relative
importance of its fields and the methods of teaching it are no longer invariant   if they ever were.
When during a demonstration of some computer lessons to a group of senior professors in 1999 I
alluded to teaching mathematics through a succession of theorems, the head of a department of
mathematics in a major university retorted swiftly “We do not teach that way any more, even for
our own students”, but those same professors were quite capable of resisting consideration of
adoption of mathematical software for pedagogical applications.  By your presence here, members
of this audience demonstrate that you do not belong to at least the rear guard of those who would
hinder deployment of instructional technology.  After attendance at this meeting, your task and
mission is to convey the spirit of our discussion to your own institutions, to inspire your reluctant
colleagues to respond to the challenge to prepare students for the future, not the past.

computers  and  symbolic  computation  as  a  solution
Just as arithmetical operations available on a pocket calculator have practically eliminated

the need of one’s capacity or capability to do arithmetic manually, mathematical software on an
ubiquitous computer has practically eliminated the need of one’s capability to undertake manual
mathematical operations up to a senior undergraduate level.  A perceptive professor of mathematics
in Universidad de Costa Rica recently remarked to me, “For many [mathematician] colleagues it is
hard to understand that computers are here forever”.  The fact of that ubiquitous computer and also
highly sophisticated – even if inevitably imperfect – mathematical software requires that we
examine mathematics – not merely its practice but especially its teaching – in a new light.  On
another occasion that same enlightened professor remarked that, with a computer, he could teach
the material of a standard semester course in linear algebra in three weeks.  Whilst there might be
some hyperbole in the latter assertion, it must not be summarily dismissed.  What he and I both
appreciate is that an approach to teaching mathematics must be profoundly revised and reorganised
on the basis of mathematical technology – hardware and software.  During the past half century in
which the electronic digital computer has progressed from barely existing to having become even a
household commodity, the mathematical needs of students of chemistry, like all other branches of
science and engineering, have increased in scope and depth, but the numbers of required courses
have significantly diminished, as I comment above.  Whereas, when I was a student, analytical
chemistry comprised qualitative and quantitative analysis involving only simple chemical
compounds and rudimentary glassware, contemporary analytical chemistry has even a new name –
chemometrics.  Being the chemical equivalent of econometrics for economics, chemometrics is
concerned with the control of instruments with computers and the treatment of data generated by



and transmitted from those instruments.  Computers have major roles in the practice of chemistry in
its other branches, just as in all other divisions of science and engineering.  Among those several
courses over four years that were an obligatory component of my education in chemistry or
physics, there was no significant content of statistics, although that field of mathematics naturally
underpins chemometrics in its second aspect. One might predict that many approaches to
mathematical applications will become modified in the next decade according to an expanding
influence of fuzzy logic.

I advocate an holistic view of mathematical needs of students of science and engineering:
one must consider the total scope of mathematical fields and applications for any such discipline
and design curriculum on that basis.  Whereas departments of mathematics in the past offered for
students of science and engineering discrete courses of duration one or two semesters on algebra,
differential and integral calculus, multivariate and vector calculus, linear algebra, differential
equations, statistics et cetera, the fact that practical experience has already demonstrated that one
can teach, with symbolic computation, the principles and implementation of material from each
such traditional semester course within a lesser duration implies that an overview of the total
subject   an holistic approach   is required.  Up to the middle of the past century there were
available several textbooks of title such as College Mathematics, which purported to cover within
several hundred pages all mathematics required by a student of science and engineering.  As both
mathematicians and instructors of courses in other subjects dependent on mathematics came to
recognise, such general courses seemed to fail to yield sufficient proficiency in specific important
areas, such as calculus; then general courses, even spread over more than one year, became
supplanted by specific courses devoted to calculus, linear algebra, differential equations and so
forth, in sequence.  When protracted drill necessary for manual proficiency becomes replaced by
use of standard commands in software, a much decreased duration of instruction is required to
teach a particular field of mathematics.  In that way the relations between these mathematical fields
can be emphasized better through a common framework of mathematical software than when each
field is taught as a separate entity, each with its particular jargon and peculiarities of methods.

You are likely surmising that, through use of symbolic computation, I am promising
increased coverage of mathematics in a decreased duration.  Yes, you are right, but that objective in
no way contravenes the first law of thermodynamics or other universal truth.  What a student loses
by learning mathematical principles, and subsequent implementation of mathematical operations on
a computer, is indisputably the capability of undertaking manually the same operations in any
complicated form, just as that button on a pocket calculator has tolled the death knell of extracting a
square root by hand.  After a traditional course a student might be under a delusion of thinking that
he or she understands mathematics when one knows only how to solve exercises.  Because a
professor of mathematics, or of a subject that incorporates a strongly mathematical component,
might have a profound understanding or appreciation of mathematics to a senior undergraduate
level, he should not assume an analogous capability of a typical student in his course. A
representative student might arguably understand mathematics better when trees of technical details
of operations fail to obscure the forest of principles.  On a basis of results of standard examinations
involving routine problems, a professor of mathematics should not delude himself into imagining
that students actually understand profoundly the mathematics involved in those ‘service’ courses
for science and engineering – most students do not, just as most professors of mathematics might
have only a shallow understanding of research fields of mathematics beyond their field of specialty.
What Fred Simons [1], professor at Eindhoven University of Technology in Netherlands, wrote in
1997 is even more relevant and practicable at the end of year 2003: the content of traditional



service courses in mathematics has been determined by the needs of users of mathematics in the
pre-computer age; service courses in mathematics that concentrate on how to solve exercises can be
transformed into courses on how to use software for computer algebra.  A service course in
mathematics in which computational work is done with a computer must have content and
emphasis on skills, and consequently assessment, different from those of a traditional service
course.  Merely adding computer commands to a traditional course is ineffective: students resent
the extra effort required with no perceived benefit at the ultimate examination.  What a student
loses in manual capability he or she gains by being able to solve significant problems, not merely
simplified or prototypical cases suitable for manual solution within a limited period – two or three
hours – of a conventional written examination.  If a course involves performance of mathematical
operations with a computer, assessment of that course must be likewise based on performance with
that computer.  An instructor of such a course based on symbolic computation must reorganise fully
his or her point of view: lectures must include demonstration of implementation of mathematical
principles with projection from a computer, and practical periods supervised by persons
knowledgeable in both mathematics and software become an intrinsic component of such a course.
Instructors of courses in other subjects that depend on such service courses in mathematics must be
prepared to alter their outlook on mathematical capabilities of students, accepting or requiring use
of computers in their own exercises and examinations, whilst concurrently the problems treated
expand from trivial cases dictated by manual mathematical limitations to realistic contexts.

Teaching mathematics with software for symbolic computation allows an instructor to
explore a topic or principle from four points of view: a formal statement in words, just as according
to tradition, including emphasis on definitions of terms; an algebraic or symbolic treatment, which
can expand to take advantage of the speed and scope of software for algebraic operations;
numerical aspects, with test cases over a large range, with numerical examples used to introduce
topics as much as practicable; graphics, showing geometrical interpretations in two or three
dimensions, with animations, in a way that is entirely impracticable with traditional chalk on a
blackboard.  The advantage of the latter can not be overestimated: a picture is certainly worth a
thousand words of jargon, and makes a concept memorable to even a mathematically disinclined
student.  The capacity of contemporary software for symbolic computation to produce outstanding
plots is astounding; teaching of mathematics without use of such displays is unacceptably inferior.
In a mathematics course, emphasis on concepts and reasoning can replace drill on technical details
of manipulation required to solve routine exercises, and plots of geometric constructions can
underpin those concepts and critically enliven the reasoning.

examples  of  use  of  symbolic  computation  in  teaching  mathematics

I illustrate a few aspects of teaching mathematics in various areas, employing Maple
software [2] for this purpose.  Maple was developed originally at University of Waterloo in Canada
primarily to assist students of science and engineering to undertake mathematical operations on a
computer in a way that a Fortran compiler or Basic interpreter enables execution directly of merely
arithmetical operations; although it has become a major commercial product, its devotion to an
educational mission remains steadfast, and at present Maple sets a standard according to which
other mathematical software can be assessed.  Freely available software that is readily acquired
through internet includes comprehensive courses in traditional areas of mathematics, such as
algebra, calculus, linear algebra, ordinary and partial differential equations, apart from applications
in many areas of science and engineering.



In calculus the Riemann sum underpins the concept of a definite integral; evaluation of an
area under a curve as a sum of areas of rectangles as the width of each rectangle decreases lends
itself well to animation.  In multivariate calculus the directional properties of a partial derivative
acquire a profound meaning when one can view curves on a surface in three dimensions.  Many
operations in linear algebra are conceptually simple but exceedingly tedious if restricted to manual
execution; we practise gaussian elimination on a matrix of significant order directly in real time to
understand the solution of linear equations, and we can even plot a matrix.  Graphic depiction of
eigenvectors facilitates comprehension of the nature of eigenvalues. When one plots a direction
field for a differential equation of first order, its meaning becomes clear in a way that mere
algebraic presentation never achieves.  Statistical concepts and practices are facilitated with
symbolic software, aided by graphical depiction, in a way that mere numerical software can not
approach; a sequential simplex method of optimisation is illustrated on a surface of χ2 to
demonstrate approach to a convergent solution of fitted data.

There is a spectrum of possible approaches to the teaching of mathematics with symbolic
computation; apart from no deployment at all, one might merely use software interactively in an
occasional lecture demonstration availing of the graphical capability, whereas the other limit of
teaching principles and using software for practically all implementation during a course, its
assigned exercises and final examination is likely the most effective use of the computer and
prepares best the student for future applications.  Although generally courses in mathematics at
university level begin typically with calculus, when teaching with software for computer algebra
one must precede new mathematics with basic numerical and algebraic operations, including
solving equations, elementary functions – polynomial, rational, exponential, logarithmic, various
trigonometric – and plotting as a mechanism to have a student become familiar with both the notion
of symbolic computation and actual rudimentary commands required for routine handling of
numbers or symbolic expressions.  On that basis one proceeds to teach all standard topics in
differential and integral calculus involving a single variable – including numerical techniques
commonly neglected in a traditional course, multivariate calculus, linear algebra from matrix and
vector through eigenvalue to tensor and vector calculus, ordinary and partial differential – and
integral – equations, and statistical topics including regression and optimisation.  Brief exposures to
other aspects of technical applications of computers pertinent to those students, such as
spreadsheets and text editors – whether or not included within the capabilities of the software for
symbolic computation, is also practicable within the same stream of courses.  A realistic duration of
such a programme of instruction would involve at least 80 hours of formal instruction, optimally
120 hours, or a greater period depending on capabilities of students and their previous experience
with mathematics and computers; those hours of instruction would normally comprise two hours
per week of formal lecture and demonstration and two hours of supervised practice in a computer
laboratory, thus running over two or three semesters. One should assume, and arrange accordingly,
that students have unsupervised access to the same software for symbolic computation in computer
laboratories for additional practice and applications as required, and that students would likely also
have software for computer algebra – not necessarily the same product as that in an institutional
setting – installed on their personal computers or elsewhere.



summary
We must all agree not only that computers are here forever but also that they affect strongly

the teaching and practice of mathematics, just like every other aspect of knowledge activity and
communication; hence our student who fails to become significantly acquainted with mathematical
– not merely arithmetical – software is not being properly prepared for a technical career.
Currently available mathematical software, for symbolic computation with associated numerical
and graphical capabilities highly developed, provides a valuable tool for both teaching and doing
mathematics, and should become an integral component of routine instructional presentation.
Instruction should emphasise mathematical principles, with numerical and graphical interpretations
and illustrations, and indicate how mathematical operations are implemented, although there is no
necessity to restrict implementation to a single software product.  Students should learn how to
adopt an experimental and constructive approach to mathematics, based on mathematical software,
rather than a sterile description according to theorems, corollaries, lemmas et cetera.  As
mathematical software continues to evolve, both students and their instructors must expect to
expand their mathematical horizons and to progress in their own development stimulated through
that software.  The future development of internet communication and its impact on education is
difficult to predict – even a few years into the future, but what is certain is that both content and
process of education, including mathematical education, is evolving rapidly as a consequence of the
existence and deployment of digital computers and symbolic computation.  Each instructor of
mathematics has a solemn duty and responsibility to adapt to, and to work with, computers to
prepare optimally his or her students for future technical careers and even life styles. The future
might be unpredictable in detail but the trends are clear:  computers and symbolic computation in
teaching and practice of mathematics are indisputably part of them.
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