NON-TRIVIAL QUADRATIC APPROXIMATIONS TO ZERO OF
A FAMILY OF CUBIC PISOT NUMBERS.

PETER BORWEIN AND KEVIN G. HARE

ABSTRACT. This paper gives exact rates of quadratic approximations to an
infinite class of cubic Pisot numbers. We show that for any cubic Pisot number
¢, with minimal polynomial p, such that p(0) = —1, and where p has only one
real root, then there exists a C(q), explicitly given here, such that:

1. For all € > 0, all but finitely many integer quadratics P satisfy

Pl = G
where H is the height function.

2. For all € > 0 there exists a sequence of integer quadratics Py (g) such that
Clg) +¢
H(Pn)?'
Furthermore C(g) < 1 for all g in this class of cubic Pisot numbers. What is

Pa(g)] <

surprising about this result is how precise it is, giving exact upper and lower

bounds for these approximations.

1. INTRODUCTION.

The study of continued fractions is the study of finding good rational approxima-
tions ¢ to irrational numbers « [1, 5]. Finding these good rational approximations
is equivalent to finding good linear approximations b,a — a,, to zero. The idea of
finding good linear approximations to zero extends to finding good quadratic ap-
proximations of an irrational number g to zero of the form A, q?+ B,q+C,,. Clearly
if ¢ is quadratic, then A,,, B,, and C,, can be solved exactly in the integers. Here

we consider the case when ¢ is a particular type of cubic Pisot number. Recall:

Definition 1. A Pisot number is a real algebraic integer, all of whose conjugates
are of modulus strictly less than 1. A Pisot polynomial is the minimal polynomial

of a Pisot number.
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The class of cubic Pisot numbers that we consider is:

Definition 2. Let P be the set of Pisot numbers with Pisot polynomial p such
that:

2. deg(p) =3,

3. p has only one real root.

We see that the requirement 3 does not necessarily follow from requirements 1
and 2 as 2% — 3x2 — 42 — 1 satisfies the first two requirements, yet has three real
roots, of approximately -0.6920214716, -0.3568958679 and 4.048917340. We easily

see that this class is non-trivial and infinite.

Let us again consider the case of linear approximations to zero as it arises from
continued fractions. It is known [1] that if « is an algebraic number and A and
B are integers such that |Ba — A| < 5L, then A/B is a convergent of a. From
this it follows that for 0 < b < B we have |Ba — A| < |aa — b|. In other words,
P(z) = Bz — A is the best non-trivial linear approximation to zero at o bounded
by height max(A, B). We prove a similar result here for quadratic approximations

of ¢ € P to zero.

The classic result, known as Louiville’s inequality (see for example [10]), shows

that if « is an algebraic number of degree d > 2, then there exists a D(«) such that

> D)
q

a— - PaqEZ7QZ1;

q

p ‘
or equivalently,

D(a)
lga —p| > =

Another result worth noting, see Schmidt [12], shows that for every e > 0, and
an algebraic number ¢ where 1,q and ¢? are independent, there are only a finite
number of integer quadratics P such that

IP(0)] < 7

H(P)2+e
Here H is the height of a polynomial P. What Schmidt shows is actually more
general than this, showing that if 1, and 8 are linearly independent algebraic

numbers, then there are only a finite number of solutions to
laa + b8 + ¢| < max(a,b) "¢

for integers a, b and c.
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Roth’s classic result [11] states that if « is an algebraic number, then for all € > 0
1

a— p < n

q q=re

has only finitely many solutions over the integers. The main open question with

respect to this is whether an effective upper bound for ¢ (dependent on €) can be
found. This paper answers the equivalent question for quadratic approximations
for ¢ € P, finding an explicit upper bound for the height of P, dependent on e,
after which there are no solutions to

P@)| < =t

In Section 2 we prove the existence of a sequence of good quadratic approxima-
tions to zero for ¢ € P. Section 3 proves that the sequence described in Section 2
is the best possible. In Section 4 we show that C'(q) < 1 for all ¢ € P, where C(q)
is a factor which indicates how good an approximation the sequence of quadratics
gives. Section 5 determines a bound on the height of a quadratics P (dependent
on €) after which there are no solutions to P(q) < W. Lastly Section 6 gives

some conclusions and lists some open problems.

2. PROOF FOR AN UPPER BOUND OF A SEQUENCE OF QUADRATICS.

This section shows the existence of a sequence of quadratics that give good
approximations to zero when evaluated at ¢q. First we need to define C(q). Here

and through out 7 represents the Golden ratio (the maximal root of 2 — z — 1).

Definition 3. Let g € P, with conjugates g; and ¢;. If ¢ > 7 then

:= min 9
Clg) = ((q1q+q+q1)(q2q+q+Q2)(q_QI)(q_(h),

4

4
q
(a—a—a)(@2qa—q—a)g—a)(g— CIz))
while if ¢ < 7 then

= min 1
Cla) = ((qlq +q+a1)(@q+a+a)a—a)(a-ge)

q4

(a—q—q1)(@q—q—-@)g—a)qd—q)’

4

¢ )
(g +1)(eg+D)(g—a)lg—ag)/)’

For convenience we denote

Gl = T ar @i T o) - - o)
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Ca(9) = (@g—q—a) (20— 9-2)(@—an)lg— @)

Theorem 2.1. If ¢ € P then for all € > 0 there exists a sequence of integer
quadratics P, (z) = A,z% + Bpx + C,, such that

|Pa(q)| = |Ang® + Bng + Cy| <

Proof: Let ¢ € P and p be the minimal polynomial of q. Notice that p is of the
form 2® + ro2? + riz — 1. We notice in Z[z]/p(z), that (22 + rex +7r1) = 1, or
equivalently L is in Z[z]/p(z). So we can write P,(z) = Apz® + Bpz +Cr = = in
the ring Z[z]/p(x). Then A,, B,, and C,, can be written as

(1) An = af" +ay" +asy"
(2) B, = bf"+bay" +bsy"
(3) Crn = af”+cY" +e¥"

where § = % with v and ¥ the conjugates to 3. It is worth noting that as = as,
by = b3 and by = b3. As 8 < 1, for any € > 0 there exists an N, such that for all
n > N we have |a; 87|, |b18"], |c18™| < e. (Basically, we can ignore 3 from here on
in.) We know that ~ has an irrational angle in the complex plane, and hence we
can get arbitrarily close to any angle with powers of 4. Thus the height of P, can

be written as:

H(Py) max(|Ap|, [Bnl,|Cnl)

IN

max(|asy™ + az¥"|, [b2y"™ + b37"|, [c2y™ + c3¥"]) + €

prim (s () s (7)o (77) 2 (57)
> () +o () D)+

< |y max(|aza™ + aza@™|, |baa™ + b3a"|, |caa™ + c3a™|) + €.

IA

) 7

Here a is an irrational angled complex number with modulus 1. Thus for any € > 0,

we can choose a subsequence of the n, say n;, such that

H(Py;) <|y™

(lrarlli_ri(max(|a20 + azf)|, |b2b + b36)|,|cab + c36|)) + €)
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Let us put U(g) := min|g=; (max(|az6 + asf|, |b20 + bsb|, |c26 + cs0]))?. (We later

show that U(g) < C(g).) On noticing that |y|? = ¢ we get

(P,

i

H(P,,)?
H(Py,)?
1
qri

|Pr: ()]

We now show that for ¢ > 7

U(q) = min (max(|a29 + a39|, |b29 + b3g|, |020 + C3g|))2

/=1

< U@ +ehf™,

< (U(g) +e)q™,
Ulg) + ¢

S HP
Ulg) + ¢

S HE)

occurs when |baf + b38| = |caf + c38| with |a26 + azf| < |bef + b36|. We solve for

6 such that |b26 + b3f| = |c26 + c30| and show that |a26 + a3f| < |b26 + b3f] is a

consequence of this (for ¢ > 7). We see that a20 + a3f, bab + b3f and c20 + c36 are
all real. Thus there are two cases to solve for when |bs8 + b30| = |c26 + c30|. The

first is by + b3l = 20 + c30 and the second is bo8 + b3f = —c20 — c50.

Before looking at these two cases, we need to explicitly solve for as, as, bs, b3,

¢o and c3 in equations (1), (2) and (3). This gives:

4 @ =
(5) a5 =
(6) by —
) b =
®) e =
9) e =

-1

(@ —q2)(g — @)

1

(@1 — q2)(q — g2)

(q+ q2)

(1 —@2)(a—aq)

—(g+q1)

(1 — q2)(q — g2)

—qq2

(1 —@2)(g—aq)

qq1

(1 —@2)(q—a2)

where ¢; and ¢y are the conjugates of q.

Consider the case when by8+bs0 = c20+c36. We use the values for as,as, b, bs, ca

and c3 as given in equations (4) through (9). Solving for (b2 + b36)? (via Maple

[6]) given that baf + b3f = caf + c36 with |§] = 1 yields:

q4

(b20 + b3f)* =

(g+a+a)(@eq+a+e)q—a)lg— )
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Further for this § we get that:

(g+1)°
(a+a+a)(@e+a+@)a—a)a—a)

A1 (q) = (a20 + a3§)2 =

From
Ai(g) _ (g+1)?

C1(q) gt
we see that for ¢ > 7 that Cy(q) > A4; and hence C4(q) > U(q).

Now consider the case when by + b3 = —co0 — c30. We use the values for

as,as, ba, b3, co and c3 as given in equations (4) through (9). Solving for (b2 + b36)?
(again via Maple [6]) given that bsf + b3 = —ca8 — c30 where |0] = 1 yields:

M2 _ ‘14 _
(a6 + bs6)" = (a—a—a)@a—a—a)a—a)la—a) Cal(a)-

Further for this § we get that:

(¢—1)

A0 = el ) = e @ - d- - - 1)

On noticing that

Ar(g)  (g—1)°

Cale) ¢
we see that C2(q) > Aa(q) for ¢ > 1 and hence C2(q) > U(q).

So for ¢ > 7 we have C1 (¢) > U(q) and C>(q) > U(q) hence U(q) < min(C1(q),C2(q)) =
C(q). For g < 7 there are only two cases to consider. If ¢ is the first Pisot number,
where ¢ — ¢ —1 =0, then

4
U(g) = C(g) = 4 = 0.3003453559

(g+a+a)(eq+a+e)(a—a)lg— )

If ¢ is the second Pisot number in P, where ¢> — ¢> — 1 = 0, then

2

— - q -
V@) =C) = s D g g — 3429099932

Thus we see that U(q) < C(q) and the result follows.

3. PROOF OF A LOWER BOUND TO ALL QUADRATICS.

This section shows that the sequence of P, described in Section 2 is the best

possible.
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Theorem 3.1. Ifq € P and € > 0, then for all but finitely many integer quadratics
P(z), we have |P(q)| > Cla)=c where H is the height function, and C(q) is given

H(P)? >
in Definition 3.

Proof: Let P be an integer quadratic, ¢ € P, and ¢; and g2 = G the two
conjugates of g. As P is quadratic and ¢ is of degree three we know that P(q) # 0.
This implies that |P(q)P(q1)P(g2)| > 1 and hence
1

P(q1)P(g2)

Since P(q1) = P(g2) we see that P(g1)P(g2) is real and greater than 0, hence

1
PO 5Pl

We know from Theorem 2.1 that we can find quadratics that evaluate arbitrarily

IP()] > ‘

close to zero at gq. Thus, except for finitely many exceptions,
1-— €0
H(P)? max(S(q1)S(g2) : H(S) <1,5(q) =0)

where S is a real quadratic.

(10) [P(g)] >

Finding the maximum in equation (10) is the problem of finding a maximum
magnitude on a convex polytope, thus the maximal value is attained on an extreme

point (i.e. a corner point). We examine the equation
(11) max(S(q1)S(g2) : H(S) < 1,5(¢) =0, S is an extreme point)

more carefully. We see that S is an extreme point if and only if it is of the form
S(x) = ax? + bz + c where:

1. at least two of a, b and c are £1,

2. S(q) =0,
3. -1<a,bec<1.

We can eliminate half of the cases right away by the symmetry |S(q)| = | — S(¢)|.
We examine each of the possible cases for a, b and ¢, when at least two of the three

are of modulus 1.

Case 1: Let S(z) = 22 + = + ¢. By requirement 2 we have that ¢ = —¢? — ¢. But
—q¢% — ¢ < —1 which violates requirement 3. Hence this is not a possible
value for S(z).

Case 2: Let S(x) = #? — z + ¢. By requirement 2 we have that ¢ = —¢®> + q. By
requirement 3 we have that —1 < —¢? + ¢ < 1. Thus we have that ¢ < 7.

Hence, for ¢ > 7, this is not a possible value for S(z).



Case 3:

Case 4:

Case 5

Case 6
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Let S(z) = 2* + bz + 1. By requirement 2 we have that b = —¢ — ;. But
we see that —q — % < —1 which violates requirement 3. Hence this is not
a possible value for S(z).

Let S(z) = 22 + bz — 1. By requirement 2 we have that b = —q + %. By
requirement 3 we have that —1 < —q + % < 1. Thus we have that ¢ < 7.
Hence, for ¢ > 7, this is not a possible value for S(z).

Let S(z) = az® + z + 1. By requirement 2 we have that a = —¢ — . By
requirement 3 we have that —1 < —% - q% < 1. Thus we have that ¢ > 7.
Hence, for ¢ < 7, this is not a possible value for S(z).

Let S(z) = az” + z — 1. By requirement 2 we have that a = — + .
By requirement 3 we have that —1 < —% + q% < 1. This is always true if
qg>1.

Summarizing these 6 cases gives that if ¢ > 7 equation (11) is equal to

1 1Y,
max —+ 5 )ata -1
a 4q

2

?

and if ¢ < 7 then equation (11) is equal to

2 2

7 ?

1 1Y,
max —+s)ata-—1
g g

1
qf+(—q+a>q1—1

i~ a+ (—¢*+q)[")

Or equivalently, taking e = =% if ¢ > 7 then

|P(q)

C(a)

1—60
>
~  H(P)?max(S(q1)S(g2) : H(S) < 1,5(q) =0)
_ 1—60
- 2 2
Py (| (2 + )it + -1 (-3 - #) @ +a+1])

= 1_—eomin ( q4
H(P)? (@a—q—q)(@e—9—@)g—a)a—q)’

¢
(g +a+q)(eq+q+ae)(a—a)la— ‘12)>
Clg) —¢

H(P)?2
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and if ¢ < 7 then

1 — €0
POl 2 G max(5@)S@) : £(5) <1,5(@) = 0)
1—¢
= 2 ; 2 N
H(P)? max (‘(—$+q%)q‘f’+q1—l| |+ (ma+ ) a-1] 18 - a1+ (- + ) )
= —1 — <0 min ( ¢
H(P)? (mg—aq—a)(eq—9—@)g—a)lqg—q)’
7’ 1 )
(g +D(eg+D@—a)lg—@) (@+a —1)g+ae-1)(¢—a)lg—q)
C(q) —¢
H(P)* -
Thus
Clg) —¢
|P(g)| > W

for all but finitely many integer quadratics P, which is the desired result.
|

It is worth pointing out that when ¢ > 7, both of the cases of C(q) = Ci(q)
and C(q) = Cs(q) do occur, as demonstrated in Table 1. This table lists all g € P,
1 < g < 5, along with their minimal polynomials, and C(q), and whether C(q) =
C>(q). These Pisot numbers are found using using the techniques of David Boyd,
as described in [4]. The next section discusses when each case occurs, as well as
showing that C(q) < 1.

4. THE FACT THAT C(q) < 1.

We make the observation that C(g) < 1 for all ¢ € P, 1 < ¢ < 5 from Table 1.

This section proves that this observation is true in general, for all ¢ € P.

Theorem 4.1. For all ¢ € P we have that C(q) < 1, and moreover C(q) — 1 as
q — 0.

Proof: There are only two cases of ¢ € P where ¢ < 7, which we compute
explicitly. For the first Pisot number, satisfying ¢ —¢—1, C(q) = 0.3003453559 < 1.
For the second Pisot number, satisfying ¢° — ¢> — 1, C(q) = 0.3429099932 < 1.
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Pisot polynomial | ¢ C(q) C(q) = Cx(q)?
2 —-z—1 1.324717957 | 0.3003453557

2 —z? -1 1.465571232 | 0.3429099932

22 — 2224+ —1 | 1.754877666 | 0.3429800030

® —z® —x—1 |1.839286755 | 0.4133318671

22 — 22— 2z —1 | 2.147899036 | 0.3501354747 X

22 —22% -1 2.205569430 | 0.5080747995

2% — 322 + 2z — 1| 2.324717957 | 0.4453345199

22 -2 -2 -1
2° -3 4+x -1
x> —222 -2z —1
2> —222 - 3x -1
2 — 322 -1

3 —4z? + 3z — 1
22 —3x2 -z -1
3 —4x? + 2z -1
2 -3z -2z -1
22 —4x2 421
2> —322 -3z -1
2 —42% -1

23 —5x? + 4z — 1
Y |
z3 — 522 + 3z — 1
22 —422 — 22 -1
2 — 522 +2x -1
z® — 422 -3z —1
22— 524+ x—1

23 —4x? —4x —1

2.546818277
2.769292354
2.831177207
3.079595623
3.103803403
3.147899036
3.382975768
3.511547142
3.627365085
3.806300717
3.847322102
4.060647028
4.079595623
4.287625262
4.365230013
4.494492837
4.613470268
4.685779526
4.835975919
4.864536512

0.5309353500
0.5232405572
0.4435746902
0.3847011683
0.6573022517
0.4911183769
0.6198187695
0.5392925792
0.5238048354
0.6215030654
0.4565756315
0.7429688162
0.5016713072
0.6821435669
0.5427050340
0.5872601546
0.6026317629
0.5175073389
0.6842306666
0.4639992754

X

Table 1: Some calculations of C(q) for various ¢

C(q)

q4

So, without loss of generality, we assume that ¢ > 7. Thus we have that

min (

(a+a+q)(@e+a+@)a—a)la—a)’

q4

(g—qg—q)(@q—q9—@)qg—a)lg— qz))

min(C(g), C2(q))
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1 — 1
q192 ity

Let us consider T'(q) = %. Write g1 as z+yi, g2 as x—yi and q as
Simplifying T'(q) gives:
T(q) = max (2" +62'%> + 152%" +202%9° + 152"y® + 62°y"°
+y'2 + 2210 + 1028y + 2025y* + 20218 + 1022y® + 2410
2 + 4259 + 62yt + 4220 + o° — 227 — 625y? — 625y
—22y% — 228 — 2w4y2 + 2w2y4 +2y% — 22° — 4x3y? — 23:y4
=2zt + 2y + 2 + 9% + 22 + 1,
22 + 62'%2 + 152%y* + 202595 + 152%y® + 62290 + ¢'2
—2210 — 102892 — 2028y* — 202%y® — 102%y® — 2410 + 28
+425y? + 62 y* + 4225 + ¥ + 227 + 625y + 623y + 21y
—225 — 22%y% + 222yt 4 298 — 22° — 42®y? — 229" + 22*
-2t + 2P +y? —22+1).
For convenience label the first polynomial as T} = C% and the second polynomial as
T, = C% As the unproven cases are for ¢ > 7 we may assume that —\/g <z< \/;
and —/L <y < /L.
Consider 77 on the region 0 < z < \/; and —\/; <y< \/; On the line
T = \/;, there is a local minimum of approximately 1.364498234 at y=0. On
the line y = —\/; , there are no local minimums or maximums, but the boundary
value of z = 0 gives approximately 3.236067980, and = = \/g gives approximately
17.70723545. The line y = \/; is symmetric to the line y = —\/; On the line

x = 0, there is only one local minimum at y = 0, giving the value of 1. On
the interior of this region there are no local minimums or maximums (there is a
saddle point at y = 0, z = 0.5550360821 of approximately 2.047461577). Thus
Ty, is always greater than or equal to 1 on this region, and is equal to 1 only at

z =y = 0. (See Figure 1.)

Consider T, on the region —\/; <z <0 and —\/; <y< \/; On the line
T = —\/g , there is a local minimum of approximately 3.732814929 at y=0. On

the line y = —\/; , there are no local minimums or maximums (in the correct

range), but the boundary value of z = 0 gives approximately 1.347524158, and

¢ = —\/; gives approximately 3.371362832. The line y = ﬁ is symmetric to

the line y = —\/g . On the line z = 0, there is only one local minimum at y = 0,
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Figure 1: A plot of T} on the region of x > 0.

Figure 2: A plot of T; on the region of z < 0.

giving the value of 1. On the interior of this region there are no local minimums
or maximums. Thus T3, is always greater than or equal to 1 on this region, and is

equal to 1 only at z =y = 0. (See Figure 2.)
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C,

02 04 06 08
p.q

Figure 3: Regions where C; and Cs respectively are minimal.

Thus 77 and T» are strictly greater than 1 on their respective regions, except
at the point £ = y = 0. Thus T'(g) > 1 as we cannot have both z and y equal to
0. We see that if ¢ — 0o then ¢ — 0 which implies that z — 0 and y — 0, thus
Ti(z,y) = 1 and Ta(z,y) — 1, and hence T(q) — 1.

Thus C(g) < 1 and further as ¢ — oo we have C(q) — 1.
|

In Table 1 we indicate when C(q) = Ca(g). (When C(g) # C2(g) and g > 7 then
C(q) = C1(q).) Figure 3 gives a graphical interpretation of when C(q) = Ca(q).
Which value C(q) takes depends on the location of ¢; in the complex plane. If ¢,

is in the interior of the convex curve (where the real part is less than zero), then
C(g) = C1(g), otherwise C(g) = C2(q)-

5. BOUNDS FOR THE HEIGHT WITH RESPECT TO €.

Let ¢ € P. We know from [12] that

1

|P(q)] < m

has only finitely many integer quadratic solutions. Here we find an upper bound

for H(p) (dependent on €) for all of these solutions.
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We see from Theorem 3.1 that |P(q)| > (Ij_l((ql)j;; in all but finitely many cases.
Let us re-examine the proof of Theorem 3.1 to find a lower bound for |P(g)| that
holds in all cases. We re-write equation (10) as

1
(P)? max(S5(q1)S(gz) : H(S) < 1,deg(S) < 2)

by not binding S(q) arbitrarily close to zero. This is true for all integer quadratics

P@)] > &

P. Again, we notice S must be an extreme point, hence this can be rewritten as

1
|P(q)| > H(P)2max(S(q1)S(g2) : S(x) = 22+ x+ 1)’

So we see that there is a solution only if

1
H(P2H > P(q),
1 > q
H(P)*tc = H(P)?2max(S(q1)S(g2) : S(z) = £22 + £z + +1)’
1 1
HP) = max(S(@)S(@): S(@) = t2° + tz + £1)’
H(P)* < max(S(q:1)S(q2) : S(z) = +2% + +x + +1),
H(P) < (max(S(q1)S(g):S(x) = +a? + £z + 1))/

This proves the following Theorem.

Theorem 5.1. If ¢ € P with ¢1 = §= the conjugates of q and
H(P) > (max(S(g2)S(q1) : S(z) = +a? £ 2w £ 1))/

then there are mo integer quadratic solutions P to

1

|P(g)] < H(PyRre

6. FURTHER RESEARCH.

This paper is complete in itself, but it doesn’t give a proper accounting on where
this problem occurs, and why we are looking at it in the first place. For this we

need one more definition.

Definition 4. Define ™ (q) = inf(|p(q)| : p(q) # 0, H(p) < m).

There is much research on ™ (q) when g is Pisot. For an overview, see [3, 8]. It is
conjectured, but not known that I*(q) > 0 if and only if ¢ is Pisot. For general m,
and ¢ the Golden ratio, I™(q) is known. If F} is the kth Fibonacci number (Fy =
0,Fi =1,F, =F, 1+ F,_5),and ¢* 2 <m < ¢*! then I"™(q) = |Frq — Fj11|
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[9]. In [3] a method to calculate I™(q) for all Pisot numbers ¢ and all integers m
is given. A tabulation of other {™(q) for various m and ¢, based on these methods
of calculations is found at [7]. Upon examination of these tables, we find other
patterns similar to that of "™(q) for ¢ is the Golden ratio. One such pattern is
described in [2] for all unit quadratic Pisot numbers. Another pattern is for the
first and second Pisot numbers, w$ —w; —1 = 0 and wj — w3 — 1 = 0. It appears
that I™(w1) = P, (w1) for some n dependent on m and {™(ws) = Pj(w2) for some &
dependent on m. This is verified up to m = 39 for the first Pisot number and up
to m = 47 for the second Pisot number. Both of w; and w, are members of P.

It appears that something also happens for the Pisot root of the polynomial
z*—x®—1. Even less work is done for this case to determine if the pattern continues,

or if these ideas can be extended to an even wider class of Pisot numbers.

This paper leaves some questions unanswered.

1. Is this pattern for the first two cubic Pisot numbers in fact true for for all m?
(This we believe is true.)

2. If so, what is the relationship between n and m in the equation P, (w;) =
I™(w;), for i = 1,27

3. Is this pattern true to a limited extent for any of the other Pisot numbers ¢
in P? (Which we also believe to be the case.)

If we define Cinaq(g) 1= max|g—; (max(|az6 + asf|, [b260 + b3, |c26 +c56]))?, then

we believe that:

Conjecture 1. For g € P, for all m, I"™(q) = P,(q) for some n if and only if
Craz(q) < 1.

However we also believe that

Conjecture 2. For q € P, Caz(q) < 1 if and only if q is the first or second Pisot

number.

Lastly, we believe that

Conjecture 3. For g € P, for infinitely many n, P,(q) =1"(q) for some m.
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