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ABSTRACT
We present a parallel algorithm for exact division of sparse
distributed polynomials on a multicore processor. This is a
problem with significant data dependencies, so our solution
requires fine-grained parallelism. Our algorithm manages to
avoid waiting for each term of the quotient to be computed,
and it achieves superlinear speedup over the fastest known
sequential method. We present benchmarks comparing the
performance of our C implementation of sparse polynomial
division to the routines of other computer algebra systems.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algebraic Algorithms

General Terms: Algorithms, Design, Performance

Keywords: Parallel, Sparse, Polynomial, Division, Heaps

1. INTRODUCTION
Modern multicore processors let you write extremely fast

parallel programs. The cores share a coherent cache with a
latency of nanoseconds, where communication can occur at
roughly the speed of the processor. The challenge now is to
design fast parallel algorithms that execute largely in cache
and write only their result to main memory.

In [11] we presented such a method for sparse polynomial
multiplication. Given polynomials f and g with #f and #g
terms, we construct f × g =

P#f
i=1

P#g
j=1 fi · gj by creating,

sorting, and merging all the products in parallel, entirely in
the cache. We based the algorithm on Johnson’s method [7]
which we found to be a fast sequential approach in [12, 13].

Johnson’s algorithm computes
P#f

i=1 fi · g using a binary
heap to perform an #f -ary merge. The products fi · gj are
constructed on the fly so only O(#f) scratch space is used.
It begins with f1 · g1 in the heap, and after merging fi · gj

it inserts fi · gj+1. When j = 1 it also inserts fi+1 · g1. This
assumes that f and g are sorted in a monomial ordering.
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In our parallel algorithm each core multiplies a subset of
the terms of f by all of g. Those subproblems were chosen
because Johnson’s algorithm is O(#f#g log #f). The cores
write their intermediate results to circular buffers in shared
cache, and a global instance of Johnson’s algorithm merges
the buffers to produce the result. Superlinear speedup was
obtained from the extra local cache in each core.

This paper obtains a similar result for sparse polynomial
division. This is a considerably harder problem, because in
multiplication the polynomials f and g are known up front.
For division, we are given the dividend f and the divisor g,
and we construct each new term of the quotient q from the
largest term of f − q · g. This produces a tight dependency
among the terms of the quotient, and adds synchronization
and contention to the multiplication of q and g.

We are not aware of a comparable attempt to parallelize
sparse polynomial division. Our algorithm is asynchronous
and does not wait between the computation of qi and qi+1.
In [15], Wang suggests parallelizing the subtraction of qi · g
and synchronizing after each new term of the quotient. No
data is provided to assess the effectiveness of this approach
but we believe the waiting would be a problem. It appears
the CABAL group [10, 14] has also tried this approach. For
dense polynomials, Bini and Pan develop a parallel division
algorithm based on the FFT in [1], and in [8], Li and Maza
assess parallelization strategies for dense univariate division
modulo a triangular set.

Our paper is organized as follows. In Section 2 we discuss
the division algorithm and the challenges of parallelization.
We describe our solutions and present the algorithm. Then
in Section 3 we present benchmarks of our implementation.
We compare its performance and speedup to the sequential
routine of [13], the parallel multiplication codes of [11], and
the division routines of other computer algebra systems.

2. SPARSE POLYNOMIAL DIVISION
Consider the problem of dividing two sparse multivariate

polynomials f ÷ g = q in Z[x1, . . . , xn]. In general there are
two ways to proceed. In the recursive approach we consider
them as polynomials in x1 with coefficients in Z[x2, . . . , xn].
We divide recursively to obtain a quotient term qi, then we
subtract f := f − qig. The recursive coefficient operations
could be performed in parallel as suggested by Wang in [15].

One problem with this method is the many intermediate
pieces of storage required. Memory management is difficult
to do in parallel while preserving locality and performance.
For exact division the polynomial f is also reduced to zero,
so the construction of q · g in memory is wasteful.



In the distributed approach we impose a monomial order
on Z[x1, . . . , xn] to divide and cancel like terms. We divide
the largest term of f by the largest term of g to construct
the first term q1 of the quotient, and repeat the process for
f − q1g to obtain q2, and so on, until either f −

P
qig = 0

or the division fails. There may be very little work between
the computation of qi and qi+1, which makes this approach
difficult to parallelize.

But it has a critical advantage for division. Using a heap
we can merge the terms of q · g in descending order without
constructing large objects in memory. For example, when a
new term qi is computed we can insert qi · g2 into the heap,
and when this term is used we would replace it with qi · g3.
This is Johnson’s “quotient heap” algorithm, where a heap
of size #q is used to merge

P#q
i=1 qi · (g− g1). It uses O(#q)

memory in total, far less than the O(#f + #q #g) memory
used by the recursive approach.

One nice feature of the quotient heap algorithm is that a
new term qi completely determines a row qi · g in the heap.
If we could distribute the qi to different processors it would
be easy to parallelize division. However one problem is that
a new term of the quotient could be computed at any time.
We may also use qi · g2 immediately to compute qi+1. This
suggests an alternative partition of the work.

The “divisor heap” algorithm of Monagan and Pearce [12]

computes
P#g

i=2 gi · q instead. That is, elements of the heap
walk down the quotient and multiply by some divisor term.
Distributing terms of g to the threads solves two problems.
First, we can divide the work in advance with good locality
and suggest the number of threads. Second, {g2, g3, . . . , gk}
may be merged by the processor computing quotient terms
so that their products are known without delay. Our entire
algorithm is designed to avoid waiting in a typical division,
and this is one of two situations we address.

One may ask whether there is a loss of efficiency because
the divisor heap algorithm performs O(#f + #q#g log #g)
monomial comparisons. This is not optimal when #q < #g.
In [13] we present a sequential division algorithm that does
O(#f + #q#g log min(#q, #g)) comparisons. However our
divisor heap is run on subproblems with #g/p by #q terms
where p is the number of threads, so the threshold becomes
easier to meet as the number of threads increases.

2.1 Dependencies
We begin with an example that shows the main problem

encountered in parallelizing sparse polynomial division. Let
g = x5 + x4 + x3 + x2 + x + 1 and f = g2. To divide f by g
we will compute q1 = f1/g1 = x5, q2 = (f2 − q1g2)/g1 = x4,
q3 = (f3 − q1g3 − q2g2)/g1 = x3, and so on. Each new term
of the quotient is used immediately to compute subsequent
terms, so qk depends on the triangle of products gi · qj with
i + j − 1 ≤ k, as shown below for q4.

Figure 1: Dependency in Dense Univariate Division.
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In parallel division the products gi · qj are merged using
multiple threads. Our problem is to divide up the products
in a way that mostly prevents having threads wait for data.
For example, in the computation above we compute qk and
then immediately use qkg2 to compute qk+1. It would make
sense to do both operations in the same thread. Otherwise,
one thread will compute qk and stop to wait for qkg2 while
the thread computing qkg2 waits for qk and then carries out
its task. Waiting serializes the algorithm because the round
trip latency is longer than it takes to compute terms.

In the dense example (see Figure 1) we might be able to
multiply g6 · q in a separate thread without waiting for any
of its terms, because after we compute qk we need to merge
{g2qk, g3qk, g4qk, g5qk} before g6qk is used. We could merge
other terms as well but those four have distinct monomials.
The second thread may still have to wait for qk if it doesn’t
have enough other work to do.

The structure of sparse polynomial multiplication is that
giqj > gi+1qj and giqj > giqj+1 when the terms of q and g
are sorted in a monomial ordering. In general this is called
X + Y sorting, see Harper et al. [6]. We are exploiting this
structure to get parallelism in the multiplication of q and g.
The approach is a recognized parallel programming pattern
called geometric decomposition. For details see [9].

Our algorithm partitions the products {giqj} into regions
that are merged by different threads. The X + Y structure
provides a lower bound on the amount of work that is done
before a term from an adjacent region is needed. The work
is used to conceal the latency of communication so that our
threads can run independently and do not have to wait.

Figure 2: Common X+Y Sort Orders.
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Whatever partition we choose will have to interact nicely
with the construction of the quotient q, but there is no way
to know the dependencies of q in advance. So we identified
three common cases by experiment, see Figure 2. To create
each graphic, we sorted the products {giqj} for 1 ≤ i ≤ #g
and 1 ≤ j ≤ #q and shaded them from white to black. The
image shows the order that terms are merged, and the first
row shows when we construct each term of the quotient.

The triangular dependencies of dense univariate divisions
(see Figure 1) are apparent in the first image, although the
structure is found in sparse problems too. In this case O(k)
terms are merged between the computation of qk and qk+1.
Merging and quotient computation both occur at the same
regular rate, so this is the easiest case to parallelize. In the
hyperbolic case the quotient is computed rapidly, with very
little work between the computation of qk and qk+1. There
we must avoid waiting for {g2qk, g3qk, . . . } to be computed
since those terms will be needed immediately. The last case
is the hardest one to parallelize. Polynomials with algebraic
substructure tend to produce blocks which must be merged
in their entirety before any new quotient term is computed.
In the next section we describe our solution.



2.2 Parallel Algorithm
Our parallel division algorithm borrows heavily from our

multiplication algorithm in [11]. To each thread we assign a
subset of the partial products {gi · q}. These are merged in
a heap and the result is written to a buffer in shared cache.
A global function is responsible for merging the contents of
the buffers and computing new terms of the quotient. This
function is protected by a lock.

Unlike in the parallel multiplication algorithm, the global
function here is also assigned a strip of terms along the top
(g1 + · · ·+ gs) · q. This allows it to compute some quotient
terms and stay ahead of the threads. It uses g1 to compute
quotient terms and the terms (g2 + · · ·+ gs) · q are merged.
Then the strip (gs+1 + · · ·+ g 2s) · q is assigned to thread 1,
the next strip of s terms is assigned to thread 2, and so on,
as in Figure 3 below. The strip height s is derived from the
number of terms in g, refer to Section 2.3 for details.

Figure 3: Parallel Sparse Division Using Heaps.
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The threads merge terms from left to right in the style of
a divisor heap of Monagan and Pearce [13]. Each iteration
of the main loop extracts all of the products gi · qj with the
largest monomial, multiplies their coefficients to compute a
sum of like terms, and inserts their successors gi · qj+1 into
the heap to set up the next iteration of the algorithm.

A major problem is that after gi · qj is extracted from the
heap and merged, we may find that qj+1 does not yet exist.
For example, towards the end of a division there will be no
more quotient terms. The threads need some way to decide
that it is safe to continue without gi · qj+1 in the heap.

In the sequential division algorithm this is easy because
g1 · qj+1 > gi · qj+1 in the monomial order. This guarantees
qj+1 is constructed (by dividing by g1) before any products
involving it need to be in the heap. We can safely drop the
products missing qj+1 as long as they are reinserted before
they could be merged. For example, in our algorithm in [13]
we set bits to indicate which gi have a product in the heap.
When a new quotient term qj+1 is computed we check if g2

has a product in the heap and insert g2 · qj+1 if it does not,
and when we insert gi · qj with i < #g, we also insert the
next product for gi+1 if it is not already in the heap.

In the parallel algorithm the computation of the quotient
is decoupled from the merging of products, so this strategy
does not work. It becomes difficult to maintain consistency
in the algorithm and expensive synchronization is required.
Eventually we made a compromise – if a thread encounters
gi · qj+1 and qj+1 is missing, the thread must wait for qj+1

to be computed or be relieved of the task of merging gi · q.
The idea is to have the global function steal rows from the
threads to allow them to proceed.

Figure 4: The Global Function Steals Rows.
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Figure 4 shows the global function in more detail. At the
beginning of the computation it is assigned a strip of s = 4
terms. It uses g1 to construct quotient terms and it merges
(g2 + g3 + g4) · q using a heap. After merging g2 · qj , it sees
that qj+1 has not been computed. It steals g5 · (qj+1 + · · · )
by incrementing a global bound that is read by all threads.
This bound is initially set to 4, and it will be updated to 5.
When new quotient terms are computed, the current value
of the bound is stored beside them for the threads to read.

Two possibilities can now occur in the Figure 4 example.
If the thread merging g5 · q reaches g5 · qj+1 before qj+1 has
been computed, it checks the global bound and the number
of terms in the quotient. With no more quotient terms and
a global bound greater than or equal to 5, it drops the row
from its heap. Otherwise, if qj+1 is computed first, a bound
of at least 5 is stored beside qj+1. The thread sees this and
again drops the row from its heap.

Stealing rows in the global function allows the threads to
continue merging terms without any extra synchronization.
If used aggressively it also eliminates waiting, at the cost of
serializing more of the computation. This is a bad tradeoff.
We prefer to steal as few rows as possible with a reasonable
assurance that waiting will not occur.

2.3 Implementation
It is a non-trivial matter to sit down and implement this

algorithm given the main idea. With sequential algorithms
one expects the performance of implementations to vary by
a constant factor. This is not the case for complex parallel
algorithms since implementation details may determine the
scalability. These details are a critical aspect of the design.

Our main challenge in designing an implementation is to
minimize contention. This occurs when one core reads data
that is being modified by another. In the division algorithm
the quotient is a point of contention because we compute it
as the algorithm runs and it is used by all of the threads.

We manage contention by using one structure to describe
the global state of the algorithm. Shared variables, such as
the current length of the quotient and the bound are stored
on one cache line and updated together. Each thread reads
these values once and then continues working for as long as
possible before reading them again. This optimization may
reduce contention by up to an order of magnitude.

We first used the trick of caching shared variables in the
circular buffers of the parallel multiplication algorithm [11].
Those buffers are reused here. They reach 4.4 GB/s on our
Intel Core i7 920 with this optimization, but only 1.2 GB/s
without it. This shows just how high the cost of contention
is for only two threads, and with more threads it is worse.



We now present the algorithm. The first function sets up
the global state and creates the threads. When the threads
terminate, it could be because the algorithm has completed
or because the global function has stolen every row. In the
latter case we continue to call the global function until the
division is complete.

Just like our multiplication algorithm [11] we run at most
one thread per core to avoid context switches. For X cores
we compute t = 3

√
#g, create p = min(t/2, X) threads, and

give each thread strips of size s = t2/p terms. This value is
a compromise between large strips which are fast and small
strips which uniformly distribute the work.

The next function is the local merge that we run on each
thread. It creates a heap and tries to add the first product.
If the necessary quotient term does not exist yet, it tries to
enter the global function and compute more quotient terms.
It also discards any products stolen by the global function.

A product gi × qj has been stolen if qj exists (j < t) and
i ≤ bound(qj), or if qj does not exist (j ≥ t) and i ≤ b. The
function will block in the case j ≥ t and i > b, i.e. when qj

does not exist and the row has not yet been stolen.
An important detail of the algorithm is that it must use

memory barriers to ensure correctness. For example, as the
algorithm runs, the global function computes new quotient
terms and steals rows by incrementing a bound. Imagine if
both were to happen in quick succession. A thread may see
the bound modified first and discard a row before it merges
all of the terms. Memory barriers enforce the correct order.

We use a simple rule: ‘first written, last read’ to logically
eliminate race conditions from our program. With this rule
threads can read a volatile global state and act consistently
as long as the variables are monotonic. Here the number of
rows stolen and quotient terms computed only increase.

The global function is shown on the next page. It inserts
terms from the buffers to update the global heap G, but at
the start of the division there is no quotient and mergeG is
set to false. It performs a three way comparison to decide
which of the dividend, local heap, and global heap have the
largest monomial that must be merged. We write this step
in a clear but inefficient way. Our implementation performs
at most two ternary comparisons that return <, >, or =.

The global function then merges the maximal terms. The
local heap case contains additional logic to add stolen rows.
After merging gi × qj , we check to see if gi+1 has a term in
the heap. If not and i + 1 ≤ bound(qj) we insert the row for
gi+1 starting at qj . Otherwise gi+1× qj will be merged by a
thread so we set mergeG := true to start the global heap.

The global function can steal a row if gi · qj is merged by
the local heap and qj+1 does not exist, or if terms from the
global heap are merged when the local heap is empty. This
second case is needed at the end of the division when there
are no more quotient terms. The global function must keep
stealing rows to allow the threads to progress.

The general idea is to maintain a gap of s− 1 monomials
between the global function and all the threads. When the
global function merges the last term of row gi, it steals row
gi+s−1 if it has not already done so. This allows a thread to
merge to the end of row gi+s. Once all of its assigned terms
have been merged, the global function steals a row for each
distinct monomial it encounters. This allows the threads to
continue merging terms without any extra synchronization,
as long as they send zero terms to the global function to be
merged.

Algorithm: Parallel Sparse Polynomial Division.
Input: f, g ∈ Z[x1, . . . , xn], number of threads p.
Output: quotient q = f/g, boolean saying if division failed
Globals: heap F , heap G, set Q, lock L, quotient q,

booleans terminate, failed, mergeG,
slack S, gap s, bound b.

F := an empty heap ordered by < with max element F1

for merging the top strip in the global function
G := an empty heap ordered by < with max element G1

for merging the results from all the threads
Q := a set of p empty buffers

from which we insert terms into G
L := an unheld lock to protect the global function
terminate := false // set to terminate threads
mergeG := false // set to merge terms from G
failed := false // set if exact division fails
q := 0 // the quotient q = f/g
b := p // rows owned by global function
s := b // initial height of the top strip
S := 0 // “slack” before a row is stolen
for i from 1 to p do

spawn local merge(i, p)
wait for all threads to complete
while not terminate do

merge global()
return (q, failed)

Subroutine: Local Merge.
Input: thread number r, total number of threads p.
Output: a subset of terms of q · g are written to B.
Locals: heap H, set E, monomial M , coefficient C

rows stolen b1, number of quotient terms t1.
Globals: quotient q and divisor g in Z[x1, . . . , xn],

rows stolen b, number of quotient terms t,
lock L, boolean terminate

H := an empty heap ordered by < with max element H1

E := {} // terms extracted from H
t1 := 0 // number of quotient terms
b1 := p // number of rows stolen
// {g1, · · · , gp} owned by global function, we start at gp+r

(i, j) := (p + r, 0) // try to insert gp+r × q1

goto check term:
while |H| > 0 do

// merge all products with largest monomial M
M := mon(H1); C := 0; E := {};
while |H| > 0 and mon(H1) = M do

(i, j, M) := extract max(H)
C := C + cof(gi) · cof(qj)
E := E ∪ {(i, j)}

insert term (C, M) into the buffer B
// for each extracted term insert next term into heap
for all (i, j) ∈ E do

// insert first element of next row
if j = 1 and i + p ≤ #g and bound(q1) < i + p then

insert gi+p × q1 into H
check term:
// loop until gi × qj+1 can be inserted or discarded
while j = t1 and i > b1 do

if trylock(L) then
global merge()
release(L)

else
sleep for 10 microseconds

b1 := b // update rows stolen
read barrier()
t1 := t // update number of quotient terms
if terminate then return

if j < t1 and bound(qj+1) < i then
insert gi × qj+1 into H

close(B)
return



Subroutine: Global Merge.
Output: terms of the quotient are written to q.
Locals: coefficient C, monomial M , buffer B,

booleans stealG, stealL.
Globals: heaps F and G, sets P and Q, polynomials f, g, q,

rows stolen b, number of quotient terms t,
booleans terminate, failed, mergeG,
index k into f , initial height s, slack S.

if terminate then return
if mergeG then // insert terms into global heap G

for all B in Q do
if B is not empty then

extract next term (C, M) from buffer B
insert [ B, C, M ] into heap G
Q := Q \ {B}

else if not is closed(B) then goto done:
// 3-way comparison of dividend, local heap, global heap
// u, v, w is set to true or false to merge terms from each
C := 0; u := (k ≤ #f); v := (|F | > 0); w := (|G| > 0);
stealG := w and not v; stealL := false;
if u and v and mon(fk) < mon(F1) then u := false
if u and w and mon(fk) < mon(G1) then u := false
if v and u and mon(F1) < mon(fk) then v := false
if v and w and mon(F1) < mon(G1) then v := false
if w and u and mon(G1) < mon(fk) then w := false
if w and v and mon(G1) < mon(F1) then w := false
if not (u or v or w) then // no terms to merge

terminate := true // division complete
if u then // merge a term from the dividend

C := C + cof(fk)
M := mon(fk)
k := k + 1

if v then // merge terms from local heap F
P := {}
M := mon(F1)
while |F | > 0 and mon(F1) = M do

(i, j, M) := extract max(F )
C := C + cof(gi) · cof(qj)
P := P ∪ {(i, j)}

for all (i, j) ∈ P do
if j < #q then

insert gi × qj+1 into F
else stealL := true
if i < #g and gi+1 has no term in F then

if i + 1 ≤ bound(qj) then
insert gi+1 × qj into F

else // start merging global heap
mergeG := true

if w then // merge terms from global heap G
Q := {}
M := mon(G1)
while |G| > 0 and mon(G1) = M do

(B, K, M) := extract max(G)
C := C −K
Q := Q ∪ {B}

if C = 0 then goto done:
// compute a new quotient term
if LM(g) |M and LC(g) | C then

qt+1 := (C/LC(g), M/LM(g))
bound(qt+1) := b
write barrier() // commit term to memory
t := t + 1 // make term visible
S := b− s // set slack
if #g > 1 and g2 has no product in G then

insert g2 × qt into G
else // division failed

terminate := true
failed := true

done: // steal row if local heap empty or product dropped
if (stealG or stealL) and b < #g then

if S > 0 then S := S − 1 // reduce slack
else b := b + 1 // steal a new row

return

3. BENCHMARKS
We retained the benchmark setup of [11] to allow for easy

comparison of the parallel sparse polynomial multiplication
and division algorithms. We use two quad core processors:
an Intel Core i7 920 2.66GHz and a Core 2 Q6600 2.4GHz.
These processors are shown below. The Core i7 has 256KB
of dedicated L2 cache per core. We get superlinear speedup
by using more of the faster cache in the parallel algorithms.
In all of the benchmarks our time for one thread denotes a
sequential time for an algorithm from [13].
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3.1 Sparsity and Speedup
We created random univariate polynomials with different

sparsities and multiplied them modulo 32003 as in [11]. The
polynomials have 8192 terms. We then divide their product
by one of the polynomials modulo 32003. The graph shows
the speedup obtained at different sparsities on the Core i7.

For division we measure sparsity as the work per term to
multiply the quotient and the divisor. That is, for f/g = q
W (q, g) = (#q ·#g)/#(q · g). This makes our graph below
directly comparable to the one for multiplication in [11].

Figure 5: Sparsity vs. Parallel Speedup over Zp
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The results in Figure 5 are generally good, but the curve
for extremely sparse problems flattens out. We are not able
to fully utilize all the cores to maintain parallel speedup as
W (q, g)→ 1. Otherwise, our results here are comparable to
those for parallel multiplication in [11]. We obtained linear
speedup in the completely dense case.



Our throughput here is limited by the dependencies of q,
which are triangular in shape. The computation of quotient
terms is thus tightly coupled to the merging in the threads,
and our global function can not stay ahead. This forces the
threads to wait for quotient terms.

3.2 Dense Benchmark
Let g = (1 + x + y + z + t)30. We compute f = g · (g + 1)

and divide f/g. The quotient and divisor have 46376 terms
and 61 bit coefficients. The dividend has 635376 terms and
128 bit coefficients. This problem is due to Fateman [3].

Unlike [11], we also test graded lexicographical order with
x > y > z > t. This choice of order produces the monomial
structure below. The upper left block is 5456× 5456 terms
consisting of all the products of total degree 60. It must be
merged in its entirety to compute the 5457th quotient term,
which forces our global function to steal 5455 rows. Despite
this difficulty, the performance of our algorithm was good.

Figure 6: Fateman Benchmark
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In addition to our software sdmp, we timed Magma 2.16,
Singular 3-1-0, and Pari 2.3.3. Magma now also uses heaps
to do polynomial multiplication and division. Singular uses
a divide-and-conquer algorithm to multiply and a recursive
sparse algorithm to divide. Pari uses recursive dense and it
supports division only in the univariate sense.

Table 1: Dense benchmark Z32003, W (f, g) = 3332.

Core i7 threads f = q · g q = f/g

sdmp

4 11.68 s 5.87x 15.10 s 5.42x
3 16.52 s 4.15x 21.94 s 3.73x
2 27.83 s 2.46x 37.07 s 2.21x
1 68.59 s 81.93 s

sdmp (grlex)

4 11.20 s 6.12x 15.37 s 5.43x
3 15.94 s 4.30x 21.22 s 3.93x
2 27.56 s 2.49x 35.01 s 2.38x
1 68.59 s 83.54 s

Singular 3-1-0 1 152.65 s 105.26 s
Magma 2.16-7 1 134.29 s 299.29 s
Pari 2.3.3 1 795.22 s 438.62 s

Core 2 threads f = q · g q = f/g

sdmp

4 13.86 s 4.25x 17.82 s 3.80x
3 19.06 s 3.09x 23.93 s 2.83x
2 29.82 s 1.97x 35.24 s 1.92x
1 58.91 s 67.69 s

sdmp (grlex)

4 13.93 s 4.34x 18.42 s 3.74x
3 19.19 s 3.15x 23.97 s 2.87x
2 27.58 s 2.19x 35.06 s 1.96x
1 60.50 s 68.87 s

Singular 3-1-0 1 273.05 s 150.36 s
Magma 2.16-7 1 139.98 s 446.57 s
Pari 2.3.3 1 942.78 s 520.15 s

Table 2: Dense benchmark Z, W (f, g) = 3332.

Core i7 threads f = q · g q = f/g

sdmp

4 11.33 s 6.25x 15.18 s 5.78x
3 16.30 s 4.34x 21.94 s 4.00x
2 28.01 s 2.53x 37.03 s 2.37x
1 70.81 s 87.68 s

sdmp (grlex)

4 11.50 s 6.15x 15.57 s 5.72x
3 16.33 s 4.33x 21.36 s 4.17x
2 28.31 s 2.50x 35.34 s 2.52x
1 70.75 s 89.11 s

Singular 3-1-0 1 817.43 s 296.75 s
Magma 2.16-7 1 359.98 s 441.43 s
Pari 2.3.3 1 651.02 s 354.82 s

Core 2 threads f = q · g q = f/g

sdmp

4 14.20 s 4.25x 17.88 s 4.28x
3 19.48 s 3.10x 24.15 s 3.17x
2 30.35 s 1.99x 35.29 s 2.17x
1 60.38 s 76.59 s

sdmp (grlex)

4 14.27 s 4.24x 18.59 s 4.20x
3 19.69 s 3.07x 24.20 s 3.22x
2 28.11 s 2.15x 35.39 s 2.20x
1 60.50 s 78.09 s

Singular 3-1-0 1 1163.49 s 349.06 s
Magma 2.16-7 1 361.42 s 597.51 s
Pari 2.3.3 1 692.59 s 382.74 s

Tables 1 and 2 present times to multiply and divide with
coefficients in Z/32003 and Z. The parallel heap algorithms
generally achieve superlinear speedup on the Core i7 due to
their use of extra L2 cache. On the Core 2 architecture the
speedup is still fairly good. The sdmp times are similar for
Z and Zp because our integer arithmetic assumes word size
coefficients. Magma and Singular use faster representations
for Zp when p is less than 24 or 31 bits.

3.3 Sparse Benchmark
Our last benchmark is a sparse problem with an irregular

block pattern. Let g = (1 + x + y + 2z2 + 3t3 + 5u5)12 and
q = (1 + u + t + 2z2 + 3y3 + 5x5)12. We compute f = q · g
and divide f/g in lexicographical order x > y > z > t > u.
The quotient q and the divisor g have 6188 terms and their
coefficients are 37 bits. The dividend f has 5.8× 106 terms
and its coefficients are 75 bits.

Table 3: Sparse benchmark Z32003, W (f, g) = 6.577.

Core i7 threads f = q · g q = f/g

sdmp

4 0.547 s 2.67x 0.589 s 3.40x
3 0.658 s 2.22x 0.707 s 2.83x
2 0.915 s 1.60x 1.004 s 1.99x
1 1.462 s 2.006 s

Singular 3-1-0 1 10.520 s 20.860 s
Magma 2.16-7 1 4.710 s 66.540 s
Pari 2.3.3 1 113.786 s 65.314 s

Core 2 threads f = q · g q = f/g

sdmp

4 0.663 s 2.67x 0.741 s 3.16x
3 0.813 s 2.18x 0.858 s 2.73x
2 1.081 s 1.64x 1.196 s 1.96x
1 1.774 s 2.343 s

Singular 3-1-0 1 16.940 s 26.140 s
Magma 2.16-7 1 5.770 s 127.750 s
Pari 2.3.3 1 132.388 s 74.991 s

We were surprised that the speedup for division could be
higher than for multiplication, but the sequential algorithm
for division seems to have lower relative performance. This
could be due to the extra work it performs to maintain low
complexity. Unlike the parallel algorithm, the method from
[13] is highly efficient if the quotient is small.



Table 4: Sparse benchmark Z, W (f, g) = 6.577.

Core i7 threads f = q · g q = f/g

sdmp

4 0.584 s 2.65x 0.675 s 3.23x
3 0.738 s 2.10x 0.791 s 2.76x
2 1.002 s 1.54x 1.102 s 1.75x
1 1.548 s 2.182 s

Singular 3-1-0 1 25.660 s 32.400 s
Magma 2.16-7 1 7.780 s 80.200 s
Pari 2.3.3 1 59.823 s 34.566 s

Core 2 threads f = q · g q = f/g

sdmp

4 0.752 s 2.33x 0.817 s 3.02x
3 0.903 s 1.95x 0.951 s 2.60x
2 1.205 s 1.46x 1.289 s 1.91x
1 1.759 s 2.468 s

Singular 3-1-0 1 36.840 s 40.090 s
Magma 2.16-7 1 9.930 s 137.460 s
Pari 2.3.3 1 65.362 s 37.582 s

4. CONCLUSION
We presented a fast new parallel algorithm for division of

sparse polynomials on multicore processors. The algorithm
was designed to achieve very high levels of performance and
superlinear speedup on a problem that could be considered
inherently sequential. Our benchmarks show that with few
exceptions, this was achieved in practice. This has made us
cautiously optimistic towards parallel computer algebra.

Our next task is to integrate the routines into the Maple
computer algebra system. By parallelizing basic operations
at a low level, we hope to obtain noticable parallel speedup
for users and library code at the top level.
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