Sparse Polynomial Multiplication and Division in Maple 14

Michael Monagan and Roman Pearce
Department of Mathematics, Simon Fraser University
Burnaby B.C. V5A 156, Canada

October 15, 2009

Abstract

We report on new codes for sparse multivariate polynomial multiplication and division over the
integers that we have integrated into Maple 14’s expand and divide commands. We describe our poly-
nomial data structure and compare it with the one used by Maple. We then present some benchmarks
comparing our software with the Magma, Maple, Singular, Trip and Pari computer algebra systems and
also illustrating how multivariate polynomial factorization benefits from our improvements to polyno-
mial multiplication and division.

This work was supported by the MITACS NCE of Canada.

1 Introduction

There are two polynomial representations that computer algebra systems mainly use: the distributed rep-
resentation and the recursive representation. In the distributed representation a polynomial is represented
as a sum of terms, for example,

f=9xy32 —49y32% — 629°2 + 823 + 5 ay?

In our example, the terms of f are sorted in the graded lex monomial ordering with =z > y > z.
In this ordering monomials of higher degree (the degree of z'y’z* is i + j + k) come first and ties are
broken by lexicographical (alphabetical) order. Algorithms for distributed polynomial arithmetic have
a distinctly classical feel — their performance depends on how you sort terms and perform coefficient
arithmetic. Computer algebra systems that use the distributed representation by default include Maple,
Mathematica, Magma, and Singular.

In the recursive representation polynomials are represented as univariate polynomials in a main variable
with coefficients that are univariate polynomials in the next variable, and so on. For example,

f=82"+((92)y° + (=62 +5)y*) z + (—42%)y°.

Polynomial arithmetic uses univariate algorithms (in x) with coefficient arithmetic (in Z[y, z]) performed
recursively. Computer algebra systems that use the recursive representation by default include Maxima,
Derive, Reduce, Pari, and Trip.

It is widely believed that the recursive representation is more efficient than the distributed representation
for multiplying polynomials. See for example the work of Stoutemyer in (13) and Fateman in (3). Indeed
our own benchmarks in Section 4 show Pari and Trip are generally faster than Maple, Magma, and Singular.
However, we have found that if one uses good algorithms and packs monomials, multiplication and division
in the distributed representation can be faster than the recursive representation.

In 1975, Johnson in (8) presented an algorithm for multiplying two polynomials h := f x g in the
distributed representation. Letting f = f1+ fo+... f,n and g = g1 + g2 + ... + g, Johnson’s algorithm uses
a binary heap to merge the sums f; x g, faxg, ..., fm X g in O(mnlog min(m, n)) monomial comparisons. For
dense polynomials we showed in (10) how to modify the heap so that multiplication does O(mn) monomial
comparisons. This is important so that performance is good for both sparse and dense problems. In (11)
we presented an algorithm for dividing polynomials, also using a heap, that achieves the same complexity —
O(mnlogmin(m,n)) monomial comparisons. But the overall performance of an algorithm will also depend
on the data structure that is used for representing polynomials.

In this report we describe our data structure sdmp and compare it with Maple’s “sum-of-products”
data structure. We then give two benchmarks comparing our algorithms for multiplication and division
with those in the Magma, Pari, Singular and Trip computer algebra systems. Finally, we describe how we
have integrated our new software into Maple 14. We give some benchmarks that show that by speeding
up polynomial multiplication and division, we often get a very good speedup in other parts of Maple, for
example, in polynomial factorization.

2 Maple’s Sum-Of-Products Data Structure

The following figures show how the polynomial 9zy3z — 4y32% — 6xy%2 — 822 — 5 is represented in Maple
and in Singular. Magma uses a similar representation to Singular.

PROD7| x [1|y | 3] z]1]
A

PROD5| y | 3| z | 2 |
|

lpROD7| x [1|yl 2]z]1]
A

|PROD3| x | 3 |
A

sumti[& [o [4[4[(o] *[5]5]1]

Maple’s sum-of-products representation uses ~ 9 words per term.

. > o > o > o >
9 4 6 -8 -5
1 1
3 2
z |1 1

Singular’s distributed representation uses ~ 5 words per term.

One of the reasons why Maple, Singular, and Magma are slow compared with Pari and Trip is that
multiplying and comparing monomials is slow. For example, to multiply zy>z by yz2, Maple first must
allocate an array long enough to store the product z'y*23, then compute it in a loop using a merge. Maple
then hashes the resulting monomial to determine if it already exists in memory. All this means several
function calls and several loops. Singular does less work, but still uses many machine cycles. How fast can
one multiply monomials?

3 The sdmp Data Structure

Assuming we are using the graded lex monomial ordering with = > y > z, to speed up monomial multi-
plications and comparisons we encode a monomial 2'y72* into one 64 bit machine word by encoding the 4
integers (i + j + k, i, j, k) using 16 bits each as the integer (i + j + k)28 4 232 + 2165 + k. Now a mono-
mial comparison becomes one machine integer comparison and multiplication of two monomials z*y7 2% by
zly™ 2" becomes one machine integer addition, provided the degrees are not too large to cause overflow.
Figure 3 below shows how we represent the polynomial

=92’z —4y>2? — 62y%2 + 82> + 5y’

POLY 5 d = total degree

XYy z

packing dxyz dxyz dxyz dxyz dxyz
o—|—{5131| 9 |5032 -4 [4121] -6 [3300] -8 |0000] -5 |

Figure 1: sdmp’s representation with all monomials packed in the graded lex order with x > y > z.

An integer coefficient x is stored in place as 2z + 1 when |z| < 2872 where B = 64 is the base of the
machine. Otherwise, for larger coefficients we store pointers GMP integers (see (5)), which we distinguish
by the lowest bit. We illutrate this in Figure 3 below for the polynomial Axy>z+ By32? + Cay?z — 823 — 5.

POLY 5 d = total degree

XYy z

packing dxyz dxyz dxyz dxyz dxyz
{5131 » |5032| ¢ [4121] « [3300] -8 |0000| -5 |

|GMPdata A | GMPdata B | GMP data C

Figure 2: sdmp’s packed representation with coefficients A, B, C' large integers.

The benchmarks in the next section show the significant benefit of packing exponents of monomials.
Obviously we save both space and time. This idea of packing multiple exponents into a word dates back
to the Altran computer algebra system (see (7)) from 1971. In 1998 Bachmann and Schénemann in (1)
experimented with packings for different monomial orderings to speed up the polynomial divisions in the
distributed representation for Groébner basis computations. Yet none of the general purpose computer
algebra systems since Altran have used it. This, we believe, is because they did not want to limit the
degree of the polynomials or the number of variables. Most of them were designed when 32 bit word
computers were the norm. Today, however, all new computers have 64 bit words which allow us to pack
monomials with more variables and higher total degree into one word.

4 Some Benchmarks

To benchmark the computer algebra systems we used one core of an Intel Xeon 5160 (Core2) 3.0 GHz with
4 MB of L2 cache, 16 GB of RAM, 64-bit Linux, and GMP 4.2.1. We give two times for our C library
(sdmp). In the slow time (unpacked) each exponent is stored as a 64 bit integer. For the fast time we pack
all of the exponents into one 64 bit integer and use word operations to compare and multiply monomials.

We tested Pari/GP 2.3.3, Magma 2.14-7 (see (2)), Maple 12, Singular 3-0-4 (see (6)), and Trip 0.99 (see
(4)). Maple and Singular use distributed representations to multiply polynomials and switch to recursive
representations to divide. Magma and sdmp use distributed representations for both. Pari and Trip use
recursive representations for both.

Our first problem is due to Fateman (3). Let f = (1+2+y+2z+t)?° and g = f + 1. We multiply
h = f-g and divide ¢ = h/f. Fateman’s benchmark is a dense computation. The coefficients of f and g
are 39 bit integers and the coefficients of h are 83 bit integers.

10626 x 10626 = 135751 terms | h = f x g qg="h/f
sdmp (1 word monomial) 2.26 s 2.77 s
sdmp (4 word monomial) 5.18 s 5.44 s
Trip v0.99 (rationals) 5.93 s -
Pari/GP 2.3.3 3243 s 14.76 s
Magma V2.14-7 23.02 s 22.76 s
Singular 3-0-4 62.00 s 20.00 s
Maple 12 289.23 s 187.72 s

Table 1: CPU time (in seconds) for dense multiplication and division over Z

Maple and Singular can both divide faster than they can multiply because they switch to using recursive
algorithms. In sdmp division is slightly slower than multiplication because the code is more complex.

Our second benchmark is a sparse benchmark in 10 variables. Let f = (Z?:l (g1 + 1) + x1o(z1 +
1)+ 1)4 and g = (ngl(xf +x;)+ 1)4. We multiply h = f - g and divide ¢ = h/f. All coefficients are less
than 20 bits long.

6746 x 8361 = 3157883 terms | h=f-g qg="h/f
sdmp (1 word monomial) 2.46 s 2.61s
sdmp (10 word monomial) 11.12 s 10.37 s
Trip v0.99 (rationals) 8.13 s -
Pari/GP 2.3.3 7.06 s 7.05 s
Magma V2.14-7 17.43 s 197.72 s
Singular 3-0-4 31.00 s 18.00 s
Maple 12 305.76 s 280.65 s

Table 2: CPU time (in seconds) for sparse multiplication and division over Z

This benchmark clearly demonstrates the value of packing exponents. Pari’s recursive dense algorithms
perform well on many variables of low degree, while Magma’s division (ExactQuotient) seems to sort terms
inefficiently. It may be using repeated subtraction.

5 Maple 14 Integration

The Maple commands expand and divide do polynomial multiplication and exact division of multivariate
polynomials over the integers as illustrated in the example below. Lines beginning with > are Maple input
commands.

> f := expand((l+x+y+z)~2);
1+22+2y+2z24224+ 22y + 222+ y% + 2yz + 22

> g = f+1:

> h := expand(fx*g):

> divide(h,f,’q’); # test if f|h
true
> q;
24224+ 2y+2z+22 +2ay+2x2 + 3%+ 2yz + 22

If either multiplicand f or g has few terms, the multiplication is done in the Maple kernel in C, otherwise,
the Maple library routine ‘expand/bigprod‘ is invoked to do the multiplication. Similarly, if the dividend
h or divisor f have few terms, the division is done in the Maple kernel, otherwise the Maple library routine
‘expand/bigdiv‘ is invoked to do the division. These library routines are programmed in Maple.

The way we have integrated our new software into Maple 14 is to reprogram ‘expand/bigprod‘ and
‘expand/bigdiv‘ to convert their input polynomials to our sdmp data structure, automatically packing
monomials in the graded lex monomial ordering in as few words as possible, then multiply or divide, then
convert the output polynomials back to Maple’s sum-of-products representation. We have found that the
conversions back to Maple’s sum-of-products representation, even though coded carefully in C, can take
longer than the multiplication of f x g if f and g are sparse and their product has many terms.

In the following benchmark we compare the time for polynomial factorization in Maple 13 with our
new code in Maple 14. The columns in Table 3 for expand and factor are timings (in CPU seconds) for
computing £ := expand((a+1)*(a+2)) and factor(f) respectively, for the polynomials a in the table.

To factor f(x,y, z), the factorization algorithm first factors the univariate polynomial f(z,y = a,z = b)
where a, b are small integers, then recovers y, z in the factors of f(z,y = a,z = b) in a process called “Hensel
lifting”. Hensel lifting consists of a sequence of polynomial multiplications and some polynomial divisions
where most of the time spent factoring f(x,y, z) is in the polynomial multiplications in the Hensel lifting.
The benchmark demonstrates that by significantly speeding up polynomial multiplication and division, we
get a very good speedup in polynomial factorization.

Benchmark expand factor
a= Maplel3 Mapleld Speedup | Maplel3d Mapleld Speedup
(z+y+2)%° 213 0.009 23.7x | 368.881 18.615 19.8 x
(1+z+y+2)2 1.869 0.069 27.1 x 38.379 4.009 9.6 x
1+z4+y+2)> 38.746 0.720 53.8 x | 679.010 23.384 29.0 x
l+z+y+z+t)% | 159.971 3.330 48.0 x | 5390.317 98.997 54.4 x

Table 3: Factorization Benchmark Timings (in CPU seconds)

References

[1]

2]

Bachmann, O., Schénemann, H., 1998. Monomial representations for Grobner bases computations.
Proc. ISSAC 98, pp. 309-316.

Bosma, W., Cannon, J., Playoust, C., 1997. The Magma algebra system I: The user language. J.
Symb. Comput. 24 (3-4), 235-265. See also http://magma.maths.usyd.edu.au/magma

Fateman, R., 2003. Comparing the speed of programs for sparse polynomial multiplication. ACM
SIGSAM Bulletin 37 (1), pp. 4-15.

Gastineau, M., Laskar, J., 2006. Development of TRIP: Fast Sparse Multivariate Polynomial
Multiplication Using Burst Tries. In: Proc. ICCS 2006, Springer LNCS 3992, pp. 446-453.
http://www.imcce.fr/Equipes/ASD /trip

Granlund, T., 2008. The GNU Multiple Precision Arithmetic Library, version 4.2.2.
http://www.gmplib.org/

Greuel, G.-M., Pfister, G., Schonemann, H., 2005. Singular 3.0: A Computer Algebra Sys-
tem for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern.
http://www.singular.uni-kl.de

Hall, A.D. Jr., The ALTRAN System for Rational Function Manipulation — A Survey. Communications
of the ACM, 14, 517-521, ACM Press, 1971.

Johnson, S.C., 1974. Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8 (3), pp. 63-71.

B.W. Char, G.J. Fee, K.O. Geddes, G.H. Gonnet and M.B. Monagan. A Tutorial Introduction to
Maple. J. Symbolic Comp., 2 (2), 179-200, 1986.

Monagan, M., Pearce, R., 2007. Polynomial Division Using Dynamic Arrays, Heaps, and Packed
Exponent Vectors. Proc. of CASC ’07, Springer Verlag LNCS 4770, 295-315.

Monagan, M., Pearce, R., 2007. Sparse Polynomial Division using Heaps. Accepted for J. Symb.
Comp., September 2009.
Preprint: http://www.cecm.sfu.ca/CAG /papers/MonHeaps.pdf

PARI/GP, version 2.3.4, Bordeaux, 2008. http://pari.math.u-bordeaux.fr/

Stoutemyer, D., 1984. Which Polynomial Representation is Best? Proc. of the 1984 Macsyma Users
Conference, Schenectedy, N.Y., pp. 221-244.

