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Abstract

We present an algorithm which computes a non-trivial lower bound for the order of the minimal
telescoper for a given hypergeometric term.The combination of this algorithm and techniques from
indefinite summation leads to an efficiency improvement in Zeilberger’s algorithm.We also describe
a Maple implementation, and conduct experiments which show the improvement that it makes in the
construction of the telescopers.
© 2005 Elsevier B.V. All rights reserved.
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1. Preliminaries

Let K be an algebraically closed field of characteristic 0, the variablesn, k be integer-
valued, andEn, Ek be the corresponding shift operators, acting on functions ofn andk,
by Enf (n, k) = f (n + 1, k), Ekf (n, k) = f (n, k + 1). A K-valued functiont (k) is a
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hypergeometric termof k overK if the consecutive term ratioCk(t) = Ekt/t is a rational
function ofkoverK. The rational functionCk(t) is called thecertificateof t (k).A K-valued
functionT (n, k) is a hypergeometric term of two variablesn andk if the two consecutive
term ratiosCn(T ) = EnT/T , andCk(T ) = EkT/T are rational functions ofn andk over
K. The rational functionsCn(T ), Ck(T ) are called then-certificate and thek-certificate
of T , respectively. Given a hypergeometric termT (n, k) as input, Zeilberger’s algorithm
[14,16,17](which we denote hereafter asZ) constructs forT (n, k) aZ-pair (L,G), pro-
vided that such a pair exists. The computedZ-pair consists ofL, a linear recurrence operator
of order� with coefficients which are polynomials ofn overK, i.e.,

L = a�(n)E
�
n + · · · + a1(n)E

1
n + a0(n)E

0
n, ai(n) ∈ K[n] (1)

and a hypergeometric termG(n, k) such that

LT (n, k) = (Ek − 1)G(n, k). (2)

Thek-free operatorL is called atelescoper. It is noteworthy that the problem of establishing
a necessary and sufficient condition for the applicability ofZ to T (n, k) is solved and
presented in[1,2] (the well-knownfundamental theorem[16,17]only provides a sufficient
condition). It is proven in[17] that if there exists aZ-pair for T (n, k), thenZ terminates
with one of theZ-pairs, and the telescoperL in the returnedZ-pair is of minimal order. The
computed telescoperL is unique up to a left-hand factorP(n) ∈ K[n], and we name itthe
minimal telescoper[17].
Z has a wide range of applications which include finding closed forms of definite sums

of hypergeometric terms, verification of combinatorial identities, and asymptotic estimation
[14,17,13].
The algorithm uses anitem-by-item examinationon the order� of the operatorL of the

form (1). It starts with the value of 0 for� and increases� until it is successful in finding a
Z-pair (L,G) for T . In other words, a lower bound for� is 0. As a consequence, we waste
resources trying to compute without success a telescoper of ordL<�, where� is the order
of the minimal telescoper.
In this paper,wepresent analgorithmwhich computes an improvednon-zero lower bound

for the order of the telescopers. The general approach of the algorithm can be described
as follows: for a given hypergeometric termT (n, k), apply the algorithm which solves the
additive decomposition problem toTw.r.t.k to obtain a pair of similar hypergeometric terms
T1(n, k), T2(n, k) such thatT =(Ek −1)T1+T2, and eitherT2=0 (i.e.,T isk-summable) or
T2 has some specific features each of which ensures thatT2 is notk-summable. In the former
case, it is evident thatZ is applicable toTand theminimal telescoper forT is 1. In the latter
case, it is easy to show that a telescoper forT exists if and only if a telescoper forT2 exists,
and the sets of telescopers forT andT2 are the same. We consider recurrence operators
M ∈ K[n,En], calledcrushing operators, with the property that ifM is a crushing operator
for T2, thenMT 2 does not have at least one of the specific features thatT2 does (this does
not guarantee thatMT 2 is k-summable, though). It follows that the order of the minimal
telescoper forT2 is always greater than or equal to that of a minimal crushing operatorM
for T2.We then describe an algorithm which computes a lower bound�>0 for the order of
the crushing operators forT2. This value is automatically also a lower bound for the order
of the telescopers forT.
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WhenT (n, k) is not k-summable and the algorithm is used in combination with the
algorithm which determines the applicability ofZ to T (n, k) [1,2], it allows one to useZ
to compute aZ-pair only if the existence of such a pair is guaranteed, and in this case, one
can use�>0 as the starting value for the order ofL, instead of 0. Let� be the order of the
minimal telescoperL; since the computation of a lower bound� is in general less expensive
than that of telescopers of order 0, . . . ,�−1, especially when the computed value� is close
to� and� has a large value, this will lead to some efficiency improvement.Also, sinceT2 is
“simpler” thanT in some sense and since theminimal telescopers forTandT2 are the same,
applyingZ to T2 instead of toT can provide some significant efficiency improvement (see
Example 6).
Note that for the case where the hypergeometric termT (n, k) is also a rational function,

there is a direct algorithm which computes the minimal telescoper forT efficiently without
using item-by-item examination[10].
The paper is organized in the following manner. In Section 2, we discuss some known

results which are needed in subsequent sections. They include a description of the ad-
ditive decomposition problem of hypergeometric terms[6,9], and a criterion for the
applicability ofZ [1,2]. The main result of Section 3 is a theorem which helps to com-
pute a lower bound for the order of a minimal crushing operator. An algorithmic de-
scription for this theorem is presented in detail in Section 4. We conclude the paper
with a description of an implementation of the algorithm in Section 5. Various examples
are used to show the advantages of this implementation over an implementation of the
originalZ.
Throughout the paper,K is an algebraically closed field of characteristic 0;Z andN

denote the set of integers and non-negative integers, respectively. Following[14], we write
T1(n, k) ∼ T2(n, k) if two non-zero hypergeometric termsT1(n, k) andT2(n, k) aresimilar,
i.e., their ratio is a rational function ofn andk.
A preliminary version of this paper has appeared as[4].

2. The additive decomposition problem and the existence of a telescoper

We begin this section with the notion ofRational Normal Forms(RNF) of a rational
function[7]. This concept plays an important role in the follow-up algorithms.

Definition 1. Let F be a field of characteristic 0, andR ∈ F(k) be a non-zero rational
function. If there aref1, f2, v1, v2 ∈ F[k]\{0} such that

(i) R = F · EkV
V

, whereF = f1
f2
, V = v1

v2
, and gcd(v1, v2) = 1,

(ii) gcd(f1, Eh
k f2) = 1 for all h ∈ Z,

thenF · EkV
V

is an RNF ofR.

The rational functionF in (i) with property (ii) is called thekernelof the RNF. Note that
every rational function has an RNF[9, Theorem 1]which in general is not unique.
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2.1. The additive decomposition problem

For a hypergeometric termT (k) of k over F, the algorithm which solves the additive
decomposition problem[6,9] constructs two hypergeometric termsT1(k), T2(k) similar to
T (k) such that

(i)

T (k) = (Ek − 1) T1(k) + T2(k)and (3)

(ii) eitherT2 = 0 orCk(T2) has an RNF

f1

f2

Ek(v1/v2)

(v1/v2)
(4)

with v2 of minimal degree.

Note that any RNF ofCk(T2) hasv2 ∈ F[k] of the sameminimal degree[9, Theorems 9,10].
An additive decompositionof T (k) consists of a pair of similar hypergeometric terms

(T1, T2) such that both Properties (i) and (ii) hold.

Lemma 1 (Abramov and Perkovšek[6,9]). LetT (k) be a hypergeometric term overF and
(T1, T2) be an additive decomposition ofT (k). For any RNF of the form(4) ofCk(T2), and
for each irreduciblep ∈ F[k] such thatp|v2, the following three properties hold:

Pa : Eh
k p|v2 ⇒ h = 0, Pb : Eh

k p|f1 ⇒ h<0 and

Pc : Eh
k p|f2 ⇒ h>0. (5)

If the hypergeometric termT2(k) in (3) is identically zero, thenT (k) is said to bek-
summable. Otherwise, each irreducible factorp of v2 has propertiesPa, Pb, Pc, andT is
k-non-summable.

Proposition 1 (Abramov and Perkovšek[6,9]). Let an RNF of the k-certificate of a given
hypergeometric termT (k) be of the form(4). If there exists at least one irreducible factor
p ofv2 such that all three propertiesPa,Pb,Pchold, thenT (k) is k-non-summable.

Let R(n, k) ∈ K(n, k). By identifying the fieldF with K(n), the notion of an RNF of
R(n, k) w.r.t. k is well-defined. LetT (n, k) be a bivariate hypergeometric term ofn and
k. Note that the algorithm which solves the additive decomposition problem only works
with an RNF of the certificateR of T. By “an additive decomposition ofT (n, k) w.r.t. k”,
we identify the certificateRwith Ck(T ) and an RNFF(EkV )/V of Ck(T ) is computed
w.r.t. k. Additionally, T1 andT2 are hypergeometric terms ofk, similar toT, i.e., there are
f1, f2 ∈ F(k) such thatTi = fi T . SinceF(k) = K(n)(k) = K(n, k), bothf1 andf2 are
rational functions ofn andk. Thus,Ti are rational-function (ofn andk) multiples ofT, and
are hence hypergeometric terms ofn andk.
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Proposition 2. For a hypergeometric termT (n, k) of n and k, let (T1(n, k), T2(n, k)) be
an additive decomposition of T w.r.t. k. Then

(i) a Z-pair forT (n, k) exists if and only if a Z-pair forT2(n, k) exists; and
(ii) the minimal telescopers for T andT2 are the same.

Proof. (i) Let (L,G) be aZ-pair forT2. It follows from (3) thatLT = (Ek −1) (LT 1+G).
SinceT1 ∼ T2, T2 ∼ G, and∼ is an equivalence relation,LT 1 + G is a hypergeometric
term[14, Proposition 5.6.2]. Consequently,(L,LT 1 + G) is aZ-pair for T . On the other
hand, let(L,G) be aZ-pair for T . By following the same argument, one can easily show
that(L,G − LT 1) is aZ-pair forT2.
(ii) Let L be the minimal telescoper forT2. It follows from (i) thatL is a telescoper forT .

Suppose there exists a telescoperL̃ for T and ordL̃<ordL. Then it follows from (i) thatL̃
is a telescoper forT2 and ordL̃<ordL. A contradiction. �

Definition 2. A polynomialp(n, k) ∈ K[n, k] is integer-linearif it has the form
�n + �k + �, where �, � ∈ Z and � ∈ K. (6)

Theorem 1 (Abramov andPerkovšek[8, Theorem 8]). For a hypergeometric termT (n, k),
let F, V ∈ K(n, k) be such that

F
Ek V

V

is an RNF overK(n) ofCk(T ).Then there existsD ∈ K(n, k) so thatCn(T ) can be written
as

D
En V

V
, D = d1

d2
, gcd(d1, d2) = 1 (7)

and the numerators and denominators of F andD all factor into integer-linear polynomials.

2.2. The existence of a telescoper

Recall that the fundamental theorem[15–17]provides only a sufficient condition for the
termination ofZ. It states that a telescoper for a hypergeometric termT (n, k) exists if
T (n, k) is proper, i.e., it can be written in the form

P(n, k)

∏l
i=1�(pi(n, k))∏m
i=1�(p′

i (n, k))
unvk, (8)

whereP(n, k) ∈ K[n, k]; pi(n, k), p′
i (n, k) are integer-linear;l, m ∈ N; K is a numeric

field (e.g.,C); andu, v ∈ K and may contain parameters different fromn andk.
It is well known that the setS of hypergeometric terms on whichZ terminates is a

proper subset of the set of all hypergeometric terms, but a proper super-set of the set of
proper hypergeometric terms. The following theorem[1, Theorem 10]gives a complete
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description ofS. It provides a necessary and sufficient condition for the termination ofZ
on a hypergeometric termT (n, k) (or equivalently, the applicability ofZ to T (n, k)).

Theorem 2 (Criterion for the existence of a telescoper). For a given hypergeometric term
T (n, k), let (T1(n, k), T2(n, k)) be an additive decomposition of T w.r.t. k. Let (4) be an
RNF w.r.t. k overK(n) of the k-certificate ofT2. Then a telescoper forT (n, k) exists if and
only if each factor ofv2(n, k) irreducible inK[n, k] is integer-linear.

See[2, Section 5]for a description of the algorithm which determines the applicability
ofZ to a hypergeometric termT (n, k). Note that the only information this algorithm needs
is thek-certificate ofT.

3. A lower bound for the order of telescopers for a minimalk-non-summable term

Definition 3. Aminimal k-non-summablehypergeometric termT (n, k) is ahypergeometric
term whereCk(T ) has an RNF w.r.t.k of the form (4), and for each irreduciblep such that
p|v2, all three propertiesPa,Pb,Pchold.

For a given hypergeometric termT (n, k), let (T1(n, k), T2(n, k)) be an additive decom-
position ofTw.r.t. k. It follows from Lemma 1 thatT2 is minimalk-non-summable. For the
remainder of this section, we assume thatT (n, k) is minimalk-non-summable. Let us now
introduce the notion ofcrushing operators.

Definition 4. LetM ∈ K[n,En] be such thatMT �= 0, and for any RNF w.r.t.k

F ′ EkV
′

V ′ , V ′ = v′
1

v′
2

(9)

of Ck(MT ), each of the irreducible factors ofv′
2 does not have at least one of the three

propertiesPa,Pb,Pc. ThenM is acrushing operatorfor T.

Proposition 3. If L is a telescoper forT , then L is a crushing operator forT .

Proof. The claim follows from Proposition 1.�

Corollary 1. If there does not exist any crushing operator for T of order less than�, ��1,
then there does not exist any telescoper for T of order less than�.

Hence, the problem of computing a lower bound for the order of the telescopers forT is
reduced to the problem of computing a lower bound for the order of a minimal crushing
operator forT .

Theorem 3. LetF(EkV )/V of the form(4)be an RNF w.r.t. k ofCk(T ). LetA=Cn(T )=
D(EnV )/V be as defined in Theorem1. Suppose that the polynomialv2 ∈ K[n, k]
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factors into integer-linear polynomials. LetM ∈ K[n,En] be a crushing operator for
T (n, k), ordM = �. Let p be an integer-linear factor ofv2, degk p = 1.Then

(i) there exists an integer h such that

Eh
k p|Env2 · E2

nv2 · · ·E�
nv2 · d2 · End2 · · ·E�−1

n d2; and (10)

(ii) let �p be the minimal value of� in (i) such that(10) is satisfied. Then the order of a
minimal crushing operator for T is not less than� =maxp|v2 �p.

Proof. (i) Let

M = a�(n)E
�
n + · · · + a1(n)En + a0(n), ai(n) ∈ K[n].

Then

MT =
( �∑

m=0

am(n)A · EnA · · ·Em−1
n A

)
T .

Therefore,

Ck(MT ) = F
EkR

R
, (11)

where

R = V

�∑
m=0

am(n)A · EnA · · ·Em−1
n A

= V

�∑
m=0

am(n)
Em

n V

V
D · EnD · · ·Em−1

n D

=
�∑

m=0

am(n)
Em

n v1 · d1 · End1 · · ·Em−1
n d1

Em
n v2 · d2 · End2 · · ·Em−1

n d2
.

RewriteRas

R = r1

r2
, r1, r2 ∈ K[n, k],

r2 = v2 · Env2 · · ·E�
nv2 · d2 · End2 · · ·E�−1

n d2, r1 = s1 + v2 s2,

wheres2 is a polynomial fromK[n, k], ands1=a0(n)·Env2 · · ·E�
nv2·d2·End2 · · ·E�−1

n d2.

If p isnota factor of the denominatorr2 ofR, then sincev2 is a factor ofr2, pmust divide
the numeratorr1 of R, i.e.,

p|(s1 + v2 s2).

Sincep is a factor ofv2, this impliesp|s1. Additionally, p does not dividea0(n) since
degk p = 1. Therefore,

p|Env2 · E2
nv2 · · ·E�

nv2 · d2 · End2 · · ·E�−1
n d2. (12)
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If p is a factor of the denominatorr2, then sinceM is a crushing operator forT , at least one
of the three propertiesPa,Pb,Pcdoes not hold forp. Notice thatCk(T ) in (4) andCk(MT )

in (11) have the same kernelF . It follows together with Lemma 1 that for the integer-linear
factorp of v2, propertiesPb andPcalwayshold. Consequently, propertyPadoesnothold,
i.e., there exists anh ∈ Z\{0} such thatEh

k p dividesr2. Additionally, sinceT is minimal
k-non-summable, it follows from propertyPa that there does not exist anh ∈ Z\{0} such
thatEh

k p|v2. This gives

Eh
k p|Env2 · E2

nv2 · · ·E�
nv2 · d2 · End2 · · ·E�−1

n d2. (13)

It follows from (12) and (13) that (i) is satisfied.
(ii) The claim follows from the fact that for each factorp of v2, there does not exist any

crushing operator forT of order less than�p. �

It follows from Theorem 3 that if degk v2 = 0, then the computed lower bound is 1.

4. A general algorithm

For a given hypergeometric termT (n, k) of nandk, an algorithmwhich computes a lower
bound� for the order of the telescopers forT consists of two steps. A check to determine
the existence of a telescoper forT is performed in the first step. This is attained by first
applying toT (n, k) the algorithm which solves the additive decomposition problem w.r.t.k
to construct two hypergeometric termsT1(n, k), T2(n, k) such that

T (n, k) = (Ek − 1) T1(n, k) + T2(n, k) (14)

andCk(T2) has an RNF w.r.t.k of the form (4). Ifv2 does not factor into integer-linear
polynomials, then it follows from Theorem 2 thatZ is not applicable toT , and there is
no need to compute a lower bound�. Otherwise, rewritev2 as a product of integer-linear
polynomials each of which is of the form (6). An algorithm, based on gcd and resultant
computation, for verifying ifv2 ∈ K[n, k] factors into integer-linear polynomials, and if
this is the case, rewritev2 in the desired factored form as described in[3,5]. Without loss
of generality, we can assume that gcd(�,�) = 1, and��0.
In the second step, sinceZ is applicable toT, if follows from Proposition 3 that the

existence of the crushing operators forT2 is guaranteed. Additionally, all the hypotheses
required for computing a lower bound� for the order of the telescopers forT2 exist. More
precisely, one can apply Theorem 3 toT2 to compute a lower bound�. It follows from
Proposition 2 that one can use� as a lower bound for the order of the telescopers forT .
For each integer-linear factorpof v2, degk p=1, the secondstep requires the computation

of the minimal value of� in the pair(�, h), h ∈ Z, � ∈ N\{0} such that

(i) Eh
k p|Env2 · E2

nv2 · · ·E�
nv2 or

(ii) Eh
k p|d2 · End2 · · ·E�−1

n d2.
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Consider the following simple algorithmC(i):

algorithm C(i)
input : p = �n + �k + �, �, � ∈ Z, gcd(�,�) = 1, �>0, � ∈ K,

v2 =∏m
i=1(�in + �ik + �i ), �i , �i ∈ Z, gcd(�i ,�i ) = 1, �i �0, �i ∈ K;

output : the minimal value of� ∈ N\{0} such that (i) is satisfied;
�min := ∞;
for i = 1,2, . . . , mdo

if � = �i and� = �i and� − �i ∈ Z then
find the minimal� ∈ N\{0} andh ∈ Z such that

�� − �h = � − �i ;
�min := min{�min,�}

fi
od;
return �min.

For a given integer-linear factorp of v2, degk p = 1, the algorithmC(i) simply iterates
through each integer-linear polynomialqof v2. If p − q =� ∈ Z, then the algorithm solves
the diophantine equation�� − �h = �, and chooses the minimal positive value of�. (Note
that since gcd(�,�) = 1, the solution is guaranteed to exist.)
An algorithmC(ii ) which finds the minimal value of� such that (ii) is satisfied can be

described in a very similar manner. Note that it follows fromTheorem 1 that the polynomial
d2 ∈ K[n, k] in (7) factors into integer-linear polynomials.
By iterating through each factorp of v2, we obtain the desired lower bound�.

This leads to the following algorithm which computes in many examples (see below)
convincing lower bounds for the minimal orders of the telescopers for hypergeometric
terms.

algorithm LowerBound;
input : a hypergeometric termT (n, k);
output : a lower bound� for the order of the telescopers forT ;

apply the algorithm which solves the additive decomposition
problem w.r.t.k to obtainT1(n, k), T2(n, k) in (14);

if T2 = 0 then return 0fi;
at this point,Ck(T2) has an RNF w.r.t.k of the form (4);
if the polynomialv2(n, k) in (4) is written as

v2 =∏s
i=1pi , wherepi = (�in + �ik + �i ),

�i , �i ∈ Z, gcd(�i ,�i ) = 1, �i �0, �i ∈ K then
if s = 0 then return 1fi;
� := −∞;
d2 := denominator(Cn(T )(v1/v2)/En(v1/v2));
Rewrited2 as

∏t
j=1qj , whereqj = (�j n + �j k + �j ),

�j , �j ∈ Z, gcd(�j ,�j ) = 1, �j �0, �j ∈ K;
for i = 1,2, . . . , s do
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if degk pi = 1 then
�min := C(i)(pi, v2);
�min := min{�min, C(ii )(pi, d2)};
� := max{�,�min}

fi
od;
return �

else
return “Zeilberger’s algorithm is not applicable”

fi;

Note that instead of rewritingd2 as a product of integer-linear polynomials, and using it
in the callC(ii)(pi, d2) in LowerBound , it is possible to use a simpler polynomial which
is a divisor ofd2. For a givenf ∈ K[n, k] andc ∈ Q, there exists an algorithm[5] (called
wc) which extracts the maximal factorw ∈ K[n, k] from f wherew can be written in the
form ∏

i

(k + c n + �i ), �i ∈ K.

Hence, for each factorp = (�n + �k + �) of v2, we callwc with d2 and�/� as input. This
helps to reduce the number of integer-linear factors ofd2 to be compared withp.

Example 1. Consider the hypergeometric term

T = 1

(5n + 2k + 1)(−3n + 5k + 5)
.

(T is also a rational function ofn andk.) Applying the algorithm which solves the additive
decompositionproblemyields twohypergeometric termsT1(n, k)=0andT2(n, k)=T (n, k)

in (14). SinceT is a rational function, the polynomialv2 in (4), and subsequentlyd2 in (7)
can be readily rewritten as

v2 = (5n + 2k + 1)(−3n + 5k + 5), d2 = 1.

Sincev2 can be written as a product of integer-linear polynomials, it follows from Theorem
2 thatZ is applicable toT , and the two possible values for the integer-linear factorp are

p1 = 5n + 2k + 1, p2 = −3n + 5k + 5.

Whenp = p1 = 5n + 2k + 1, the diophantine equation to be solved is 5� − 2h = 0, which
yields (�1, h1) = (2,5) as the solution. Whenp = p2 = −3n + 5k + 5, the diophantine
equation to be solved is−3� − 5h = 0, which yields(�2, h2) = (5,−3) as the solution.
Therefore, a lower bound� for the order of the telescopers forT is�=max{2,5}=5. Note
that invokingZ onT results in the minimal telescoperL of order 6 where

L = (31n + 181)E6
n + (31n + 150)E5

n − (31n + 26)En − (31n − 5).
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Example 2. Consider the class of hypergeometric terms of the form

T = 1

(a1n + b1k + c1) (a2n + b2k + c2)! , (15)

wherea1, b1, a2, b2 ∈ Z, gcd(a1, b1) = 1, b1 �= 0, a1 �= a2 or b1 �= b2. Without loss
of generality, we can assume thatb1>0. Applying the algorithm which solves the additive
decompositionproblemyields twohypergeometric termsT1(n, k)=0andT2(n, k)=T (n, k)

in (14), and the polynomialv2 in (4) is

a1n + b1k + c1,

which is also the only possible value ofp. Subsequently, the value ofd2 in (7) is

d2 = (a2n + b2k + c2 + 1) · · · (a2n + b2k + a2 + c2) if a2>0,
d2 = 1 if a2 = 0,
d2 = (a2n + b2k + c2 + a2 + 1) · · · (a2n + b2k + c2) if a2<0.

Sincea1 �= a2 or b1 �= b2, there does not exist any integerh such thatEh
k p|d2 · End2 · · ·

E
�−1
n d2.Whenp=a1n+b1k + c1, the diophantine equation to be solved isa1�−b1h=0,

which yields(�1, h1) = (b1, a1) as the solution. Therefore, a lower bound� for the order
of the telescopers forT is � = b1.

In summary, for the class of hypergeometric terms of the form (15), the polynomial factor
(a1n+ b1k + c1) is thedominantfactor. It determines the lower bound (which isb1) for the
order of the minimal telescoper forT . As an example, the computed lower bound for the
minimal telescoper for

T = 1

(n − 9k − 2)(2n + k + 3)!
is 9, while the order of the minimal telescoper forT is 10. By first computing this lower
bound, we can safely avoid the computation of a telescoper of order less than 9 (in addition
to the assurance that the telescopers forT do exist). On the other hand, ifb1 = 1, then the
computed lower bound� equals 1, i.e., the lowest possible value for�. As an example, the
computed lower bound for the minimal telescoper for

T = 1

(n + k + 1)(n + 5k + 2)!
is 1, while the order of the minimal telescoper forT is 6.
Note that when the factorial term(a2n + b2k + c2)! in (15) equals 1, we haveb1 as a

lower bound for the order of the minimal telescoper forT . This lower bound also equals
the order of the minimal telescoper forT (see[10]).

5. Implementation

The algorithm which computes a lower bound for the order of the telescopers and re-
lated functions are implemented in the computer algebra system Maple[12]. The Maple
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source code, and test results reported in this paper are available, and canbedownloaded from
http://www.scg.uwaterloo.ca/ ∼hqle/code/LowerBound/LB.html .
These functions include

1. AdditiveDecomposition solves the additive decomposition problem;
2. IsZApplicable determines the applicability of Zeilberger’s algorithm;
3. Zeilberger computes the minimalZ-pair of the given hypergeometric term; and
4. LowerBound computes a lower bound for the order of the telescopers.

The functionLowerBound has the calling sequence

LowerBound(T , n, k, En, Zpair);

whereT is a hypergeometric term ofnandk, andEn denotes the shift operator w.r.t.n. (En

andZpairareoptional arguments). If thenon-existenceof aZ-pair(L,G) forT is guaranteed,
thenLowerBound returns the conclusive error message “Zeilberger’s algorithm is not
applicable.” Otherwise, the output is a non-negative integer� denoting the value of the
computed lower bound for theorder ofL. In this case, if the optional argumentsEn andZpair
(each of which can be any unassigned name) are given, then the functionZeilberger is
invoked starting with� as a lower bound for the order ofL, andZpairwill be assigned to
the computedZ-pair (L,G).
Note that there are different Maple implementations ofZ such aszeil in the EKHAD

package[14], andsumrecursion in thesumtools package.AMathematica implemen-
tation is presented in[13]. Since the terminating condition that allows a hypergeometric
term to have aZ-pair is unknown at the time these functions were implemented, an upper
bound for the order of the recurrence operatorL in theZ-pair(L,G) needs to be specified in
advance (for instance, the default values are 6 for the parameterMAXORDERin zeil , and 5
for the global parameter ‘sum/zborder ’ in sumrecursion ). As a consequence, when
given a hypergeometric termT (n, k) as input, (1) these programsmight fail even if aZ-pair
exists, i.e., the maximum order ofL is not set “high enough”, or (2) they simply “waste”
CPU time trying to find aZ-pair when no suchZ-pair exists. The functionLowerBound ,
on the other hand, first determines the applicability ofZ to T (n, k). If the existence of a
Z-pair is guaranteed, then it computes a lower bound� for the order ofL, and if requested,
callsZ using� as the starting value for the order ofL, instead of 0. Since the existence of
aZ-pair is guaranteed, there is no need to set an upper bound for the order ofL.
The remainder of the paper is devoted to various experiments. For an input hypergeo-

metric termT (n, k) with an additive decomposition(T1(n, k), T2(n, k)). Let � and� be
the computed lower bound and the order of the minimal telescoper forT, respectively. The
results show that

1. the time to compute a lower bound, including the time to determine whetherZ is
applicable toT, is negligible in comparison with the time to compute telescopers of
order less than�; and

2. for the case whereT1 �= 0, sinceT2 is simpler thanT in some sense, some speed-up
can be obtained if we first compute the minimalZ-pair (L,G) for T2. It follows from
Proposition 2 that(L,LT 1 + G) is the minimalZ-pair forT.

http://www.scg.uwaterloo.ca/~hqle/code/LowerBound/LB.html
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Table 1
Example 3—time and space requirement

� � t1 t2 m1 m2

8 8 0.28 4.17 3,286 60,123

Example 3. Consider the hypergeometric term

T (n, k) = 1

(2k − 1)(n − 8k + 1)

(
2n − 2k
n − k

) (
2k
k

)
.

The computed lower bound� is 8 which equals the order� of the minimal telescoper for
T. Let t1, m1 denote the time (in seconds) and memory (in kilobytes) required to compute
a lower bound�, andt2 andm2 denote the (wasted) time and memory required to compute
telescopers of order less than�. Table 1shows the figures forti , mi , 1� i�2 for the given
T.1

It takes 11.84 s and 6.96 s to compute the minimalZ-pair for T using 0 and 8 as the
starting values of the guessed order for the telescopers, respectively. Note that if one applies
Zeilberger directly toT, one needs to set an upper bound for the telescopers to a high
enough value. For instance, if it is set to 7 in this example, then the function will return the
inconclusive message:
Error, (in Zeilberger) No recurrence of order 7 was found

Example 4. Consider the hypergeometric term

T (n, k) = 1

nk + 1

(
2n
2k

)
.

It takesLowerBound 0.23 s and 3,047 kilobytes to return the error message “Error, (in
LowerBound) Zeilberger’s algorithm is not applicable”. The function recognizes that the
polynomialv2(n, k) in (4) is(nk +1) which does not factor into a product of integer-linear
polynomials, and returns the conclusive answer quickly. On the other hand, it
takesZeilberger 12.15 s and 175,401 kilobytes to return the error message “Error,
(in Zeilberger) No recurrence of order 6 was found”. The function does not know whether a
Z-pair(L,G) forTexists. It tries to compute one and returns the above inconclusive answer.
Since there does not exist aZ-pair for T , the higher the value of the upper bound for the
order ofL set, the more the time and memory wasted (seeTable 2).

Example 5. In this example, we randomly generated a set of 10 hypergeometric terms each
of which is of the form

T (n, k) = 1

(a1n + b1k + c1)(a2n + b2k + c2)! , ai, bi, ci �= 0,

− 3�ai, bi, ci �3, −10�b1�10, −2�b2�2.

1All the reported timings were obtained on a 1GHz Compaq Deskpro Workstation with 512Mb RAM.
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Table 2
Example 4—Z is not applicable to the input hypergeometric term

Upper bound Wasted time

6 12.15
8 179.03
10 1,605.73

Table 3
Example 5—time and space requirement

i � � t1 t2 m1 m2 Lb Zb

1 10 11 0.09 4.79 1,661 61,935 11.72 17.22
2 10 11 0.08 13.87 896 185,289 32.72 45.25
3 9 10 0.15 7.00 1,200 94,735 16.73 22.42
4 9 11 0.20 9.59 1,519 117,734 67.77 72.50
5 8 9 0.06 1.62 770 17,712 2.82 4.41
6 8 9 0.09 9.29 1,027 123,202 33.80 40.91
7 9 10 0.06 3.02 965 35,203 6.77 10.02
8 9 10 0.08 8.95 993 121,058 25.49 33.86
9 7 8 0.15 4.68 1,132 59,468 13.36 17.51
10 10 11 0.14 18.87 935 244,346 62.31 75.14
Total 1.10 81.68 11,098 1,060,682 273.49 339.24

Table 3shows a comparison similar to that ofTable 1in Example 3. Additionally, we also
added the time to compute theminimalZ-pair usingZeilberger (Zb) andLowerBound
(Lb).

Example 6. Foragivenhypergeometric termT (n, k), let(T1(n, k), T2(n, k))beanadditive
decomposition ofT w.r.t. k. If T1 �= 0, instead of applyingZ to T , we suggest thatZ be
applied toT2. Following Proposition 2, the required minimalZ-pair for T (n, k) can then
be easily obtained from the computed minimalZ-pair forT2(n, k). This in general helps to
reduce the size of the problem to be solved. As an example, forb ∈ N\{0}, j ∈ {1,3}, let

T1(n, k) = 1

(nk − 1)(n − bk − 2)j (2n + k + 3)! ,

T2(n, k) = 1

(n − bk − 2)(2n + k + 3)! .

Consider

T (n, k) = (Ek − 1) T1(n, k) + T2(n, k).

SinceT1 ∼ T2, T is a hypergeometric term, lett1 be the time to compute a lower bound�
(which isb by Example 2) andt2, t3 be the times to compute the minimalZ-pair forT by
applyingZ to T2 andT, respectively, using� as the starting value for the guessed order
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Table 4
Example 6—timing comparison

Timing (seconds)

j b t1 t2 t3

1 1.03 0.51 1.55
2 1.09 3.99 9.30

1 3 1.09 5.00 35.32
4 1.15 7.01 130.45
5 1.09 10.03 2320.07

1 2.58 2.64 4.83
2 2.79 27.71 53.67

3 3 2.93 34.44 264.69
4 2.81 34.22 1,675.19
5 2.92 42.55 19,301.48

of the telescopers.Table 4shows the timing comparison. One can easily notice that asb
and/orj increase, the relative performance ofZeilberger (compared toLowerBound )
quickly worsens.
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