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Abstract

We present an algorithm which computes a non-trivial lower bound for the order of the minimal
telescoper for a given hypergeometric tefftne combination of this algorithm and techniques from
indefinite summation leads to an efficiency improvement in Zeilberger’s algorithm. We also describe
a Maple implementation, and conduct experiments which show the improvement that it makes in the
construction of the telescopers.
© 2005 Elsevier B.V. All rights reserved.
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1. Preliminaries

Let KK be an algebraically closed field of characteristic O, the variahlésbe integer-
valued, andE,,, E; be the corresponding shift operators, acting on functions arfidk,
by E,f(n,k) = f(n+ 1, k), Exf(n, k) = f(n,k + 1). A [K-valued functionz (k) is a
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hypergeometric terrof k over K if the consecutive term rati@ (1) = Ext/t is a rational
function ofk overlK. The rational functioré (¢) is called thecertificateof 7 (k). A IK-valued
functionT (n, k) is a hypergeometric term of two variablesindk if the two consecutive
term ratios%,(T) = E,T/T, and%(T) = E;T/T are rational functions afi andk over
K. The rational function&,,(T), % (T) are called then-certificate and thé-certificate
of T, respectively. Given a hypergeometric tefftn, k) as input, Zeilberger’s algorithm
[14,16,17](which we denote hereafter &) constructs fofT (n, k) a Z-pair (L, G), pro-
vided that such a pair exists. The compufegiair consists of., a linear recurrence operator
of orderp with coefficients which are polynomials ofoverl, i.e.,

L=ay(ME} + - +ai(m)Ey +aom)EY, ai(n) € Kln] (1)
and a hypergeometric ter@i(n, k) such that
LT (n, k)= (Ex — 1)G(n, k). (2)

Thek-free operatot. is called aelescoperlt is noteworthy that the problem of establishing
a necessary and sufficient condition for the applicabilityZofto 7' (n, k) is solved and
presented iffl,2] (the well-knownfundamental theoreffi6,17]only provides a sufficient
condition). It is proven if17] that if there exists @-pair for T'(n, k), thenZ terminates
with one of theZ-pairs, and the telescopkiin the returned-pair is of minimal order. The
computed telescopéris unique up to a left-hand factdt(n) € K[n], and we name ithe
minimal telescopefl7].

Z has a wide range of applications which include finding closed forms of definite sums
of hypergeometric terms, verification of combinatorial identities, and asymptotic estimation
[14,17,13]

The algorithm uses aitem-by-item examinatioon the ordeip of the operatot of the
form (1). It starts with the value of O fgr and increaseg until it is successful in finding a
Z-pair (L, G) for T. In other words, a lower bound feris 0. As a consequence, we waste
resources trying to compute without success a telescoper @f erd, wherep is the order
of the minimal telescoper.

Inthis paper, we present an algorithm which computes an improved non-zero lower bound
for the order of the telescopers. The general approach of the algorithm can be described
as follows: for a given hypergeometric teffiin, k), apply the algorithm which solves the
additive decomposition problemTow.r.t. k to obtain a pair of similar hypergeometric terms
T1i(n, k), To(n, k) such thafl = (E;, — 1)T1 + T, and eithefl> =0 (i.e.,T isk-summable) or
T> has some specific features each of which ensuregtishotk-summable. In the former
case, itis evident that’ is applicable td and the minimal telescoper foiis 1. In the latter
case, it is easy to show that a telescopeffekists if and only if a telescoper f@p exists,
and the sets of telescopers fbland 7> are the same. We consider recurrence operators
M e Kln, E,], calledcrushing operatorswith the property that iM is a crushing operator
for T», thenM T, does not have at least one of the specific featuresithdoes (this does
not guarantee tha¥ T, is k-summable, though). It follows that the order of the minimal
telescoper fofl» is always greater than or equal to that of a minimal crushing opekétor
for T». We then describe an algorithm which computes a lower boun® for the order of
the crushing operators f@b. This value is automatically also a lower bound for the order
of the telescopers foF.
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When T (n, k) is not k-summable and the algorithm is used in combination with the
algorithm which determines the applicability gf to T'(n, k) [1,2], it allows one to use¥
to compute &-pair only if the existence of such a pair is guaranteed, and in this case, one
can useu > 0 as the starting value for the orderofinstead of 0. Lep be the order of the
minimal telescopelk; since the computation of a lower bounds in general less expensive
than that of telescopers of order.0., u— 1, especially when the computed vajuis close
to p andp has a large value, this will lead to some efficiency improvement. Also, §inise
“simpler” thanT in some sense and since the minimal telescopefBdodT» are the same,
applyingZ to T, instead of tdl can provide some significant efficiency improvement (see
Example 6).

Note that for the case where the hypergeometric tEfm k) is also a rational function,
there is a direct algorithm which computes the minimal telescopér éfficiently without
using item-by-item examinatigi0].

The paper is organized in the following manner. In Section 2, we discuss some known
results which are needed in subsequent sections. They include a description of the ad-
ditive decomposition problem of hypergeometric terf6s9], and a criterion for the
applicability of Z [1,2]. The main result of Section 3 is a theorem which helps to com-
pute a lower bound for the order of a minimal crushing operator. An algorithmic de-
scription for this theorem is presented in detail in Section 4. We conclude the paper
with a description of an implementation of the algorithm in Section 5. Various examples
are used to show the advantages of this implementation over an implementation of the
original Z.

Throughout the papet( is an algebraically closed field of characteristicZDand N
denote the set of integers and non-negative integers, respectively. Folld#inge write
Ti(n, k) ~ Ta2(n, k) iftwo non-zero hypergeometric terriis(n, k) andT2(n, k) aresimilar,

i.e., their ratio is a rational function efandk.
A preliminary version of this paper has appeare{¥s

2. The additive decomposition problem and the existence of a telescoper

We begin this section with the notion &ational Normal FormgRNF) of a rational
function[7]. This concept plays an important role in the follow-up algorithms.

Definition 1. Let F be a field of characteristic 0, ankl € F(k) be a non-zero rational
function. If there arefi, f>, v1, v2 € F[k]\{0} such that

(i) R=F 5 whereF = % V=4, and gedvy, v2) = 1,
(i) gcd(f1, EJ f2) = 1forallh € Z,

thenF - £ is an RNF ofR.

The rational functiork in (i) with property (ii) is called thékernelof the RNF. Note that
every rational function has an RN#, Theorem 1which in general is not unique.
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2.1. The additive decomposition problem

For a hypergeometric terrfi(k) of k over [F, the algorithm which solves the additive
decomposition problerf6,9] constructs two hypergeometric terffigk), T>(k) similar to
T (k) such that

0]
T (k) = (Ex — 1) T1(k) + T2(k) and )
(ii) either o = 0 or % (7T2) has an RNF

J1 Ex(v1/v2)

4
f2 (vi/v2) @

with vy of minimal degree.

Note that any RNF ot (T») hasv, € F[k] of the same minimal degrg¢®, Theorems 9,10]
An additive decompositionf T (k) consists of a pair of similar hypergeometric terms
(T1, T») such that both Properties (i) and (ii) hold.

Lemma 1 (Abramov and Perkovs¢&,9]). LetT (k) be a hypergeometric term ovErand
(T1, T») be an additive decomposition B{k). For any RNF of the fornf4) of € (7»), and
for each irreduciblep € F[k] such thatp|vo, the following three properties haold

Pa: Elplvu=h=0, Pb:E!plfi=h<0 and
Pc: El'p|fo= h>0. (5)

If the hypergeometric terniz(k) in (3) is identically zero, the (k) is said to bek-
summableOtherwise, each irreducible factprof v has propertie®a, Pb, P¢ andT is
k-non-summable.

Proposition 1 (Abramov and Perkovsd®g,9]). Let an RNF of the k-certificate of a given
hypergeometric terr (k) be of the forn(4). If there exists at least one irreducible factor
p of v such that all three propertieBa, Pb, Pc hold, thenT (k) is k-non-summable

Let R(n, k) € K(n, k). By identifying the fieldF with IK(n), the notion of an RNF of
R(n, k) w.rt. kis well-defined. LetT (n, k) be a bivariate hypergeometric term ofand
k. Note that the algorithm which solves the additive decomposition problem only works
with an RNF of the certificat® of T. By “an additive decomposition df (n, k) w.r.t. K,
we identify the certificatdk with € (T) and an RNFF(E,V)/V of €(T) is computed
w.r.t. k. Additionally, 71 and 7> are hypergeometric terms kf similar toT, i.e., there are
f1, f2 € F(k) such thatT; = f; T. SincelF(k) = K(n)(k) = K(n, k), both f1 and f> are
rational functions ofi andk. Thus,7; are rational-function (of andk) multiples ofT, and
are hence hypergeometric termswxadndk.
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Proposition 2. For a hypergeometric terri (n, k) of n and k let (T1(n, k), T>(n, k)) be
an additive decomposition of T w.r.t. kKhen

(i) aZ-pairforT (n, k) exists if and only if a Z-pair fo»(n, k) exists and
(ii) the minimal telescopers for T arfd are the same

Proof. (i) Let (L, G) be aZ-pair for 7». It follows from (3) thatLT = (E; — 1) (LT1+ G).
SinceTy ~ T, T>» ~ G, and~ is an equivalence relatioi,T1 + G is a hypergeometric
term[14, Proposition 5.6.2]ConsequentiL, LT1 + G) is aZ-pair for T. On the other
hand, let(L, G) be aZ-pair for T. By following the same argument, one can easily show
that(L, G — LT1) is aZ-pair for T».

(ii) Let L be the minimal telescoper f@b. It follows from (i) thatlL is a telescoper fof .
Suppose there exists a telescopdor T and ordL < ord L. Then it follows from (i) that.
is a telescoper for, and ordZ < ord L. A contradiction. [

Definition 2. A polynomial p(n, k) € K[n, k] is integer-linearif it has the form
on+ fk+7y, where o, feZ andy e K. (6)

Theorem 1 (Abramov and Perkovs¢®, Theorem 8]. For a hypergeometric terfi(n, k),
let F, V € K(n, k) be such that
E.V

\%

is an RNF ovef<(n) of € (T). Then there exist® € [K(n, k) so that%,,(T) can be written
as

F

D , D=—-, gcddr,dp) =1 (7)
and the numerators and denominators of F and D all factor into integer-linear polynamials
2.2. The existence of a telescoper

Recall that the fundamental theor¢h®d—17]provides only a sufficient condition for the
termination of Z. It states that a telescoper for a hypergeometric t&iim k) exists if
T (n, k) is proper, i.e., it can be written in the form

[Tl (pi(n, ), 4
. IT(omin” 8
[Tl k) 8)

whereP (n, k) € K[n, k]; pi(n, k), pi(n, k) are integer-linear;, m € N; [ is a numeric
field (e.g.,C); andu, v € K and may contain parameters different frarandk.

It is well known that the set” of hypergeometric terms on whiclf’ terminates is a
proper subset of the set of all hypergeometric terms, but a proper super-set of the set of
proper hypergeometric terms. The following theorfinTheorem 10]gives a complete

P(n, k)
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description of#. It provides a necessary and sufficient condition for the terminatia#i of
on a hypergeometric terfi(n, k) (or equivalently, the applicability o to T (n, k)).

Theorem 2 (Criterion for the existence of a telescopefor a given hypergeometric term
T (n, k), let (T1(n, k), T2(n, k)) be an additive decomposition of T w.r.t.Llet (4) be an
RNF w.r.t. k ovefiK(n) of the k-certificate of». Then a telescoper fdf (n, k) exists if and
only if each factor ob,(n, k) irreducible inlK[n, k] is integer-linear

See[2, Section 5ffor a description of the algorithm which determines the applicability
of Z to a hypergeometric terffi(n, k). Note that the only information this algorithm needs
is thek-certificate ofT.

3. A lower bound for the order of telescopers for a minimalk-non-summable term

Definition 3. A minimal knon-summableypergeometricterfi(n, k) is ahypergeometric
term whereé (T) has an RNF w.r.tk of the form (4), and for each irreducibpesuch that
plv2, all three propertiePa, Pb, Pc hold.

For a given hypergeometric terf(n, k), let (T1(n, k), T»>(n, k)) be an additive decom-
position of T w.r.t. k. It follows from Lemma 1 thaf> is minimalk-non-summable. For the
remainder of this section, we assume th&t, k) is minimalk-non-summable. Let us now
introduce the notion afrushing operators

Definition 4. Let M € K[n, E,] be such thab/ T # 0, and for any RNF w.r.&k

F,EkV/

U/
o V= 9

-
V2

of €, (MT), each of the irreducible factors of, does not have at least one of the three
propertiesPa, Pb, Pc. ThenM is acrushing operatofor T.

Proposition 3. If L is a telescoper fof’, then L is a crushing operator fdf .
Proof. The claim follows from Proposition 1.1

Corollary 1. If there does not exist any crushing operator for T of order less thar> 1,
then there does not exist any telescoper for T of order lessghan

Hence, the problem of computing a lower bound for the order of the telescopérssfor
reduced to the problem of computing a lower bound for the order of a minimal crushing
operator forT'.

Theorem 3. Let F(EV)/V of the form(4) be an RNF w.r.t. K & (T). LetA =%,(T) =
D(E,V)/V be as defined in Theoreth Suppose that the polynomiap € Kin, k]
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factors into integer-linear polynomialdet M € K[n, E,] be a crushing operator for
T (n, k), ordM = p. Let p be an integer-linear factor ab, deg, p = 1. Then

(i) there exists an integer h such that
El plEyvy - E2vp- - ESvy - dy - Enda- - EX dy; and (10)

(i) let p, be the minimal value g# in (i) such that(10)is satisfied Then the order of a
minimal crushing operator for T is not less thanr= max,|,, p .

Proof. (i) Let
M =a,(W)E} +---+a1(n)E, +ao(n), a;(n) € Kn].
Then

p
MT = (Z am(n)A - EpA--- E;,"—lA) T.

m=0
Therefore,
EirR
G (MT) = F%, (11)
where

p
R=V Y anmA-E,A-- Ef~tA

m=0

1%
D-E,D---E" 1D

Xp: ( )E,’,"v1~d1-End1~~E,’1”_ld1
= ay,(n .
" E™vy - dy - EndzuoE,r,"*ldz

RewriteR as

R= E, r1, r2 € K[n, k],
ra

—1
ro=v2-Eqvp--- Efvo-dy- Endp--- EN “da, r1=s1+v252,

wheres is a polynomial fromi<[n, k], ands1=ao(n) - Epvz - - - EL vp-do- Enda - - - EL dy.
If pis nota factor of the denominates of R, then since; is a factor of-, pmust divide
the numerator; of R, i.e.,

pl(s1+ v252).

Sincep is a factor ofvy, this implies p|s1. Additionally, p does not divideug(n) since
deg p = 1. Therefore,

-1
PlEqv2- E2vp--- Efva-dp - Enda - -- Ef “da. (12)
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If pis afactor of the denominates, then sinceéM is a crushing operator f@t, at least one
of the three propertieRa, Pb, Pcdoes not hold fop. Notice thaté (T) in (4) andé, (M T)
in (11) have the same kerngl It follows together with Lemma 1 that for the integer-linear
factorp of vy, propertied?b andPc alwayshold. Consequently, properBadoesnothold,
i.e., there exists ah € Z\{0} such thatE,’jp dividesrp. Additionally, sinceT is minimal
k-non-summable, it follows from properfathat there does not exist @&ne 7\ {0} such
that E! p|v,. This gives

-1
E]ilp|Env2~E3v2~~~E5U2-d2~End2~~E,€ do. (13)

It follows from (12) and (13) that (i) is satisfied.
(i) The claim follows from the fact that for each factpof v,, there does not exist any
crushing operator fof of order less thap,,. [

It follows from Theorem 3 that if dggv, = 0, then the computed lower bound is 1.

4. A general algorithm

For a given hypergeometric terfi(n, k) of nandk, an algorithm which computes a lower
boundy for the order of the telescopers fdrconsists of two steps. A check to determine
the existence of a telescoper fdiis performed in the first step. This is attained by first
applying toT (n, k) the algorithm which solves the additive decomposition problem Ww.r.t.
to construct two hypergeometric terrig(n, k), T>(n, k) such that

T(n, k) =(Ex — 1) T1(n, k) + T2(n, k) (14)

and % (T2) has an RNF w.r.tk of the form (4). Ifv> does not factor into integer-linear
polynomials, then it follows from Theorem 2 th&t is not applicable td’, and there is

no need to compute a lower boupdOtherwise, rewrite); as a product of integer-linear
polynomials each of which is of the form (6). An algorithm, based on gcd and resultant
computation, for verifying ifup € K[n, k] factors into integer-linear polynomials, and if
this is the case, rewrite, in the desired factored form as describeddrb]. Without loss

of generality, we can assume that ¢zds) = 1, andf > 0.

In the second step, sinc& is applicable taT, if follows from Proposition 3 that the
existence of the crushing operators foris guaranteed. Additionally, all the hypotheses
required for computing a lower boundfor the order of the telescopers f6s exist. More
precisely, one can apply Theorem 3% to compute a lower boungd. It follows from
Proposition 2 that one can ugeas a lower bound for the order of the telescoperdfor

For eachinteger-linear factpiof v, deg, p=1, the second step requires the computation
of the minimal value op in the pair(p, h), h € Z, p € N\{0} such that

0} E]/zp|EnU2 : E3U2 s E;Q)Uz or
(i) Elplds- Endz--- Ef *da.
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Consider the following simple algorithii:

algorithm  C
input : p=an+pk+7y, 0 peZ gcda, f)=1 >0,y el

V2 = l_[;n:j_(ain + ik +v), o, p; € Z, gcd(oy, f;) =1, B; =0, y; € K
output : the minimal value op € N\{0} such that (i) is satisfied;

Pmin = 00,
fori=1,2,...,mdo
if e =0;andf = p;andy — y; € Zthen
find the minimalp € N\{0} andh € Z such that

oap — ph=7y—y;
Pmin = MIiN{pmin, o}
fi
od;
return ppin-

For a given integer-linear fact@rof vy, deg, p = 1, the algorithmC;y simply iterates
through each integer-linear polynomépdf vo. If p — g = ¢ € Z, then the algorithm solves
the diophantine equatiarp — h = ¢, and chooses the minimal positive valuepo{Note
that since gc(b, §) = 1, the solution is guaranteed to exist.)

An algorithm Cjj, which finds the minimal value g such that (i) is satisfied can be
described in a very similar manner. Note that it follows from Theorem 1 that the polynomial
d» € K[n, k] in (7) factors into integer-linear polynomials.

By iterating through each factop of vy, we obtain the desired lower bound
This leads to the following algorithm which computes in many examples (see below)
convincing lower bounds for the minimal orders of the telescopers for hypergeometric
terms.

algorithm  Lower Bound,;
input : a hypergeometric terfi(n, k);
output : alower boundu for the order of the telescopers for,

apply the algorithm which solves the additive decomposition
problem w.r.tk to obtain7y(n, k), T>(n, k) in (14);

if 7o = Othenreturn Ofi;

at this point @ (T>) has an RNF w.r.t of the form (4);

if the polynomialvz(n, k) in (4) is written as
v2 = [[i_1pi, Wherep; = (ain + ik +7,),
o, f; € Z, gcd(o;, ;) =1, f; >0, 7, € Kthen
if s =0thenreturn 1fi;
U= —00;
dp := denominato(®, (T)(vi/v2)/E,(v1/v2));
Rewritedz as[)_,q;, whereg; = (2;n + f;k +7;),

%, .Bj S/ ng(ij’ﬁj):lv ﬁj?o, Vj € I<;

fori=12,...,sdo
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if deg, p; = 1then
Hmin == Cqi)(pi, v2);
Hmin = Min{tmin, Ciiy (pi, d2)};
= max{g, fimin}
fi
od;
return u
else
return “Zeilberger’s algorithm is not applicable”
fi;

Note that instead of rewriting, as a product of integer-linear polynomials, and using it
in the callC;;)(pi, d2) in LowerBound , it is possible to use a simpler polynomial which
is a divisor ofd,. For a givenf € K[n, k] andc € @, there exists an algorithip] (called
wc) which extracts the maximal factar € K[n, k] from f wherew can be written in the
form

l_[(k+cn+y,~), 7 € K.

1

Hence, for each factqgr = (an + Pk + y) of vz, we callwce with d» ando/f as input. This
helps to reduce the number of integer-linear factorgdb be compared withp.

Example 1. Consider the hypergeometric term

1
T = .
(5n + 2k +1)(—3n + 5k +5)

(Tis also a rational function af andk.) Applying the algorithm which solves the additive
decomposition problem yields two hypergeometric tefiig, k)=0andl>(n, k)=T (n, k)

in (14). SinceT is a rational function, the polynomiap in (4), and subsequenthjp in (7)
can be readily rewritten as

vo=(5n+ 2k +1)(—=3n + 5k +5), dp=1.

Sincevy can be written as a product of integer-linear polynomials, it follows from Theorem
2 thatZ is applicable tdl', and the two possible values for the integer-linear faptare

p1=5n+2k+1 pr=-3n+5k+5.

Whenp = p1 =5n + 2k + 1, the diophantine equation to be solved is-52h = 0, which
yields (pq, h1) = (2, 5) as the solution. Whep = p» = —3n + 5k + 5, the diophantine
equation to be solved is3p — 54 = 0, which yields(p,, h2) = (5, —3) as the solution.
Therefore, a lower boundfor the order of the telescopers fbis = max{2, 5} =5. Note
that invokingZ onT results in the minimal telescopkrof order 6 where

L= (31n+18)E°® + (31n + 150 E> — (31n + 26)E, — (31n — 5).
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Example 2. Consider the class of hypergeometric terms of the form
T— 1
(a1n + b1k + c1) (aon + bok + c2)!”
whereay, b1, az, by € Z, gcdla1, b1) =1, by # 0, a1 # ap or b1 # by. Without loss
of generality, we can assume tltat> 0. Applying the algorithm which solves the additive

decomposition problem yields two hypergeometric tefhig, k)=0 andlz>(n, k)=T (n, k)
in (14), and the polynomialy in (4) is

(15)

ain + b1k + cq,
which is also the only possible value @fSubsequently, the value @f in (7) is

do = (apn + bok +co+ 1) --- (aon + bok +ar +c2) if a»>0,
dr»=1 if ap=0,
do = (apn + bok +co+ax+1)--- (azn + bok + ¢c2) if a» <O.

Sincea1 # az or by # by, there does not exist any integesuch thatE,i’p|d2 -Epdo---
E,‘,’_ldz. Whenp =ajn + b1k + c1, the diophantine equation to be solvedip — b1h =0,
which yields(pq, h1) = (b1, a1) as the solution. Therefore, a lower boumdor the order
of the telescopers for is u = b1.

In summary, for the class of hypergeometric terms of the form (15), the polynomial factor
(a1n + b1k + c1) is thedominantfactor. It determines the lower bound (whichbig for the
order of the minimal telescoper f@r. As an example, the computed lower bound for the
minimal telescoper for

1
T =
(n— 9% — 2)(2n + k + 3)!

is 9, while the order of the minimal telescoper fois 10. By first computing this lower
bound, we can safely avoid the computation of a telescoper of order less than 9 (in addition
to the assurance that the telescopersifdo exist). On the other hand,Af = 1, then the
computed lower bound equals 1, i.e., the lowest possible value foAs an example, the
computed lower bound for the minimal telescoper for

1
T =
(n+k+1(n—+ 5+ 2)!
is 1, while the order of the minimal telescoper Tois 6.
Note that when the factorial teritaon + b2k + c2)! in (15) equals 1, we haviy as a

lower bound for the order of the minimal telescoper TarThis lower bound also equals
the order of the minimal telescoper foi(see[10]).

5. Implementation

The algorithm which computes a lower bound for the order of the telescopers and re-
lated functions are implemented in the computer algebra system NEHleThe Maple
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source code, and test results reported in this paper are available, and can be downloaded from
http://www.scg.uwaterloo.ca/ ~hqgle/code/LowerBound/LB.html
These functions include

1. AdditiveDecomposition solves the additive decomposition problem;

2. IsZApplicable determines the applicability of Zeilberger’s algorithm;

3. Zeilberger  computes the minimal-pair of the given hypergeometric term; and
4. LowerBound computes a lower bound for the order of the telescopers.

The functionLowerBound has the calling sequence
LowerBoundT, n, k, E,,, Zpair);

whereT is a hypergeometric term ofandk, andE, denotes the shift operator w.rt. (E,
andZpairare optional arguments). If the non-existencedfair (L, G) for Tis guaranteed,
thenLowerBound returns the conclusive error message “Zeilberger’s algorithm is not
applicable.” Otherwise, the output is a non-negative integdenoting the value of the
computed lower bound for the orderbfin this case, if the optional argumerits andZpair
(each of which can be any unassigned name) are given, then the fudetibarger is
invoked starting withu as a lower bound for the order &f andZpair will be assigned to

the computed-pair (L, G).

Note that there are different Maple implementations®ouch azeil in the EKHAD
packagg14], andsumrecursion inthesumtools package.A Mathematicaimplemen-
tation is presented ifiL3]. Since the terminating condition that allows a hypergeometric
term to have &-pair is unknown at the time these functions were implemented, an upper
bound for the order of the recurrence operatortheZ-pair (L, G) needs to be specified in
advance (for instance, the default values are 6 for the paraMAXORDER zeil ,and5
for the global parametestim/zborder ’'in sumrecursion ). As aconsequence, when
given a hypergeometric terif\(n, k) as input, (1) these programs might fail even #-gair
exists, i.e., the maximum order &fis not set “high enough”, or (2) they simply “waste”
CPU time trying to find &-pair when no sucl-pair exists. The functiohowerBound ,
on the other hand, first determines the applicabilityZoto T (n, k). If the existence of a
Z-pair is guaranteed, then it computes a lower bouifat the order ofL, and if requested,
callsZ usingu as the starting value for the order bf instead of 0. Since the existence of
aZ-pair is guaranteed, there is no need to set an upper bound for the oider of

The remainder of the paper is devoted to various experiments. For an input hypergeo-
metric termT (n, k) with an additive decompositio(iy (n, k), T>(n, k)). Let u and p be
the computed lower bound and the order of the minimal telescop@ fespectively. The
results show that

1. the time to compute a lower bound, including the time to determine whether
applicable toT, is negligible in comparison with the time to compute telescopers of
order less thap; and

2. for the case wher&; # 0, sinceT> is simpler thanl in some sense, some speed-up
can be obtained if we first compute the mininZapair (L, G) for T». It follows from
Proposition 2 thatZL, LT 1 + G) is the minimalZ-pair forT.


http://www.scg.uwaterloo.ca/~hqle/code/LowerBound/LB.html
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Table 1
Example 3—time and space requirement

n 4 n 2 mi m2

8 8 0.28 4.17 3,286 60,123

Example 3. Consider the hypergeometric term

1 2n —2k\ (2
T(n’k)=(2k—1)(n—8k+1) ( n—=k > (k>

The computed lower bound is 8 which equals the order of the minimal telescoper for
T. Letr;, m1 denote the time (in seconds) and memory (in kilobytes) required to compute
a lower boundy, andr, andm, denote the (wasted) time and memory required to compute
telescopers of order less thanTable 1shows the figures faf, m;, 1<i <2 for the given
Tt

It takes 11.84s and 6.96 s to compute the mini@glair for T using 0 and 8 as the
starting values of the guessed order for the telescopers, respectively. Note that if one applies
Zeilberger  directly toT, one needs to set an upper bound for the telescopers to a high
enough value. For instance, if it is set to 7 in this example, then the function will return the
inconclusive message:

Error, (in Zeilberger) No recurrence of order 7 was found

Example 4. Consider the hypergeometric term

1 2n
ron = (5):

It takesLowerBound 0.23s and 3,047 kilobytes to return the error message “Error, (in
LowerBound) Zeilberger’s algorithm is not applicable”. The function recognizes that the
polynomialva(n, k) in (4) is (nk + 1) which does not factor into a product of integer-linear
polynomials, and returns the conclusive answer quickly. On the other hand, it
takesZeilberger 12.15s and 175,401 kilobytes to return the error message “Error,
(in Zeilberger) No recurrence of order 6 was found”. The function does not know whether a
Z-pair(L, G) for T exists. It tries to compute one and returns the above inconclusive answer.
Since there does not existZapair for T, the higher the value of the upper bound for the
order ofL set, the more the time and memory wasted {&dde 2.

Example 5. In this example, we randomly generated a set of 10 hypergeometric terms each
of which is of the form

1

(a1n + b1k + c1)(azn + bok + c2)!’
—3<a;, b, ¢; <3, —10<h1<10, —2<br<2.

T(n, k)= aj, bi,c; #0,

1Al the reported timings were obtained on a 1 GHz Compag Deskpro Workstation with 512 Mb RAM.
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Table 2

Example 4—% is not applicable to the input hypergeometric term

Upper bound Wasted time
6 12.15
8 179.03

10 1,605.73

Table 3

Example 5—time and space requirement

i u p I t2 mi mo Lb Zb
1 10 11 0.09 4.79 1,661 61,935 11.72 17.22
2 10 11 0.08 13.87 896 185,289 32.72 45.25
3 9 10 0.15 7.00 1,200 94,735 16.73 22.42
4 9 11 0.20 9.59 1,519 117,734 67.77 72.50
5 8 9 0.06 1.62 770 17,712 2.82 4.41
6 8 9 0.09 9.29 1,027 123,202 33.80 40.91
7 9 10 0.06 3.02 965 35,203 6.77 10.02
8 9 10 0.08 8.95 993 121,058 25.49 33.86
9 7 8 0.15 4.68 1,132 59,468 13.36 17.51

10 10 11 0.14 18.87 935 244,346 62.31 75.14

Total 1.10 81.68 11,098 1,060,682 273.49 339.24

Table 3hows a comparison similar to thatBdble 1lin Example 3. Additionally, we also
added the time to compute the mininZapair usingZeilberger  (Zb) andLowerBound
(Lb).

Example 6. Foragiven hypergeometric teffi(n, k), let(T1(n, k), T>(n, k)) be an additive
decomposition o w.r.t. k. If 77 # 0, instead of applying? to T', we suggest tha¥” be
applied toT». Following Proposition 2, the required minimalpair for T'(n, k) can then
be easily obtained from the computed minirdgbair for 7>(n, k). This in general helps to
reduce the size of the problem to be solved. As an examplé, #oN\{0}, j € {1, 3}, let

1
Ti(n, k) = ~ ,
(nk — 1)(n — bk — 2/ 2n + k + 3)!
1
Ll = G ki3
Consider

T(n, k)= (Er— 1) Ti(n, k) + To(n, k).

SinceTy ~ T, Tis a hypergeometric term, let be the time to compute a lower boupd
(which isb by Example 2) andb, 3 be the times to compute the minim&lpair for T by
applying Z to T, andT, respectively, using as the starting value for the guessed order
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Table 4
Example 6—timing comparison

Timing (seconds)

] b 11 12 13
1 1.03 0.51 1.55
2 1.09 3.99 9.30

1 3 1.09 5.00 35.32
4 1.15 7.01 130.45
5 1.09 10.03 2320.07
1 2.58 2.64 4.83
2 2.79 27.71 53.67

3 3 2.93 34.44 264.69
4 2.81 34.22 1,675.19
5 2.92 42.55 19,301.48

of the telescoperdlable 4shows the timing comparison. One can easily notice th&t as
and/orj increase, the relative performanceZgfilberger  (compared td.owerBound )
quickly worsens.
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