
In-place Arithmetic for Univariate Polynomials over an
Algebraic Number Field

Seyed Mohammad Mahdi Javadi1∗, Michael Monagan2∗

1 School of Computing Science, Simon Fraser University,
Burnaby, B.C. Canada.
sjavadi@cs.sfu.ca

2 Department of Mathematics, Simon Fraser University,
Burnaby, B.C. Canada.
mmonagan@cecm.sfu.ca

Abstract

We present a C library of in-place subroutines for univariate polynomial multiplica-
tion, division and GCD over Lp where Lp is an algebraic number field L with multiple
field extensions reduced modulo a machine prime p. We assume elements of Lp and
L are represented using a recursive dense representation. The main feature of our
algorithms is that we eliminate the storage management overhead which is significant
compared to the cost of arithmetic in Zp by pre-allocating the exact amount of storage
needed for both the output and working storage. We give an analysis for the work-
ing storage needed for each in-place algorithm and provide benchmarks demonstrating
the efficiency of our library. This work improves the performance of polynomial GCD
computation over algebraic number fields.

1 Introduction

In 2002, van Hoeij and Monagan in [12] presented an algorithm for computing the monic
GCD g(x) of two polynomials f1(x) and f2(x) in L[x] where L = Q(α1, α2, . . . , αk) is an
algebraic number field. The algorithm is a modular GCD algorithm. It computes the GCD
of f1 and f2 modulo a sequence of primes p1, p2, . . . , pl using the monic Euclidean algo-
rithm in Lp[x] and it reconstructs the rational numbers in g(x) using Chinese remaindering
and rational number reconstruction. The algorithm is a generalization of earlier work of
Langymyr and MaCallum [5], and Encarnación [2] to treat the case where L has multiple
extensions (k > 1). It can be generalized to multivariate polynomials in L[x1, x2, . . . , xn]
using evaluation and interpolation (see [13, 4]).

Monagan implemented the algorithm in Maple in 2001 and in Magma in 2003 using
the recursive dense polynomial representation to represent elements of L, Lp, L[x1, . . . , xn]
and Lp[x1, . . . , xn]. For Maple, Monagan developed a Maple package called RECDEN for
doing polynomial arithmetic in L[x1, . . . , xn] and Lp[x1, . . . , xn] using this representation.
This package was subsequently implemented in C in the Maple kernel in 2004. For Magma,
Monagan used the UnivariatePolynomial and quo constructors to build a recursive dense
representation.

The recursive dense representation is used in the PARI (see [10]) computer algebra
system as the default representation for multivariate polynomials. It was chosen because it
is known to be generally more efficient than the distributed and recursive representations for
sparse polynomials. See for example the comparison by Fateman in [3]. And since efficiency
∗Correspondence to: CECM Lab, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.

Tel: +1.778.782.5617

in the recursive dense representation improves for dense polynomials, and elements of L are
often dense, it should be a good choice for implementing arithmetic in L and also Lp.
However, we observed that arithmetic in Lp was very slow when α1 has low degree. Since
this often occurs in practical applications, and since over 90% of a GCD computation
in L[x] is typically spent in the Euclidean algorithm in Lp[x], we sought to improve the
efficiency of the arithmetic in Lp. One of the reasons why this happens is because the cost
of storage management in the recursive dense representation can be higher than the cost of
the arithmetic being done in Zp. We explain why this is the case with an example.

Example 1. Let L = Q(α1, α2) where α1 =
√

2 and α2 = 3
√

1/5 + α1. L is an algebraic
number field of degree d = 6 over Q. We represent elements of L as polynomials in Q[u][v]
and we do arithmetic in L modulo the ideal I = 〈m1(u),m2(v, u)〉 where m1(u) = u2 − 2
and m2(v, u) = v3 − u− 1/5 are the minimal polynomials for α1 and, respectively, α2.

To implement the modular GCD algorithm one uses machine primes, that is, the largest
available primes that fit in the word of the computer so that arithmetic in Zp can be
done by the computer’s hardware. After choosing the next machine prime p, we build
the ring Lp[x] where Lp = L mod p, iteratively, as follows; first we build the residue ring
Lu = Zp[u]/〈u2− 2 mod p〉. We use a dense array of machine integers to represent elements
of Lu. Then we build Lv = Lu[v]/〈v3 − u − 1/5 mod p〉 and finally the polynomial ring
Lp[x]. In the recursive dense representation we represent elements of Lv as dense arrays of
pointers to elements of Lu. So a general element of Lv, which looks like

(a1u+ b1)v2 + (a2u+ b2)v + (a3u+ b3),

would be stored as follows where the degree of each element is explicitly stored.

1 b3 a3 1 b2 a2 1 b1 a1 ∈ Lu

2 �
�
�

��+

�
�
��

S
S
Sw

∈ Lv

When the monic Euclidean algorithm is executed in Lp[x], it will do many multiplications
and additions of elements in Lv, each of which will do many in Lu. This results in many calls
to the storage manager to allocate small arrays for intermediate and final results in Lu and
Lv and rapidly produces a lot of small pieces of garbage. Consider one such multiplication
in Lu

(au+ b)(cu+ d) mod u2 − 2.

The algorithms compute the product P = acu2 + (ad + bc)u + bd and then divide P by
u2 − 2 to get the remainder R = (ad + bc)u + (bd + 2ac). They allocate arrays to store
the polynomials P and R. We have observed that, even though the storage manager is
not inefficient, the cost of these storage allocations and the other overhead for arithmetic in
Zp[u]/〈u2−2〉 overwhelms the cost of the actual integer arithmetic in Zp needed to compute
(ad+ bc) mod p and (bd+ 2ac) mod p.

Our main contribution is a library of in-place algorithms for arithmetic in Lp and Lp[x]
where Lp has one or more extensions. The main idea is to eliminate all calls to the storage
manager by pre-allocating one large piece of working storage, and re-using parts of it in a
computation.

In Section 2 we describe the recursive dense polynomial representation for elements
of Lp[x]. In Section 3 we present algorithms for multiplication and inversion in Lp and
multiplication, division with remainder and GCD in Lp[x] which are given one array of
storage in which to write the output and one additional array W of working storage for
intermediate results. In Section 4 we give formulae for determining the size of W needed
for each algorithm. In each case the amount of working storage is linear in d the degree of
L. We have implemented our algorithms in the C language in a library which includes also
algorithms for addition, subtraction, and other utility routines. The library is available at
http://www.cecm.sfu.ca/~sjavadi/inplace_web.c. In Section 5 we present benchmarks
demonstrating its efficiency by comparing our algorithms with the Magma ([1]) computer
algebra system and we explain how to avoid most of the integer divisions by p when doing
arithmetic in Zp because this significantly affects overall performance.

1.1 Related Work

We have also developed an interface to Maple so that we can implement the dense GCD
algorithm of van Hoeij and Monagan [13] and the sparse algorithm of Javadi and Monagan
in [4] efficiently. These algorithms compute GCDs of polynomials in K[x1, x2, . . . , xn] over
an algebraic function field K in parameters t1, t2, . . . , tk by evaluating first the parameters
then all variables except x1 and using rational function interpolation to recover the GCD.
This results in many (hundreds) of GCD computations in Lp[x1]. In many applications, K
has field extensions of low degree, often quadratic or cubic.

In [6], Xin, Moreno Maza and Schost develop asymptotically fast algorithms for mul-
tiplication in Lp based on the FFT and use their algorithms to implement the Euclidean
algorithm in Lp[x] for comparison with Magma and Maple. The authors obtain a speedup
for L of sufficiently large degree d. Our results here are complementary. Our benchmarks
demonstrate greatest improvement when L has low degree. – cases occurring frequently in
practice.

An in-place algorithm for long integer multiplication using Karatsuba’s algorithm was
developed by Maeder in [7]. In-place algorithms for polynomial arithmetic were developed
by Monagan in [8] for computation in the ring Zm[x] where m = pk is a multi-precision
integer to improve the performance of quadratic Hensel lifting for polynomial factorization
in Z[x].

2 Polynomial Representation

Let Q(α1, α2, . . . , αr) be our number field L. We build L as follows. For 1 ≤ i ≤ r,
let mi(z1, . . . , zi) ∈ Q[z1, . . . , zi] be the minimal polynomial for αi, monic and irreducible
over Q[z1, . . . , zi−1]/ 〈m1, . . . ,mi−1〉. Let di = degzi

(mi). We assume di ≥ 2. Let L =
Q[z1, . . . , zr]/ 〈m1, . . . ,mr〉. So L is an algebraic number field of degree d =

∏
di over

Q. For a prime p for which the rational coefficients of mi exist modulo p, let Ri =
Zp[z1, . . . , zi]/ 〈m̄1, . . . , m̄i〉 where m̄i = mi mod p and let R = Rr = L mod p. We use
the following recursive dense representation for elements of R and polynomials in R[x] for
our algorithms. We view an element of Ri+1 as a polynomial with degree at most di+1 − 1
with coefficients in Ri.

To represent a non-zero element β1 = a0 +a1z1 + · · ·+ad1−1z
d1−1
1 ∈ R1 we use an array

A1 of size S1 = d1 + 1 indexed from 0 to d1, of integers (modulo p) to store β1. We store

A1[0] = degz1
(α1) and, for 0 ≤ i < d1 : A1[i+ 1] = ai. Note that if degz1

(α1) = d̄ < d1 − 1
then for d̄+ 1 < j ≤ d1, A1[j] = 0. To represent the zero element of R1 we use A[0] = −1.

Now suppose we want to represent an element β2 = b0 + b1z2 + · · · + bd2−1z
d2−1
2 ∈ R2

where bi ∈ R1 using an array A2 of size S2 = d2S1 + 1 = d2(d1 + 1) + 1. We store
A2[0] = degz2

(β2) and for 0 ≤ i < d2

A2[i(d1 + 1) + 1 . . . (i+ 1)(d1 + 1)] = Bi[0 . . . d1]

where Bi is the array which represents bi ∈ R1. Again if β2 = 0 we store A2[0] = −1.
Similarly, we recursively represent βr = c0 + c1zr + · · ·+ cdr−1z

dr−1
r ∈ Rr based on the

representation of ci ∈ Rr−1. Let Sr = drSr−1 + 1 and suppose Ar is an array of size Sr

such that Ar[0] = degzr
(βr) and for 0 ≤ i < dr

Ar[i(dr−1) + 1 . . . (i+ 1)(dr−1 + 1)] = Ci[0 . . . Sr−1 − 1].

Remark 2. We store the degrees of the elements of Ri in Ai[0] simply to avoid re-computing
them.

We have
r∏

i=1

di < Sr <

r∏
i=1

(di + 1), Sr ∈ O(
r∏

i=1

di).

Now suppose we use the array C to represent a polynomial f ∈ Ri[x] of degree dx in
the same way. Each coefficient of f in x is an element of Ri which needs an array of size
Si, hence C must be of size

P (dx, Ri) = (dx + 1)Si + 1.

Example 3. Let r = 2 and p = 17. Let

m̄1 = z3
1 + 3,

m̄2 = z2
2 + 5z1z2 + 4z2 + 7z2

1 + 3z1 + 6, and

f = 3 + 4z1 + (5 + 6z1)z2 + (7 + 8z1 + 9z2
1 + (10z1 + 11z2

1)z2)x+ 12x2.

The representation for f is

C = 2 1 1 3 4 0 1 5 6 0︸ ︷︷ ︸
3+4z1+(5+6z1)z2

1 2 7 8 9 2 0 10 11︸ ︷︷ ︸
10z1+11z2

1

0 0 12 0 0 −1 0 0 0

Here dx = 2, d1 = 3, d2 = 2, S1 = d1 + 1 = 4, S2 = d2S1 + 1 = 9 and the size of the array
A is P (dx, R2) = (dx + 1)S2 + 1 = 28.

We also need to represent the minimal polynomial m̄i. Let m̄i = a0 + a1zi + . . . adi
zdi
i

where aj ∈ Ri−1. We need an array of size Si−1 to represent aj so to represent m̄i in
the same way we described above, we need an array of size S̄i = 1 + (di + 1)Si−1 =
diSi−1 + 1 + Si−1 = Si + Si−1. We define S0 = 1.

We represent the set of minimal polynomials {m̄1, . . . , m̄r} as an Array E of size∑r
i=1 S̄i =

∑r
i=1 (Si + Si−1) = 1 + Sr + 2

∑r−1
i=1 Si such that E[Mi . . .Mi+1 − 1] repre-

sents mr−i where M0 = 0 and Mi =
∑r

i=r−i+1 S̄i. The minimal polynomials in Example 3
will be represented in the following figure where E[0 . . . 12] represents m̄2 and E[13 . . . 17]
represents m̄1.

E = 2 2 6 3 7 1 4 5 0 0 1 0 0︸ ︷︷ ︸
m̄2

3 3 0 0 1︸ ︷︷ ︸
m̄1

3 In-place Algorithms

In this section we design efficient in-place algorithms for multiplication, division and GCD
computation of two univariate polynomials over R. We will also give an in-place algorithm
for computing the inverse of an element α ∈ R, if it exists. This is needed for making
a polynomial monic for the monic Euclidean algorithm in R[x]. We assume the following
utility operations are implemented.

• IP ADD(N,A,B) and IP SUB(N,A,B) are used for in-place addition and subtraction
of two polynomials a, b ∈ RN [x] represented in arrays A and B.

• IP MUL NO EXT is used for multiplication of two polynomials over Zp. A description
of this algorithm is given in Section 5.1.

• IP REM NO EXT is used for computing the quotient and the remainder of dividing
two polynomials over Zp.

• IP INV NO EXT is used for computing the inverse of an element in Zp[z] modulo a
minimal polynomial m ∈ Zp[z].

• IP GCD NO EXT is used for computing the GCD of two univariate polynomials over
Zp (the Euclidean algorithm, See [8]).

3.1 In-place Multiplication

Suppose we have a, b ∈ R[x] where R = Rr−1[zr]/〈mr(zr)〉. Let a =
∑da

i=0 aix
i and b =∑db

i=0 bix
i where da = degx(a) and db = degx(b) and Let c = a × b =

∑dc

i=0 cix
i where

dc = degx(c) = da + db. To reduce the number of divisions by mr(zr) when multiplying
a× b, we use the Cauchy product rule to compute ck as suggested in [8], that is,

ck =

 min(k,da)∑
i=max(0,k−db)

ai × bk−i

 mod mr(zr).

Thus the number of multiplications in Rr−1[zr] (in line 16) is (da + 1) × (db + 1) and the
number of divisions in Rr−1[zr] (in line 20) is da + db + 1. Asymptotically, this saves about
half the work.

Algorithm IP MUL: In-place Multiplication
Input: • N the number of field extensions.

• Arrays A[0 . . . ā] and B[0 . . . b̄] representing univariate polynomials a, b ∈ RN [x] (RN =
Zp[z1, . . . , zN]/ 〈m̄1, . . . , m̄N 〉). Note that ā = P (da, RN) − 1 and b̄ = P (db, RN) − 1
where da = degx(a) and db = degx(b).

• Array C[0 . . . c̄]: Space needed for storing c = a× b =
Pdc

i=0 cix
i where c̄ = P (degx(a) +

degx(b), RN)− 1.

• E[0 . . . eN] : representing the set of minimal polynomials where eN = SN + 2
PN−1

i=1 Si.

• W [0 . . . wN] : the working storage for the intermediate operations.

Output: For 0 ≤ k ≤ dc, ck will be computed and stored in C[k].
1: Set da := A[0] and db := B[0].
2: if da = −1 or db = −1 then
3: Set C[0] := −1.
4: return
5: end if
6: if N = 0 then
7: Call IP MUL NO EXT on inputs A, B and C and return.
8: end if
9: Let M = E[0 . . . S̄N − 1] and E′ = E[S̄N . . . eN] (M points to m̄N in E[0 . . . eN]).

10: Let T1 = W [0 . . . t − 1] and T2 = W [t . . . 2t − 1] and W ′ = W [2t . . . wN] where t = P (2dN −
2, RN−1) and dN = M [0] = degzN

(m̄N).
11: Set dc := da + db and sc := 1.
12: for k from 0 to dc do
13: Set sa := 1 + iSN and sb := 1 + (k − i)SN .
14: Set T1[0] := −1 (T1 = 0).
15: for i from max(0, k − db) to min(k, da) do
16: Call IP MUL(N − 1, A[sa . . . ā], B[sb . . . b̄], T2, E

′, W ′).
17: Call IP ADD(N − 1, T1, T2) (T1 := T1 + T2)
18: Set sa := sa + SN and sb := sb − SN .
19: end for
20: Call IP REM(N − 1, T1, M, E′, W ′). (Reduce T1 modulo M = m̄N).
21: Copy C[sc . . . c̄] into T1.
22: end for
23: Determine degx(a× b): (There might be zero-divisors).
24: Set i := dc and sc := sc − SN .
25: while i ≥ 0 and C[sc] = −1 do
26: Set i := i− 1 and sc := sc − SN .
27: end while
28: Set C[0] := i.

The temporary variables T1 and T2 must be big enough to store the product of two
coefficients in a, b ∈ RN [x]. Coefficients of a and b are in RN−1[zN] with degree (in zN)
at most dN − 1. Hence these temporaries must be of size P (dN − 1 + dN − 1, RN−1) =
P (2dN − 2, RN−1).

3.2 In-place Division

The following algorithm divides a polynomial a ∈ RN [x] by a monic polynomial b ∈ RN [x].
The remainder and the quotient of a divided by b will be stored in the array representing
a hence a is destroyed by the algorithm. The division algorithm is organized differently
from the normal long division algorithm which does db × (da − db + 1) multiplications and
divisions in RN−1[zr]. The number of divisions by M in RN−1[zr] in line 20 is reduced to
da + 1 (see line 10). Asymptotically this saves half the work.

Algorithm IP REM: In-place Remainder
Input: • N the number of field extensions.

• Arrays A[0 . . . ā] and B[0 . . . b̄] representing univariate polynomials a, b 6= 0 ∈ RN [x]
(RN = Zp[z1, . . . , zN]/ 〈m̄1, . . . , m̄N 〉) where da = degx(a) ≥ da = degx(b). Note b must
be monic and ā = P (da, RN)− 1 and b̄ = P (db, RN)− 1.

• E[0 . . . eN] : representing the set of minimal polynomials where eN = SN + 2
PN−1

i=1 Si.

• W [0 . . . wN] : the working storage for the intermediate operations.
Output: The remainder R̄ of a divided by b will be stored in A[0 . . . r̄] where r̄ = P (D, RN) − 1

and D = degx(R̄) ≤ db − 1. Also let Q represent the quotient Q̄ of a divided by b. Q[1 . . . q̄]
will be stored in A[1 + dbSN . . . ā] where q̄ = P (da − db, RN)− 1. Note that we will no longer
have the representation for a.

1: Set da := A[0] and db := B[0].
2: if da < db then return.
3: if N = 0 then
4: Call IP REM NO EXT on inputs A and B and return.
5: end if
6: Set Dq := da − db and Dr := db − 1.
7: Let M = E[0 . . . S̄N − 1] and E′ = E[S̄N . . . eN] (M points to m̄N in E[0 . . . eN]).
8: Let T1 = W [0 . . . t − 1] and T2 = W [t . . . 2t − 1] and W ′ = W [2t . . . wN] where t = P (2dN −

2, RN−1) and dN = M [0] = degzN
(m̄N).

9: Set sc := 1 + daSN

10: for k = da to 0 by −1 do
11: Copy C[sc . . . c̄] into T1.
12: Set i := max(0, k −Dq).
13: Set sb := 1 + iSN

14: Set sa := 1 + (k − i + db)SN

15: while i ≤ min(Dr, k) do
16: Call IP MUL(N − 1, A[sa . . . ā], B[sb . . . b̄], T2, E′, W ′).
17: Call IP SUB(N − 1, T1, T2) (T1 := T1 − T2).
18: Set sb := sb + SN and sa := sa − SN .
19: end while
20: Call IP REM(N − 1, T1, M , E′, W ′) (Reduce T1 modulo M = m̄N).
21: Copy A[sc . . . c̄] into T1.
22: Set sc := sc − SN .
23: end for
24: Set i := Dr and sc := 1 + DrSN .
25: while i ≥ 0 and A[sc] = −1 do
26: Set i := i− 1 and sc := sc − SN .
27: end while
28: Set A[0] := i.

Let arrays A and B represent polynomials a and b respectively. Let da = degx(a) and
db = degx(b). Array A has enough space to store da + 1 coefficients in RN plus one unit
of storage to store da. Hence the total storage is (da + 1)SN + 1. The remainder R̄ is of
degree at most db − 1 in x, i.e. R̄ needs storage for db coefficients in RN and one unit for
the degree. Similarly the quotient Q̄ is of degree da−db, hence needs storage for da−db +1
coefficients and one unit for the degree. This the remainder and the quotient together need
dbSN +1+(da−db +1)SN +1 = (da +1)SN +2. This means we are one unit of storage short
if we want to store both R̄ and Q̄ in A. This is because this time we are storing two degrees
for Q̄ and R̄. Our solution is that we will not store the degree of Q̄. Any algorithm that
calls IP REM and needs both the quotient and the remainder must use degx(a)− degx(b)
for the degree of Q̄.

After applying this algorithm the remainder R̄ will be stored in A[0 . . . dbSN] and the
quotient Q̄ minus the degree will be stored in A[dbSN . . . (da + 1)SN]. Similar to IP MUL,
the remainder operation in line 20 has been moved to outside of the main loop to let the
values accumulate in T1.

3.3 Computing (In-place) the inverse of an element in RN

In this algorithm we assume the following in-place functions:

• IP SCAL MUL(N,A,C,E,W): This is used for multiplying a polynomial a ∈ RN [x]
(represented by array A) by a scalar c ∈ RN (represented by array C). The algorithm
will multiply every coefficient of a in x by c and reduce the result modulo the minimal
polynomials. It can easily be implemented using IP MUL and IP REM

• IP LIN(N,C,A,B,E,W): On inputs a, b, c ∈ RN [x] (represented with arrays A,B
and C respectively), the algorithm will compute (in-place) c := a− bc.

The algorithm computes the inverse of an element a in RN . If the element is not
invertible, then the Euclidean algorithm will compute a proper divisor of some minimal
polynomial mi(zi), a zero divisor in Ri. The algorithm will store that zero-divisor in the
space provided for the inverse and return the index i of the minimal polynomial which is
reducible and has caused the zero-divisor.

Algorithm IP INV: In-place inverse of an element in RN

Input: • N the number of field extensions.

• Array A[0 . . . ā] representing the univariate polynomial a ∈ RN Note that N ≥ 1 and
ā = SN − 1.

• Array I[0 . . . ī]: Space needed for storing the inverse a−1 ∈ RN . Note that ī = SN − 1.

• E[0 . . . eN] : representing the set of minimal polynomials. Note that eN = SN +
2

PN−1
i=1 Si.

• W [0 . . . wN] : the working storage for the intermediate operations.
Output: The inverse of a (or a zero-divisor, if there exists one) will be computed and stored in

I. If there is a zero-divisor, the algorithm will return the index k where m̄k is the reducible
minimal polynomial, otherwise it will return 0.

1: Let M = E[0 . . . S̄N − 1] and E′ = E[S̄N . . . eN] (M = m̄N).
2: if N = 1 then
3: Call IP INV NO EXT on inputs A, I, E, M and W and return.
4: end if
5: if A[i] = 0, for all 0 ≤ i < N and A[N] = 1 (Test if a = 1) then
6: Copy A into I and return 0.
7: end if
8: Let r1 = W [0 . . . t − 1], r2 = W [t . . . 2t − 1], s1 = I, s2 = W [2t . . . 3t − 1], T = W [3t . . . 4t − 1]

and W ′ = W [4t . . . wN] where t = P (dN , RN−1)− 1 = S̄N − 1 and dN = M [0] = degzN
(m̄N).

9: Copy A and M into r1 and r2 respectively.
10: Set s2[0] := −1 (s2 represents 0).
11: Let Z ∈ Z := IP INV(N − 1, A[DaSN−1 + 1 . . . ā], T, E′, W ′) where Da = A[0] = degzN

(a).

(A[DaSN−1 + 1 . . . ā] represents l = lczN (a) and T represents l−1, the inverse of the leading
coefficient).

12: if Z > 0 then
13: Copy T into I. (I will contain the zero-divisor).
14: return Z (m̄Z is reducible and there is a zero-divisor).
15: end if
16: Copy T into s1.
17: Call IP SCAL MUL(N, r1, T, E′, W ′) (r1 is made monic).
18: while r2[0] 6= −1 do
19: Let Z ∈ Z := IP INV(N−1, r2[Dr2SN−1+1 . . . ā], T, E′, W ′) where Dr2 = r2[0] = degzN

(r2).

20: if Z > 0 then
21: Copy T into I. (I will contain the zero-divisor).
22: return Z (m̄Z is reducible and there is a zero-divisor).
23: end if
24: Call IP SCAL MUL(N, r2, T, E′, W ′) (r2 is made monic).
25: Call IP SCAL MUL(N, s2, T, E′, W ′).
26: Set Dq := r1[0]− r2[0]. If Dq < 0 then set Dq := −1.
27: Call IP REM(N, r1, r2, E

′, W ′).
28: Swap the arrays r1 and r2. (Interchange only the pointers).
29: Set t1 := r2[r1[0]SN−1].
30: Set r2[r1[0]SN−1] := Dq.
31: Call IP LIN(N, s1, q, s2, E

′, W ′) where q = r2[r1[0]SN−1 . . . ā]. (s1 := s1 − qs2.)
32: Set r2[r1[0]SN−1] := t1.
33: Swap the arrays s1 and s2. (Interchange only the pointers).
34: end while
35: if r1[i] = 0 for all 0 ≤ i < N and r1[N] = 1 then
36: Copy s1 into I. (r1 = 1 and s1 is the inverse).
37: return 0.
38: else
39: Copy r1 into R (r1 6= 1 is the zero-divisor).
40: return N − 1 (m̄N−1 is reducible).
41: end if

As discussed in Section 3.2, IP REM will not store the degree of the quotient of a divided
by b hence in line 30 we explicitly compute and set the degree of the quotient before passing
it to the function IP LIN as an argument. Here r2[r1[0]SN−1 . . . ā] is the quotient of dividing
r1 by r2 in line 27.

3.4 In-place GCD Computation

In the following algorithm we compute the GCD of a, b ∈ RN [x] using the monic Euclidean
algorithm. This is the main subroutine used to compute univariate images of a GCD in
L[x] for the algorithm in [12] and images of a multivariate GCD over an algebraic function
field for our algorithm in [4]. Note, since mi(zi) may be reducible modulo p, RN is is not
necessarily a field, and therefore, the monic Euclidean algorithm may encounter a zero-
divisor in RN when calling subroutine IP INV.

Algorithm IP GCD: In-place GCD Computation
Input: • N the number of field extensions.

• Arrays A[0 . . . ā] and B[0 . . . b̄] representing univariate polynomials a, b 6= 0 ∈ RN [x]
(RN = Zp[z1, . . . , zN]/ 〈m̄1, . . . , m̄N 〉) where da = degx(a) ≥ da = degx(b) and A, B 6= 0.
Note that b is monic and ā = P (da, RN)− 1 and b̄ = P (db, RN)− 1.

• E[0 . . . eN] : representing the set of minimal polynomials where eN = SN + 2
PN−1

i=1 Si.

• W [0 . . . wN] : the working storage for the intermediate operations.
Output: If there exist a zero-divisor, it will be stored in A and the index of the reducible minimal

polynomial will be returned. Otherwise the monic GCD g = gcd(a, b) will be stored in A and
0 will be returned.

1: if N = 0 then
2: CALL IP GCD NO EXT on inputs A and B and return 0.
3: end if
4: Set da := A[0] and db := B[0].
5: Let r1 and r2 point to A and B respectively.

6: Let I = W [0 . . . t− 1] and W ′ = W [t . . . wN] where t = S̄N − 1 = SN + SN−1 − 1.
7: Let Z be the output of IP INV(N, r1[1 + r1[0]SN . . . ā], I, E, W ′).
8: if Z > 0 then
9: Copy I into A. (A will contain the zero-divisor).

10: return Z (m̄Z is reducible and there is a zero-divisor).
11: end if
12: Call IP SCAL MUL(N, r1, I, E, W ′).
13: while r2[0] 6= −1 do
14: Let Z be the output of IP INV(N, r2[1 + r2[0]SN . . . b̄], I, E, W ′).
15: if Z > 0 then
16: Copy I into A. (A will contain the zero-divisor).
17: return Z (m̄Z is reducible and there is a zero-divisor).
18: end if
19: Call IP SCAL MUL(N, r2, I, E, W ′).
20: Call IP REM(N, r1, r2, E, W ′).
21: Swap r1 and r2 (interchange pointers).
22: end while
23: Copy r1 into A.
24: return 0.

Similar to the algorithm IP INV, if there exists a zero-divisor, i.e. the leading coefficient
of one of the polynomials in the polynomial remainder sequence is not invertible, the algo-
rithm will store the zero-divisor in the space provided for a. It will also return the index of
the minimal polynomial which is reducible and has caused the zero-divisor.

4 Working Space

In this section we will determine recurrences for the exact amount of working storage wN

needed for each operation introduced in the previous section. Recall that di = degzi
(m̄i) is

the degree of the ith minimal polynomial which we may assume is at least 2. Also Si is the
space needed to store an element in Ri and we have Si+1 = di+1Si + 1 and S1 = d1 + 1.

Lemma 4. SN > 2SN−1 for N > 1.

Proof. We have SN = dNSN−1 + 1 where dN = degzN
(m̄N). Since dN ≥ 2 we have

SN ≥ 2SN−1 + 1⇒ SN > 2SN−1.

Lemma 5.
∑N−1

i=1 Si < SN for N > 1.

Proof. (by induction on N). For N = 2 we have
∑1

i=1 Si = S1 < S2. For N = k + 1 ≥ 2
we have

∑k
i=1 Si = Sk +

∑k−1
i=1 Si. By induction we have

∑k−1
i=1 Si < Sk hence

∑k
i=1 Si <

Sk +Sk = 2Sk. Using Lemma 4 we have 2Sk < Sk+1 hence
∑k

i=1 Si < 2Sk < Sk+1 and the
proof is complete.

Corollary 6.
∑N

i=1 Si < 2SN for N > 1.

Lemma 7. P (2dN − 2, RN−1) = 2SN − SN−1 − 1 for N > 1.

Proof. We have P (2dN − 2, RN−1) = (2dN − 1)SN−1 + 1 = 2dNSN−1 − SN−1 + 1 =
2(dNSN−1 + 1)− SN−1 − 1 = 2SN − SN−1 − 1.

4.1 Multiplication and Division Algorithms

Let M(N) be the amount of working storage needed to multiply a, b ∈ RN [x] using the
algorithm IP MUL. Similarly let Q(N) be the amount of working storage needed to divide
a by b using the algorithm IP REM. The working storage used in lines 10,16 and 20 of
algorithm IP MUL and lines 8,16 and 20 of algorithm IP REM is

M(N) = 2P (2dN − 2, RN−1) + max(M(N − 1), Q(N − 1)) and (1)

Q(N) = 2P (2dN − 2, RN−1) + max(M(N − 1), Q(N − 1)). (2)

Comparing equations (1) and (2) we see that M(N) = Q(N) for any N ≥ 1. Hence

M(N) = 2P (2dN − 2, RN−1) +M(N − 1). (3)

Simplifying (3) gives M(N) = 2SN − 2N + 2
∑N

i=1 Si. Using Corollary 6 we have the
following:

Theorem 8. M(N) = Q(N) = 2SN − 2N + 2
∑N

i=1 Si < 6SN .

Remark 9. When calling the algorithm IP MUL to compute c = a×b where a, b ∈ R[x], we
should use a working storage array W [0 . . . wn] such that wn ≥M(N). Since M(N) < 6SN ,
the working storage must be big enough to store only six coefficients in Lp. This is very
small.

Let C(N) and L(N) denote the amount of working storage needed for operations
IP SCAL MUL and IP LIN. It is easy to show that C(N) = M(N−1)+P (2dN−2, RN−1) <
M(N). Also we have L(N) = M(N).

4.2 Inversion

Let I(N) denote the amount of working storage needed to invert c ∈ RN . In lines 8, 11,
17, 19, 24, 25, 27 and 31 of algorithm IP INV we use the working storage. We have

I(N) = 4P (dN , RN−1) + max(I(N − 1),M(N − 1), L(N − 1), Q(N − 1)). (4)

But we have M(N − 1) = L(N − 1) = Q(N − 1), hence

I(N) = 4P (dN , RN−1) + max(I(N − 1),M(N − 1)). (5)

Lemma 10. For N ≥ 1, we have M(N) < I(N).

Proof. (by contradiction) Assume M(N) ≥ I(N). Using (5) we have

I(N) = 4P (dN , RN−1) +M(N − 1).

On the other hand using (3) we have

M(N) = 2P (2dN − 2, RN−1) +M(N − 1).

We assumed I(N) ≤ M(N) hence we have 4P (dN , RN−1) + M(N − 1) ≤ 2P (2dN −
2, RN−1) + M(N − 1) thus 2P (dN , RN−1) ≤ P (2dN − 2, RN−1) ⇒ 2SN + 2SN−1 ≤
2SN − SN−1 − 1 which is a contradiction. Thus I(N) > M(N).

Using Equation (4) and Lemma 10 we conclude that I(N) = 4P (dN , RN−1) + I(N − 1).
Simplifying this yields:

Theorem 11.

I(N) = 4
N∑

i=1

P (di, Ri−1) = 4
N∑

i=1

Si + Si−1 = 4SN + 8
N−1∑
i=1

Si.

Using Lemma 4 an upper bound for I(N) is I(N) < 4SN + 8SN = 12SN .

4.3 GCD Computation

Let G(N) denote the amount of working storage needed to compute the GCD of a, b ∈
RN [x]. In lines 6,7,12,14,19 and 20 of algorithm IP GCD we use the working storage. We
have

G(N) = S̄N + max(I(N), C(N), Q(N)). (6)

Lemma 10 states that I(N) > M(N) = C(N) = Q(N) hence

G(N) = S̄N + I(N) = SN + SN−1 + 4SN + 8
N−1∑
i=1

Si = 9SN + SN−1 + 8
N−1∑
i=1

Si.

Since I(N) < 12SN , we have an upper bound on G(N) :

Theorem 12. G(N) = SN + SN−1 + I(N) < SN + SN−1 + 12SN < 14SN .

Remark 13. The constants 6, 12 and 14 appearing in Theorems 8, 11 and 12 respectively,
are not the best possible. For example, one can reduce the constant 6 for algorithm IP MUL
if one also uses the space in the output array C for working storage. We did not do this
because it complicates the description of the algorithm and yields no significant performance
gain.

5 Benchmarks

We have compared our C library with the Magma (see [1]) computer algebra system. The
results are reported in Table 1. For our benchmarks we used p = 3037000453, two field
extensions with minimal polynomials m̄1 and m̄2 of varying degrees d1 and d2 but with d =
d1×d2 = 60 constant so that we may compare the overhead for varying d1. We choose three
polynomials a, b, g of the same degree dx in x with coefficients chosen from R at random.
The data in the fifth and sixth columns are the times (in CPU seconds) for computing both
f1 = a × g and f2 = b × g using IP MUL and Magma version 2.15 respectively. Similarly,
the data in the seventh and eighth columns are the times for computing both quo(f1, g) and
quo(f2, g) using IP REM and Magma respectively. Finally the data in the ninth and tenth
columns are the times for computing gcd(f1, f2) using IP GCD and Magma respectively.
The data in the column labeled #fi is the number of terms in f1 and f2.

The timings in Table 1 for in-place routines show that as the degree dx doubles from
40 to 80, the time consistently goes up by a factor of 4 indicating that the underly-
ing algorithms are all quadratic in dx. This is not the case for Magma. The reason is

that Magma uses a different algorithm for multiplication (and for division) which is not
quadratic. We describe the algorithm used by Magma ([11]) briefly. Suppose we want
to multiply two polynomials a, b ∈ Lp[x]. Magma first multiplies a and b as polynomi-
als in Z[x, z1, . . . , zr]. It then reduces their product modulo the ideal 〈m1, . . . ,mr, p〉. To
multiply in Z[x, z1, . . . , zr], Magma evaluates each variable successively, beginning with zr

then ending with x, at integers kr, . . . , k1, k0 which are powers of the base of the integer
representation which are sufficiently large so that that the product of the two polynomi-
als a(x, z1, . . . , zr) × b(x, z1, . . . , zr) can be recovered from the product of the two (very)
large integers a(k0, k1, . . . , kr)× b(k0, k1, . . . , kr). The reason to evaluate at a power of the
integer base is so that evaluation and recovery can be done in linear time. In this way
polynomial multiplication in Z[x, zr, . . . , z1] is reduced to a single (very) large integer mul-
tiplication which is done using the FFT. This, note, may not be efficient if the polynomials
a(x, z1, . . . , zr) and b(x, z1, . . . , zr) are sparse.

Table 1: First benchmark. Timings (in CPU seconds)
d1 d2 dx #fi IP MUL MAG MUL IP REM MAG REM IP GCD MAG GCD
2 30 40 2460 0.124 0.050 0.123 0.090 0.384 3.550
3 20 40 2460 0.108 0.058 0.106 0.100 0.340 3.860
4 15 40 2460 0.106 0.058 0.106 0.090 0.327 3.910
6 10 40 2460 0.106 0.118 0.105 0.130 0.328 7.820
10 6 40 2460 0.100 0.095 0.100 0.370 0.303 10.310
15 4 40 2460 0.097 0.053 0.095 0.150 0.283 4.580
20 3 40 2460 0.092 0.045 0.091 0.130 0.267 3.760
30 2 40 2460 0.087 0.037 0.087 0.100 0.242 3.050
2 30 80 4860 0.477 0.115 0.478 0.260 1.449 15.270
3 20 80 4860 0.407 0.130 0.409 0.270 1.304 16.690
4 15 80 4860 0.404 0.132 0.406 0.260 1.253 16.810
6 10 80 4860 0.398 0.247 0.400 0.340 1.234 33.650
10 6 80 4860 0.380 0.203 0.381 0.850 1.151 46.880
15 4 80 4860 0.365 0.119 0.364 0.390 1.081 19.920
20 3 80 4860 0.353 0.104 0.353 0.320 1.030 16.200
30 2 80 4860 0.336 0.086 0.337 0.250 0.932 12.530

The timings in Table 1 show that our in-place GCD algorithm is a factor of 10 or more
times faster than Magma’s GCD algorithm. Since both algorithms are using the Euclidean
algorithm, this shows that our in-place algorithms for arithmetic in Lp are efficient. This
is the gain we sought to achieve.

The reader can observe that as d1 increases, the timings for IP MUL decrease which
shows that there is still some overhead for α1 of low degree.

In Table 2 below, we repeated the first benchmark with dx = 80 with the following
change. This time the coefficients of a, b and g in x2k+1 for k = 0 . . . 39 are 0, i.e. these
polynomials only have terms with even degree in x. This is representative of real problems
which are not completely dense.

Tables 2 and 1 show that IP MUL is on average four times faster when a, b and g
have half the number of terms demonstrating that the “recursive dense” representation is
efficient for sparse problems. However this is not true for MAG MUL which is not using
the classic multiplication algorithm as discussed previously.

Table 2: Second benchmark. Timings (in CPU seconds)
d1 d2 dx IP MUL MAG MUL IP REM MAG REM IP GCD MAG GCD
2 30 80 0.125 0.070 0.123 0.090 0.387 4.850
3 10 80 0.107 0.076 0.108 0.100 0.341 4.930
4 15 80 0.106 0.079 0.107 0.100 0.329 5.200
6 10 80 0.105 0.138 0.105 0.130 0.330 10.010
10 6 80 0.100 0.114 0.099 0.260 0.305 12.880
15 4 80 0.097 0.074 0.096 0.120 0.283 5.810
20 3 80 0.093 0.069 0.092 0.100 0.269 4.950
30 2 80 0.088 0.054 0.086 0.080 0.242 3.900

5.1 Optimizations in the implementation

In modular algorithms, multiplication in Zp needs to be coded carefully. This is because
hardware integer division (%p in C) is much slower than hardware integer multiplication.
One can use Peter Montgomery’s trick (see [9]) to replace all divisions by p by several
cheaper operations for an overall gain of typically a factor of 2. Instead, we use the following
scheme which replaces most divisions by p in the multiplication subroutine for Zp[x] by at
most one subtraction. We use a similar scheme for the division in Zp[x]. This makes GCD
computation in Lp[x] more efficient as well. We observed a gain of a factor of 5 on average
for the GCD computations in our benchmarks.

The following C code explains the idea. Suppose we have two polynomials a, b ∈ Zp[x]
where a =

∑da

i=0 aix
i and b =

∑db

j=0 bjx
j where ai, bj ∈ Zp. Suppose the coefficients ai and

bi are stored in two Arrays A and B indexed from 0 to da and 0 to db respectively. We
assume that p is a machine prime and elements of Zp are stored as signed integers such that
−p2 < ai, bi < p2 fits in a machine word. The following computes c = a× b =

∑da+db

k=0 ckx
k.

M = p*p;

d_c = d_a+d_b;

for(k=0; k<=d_c; k++) {

t = 0;

for(i=max(0,k-d_b); i <= min(k,d_a); i++)

{

if(t<0); else t = t-M;

t = t+A[i]*B[k-i];

}

t = t % p;

if(t<0) t = t+p;

C[k] = t;

}

The trick here is to put t in the range −p2 < t ≤ 0 by subtracting p2 from it when it
is positive so that we can add the product of two integers 0 ≤ ai, bk−i < p to t without
overflow. Thus the number of divisions by p is linear in dc, the degree of the product. One
can further reduce the number of divisions by p. In our implementation, when multiplying
elements a, b ∈ Zp[z][x]/ 〈m(z)〉 we multiply a, b ∈ Zp[z][x] without division by p before
dividing by m(z).

Note that the statement if(t<0); else t = t-M; is done this way rather than the
more obvious if(t>0) t = t-M; because it is faster. The reason is that t < 0 holds
about 75% of the time and the code generated by the newer compilers is optimized for the
case the condition of an if statement is true. If one codes the if statement using if(t>0
) t = t-M; instead, we observe a loss of a factor of 2.6 on an Intel Core i7, 2.3 on an Intel
Core 2 duo, and 2.2 on an AMD Opteron for the above code.

References

[1] Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. J. Symbolic Comput., 24(3–4):235–266, 1997.

[2] Mark J. Encarnación. Computing gcds of polynomials over algebraic number fields. J.
Symb. Comp., 20(3):299–313, 1995.

[3] Richard Fateman. Comparing the speed of programs for sparse polynomial multipli-
cation. SIGSAM Bull., 37(1):4–15, 2003.

[4] Seyed Mohammad Mahdi Javadi and Michael Monagan. A sparse modular gcd al-
gorithm for polynomials over algebraic function fields. In Proceedings of ISSAC ’07,
pages 187–194. ACM, 2007.

[5] Lars Langemyr and Scott McCallum. The computation of polynomial greatest common
divisors over an algebraic number field. J. Symb. Comp., 8(5):429–448, 1989.

[6] Xin Li, Marc Moreno Maza, and Éric Schost. Fast arithmetic for triangular sets: from
theory to practice. In Proceedings of ISSAC ’07, pages 269–276. ACM, 2007.

[7] Roman Maeder. Storage allocation for the karatsuba integer multipliation algorithm.
In Proceedings of Disco ’93, pages 59–65, London, UK, 1993. Springer-Verlag.

[8] Michael B. Monagan. In-place arithmetic for polynominals over Zn. In Proceedings of
DISCO ’92, pages 22–34. Springer-Verlag, 1993.

[9] Peter Montgomery. Modular multiplication without trial division. Math. Comp.,
44(70):519–521, 1985.

[10] PARI/GP, version 2.3.4. Bordeaux, 2008. http://pari.math.u-bordeaux.fr/.

[11] Allan Steel. Multiplication in Lp[x] in Magma. private communication, 2009.

[12] Mark van Hoeij and Michael Monagan. A modular gcd algorithm over number fields
presented with multiple extensions. In Proceedings of ISSAC ’02, pages 109–116. ACM
Press, 2002.

[13] Mark van Hoeij and Michael Monagan. Algorithms for polynomial gcd computation
over algebraic function fields. In Proceedings of ISSAC ’04, pages 297–304. ACM Press:
New York, NY, 2004.

Appendix

In this section we give the Magma code used for benchmarks in Section 5. First we need
to generate irreducible minimal polynomials m̄1 and m̄2 with degrees d1 and d2 in z1 and
z2 respectively. To do this we use the following Maple code.

p := modp1(Prime(1));

m1 := Randprime(d1, z1) mod p:

alias(alpha1 = RootOf(m1, z1)):

m2 := Randprime(d2, z2, alpha1) mod p:

fd := fopen("m1.dat", WRITE);

fprintf(fd,"dm1 := %d;\ndm2 := %d;\nm1 := %a;\n", d1, d2, m1);

fclose(fd);

fd := fopen("m2.dat", WRITE);

fprintf(fd,"m2 := %a;\n", m2);

fclose(fd);

This code will generate two files which include the minimal polynomials. These files will be
loaded by the following Magma code.

p := 3037000453;

Zp := FiniteField(p);

gen_Zp := function()

return Random(Zp);

end function;

Zp<z1> := PolynomialRing(Zp);

load "m1.dat";

R1<alpha1> := quo<Zp | m1>;

F1<z2> := PolynomialRing(R1);

gen_alpha1 := function()

return &+[gen_Zp()*alpha1^i : i in [0..dm1 - 1]];

end function;

load "m2.dat";

R2<alpha2> := quo<F1 | m2>;

F<x> := PolynomialRing(R2);

gen_coeff := function()

return &+[gen_alpha1()*alpha2^i : i in [0..dm2 - 1]];

end function;

gen_poly := function(d)

return &+[gen_coeff()*x^i: i in [0..d]];

end function;

for d in [40,80] do

a := gen_poly(d);

b := gen_poly(d);

g := gen_poly(d);

t1 := Cputime();

for i in [1..20] do f1 := a*g; f2 := b*g; h1 := Hash(f1); h2 := Hash(f2); end for;

t2 := Cputime(t1);

tmul := t2 / 20.0;

t2 := Cputime();

g := Gcd(f1,f2); h := Hash(g);

t3 := Cputime(t2);

t3 := Cputime();

r := f1 mod g; r:= Hash(r);

t4 := Cputime(t3);

printf "MAG_MUL = %o\t\t MAG_REM = %o\t\t MAG_GCD = %o\n",tmul,t4,t3;

end for;

Remark 14. In Magma, one can also create the ring Zp using Zp := ResidueClassRing(p);
instead of Zp := FiniteField(p); We observed that all Magma timings are about twice
as slow using Zp := ResidueClassRing(p);

