
Rational Simplification Modulo a Polynomial Ideal ∗

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

mmonagan@cecm.sfu.ca.

Roman Pearce
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

rpearcea@cecm.sfu.ca.

ABSTRACT
We present two algorithms for simplifying rational expres-
sions modulo an ideal of the polynomial ring k[x1, . . . , xn].
The first method generates the set of equivalent expres-
sions as a module over k[x1, . . . , xn] and computes a reduced
Gröbner basis. From this we obtain a canonical form for
the expression up to our choice of monomial order for the
ideal. The second method constructs equivalent expressions
by solving systems of linear equations over k, and conducts
a global search for an expression with minimal total degree.
Depending on the ideal, the algorithms may or may not
cancel all common divisors. We also provide some timings
comparing the efficiency of the algorithms in Maple.

1. INTRODUCTION
Let k be a field and let I ⊂ k[x1, . . . , xn] be an ideal.

We will assume that I is prime so that the quotient ring
k[x1, . . . , xn]/I is an integral domain [4]. In this paper we
show how to simplify fractions over k[x1, . . . , xn]/I which
permits effective computation in that domain. Otherwise
arithmetic with fractions produces “blow up”.

For example, let I = 〈xy − 1〉 ⊂ Q[x, y] and consider

x

x− y
+

y

y − 1
≡ x + y2 − 2

x + y2 − y − 1
mod I

where we have used the relation xy − 1 to reduce the right
hand side. The algorithms presented in this paper produce
the simplification

x + y2 − 2

x + y2 − y − 1
−→ x− y − 1

x− y
mod I

reducing the total degree of the fraction from 4 to 2.
Specific instances of this problem have been considered

before, notably the case of trigonometric polynomials [7, 9].
The idea behind the algorithms in [7, 9] is to use a parame-
terization of V = V(I) as an injective homomorphism from

∗Supported by NSERC of Canada and the MITACS NCE
of Canada

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

k[V] to a rational function field k(t), where the problem be-
comes computing and cancelling a polynomial gcd in k[t].
We illustrate the technique on an example from [9].

Example 1. Consider

a

b
=

sc− c2 + s + 1

c4 − 2c2 + s + 1
mod 〈s2 + c2 − 1〉

A parameterization of V(s2 + c2 − 1) is {s = 2t/(1 + t2),
c = (1 − t2)/(1 + t2)}. Substituting into a/b we obtain the
following expression in Q(t).

f(t)

g(t)
=

2t4 + 4t2 + 2

t5 − t4 + 4t3 + 4t2 − t + 1

To invert the map we use the implicitization method of [4].
Since 1+ t2 does not vanish over Q we can eliminate t from

J = 〈f(t) e1 + g(t) e2, (1 + t2)s− 2t, (1 + t2)c− (1− t2)〉

We find that (s− c− 1) e1 + (c3 + sc− 2c) e2 is a minimal
element of J ∩ Q[s, c] with respect to graded lexicographic
order with s > c. We obtain the simplification

sc− c2 + s + 1

c4 − 2c2 + s + 1
−→ s− c− 1

c3 + sc− 2c
mod 〈s2 + c2 − 1〉

reducing the total degree of the expression from 6 to 4.

A fundamental limitation of this approach is that many
affine varieties can not be parameterized. Irreducible curves
in two variables must have genus zero [8], so for example
fractions over Q[x, y]/〈y2−x3 +x〉 could not be handled. A
similar condition exists for surfaces [11], and we know of no
algorithms to parameterize higher dimensional objects.

In this paper we present two algebraic methods for simpli-
fying fractions over k[x1, . . . , xn]/I. The first is a Gröbner
basis method which computes a reduced canonical form,
similar to the normal form of a polynomial. This method
requires extra material from the theory of Gröbner bases
which we present in Section 2. The algorithm and a proof of
its correctness follow in Section 3. In Section 4 we present
the second algorithm which is a dense method that mini-
mizes the total degree of the fraction. We end with a sec-
tion comparing the performance of the two algorithms as
implemented in the Maple computer algebra system.

It turns out that for some ideals the methods do not cancel
all common divisors. In fact, both methods may introduce
common divisors. This was a surprise to us. In Section 2 we
give a general condition on I and its monomial order which,
if met, guarantees that no common divisors can be present
in the output of either algorithm.

2. PRELIMINARIES
In this section we will review some known results about

Gröbner bases which are used in the sequel. Good references
for this material are [1, 2, 5].

First recall how Gröbner bases for polynomials in R =
k[x1, . . . , xn] can be generalized to vectors of polynomials
in Rm, which define a submodule of Rm (submodules of R1

correspond to ideals). To run the Buchberger algorithm one
must extend monomial orders on R to vectors over R as well.
We adopt the definitions and terminology of [1].

Definition 1. Let < be a monomial order on k[x1, . . . , xn].
The position over term monomial order <POT is defined by
a ei >POT b ej if i < j or i = j and a > b.

Definition 2. Let < be a monomial order on k[x1, . . . , xn].
The term over position monomial order <TOP is defined by
a ei >TOP b ej if a > b or a = b and i < j.

Position over term orders behave like lexicographic order
on the vector components. Polynomials in the first compo-
nent are eliminated, producing intersection of the module
with the lower components, and so on, until a Gröbner ba-
sis is obtained. Similarly, term over position orders resemble
total degree orders for ordinary polynomials. They do not
have any elimination properties, however, the largest mono-
mial appearing in any component is minimized.

Example 2. Let < denote graded lexicographic order with
x > y. We will compute Gröbner bases for the module

M =

fi»
y
x

–
,

»
1
xy

–fl
using <POT and <TOP . For <POT the respective leading
monomials are y e1 and 1 e1, so we have the syzygy»

y
x

–
− y

»
1
xy

–
=

»
0

x− xy2

–
This new element has leading monomial xy2 e2, which can
not be cancelled using monomials in e1. We conclude that
{y e1+x e2, 1 e1+xy e2, (x−xy2) e2} is a Gröbner basis for
M with respect to <POT . For <TOP the leading monomials
are x e2 and xy e2, respectively, and we construct the syzygy

y

»
y
x

–
−

»
1
xy

–
=

»
y2 − 1

0

–
This element has a leading monomial in e1, so there are no
other syzygies. Then {y e1 + x e2, 1 e1 + xy e2, (y2 − 1) e1}
is a Gröbner basis for M with respect to <TOP .

Lemma 1. Let f be a polynomial and let I be an ideal of
k[x1, . . . , xn]. If {g1, . . . , gt} is a Gröbner basis for 〈f〉 + I
then there exist {q1, . . . , qt} with gi ≡ qif mod I for each i.

Note that the quotients qi constitute a column of the
transformation matrix for {g1, . . . , gt}. One can compute
them using the extended Buchberger algorithm [2], or using
a module computation as follows. Let I = 〈h1, . . . , hs〉. If
we compute a reduced Gröbner basis for the module

M =

fi»
f
1

–
,

»
h1

0

–
, . . . ,

»
hs

0

–
,

»
0
h1

–
, . . . ,

»
0
hs

–fl
using a position over term order <POT then we obtain

G =

»
0
p1

–
, . . . ,

»
0
pu

–
,

»
g1

q1

–
, . . . ,

»
gt

qt

–ff

The gi are a reduced Gröbner basis for 〈f〉+ I with respect
to < and the qi are reduced modulo I. This method is quite
effective at controlling intermediate expression swell, and in
practice, one can use a Gröbner basis for I and omit the
syzygies among the hi.

Lemma 2. Let f, g ∈ k[x1, . . . , xn] and g ∈ 〈f〉+ I. Then
there exists q ∈ k[x1, . . . , xn] satisfying g ≡ qf mod I, and
we say that f divides g modulo I.

Proof. Let {g1, . . . , gt} be a Gröbner basis for 〈f〉 + I
and let {q1, . . . , qt} be the quotients from Lemma 1. Then
there exists {c1, . . . , ct} by the normal form algorithm with
g =

Pt
i=1 cigi ≡

Pt
i=1 ciqif ≡

`Pt
i=1 ciqi

´
f mod I

A more general version of Lemma 2 appears in [2] under
the context of solving linear equations over k[x1, . . . , xn]/I.
Next we define the quotient operation for ideals, which is
the basis of our first simplification algorithm.

Definition 3. Let I, J ⊆ k[x1, . . . , xn] be ideals. The
ideal quotient I : J is the set {f ∈ k[x1, . . . , xn] : fh ∈
I for all h ∈ J}.

For our purposes it will suffice to compute quotients of
the form I : 〈f〉 where f ∈ k[x1, . . . , xn]. The most efficient
way of doing this is the “tag variable algorithm variant” [3].

Lemma 3. Let I = 〈h1, . . . , hs〉 and let f be a polynomial.
If M = 〈f e1 + e2, Ie1, Ie2〉 then I : 〈f〉 = M ∩ e2.

Proof. Let b ∈ M ∩ e2. Every a e1 + b e2 ∈ M satisfies
a − bf ≡ 0 mod I so bf ≡ 0 mod I and b ∈ I : 〈f〉. Now
let b ∈ I : 〈f〉. Then bf ∈ I so bf = q1h1 + · · · + qshs for
some {qi} ⊂ k[x1, . . . , xn] and»

0
b

–
= b

»
f
1

–
−

„
q1

»
h1

0

–
+ · · ·+ qs

»
hs

0

–«
expresses b as an element of M ∩ e2.

Example 3. Let I = 〈x + y2 − y − 1, xy − 1〉 and J =
〈x + y2 − 2〉 in Q[x, y]. To compute I : J we will construct
the module M = 〈[x+y2−2, 1], [x+y2−y−1, 0], [xy−1, 0],
[0, x+y2−y−1], [0, xy−1]〉 and compute a reduced Gröbner
basis with respect to a position over term monomial order.

We will employ a trick to compute this result using only
the Buchberger algorithm for ordinary polynomials. We first
write each module element [a, b] as a e1 + b e2 and add the
relations ei ej = 0 for 1 ≤ i, j ≤ 2 to the generating set. To
simulate a position over term order, we use a product order
which compares first using lexigraphic order on {e1, e2} and
second using a monomial order on {x, y}. Finally we discard
any polynomials whose degree in {e1, e2} is greater than one
from the resulting Gröbner basis.

Using lexicographic order and e1 > e2 > x > y we obtain

G =

»
0

y2 − 1

–
,

»
0

x− y

–
,

»
y − 1

1

–
,

»
x− 1
−y

–ff
Then I : J = 〈x− y, y2 − 1〉.

3. REDUCED CANONICAL FORMS
Our approach to computing a reduced canonical form for

a fraction modulo I is actually quite simple. Given a/b we
will construct the module {[c, d] : ad− bc ≡ 0 mod I} and

compute a reduced Gröbner basis using a term over position
order. From this we extract the smallest [c, d] with c, d 6∈ I,
minimizing the largest monomial in c/d. Uniqueness follows
from our use of reduced Gröbner bases. In the results that
follow we will denote ideals of the form 〈a〉 + I by 〈a, I〉.
Recall Definition 3 for ideal quotients given above.

Lemma 4. Let I be an ideal of k[x1, . . . , xn] and suppose
a/b ≡ c/d mod I. Then c ∈ 〈a, I〉 : 〈b〉 and d ∈ 〈b, I〉 : 〈a〉.

Proof. Since ad − bc ≡ 0 mod I we have ad − bc = h
for some h ∈ I. Then bc = ad− h expresses c as an element
of 〈a, I〉 : 〈b〉, while ad = bc+h expresses d as an element of
〈b, I〉 : 〈a〉.

Lemma 5. Let a, b ∈ k[x1, . . . , xn] where b is not a zero-
divisor modulo I = 〈h1, . . . , hs〉. If 〈b, I〉 : 〈a〉 = 〈d1, . . . , dt〉
and ci = adi/b mod I for i = 1 . . . t then»

c1

d1

–
, . . . ,

»
ct

dt

–
,

»
h1

0

–
, . . . ,

»
hs

0

–ff
generates M = {[x, y] : ay − bx ≡ 0 mod I} as a module
over k[x1, . . . , xn].

Proof. By construction each generator [x, y] satisfies
ay − bx ≡ 0 mod I so suppose [x, y] ∈ M . By Lemma 4
y ∈ 〈d1, . . . , dt〉 so y = p1d1 + · · · + ptdt for some {pi} ⊂
k[x1, . . . , xn]. Then

b(x− (p1c1 + · · ·+ ptct)) ≡ a(y − (p1d1 + · · ·+ ptdt))

≡ a · 0 mod I

and since b is not a zero-divisor

x− (p1c1 + · · ·+ ptct) ≡ 0 mod I

Then there exists {qi} ⊂ k[x1, . . . , xn] with

x− (p1c1 + · · ·+ ptct) = q1h1 + · · ·+ qshs

and

»
x
y

–
=

tX
i=1

pi

»
ci

di

–
+

sX
i=1

qi

»
hi

0

–
Example 4. Let a/b = (x+y2−2)/(x+y2−y−1) modulo

I = 〈xy−1〉 from the introduction. From Example 3 we have
〈b, I〉 : 〈a〉 = 〈x− y, y2 − 1〉. From Lemma 2 we obtain

x− y − 1 ≡ (x− y)a/b mod I

y2 + y − 1 ≡ (y2 − 1)a/b mod I

and we construct the module

M =

fi»
x− y − 1

x− y

–
,

»
y2 + y + 1

y2 − 1

–
,

»
xy − 1

0

–fl
The generators of M are almost a Gröbner basis with respect
to term over position graded lexicographic order with x > y,
one only needs to flip the last element. The algorithm will
select c/d = (x− y − 1)/(x− y).

In the previous example we can apply Lemma 2 to find
that a = (y − 1) c mod I and b = (y − 1) d mod I, thus
the algorithm cancelled a common factor of y− 1. An obvi-
ous question is whether the simplification of fractions always
corresponds to the cancellation of common divisors and the
answer is no. This was already noted by Mulholland and
Monagan for fractions over Q[s, c]/〈s2 + c2− 1〉 [9], and Ex-
ample 1 from the introduction demonstrates this. The next
example was a surprise however.

Example 5. Let a/b = (y5 + x + y)/(x− y) modulo I =
〈xy5 − x − y〉 ⊂ Q[x, y]. Then 〈b, I〉 : 〈a〉 = 〈x − y, y5 − 2〉
using Lemma 3 and we construct the modulefi»

y5 + x + y
x− y

–
,

»
−y9 − y5 + y4

y5 − 2

–
,

»
xy5 − x− y

0

–fl
using Lemmas 2 and 5. Using term over position graded
lexicographic order with x > y, the smallest element in a
reduced Gröbner basis is [x2 + xy + x + y, x2−xy]. Neither
polynomial is in I so

y5 + x + y

x− y
−→ x2 + xy + x + y

x2 − xy
mod I

We can check with Lemma 2 that the new numerator and
denominator do not divide the old ones. In fact,

x2 + xy + x + y ≡ x(y5 + x + y) mod I

and x2 − xy ≡ x(x− y) mod I.

So a common factor of x was added to the numerator and
denominator to simplify the fraction! Note that x is not a
unit of Q[x, y]/I. If it were we would have computed its
inverse already during our initial check with Lemma 2.

It’s worth examining why a common factor was added in
Example 5 since this does not happen over other domains,
notably the trigonometric polynomial ring Q[s, c]/〈s2 + c2−
1〉 [9]. In the trigonometric polynomial ring we have a “de-
gree sum formula”, deg(pq) = deg(p) + deg(q), where p, q
and pq are in normal form modulo 〈s2+c2−1〉. This implies
that common factors only increase total degree. To gener-
alize this formula we will need a few well-known results.

Lemma 6. Let f be a homogeneous polynomial and let G
be a set of homogeneous polynomials. If f ÷ G → r then r
is homogeneous and if r 6= 0, deg(r) = deg(f).

Proof. See [6], or [2].

Definition 4. The initial form of a polynomial f , init(f),
is the sum of the terms with degree deg(f). For example,
init(x2 + xy + x + y) = x2 + xy.

Lemma 7. If G is a Gröbner basis with respect to a graded
monomial order < then init(G) = {init(g) | g ∈ G} is a
Gröbner basis with respect < as well.

Proof. Suppose not. Then there exists gi, gj ∈ G with
S(init(gi), init(gj)) ÷ init(G) → r 6= 0. S(gi, gj) could not
reduce to zero modulo G since the leading terms of G and
init(G) are the same.

Lemma 8 (Degree Sum). Let G be a Gröbner basis
for a prime ideal I with respect to a graded monomial order.
If 〈init(G)〉 is also prime then for all p, q ∈ k[x1, . . . , xn]/I
deg(pq) = deg(p) + deg(q) after reduction to normal form.

Proof. We can assume p and q are already in normal
form so init(p) and init(q) are not reducible by init(G).
Then init(pq) = init(p) init(q) ÷ init(G) → r 6= 0 since
〈init(G)〉 is prime. Terms of r must appear in the normal
form of pq since they can not be reduced by the leading
terms of G. Then deg(r) = deg(init(pq)) = deg(p) + deg(q)
by Lemma 6.

We show that when a graded monomial order is used and
the hypotheses of Lemma 8 are satisfied the simplification
algorithm does not return fractions with common divisors.
Let M = {[x, y] : ay − bx ≡ 0 mod I}. If [pc, pd] ∈ M
then [c, d] ∈ M since I is prime and deg(c) < deg(pc) and
deg(d) < deg(pd) by Lemma 8. This implies that [c, d] has
a smaller leading term than [pc, pd], so [pc, pd] would be
eliminated from a reduced Gröbner basis for M .

Example 6. Consider Q[s, c]/〈s2 + c2 − 1〉. The initial
form of s2 + c2 − 1 is s2 + c2 which is irreducible over Q.
We conclude that the simplification algorithm removes all
common divisors from fractions over this domain.

Example 7. Consider Q[s, c]/〈s2 − c2 + 1〉 and observe
that 〈init(G)〉 = 〈s2 − c2〉 is not prime. Let p = s + c − 1
and q = s − c + 1. Then pq = s2 − c2 + 2c − 1 ≡ 2c − 2
mod I and the fraction

pq

(p− 3)q
≡ 2c− 2

−3s + 5c− 5
mod I

is already in canonical form. We can use Lemma 2 to verify
that p, q, and p− 3 are all non-units of Q[s, c]/〈s2− c2 +1〉.

We can generalize Lemma 8 to allow for weighted degree
orders, where the variables are graded with respect to a
vector of positive weights (see §10.2 of [2]). The definitions
of degree and initial form are similarly adjusted, providing a
measure of control over 〈init(G)〉. We illustrate this below.

Example 8. Let f = y2−x3+x ∈ Q[x, y]. With ordinary
total degree init(f) = x3 and Lemma 8 can not be applied.
However using the weight vector ω = [2, 3] on [x, y] we
find degω(f) = 6 and initω(f) = y2−x3 is irreducible. Now
Lemma 8 can be applied!

This example shows that by using a weighted degree order
that compares first with respect to [2, 3] we make the sim-
plification algorithm remove common divisors. Note that a
parameterization method could not be used for this domain
since the genus of f is 1.

We mention an improvement for an important special case
of the algorithm. Let I be homogeneous, then init(G) = G
so if I is prime Lemma 8 is satisfied. We show that if a and b
are also homogeneous then one can skip the construction of
the module M and its Gröbner basis computation entirely.

Lemma 9. Let I and J be homogeneous ideals. Then the
quotient I : J is generated by homogeneous polynomials.

Proof. See [6].

Lemma 10. Let I be a homogeneous prime ideal and let f
and g be homogeneous polynomials, g 6∈ I. If g = qf mod I
and q is in normal form then q is also homogeneous and
deg(q) = deg(g)− deg(f).

Proof. Let q = q1 + q2 where q1 consists of the terms
of degree deg(g) − deg(f). Then g − q1f − q2f ≡ 0 mod I
implies q2f ≡ 0 mod I since its terms can not be cancelled
by Lemma 6, and I is prime implies q2 ≡ 0 mod I.

Our modified approach computes a reduced Gröbner basis
for 〈b, I〉 : 〈a〉 with respect to a graded monomial order. We
select the smallest d 6∈ I for the denominator, and compute
the numerator c ≡ ad/b mod I using Lemma 2. Since I is
prime, c is unique, and deg(c) = deg(a)+deg(d)−deg(b) by
Lemma 10. Our choice of d thus produces a canonical form
with minimal total degree.

Example 9. Let a/b = (x3 + x2y)/(2xy + y2) modulo
I = 〈x3 + xy2 + y3〉. We first compute 〈b, I〉 : 〈a〉 = 〈x, y〉
using Lemma 3 and any graded monomial order. If x > y
we choose d = y and compute c ≡ ad/b ≡ (x2 + xy − y2)/3
mod I using Lemma 2. Then

x3 + x2y

2xy + y2
−→ x2 + xy − y2

3y
mod 〈x3 + xy2 + y3〉

cancelling a common factor of (2x + y)/3.

Our improved algorithm for the homogeneous case can
also be used when a, b, and I are homogeneous with respect
to a vector of weights, although it is much harder to choose
weights (as in Example 8) since they depend on a and b.
Also, some problems seem to resist our best efforts so far.

Example 10. Consider a/b = (x2y4 − y)/(x2 − y2 + 1)
modulo I = 〈x3 + xy − 1〉 ⊂ Q[x, y]. Note that we can not
apply Lemma 8 since initω(I) ∈ {x3, xy, x3 + xy} for any
weight vector ω. Worse, if we run the standard algorithm
using graded lexicographic order with x > y, the only valid
fractions in the module Gröbner basis are

xy4 − x2y − y2

−x2y2 − y3 + x2 + x + y
and

x2y2 − y4 + y3 + xy

x2y3 + y4 − x2y + xy2 − y2 − x− 1

The original fraction had total degree deg(a) + deg(b) = 8,
while both “simplified” fractions have total degree 9.

We conclude this section with some additional remarks.
First one might wonder why we compute 〈b, I〉 : 〈a〉 and
not 〈a, I〉 : 〈b〉. The reason is that when the denominator
is invertible modulo I or if it divides the numerator exactly
then we have the option of returning a polynomial. Both
the standard and the homogeneous method will compute a
reduced Gröbner basis for 〈b, I〉 : 〈a〉 = 〈1〉, find d = 1, and
compute c ≡ a/b mod I. The standard algorithm can be
halted before the module Gröbner basis computation. The
homogeneous method needs no modification.

Second, notice that computing 〈b, I〉 : 〈a〉 allows us to run
the algorithm even when I is not prime. Unfortunately zero-
divisors can appear as the denominators of possible results
and it is not entirely clear what we should do. We leave this
question to further research.

4. MINIMAL TOTAL DEGREE
The algorithm of Section 3 is appropriate for computing

in fields of fractions of k[x1, . . . , xn]/I, but Example 10 and
others like it suggest the need for a different approach to the
simplification problem. Our goal should be to minimize total
degree, and not necessarily force expressions into a canonical
form. To this end we present a global search algorithm which
can be made reasonably efficient in practice.

The idea of this method is to walk up through the degrees
of the numerator and denominator and at each step attempt
to solve ad− bc ≡ 0 mod I using an ansatz for c and d. We
demonstrate a solving step below.

Example 11. Let a/b = (y5 + x + y)/(x − y) modulo
I = 〈xy5 − x− y〉. Assuming deg(c) = deg(d) = 2 we set

c = c1 + c2y + c3x + c4y
2 + c5xy + c6x

2

d = d1 + d2y + d3x + d4y
2 + d5xy + d6x

2

The normal form of ad− bc mod I is

d4y
7 + d2y

6 + d1y
5 + (d6 − c6)x

3 + (d5 + d6 − c5 + c6)x
2y

+ (c5 − c4 + d4 + d5)xy2 + (d4 + c4)y
3 + (d6 + d3 − c3)x

2

+ (d5 + c3 + d2 − c2 + d6 + d3)xy + (d5 + c2 + d2)y
2

+ (d1 − c1 + d3)x + (c1 + d1 + d3)y

Equating each coefficient to zero, we obtain a 12×12 homo-
geneous linear system with general solution

c1 = 0 c2 = t c3 = t c4 = 0 c5 = t c6 = t

d1 = 0 d2 = 0 d3 = 0 d4 = 0 d5 = −t d6 = t

For any t 6= 0 we can substitute this solution into c/d and
obtain (x2 + xy + x + y)/(x2 − xy).

To search efficiently we start from (deg(c), deg(d)) = (0, 0)
and increase both deg(c) and deg(d) by one in each step.
When either a solution is found or deg(c) + deg(d) becomes
larger than the total degree of the current minimal solution
we recurse to examine the remaining possibilities.

Example 12. Let a/b = (y5 + x + y)/(x − y) modulo
I = 〈xy5 − x − y〉. We first try to construct c/d ≡ a/b
with (deg(c), deg(d)) = (0, 0) and (1, 1), which fail, before
we succeed at (2, 2), as shown in the first figure below.

0 642
0

2

4

6

0 642
0

2

4

6

0 642
0

2

4

6

���
�

Solution No Solution

We recurse to check (2, 0) and (0, 2) since solutions at one of
those points would produce a solution at (2, 2). From (2, 0)
we walk to (3, 1), however it would be redundant to test this
point since we already have a solution with total degree four.
We backtrack to test (3, 0) and (2, 1) before abandoning this
path. From (0, 2) we walk to (1, 3), which is also redundant,
and backtrack to test (1, 2) and (0, 3). No other solutions are
found, so we conclude that the (2, 2) solution has minimal
total degree. This result may not be unique however, since
the points (0, 4), (1, 3), (3, 1), and (4, 0) were never tested.

We present the simplification algorithm below. Note that
in practice one should build up multiplication matrices [5]
for a and b instead of computing the normal form of ad− bc
directly in each iteration.

Algorithm 1 (Rational Simplification).

Input a Gröbner basis G for a prime ideal I,
a/b with b 6≡ 0 mod I,
(N, D) = (deg(c), deg(d)) if called recursively

Output c/d, ad ≡ bc mod I, deg(c) + deg(d) minimal

if (N, D) not specified then (N, D)← (0, 0) end if
(c, d)← (a, b)
steps← 0
while N + D < deg(a) + deg(b) do

M1 ← {monomials xα 6∈ 〈LM(G)〉, deg(xα) ≤ N}

M2 ← {monomials xα 6∈ 〈LM(G)〉, deg(xα) ≤ D}
ĉ←

P
xi∈M1

ci xi

d̂←
P

xj∈M2
dj xj

r ← NormalForm(ad̂− bĉ, G)
S ← the set of coefficients of r
if S has a non-trivial solution λ then

(c, d)← substitute λ into (ĉ, d̂)
break loop

end if
(N, D)← (N + 1, D + 1)
steps← steps + 1

end loop
if steps > 0 then

(c, d)← Simplify(c/d, G, N, D − steps)
(c, d)← Simplify(c/d, G, N − steps, D)

end if
return c/d

Lemma 11. Let I be an ideal of k[x1, . . . , xn] and suppose
a/b ≡ c/d mod I where D = deg(c) + deg(d) is minimal.
Then Algorithm 1 terminates in O(D log2(D)) steps.

Proof. The algorithm requires at most D steps to find
the first solution, at which point the search splits into two
paths of approximately half the original length. This can
occur at most log2(D) + 1 times before the length of each

path becomes D/(2log2(D)+1) < 1, bounding the number of
steps by

log2(D)+1X
i=0

2iD/2i = D(log2(D) + 2) ∈ O(D log2(D))

The O(D log2(D)) steps of Algorithm 1 improves on the
O(D2) steps for a naive approach, however the size of the
linear systems grows rapidly. There are

`
D+n−1

n−1

´
monomials

in n variables with degree D, and potentially all of them can
appear in the linear systems for (D, 0) or (0, D). Worse, if
deg(a) + deg(b) > 2D we can check (D, D) as well, which
has the equations from both points.

Example 13. Let I = 〈x5y + 1〉 ⊂ Q[x, y], f = x2y + 1,
and g = x3 − y. The fraction 1/f already has minimal total
degree, so we expect

h =
x3 − y

x3 − x2y2 − y − 1
≡ g

fg
mod I

to simplify to a fraction with total degree 3. Algorithm 1
checks (0, 0), (1, 1), and (2, 2) before finding its first solution
at (3, 3). It recurses to check (3, 0) and (4, 1), where it finds
a solution with total degree 5, and recurses again for (4, 0)
and (3, 1). We illustrate these steps in the diagrams below.

0 642
0

2

4

6

0 642
0

2

4

6

0 642
0

2

4

6

���
�

Solution No Solution

Recursing from (3, 3) again, the algorithm checks (0, 3) and
finds 1/f . It terminates, since there is nowhere else to go.
The table below summarizes the linear systems encountered.

Point Size Density
(0, 0) 3× 2 .833
(1, 1) 9× 6 .296
(2, 2) 18× 12 .157
(3, 3)∗ 25× 20 .114
(3, 0) 14× 11 .143

Point Size Density
(4, 1)∗ 20× 18 .100
(4, 0) 20× 16 .100
(3, 1) 13× 13 .125
(0, 3)∗ 11× 11 .112

∗ solution found

Example 13 almost captures the worst-case of our search
strategy. The result has total degree D, yet we check the
point (D, D) and fill in half of a border with total degree
5D/3 − 1 ≈ 2D. Each linear system contains all possible
monomials, since the generator for I has a leading monomial
of degree 2D. To construct versions of this example with
higher degree one can substitute (x, y)→ (xk, yk) for k > 1.

Finally, observe that Algorithm 1 improves total degree
by at most a factor of two over a reduced canonical form. If
a/b is in canonical form with respect to a graded monomial
order then max(deg(a), deg(b)) is minimal and

deg(a) + deg(b) ≤ 2max(deg(a), deg(b))

≤ 2max(deg(c), deg(d))

≤ 2(deg(c) + deg(d))

for any c/d ≡ a/b mod I.

5. TIMINGS
So far we have presented two algorithms for simplifying

fractions modulo a polynomial ideal. The goal of this section
is to provide insight into their performance.

We implemented both algorithms in Maple 10 using the
Gröbner basis routines of the PolynomialIdeals package. To
compute Gröbner bases for modules we use Buchberger’s
algorithm and the trick from Example 3. To compute ideal
quotients I : f we use Lemma 3 and a Gröbner basis for I,
omitting syzygies among the Gröbner basis elements.

For most problems we report the total degree of the input
(deg) and the result (res). For the reduced canonical form
algorithm (cform) and its homogeneous variant (hform) we
report the total time. For the minimal degree algorithm
(mindeg) and a homogeneous version (hdeg) we report only
the time required to solve the linear systems using Maple’s
SolveTools[Linear] command. Optimized implementations
of those algorithms should produce similar results. We ran
the tests on a 32-bit 1.4GHz Athlon PC with 1GB of RAM.

Example 14. An extremely sparse problem derived from
Example 13 and the substitution (x, y)→ (xk, yk). Simplify

yk − x3k

x2ky2k − x3k + yk + 1
mod 〈x5kyk + 1〉

Both algorithms output 1/(x2kyk +1), reducing the total de-
gree from 7k to 3k. The canonical form algorithm runs in
constant time while the minimal degree algorithm has bad
asymptotic performance. The largest linear system and total
number of steps for the mindeg algorithm are also recorded.

k cform mindeg steps (3k, 3k) density
1 .166 .013 9 25× 20 .114
2 .169 .061 17 79× 56 .0359
3 .168 .174 23 160× 110 .01767
4 .169 .492 35 268× 182 .01052
5 .170 1.101 41 403× 272 .006979
6 .169 2.120 49 565× 380 .004970
7 .171 3.698 55 754× 506 .003719
8 .170 7.888 75 970× 650 .002888

Example 15. Let a/b = (y5 + x + y)/(x − y) modulo
I = 〈xy5 − x − y〉 ⊂ Q[x, y]. From Examples 5 and 12 we
know that a/b simplifies to (x2+xy+x+y)/(x2−xy) mod I
using either algorithm. In this example we will simplify

a (ab)k

b (ab)k
≡ a

b
mod I

where a(ab)k and b(ab)k are first reduced to normal form.
The output is always (x2 + xy + x + y)/(x2 − xy). We also
test a parameterization method using {x = t/(t5− 1), y = t}
and Buchberger’s algorithm for implicitization. This requires
a slight modification from Example 1, see §3.3 of [4].

k deg cform mindeg param
1 6 .098 .012 .018
2 18 .191 .014 .018
3 30 .414 .017 .020
4 42 1.068 .024 .022
5 54 2.187 .032 .025
6 66 3.260 .040 .036
7 78 6.223 .044 .043
8 90 10.934 .053 .050

As expected, the canonical form algorithm is a poor choice
when the answer has low total degree. A comparison can be
drawn with univariate rational expressions, where one can
choose between computing and cancelling out a gcd versus
constructing a result with dense interpolation. Note that
the ideal quotient computation (Lemma 3) is essentially the
extended Euclidean algorithm with one cofactor in this case.

Example 16. Let a/b = (y5 + x + y)/(x − y) modulo
I = 〈xy5 − x − y〉. We simplify ak/bk mod I where ak

and bk are first reduced to normal form. The algorithms all
produce results with the same total degree.

k deg res cform mindeg param
1 6 4 .099 .013 .027
2 12 8 .306 .117 .074
3 18 10 .530 .240 .180
4 24 13 .924 .800 .455
5 30 16 1.653 2.390 .810
6 36 20 2.852 6.221 1.852
7 42 22 4.628 8.297 3.626
8 48 26 7.549 15.237 6.556
9 54 29 11.347 30.362 12.017
10 60 30 14.652 30.469 17.123

Although the canonical form algorithm is initially the
slowest, it eventually beats the minimal degree algorithm
and the parameterization method on Example 16. Almost
all of the time in the parameterization algorithm is spent
implicitizing the result, so improved Gröbner basis routines
should benefit both algorithms proportionately. In our next
example we compare a specialized algorithm for a particular
domain which does not compute Gröbner bases.

Example 17. A trigonometric example from [9]. Let

a

b
=

5c3 + 21c2 + 4cs + 23c + 12s + 15

7c3 − sc2 + 31c2 + 2sc + 15s + 37c + 21

In this test we simplify ak/bk modulo 〈s2 + c2 − 1〉 using
our algorithms and the algorithm of [9], which parameterizes
V(s2 + c2− 1) using the tan half-angle formula and recovers
an expression in {s, c} using a resultant. It is implemented
as ‘trig/ratpoly/simplify‘ in Maple 10.

k deg res cform mindeg param
5 30 6 .336 .093 .051
10 60 10 .891 .619 .138
15 90 16 1.887 4.599 .340
20 120 20 3.474 10.074 .673
25 150 26 5.472 30.506 1.967
30 180 30 9.046 52.614 2.952
35 120 36 12.081 140.187 5.153
40 240 40 17.797 228.333 7.666
45 270 46 24.207 453.586 11.531
50 300 50 34.797 707.379 16.420

We find Example 17 encouraging, despite the fact that we
were unable to beat the parameterization method of [9]. The
canonical form algorithm had good asymptotic performance,
and it seems reasonable to suggest that faster Gröbner basis
routines would make it competitive. The minimal degree
algorithm performed poorly due to the high degrees and the
density of the linear systems encountered. The systems were
80-95% non-zero during the initial walks from (0, 0) and 30-
50% non-zero thereafter.

Example 18. This problem is homogeneous. Let

a

b
=

x4 + y2z2 + 2xz3

y2z2 + 2yz3 + z4

We will simplify ak/bk mod 〈xy + z2〉 using the canonical
form and minimal degree algorithms and their homogeneous
variants. All four methods reduce the total degree from 8k
to 6k. We stopped testing the mindeg algorithm at k = 5.

k deg res hform cform hdeg mindeg step
1 8 6 .106 .147 .025 .048 12
2 16 12 .275 .408 .134 .790 29
3 24 18 .588 1.142 .493 7.061 52
4 32 24 1.268 2.366 1.092 32.096 69
5 40 30 1.989 4.679 1.915 108.412 80
6 48 36 3.103 8.594 4.360 – 121
7 56 42 4.952 16.769 6.856 – 136
8 64 48 7.191 29.196 12.787 – 161

The homogeneous minimal degree algorithm performed
quite well on Example 18. Much of this can be attributed
to having only three variables and an ideal generator that
eliminates a lot of monomials. Our remarks about the size
of the linear systems apply equally to the homogeneous case
of the algorithm. Thus we can expect to see systems with
up to

`
d+n−1

n−1

´
rows and columns where n is the number of

variables and d is the total degree of the result. When n is
fixed this number is O(dn−1). When d is fixed it is O(nd).

6. CONCLUSION
We presented two methods for simplifying fractions over

k[x1, . . . , xn]/I when I is prime. The first method produces
a canonical form and is appropriate for computing in the

field of fractions. It performs well enough to be recom-
mended generally, and in some cases a monomial order can
be chosen so that all common divisors are cancelled. A ho-
mogeneous variant is also available which is faster, cancels
all common divisors, and produces an expression with min-
imal total degree.

Our second method is better suited to simplification since
it always constructs an expression with minimal total degree.
It is essentially a dense interpolation. It performs poorly
on sparse problems when the output is of moderately high
total degree. A variant of the algorithm for homogeneous
problems has much better performance, although only for a
small number of variables.

The output of both methods may have common divisors
present between the numerator and denominator. This de-
pends on the ideal and the monomial order. For some ideals
one may be able to choose a monomial order to force output
of the first method to have no common divisor.

Where applicable, we expect parametrization methods to
have the best overall performance. The difficulty is in the
implicitization step, where Buchberger’s algorithm should
not be used directly. Alternatives include resultants [5] and
Buchberger’s algorithm followed by the Gröbner Walk [12].
Our algorithms might also be of use to someone developing
faster methods for a specific domain.

7. REFERENCES
[1] W. Adams, P. Loustaunau. An Introduction to Gröbner

Bases. AMS, 1996.

[2] T. Becker and V. Weispfenning. Gröbner Bases.
Springer-Verlag, 1993.

[3] M. Caborara, C. Traverso. Efficient algorithms for ideal
operations (extended abstract). ISSAC 1998
Proceedings, pp. 147-152, 1998.

[4] D. Cox, J. Little, D. O’Shea. Ideals, Varieties, and
Algorithms. Second Edition. Springer-Verlag, 1996.

[5] D. Cox, J. Little, D. O’Shea. Using Algebraic
Geometry. Second Edition. Springer-Verlag, 2005.

[6] R. Fröberg. An Introduction to Gröbner Bases. Wiley
& Sons, West Sussex, 1997.

[7] J. Gutierrez, T. Recio. Advances on the simplification
of sine-cosine equations. J. Symb. Comput. 26(1), pp.
31-70, 1998.

[8] M. van Hoeij. Rational Parametrizations of Algebraic
Curves using a Canonical Divisor. J. Symb. Comput. 23,
pp. 209-227, 1997.

[9] J. Mulholland, M. Monagan. Algorithms for
Trigonometric Polynomials. ISSAC 2001 Proceedings,
pp. 245-252, 2001.

[10] R. Pearce. Rational Expression Simplification with
Polynomial Side Relations. M.Sc. Thesis, Simon Fraser
University, 2005.

[11] J. Schicho. Rational Parametrization of Real Algebraic
Surfaces. ISSAC 1998 Proceedings, pp. 302-308, 1998.

[12] Q. Tran. Efficient Groebner Walk Conversion for
Implicitization of Geometric Objects. Computer Aided
Geometric Design, 21(9), pp. 837-857, 2004.

