
4

S I M O N F R A S E R U N I V E R S I T Y

SFU Logo

A new interpolation algorithm for
computing Dixon resultants

Ayoola Jinadu & Michael Monagan
Department of Mathematics, Simon Fraser University

{ajinadu,mmonagan}@sfu.ca

Introduction

We study Dixon resultants[2], a determinant approach to eliminate n − 1 variables from a
parametric polynomial system with n variables by taking the determinant of the Dixon matrix
with polynomial entries. To the best of our knowledge, the Dixon resultant method is the most
efficient and practical method of all known resultant methods.

Gröbner basis and Triangular set methods in Maple and Magma can be used to solve polynomial
systems but experiments have shown that these methods may fail. In particular, these methods
fail on the polynomial systems involving many parameters listed in [6, 7]. The failure of these
methods on parametric polynomial systems is due to the intermediate expression swell caused by
the parameters.

We have designed and implemented a new interpolation algorithm [3] for computing Dixon
resultants which performed significantly better than Zippel’s sparse interpolation when we tried
our code on polynomial systems from [6, 7]. The only interpolation method that has been applied
to Dixon resultants that we are aware of was done by Kapur and Saxena in [5]. They used
Zippel’s sparse interpolation [8] to interpolate the Dixon resultant R .

What are we computing?

Let X = {x1, x2, · · · , xn} denote the set of variables and let Y = {y1, y2, · · · , ym} be the set of
parameters with n ≥ 2 and m ≥ 0. Let F = {f1, f2, · · · , fn} ⊂ Q[X ,Y] be a parametric
polynomial system where fi is a polynomial in variables X with coefficients in Q[Y]. Let
I = 〈f1, f2, · · · , fn〉 be the ideal generated by F . The Dixon resultant R of F in x1 is the
determinant of the Dixon matrix and it is a polynomial in the elimination ideal I ∩Q[Y][x1].

Example
Let F = {x2

2 + x2
3 − y 2

3 , (x2 − y1)2 + x2
3 − y 2

2 , −x3y1 + 2x1} with variables X = {x1, x2, x3}
and parameters Y = {y1, y2, y3}. The Dixon matrix D for the above polynomial system is

D =

 −2y 2
1 0 y 3

1 − y1y
2
2 + y1y

2
3

0 −2y 2
1 4x1y1

y 3
1 − y1y

2
2 + y1y

2
3 4x1y1 −2y 2

1y
2
3

and its determinant which is the Dixon resultant

R = det(D) = 2y 4
1 (16x2

1 + y 4
1 − 2y 2

1y
2
2 − 2y 2

1y
2
3 + y 4

2 − 2y 2
2y

2
3 + y 4

3).

Let R =
∑d

k=0 rk(y1, · · · , ym)xk1 ∈ Q[Y][x1] be the Dixon resultant of F in x1 where
d = deg(R , x1) > 0. Let C = gcd(r0, · · · , rd) be the polynomial content of R . In our paper [3],
we compute the monic square-free factors of R and NOT R .
The monic square-free factorization of R is a factorization of the form r̂

∏l
j=1 R

j
j such that

1. r̂ = C/L for some L ∈ Q[Y],
2. each Rj is monic and square-free in Q(Y)[x1], i.e., gcd(Rj ,R

′

j) = 1, and
3. gcd(Ri ,Rj) = 1 for i 6= j .

This monic square-free factorization exists and it is unique. We view

Rj = x
dTj
1 +

Tj−1∑
k=0

fjk(y1, y2, · · · , ym)

gjk(y1, y2, · · · , ym)
x
djk
1 ∈ Q(y1, y2, · · · , ym)[x1]

where gcd(fjk, gjk) = 1, fjk, gjk ∈ Q[y1, y2, · · · , ym] and dTj
≤ deg(R , x1). Note, the factors Rj are

not necessarily irreducible over Q. We give the following real example to illustrate what we are
computing.

Example
Let

C = −65536
(
al 2 + 1

)8
l 8
2

(
al 2l 2

2 + 2al 2l2l3 + al 2l 2
3 + l 2

2 − 2l2l3 + l 2
3

)4︸ ︷︷ ︸
polynomial content

A1 = t2
1 + 1

A2 = (al 2l 2
1 + 2al 2l1x − al 2l 2

2 − 2al 2l2l3 − al 2l 2
3 + al 2x2 + al 2y 2 + l 2

1 + 2l1x − l 2
2

+ 2l2l3 − l 2
3 + x2 + y 2)t2

1 +
(
−4al 2l1y − 4l1y

)
t1 + al 2l 2

1 − 2al 2l1x − al 2l 2
2

− 2al 2l2l3 − al 2l 2
3 + al 2x2 + al 2y 2 + l 2

1 − 2l1x − l 2
2 + 2l2l3 − l 2

3 + x2 + y 2

A3 = (aa2 + 2aal2)t2
1 + aa2 − 4aal1 + 2aal2 + 4l 2

1 − 4l1l2
A4 = (aa2 − 2aal2)t2

1 + aa2 − 4aal1 − 2aal2 + 4l 2
1 + 4l1l2

where X = {t1, t2, b1, b2} are the variables, t1 is the main variable and
Y = {aa, al , l1, l2, l3, x , y} are the parameters. The Dixon resultant R of the robot arms
system in t1 has 6,924,715 terms and it factors as CA24

1 A4
2A

2
3A

2
4.

Our new Dixon resultant algorithm computes R1 = A1,R2 = monic(A2, t1) and
R3 = monic(A3A4, t1). The largest coefficient of R1,R2 and R3 is the leading coefficient of
A2 which has only 14 terms! Notice that R1 and R2 are irreducible over Q but R3 is not.

We note that the constructed Dixon matrix D of a polynomial system F can be singular or
rectangular which means that we have no information about the solutions of the system.
If this happens, one simply needs to extract a maximal minor M of D and then compute
R = det(M). This idea is due to Kapur, Saxena and Yang [4].

Our new algorithm

Let M be a maximal minor of rank t of a Dixon matrix D. In this work, we use a black box to
represent det(M). This black box representation assumes that det(M) is unknown. To be explicit,

our black box is a C code which takes as input a prime p and α ∈ Zt
p and outputs

det(M(α)) ∈ Zp.

Our new Dixon resultant algorithm probes the black box to compute the monic square-free
factors Rj of R from monic univariate images in x1 using sparse multivariate rational function
interpolation to interpolate the coefficients of Rj in Q(Y) modulo primes and uses Chinese
remaindering and rational number reconstruction to recover the rational coefficients of Rj .

We use the sparse rational function interpolation algorithm of Cuyt and Lee [1] with the
Ben-Or/Tiwari polynomial algorithm for this purpose. In order to avoid unlucky evaluation points
with high probability and reduce the size of our primes for machine arithmetic use, we have
modified the Cuyt and Lee’s algorithm to use Kronecker substitution. Thus, we interpolate
the mapped function

Kr(Rj) = x
dTj
1 +

Tj−1∑
k=0

fjk(y , y r1, y r1r2, · · · , y r1r2···rm−1)
gjk(y , y r1, y r1r2, · · · , y r1r2···rm−1)

x
djk
1 ∈ Q(y)[x1]

with a Kronecker substitution Kr : Q(y1, · · · , ym)[x1]→ Q(y)[x1] such that for 1 ≤ i ≤ m − 1,

each ri > maxlj=1(max
Tj−1
k=0 (deg(fjk, yi), deg(gjk, yi))). Inverting the Kronecker map Kr yields the

Rj ’s.

Although the degree of the mapped rational function Kr(Rj) is exponential in y , the degree of
many univariate rational functions in a new variable z with Kronecker substitution Kr through
which Kr(Rj) is interpolated remains the same. Consequently, the number of terms and the
number of black box probes needed to interpolate Rj does not change. To recover the exponents
in y we require prime p >

∏m
i=1 ri .

Interpolating the Rj ’s instead of R results in a huge gain because all unwanted repeated
factors and the polynomial content are removed. The advantage of our new Dixon
resultant algorithm over other known polynomial interpolation algorithms is that the number
of polynomial terms in Rj to be interpolated is much less than in R and the number of primes
used by our algorithm in the sparse interpolation step when we apply the Chinese remainder
theorem is reduced.

Experiments

We have implemented our new Dixon resultant algorithm in Maple with some parts coded in C
for efficiency. In Table 1, we present basic information about the real polynomial systems we tried
our code on. The dim(D) and the rank of its maximal minor M are in column 4. The number of
terms in the product of all the monic square-free factors in expanded form when the denominators
are cleared is denoted by #S and tmax = max(#fjk,#gjk). In column 8 named as DRes, we report
the timings of our Dixon resultant algorithm. The timings of a hybrid implementation of Zippel’s
sparse algorithm in Maple + C for interpolating R in expanded form are given in column 9.
DRes-Probe denotes the number of black box probes needed by our Dixon resultant algorithm and
Zippel-Probe represents the number of black box probes needed by Zippel’s algorithm to
interpolate R in expanded form.

Table: Timings for our new algorithm labelled DixonRes versus Zippel’s Interpolation
Systems #Equations n/m dimD/Rank #S tmax #R DRes Zippel DRes-Probe Zippel-Probe
Robot-t1 4 4/7 (32× 48)/20 450 14 6924715 7.34s > 105s 16641 -
Robot-t2 4 4/7 (32× 48)/20 13016 691 16963876 316.99s > 105s 711481 -
Robot-b1 4 4/7 (32× 48)/20 334 85 6385205 27.78s > 105s 94901 -
Robot-b2 4 4/7 (32× 48)/20 11737 624 16801877 241.61s > 105s 535473 -
Heron5d 15 14/16 (707× 514)/399 823 822 12167689 23.12s > 105s 63235 -
Flex-v1 3 3/15 (8× 8)/8 5685 2481 45773 201s 308684.76s 589753 3310871
Flex-v2 3 3/15 (8× 8)/8 12101 2517 45773 461.4s 308684.76s 2669965 3310871

Perimeter 6 6/4 (16× 16)/16 1980 303 9698 49.97s 2360.27s 227071 230773
Pose 4 4/8 (13× 13)/12 24068 8800 24068 461.4s 21996.25s 526708 569513

Pendulum 3 2/3 (40× 40)/33 4667 243 19899 45.46s 2105.321s 123891 128322
Tot 4 4/5 (85× 94)/56 8930 348 52982 82.11s 17370.07s 424261 742099

Image3d 10 10/9 (178× 152)/130 130 84 1456 2.34s 53.68s 12721 29415
Heron3d 6 5/7 (16× 14)/13 23 22 90 0.411s 0.738s 1525 3071

Nachtwey 6 6/5 (11× 18)/11 244 106 244 7.23s 5.36s 58376 12983
Storti 6 5/2 (24× 113)/20 12 4 32 0.177s 0.053s 1089 343

At the moment, we are currently working on the analysis of the failure probability of our new
Dixon resultant algorithm.

References

Cuyt, A., and Lee, W.-S.: Sparse Interpolation of Multivariate Rational Functions.J. Theoretical Comp. Sci. 412,
pp. 1445–1456, Elsevier, 2011.

Dixon, A. : On a form of the Eliminant of Two Quantics. Proceedings of the London Mathematical Society 2,
(1908), pp. 468–478.

Jinadu, A., and Monagan, M. : An Interpolation Algorithm for computing Dixon Resultants. Accepted for CASC
’2022.

Kapur, D., Saxena, T., and Yang, L.: Algebraic and Geometric Reasoning using Dixon Resultants. Proceedings of
ISSAC ’94 pp. 99–107, 1994.

Kapur, D., and Saxena, T.: Comparison of Various Multivariate Resultant formulations. Proceedings of ISSAC ’95
, pp. 187–194, ACM, 1995.

Lewis, R.: Dixon-EDF: The Premier Method for Solution of Parametric Polynomial Systems.Special Sessions ACA
(2015), Springer, pp. 237–256.

Lewis, R.: Resultants, Implicit Parameterizations, and Intersections of Surfaces. Proceedings of ICMS (2018),
Springer, pp. 310–318.

Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. Proceedings of EUROSAM ’79 , pp. 216–226,
Springer-Verlag, 1979.

International Symposium on Symbolic and Algebraic Computation July 4-7, 2022.

ajinadu,mmonagan

