

Recovery of exponents of polynomials of high degree Jesse Elliott, Michael Monagan

Introduction

Polynomial interpolation is the problem of fitting a polynomial to a set of data. We represent this process with the Black Box model of polynomial interpolation.

The Black Box Model

Let $f \in \mathbb{Z}[x_1, x_2, ..., x_n]$. The goal is to interpolate f from a set of evaluations.

 $(\gamma_1, \gamma_2, \dots, \gamma_n) \in \mathbb{Z}^n$

 $f(\gamma_1, \gamma_2, \dots, \gamma_n) \in \mathbb{Z}$

The interpolation method presented in this poster is a sparse interpolation method.

Definition Let $f \in R[x_1, x_2, ..., x_n]$, where R is a ring and deg f = d. Let t denote the number of non-zero terms of f and T_{max} denote the maximum possible terms of f. f is sparse if $t \ll T_{max} = \binom{n+a}{d}$.

We interpolate f modulo a set of primes $p_1, p_2, ..., p_s$ and use Chi**nese remaindering** to recover the integer coefficients. We use a Kronecker substitution to reduce multivariate interpolation to a univariate interpolation.

Definition Let D be an integral domain. Let $f \in D[x_1, x_2, ..., x_n], f \neq d$ 0. Let $r = [r_1, r_2, ..., r_{n-1}] \in \mathbb{Z}^{n-1}, r_i > 0$. Let $K_r : D[x_1, x_2, ..., x_n] \rightarrow$ D[x] be the Kronecker substitution $K_r(f) = f(x, x^{r_1}, x^{r_1r_2}, \dots, x^{r_1r_2\dots r_{n-1}}).$ Let $d_i = deg_{x_i}f$ be the partial degrees of $f, 1 \leq i \leq n$. K_r is invertible if $r_i > d_i, 1 \le i \le n-1$.

Example Let $f(x, y, z) = 2x^4y^3z^2 + 3x^2yz + 7x^2z^3 + 5$. $K_r(f) = f(x, x^5, x^{5\cdot 4}) = 2x^{59} + 3x^{27} + 7x^{62} + 5x^0$.

After applying the Kronecker substitution the degree of the polynomial becomes exponential in n. In this poster we present a modular algorithm for recovering the exponents.

Problem

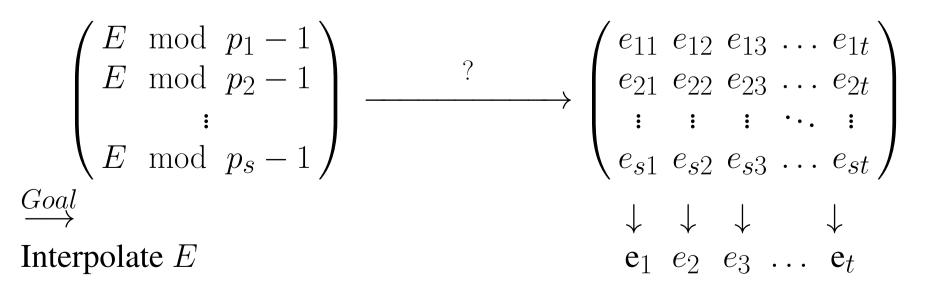
Let $f \in \mathbb{Z}[x_1, ..., x_n]$, with $K_r(f) = g(x) = a_1 x^{e_1} + a_2 x^{e_2} + ... + a_t x^{e_t}$, and deg g = d. let $E = \{e_1, e_2, ..., e_t\}$. Our goal is to interpolate E.

We first interpolate the exponents modulo a set of primes minus 1.

 $\rightarrow \begin{pmatrix} E \mod p_1 - 1 \\ E \mod p_2 - 1 \\ \vdots \end{pmatrix}$ The order is unknown. $E \mod p_s - 1$

Question: How do we pair up the exponents mod p-1?

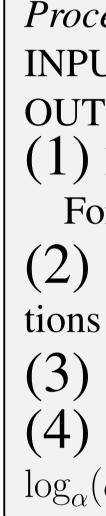
We recover the exponents from their images mod p - 1, and therefore first need to pair the images into sets that correspond to the right exponents. This is a challenge because their order is unknown.



How do we recover the exponents e_i from their images modulo $p_i - 1$? We recover the exponents by applying a generalized form of Chinese remaindering which does not require relatively prime moduli.

Method

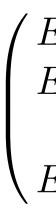
Our method requires that we use smooth primes.



Sorting the Exponents mod p-1

 $\delta > t^2 \Rightarrow Prob\{unique exponents\} > .6.$

If the exponents are unique mod δ then their images mod δx are unique mod δ , and therefore we can sort them mod δ .



Question: How do we recover the exponents?

Definition A prime p is y-smooth if for every prime q|p-1 we have $q \leq y$.

We pick s smooth primes of the form $p = 2^k r + 1$, so that $LCM(p_1 - 1, p_2 - 1, ..., p_s - 1) > d.$

For each prime we interpolate a set $E \mod p - 1$ by running the following procedure. See [4]

Procedure Interpolate Exponents mod p-1: INPUT: Black Box polynomial g and a prime p. OUTPUT: $E \mod p - 1$. (1) Pick a generator $\alpha \in \mathbb{Z}_p$. For $1 \le j \le 2t - 1$ compute $v_j = g(\alpha^j)$. (2) Compute $\lambda(z) = \prod_{i=1}^{t} (z - \alpha^{e_i \mod p-1})$ from the evaluations v_i with the Berlekamp Massey algorithm.

(3) Compute the roots of $\lambda(z) : \alpha^{e_1}, \alpha^{e_2}, ..., \alpha^{e_t} (mod p)$.

(4) Solve mod p-1 by taking the discrete logarithm: $\log_{\alpha}(\alpha^{e_i}) \mod p = e_i \mod p - 1. [1]$

Exponents mod
$$p-1$$
) $\rightarrow \begin{pmatrix} E \mod p_1 - 1 \\ E \mod p_2 - 1 \\ & \vdots \\ E \mod p_s - 1 \end{pmatrix}$

 $p = \delta x + 1$

The moduli we choose share a common divisor δ . That is, for all $1 \le i \le s, p_i = \delta x_i + 1$. If we make δ large enough then the birthday paradox tells us

Recovering the Exponents

Once we have sorted the images, we can apply a generalized form of the Chinese remainder theorem to recover the exponents.

Generalized Chinese Remainder Theorem Let $m_1, ..., m_s$ be positive integers. Let $M = LCM(m_1, ..., m_s)$, and let u_1, \ldots, u_s be any integers. There exists exactly one integer **u** such that, i) $\mathbf{u} \equiv u_i \pmod{m_i}, 1 \leq i \leq s$, and

Theorem Let $m_1 = \delta x_1, m_2 = \delta x_2, ..., m_s = \delta x_s$, and $M = LCM(m_1, ..., m_s)$. Let E be a set of t non negative integers. Let $E_1, ..., E_s$ be sets such that, $E_k = \{x \mod m_k :$ $x \in E$, $1 \le k \le s$. If E contains distinct elements modulo δ , then there exists exactly t integers, u_1, u_2, \dots, u_t such that (i) $0 \le u_i < M$, (ii) for each u_i , there exist exactly s integers $u_{1i}, u_{2i}, ..., u_{si}$ such that $u_{1i} \in E_1, u_{2i} \in E_2, ..., u_{si} \in E_s$, and $u_i \equiv u_{ki} \pmod{1}$ m_k), $1 \le {}^\forall k \le s$.

Example:

E_1	—	$\{65,$
E_2	—	{377
E_3	—	$\{20,$
E_4	—	$\{35,$

Notice $E_1 \mod \delta$ gives $E_1 = \{65, 97, 124, 189, 300\} \mod 10$ $= \{5, 7, 4, 9, 0\},$ and therefore the exponents are unique mod $\delta = 10$. Now the images can be sorted mod δ .

$$\frac{Sort}{mod \ \delta} \rightarrow \begin{pmatrix} 300\\ 680\\ 20\\ 100 \end{pmatrix}$$
Now apply
$$\downarrow$$

$$4126090$$

$$E = \{264\\g(x) = a_1x\}$$

 $(ii) 0 \leq \mathbf{u} \leq M,$ iff $u_i \equiv u_j \pmod{gcd(m_i, m_j)}, 1 \leq i < j \leq s$.

The theorem bellow encapsulates that if the exponents are unique mod δ , then their modular images are unique mod δ and pair up into sets from which we can recover the exponents.

 $\{65, 97, 124, 189, 300\}$ $p_1 = 10 \cdot 31 + 1$ $7,394,509,680,965\}$ $p_2 = 10 \cdot 97 + 1$ $, 34, 57, 89, 115 \}$ $p_3 = 10 \cdot 13 + 1$ $, 100, 119, 217, 254 \}$ $p_4 = 10 \cdot 33 + 1$

124	65	97	189	=E	mod $10 \cdot 31$
394	965	377	509	= E	mod $10 \cdot 97$
34	115	57	89	= E	mod $10 \cdot 13$
254	35	217	119	=E	mod $10 \cdot 33$

ly the Generalized Chinese remainder theorem.

10826564 1918655 264217 7269689

4217, 1918655, 4126090, 7269689, 10826564 $x^{264217} + a_2 x^{1918655} + a_3 x^{4126090} + a_4 x^{7269689} + a_5 x^{10826564}$

Smooth Primes

In step 4 of procedure InterpolateExponents we solve a discrete logarithm.

Question: How do we solve the discrete logarithm efficiently?

If $p = p_1^{f_1} p_2^{f_2} \dots p_k^{f_k} + 1$, then the cost of running the Pohlig-Hellman algorithm is $O(\sum_{n=1}^{k} f_i(\log p + \sqrt{p_i}))$ [1]. Therefore to maintain an efficient algorithm we need that p is smooth.

Our application uses 63 bit primes. We need that there are enough smooth primes less than 2^{63} .

Definition An integer x is y-smooth if for every prime p|x we have $p \leq y$. The number of *y*-smooth primes is

 $\pi(x,y) =$

[2]

Theorem (Friedlander J.B., 1989 [3]). If $\alpha > \sqrt{e}/2 = 0.303...$ and $y > x^{\alpha}$ then there exists c > 0 such that $\pi(x,y) > c \frac{x}{\log x}$

We know by the prime number theorem that $\pi(x) \sim \frac{x}{\log x}$. Therefore, the above theorem tells us that, for every $\alpha > .303$, we can find a constant such that $\pi(x, y) > c\pi(x)$. We computed a few of these constants which are listed in the following table.

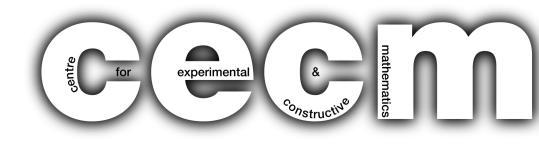
References

[1] S. Pohlig and M. Hellman (1978), "An Improved Algorithm for Computing Logarithms over GF(p) and its Cryptographic Significance."

[2] D. Knuth (1981), "The Art of Computer Programming - Volume 2: Semi-Numerical Algorithms", 2nd ed., 1981.

[3] J. B. Friedlander, "Shifted Primes without Large Prime Factors", pp. 393–401 in Number Theory and Applications (Banff, AB, 1988)

[4] J. Hu and M. Monagan (2016), "A Fast Parallel Sparse Polynomial GCD Algorithm", Proc. ISSAC 2016, pp. 271–278, ACM Press, 2016.



primes $p \leq x$ such that p-1 is y-smooth

Example We computed $\pi(2^{30}, 1024) = 4816780$.

	$\alpha = 0.5$		$\alpha = 0.3\overline{3}$		$\alpha = 0.25$	
y	x	c	x	C	x	С
2^{16}	2^{32}	0.33746	2^{48}	0.05600	2^{64}	0.00591
2^{18}	2^{36}	0.33272	2^{54}	0.05578	2^{72}	0.00558
2^{20}	2^{40}	0.33081	2^{60}	0.05418	2^{80}	0.00568
2^{22}	2^{44}	0.32957	2^{66}	0.05355	2^{88}	0.00594
2^{24}	2^{48}	0.32604	2^{72}	0.05307	2^{96}	0.00563
2^{26}	2^{52}	0.32665	2^{78}	0.05297	2^{104}	0.00545
2^{28}	2^{56}	0.32400	2^{84}	0.05171	2^{112}	0.00568
2^{30}	2^{60}	0.31983	2^{90}	0.05195	2^{120}	0.00529

