
4

S I M O N F R A S E R U N I V E R S I T Y

SFU Logo

Dense Bivariate Polynomial GCD Computation.
Matthew Gibson Michael Monagan Department of Mathematics, Simon Fraser University.

Modular GCD Algorithm
Given A,B ∈ Zp[x1, x2, . . . xn] where A and B are dense, the goal was
to compute G = GCD(A,B) quickly. The focus was on developing an
efficient algorithm for the bivariate case, with the intent that it could be used
in algorithms for a larger number of variables.

A modular algorithm for bivariate polynomial GCD’s was developed by
Brown [1] as an alternative to methods involving bivariate polynomial re-
mainder sequences. Browns method uses the evaluation homomorphism
φy=α : Zp[x, y] → Zp[x] and preforms the GCD computation on univari-
ate images. It then interpolates the image GCD’s iteratively, to recover the
true bivariate GCD.

To use Brown’s method, it is necessary to overcome a number of difficulties.
For the correctness of the algorithm, the most significant difficulty is the
presence of unlucky evaluation points. To see what these are, consider the
simple example in the coefficient field Z13:

A = (x2 + y)(x + xy + 2)

B = (x2 + y)(3x + y)

In this case the GCD is G = x2 + y. To find this GCD, the algorithm will
apply the homomorphism on a number of points αi.

αi Ai = φαi(A) Bi = φαi(B) gi = GCD(Ai, Bi)

0 (x2)(x + 2) 3x3 x2

1 (x2 + 1)(2x + 2) (x2 + 1)(3x + 1) x2 + 1
2 (x2 + 2)(3x + 2) (x2 + 2)(3x + 2) (x2 + 2)(3x + 2)
3 (x2 + 3)(4x + 2) (x2 + 3)(3x + 3) (x2 + 3)

In general, gi is an associate of φαi(G). However, in the case αi = 2, the
image GCD contains a portion of the input images which is not a part of
the true GCD. Such an image is called unlucky and cannot be used in the
interpolation of the GCD.

Through a process involving checks on the degree of the image GCD’s, it is
possible to ensure that either none of the the evaluation points are unlucky,
or all of them are unlucky. This allows for the computation of the true GCD
with very high probability. However, to ensure that not all of the evaluation
points are unlucky, Lemma 1 is needed.

Lemma 1. Let F be a field, G,E ∈ F [x, y] with G 6= 0 and G primitive with
respect to x. Let α ∈ F and let φα : F [x, y]→ F [x] be the image homomor-
phism φα(f (x, y)) = f (x, α). Require that degx(φα(G)) = degx(G). Then if
E | G and φα(G) | φα(E), it follows that E and G are associates in F [x, y].

If E is the interpolation of GCD images, a divisibility check of E | A,
E | B certifies that we have the true GCD. This can either be done using
the classical division method, or by continuing to preform evaluations and
univariate computations up to a predetermined bound.

Computational Optimizations
Evaluations
The preformance of evaluation and interpolation can be almost doubled by choosing evalu-
ation points in positive/negative pairs.

po
ly

no
m

ia
li

n
x f,polynomial in y

Bivariate Polynomial in Zp[x][y]

If the evaluations y2, y4, . . . at y = α are precomputed, this
work can be shared across all polynomials in Zp[y]. Then the
accumulator method utilizes a larger data type for computing
long sums of integer products, so that a single modular reduc-
tion can be preformed at the end.

f = [f0 + f2y
2 + f4y

4 + . . .] + y · [f1 + f3y
2 + . . .]

f (±α) = [f0 + f2α
2 + f4α

4 + . . .]± α · [f1 + f3α
2 + . . .]

Univariate GCD Optimization
Usually, each univariate GCD computation will compute a remainder sequenceR0, R1,R2 . . .
where each new remainder always decreases in degree by one. Rather than doing polynomial
division, this type of remainder sequence can be constructed by computing a new polyno-
mial as a linear combination of the previous two, leading to optimizations. Consider the
following code snippets:

for(;k>1;k--){
R1[k-1] = R1[k-1]*inv % p;
R0[k] = R0[k] - R1[k-1];
if(R0[k] < 0) R0[k] += p;
R0[k] = R0[k] - R1[k]*c % p;
if(R0[k] < 0) R0[k] += p; }

Old Code

while(k>1){
v = e*R0[k]-c*R1[k]-a*R1[k-1];
if(v < 0) v += M;
if(v < 0) v += M;
R0[k] = v % p;
k--; }

New Code

The old code assumes R0 to be monic, and makes R1 monic while it computes a new R0
of lesser degree. The new code requires R1 to be monic, and then computes a new R0 of
lesser degree while also making R0 monic. The old code computes two modular reductions
(%p) per term in R0, while the new code only one. As a result, the preformance of univariate
GCD is almost doubled.

Root of Unity and Newton Basis
The GCD is interpolated in Newton Form. Taking into account the use of ±α evaluation
points, this can be written

G = n0 + n1(y − α0) + n2(y − α0)(y + α0) + n3(y − α0)(y + α0)(y − α1) + . . .

= [n0 + n1(y − α0)] + [n2 + n3(y − α1)](y
2 − α2

0) + [n4 + n5(y − α2)](y
2 − α2

0)(y
2 − α2

1) + . . .

If we think of 1, (y2−α2
0), (y

2−α2
0)(y

2−α2
1), . . . as a kind of basis, this suggests the following

data structure:

GN = [g0, g1, g2, g3, ...] = [n0 − α0n1, n1, n2 − α1n3, n3, ...]

These coefficients can be used for basis conversion and for efficient evaluation. Write the
polynomial G in the form:

G = [g0+g2(y
2−α2

0)+g4(y
2−α2

0)(y
2−α2

1)+. . .]+y·[g1+g3(y2−α2
0)+g5(y

2−α2
0)(y

2−α2
1)+. . .]

The terms (y2−α2
0), (y

2−α2
0)(y

2−α2
1), . . . can be precomputed, and the polynomial can be

evaluated using a simple loop.

Algorithmic Optimizations
Once the number of interpolated images has exceeded a pre-calculated bound,
it can be proven that divisibility has been satisfied. However, it is also pos-
sible to stop interpolating before the bound and switch to another method
to ensure divisibility. Several variations are compared below, for deg(G) as
indicated and deg(A) = deg(B) = 200 in both x and y.

25 50 75 100 125 150 175 200
0

0.1

0.2

0.3

0.4

0.5

0.6

deg(G)

Ti
m

e

Bivariate Division
Continue GCD’s

Univariate Divisions

Classical bivariate trial division, which is O(n4) rather than O(n3), is much
slower for all but very large or very small GCD’s. Further, it is always prefer-
able to stop computing univariate GCD’s as soon as possible and instead do
evaluations and trial divisions.

Parallelization for Three Variables
The dense bivariate polynomial GCD algorithm was used to solve a dense
polynomial GCD in three variables. The strategy was to use Brown’s al-
gorithm in three-variables. The variable z was evaluated out and then the
optimized dense bivariate method was applied to the images in Zp[x, y] in
parallel. Parallelization was implemented through Intel’s Cilk-PlusTM.

New Algorithm
n Maple Magma 1 CPUs 2 CPUs 4 CPUs 8 CPUs 16 CPUs
25 9.950 1.020 0.129 0.068 0.036 0.022 0.016
50 351.7 13.66 1.360 0.695 0.362 0.206 0.145
75 2433 65.36 5.885 2.989 1.521 0.784 0.496
100 10684 198.3 17.33 8.740 4.458 2.293 1.260

The timings are in seconds, and n is the degree of G in x,y,z. The degree
of A and B in x,y,z is 2n. The test was preformed on a Intel Xeon proces-
sor with 16 cores. For large inputs, the new algorithm almost scales to the
number of threads.

References
[1] W. S. Brown. On Euclid’s Algorithm and the Computation of Polynomial Greatest

Common Divisors, J. ACM 18 (1971), pp. 476–504.

[2] M. B. Monagan and A. D. Wittkopf. On the Design and Implementation of Brown’s
Algorithm over the Integers and Number Fields. Proceedings of ISSAC ’2000, ACM
Press, pp. 225–233, 2000.

