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Preface

The International Workshop on Computer Algebra in Scientific Computing (CASC)
provides the opportunity both for researchers in theoretical computer algebra (CA) and
engineers, as well as other allied professionals applying CA tools for solving problems in
industry and in various branches of scientific computing, to present their results annually.
CASC is the forum of excellence for the exploration of the frontiers in the field of
computer algebra and its applications in scientific computing. It brings together scholars,
engineers, and scientists from various disciplines that include computer algebra. This
workshop provides a platform for the delegates to exchange new ideas and application
experiences, share research results, and discuss existing issues and challenges.

Sirius Mathematics Center (SMC), located in the city of Sochi, Russian Federation,
was established in 2019 by the “Talent and Success” Educational Foundation. This is an
international institution for research and postgraduate training in mathematical sciences.
Currently, the center uses the facilities of the Omega Sirius Hotel located between Sochi
Olympic Park and the former Olympic Village near the Black Sea coast. The mission of
the center is to support mathematical research in Russia as well as to promote personal
and scientific contacts between mathematicians. The center strives to be a meeting point
for scientists working in mathematical sciences, enabling them to exchange ideas, initiate
new projects, meet, and train students and young scientists.

The SMC Scientific Board is responsible for establishing selection criteria
for proposals of activities at the SMC, evaluating the proposals, and developing
the scientific program of the center. The current members are Maria J. Esteban
(CEREMADE, CNRS, and Université Paris-Dauphine, Paris), Sergey Lando (Higher
School of Economics, Moscow and Skolkovo Institute of Science and Technology,
Moscow), Ari Laptev (Imperial College, London), Alexey Shchuplev (SMC, Director),
and August Tsikh (Siberian Federal University, Krasnoyarsk). In the autumn of 2020,
the SMC administration offered the CASC workshop organizers significant financial
support for arranging the CASC 2021 workshop on the SMC platform.

Therefore, it was decided, in the autumn of 2020, that the 23rd CASC International
Workshop would be held at the Sirius Mathematics Center, Sochi, on September 13-17,
2021.

The organizing committee of the CASC 2021 International Workshop has been mon-
itoring the developing COVID-19 pandemic. The safety and well-being of all conference
participants have been our priority. Due to the current international situation, CASC 2021
was exceptionally held in the hybrid format: those able to travel to Sochi have attended
in person while those prevented from coming by the restrictions on international travel
were offered the opportunity to present their work remotely.

This year, the CASC International Workshop had two categories of participation:
(1) talks with accompanying papers to appear in these proceedings, and (2) talks with
accompanying extended abstracts for distribution locally at the conference only. The
latter was for work either already published, or not yet ready for publication, but in
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either case still new and of interest to the CASC audience. The former was strictly for
new and original research results, ready for publication.

All papers submitted for the LNCS proceedings received a minimum of three reviews.
In addition, the whole Program Committee was invited to comment and debate on all
papers. In total, this volume contains 23 papers and two invited talks. The paper by
Toannis Emiris presents an invited talk but went through the regular review process.

The invited talk by Alicia Dickenstein is devoted to the motivation and descrip-
tion of several algebraic-geometric computational techniques used for the study of
families of polynomials that arise in the realm of biochemical reaction networks. The
standard modelling of biochemical reaction networks gives rise to systems of ordinary
polynomial differential equations depending on parameters. One is thus led to study
families of polynomial ordinary differential equations, with a combinatorial structure
that comes from the digraph of reactions. Attempts to explore the parameter space, in
order to predict properties of the associated systems, challenge the standard current
computational tools because, even for moderately small networks, there are many
variables and many parameters. It is shown that different techniques can be strength-
ened and applied for systems with special structure even if the number of variables and
parameters is arbitrarily large; in particular, for the systems defined by Alicia
Dickenstein and Pérez Millan termed MESSI (Modifications of type Enzyme-Substrate
or Swap with Intermediates), which are abundant among the enzymatic mechanisms.

The invited talk presented by Ioannis Emiris addresses one of the main problems in
distance geometry: given a set of distances for some pairs of points, one must determine
the unspecified distances. This is highly motivated by applications in molecular biology,
robotics, civil engineering, sensor networks, and data science. A new method is proposed
that introduces a combinatorial process in terms of directed graphs with constrained
orientations, and manages to improve in all dimensions the existing bounds for roots
count; this is achieved by employing the m-Bézout bound, thus arriving at tighter results
than using the classic Bézout bound. The method readily leads to bounds on the m-Bézout
number of a polynomial system, provided that the given system can be modelled by a
graph whose vertices correspond to the variable subsets and whose edges correspond to
the given equations.

Polynomial algebra, which is at the core of CA, is represented by contributions
devoted to the use of comprehensive Grobner bases for testing binomiality of chemical
reaction networks, the parallel factorization of polynomials with multivariate power
series coefficients, a new version of the root radii algorithm for finding the roots of
a univariate polynomial, the use of subresultant chains for the solution of polynomial
systems, the extension of Fulton’s algorithm for determining the intersection multiplicity
of two plane curves to the higher-dimensional case, the use of the resultants and of the
computer algebra system (CAS) MAPLE in the investigation of the geometric properties
of Fermat—Torricelli points on a sphere, and the derivation with the aid of Grobner
bases of new optimal symplectic fourth-order Runge—Kutta—Nystrom methods for the
numerical solution of molecular dynamics problems.

Four papers deal with ordinary and partial differential equations: the use of
Weil algebras for the symbolic computation of univariate and multivariate higher-
order partial derivatives, establishing the relationship between differential algebra and
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tropical differential algebra, applications of primitive recursive ordered fields to the
computability and complexity of solution operators for some partial differential equa-
tions (PDEs), and the solution with guaranteed precision of the Cauchy problem for
linear evolutionary systems of PDEs in the case of real analytic initial data.

Two papers are devoted to the applications of symbolic-numerical computations
for computing orthonormal bases of the SU(3) group for orbital angular momentum
implemented in the CAS MATHEMATICA and symbolic and numeric computations of
the Frobenius norm real stability radius for some classes of matrices.

Applications of computer algebra systems in mechanics, physics, and chemistry
are represented by the following themes: the derivation of first integrals and invariant
manifolds in the generalized problem of the motion of a rigid body in a magnetic field
with the aid of Grobner bases and the CAS MATHEMATICA, and the detection of toricity
of steady state varieties of chemical reaction networks with the aid of the CAS REDUCE.

The remaining topics include a new algorithm for decoupling multivariate fractions
with the aid of trees, the simplification of nested real radicals in the CASs of a general
kind, improved algorithms for approximate GCD in terms of robustness and distance,
rational solutions of pseudo-linear systems, a new algorithm for testing the supersin-
gularity of elliptic curves by using the Legendre form of elliptic curves, a new deter-
ministic method for computing the Milnor number of an isolated complete intersection
singularity, a new algorithm for computing the integer hull of a rational polyhedral set,
and the construction of 8958 new nonisomorphic parallelisms of the three-dimensional
projective space over the finite field Fs.

Sadly, Vladimir P. Gerdt, who was one of the two co-founders (along with Prof.
Dr. Ernst W. Mayr, Technical University of Munich) of the CASC International Work-
shops, passed away on January 5, 2021. In honor and memory of V.P. Gerdt, this volume
contains an obituary which describes his contributions to different branches of computer
algebra and to quantum computing. A special session dedicated to Gerdt’s memory was
held during this workshop.

The CASC 2021 workshop was supported financially by a generous grant from the
Sirius Mathematics Center headed by Dr. Alexey Shchuplev. We appreciate that the
SMC provided free accommodation for a number of participants. We also gratefully
acknowledge support by the Ministry of Science and Higher Education of the Russian
Federation, grant No. FSSW-2020-0008.

The local organizing committee of CASC 2021 at the Sirius Mathematics Center
in Sochi provided excellent conference facilities, which enabled foreign participants to
present their talks remotely.

Our particular thanks are due to the members of the CASC 2021 local organizing
committee and staff at the SMC, i.e., Vitaly Krasikov (Chair), Alexey Shchuplev, Natalia
Tokareva, Irina Klevtsova, Peter Karpov, Sergey Tikhomirov, and Timur Zhukov who
ably handled all the local arrangements in Sochi.

Furthermore, we want to thank all the members of the Program Committee for their
thorough work. We also thank the external referees who provided reviews.

We are grateful to the members of the group headed by Timur Sadykov for their
technical help in the preparation of the camera-ready files for this volume. We are grateful
to Dmitry Lyakhov (King Abdullah University of Science and Technology, Kingdom
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of Saudi Arabia) for the design of the conference poster. Finally, we are grateful to the
CASC publicity chairs Hassan Errami and Dmitry Lyakhov for the management of the
conference web page http://www.casc-conference.org/2021/.

July 2021 Francois Boulier
Matthew England

Timur M. Sadykov

Evgenii V. Vorozhtsov
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Prof. Vladimir P. Gerdt

It is our deepest regret to inform you that Vladimir Petrovich Gerdt, Professor, Head of
the Algebraic and Quantum Computing Group of the Scientific Department of Computa-
tional Physics of the Laboratory of Information Technologies (LIT) at the Joint Institute
of Nuclear Research (JINR) in Dubna, Oblast Moscow, Russia, died on January 5th, 2021
atthe age of 73, following complications caused by COVID-19. Vladimir Gerdt was born
on January 21, 1947 in the town of Engels, Saratov region of the USSR. He began his
scientific career at JINR in November 1971, after graduating from the Physics Depart-
ment of Saratov State University, first in the Department of Radiation Safety, and from
February 1977 on in the Laboratory of Computer Technology and Automation, which,
in the year 2000, was renamed to Laboratory of Information Technologies, where he was
engaged in the deployment of analytical computing software systems on the comput-
ers of the JINR Central Research Center, as well as their development and application
for solving physical problems. In 1983, he became the head of the Computer Algebra
Research Group (renamed in 2007 to Algebraic and Quantum Computing Group) at LIT.
In 1976, Vladimir Gerdt successfully defended his Ph.D. thesis (for Kandidat nauk) in
the field Theoretical and Mathematical Physics, and in 1992, his doctoral dissertation
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(for Doktor nauk, D.Sc.) in the field Application of Computer Technology, Mathematical
Modeling, and Mathematical Methods for Scientific Research. In 1997, he was awarded
the academic title of Professor. In his long and distinguished research career, Vladimir
Gerdt worked on many different topics. Even when he started to work on something
new, he never forgot the old topics. Often, he also looked for, in a creative form, possible
relationships between his various research questions exhibiting numerous interesting
connections. In the following, we try to organize his research works into seven fields
in which he was active and which we list roughly in chronological order according to
his first publication in the respective field (and we also apologize for any omissions or
errors due to our bias and the requirement to be succinct):

1. Physics: high energy physics, gauge theory and constrained dynamics
Differential equations: integrable systems, symmetry theory and completion ques-
tions

3. Lie algebra: representations and classifications

Commutative algebra: Grobner and involutive bases, polynomial system solving

5. Differential and difference algebra: differential/difference ideal theory and non-
commutative Grobner and involutive bases

6. Quantum computing: quantum circuits and related algebraic problems, simulation
of quantum algorithms, quantum error correction, mixed states

7. Numerical analysis: algebraic construction of finite difference methods, symbolic-
numerical solution of quantum mechanical problems

>

In the sequel, we try to trace the main steps in Vladimir’s scientific activities over
his whole career spanning a period of almost 50 years. Of course, it is not possible to
present everything he did, and our selection is certainly subjective and biased by our
own research interest and, possibly, lack of knowledge. Nevertheless, we believe that this
account is able to convey how broad his research interests were and how many important
contributions he made. As, over the years, Vladimir collaborated with so many different
people, we here omit the names of his cooperation partners in the various fields.

Vladimir began his career like many of the pioneers in computer algebra as a physi-
cist. His first publications in the mid 1970s were concerned with phenomenological
computations in high energy physics aiming at predicting the results of accelerator
experiments. As such computations tend to be very demanding and time consuming, it
was a natural thought to try to automatize them at least partially using computer algebra.
Thus, his first publication with the words “computer algebra” in the title appeared in
1978 and was concerned with the computation of Feynman integrals (essentially the same
problem that inspired a bit over a decade earlier Tony Hearn to develop Reduce, together
with Macsyma the first general purpose computer algebra systems). At this time, for
most physicists or mathematicians, computer algebra was still something rather exotic
and a comprehensive list of articles describing such applications of computer algebra
was rather short.

As many problems in physics boil down to the analysis of differential equations, it is
not surprising that from the early 1980s on Vladimir got more and more involved in their
theory. In the beginning, he was mainly interested in two topics: the explicit solution
of ordinary differential equations and the theory of (completely) integrable systems. He
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developed for example a method to solve certain linear ordinary differential equations
in terms of elliptic functions. Following ideas developed in the school of A.B. Shabat,
he worked on computer algebra methods for the algorithmic classification of integrable
systems in the form of evolution equations using symmetry methods (mainly general-
ized symmetries, often incorrectly called Lie-Bicklund symmetries, although neither
Lie nor Bicklund ever worked on them). Again, in most cases, a symmetry analysis
requires extensive computations and thus represents a natural application field for com-
puter algebra. In fact, Vladimir never ceased to be interested in symmetry methods for
differential equations. It was probably through these works that for the first time Vladimir
also attracted the attention of a larger audience in the western computer algebra world,
when he published no less than four articles in the proceedings of the EUROCAL ’87
conference in Leipzig. His first paper in the Journal of Symbolic Computation, published
in 1990, was also devoted to integrable systems.

The integrability analysis of evolution equations raises many interesting problems.
In intermediate steps, one often has to solve large overdetermined systems of linear
differential equations or one has to deal with polynomial systems. Symmetry reductions
typically lead to ordinary differential equations, which one would like to solve analyti-
cally. The theory of Lie groups and algebras also features here prominently. Hence, in
the early 1990s Vladimir started to work on these topics, independently from their direct
application in the context of integrability analysis. He co-authored a computer algebra
package for the analysis of polynomial systems using Grobner basis techniques. In par-
allel, he began with the investigation of (super) Lie algebras — partially again using
Grobner bases. In the beginning, he was interested in automatically recognizing isomor-
phic Lie algebras. Later, he was more concerned with finitely presented Lie algebras and
superalgebras. Here he developed in particular an algorithm for the construction of such
(super)algebras out of a finite set of generators and relations.

The late 1990s represent a key phase in Vladimir’s scientific oeuvre. From his
research in Lie symmetry theory, he was familiar with the Janet-Riquier theory of dif-
ferential equations, as it provides a popular approach to analyzing the large determining
systems arising in the construction of Lie symmetry algebras. And, as just mentioned,
he also was familiar with Grébner bases from commutative algebra. From Janet’s work
on differential equations, he abstracted a general notion of what he called an involu-
tive division and introduced, by combining it with concepts like normal forms and term
orders, the notion of an involutive basis of a polynomial ideal as a Grobner basis with
additional combinatorial properties. For the rest of his life, involutive bases played a
dominant role in Vladimir’s research.

He was particularly interested in their algorithmic aspects. The basic involutive
algorithm —rooted in Janet’s work— can be seen as an optimization of the basic form
of Buchberger’s algorithm for the construction of Grobner bases. Vladimir developed
further optimizations specific to the involutive algorithm and adapted optimizations for
the Buchberger algorithm to make them applicable also in the involutive setting. His
group at JINR wrote the GINV package in C/C++ as a standalone program for (mainly)
computing Janet bases and he participated in a Maple implementation of involutive
bases.
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Being a physicist, Vladimir recognized the possibilities offered by Grobner or invo-
lutive bases in the context of mechanical systems with constraints. The famous Dirac
procedure is essentially a differential completion procedure for the special case of Hamil-
tonian systems with constraints followed by a separation of the constraints into two
different classes: first, constraints generating gauge symmetries, and second, constraints
reducing the dimension of the phase space. While, in principle, the procedure is quite
straightforward, it involves a notorious number of subtleties and pitfalls when applied
to concrete systems. Vladimir showed that in the case of a polynomial Lagrangian most
of these can be handled using Grobner bases and provided a corresponding Maple pack-
age. Later, he co-authored a number of papers where these ideas were used to extend
the classical Dirac procedure to light-cone Yang-Mills mechanics.

Rings of linear differential or difference operators may be considered as simple
examples of non-commutative polynomial rings, and it is rather straightforward to adapt
Grobner or involutive bases to them. All implementations of involutive bases co-authored
by Vladimir cover these two cases as well. For systems of linear differential or difference
equations, such algorithms for instance allow for an effective completion to involutive
or passive form, i.e., for the construction of all hidden integrability conditions, a fact
relevant for analytic as well as numerical studies of the systems. In particular, it is crucial
for determining the size of the solution space or consistent initial value problems.

The situation becomes much more complicated for non-linear systems.Around 2000,
Vladimir started to look more deeply into differential algebra, in particular into differen-
tial ideal theory, and a bit later also into difference algebra. His key achievement here was
the revival of the Thomas decomposition, an almost forgotten approach to both algebraic
and differential ideal theory based on triangular sets and — in the differential case —
Janet-Riquier theory. In a Thomas decomposition, an arbitrary system composed of equa-
tions and inequations is split into a disjoint union of so-called simple systems which are
comparatively easy to analyze, because of their special properties. The disjointness of
the resulting simple systems represents a specific feature of the Thomas decomposition,
setting it apart from most other decompositions. Together with a group at RWTH in
Aachen, Vladimir developed a fully algorithmic version of both the algebraic and the
differential Thomas decomposition and co-authored implementations of them in Maple.

In effect, the Thomas decomposition was the second research topic which Vladimir
studied intensively right until his death. He applied it in many different fields, rang-
ing from the integrability analysis of fully non-linear systems of (partial) differential
equations to an extension of the Dirac procedure to cases where the ranks of certain
Jacobians are not constant (a case about which one can find nothing in the classical liter-
ature, but which is not uncommon in applications). His last significant and unfortunately
unfinished project consisted of developing a difference version of it.

One reason for Vladimir’s interest in difference algebra was the analysis and con-
struction of numerical methods. So-called mimetic methods aim at setting up difference
equations that have qualitative properties similar to the original differential equations.
Such qualitative properties can be conserved quantities or more generally symmetries,
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but also certain structural features, in particular for equations which are not in Cauchy-
Kovalevskaya form. Starting in the mid 2000s, Vladimir became interested in the effec-
tive construction of finite difference and finite volume methods preserving certain alge-
braic structures of the differential ideal generated by the given differential equations. A
rigorous formulation of these ideas required parallel theories of differential and differ-
ence algebra. For linear differential equations, classical techniques from Grobner and
involutive bases were sufficient to effectively realize his approach; for a fully algorithmic
treatment in the case of non-linear equations a difference Thomas decomposition would
have been necessary. Vladimir treated a number of concrete non-linear examples, but
the algebraic computations had to be done partially by hand. The numerical methods
arising from this approach are quite non-standard, differing significantly from the usu-
ally applied methods, and the numerical experiments presented so far appear to indicate
good performance. For the analysis of these methods, he introduced new notions of
consistency and developed computer algebra methods for verifying the corresponding
conditions.

In another line of work combining many of his research interests, Vladimir partici-
pated in projects for the symbolic-numerical solution of quantum mechanical problems,
in particular in atomic physics, ranging from solving time-dependent Schrodinger equa-
tions to eigenvalue problems and on to the computation of matrix elements and boundary
value problems for elliptic systems. The emphasis was on finite-dimensional quantum
systems like atoms in external fields or quantum dots.

Also since the mid 2000s, Vladimir and his group was quite active in the field of
quantum computing (in fact, to such an extent that his group at JINR was renamed
to better reflect this additional research focus). He concentrated on related algebraic
problems to which he applied e.g. involutive methods. In the beginning, the emphasis
was on the circuit model of quantum computing. Vladimir developed algorithms for
the construction of polynomial systems or unitary matrices describing such circuits
and co-authored corresponding Mathematica and C# packages. He was also concerned
with the simulation of quantum computations on classical computers and co-authored
a Mathematica package for this task. After a brief study of quantum error correction,
he moved on to investigating mixed states, mainly by group-theoretic means. Here the
emphasis was on the effective construction of local invariants, since these facilitate
checking whether a state is entangled or uncoupled. For this purpose, he showed how
involutive bases can be used within computational invariant theory.

During his last years, Vladimir returned to the topic of Lie symmetry theory. He
was interested in the algorithmic linearization of ordinary differential equations, i.e.,
in the construction of a point transformation reducing the given equation to a linear
one. Lie already had shown for certain cases that one can decide whether a given non-
linear ordinary differential equation can be linearized, based on its Lie symmetry group.
Later, this topic was studied extensively by Bluman and his group. Vladimir derived
fully algorithmic criteria for linearizability (in part based on the differential Thomas
decomposition), a result for which he and his co-authors received the distinguished
paper award at the ISSAC conference in 2017. He continued to work on improvements
of this result, putting more emphasis on the symmetry algebra instead of the symmetry
group, but, unfortunately, he died before this project was finished.
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Altogether, Vladimir was the author or co-author of more than 240 scientific papers
(a listing is available at his CV at JINR, and he was a leading expert in the field of
symbolic and algebraic computation. He devoted a lot of effort and energy to train young
researchers in these modern scientific areas. He was a professor at the Department of
Distributed Information Computing Systems of Dubna State University, where, under
his supervision, seven students successfully defended their Ph.D. thesis.

Vladimir also was the organizer of many international conferences on computer
algebra. He was the (co-)chair of 29 conferences, a member of the organizing committee
of 11 conferences, a member of the Program Committee for 27 conferences, and a
member of the Scientific and Advisory Committee of 7 conferences: 74 conferences in
total during the period from 1979 to0 2020. Thus, Vladimir had, on average, organizational
roles in almost two conferences each year, showing his inexhaustible energy.

In the context of this CASC conference (of 2021 in Sochi), it may be an opportunity
(and even appropriate) to enlarge a bit on the history of CASC, the international workshop
series Computer Algebra in Scientific Computing, in particular the events before its birth
in St. Petersburg on April 20, 1998. The other co-founder of CASC (one of the present
authors, referred to EWM in the text below), first became aware of Vladimir’s scientific
work in October of 1996 when he (EWM) was working together with his Ph.D. student
Klaus Kiihnle on an optimal worst-case space bound for algorithms to compute Grobner
bases. Since this bound (exponential space) is independent of the algorithm used, the
news about involutive bases were very interesting. The year after, on June 5, EWM
invited Vladimir to give a seminar talk about Involutive Grobner Bases at TUM, which
was very well received. During the after-session-get-together at the Parkcafe in Munich,
the question was raised about the share of theoretical talks vs. the talks devoted to the
numerous applications of the methods and algorithms of computer algebra in the natural
sciences. EWM said that “T am a theoretician and trying to connect to applications”, and
Vladimir said “I am more applied but don’t mind theory”. The two of them also agreed
that there were excellent scientists in the computer algebra field in Russia as well as in
Germany. EWM also said that he admired the science that had been going on in certain
parts of what was then the Commonwealth of Independent States (CIS) (like Tashkent)
since his early study years, that he always had wanted to go there but never managed
(since, among other things, he went to Stanford and the US for almost ten years). And
suddenly the idea was “Why don’t we have a joint (between Russia and Germany, or
CIS and Germany) scientific workshop (with the title CASC, that was discussed there
already)”. Vladimir then right away persuaded Ph.D. Nikolay Vasiliev in St. Petersburg
to organize the first instantiation), so this went very fast. For the following fifteen years,
the team at EWM’s chair at TUM could always rely on Vladimir and his excellent
connections in Russia and CIS to persuade very competent colleagues at a number of
very interesting places to locally organize CASC.
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It also turned out that the Deutsche Forschungsgemeinschaft (DFG) was willing to
support the CASC workshop in St. Petersburg as well as those in the series for about
the following ten years. This support was very helpful in the beginning of CASC, since
whenever CASC took place outside of CIS, the funds were used solely for supporting
participants from CIS; for CASC workshops in CIS, the method was a bit more difficult
and indirect, but with basically the same result. It is clear that in the beginning of CASC,
when the financial situation was much more restricted than now, this support from DFG
was invaluable. Of course, there was also some organizational work for the conference
(in addition to the local organization; like designing and putting out the call for papers
(including the conference poster), running the PC, organizing travel, —, putting together
the proceedings, ...). As everybody handling the nitty-gritty of conferences knows this
was considerable work, at times quite stressful (the less money you have the more
stress), and performed by just a few people in EWM’s group (in particular, his secretary
A. Schmidt, his research assistant Dr. W. Meixner, his programmer Ernst Bayer, and his
Russian-Bavarian coordinator Dr. Victor Ganzha). They also deserve a lot of thanks for
their efforts and contributions.

Since 1998, the CASC workshops have been held annually (with one gap in 2008,
because of political unrest in Georgia), alternating in principle between Russia and
Germany, but also including other countries of CIS, in Western and Central Europe, and
even in Japan and China. Giving evidence to its widespread attractiveness, the sequence
of locations was: St. Petersburg, Herrsching (Munich), Samarkand, Konstanz, Big Yalta,
Passau, St. Petersburg/Ladoga, Kalamata, Chisinau, Bonn, —, Kobe, Tsakhkadzor, Kas-
sel, Maribor, Berlin, Warsaw, Aachen, Bucharest, Beijing, Lille, Moscow, Linz, Sochi
(also see the CASC bibliography).

Vladimir was the co-chair of the CASC series from its foundation in 1998 onward
until 2019. He also was very active in the Applications of Computer Algebra (ACA)
conference series where he regularly organized sessions, in particular on differential and
difference algebra.

He was a member of the editorial board of the Journal of Symbolic Computation
(JSC), from its foundation on until 2020. Since 1991, he was a member of the largest
international scientific and educational computing society Association for Computing
Machinery (ACM) and the German special interest group for Computer Algebra.
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During the period from 1981 to 2013, Vladimir presented 34 lecture courses for
students and young scientists in various universities of the USSR/Russian Federation
as well as in China, France, Sweden, and especially in Germany. As his family was
partially of German origin, he felt very attached to Germany, where he had a number of
relatives, whom he frequently visited. Since the late 1990s, he came to Germany almost
every year. As a guest lecturer or visiting professor, he spent in total more than five years
at German universities and applied universities in Greifswald, Ravensburg-Weingarten,
Aachen and Kassel, teaching a wide variety of courses.

Vladimir was the winner of the first prize of JINR in 1986, the second prize of JINR
in 2015 in the competition of scientific and methodological works. He was awarded the
medal “In memory of the 850th anniversary of Moscow”, the departmental badge of
distinction in the field “Veteran of Nuclear Energy and Industry”, and the “Certificate
of Honor” of JINR. He was the founder of and a scientific leader at the School of
Computer Algebra and Quantum Computing of JINR. As such, he largely defined the
public perception of the Laboratory.

Optimism, openness, goodwill, and sincere interest in science always characterized
Vladimir. He will be sadly missed by all who had the pleasure to collaborate and interact
with him, and we would like to extend our sincere condolences to his colleagues and
friends and, above all, his wife Evgeniya Almazova and his two sons, Anton and Peter.
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Abstract. The standard mass-action kinetics modeling of the dynam-
ics of biochemical reaction networks gives rise to systems of ordinary
polynomial differential equations with (in general unknown) parameters.
Attempts to explore the parameter space in order to predict properties
of the associated systems challenge the standard current computational
tools because even for moderately small networks we need to study fam-
ilies of polynomials with many variables and many parameters. These
polynomials have a combinatorial structure that comes from the digraph
of reactions. We show that different techniques can be strengthened and
applied for biochemical networks with special structure.

1 Introduction

The basic definitions and properties of chemical reaction networks, together with
the features of some important biochemical networks, can be found in the sur-
veys [7-9] and Chap.5 of the book [6], as well as in the book [12]. The starting
information is a finite directed graph with r labeled edges that correspond to
the reactions and nodes that correspond to complexes, given by nonnegative
integer linear combinations of a set of s chemical species. The concentrations
x = (x1,...,x5) of the chemical species are viewed as functions of time. Under
mass-action kinetics, the labels of the edges are positive numbers called reaction
rate constants and x is assumed to satisfy an autonomous system of ordinary
differential equations % = f(x). Here f = (f1,..., fs) is a vector of real poly-
nomials that reflects the combinatorics of the graph.

The reaction rate constants are in general unknown or difficult to measure.
Standard methods in other sciences involve exhaustive sampling. Instead, we
think the vector k of reaction rate constants as a vector of parameters. In general,
there are further parameters involved in this setting. Linear relations describing
the span S of the difference of the complexes on each side of a reaction give
rise to linear conservation constants of the dynamics. This means that given

a basis £1,..., ¢4 of the orthogonal subspace S+, any solution z defined in an
interval satisfies linear constraints of the form ¢;(z) = T1,...,4i(z) = T4. We
say that T'= (T1,...,Ty) is a vector of total amounts and we consider (k,T) as
parameters.

© Springer Nature Switzerland AG 2021
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The steady states of the the system fli—f = f(x) are the constant trajectories,
that is the values of * for which f(x*) = 0. If a trajectory converges, its limit
is a steady state. Stable steady states attract nearby trajectories and unstable
steady states also drive the dynamics. Multistationarity is a crucial property
for chemical reaction networks modeling biological processes, since it allows for
different “responses” of the cell. It corresponds to the existence of more than
one positive steady state with the same total amounts, that is, to the existence
of at least two positive zeros of the ideal (f1 ..., fs, 01 —T1,...,4q — Ty).

We look at these systems as special families of polynomial ordinary differ-
ential equations in s variables with r + d parameters. Our aim is to explore
the parameter space in order to predict properties of the systems associated to
networks studied in systems biology, which usually have too many variables and
too many parameters. There are many useful mathematical and computational
tools, but we are forced to extend the mathematical results and to understand
the structure of the networks to make the computations feasible.

In the following sections, I will very briefly summarize two of these recent
advances. Besides consulting the references, the reader is invited to attend my
lecture or to watch later the video for more information.

2 The ERK Pathway

As an example of more general results, we discuss the ERK pathway. It is an
enzymatic network that consists of a cascade of phosphorylation of proteins in the
cell that communicates a signal from a receptor on the outside membrane to the
DNA inside the nucleus. It controlls different responses such as cell division [19].
It is known that the ERK pathway has the capacity for multistationarity and
there are oscillatory solutions.

Deciding mulstistationarity is a question in real algebraic geometry that can
be effectively decided in practice, but the associated family has 21 variables and
36 = 30 + 6 parameters. So, how is it that we can study it with an algebro-
geometric approach? This important signaling cascade, as most popular models
in systems biology, has a MESSI structure [21]. There is a partition of the set
of species and only certain type of reactions occur. Using this structure, we give
combinatorial conditions on the network that ensure the following:

— There are no relevant boundary steady states. That is, there are no steady
states (zeros of the polynomials fi,..., fo1) in the boundary of the nonneg-
ative orthant which lie in the closure of the linear variety Sy = {{i(x) =
T1,...,lq(x) = T}, for any choice of k € R3) and T such that St intersects
the positive orthant.

— The intersections St N R2>10 are compact and so the system is conservative.

— The system is linearly binomial, a concept introduced in [11], which implies
that there is a system of binomial generators of the ideal (f1, ..., f21) obtained
by linear algebra operations over Q(k), involving rational functions whose
denominators do not vanish over R37).
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~ The positive points of the steady state variety {z € RZ}) : f(z) = 0} can be
cut out by explicit binomials, and thus parametrized by explicit monomials
with coefficients in Q(x) as above.

One way to approximate the dynamics of biological models while dealing
with less variables and parameters, is the elimination of the intermediate com-
plezes [14]. Following [24], one could ask which are the minimal sets (with respect
to inclusion) of intermediates that still give rise to multistationarity. These sets
are termed circuits of multistationarity. We show in our forthcoming paper [10]
that systems like the ERK pathway without intermediates cannot be multista-
tionary and we use a computer algebra system to find all the corresponding
circuits of multistationarity. We can also identify the circuits of multistationar-
ity for phosphorylation networks with any number of species. The theoretical
results are based on [5,22].

3 Degenerations and Open Regions of Multistationarity

In the beautiful paper [3], regular subdivisions of the (convex hull of the) set of
exponents of a polynomial system are used to get a lower bound on the number
of positive solutions, with combinatorial arguments to get new lower bounds in
terms of the number of variables and the difference between the cardinality of
the support and the number of variables. This is based on classical results on
degenerations that were used in [25] to study real roots of complete intersections.
The idea is to add a parameter u raised to the different heights of a fixed lifting
whose projection produces the given regular subdivision, thus giving a deforma-
tion of the coefficients of the system along a curve. For small positive values of u,
one obtains a degeneration of the original system for which a lower bound on
the number of positive roots can be given in terms of decorated simplices in the
regular subdivision. Again, this is in general unfeasible in practice when there
are many variables and many monomials.

On one side, we show how to replace a deformation using a single parameter
with an open set defined in terms of the cone of all height functions that produce
the regular subdivision. This way, we get an open region in parameter space
where multistationarity occurs [2]. Even if deciding if simplices are part of a
same regular subdivision is algorithmic, in order to do this when the dimension
or the number of monomials is big, we use the simple idea that if two simplices
share a facet, then this is always the case. Moreover, we heavily use results about
the structure of s-toric MESSI systems from [21]. This allows us to find these
open regions for cascades with any number of layers in [15], but the lower bound
that we get is three. Regions of multistationarity with higher lower bounds are in
general unknown, except for the case of sequential distributive phosphorylation
networks [16]. There is also a degeneration approach with one parameter using
arguments from geometric singular perturbation theory in [13].
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Other Computational Approaches

There are several other computational approaches to study these systems. Of
course, symbolic software using Grobner bases and in particular real algebraic
geometry libraries, as well as Cylindrical Algebraic Decomposition software. Also
numerical methods in algebraic geometry can be used [17,18], as well as tropical
tools to separate time scales [23]. Machine learning tools started to be used to
improve both the symbolic and numeric calculations [1,4,20].

Acknowledgments. We acknowledge the support of ANPCyT PICT 2016-0398,
UBACYT 20020170100048BA and CONICET PIP 11220150100473, Argentina.
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Abstract. We offer a closed-form bound on the m-Bézout bound for
multi-homogeneous systems whose equations include two variable subsets
of the same degree. Our bound is expectedly not tight, since computation
of the m-Bézout number is #P-hard by reduction to the permanent. On the
upside, our bound is tighter than the existing closed-form bound derived
from the permanent, which applies only to systems characterized by fur-
ther structure.

Our work is inspired by the application of the m-Bézout bound to count-
ing Euclidean embeddings of distance graphs. Distance geometry and
rigidity theory study graphs with a finite number of configurations, up to
rigid transformations, which are prescribed by the edge lengths. Counting
embeddings is an algebraic question once one constructs a system whose
solutions correspond to the different embeddings. Surprisingly, the best
asymptotic bound on the number of embeddings had for decades been
Bézout’s, applied to the obvious system of quadratic equations express-
ing the length constraints. This is essentially 29", for graphs of n vertices
in d dimensions, and implies a bound of 4™ for the most famous case of
Laman graphs in the plane. However, the best lower bound is about 2.5",
which follows by numerically solving appropriate instances.

In [3], the authors leverage the m-Bézout bound and express it by the
number of certain constrained orientations of simple graphs. A combina-
torial process on these graphs has recently improved the bound on orienta-
tions and, therefore, has improved the bounds on the number of distance
graph embeddings [4]. For Laman graphs the new bound is inferior to 3.8"
thus improving upon Bézout’s bound for the first time. In this paper, we
obtain a closed-form bound on the m-Bézout number of a class of multi-
homogeneous systems that subsumes the systems encountered in distance
graph embeddings.

Keywords: Graph embeddings - Graph orientations + Multi-
homogeneous Bézout bound - Matrix permanent
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1 Introduction

Distance Geometry is the branch of mathematics studying configurations of sets
of points, when only (some of) their distances are known. Given a set of distances
for some pairs of points, one of the main problems in Distance Geometry is to
determine the unspecified distances. This is highly motivated by applications
in molecular biology [16], robotics [26], civil engineering [1,13], sensor network
localization [27], data science [18], material theory [8,22].

Rigidity theory studies the properties of graphs that have rigid embeddings
in Euclidean space for fixed edge weights that represent length between points.
Rigidity is defined for a specific embedding space. Let G = (V, E) be a simple
undirected graph and p = {p1,...,pjv|} € R¥!V| be a conformation of |V| points
in RY. The framework G(p) is rigid if and only if there are only finite embeddings
that satisfy the given edge lengths A = (|[py — pu|l) (u,0)er induced by p, where
p» € R? are the coordinates of vertex v. A graph is generically rigid if it is rigid
for almost all conformations and this is a property of the underlying graph (and
not of the specific embedding). In other words, genericity refers to the prescribed
edge lengths of the graph.

A major open problem in rigidity theory is to find tight upper bounds on the
number of realizations of minimally rigid graphs, e.g. [15]; we refer to this number
as embedding number. A Euclidean embedding is related to the real solutions of a
well-constrained system of algebraic equations. The complex solutions extend the
notion of real to complex embeddings and allow one to leverage complex algebraic
geometry. Direct application of Bézout’s bound of the quadratic polynomial
system that corresponds to the edge constraints yields a bound of (’)(Qd'm).
In [7], they presented an upper bound that had been the best until recently,
applying a theorem on the degree of determinantal varieties [14]. However, it
does not improve asymptotically upon Bézout’s. For d = 2, techniques using
mixed volume have been introduced in [24], without managing to improve the
bound. A recent result in algebraic frame theory establishes a bound on the
degree of the projections of finite unit norm tight frames [5] using algebraic
matroids.

Two recent publications dealing with that problem managed to improve
the asymptotic bound based on the combinatorial properties of minimally rigid
graphs. This is the approach on which the present work relies. In [3], outdegree-
constrained orientations as well as matrix permanents are related to the m-
Bézout bound of certain algebraic systems that compute the embedding number.
This work resulted to improved asymptotic upper bounds for d > 5, using the
Brégman-Minc permanent bound [9,21]. More importantly, this work led to the
following combinatorial technique. In [4], the target is on a method that bounds
the number of outdegree-constrained orientations. It managed to improve the
bound on embeddings for all d > 2 (the case of d = 1 is trivial) and proved that
the permanent bounds can be ameliorated in that case. For instance, in the case
of d = 2, this approach results to an upper bound of O(3.77™), while the Bézout
bound is O(4").
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It is well known that, applied to the same system, Bézout’s bound is smaller or
equal to the multi-homogeneous Bézout bound (m-Bézout) [23], which is smaller
or equal to the BKK bound expressed by mixed volume [6]. The bounds coincide
for dense systems, where all coefficients for a given total degree are nonzero, but
differ as the system becomes sparser. Of course, each bound counts roots in a
different ambient variety. These bounds are compared in [12], with emphasis on
computing mixed volume, which coincides with the m-Bézout number for multi-
homogeneous systems whose maximal monomials have nonzero coefficients. For-
mally, the latter condition requires that none of the monomials corresponding
to vertices of the Newton polytopes vanishes.

Computing the m-Bézout number for a given variable partition is #P-hard
by reduction to the permanent, which is the cornerstone #P-hard problem. The
same hardness result holds for mixed volume, which coincides with the m-Bézout
number for certain polynomial structures; when the system is sparse, in order
words has certain zero coefficients, the mixed volume may be smaller. More-
over, it is known that mixed volume is APX-hard, in other words it is hard to
deterministically approximate it within an error which is asymptotically smaller
than exponential in the system’s number of variables. Another problem is, given
an algebraic system, to find the optimal variable partition so that the system
is modeled as a multi-homogeneous one with minimum m-Bézout number, see
Definition 2. This problem is not in APX, unless P=NP [19].

Recently, other approaches came to our attention relating polynomial systems
with graph theoretical concepts. More precisely, there are connections of the
polynomial system with chordal graphs in order to enhance Cylindrical Algebraic
Decomposition (CAD) [17] and Grébner bases [10] algorithms.

Our Contribution. In this paper, we generalize the aforementioned approach
to bounding the m-Bézout bound of a quite general class of multi-homogeneous
polynomial systems, which subsumes the class of systems encountered in rigidity
theory. We exploit the connection between the system’s m-Bézout number and
the number of constrained orientations of a simple graph that we specify for the
systems under investigation, then bound the number of the graph’s orientations.
This procedure relies on the proofs in [3,4]. Tt offers the first closed-form bound
on m-Bézout numbers; we hope this may prove useful in a fast estimation of
the algebraic complexity of problems modeled by multi-homogeneous algebraic
equations. Trivially, our closed-form upper bounds the mixed volume of these
multi-homogeneous systems.

Our main result concerns any multi-homogeneous 0-dimensional polynomial
system P(x) = (Pi(x), P2(x),..., Py(x)) that cannot be split to smaller sub-
systems: formally, there is no subset of equations P’ including only a sub-
set of variables that do not appear in P\P’. The multi-homogeneous struc-
ture is manifest by partitioning the variables to subsets (X7, Xo,...X,) with
| X;| = d;, di + --- + d,, = m, so that each P; is homogeneous in each X; (see
Definition 2 for more details).
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Theorem 1. Given multi-homogeneous system P as above, let us assume that

- every P; contains at most two variable subsets,
— two polynomials P;, P; do not contain the same pair of variables, and
— the degree of each P;, denoted by 6;, is the same in both variable sets.

Let d = max (d;), k =nd — m, then the m-Bézout number of P is bounded by
<i<n

ap - By T 6 (1)
1=1

where

1

) 2473\ 7 o\ 2 e
= 2p—d =2
Qg I;?Za;( < (d) ) ) IBd ( <d> > )

and p € N appearing in Bq is the one which maximizes c.

Notice that 84 < 1, so a)} gives the asymptotic order of this bound. An
asymptotic expression of a4 is given in [4]:

w5 (e(59)

Upper bounds on «f; are provided in Table 1.

Table 1. Upper bounds on «ay.

d |2 3 4 5 6 7 8 9
ag | 1.88™|3.41™ | 6.34™ | 11.9™ | 22.7™ | 43.7™ | 84.4" | 163.7"

Paper Structure. The rest of the paper is organized as follows. In Sect.2, we
discuss established methods that relate the m-Bézout bound with the number
of orientations of a graph, and methods that improve the upper bounds on the
number of embeddings. In Sect. 3, we extend these methods to a class of multi-
homogeneous systems, thus bounding their m-Bézout number. Finally, in Sect. 4
we present concluding remarks and present ideas of future work.

2 Bounds on the Embedding Number

In this section, we start by offering further background on rigid graphs. Then
we present previous work, that relates the number of orientations of a graph to
the m-Bézout, and methods that harness this relation to improve the asymptotic
upper bounds on the embedding number.
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A generically minimally rigid graph is a rigid graph that loses the rigidity
property if any of its edges is removed. A fundamental theorem in graph rigidity
due to Maxwell, gives a necessary condition for a graph and all its subgraphs to be
rigid. In particular, if a graph G is minimally rigid in R¢, then |E| = d-|V|— (d'gl),
and for every subgraph G’(V', E') C G it holds that |E'| < d-|V'| — (*$1) [20].
Below this number of edge constraints shall become quite intuitive since it equals
the number of unknown variables in the respective algebraic system.

In order to compute the embeddings of a rigid graph up to rigid motions,
we use the following formulation used also in [11,24], which is called sphere
equations in [2].

Definition 1 ([2]). Let G = (V, E) be a graph. We denote by X the lengths of
the edges on G and by X, = {Zu 1., Tu,a} the d variables that correspond to the
coordinates of a vertex w. The following system of equations gives the embedding
number for G:

||Xu||2:5uv YueV
Sut 5, —2(Xy, Xo) =22, Y(u,v) € BE\E(Ky)

u,v?
where (XU,XU> is the Euclidean inner product. The first set of equations shall
be called magnitude equations, while the second are the edge equations.

This formulation is suitable for sparse elimination theory (see [3] for a general
discussion on the algebraic system). In order to factor out rigid motions, if G
possesses a complete subgraph in d vertices, the coordinates of these vertices
shall be fixed.

Notice that, when we fix d vertices, the above algebraic system has d - n — d?
edge equations and n — d magnitude equations. In [3] the variables are parti-
tioned into subsets, such that each subset of variables contains these ones which
correspond to the coordinates and the magnitude of a vertex X, = X, U {su}

Let us formally define multi-homogeneous systems in general, thus subsuming
the systems presented in the Introduction.

Definition 2. Let  be a vector of m variables and P(x) be a system of m poly-
nomial equations in Clz]. Let X1 = (211,%1,2,---,%1,dy), X2 = (21,222, -,
T2dy)s -y Xn = (Tn1,Tn2,...,%Tnd,) be a partition of the affine variables,
such that |X;| = d;, and dy + -+ + d,, = m. The degree of a polynomial P; in
a variable set X; is the same as the degree of this polynomial, if all variables
xj 1 ¢ X, were treated as coefficients and is denoted with §; ;. Every P; is homo-
geneous in each variable set X;, with homogenizing variable x; o and multidegree
specified by vector 6; = (0;,1,0i.2,- .., n). Then P is multi-homogeneous of type

(dl,...,dn;él,...,én).

If all positive entries have the same value in a multidegree vector 6;, then this
value will be denoted with mdeg(P;).
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Let us recall a classic theorem from algebraic geometry, see e.g. [23], defining
the m-Bézout bound.

Theorem 2. Consider the multi-homogeneous system P(x) defined above. The
coefficient of the monomial Yld1 - Y3 in the polynomial defined by the product

m

[TGin Y+ +8imYa). (2)

=1

bounds the number of roots of P(x) in P4 x ... x P4 where Y; are new symbolic
parameters, and PJ is the j-dimensional projective space over C. The bound is
tight for generic coefficients of P(x).

The most efficient method to compute the m-Bézout bound is by evaluating
the permanent of a matrix capturing the polynomial structure, see [12]. Let this
matrix be A for a multi-homogeneous system P as above, and let per(A) denote
the permanent of this matrix. Then the m-Bézout bound equals

1

ddyl a1 Pertd) (3)

By applying Theorem 2, the following expansion is considered in the case of
sphere equations (see Definition 1):

[T2v [I usvy=2"J[v. J[ 0u+vo),

ueV’ (u,v)EE’ ueV’ (u,v)EE’

where G'(V', E') = G\ K4. Thus, it suffices to find the coefficient of [][ Y, in

ueV’
the expansion of the product:

I vu+v).

(u,v)EE’

In [3], it is proven that this coefficient equals the cardinality of the set of
those orientations of G’ = (V, E\E(K,)) satisfying the conditions set in the
following theorem.

Theorem 3 ([3]). Let G = (V,E) be a minimally rigid graph that contains
at least one complete subgraph on d vertices, denoted by K4 = (v1,...,vq). Let
B(G,K,), stand for the number of outdegree-constrained orientations of G' =

(V, E\E(Ky)), such that:

— the outdegree of vy,...,vq 1s 0.
— the outdegree of every vertex in V\{v1,...,vq4} is d.

The orientations that satisfy these constraints are called valid. Then the number
of embeddings of G in C?%, does not exceed

2VI=d. B(@, Ky).
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V1 V2 V3 V2 Ve
-
-

Vg Vs Ve Vs V3

Fig. 1. Left: Graph K3 3 where vy, vz are chosen as fixed vertices (d = 2). Right: the
resulting pseudograph, after removing the fixed vertices. (Color figure online)

The theorem extends to the case where a fixed K4 does not exist [4].

In [4], this method yields the current record upper bounds on the number
of embeddings. To achieve this, the valid orientations of Theorem 3 are associ-
ated to a graphical structure in which the vertices that have fixed outdegree 0
are omitted. This graphical structure is called pseudograph [4], and extends the
notion of a standard graph by allowing hanging edges, which have a single end-
point; hanging edges are always oriented outwards from its incident vertex. In
correspondence with Theorem 3, the hanging edges represent edges incident to
the missing vertices in the original graph. It is thus a collection G = (V, E, H),
where V' denotes the vertices, E the edges with two endpoints and H the hanging
edges.

An elimination process that applies to a pseudograph bounds the number of
orientations. At each step, one or more vertices (see Fig.2) are removed from
the pseudograph and their incident edges are either removed or become hanging
edges in a smaller graph. The number of possible outcomes in every step multi-
plies the current count until a terminal condition is reached; the overall product
bounds the number of valid orientations.

—_—
™S ee
¢

Fig. 2. Excerpt from [4]. Left: a (blue) vertex with 3 neighbours and no hanging edges.
Right: 3 possible cases for the orientation, after the removal of the blue vertex, when
d = 2. The number of possible cases is multiplied in every elimination step, which
eventually bounds the number of valid orientations. (Color figure online)
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We remark that from an algebraic point of view, the hanging edges corre-
spond to variables that can be eliminated linearly using the edge equations from
Definition 1. In other words, they represent a reduction in the cardinality of the
variables set of the specific vertex (see Fig. 1).

Theorem 4 ([4]). Let Bg(n,k) denote the mazimal number of orientations
with outdegree d for a connected pseudograph with n vertices and k hanging
edges. Then it holds that:

Bd(nvk) S Oéle : 5_1,
where ag and (g are defined as in Theorem 1.

Ford = 2,...,9, the formula yields improved bounds on the number of orien-
tations which are expressed by al}, see Table 1, since 34 < 1. Due to Theorem 3,
these quantities multiplied by 2", bound the number of embeddings in the d-
dimensional complex space. In the case of d = 2 and d = 3, this improved
the asymptotic bound on the embedding number to O(3.77") and O(6.82")
respectively.

3 Algebraic Systems Modeled by Simple Graphs

In this section we exploit the methods described above to bound the m-Bézout
number of a class of multi-homogeneous algebraic systems that shall be modeled
via a simple graph.

Recall the polynomial systems described in Theorem 1: For every polyno-
mial P; containing variable sets X, X, it holds for the degree mdeg(P;) = ;
only for j € {u,v}, whereas ¢;; = 0, for all j ¢ {u,v}. We also require that
the polynomial system cannot be split into smaller subsystems with disjoint
variables, and that two different polynomials cannot contain the same pair of
variable sets.

We call such systems simple graph polynomial systems since they define a
simple connected graph G(P) = (V, E) as follows: The vertices of G correspond
to the n variable subsets, while each polynomial yields an edge whose endpoints
are the respective vertices. There are no loops, because no polynomial contains a
single variable set. Since the pair of variable sets is unique for each polynomial,
there can be only one edge with the same endpoints, hence no multiple edges
appear. Furthermore, if the graph was disconnected, every connected component
would contain vertices corresponding to sets of variables that do not appear in
the other connected components, which has been excluded. All these conditions
indicate that the graph is simple and connected.

The main observation here is that we can relate the m-Bézout bound in the
cases of simple graph polynomial systems with valid orientations, as described
in Sect. 2, but we can relax those conditions since it is not necessary to restrain
these constraints to outdegree d and outdegree 0 cases (see Theorem 3).



14 E. Bartzos et al.

Theorem 5. Let P be a simple graph polynomial system with m equations for
a partition of variables X1, Xs,..., X, and let G(P) = (V, E) be the associated
simple graph. Let | X;| = dj;, d = (dy,d, .. .dy) and mdeg(P, ) = d(u,v), where
(u,v) is the edge associated with the polynomial containing X, , X,. We denote
by B(G(P),d) the number of orientations of G(P), constrained so that each
vertex u representing X, has outdegree d,. Then, the m-Bézout number for P
under this variable partition is exactly

BGP).d) - [[ dww.

(u,w)EE

Proof. The m-Bézout bound is the coefficient of the term Y = Y, ... Y2 . y,dn

in the polynomial ] (6¢u,v)*Yu+09(u,) Ys), where every Yy is a new symbolic
(u,w)EE

parameter. Clearly the latter is equal with

H 5(u,v) : H (Yu+Yv)

(u,v)EE (u,v)EE

Using a similar argument to that in the proof of Theorem 3 in [3], the mono-
mial Y appears only if each term Y, is selected exactly d,, times in the expansion
of this product. Since each set of variables represents a vertex and each poly-
nomial represents an edge in G(P), this can be connected to d,, edges directed
outwards from « in a graph orientation. a

Now, we can derive general upper bounds on the m-Bézout number using
the pseudograph formulation. Combining Theorem 5 and Theorem 4 leads to
the following proof of Theorem 1.

Proof (of Theorem 1). Let d = max(d), for a system P, with d as defined
above. Let G = (V, E, H) be a pseudograph, such that V, E are the vertices and
the edges of G(P), respectively, H are the hanging edges, where a vertex v has
exactly d — d, hanging edges as specified in Sect.2. Now, if a vertex v has no
hanging edges, then all of its d, = d edges should be directed outwards from
it. On the other hand, for a vertex v that has k, = d — d,, hanging edges, then
d, edges in F should be out-directed, which correspond to d, edges directed
outwards in G(P). These cases capture exactly all valid orientations of G(P).
The latter orientations are used to compute the m-Bézout bound of a simple
graph polynomial in Theorem 5.

Now, it suffices to bound the number of valid orientations of this pseudograph,
by extending the techniques of [4]. The bound on valid orientations with fixed
outdegree d for all pseudographs with |V| = n vertices and |H| = k hanging
edges is given by Theorem 4, thus establishing that Equation (1) bounds the
m-Bézout bound. O

Let us present two examples of simple graph polynomial systems, by com-
puting the m-Bézout number, and by deriving the bound in Theorem 1 that
concerns all systems whose graph has the same vertices and hanging edges.
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X1 Xl
AX3 XQAX:«;
X1 Xl
3 X2 X3

)
)

A A

Fig. 3. The 4 outdegree-constrained orientations of G(P) in Example 1. Since | X1| =
|X3| = 2,|X2| = |X4| = 1, the outdegree of X1, X3 is 2, while that of Xo, X4 is 1.
(Color figure online)

;
;

Example 1. The following system P is a simple graph polynomial system:

Pix, x,) = T1,172,1 + 5712721 + 2712 + 3

P(X1,X3) = 2:17%7117%71 + 2117%7117%72 + 21‘%7217%72 + T1,1%1,223,1T3,2 + 2121,2 —13
Pix, xy) = 961,1!101,21‘42;,1 - 93%,153421,1 + X1 2%41

Pixs,x5) = 455%,13”%,1303,2 + w2,1$§,19€3,2 + 2232+ 7

Pix,,xy) = 2121741 + 3021 + 5741 — 9

Pix, xy) = 431741 + 5732741 + Tw31 + 2741

for the partition of variables X1 = {z11,%12}, Xo = {221}, X3 ={x31,232},

Xy ={z41}. Of course, it is sparse in the sense that not all expected terms appear
with nonzero coefficient; hence, one would expect its mized volume to be inferior
to its m-Bézout number. The vertices of G(P) are labeled by these subsets; the
cardinalities are | X1| = |X3] = 2 and |X2| = |X4| = 1, hence d = (2,1,2,1).
The edge set is:

E ={(X1, X2), (X1, X3), (X1, X4), (X2, X3), (X2, X4), (X3, X4)}.

The multi-homogeneous degrees are §(x, x,) = 1, 0(x;,x5) = 2, 0(x,,x4) = 25
5(X2,X3) =3, 6(X2,X4) =1, 6(X3,X4) =1.

We compute the m-Bézout bound by Theorem 5. Since diy = d3 = 2, dy =
dy =1 the outdegree of vertices X1, X3 should be 2, while that of X5, X4 should
be 1 for a valid orientation. There are 4 such orientations (Fig.3). Therefore
the m-Bézout bound is 12 -4 = 48. The BKK bound gives a tighter bound by
exploiting sparseness: using phepy [25], we found a mized volume of 44, which
1s the actual number of complex roots.
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In order to apply Theorem 1, we set d = max(d) = 2, so as = 24175 and
By = 1871/5. Since the number of vertices of G(P) is n = 4 and the number
of equations m = 6, we have k =nd —m =2, and [ [ d(x;,x;) = 12, then the
bound is |12 - 24*/% . 1871/5] = 85.

Let us compare this estimate to the Bézout bound. The total degrees of the
equations are 2,4,6,2,4,2; the Bézout bound is therefore 768.

In the second example the multidegree vector has either zeros or ones. This
means that we can relate the m-Bézout bound to the permanent of a (0,1)-
matrix A capturing the polynomial structure. For this kind of matrices, there is
a permanent bound, better known as the Brégman-Minc bound [9,21]. Therefore,
we shall also compare this bound to ours.

Example 2. The following system Q is a simple graph polynomial system.:

Q(x,,x5) = T11721 + 2211 + 3221

Q(x,,x3) = 2711731 + 711732 + 31 + X322 + 2711

Q(x1,x5) = 9T1,125,1 + 2211752 + 51 + T52 + 11

Q(xy,x,) = 9021741 + T2 1%42 + Ta1 + Ta2 + T21

Q(X2,x5) = 9721%51 + 21052 + T51 + Ts2 + T21

Q(Xs,x,) = 4132741 + 2232742 + 5731741 + 9731742 + T31 + T3 2 + T4
Q(X5,x5) = 33,2751 + 43252 + 31051 + 7231252 + 231 + 32 + 25,1

Q(x4,X5) = Ta,2%51 + 9742752 + 34,1751 + 4241752 + 2741 + 742 + 14251

for the partition of variables X1 = {11}, X2 = {x21}, X3 = {®31,232},
Xy =A{za1,2402}, X5 = {251,252} the cardinalities of the subsets are | X1| =
| Xo| = 1, | X3] = | X4| = |X5| = 2, indicating that d = (1,1,2,2,2). The multi-
homogeneous degree is §(x, x,;) = 1 for all (X;, X;) € E but, of course, there are
some terms missing due to vanishing coefficients.

The vertices of G(Q) are labeled by these subsets. The edge set E is:

{(X1, X2), (X1, X3), (X1, X5), (X2, X4), (X2, X5), (X3, Xa), (X3, X5), (Xa, X5)}-

We count orientations such that the outdegrees of X1, Xs is dy = do = 1, while
that of X3, X4, X5 is d3 = dy = d5 = 2. Thus the m-Bézout number is the same
as the number of the orientations namely 6 (See F'ig.4). In that case this bound
is exact, since the number of roots is also 6, and so is the BKK bound.

We have d = 2, so ag = 24X and By = 187 1/5. We have n =5 and k = 2,
indicating that the bound from Theorem 1 is |24 -1871/5| = 13.

In order to use the Brégman-Minc bound, one constructs a matriz with rows
representing the variables and columns representing the equations (see [12] for
details). The entry (7', j) equals 6; ; for all x; € X;. The matriz is:
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X1 < X X1

Xo

X3 X4 X3 Xy

Fig. 4. The 6 valid orientations of the graph in Example 2. (Color figure online)

Qx1,X2) Quxi,xs) Qxi,xs) Quxz,xa) Qxs,xs) Qxs,xa) Q(xs,Xs) Q(Xa,X5)
z1,1 1 1 1 0 0 0 0 0
2,11 0 0 1 1 0 0 0
3,1 |0 1 0 0 0 1 1 0
3,2 |0 1 0 0 0 1 1 0
4,1 |0 0 0 1 0 1 0 1
24,20 0 0 1 0 1 0 1
5,1 |0 0 1 0 1 0 1 1
52 |0 0 1 0 1 0 1 1

The Brégman-Mine bound for (0,1)-matrices is [[;(ri!)Y/™, where r; is the
sum of entries in row i. Thus the permanent is bounded by 62 - 24'/2. Based on

Equation (3) one divides by [] d;! = 8 and obtains a bound of |9v6]| = 22 on

i=1
the m-Bézout number, which is looser than our method’s.
The Bézout bound is 256, since all total degrees are 2.

In both examples above, the maximum outdegree d for a vertex in the asso-
ciated graphs was 2. To conclude let us give some brief examples for the com-
putation of the bound using the closed-formula of Theorem 1 for larger d, given
the same graph with different cardinalities for the sets of variables. In all cases
we will consider 6; = 1.

The graph that will be analyzed has 6 vertices and 13 edges. The edge
set is the fOHOWiIlg (See Flg 5) (Xl) X2)5 (Xla X3)7 (Xla X4)’ (Xla X5)7 (X27 X3)7
(X2, X4), (X2, X5), (X3, X4), (X4, X5), (X5, Xe).
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We will first consider the case that the cardinalities are |X;| = |X3| = 1,
| X4 = 2,|X2| = | X5| = |X6| = 3. We have d = 3, so az = 40'/3, B3 = 20071/,
while k = 5. All these lead to [40% - 200~/ | = 151 as a bound.

If the cardinalities change so do the constraints on the outdegrees. For
example for the following case |Xs| = |X3| = 1,|X4| = |Xs5] = 2,|X1| =
3,|X2| = 4 we have clearly that d = 4, so k = 11. This means that we shall
use ag = 29/13.355/13 3, — 9-1/13 . 35-2/13  concluding that the bound is
L243/13 3 358/13J = 160.

Finally, let us present the case that |X;| = 5,|Xz| = 3,|X3| = 2,|X4| =
X5/ = |X¢] = 1. Now d = 5,k = 17 and also a5 = 2'9/17 . 637/17,
Bs = 273/17.6372/17, The bound in that case is [266/17 . 6310/17| = 168.

X2

Xe
X3 @ ®.X5

[
X1

Fig.5. An example graph on 6 vertices and 13 edges. The bound for simple graph
polynomial systems with different variable set cardinalities is analyzed in the text.

4 Conclusion

In this paper, we studied methods that use the multi-homogeneous Bézout to
improve the upper bounds on the number of embeddings of minimally rigid
graphs. We generalized these methods to polynomial systems which represent
simple graphs, and not only minimally rigid graphs. An open question is to
further understand the algebraic implications of our results. The graph elimi-
nation process that yields the closed-form bound on the number of orientations
can be paralleled to algebraic variable elimination. The main open question is
whether our approach may be extended to a wider class of well-constrained alge-
braic systems. This would require extending the proof that bounds the number
of graph orientations to the graph corresponding to the more general class of
algebraic systems.

Another open question is to obtain tight upper bound on the number of
orientations of graphs. A result on this would immediately improve the upper



The m-Bézout Bound and Distance Geometry 19

bound on the m-Bézout number. This is actually our current work. A more
theoretical question would be to estimate the error of our approximation.
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Abstract. Subresultants are one of the most fundamental tools in com-
puter algebra. They are at the core of numerous algorithms including,
but not limited to, polynomial GCD computations, polynomial system
solving, and symbolic integration. When the subresultant chain of two
polynomials is involved in a client procedure, not all polynomials of the
chain, or not all coefficients of a given subresultant, may be needed. Based
on that observation, this paper discusses different practical schemes, and
their implementation, for efficiently computing subresultants. Extensive
experimentation supports our findings.

Keywords: Resultant - Subresultant chain - Modular arithmetic -
Polynomial system solving + GCDs

1 Introduction

The goal of this paper is to investigate how several optimization techniques for
subresultant chain computations benefit polynomial system solving in practice.
These optimizations rely on ideas which have appeared in previous works, but
without the support of successful experimental studies. Therefore, this paper
aims at filling this gap.

The first of these optimizations takes advantage of the Half-GCD algorithm
for computing GCDs of univariate polynomials over a field k. For input poly-
nomials of degree (at most) n, this algorithm runs within O(M(n)logn) oper-
ations in k, where M(n) is a polynomial multiplication time, as defined in [12,
Chapter 8]. The Half-GCD algorithm originated in the ideas of [16,18] and [26],
while a robust implementation was a challenge for many years. One of the earliest
correct designs was introduced in [28].

The idea of speeding up subresultant chain computations by means of the
Half-GCD algorithm takes various forms in the literature. In [25], Reischert
proposes a fraction-free adaptation of the Half-GCD algorithm, which can be
executed over an effective integral domain B, within O(M(n)logn) operations
in B. We are not aware of any implementation of Reischert’s algorithm.

In [20], Lickteig and Roy propose a “divide and conquer” algorithm for com-
puting subresultant chains, the objective of which is to control coefficient growth
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in defective cases. Lecerf in [17] introduces extensions and a complexity anal-
ysis of the algorithm of Lickteig and Roy, with a particular focus on bivariate
polynomials. When run over an effective ring endowed with the partially defined
division routine, the algorithm yields a running time estimate similar to that of
Reischert’s. Lecerf realized an implementation of that algorithm, but observed
that computations of subresultant chains based on Ducos’ algorithm [10], or on
evaluation-interpolation strategies, were faster in practice.

In [12, Chapter 11], von zur Gathen and Gerhard show how the nominal leading
coefficients (see Sect. 2 for this term) of the subresultant chain of two univariate
polynomials a, b over a field can be computed within O(M(n)logn) operations in
k, by means of an adaptation of the Half-GCD algorithm. In this paper, we extend
their approach to compute any pair of consecutive non-zero subresultants of a, b
within the same time bound. The details are presented in Sect. 3.

Our next optimization for subresultant chain computations relies on the
observation that not all non-zero subresultants of a given subresultant chain
may be needed. To illustrate this fact, consider two commutative rings A and
B, two non-constant univariate polynomials a,b in Afy] and a ring homomor-
phism ¥ from A to B so that ¥(lc(a)) # 0 and ¥(lc(b)) # 0 both hold. Then,
the specialization property of subresultants (see the precise statement in Sect. 2)
tells us that the subresultant chain of ¥(a), ¥ (b) is the image of the subresultant
chain of a,b via ¥.

This property has at least two important practical applications. When B is
polynomial ring over a field, say B is Z/pZ|[x] and A is Z/pZ, then one can com-
pute a GCD of ¥(a),¥(b) via evaluation and interpolation techniques. Similarly,
say B is Q[z]/(m(z)), where m(z) is a square-free polynomial, then B is a prod-
uct of fields then, letting A be Q[z], one can compute a GCD of ¥(a), ¥(b) using
the celebrated D5 Principle [8]. More generally, if B is Q[z1, ..., x,]/(T), where
T = (t1(x1),- .. tn(x1,...,2,)) is a zero-dimensional regular chain (generating
aradical ideal), and A is Q[z1, ..., x,], then one can compute a so-called regular
GCD of @ and b modulo (T, see [5]. The principle of that calculation generalizes
the D5 Principle as follows:

1. if the resultant of a,b is invertible modulo (T) then 1 is a regular GCD of a
and b modulo (T);

2. if, for some k, the nominal leading coefficients sy, . .., sx_1 are all zero modulo
(T), and sy, is invertible modulo (T), then the subresultant Sy of index k of
a, b is a regular GCD of a and b modulo (T'); and

3. one can always reduce to one of the above two cases by splitting 7', when a
zero-divisor of B is encountered.

In practice, in the above procedure, k is often zero, which can be seen as a
consequence of the celebrated Shape Lemma [4]. This suggests to compute the
subresultant chain of a,b in Afy] speculatively. To be precise, and taking advan-
tage of the Half-GCD algorithm, it is desirable to compute the subresultants of
index 0 and 1, delaying the computation of subresultants of higher index until
proven necessary.
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We discuss that idea of computing subresultants speculatively in Sect. 3.
Making that approach successful, in comparison to non-speculative approaches,
requires to overcome several obstacles:

1. computing efficiently the subresultants Sy and Sy, via the Half-GCD; and
2. developing an effective “recovery” strategy in case of “misprediction”, that
is, when subresultants of index higher than 1 turn out to be needed.

To address the first obstacle, our implementation combines various schemes for
the Half-GCD, inspired by the work done in NTL [27]. To address the second
obstacle, when we compute the subresultants of index 0 and 1 via the Half-GCD,
we record or cache the sequence of quotients (associated with the Euclidean
remainders) so as to easily obtain subresultants of index higher than 1, if needed.

There are subresultant algorithms in almost all computer algebra software.
Most notably, the RegularChains library [19] in MAPLE provides three different
algorithms to compute the entire chain based on Ducos’ optimization [9], Bézout
matrix [1], or evaluation-interpolation based on FFT. Each one is well-suited for
a particular type of input polynomials w.r.t the number of variables and the
coefficients ring; see the MAPLE help page for SubresultantChain command.
Similarly, the ALGEBRAMIX library in MATHEMAGIX [14] implements different
subresultant algorithms, including routines based on evaluation-interpolation,
Ducos’ algorithm, and an enhanced version of Lickteig-Roy’ s algorithm [17].

The extensive experimentation results in Sect.5 indicate that the perfor-
mance of our univariate polynomials over finite fields (based on FFT) are closely
comparable with their counterparts in NTL. In addition, we have aggressively
tuned our subresultant schemes based on evaluation-interpolation techniques.
Our modular subresultant chain algorithms are up to 10x and 400x faster than
non-modular counterparts (mainly Ducos’ subresultant chain algorithm) in Z[y]
and Z[z, y], respectively. Further, utilizing the Half-GCD algorithm to compute
subresultants yields an additional speed-up factor of 7x and 2x for polynomials
in Z[y] and Z[z, y], respectively.

Further still, we present a third optimization for subresultant chain compu-
tations through a simple improvement of Ducos’ subresultant chain algorithm.
In particular, we consider memory usage and data locality to improve prac-
tical performance; see Sect.4. We have implemented both the original Ducos
algorithm [10] and our optimized version over arbitrary-precision integers. For
univariate polynomials of degree as large as 2000, the optimized algorithm uses
3.2x and 11.7x less memory, respectively, than our implementation of the orig-
inal Ducos’ algorithm and the implementation of Ducos’ algorithm in MAPLE.

All of our code, providing also univariate and multivariate polynomial arith-
metic, is open source and part of the Basic Polynomial Algebra Subprograms
(BPAS) library available at www.bpaslib.org. Our many subresultant schemes
have been integrated, tested, and utilized in the multithreaded BPAS polynomial
system solver [3].

This paper is organized as follows. Section 2 presents a review of subresultant
theory following the presentations of [9] and [15]. Our modular method to compute
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subresultants speculatively via Half-GCD is discussed in Sect. 3. Section 4 exam-
ines practical memory optimizations for Ducos’ subresultant chain algorithm.
Lastly, implementation details and experimental results are presented in Sect. 5.

2 Review of Subresultant Theory

In this review of subresultant theory, we follow the presentations of [9] and [15].
Let B be a commutative ring with identity and let m < n be positive integers.
Let M be a m x n matrix with coefficients in B. Let M; be the square submatrix
of M consisting of the first m — 1 columns of M and the i-th column of M, for
m < i < n;let det(M;) be the determinant of M;. The determinantal polynomial
of M denoted by dpol(M) is a polynomial in B[y], given by

dpol(M) = det(M,,)y" ™™ + det (M4 1)y™ ™ + - + det(M,,).

Note that, if dpol(M) is not zero, then its degree is at most n—m. Let f1,..., fm
be polynomials of B[y| of degree less than n. We denote by mat(fi,..., fi,) the
m X n matrix whose i-th row contains the coefficients of f;, sorted in order of
decreasing degree, and such that f; is treated as a polynomial of degree n—1. We
denote by dpol(fi,..., fm) the determinantal polynomial of mat(fi,..., fim).

Let a,b € B[y] be non-constant polynomials of respective degrees m = deg(a),
n = deg(b) with m > n. The leading coeflicient of a w.r.t. y is denoted by lc(a).
Let k be an integer with 0 < k < n. Then, the k-th subresultant of a and b (also
known as the subresultant of index k of a and b), denoted by S(a,b), is

Si(a,b) = dpol(y™*La,y"*2a,... a,y™ *"1b,...,b).

This is a polynomial which belongs to the ideal generated by a and b in B[y].
In particular, Sp(a,b) is the resultant of a and b denoted by res(a,b). Observe
that if Si(a,b) is not zero then its degree is at most k. If Si(a,b) has degree
k, then Si(a,b) is said to be non-defective or regular; if Si(a,b) # 0 and
deg(Sk(a,b)) < k, then Sk(a,b) is said to be defective. We call k-th nominal
leading coefficient, demoted by sy, the coefficient of Sy (a,b) in y*. Observe that
if Si(a,b) is defective, then we have s = 0. For convenience, we extend the
definition to the n-th subresultant as follows:

)

Sp(a,b) = 7(b)b, if m > n or le(b) € B is regular
2\ = undefined, otherwise

where v(b) = le(b)™ "', In the above, regular means not a zero-divisor. Note
that when m equals n and lc(b) is a regular element in B, then S, (a, b) = lc(b) ™ 'b
is in fact a polynomial over the total fraction ring of B. We call specialization
property of subresultants the following property. Let A be another commutative
ring with identity and ¥ a ring homomorphism from B to A such that we have
¥U(le(a)) # 0 and ¥(le(b)) # 0. Then, for 0 < k < n, we have Si(¥(a), ¥ (b)) =
W(Sk(a,)):

From now on, we assume that the ring B is an integral domain. Writing
d = deg(a) — deg(b), there exists a unique pair (g, r) of polynomials in B[y] sat-
isfying ha = qb + r, where h = lc(b)°™, and either r = 0 or deg(r) < deg(b);
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the polynomials ¢ and r, denoted respectively pquo(a, b) and prem(a, b), are the
pseudo-quotient and pseudo-reminder of a by b. The subresultant chain of a and b,
defined as subres(a,b) = (Sp(a,b), Sn—1(a,b), Sn_2(a,b),...,S/(a,b)), satisfies
relations which induce a Euclidean-like algorithm for computing the entire sub-
resultant chain: subres(a, b). This algorithm runs within O(n?) operations in B,
when m = n, see [9]. For convenience, we simply write S, instead of Si(a,b) for
each k. We write a ~ b, for a,b € B[y], whenever a,b are associate elements in
frac(B)[y], the field of fractions of B. Then for 1 < k < n, we have:

(i) Sp—1 = prem(a,—b); if S,,_1 is non-zero, defining e := deg(S,_1), then we
have:

_ prem(b, —S,_1)

-1= lc(b)(mfn)(nfe)Jrl

)

(#i) if Sx—1 # 0, defining e := deg(Sk_1) and assuming e < k—1 (thus assuming
Sk—1 defective), then we have:
(a) deg(Sk) = k, thus Sy is non-defective,
(b) Sk—1 ~ Se and lc(Sk,l)kfeflsk,l = spk~¢~1S,. thus S, is non-defective,

) Sk—2="Sk-3="+++= 811 =0,
(7i7) if both Sy and Si_1 are non-zero, with respective degrees k and e then we
have:

_ prem(Sk, —Sk_1)
le( S )t

e—1

Algorithm 1. SUBRESULTANT (a, b, y)

Input: a,b € B[y] with m = deg(a) > n = deg(b) and B is an integral domain
Output: the non-zero subresultants from (S,, Sn—1, Sn—2,...,50)

1: if m > n then

2: S:=(le(b)™ " 'b)

3: else S := ()

4: s:=1c(b)™™"

5: A:=0b; B:=prem(a,—b)

6: while true do

7 d := deg(A); e := deg(B)
8: if B =0 then return S
9: S:=(B)US;d:=d—e
10: if § > 1 then -
11: C:= 71(:(5;)71 B
12: S:=(C)us

13: else C := B

14: ife=0 thza;ll reél)lrn S
. . prem{A, —

e B= ey

16: A:=C; s:=1c(A)

17: end while

Algorithm 1 from [10] is a known version of this procedure that computes
all non-zero subresultants a, b € B[y]. Note that the core of this algorithm is the
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while-loop in which the computation of the subresultants S, and S._1, with the
notations of the above points (i) and (ii7), are carried out.

3 Computing Subresultant Chains Speculatively

As discussed in the introduction, when the ring B is a field k, the computation
of the subresultant chain of the polynomials a,b € B[y] can take advantage of
asymptotically fast algorithms for computing ged(a, b). After recalling its speci-
fications, we explain how we take advantage of the Half-GCD algorithm in order
to compute the subresultants in subres(a, b) speculatively.

Consider two non-zero univariate polynomials a,b € k[y] with ng := deg(a),
ny := deg(b) with ng > ny. The extended Euclidean algorithm (EEA) computes
the successive remainders (rg := a,r1 = b,72,...,7¢ = ged(a, b)) with degree
sequence (ng,ny,ng := deg(ra)...,ne := deg(r¢)) and the corresponding quo-
tients (q1, ¢, ..., qe) defined by ;41 = rem(r;, r;—1) = 1i—1 — g1, for 1 < i < £,
gi = quo(r;,ri—1) for 1 < i < ¢, nip1 < ny, for 1 <i < ¢, and rpy1; = 0 with
deg(r141) = —oo. This computation requires O(n?) operations in k. We denote

01 ] , so that,
q;

by Q;, the quotient matrices, defined, for 1 < i < ¢, by Q; = [1 B

for 1 <i < ¢, we have

T _ A |Ti-1| _ o To
nl-afi-anal]
We define m; := deg(g;), so that we have m; = n;_1 —n; for 1 < i < /.
The degree sequence (nyg, . ..,n;) is said to be normal if n;11 = n; — 1 holds, for

1 <4 < ¢, or, equivalently if deg(g;) =1 holds, for 1 <4 < 4.

Using the remainder and degree sequences of non-zero polynomials a, b € k[y],
Proposition 1, known as the fundamental theorem on subresultants, introduces
a procedure to compute the nominal leading coefficients of polynomials in the
subresultant chain.

Proposition 1. For k = 0,...,ny1, the nominal leading coefficient of the k-th
subresultant of (a,b) is either 0 or sy if there exists i < £ such that k = deg(r;),

sp= (=17 H le(ry)™ =1 7" e (ry) T,
1<j<i
where 7 = 31 <, (nj—1 —ni)(n; —n;) [12, Theorem 11.16].

The Half-GCD, also known as the fast extended Euclidean algorithm, is a
divide and conquer algorithm for computing a single row of the EEA, say the
last one. This can be interpreted as the computation of a 2 x 2 matrix @ over k[y]

so that we have:
ged(a, b) _ol®
0 - bl’
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The major difference between the classical EEA and the Half-GCD algorithm
is that, while the EEA computes all the remainders rg,r1,...,r, = ged(rg, 1),
the Half-GCD computes only two consecutive remainders, which are derived
from the @; quotient matrices, which in turn are obtained from a sequence of
“truncated remainders”, instead of the original r; remainders.

Here, we take advantage of the Half-GCD algorithm presented in [12,
Chapter 11]. For a non-negative k < ng, this algorithm computes the quotients
qi,---,qn, where hy is defined as

hk:max{0§j§€| imigk}, (2)

i=1

the maximum j € N so that 3, _,; deg(¢;) < k. This is done within (22M(k) +
O(k)) log k operations in k. From Eq. 2, ki, < min(k, £), and

hg hip+1

h
ZmiZZ(ni_l —ni) ="ng — Np, < k< Z mM; =MNg — Thy+1- (3)
=1

i=1 i=1

Thus, np,+1 < no — k < nyp,, and so hy can be uniquely determined; see Algo-
rithm 11.6 in [12] for more details.

Due to the deep relation between subresultants and the remainders of the
EEA, the Half-GCD technique can support computing subresultants. This app-
roach is studied in [12]. The Half-GCD algorithm is used to compute the nom-
inal leading coeflicient of subresultants up to s, for p = ny, by computing
the quotients ¢1, ..., ¢, , calculating the lc(r;) = le(r;—1)/lc(g;) from le(rg) for
1 < ¢ < hg, and applying Proposition 1. The resulting procedure runs within
the same complexity as the Half-GCD algorithm.

However, for the purpose of computing two successive subresultants
SnysSnyyy given 0 < p < nq, for 0 < v < £ so that n,y1 < p < ny, we
need to compute quotients qi, ..., qn, where h, is defined as

hp:max{0§j<f|nj>p}, 4)

using Half-GCD. Let k = ng — p, Eqgs.3 and 4 deduce np,+1 < ng — k < ny,,
and h, < hg. So, to compute the array of quotients q1,...,qn,, we can utilize
an adaptation of the Half-GCD algorithm of [12]. Algorithm 2 is this adaptation
and runs within the same complexity as the algorithm of [12].

Algorithm 2 receives as input two polynomials rg := a, 7 := b in k[y|, with
ng > n1, 0 < k €N, p < ng where p, by default, is ng — k, and the array A of
the leading coefficients of the remainders that have been computed so far. This
array should be initialized to size ng + 1 with A[ng] = lc(ro) and A[i] = 0 for
0 <1i < ng. A is updated in-place as necessary. The algorithm returns the array
of quotients Q := (q1,...,qn,) and matrix M := Qp,, --- Q1.

Algorithm 2 and the fundamental theorem on subresultants yield Algorithm 3.
This algorithm is a speculative subresultant algorithm based on Half-GCD to
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Algorithm 2. AbApTEDHGCD(ro, 71, k, p, A)

Input: ro,r1 € k[y] with ng = deg(ro) > n1 = deg(r1), 0 < k < np, 0 < p < mg is
an upper bound for the degree of the last computed remainder that, by default,
is no — k and is fixed in recursive calls (See Algorithm 3), the array A of the
leading coefficients of the remainders (in the Euclidean sequence) which have been
computed so far

Output: h, € N so that h, = max{j | n; > p}, the array Q := (q1,...,qn,) of the
first h, quotients associated with remainders in the Euclidean sequence and the
matrix M := Qp, - - Q1; the array A of leading coefficients is updated in-place

1: if r1 =0 or p > n1 then return (O, 0, [(1) (1)] )

2: if k =0 and ng = n: then
1

0
3: return (17 (Ie(ro) /1c(r1)), [1 —lc(ro)/lc(rl)} )
4: my == [£7; 61 := max(deg(ro) — 2 (m1 — 1),0); A := max(deg(ro) — 2k, 0)

5: (h', (q1y---,qn), R) := ADAPTEDHG CD(quo(ro, ¥ ), quo(ry, ¥ ), m1 — 1, p, A)

el . 5 [auo(ro, v) | Roo Ro1
6: {d} =R {quo(h,y/\)} where R = |:R10 Riy

7: mg := deg(c) + deg(Ri1) — k
8: if d = 0 or m2 > deg(d) then return (h’, (q1,---,qn), R)
9: r :=rem(c, d); ¢ := quo(c,d); Q = [(1) —1q}
10: nprqq = ny — deg(q)
11: if npr4q < p then return (h', (q1,-- .7qh/,q),R)
12: A[npry1] == Alnps]/1c(q)
13: 02 := max(2mg — deg(d),0)
14: (h*7 (Qh’+27 EERR Qh'+h*+1)7 S) =

ADpAPTEDHGCD (quo(d, 4°2), quo(r, y°2), deg(d) — maz, p, A)
15: return (hp =R 4+h+1,Q:=(q,...,qn,), M = SQR)

calculate two successive subresultants without computing others in the chain.
Moreover, this algorithm returns intermediate data that has been computed by
the Half-GCD algorithm—the array R of the remainders, the array Q of the
quotients and the array A of the leading coefficients of the remainders in the
Euclidean sequence—to later calculate higher subresultants in the chain without
calling Half-GCD again. This caching scheme is shown in Algorithm 4.

Let us explain this technique with an example. For non-zero polynomials
a,b € k[y] with ng = deg(a),n1 = deg(b), so that we have ng > ny. The
subresultant call SUBRESULTANT(a, b,0) returns Sp(a,b), S1(a,b) speculatively
without computing (Sy,, Sn,—1,Sn,-2,-..,92), arrays @ = (¢1,...,q), R =
(re,7e—1), and A. Therefore, any attempt to compute subresultants with higher
indices can be addressed by utilizing the arrays Q,R, A instead of calling Half-
GCD again. In the Triangularize algorithm for solving systems of polynomial
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Algorithm 3. SUBRESULTANT(a, b, p)
Input: a,b € klz] \ {0} with no = deg(a) > n1 = deg(b), 0 < p < ng
Output: Subresultants Sy, (a,b), Sn,.,(a,b) for such 0 < v < £ so that n,41 < p <
Ny, the array Q of the quotients, the array R of the remainders, and the array A
of the leading coefficients of the remainders (in the Euclidean sequence) that have
been computed so far
A:=(0,...,0,1c(a)) where A[no] =lc(a) and Afi] =0 for 0 < i < ng
if p > n1 then

A[ni] = 1c(b)

return ((a, lc(b))™ "), (), ), A)

(v, Q, M) := ApapTEDHGCD(a, b,no — p, p, A)
deduce (no = deg(a),n1 = deg(b),...,n, = deg(m)) from a,b and Q.

T { T } =M [a} R := (Tv,Tv+1); Not1 := deg(rut1)
To+1 b

8 Ty :=0; Tyy1:=0; =1
9: for j from 1 tov—1do

10: To = To + (Nj—1 — Nw) (N — M)
H: 7ogr = Tog1 + (-1 — No1) (05 — Nwt1)
120 = a Al

13: Tog1 := Tot1 + (Mu—1 — Nog1)(Ny — Noyy1)
14: S, = ()™ a7y
15: Snv+1 = (_l)Tu+1a A[nv]ny—l—nu#»l Tyt1

16: return ((SnU,SMH), 9, R, A)

equations by triangular decomposition, the RegularGCD subroutine relies on this
technique for improved performance; see [3,5] for more details and algorithms.

For polynomials a,b € Z[y] with integer coeflicients, a modular algorithm
can be achieved by utilizing the Chinese remainder theorem (CRT). In this
approach, we use Algorithms 2 and 3 for a prime field k. We define Z,[y] as
the ring of univariate polynomials with coefficients in Z/pZ, for some prime p.
Further, we use an iterative and probabilistic approach to CRT from [22]. We
iteratively calculate subresultants modulo different primes pg, p1, ..., continuing
to add modular images to the CRT direct product Z,, ® - - - ® Zj, for i € N until
the reconstruction stabilizes. That is to say, the reconstruction does not change
from Zp, ® - @ ZLp, , 10 Lipy @ -+ & L,

We further exploit this technique to compute subresultants of bivariate poly-
nomials over prime fields and the integers. Let a,b € B[y] be polynomials with
coefficients in B = Zp[z|, thus Bly] = Z,[x,y], where the main variable is y
and p € N is an odd prime. A desirable subresultant algorithm then uses an
evaluation-interpolation scheme and the aforementioned univariate routines to
compute subresultants of univariate images of a,b over Z,[y] and then interpo-
lates back to obtain subresultants over Z,|z,y]. This approach is well-studied
in [22] to compute the resultant of bivariate polynomials. We can use the same
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Algorithm 4. SUBRESULTANT(a, b, p, Q, R, A)

Input: a,b € k[z] \ {0} with ng = deg(a) > n1 = deg(b), 0 < p < ng, the list Q
of all the quotients in the Euclidean sequence, the list R of the remainders that
have been computed so far; we assume that R contains at least r,,...7,—1, 7, with
0 < pu < ¢—1, and the list A of the leading coefficients of the remainders in the
Euclidean sequence

Output: Subresultants Sy, (a,b), Sn,,,(a,b) for such 0 < v < £ so that n,41 < p <
ny; the list R of the remainders is updated in-place

deduce (no = deg(a),n1 = deg(b),...,ne = deg(w)) from a,b and Q
if ny < p then v:=/¢
else find 0 < v < £ such that ny+1 < p < Ny.
if v =0 then
return (a, lc(b)m_n_lb)
for i from max(v,u + 1) down to v do
Ti = Tip1Gir1 + Tig2; R =R U (1)
compute Sn,, Sn,,, using Proposition 1 from ry,7y41

return (Snv , Sn1,+1)

technique to compute the entire subresultant chain, or even particular subresul-
tants speculatively through Algorithms 2 and 3.

We begin with choosing a set of evaluation points of size N € N and
evaluate each coefficient of a,b € Z,[x,y] with respect to the main variable
(y). Then, we call the subresultant algorithm to compute subresultants images
over Z,[y]. Finally, we can retrieve the bivariate subresultants by interpolat-
ing each coeflicient of each subresultant from the images. The number of eval-
uation points is determined from an upper-bound on the degree of subresul-
tants and resultants with respect to z. From [12], the following inequality holds:
N > deg(b,y) deg(a, ) + deg(a,y) deg(b, ) + 1.

For bivariate polynomials with integer coeflicients, we can use the CRT algo-
rithm in a similar manner to that which has already been reviewed for univari-
ate polynomials over Z. Figure1 demonstrates this procedure for two polyno-
mials a,b € Z[z,y]. In this commutative diagram, a@,b represent the modular
images of the polynomials a,b modulo prime p; for 0 <i <e.

In practice, as the number of variables increases, the use of dense evaluation-
interpolation schemes become less effective, since degree bound estimates become
less sharp. In fact, sparse evaluation-interpolation schemes become more attrac-
tive [23,29], and we will consider them in future works.

4 Optimized Ducos’ Subresultant Chain

In [10], Ducos proposes two optimizations for Algorithm 1. The first one,
attributed to Lazard, deals with the potentially expensive exponentiations and
division at Line 11 of Algorithm 1. The second optimizations considers the poten-
tially expensive exact division (of a pseudo-remainder by an element from the
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a,b € Zlz,y| Algorithm 1 subres(a, b,y) € Z[z, y]
lmodulo POSP1sePi CRTT

a,b € Zp,[z,v] subres(@, b, y) € Zp, [z, ]
lEvaluate at £, ty Interpolate at IT

Algorithm 3 _ T
[y] L Subres(a(x7 y)‘z:t“ b(:t, y)|90:t7: ) y) € qu‘, [y]

&(1’, y)|1:ti ’ E(CE: y) ‘r:fi, € ZP&,
Fig. 1. Computing the subresultant chain of a,b € Z|[x,y] using modular arithmetic,
evaluation-interpolation and CRT algorithms where (to,...,tn) is the list of evaluation
points, (po,-..,Dp:,) is the list of distinct primes, @ = a mod p,, and b = b mod p;,

coefficient ring) at Line 15 of this algorithm. Applying both improvements to
Algorithm 1 yields an efficient subresultant chain procedure that is known as
Ducos’ algorithm.

Algorithm 5. Ducos Optimization (S4, Sq—1, Se, 84)
Input: Given Sq, Sq—1,Se € Bly] and sq € B
Output: Sc_1, the next subresultant in the subresultant chain of subres(a, b)
1 (de) = (deg(Sa), deg(Su-1))
(ca—1,8¢) == (Ie(Sa-1),1c(Se))
for j=0,...,e—1do
Hj = sey’
He := sy — Se
forj=e+1,...,d—1do
H, = yH,_, — coeff(yH;_1,€)s4_,

Cd—1

55) coeff(Sq, j)H,;
j=0

1c(Sq)

9: return (—1)4-°t! 64*1<de*1+D)*Cgfﬂ(de—h €)Sq_1

8 D :=

The Ducos optimization that is presented in Algorithm 5, and borrowed
from [10], is a well-known improvement of Algorithm 1 to compute the subresul-
tant Se._; (Line 15). This optimization provides a faster procedure to compute
the pseudo-division of two successive subresultants, namely Sy, Sq—1 € B[y], and
a division by a power of lc(Sy). The main part of this algorithm is for-loops to
compute:

d—1
> coeff(Sq, j)H;

D ==

IC(Sd) ’

where coeff(Sy, j) is the coefficient of Sy in y7.
We now introduce a new optimization for this algorithm to make better use of
memory resources through in-place arithmetic. This is shown in Algorithm 6. In
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this algorithm we use a procedure named INPLACETAIL to compute the tail (the
reductum of a polynomial with respect to its main variable) of a polynomial, and
its leading coefficient, in-place. This operation is essentially a coefficient shift.
In this way, we reuse existing memory allocations for the tails of polynomials
Sd, Sdfl, and Se.

Algorithm 6. memory-efficient Ducos Optimization (Sq4, Sg—1, Se, S4)
Input: Sg,Sq-1,S. € Bly] and sq € B
Output: S._1, the next subresultant in the subresultant chain of subres(a, b)
1: (p,ca) := INPLACETAIL(Sq)
(¢, cda—1) := INPLACETAIL(Sgq—1)
(h, se) := INPLACETAIL(S.)
Convert p to a recursive representation format in-place
h:= —h; a := coeff(p,e) h
fori=e+1,...,d—1do
if deg(h) = e — 1 then
h :=y tail(h) — EXxAcTQUOTIENT(Ic(h) ¢, cq—1)
else h:=y tail(h)
a := a+ lc(coef(p, 1)) h
Dai=a+tse Yoy coeff(p, i)y’
: a := EXACTQUOTIENT(a, ¢q)
: if deg(h) = e — 1 then
a:=cq—1 (y tail(h) + a) —lc(h) ¢
:else a:=cq-1 (yh+a)

= s e e e

—_
(=]

: return (—1)47*"! EXACTQUOTIENT(a, 54)

Furthermore, we reduce the cost of calculating Zj;el coeff(Sq, j)H; with com-
puting the summation iteratively and in-place in the same for-loop that is used
to update polynomial h (lines 6-10 in Algorithm 6). This greatly improves data
locality. We also update the value of h depending on its degree with respect to y
as deg(h) < e—1for all e+ 1 <4 < d. We utilize an optimized exact division
algorithm denoted by EXACTQUOTIENT to compute quotients rather a classical
Euclidean algorithm.

5 Implementation and Experimentation

In this section, we discuss the implementation and performance of our various
subresultant algorithms and their underlying core routines. Our methods are
implemented as part of the Basic Polynomial Algebra Subprograms (BPAS)
library [2] and we compare their performance against the NTL library [27] and
MAPLE 2020 [21]. Throughout this section, our benchmarks were collected on
a machine running Ubuntu 18.04.4, BPAS v1.791, GMP 6.1.2, and NTL 11.4.3,
with an Intel Xeon X5650 processor running at 2.67 GHz, with 12x4GB DDR3
memory at 1.33 GHz.
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deg(a) = deg(b) +1=d

5.1 Routines over Z,[y]

We begin with foundational routines for arithmetic in finite fields and polyno-
mials over finite fields. For basic arithmetic over a prime field Z, where p is an
odd prime, Montgomery multiplication, originally presented in [24], is used to
speed up multiplication. This method avoids division by the modulus without
any effect on the performance of addition, and so, yields faster modular inverse
and division algorithms.

We have developed a dense representation of univariate polynomials which
take advantage of Montgomery arithmetic (following the implementation in [6])
for prime fields with p < 2%4. Throughout this section we examine the perfor-
mance of each operation for two randomly generated dense polynomials a,b € Z,
with a 64-bit prime p = 4179340454199820289. Figures?2, 3, 4 and 5 examine,
respectively, multiplication, division, GCD, and subresultant chain operations.
These plots compare the various implementations within BPAS against NTL.

Our multiplication over Z,[y] dynamically chooses the appropriate algorithm
based on the input polynomials: plain or Karatsuba algorithms (following the
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routines in [12, Chapter 8]), or multiplication based on fast Fourier transform
(FFT). The implementation of FFT itself follows that which was introduced in [7].
Figure 2 shows the performance of these routines in BPAS against a similar “wrap-
per” multiplication routine in NTL. From empirical data, our wrapper multipli-
cation function calls the appropriate implementation of multiplication as follows.
For polynomials a, b over Z,[y|, with p < 293, the plain algorithm is called when
s := min (deg(a),deg(b)) < 200 and the Karatsuba algorithm is called when
s > 200. For 64-bit primes (p > 293), plain and Karatsuba algorithms are called
when s < 10 and s < 40, respectively, otherwise FFT-based multiplication is per-
formed.

The division operation is again a wrapper function, dynamically choosing
between Euclidean (plain) and fast division algorithms. The fast algorithm is
an optimized power series inversion procedure that is firstly implemented in
Aldor [11] using the so-called middle-product trick. Figure 3 shows the perfor-
mance of these two algorithms in comparison with the NTL division over Z,[y].
For polynomials a,b over Z,[y], b the divisor, empirical data again guides the
choice of appropriate implementation. Plain division is called for primes p < 263
and deg(b) < 1000. However, for 64-bit primes, the plain algorithm is used when
deg(b) < 100, otherwise fast division supported by FFT is used.

Our GCD operation over Zy[y] had two implementations: the classical
extended Euclidean algorithm (EEA) and the Half-GCD (fast EEA) algorithm,
respectively following the pseudo-codes in [12, Chapter 11] and the implemen-
tation in the NTL library [27]. Figure4 shows the performance of these two
approaches named BPAS_plainGCD and BPAS_fastGCD, respectively, in comparison
with the NTL GCD algorithm for polynomials a,b € Z,[y] where gcd(a,b) = 1.

To analyze the performance of our subresultant schemes, we compare the
naive EEA algorithm with the modular subresultant chain and the speculative
subresultant algorithm for p = 0,2 in Fig.5. As this figure shows, using the
Half-GCD algorithm to compute two successive subresultants S1,5y for p = 0
is approximately 5x faster than computing the entire chain, while calculating
other subresultants, e.g. S3, Sy for p = 2 with taking advantage of the cached
information from the first call (for p = 0), is nearly instantaneous.

5.2 Subresultants over Z[y]| and Z[x, y]

We have developed a dense representation of univariate and bivariate polyno-
mials over arbitrary-precision integers, using low-level procedures of the GNU
Multiple Precision Arithmetic library (GMP) [13]. Basic dense arithmetic opera-
tions, like addition, multiplication, and division, follows [12]. The representation
of a dense bivariate polynomial a € Z[x,y] (or Z,[z,y] for a prime p) is stored
as a dense array of coefficients (polynomials in Z[z]), possibly including zeros.

Following our previous discussion of various schemes for subresultants, we
have implemented several subresultant algorithms over Z[y| and Z|z, y]. We have
four families of implementations:

(i) BPAS_modSRC, that computes the entire subresultant chain using Proposi-
tion 1 and the CRT algorithm (and evaluation-interpolation over Z[x, y]);
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(i) BPAS_specSRC, that refers to Algorithms 3 and 4 to compute two successive
subresultants using Half-GCD and caching techniques;

(#4i) BPAS_Ducos, for Ducos’ algorithm, based on Algorithm 5; and

(iv) BPAS_OptDucos, for Ducos’ algorithm based on Algorithm 6.

Figure 6 compares the running time of those subresultant schemes over Z[y]
in the BPAS library and MAPLE. The modular approach is up to 5x faster
than the optimized Ducos’ algorithm. Using speculative algorithms to compute
only two successive subresultants yields a speedup factor of 7 for d = 2000.
Figure 7 provides a favourable comparison between the family of subresultant
schemes in BPAS and the subresultant algorithm in MAPLE for dense bivariate
polynomials a,b € Z[z,y] where the main degree is fixed to 50, i.e. deg(a,y) =
deg(b,y) + 1 = 50, and deg(a,z) = deg(b,x) + 1 = d for d € {10,20,...,100}.
Note that the BPAS_specSRC algorithm for p = 0, 2,4, 6 is caching the information
for the next call with taking advantage of Algorithm 4.

We further compare our routines with the Ducos subresultant chain algo-
rithm in MAPLE, which is implemented as part of the RegularChains library [19].
Table 1 shows the memory usage for computing the entire subresultant chain of
polynomials a,b € Zly|, with deg(a) = deg(b) + 1 = d. The table presents
BPAS_Ducos, BPAS_OptDucos, and Maple Ducos. For d = 2000, Table1 shows
that the optimized algorithm uses approximately 3x and 11x less memory than
our original implementation and the Ducos’ algorithm in MAPLE, respectively.

We next compare more closely the two main ways of computing an entire
subresultant chain: the direct approach following Algorithm 1, and a mod-
ular approach using evaluation-interpolation and CRT (see Fig.1). Figure8
shows the performance of the direct approach (the top surface), calling our
memory-optimized Ducos’ algorithm BPAS_OptDucos, in comparison with the
modular approach (the bottom surface), calling BPAS_modSRC. Note that, in this
figure, interpolation may be based on Lagrange interpolation or FFT algorithms
depending on the degrees of the input polynomials.
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Table 1. Comparing memory usage (GB) of Ducos’ subresultant chain algorithms for
polynomials a, b € Z[y] with deg(a) = deg(b) + 1 = d in Fig. 6 over Z[y]

Degree | BPAS Ducos | BPAS_OptDucos | Maple Ducos
1000 1.088 0.320 3.762
1100 1.450 0.430 5.080
1200 1.888 0.563 6.597
1300 |2.398 0.717 8.541
1400 |2.968 0.902 10.645
1500 | 3.655 1.121 12.997
1600 | 4.443 1.364 15.924
1700 | 5.341 1.645 19.188
1800 |6.325 1.958 23.041
1900 7.474 2.332 27.353
2000 |8.752 2.721 31.793

Next, Fig.9 highlights the benefit of our speculative approach to compute
the resultant and subresultant of index 1 compared to computing the entire.
The FFT-based modular algorithm is presented as the top surface, while the
speculative subresultant algorithm based on the Half-GCD is the bottom surface.
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Fig. 8. Comparing Opt. Ducos’ algo- Fig.9. Comparing modular subresultant
rithm (the top surface) and modular  chain with using FFT (the top surface),
subresultant chain (the bottom sur- and speculative subresultant (p = 0) (the
face) to compute the entire chain for  bottom surface) for polynomials a,b €
polynomials a,b € Z[z < y] with Z[zx < y]with deg(a,y) =deg(b,y)+1=Y
deg(a,y) = deg(b,y) + 1 = Y and and deg(a,z) = deg(b,z)+1=X
deg(a,z) =deg(b,z) +1 =X
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Table 2. Comparing the execution time (in seconds) of subresultant schemes on the
BPAS Triangularize solver for well-known bivariate systems in the literature. We call
optimized Ducos’ subresultant chain algorithm in the OptDucos mode, modular subre-
sultant chain algorithms (FFT and Lagrange) in the ModSRC mode, and Half-GCD based
subresultant algorithms in the SpecSRCuaive and SpecSRCcachea modes. We do cache subre-
sultant information for further calls in the ModSRC and SpecSRCeachea modes; deg(src[idx])
shows a list of minimum main degrees of the computed subresultants in each subresul-
tant call and Indexes indicates a list of requested subresultant indexes.

SysName ModSRC | SpecSRCraive | SpecSRCeachea | OptDucos | deg(srclidx]) | Indexes
13_sings_9 3416 3.465 3.408 3417 | (1) (0)
compact_surf 11.257 | 26.702 10.26 10.258 | (0,2, 4,6) | (0, 3, 5, 6)
curve24 4.992 4924 4.911 4912 (0,0, 1) (0, 0, 0)
curve._issac 2.554 2.541 2.531 2.528 | (0,0, 1) (0, 0,0)
cusps_and_flexes 4.656 8.374 4.656 4.488 (0, ...,2) 0,...,2)
degree_6_surf 81.887 | 224.215 79.394 344.564 | (0,2, 4,4) (0,2, 4, 4)
hard_one 48.359| 197.283 47.213 175.847 [ (0,...,2) (0, ..., 2)
huge_cusp 23.406 33.501 23.41 23.406 | (0, 2, 2) (0,2, 2)
L6_circles 32.906 | 721.49 33.422 32.347 | (0, ..., 6) 0, ...,6)
large_curves 65.353|  64.07 63.018 366.432 | (0,0,1,1) (0,0, 0,0)
mignotte_xy 348.406| 288.214 | 287.248 462.432 | (1) (0)
SA_2.4_eps 4141 37.937 4122 4123 1 (0,...,6) |(0,...,6)
SA 4.4 eps 292.825 | 584.318 | 216.065 197.816 | (0,...,3) (0, ...,6)
spider 293.701| 294.121 295.198 293.543 | (0,0,1,1) |(0,0,0,0)
spiral29_24 647.469 | 643.88 644.379 643.414 | (1) (0)
ten_circles 3.255| 56.655 2.862 2.116 | (0, ..., 4) 0,...,4)
tryme 3728.085 | 4038.539 2415.28 4893.04 | (0, 2) (0, 2)
vert_lines 1217 24.956 1.02 1.021  (0,...,6) (0, ...,6)

Lastly, we investigate the effects of different subresultant algorithms on the
performance of the BPAS polynomial system solved based on triangular decom-
position and regular chains; see [3,5]. Subresultants play a crucial role in com-
puting regular GCDs (see Sect.1) and thus in solving systems via triangular
decomposition. Tables 2, 3, and 4 investigate the performance of BPAS_modSRC,
and BPAS_specSRC and the caching technique, for system solving.

Table 2 shows the running time of well-known and challenging bivariate sys-
tems, where we have forced the solver to use only one particular subresultant
scheme. In SpecSRCuaive, BPAS_specSRC does not cache data and thus does not
reuse the sequence of quotients computed from previous calls. Among those
systems, the caching ratio (SpecSRCmeive/specshCeacnea) Of vert_lines, L6_circles,
ten_circles, and SA 2 4 eps are 24.5, 21.6, 19.8, 9.2, respectively, while the
speculative ratio (ModSRC/specsReeacnea) Of tryme, mignotte_xy, and vert_lines are
1.5, 1.2, and 1.2, respectively.
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Tables 3 and 4 examine the performance of the polynomial system solver on
constructed systems which aim to exploit the maximum speed-up of these new
schemes. Listing 1.1 and 1.2 in Appendix A provide the MAPLE code to construct
these input systems. For those systems created by Listing 1.1, we get 3x speed-
up through caching the intermediate speculative data rather than repeatedly
calling the Half-GCD algorithm for each subresultant call. Using BPAS_specSRC
provides a 1.5x speed-up over using the BPAS_modSRC algorithm. Another family
of constructed examples created by Listing 1.2 is evaluated in Table 4. Here, we
get up to 3x speed-up with the use of cached data, and up to 2x speed-up over
the modular method.

Table 3. Comparing the execution time (in seconds) of subresultant schemes on the
BPAS Triangularize system solver for constructed bivariate systems in Listing 1.1 to
exploit the speculative scheme. Column headings follow Table 2, and FFTBlockSize is
block size used in the FFT-based evaluation and interpolation algorithms.

n | ModSRC | SpecSRCuaive | SpecSRCeachea | deg(sreidx]) Indexes FFTBlockSize
50 9.382 25.025 6.295 (0, 25, 50, 75) | (0, 26, 51, 75) | 512
60 22.807 | 82.668 23.380 (0, 30, 60, 90) (0, 31, 61, 90) 1024
70 23.593 | 105.253 30.477 (0, 35, 70, 105) | (0, 36, 71, 105) | 1024
80| 36.658 | 156.008 | 47.008 (0, 40, 80, 120) | (0,41,81,120) | 1024

100 171.213 | 272.939 83.966 (0, 50, 100, 150) | (0, 51, 101, 150) | 1024

110 | 280.952 | 370.628 117.106 (0, 55, 110, 165) | (0, 56, 111, 165) | 1024

120 | 491.853 | 1035.810 331.601 (0, 60, 120, 180) | (0, 61, 121, 180) | 2048

130 | 542.9051119.720 362.631 (0, 65, 130, 195) | (0, 66, 131, 195) | 2048

140 804.982 | 1445.000 | 470.649 (0, 70, 140, 210) | (0, 71, 141, 210) | 2048

150 | 1250.700 | 1963.920 639.031 (0, 75, 150, 225) | (0, 76, 151, 225) | 2048

Table 4. Comparing the execution time (in seconds) of subresultant schemes on the
BPAS Triangularize system solver for constructed bivariate systems in Listing 1.2 to
exploit the speculative scheme. Column headings follow Table 3.

n  |ModSRC | SpecSRCraive | SpecSRCeacnea | deg(srclidx]) | Indexes | FFTBlockSize
100 894.139 | 1467.510 | 474.241 (0, 2, 2) (0,2,2) 512
110 | 1259.850 | 2076.920 675.806 0, 2,2) (0,2,2)| 512
120 1807.060 | 2757.390 | 963.547 | (0, 2, 2) (0,2,2) 512
130 | 2897.150 | 4311.990 | 1505.080 | (0, 2, 2) (0,2, 2) 1024
140 | 4314.300 | 5881.640 2134.190 (0, 2, 2) (0,2, 2) 1024
150 | 5177.410 | 7869.700 | 2609.170 | (0, 2, 2) (0,2, 2) 1024

Acknowledgments. The authors would like to thank Robert H. C. Moir and NSERC
of Canada (award CGSD3-535362-2019).
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A MAPLE code for Polynomial Systems

SystemGeneratorl := proc(n)

local R := PolynomialRing([x,y]);

local J := Polynomialldeals:-Intersect(<x~2+1,xy+2>,
<x"2+3,xy floor(n/2)+floor(n/2)+1>);

J := PolynomialIdeals:—Intersect(J, <x‘2+3,xy‘n+n+1>);
local dec := Triangularize(Generators(J),R);

dec := map(NormalizeRegularChain,dec,R);

dec := EquiprojectableDecomposition ([%[1]1[1],%[2]1[1]1],R);

return map(expand, Equations(op(dec),R));
end proc:

Listing 1.1. MAPLE code of constructed polynomials in Table 3.

SystemGenerator2 := proc(n)

local R := PolynomialRing([x,y]);

local f := randpoly([x],dense,coeffs=rand(-1..1),degree=n);
local J := <f,xy+2>;

J :=Polynomialldeals:-Intersect (J,<x"2+2,(x"2+3x+1)y~2+3>);
local dec := Triangularize (Generators(J),R);

dec := map(NormalizeRegularChain ,dec,R);

dec := EquiprojectableDecomposition ([%[1]1[1]1,%[2]1[111,R);

return map (expand,Equations (op(dec),R));
end proc:

Listing 1.2. MAPLE code of constructed polynomials in Table 4.
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Abstract. We develop a new algorithm for computing rational solutions
of partial pseudo-linear systems. The algorithm uses a recursive process
based on the computation of rational solutions for a sole pseudo-linear
system. Using the general setting of pseudo-linear algebra, we revisit the
computation of rational solutions for a pseudo-linear system. In particu-
lar, we provide a unified and efficient approach for computing a universal
denominator. All the algorithms are implemented in Maple.

1 Introduction

Let C be a field of characteristic zero and K = C(x1, ..., zy) the field of rational
functions in m independent variables 1, ..., z,, with coefficients in C. In the
present paper, the object of study is a partial pseudo-linear system of the form:

61(y) — M1 ¢a(y) =0,
: (1)
6m(y) - My, (ybm(y) =0,

where y is a vector of n unknown functions of x1,...,x,,, forall¢=1,...,m,
M; € M, (K), ¢; is a C-automorphism of K, and 0; is a ¢;-derivation such
that for all j # ¢, x; is a constant with respect to ¢; and d;, i.e., ¢;(x;) = z;
and 6;(z;) = 0. One underlying motivation for considering such partial pseudo-
linear systems is that many special functions are solutions of such systems. For
instance, one can think of Hermite or Legendre polynomials. We assume that
System (1) satisfies the integrability conditions: [L;,L;| := L;oL; — L;jo L; =0,
for all 4,5 = 1,...,m, where L; := I, 6; — M; ¢; denotes the matrix operator
associated to the ith equation of System (1). A rational solution of System (1) is
a vector y € K™ that satisfies L;(y) = 0, for all i = 1,...,m. In this paper we are
interested in computing rational solutions of an integrable system of the form (1).
The integrability conditions assure that the space of rational solutions of such a
system is of finite dimension over C' (at most n). This implies, in particular, that
there exists a (not necessarily unique) polynomial (called universal denominator)
U € Clxy,...,Tm,] such that for any rational solution y of (1), Uy is a vector of
polynomials. The concept of universal denominators was introduced first in [3].
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Note that, the existence of a universal denominator is not always guaranteed if
one considers other kinds of linear partial differential (or difference) systems or
equations. For instance, it was shown in [37,38] that there is no algorithm for
testing the existence of a universal denominator for rational solutions of linear
partial differential or difference equations with rational function coefficients. One
can also consult [32,33] where it was shown that for some scalar linear partial
difference equations (such as y(x1+1, x2) —y(x1,x2+1 = 0), there is no universal
denominator for all rational solutions.

The computation of rational solutions and other kind of closed form (as
polynomial, hypergeometric,. . .) solutions of linear functional systems has been
widely studied in the particular cases of differential and (¢-)difference systems:
see, for instance, [4,5,7,8,10,27,39,40]. Moreover, algorithms to compute ratio-
nal and hyperexponential solutions of integrable connections (i.e., the case of
System (1) with m differential systems) have been developed in [17]. Also,
in [24,28,34,35,41], the authors study different issues concerning partial pseudo-
linear systems.

The main contribution of the present paper is a new efficient algorithm for com-
puting rational solutions of System (1). To the authors’ knowledge, there exist
no algorithm performing such a task, except in the purely differential case [17].
The basic ideas of our algorithm were already given in our previous work [18] for
a partial pseudo-linear system composed of one pure differential system and one
pure difference system. The recursive method, described in details in Sect. 4.1, uses
the same strategy as in [17]. In particular, it requires, for ¢ = 1,...,m, an algo-
rithm for computing rational solutions of a sole pseudo-linear system of the form
0;(y) — N ¢:(y) =0, where N € M;(C(p1,...,pr)(2:)), 1 <s<nandps,...,p,
are parameters which are constants with respect to ¢; and d;.

Therefore, before considering the case of a partial pseudo-linear system, we
first concentrate on the case of a single pseudo-linear system, (i.e., m = 1 in
System (1)). The setting of pseudo-linear algebra used in the present paper has
been introduced in [30] (see also [13,25,26]). It allows to have a unified setting
for handling many classes of linear functional systems including differential and
(g-)difference systems. In this spirit, the next contribution of our paper is to
provide a unified algorithm for computing a universal denominator for rational
solutions of all difference systems of the form

¢(y) = By, (2)

where B € GL,(C(z)) and ¢(f(x)) = f(qz +r) for all f € C(x). Here r € C
and ¢ € C* is not a root of unity, but if » # 0 then ¢ is allowed to be equal
to 1. We will refer to a system of the form (2) as a ¢—system. Such a system
can be written (in various ways) as a pseudo-linear system 6(y) = M ¢(y) (see
Sect. 2). Systems of the form (2) include pure difference (¢ = 1 and r # 0)
and pure g¢-difference (r = 0) systems for which algorithms for computing a
universal denominator and rational solutions have been respectively developed
in [11] and [4]. Generalizing the methods in [4,11] to more general values for r
and ¢ # 1, we write a universal denominator for System (2) under the form
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(z—15;)* U(z), where the polynomial U(z) is not divisible by z— " and a € N.
On one hand, we obtain a bound for a by computing a simple form (see [18] and
references therein) of our system at the ¢—fized singularity x4 = 1—;. On the
other hand, following the ideas of [36] (see also [6,31]), we propose an efficient
algorithm for computing U(z).

Another important aspect of our contribution is that the different algorithms
developed in the present paper are fully implemented in the Maple package
PseudoLinearSystens [19]. In order to speed up the computation of rational solu-
tions of System (1), our implementation takes into account two aspects. First, some
necessary conditions for an irreducible polynomial to appear in the denominator of
arational solution are obtained by inspecting the irreducible factors of the denom-
inators of all the matrices M; (see Sect. 4.2). Moreover, in the recursive process, as
the m pseudo-linear systems in (1) can be considered in an arbitrary order, we tried
to see (through examples) if there are some orders better than others from the com-
putational point of view. The timings obtained from our experiments (see Sect. 4.3)
indicate that the best strategy seems to be to consider first the non-differential sys-
tems (i.e., ¢; # id) and then the differential systems.

The rest of the paper is organised as follows. The next section recalls useful
notions on pseudo-linear systems. Section 3 concerns the case of a sole pseudo-
linear system for which we provide a unified efficient approach for computing a
universal denominator for rational solutions. In Sect.4, we present our recur-
sive algorithm for computing rational solutions of partial pseudo-linear sys-
tems. Finally, we provide some explanations concerning our implementation.
This includes necessary conditions for an irreducible polynomial to appear in
the denominator of a rational solution and this also includes timings comparing
different strategies.

2 Pseudo-linear Systems

Let K be a commutative field of characteristic zero, ¢ an automorphism of K,
and ¢ a ¢-derivation that is a map from K to K satisfying 6(a+b) = 6(a) 4+ (b)
and d(ab) = ¢(a)d(b) + 6(a)b (Leibniz rule), for all a,b € K.

If ¢ = idk, then 0 is a usual derivation. Otherwise, i.e. when ¢ # id, it is known
(see, e.g., [25]) that J is necessarily of the form v (idx — ¢) for some v € K*.
The subfield Cx C K containing all elements ¢ in K that satisfy ¢(c) = ¢ and
0(c) =0 is called the field of constants of K.

A first order pseudo-linear system of size n over K is a system of the form

o(y) = M o(y), (3)

where y is a vector of n unknown functions and M € M, (K). A solution of Sys-
tem (3) over K is a vector y € K™ such that 6(y) = M ¢(y). The set of solutions
of System (3) over K is a vector space over Cx of dimension at most n (see [12]).

When K = C(z) and ¢ # idk, one often prefer to write a pseudo-linear sys-
tem (3) in the form of a ¢-system (2). On one hand, every ¢-system can be easily
converted into a pseudo-linear system of the form (3) (see [13, Appendix A.1]).
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On the other hand, if we note § = v (idx — ¢) for some v € K*, then Sys-
tem (3) is either equivalent to the ¢-system ¢~>(y) = By with ¢ = ¢! and
B = ¢(y "M + I,,) or to ¢(y) = By with B = (y~' M + I,,)~! provided that
this inverse exists. This is the reason why, in the following of the paper, when we
consider a pseudo-linear system (3) with ¢ # idx and 6 =~y (idxg — ¢) for some
v € K*, we will always assume that the matrix M + v I,, is invertible. In this
case, System (3) is called fully integrable. Note that for a ¢-system (2), being
fully integrable means that B is invertible.

Remark 1. Considering solutions over a suitable field extension F' of K, every
fully integrable system admits a solution space of dimension n over Cr = Ck.
We refer to [35] for a notion of Picard-Vessiot extensions in the present setting.
Moreover, from [14, Proposition 2], every ¢-system can be effectively reduced to
a ¢-system of smaller size with either B invertible (i.e., we have an equivalent
fully integrable system) or B = 0. For instance, the system

11 ---1
Sy)=| " | ely), o#idk, 6=idk—0,
0---0 -1
is not fully integrable. It can be reduced to the scalar pseudo-linear equation
0(y) = —é(y) which is equivalent to y = 0.

In Sect. 3, we shall consider the case of m = 1 pseudo-linear system of the
form (3) and more particularly, we will show how to handle ¢-systems of the
form (2) in a unified manner. Then, in Sect. 4, we consider the general case of a
partial pseudo-linear system of the form (1). In the latter general case, in addition
to the assumption that each ¢-system is fully integrable (i.e., foralli=1,...,m
with ¢; # idx and §; = ~; (idg — ¢;) with v € K*, the matrix M; + ; I,
is invertible), in which case we shall say that System (1) is fully integrable,
we suppose that System (1) satisfies the integrability conditions: namely, if for
i=1,...,m, L; := I, §; — M; ¢; denotes the matrix operator associated to the
ith equation of System (1), then we assume that [L;, L;] := L;oL; —L;joL; =0,
foralli,j=1,...,m.

3 Universal Denominators of Rational Solutions
of a Single Pseudo-linear System

The computation of rational solutions for differential, difference, and ¢-difference
systems has been studied respectively in [10,11], and [4]. In the latter works,
the algorithms developed share a common strategy for computing rational solu-
tions. They first compute a universal denominator, namely, a polynomial that is
a multiple of the denominator of any rational solution. Then a suitable change
of dependent variables reduces the problem to computing polynomial solutions



46 M. A. Barkatou et al.

of a system of the same type. In the present section, we focus on the computa-
tion of a universal denominator for a pseudo-linear system. Polynomial solutions
can then be computed using, for instance, the monomial-by-monomial approach
developed in [13].

In the general setting of pseudo-linear algebra with K = C(z), two cases can
be distinguished:

1. The case ¢ = idi corresponds to differential systems.
2. The case ¢ # idi corresponds to ¢-systems of the form (2) which includes
the pure difference and g-difference cases.

In the differential case ¢ = idf, assuming that § = % is the usual derivation

of K = C(z), we have a linear differential system of the form y’ = Ay, with
"= % and A € M,,(K). Here, the poles of any rational solution are among the
poles of the matrix A. Consequently, the denominator of any rational solution
has the form H‘;:l p;*, where pq,. .., ps are the irreducible factors of the denom-
inator den(A) of the matrix A and, for i = 1,...,s, «; is a local exponent at p;
(see, for instance, [10]). A universal denominator can thus be deduced from the
knowledge of the local exponents at each p; which can be computed using either
super-reduction algorithms [9,13,23,26,29] or by computing a simple form of the
differential system at p;. The interested reader can consult [10,18,20] for details
about simple forms and their computations.

Concerning the case ¢ # idg, algorithms for computing a universal denom-
inator have been developed only for the pure difference [11] and g¢-difference [4]
cases. In Sect. 3.2, we shall develop a unified and efficient method for computing
a universal denominator of a ¢-system (2) in the case where the automorphism
¢ of K = C(z) is given by ¢(f(x)) = f(qz + r) for all f € C(z), with r € C
and ¢ € C* is not a root of unity, but if r # 0 then ¢ is allowed to be equal to 1.
Note that this restriction on the automorphism ¢ of C(x) is natural as, for the
purposes of the present paper, one needs ¢ to send polynomials to polynomials.
From the denominators of the matrix B € GL,(C(z)) of System (2) and its
inverse, we define the following two polynomials in the variable z:

a:=¢ '(den(B)), b:=den(B™). (4)
The dispersion set E4(a,b) of the polynomials ¢ and b is defined as:
Eg(a,b) == {s € N; deg (ged(a, ¢°(b))) > 0}, (5)

and plays an important role in the following. Note that the notion of the disper-
sion set was firstly introduced in [2]. Except in the pure difference case (r # 0 and
g = 1) which is considered in Sect. 3.1 below, a universal denominator for rational
solutions of System (2) is decomposed into two distinct parts, i.e., two polyno-
mial factors, that are treated separately and with different methods. One part is
called the ¢-fized part as it corresponds to the ¢-fixed singularity =4 := %q (see
Proposition 2 below) and the other part is called the non ¢-fized part. On one
hand, the computation of the ¢-fixed part can be tackled by computing a simple
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form (see [18] and references therein) at x4 to get the local exponents at x4 (it is
similar to the computation of the part of a universal denominator corresponding
to a given p; in the differential case considered above). On the other hand, the
non ¢-fixed part can be computed from the dispersion set Ey4(a,b) of a and b.
The computation of the non ¢-fixed part is the purpose of the rest of this section.
Before developing our unified and efficient approach (see Sect.3.2) to compute
this non ¢-fixed part, we briefly recall how one proceeds in the known cases of
pure difference and g-difference systems.

3.1 Existing Methods for Pure Difference and g-Difference Systems

Let us consider a pure difference system of the form ¢(y) = By, where, for all
fecCx), ¢(f(x)) = flx+1),ie,q=r=1,and B € GL,(C(z)). From [11,
Proposition 1], we know that the irreducible factors of a universal denominator
are among the irreducible factors of a and b defined by (4) or their shifts. We
have the following result:

Proposition 1 ([11], Theorem 1). If E4(a,b) =0, then U(z) =1 is a uni-
versal denominator, i.e., all rational solutions are polynomials. Otherwise, a
universal denominator is given by:

U(z) = ged | [Jo " (a(2), [[ ¢ (0(2)) | . N :=max(Ey(a,b).  (6)
i=0 =0

We refer to [11] for more details. From a computational point of view, the result
in [11, Proposition 3] (see also [5, Section3.1]) allows to compute a universal
denominator without expanding the products in Formula (6).

Let us now consider a pure g-difference system of the form ¢(y) = By, where,
for all f € C(x), ¢(f(z)) = f(qgz), q is not a root of unity, and B € GL,(C(z)).
The computation of rational solutions of ¢-difference systems is studied in [4].
A universal denominator is written under the form z* U(x), where o € N and
U(z) € C[z] is not divisible by x. Note that, here, x is the only monic irreducible
polynomial that is fixed by ¢ in the sense that x and ¢(z) divide each other (see
also Proposition 2 below for » = 0). The factor % of a universal denominator is
thus what we call the ¢-fixed part. A bound for a can be obtained from the local
exponents at the ¢-fixed singularity x4, = 0 which can be computed either using
the technique of EG-eliminations (see [1, Section 2.2]) or by computing a simple
form at 0 (see [18, Section 5]). The other factor U(x) of a universal denominator
is what we call the non ¢-fixed part. It can be computed as in the pure difference
case using the formula (6) in Proposition 1 above. The reader can consult [1,4]
for additional details concerning universal denominators and rational solutions
of g-difference systems.
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3.2 A Unified and Efficient Approach for Pseudo-linear Systems

We consider a ¢-system (2), where the automorphism ¢ of K = C(z) is given
by ¢(f(z)) = f(gz +7r) for all f € C(z), with r € C and g € C* is not a root of
unity, but if » # 0 then ¢ is allowed to be equal to 1.

Let us first remark that in the case r # 0 and ¢ # 1 is not a root of unity,
performing the change of independent variable z = z — ﬁ, we are reduced to a
pure g-difference system. In other words, after performing (if necessary) a change
of independent variables, the computation of a universal denominator for the
class of ¢-systems considered here can always be done using one of the algorithms
recalled in Sect. 3.1 for the pure difference and ¢-difference cases. However, in
the following, we prefer to develop a unified approach treating directly all the
¢-systems.

As for pure g-difference systems, we shall decompose a universal denominator
as a product of two factors: the ¢-fixed part and the non ¢-fixed part. To achieve
this, we first need to determine the polynomials that are fixed by ¢. We say that
two polynomials p; and py in C[z] are associated, and we write p; ~ po, if they
divide each other. We introduce the set

Fy:={p € C[z]\{0} ; deg(p) = 1, Is € N", p~ ¢*(p)},

where ¢°(p(x)) = p(¢°(z)). We remark that

VseN, ¢*(x)=q¢°z+rsly, [slg:=1 a¢—1 (7)

Proposition 2. With the previous notation, we have the following:

1. If =1, then Fy = 0.

2. Otherwise, Fy = {c (m— 11[1)( ;ceC*, se N*}.

Proof. If ¢ =1, then p ~ ¢?(p) for some j # 0 if and only if p is a constant and

we are done. Now let ¢ # 1. From (7), we have that, for all j € N*, ¢ (x) =¢ v+
T ’Iq -1
non constant polynomials p such that p ~ ¢(p). Let us write p(z) = Y_;_ p; z*~"
with po = 1 and s > 1. Then p ~ ¢(p) means that there exists & € C* such that

#(p) = ap which yields

= §x+7 has the same form as ¢(x) = gx +r so that it suffices to look for

(qz+7)°+pi(qa+r) " 4 b ps = a(@® +pra®™t 4 py).

By expanding the lefthand side of the latter equality and equating the coefficients
of each 2%, i =0,...,s, we get
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Solving the latter linear system successively for p1, po, ..., ps, we obtain

Vizlw"asa pl:(s)< - >7
i) \qg—1

which yields p(z) = (ac - fq) and ends the proof.

1

From Proposition 2, for ¢ = 1 and r # 0, the set F; is empty which justifies
why in the pure difference case, one does not have to consider a ¢-fixed part
in a universal denominator. Moreover, for the pure g-difference case ¢ # 1 and
r = 0, Proposition 2 implies that the only monic irreducible element in F is x,
meaning that the only ¢-fixed singularity is x4, = 0. In the general case with
g # 1, the only monic irreducible element in Fy is x — 1fq and we thus write a
universal denominator as a product

(x— 1iq>a U(x), (8)

r
1—q°

(o7
(x — 1iq) is the ¢-fixed part and U(x) is the non ¢-fixed part. In order to
construct a universal denominator, one needs to determine both a bound for «

and a multiple of the polynomial U(z) in (8). On one hand, an upper bound for «
can be obtained from a simple form at the ¢- fixed singularity x4 = l%q. We

where @ € N and the polynomial U(x) is not divisible by = — Here,

refer to [18] for a unified algorithm computing simple of pseudo-linear systems.
On the other hand, a multiple of the non ¢-fixed part U(x) can be obtained using
Proposition 1. As we have already noticed, the result developed in [11, Proposi-
tion 3] (see also [5, Section 3.1], [4, Section 2.1]) allows to compute U (z) with the
formula (6) of Proposition 1 without expanding the products. To achieve this,
one first needs to compute the dispersion set E4(a,b), which is usually done by
a resultant computation, and then, for each m € Ey(a,b), several ged’s are com-
puted in order to get U(x). However, in [36] (see also [6,31]), the authors remark
that if we first compute a factorization of the polynomials a and b, then Ey(a,b)
can be computed without computing resultants, which is often more efficient in
practice. Note that [36] also includes a complexity analysis confirming the tim-
ings observed in practice. In the next section, we give a unified version of the
latter efficient approach for all ¢-systems.

3.3 Computing the Dispersion Set and the Non ¢-Fixed Part

Let us consider a ¢-system (2). The dispersion set Ey(a,b) defined by (5) is
usually computed as follows. One first compute the resultant Res,(a, ™ (b)).
This resultant is a polynomial in [m], defined in (7) and the elements of Ey4(a,b)
are computed from the roots in C' of this polynomial. In this section, we extend
the ideas of [36] to compute the dispersion set Ey(a,b) for any ¢ defined by
o(f(x)) = f(qx+ ) for all f € C(x), with r € C and ¢ € C* is not a root of
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unity, but if  # 0 then ¢ is allowed to be equal to 1. The approach relies on a
factorization into irreducible factors of the polynomials a and b given in (4).

First note that there exists s € N such that deg (gcd(a, ¢®(b))) > 0 if and
only if there exist an irreducible factor f of a and an irreducible factor g of b
such that f ~ ¢°(g). Then, we have the following result:

Proposition 3. Let us consider two monic irreducible polynomials f and g of
the same degree d and write f(x) = Z?:o [z fo=1, g(x) = Z?:o g; x40,
go = 1. If f ~ ¢°(g), then we have the following explicit formulas for s:

1. If q=1, then s = % (see [36]).

2. Otherwise, if f and g are both different from x — 1%(1, then if k denotes the
smallest positive integer such that (¢ — 1)* fj, — (z) r* £ 0, we have

_ log(Ax) — (¢ = 1" (gr — fr)
7 Flog(g)’ A= 1 (g — 1)k fr, — (§) rk

Proof. If f ~ ¢*(g), then necessarily ¢*(g) = ¢%* f. Now, a direct calculation
shows that

9)

d

d .
_ 1 i i _
¢s(g) — Z qs(d k) (d—k) GaiT d+k [S]q dtk d—k
k=0 i=d—

=01 k

Therefore, equating the coefficients of 2% in the equality ¢*(g) = ¢¢* f, for
ke {1,...,d}, yields an equation of degree k in [s], which can be written as:

Tk — 9k + Xk: (fk (f) (¢—1)" - <d - f " Z) rt gk—i) [s]y=0.  (10)
For k =1, Eq. (10) implies
(@=Df—dr)lsly+ £ 91 =0. (1)

If ¢ = 1, then (11) yields [s]; = s = % which was also the result obtained
in [36]. Otherwise, when ¢ # 1, it may happen (namely, when f; (¢—1)—dr = 0)
that the coefficient of [s], in (11) vanishes which implies g1 = f1 and in this case
Eq. (10) for k =1 will not provide any formula for [s],.

Let k be the smallest positive integer such that f, (¢ —1)F — (i) r* #£ 0. Such

a k always exists as, by hypothesis, f(z) # = — 1 ¢ Fy. From Eq. (10), we
d

k—1
then have that, for all i = 1,... )k, gx—; = fr—s = % Moreover, Eq. (10)

has then exactly degree k in [s], and can be simplified to get:

()
fe =g+ (fu - ((1’171),@) (@ + @Dl 1) =0.

Finally, using the definition (7) of [s],, we obtain ¢** = Ay where A}, is defined
in the statement of the proposition. This ends the proof.
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Proposition 3 leads to an efficient unified algorithm for computing the dis-
persion set. Note also that, for our purpose, an important advantage of this
approach, compared to resultant based algorithms that still need ged’s calcula-
tions, is that it also provides directly the factors of a multiple of the non ¢-fixed
part of a universal denominator of the rational solutions of a ¢-system. This is
summarized in the following scheme:

Input: A system of the form (2).
Output: The dispersion set E4(a,b) of a and b defined by (4) and a multiple
of the non ¢-fixed part of a universal denominator for rational solutions of (2).

1. Set Eg(a,b) =0 and U = 1.
2. Factor a and b defined by (4) as products of powers of distinct monic irre-
ducible polynomials called respectively u;’s and v;’s.
3. For each pair (u;,v;) such that deg(v;) = deg(u;) =d
(we write u;(x) = Y20 fi a7, v(x) = 320, gi 2?7 - see Proposition 3)
- Ifq:l,thens:%.
Else let k be the smallest positive integer such that
fr(g—1)% — (Z) r® # 0 and s be as in (9).
End If
~ If s € Nand u; ~ ¢°(v;), then we set Ey(a,b) = Ey(a,b) U {s} and
U=U [l;—o¢ " (u;).
End If
End For
4. Return Ey(a,b) and U.

Ezample 1. Let us consider the ¢-system (2) with ¢ = 3, r = 2 and

242 0
B = 2z+1)3(132+42)  (z—1)(z—2)
3(3z+2)(3z+1)z 3(3z+2)(3xz+1)
The only ¢-fixed singularity is 4 = —1 and we thus write a universal denomina-
tor under the form (x4 1)® U(x), where U(z) is not divisible by =+ 1. Using the
algorithm of [18] for computing a simple form at 24 = —1, we get the local expo-
nents at x4 = —1 and the bound 2 for .. The factorizations of the polynomials a

and b defined in (4) are given by:

a@)=x(@—1)(x—2), ba)=(z—1)(z—2) (H;)

Here, by directly inspecting the pairs of irreducible factors of a and b, we easily
check that:

qubl(x_z)v x_lN(bO(m_l)? x_2N¢O(x_2)

are the only possible associations. The dispersion set is thus Ey4(a,b) = {0,1}
and the multiple of U(x) obtained is ¢°(z) ¢~ (z) ¢°(z —1) ¢°(x —2) = 2 (z — 1)
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(z —2)? because ¢~ () = 3 (¢ — 2). Finally a universal denominator is given by
(x +1)2z (x — 1) (x — 2)? which agrees with the fact that a basis of the rational
solutions of the ¢-system is given by:

_r _ 0
w+12
y1<x>[( )], y2<x>[ , ]
1 (-1 (z=2)

4 Rational Solutions of Partial Pseudo-linear Systems

In this section, we present a new algorithm for computing rational solutions
of a partial pseudo-linear system (1) which is fully integrable and satisfies the
integrability conditions (see Sect.2). We extend the ideas developed in [17] for
integrable connections (i.e., the case where all the systems are differential sys-
tems). For ¢ = 1,...,m, the pseudo-linear system L;(y) = 0 is viewed as a
pseudo-linear system with respect to one independent variable x; as, by assump-
tions, the other variables x;, j # ¢ are constants with respect to ¢; and J; and
can thus be considered as constant parameters.

Definition 1. Let K = C(xy,...,Ty). A rational solution of System (1) is a
vector 'y € K" that satisfies L;(y) =0, for alli=1,...,m.

Ezample 2. Let K = C(x1,z2) and consider the partial pseudo-linear system
{01(y) = (@2/21) 61(), 2(y) = (21— 1) da(y)} , where ¢y = idge, & = 52,
@2 : (x1,22) — (21,22 — 1), and d2 = idgx — ¢2. One can check that the function
y(x1,x2) = x7? is a solution of the system but it is not a rational solution in the
sense of Definition 1.

4.1 A Recursive Approach

Our method proceeds by recursion and relies on an algorithm for computing
rational solutions of each pseudo-linear system 6;(y) = M; ¢;(y), i = 1,...,m.
Such an algorithm has been described in Sect.3 both for differential systems
(¢; = idk) and for ¢-systems such that ¢(f(x)) = f(qx +r) for all f € C(z),
with » € C and ¢ € C* is not a root of unity, but if » # 0 then ¢ is allowed to
be equal to 1. Consequently, for all ¢ = 1,..., m such that ¢; # idg, we assume
that ¢; satisfies the above conditions.

Let us now give the details of our recursive approach. We first consider the
pseudo-linear system Li(y) = 0 (see also Sect.4.3) over K = C(z2,...,%m)
(z1). We compute a basis uj,...,us € K" (0 < s < n) of rational solutions
of Li(y) = 0 (see Sect.3). If we do not find any nonzero rational solution,
then we stop as (1) does not admit any nonzero rational solution. Otherwise,
denote by U € M, s(K) the matrix whose columns are the u;’s. We complete
up,...,Us into a basis uj,...,u, of K™ and define P = (U V) € GL,(K),
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where V' € M, (n—s)(K) has ugy1,...,u, as columns. Performing the change
of dependent variables y = Pz in System (1), we obtain the equivalent system

ZI(Z) = 61(z) — N1 ¢1(2z) =0,
: (12)

L (z) := 6 (2) — Ny o (z) = 0,
where .ZVZ = P_l [Mz QZS,L(P) — (52(P)], 1= ]., e,

Lemma 1. With the above notations, let us decompose the matrices N;’s of

System (12) by blocks as
[Nll le]
Ni = ; . )
NN

where N} € My (K). Then, for alli=1,...,m, N} € My(C(x2a,...,2.,)) does
not depend on x1. Moreover it can be computed as the unique solution of the
matriz linear system U N} = —L;(U), and, in particular N{' = 0. Finally, for
alli=1,...,m, N =0.

Proof. The equation P N; = M; ¢;(P) — §;(P) yields U N + V N2t = —L;(U).
From the integrability conditions L;oL; —LjoL; =0, for all 1 <4, j < m, we get
that, for all ¢ = 1,...,m, L;(U) is a rational solution of the system L;(y) =0
so that there exists a unique constant matrix W € M, (C(za, ..., %)), i.e., not
depending on x1, such that L;(U) = U W. We then obtain, for all i = 1,...,m,
U(NM + W)+ V N2 =0 which ends the proof as the columns of P = (U V)
form a basis of K.

From Lemma 1, we deduce the following result justifying the correctness of
our iterative algorithm for computing rational solutions of System (1).

Theorem 1. Let U € M, s(K) be a matriz whose columns form a basis of the
rational solutions of L1(y) = 0. Fori=2,...,m, let N}* € My(C(z2,...,7m))
be the unique solution of the matrixz linear system U N} = —L;(U). Suppose
that Z € Mgy, (C(z2,...,2m)) is a matriz whose columns form a basis of the
rational solutions of the partial pseudo-linear system of size s over C(xa, ..., Tm)

d2(y) — N3' a(y) =0,
: (13)
Sm(y) = N3 dm(y) =0,

then the columns of the matric UZ € M, «(K) form a basis of all rational
solutions of (1).

Proof. Let Z € Mgy, (C(xa,...,2,)) be a matrix whose columns form a basis
of all rational solutions of (13) and let us consider Y = UZ. We have L;(Y) =
( )¢1 )+U51( ) = M161(U)d1(Z) = 61(U)Z — M1 (U)Z = 0. Now for
= 2,...,m, by definition of N}!, we have L;(Y) = 6;(U)¢;(Z) + US;(Z) —
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M;¢;(U)pi(Z) = [6;(U) + UNM — M;¢;(U)]pi(Z) = 0. This ends the first part
of the proof. Now let Y be a solution of (1). In particular, ¥ is a rational
solution of Li(y) = 0 so that there exists Z € My(C(z2,...,Tn)) such that
Y =UZ = U V)Z" 01)T. Thus, for i = 2,...,m, Y is a solution of
Li(y) = 0 if and only if (ZT 07)7 is a solution of the system (12). This is
equivalent to Z being a solution to system (13) and yields the desired result.

Theorem 1 shows that rational solutions of (1) can be computed recursively.
Indeed, we have reduced the problem of computing rational solutions of Sys-
tem (1) of size n in m variables to that of computing rational solutions of Sys-
tem (13) of size s < n in m — 1 variables. This leads to the following iterative
algorithm for computing a basis of rational solutions of System (1). It proceeds
as follows:

Algorithm RationalSolutions_PLS

Input: A system of the form (1).
Output: A matrix whose columns form a basis of rational solutions of (1) or
0, (the zero vector of dimension n) if no non-trivial rational solution exists.

1. Compute a basis of rational solutions of L;(y) = 0 (see Section 3).

2. If there are no non-trivial rational solutions of L;(y) = 0, then Return 0,
and Stop.

3. Let U € M,,xs(K) be a matrix whose columns form a basis of the rational
solutions of L;(y) = 0.

4. If m =1, then Return U and Stop.

5. For i = 2,...,m, compute the unique solution N} € M (C(z2,...,7m)) of
the matrix linear system U N} = —L;(U).

6. Return U multiplied by the result of applying the algorithm to Sys-
tem (13).

Let us illustrate our algorithm on the following example.

Ezample 3. We consider a partial pseudo-linear system composed of one pure
difference system, one pure g-difference system and one pure differential system
defined as follows:

y(r1 + 1,29, 23) = A1(21, 72, 73) y (71, T2, 73),
y(x1, qre, x3) = As(x1, 2, 3) y(21, T2, X3), (14)
3%3}’(%,%2,%3) = As(21, 22, 23)y (21, 22, 73),
where ¢ € Q* is not a root of unity. Let K = Q(q)(z1, 22, 23). The matrices
Ay, Az € GLo(K) and Az € My(K) are given by:

2141 —qzs(zs+ei) 1 zzs(zsta1)(g—1) 0 L zsta1)
T w% T L% m%
Al = N y A2 = , A3 = .
L3 TT1 -
O xr3+xi1+1 0 q 0 z1+x3
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Rewriting the three ¢-systems as pseudo-linear systems (see Sect.2 for more
details), System (14) can be transformed into the form (1) with

Li(y) := 01(y) = M1 ¢1(y), M= ¢1(A1) — Iy,
Lo(y) := 02(y) — Mo ¢a(y), Mz = ¢2(As) — I, (15)
L3(y) == d3(y) — M3 p3(y), Mz = As,

where the ¢;’s are the automorphisms defined by:
¢1 ¢ (21,22, 73) = (21 — 1,22,23), ¢2: (21,22,73) — (T1,22/q,23), ¢3 = idk,
and the §;’s are the ¢;-derivations defined by:

01 =idg — ¢1, 2 =idg — ¢a, I3 =0/0x3.

Let us describe our iterative process for computing rational solutions of Sys-
tem (15). Computing rational solutions of the pure difference system L;(y) = 0,
we get two linearly independent rational solutions given by the columns of
r1—xT3
3
—1
q3 (z3+z1) qx3zs(zatar)

1
T
T

U, =

—

Solving the linear systems Uy Na! = —Ly(U;) and Uy N3t = —L3(Uy) we get:

Nyt = , N3t = ool
0 -1

—¢*+1 0
—¢*(q—-1)z3 —¢F+1

We are then reduced to solving the partial pseudo-linear system

E(y) = da(y) — Na' ¢a(y) =0,
Ls(y) = 63(y) — N3' ¢3(y) = 0.

The rational solutions of the pure g-difference system L, (y) = 0 are given by
the columns of the matrix

x5 0
Uz = 4 3
r3x3 3

11 —
Now, solving the linear system Us N3 = —L3(Us), we get

11 0 O
N3 =
0 -1

We are next reduced to computing rational solutions of the pure differential
—~11
system 03(y) — N3 ¢3(y) = 0. We find that they are given by the columns of

the matrix
0 1
Us = .
I3 0
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Finally, a basis of rational solutions of (14) is spanned by the columns of

3
T2 l‘l‘|
o '
(z3+z1)g 0

4.2 Necessary Conditions for Denominators

U, U Us =

A rational solution of the partial pseudo-linear system (1) is, in particular, a
rational solution of each pseudo-linear system 6;(y) = M; ¢(y), i = 1,...,m.
This necessarily imposes some necessary conditions on the irreducible factors of
the denominator of a rational solution of System (1) (see [17, Proposition 8] in the
integrable connection case). In some cases, taking into account these necessary
conditions can significantly speed up the timings of Algorithm RationalSolu-
tions_PLS as it allows to not consider some irreducible factors when computing
universal denominators.

For a pure differential system (¢; = idx and §; = 9/0x;), we know that
an irreducible factor of the denominator of a rational solution must divide the
denominator of the matrix M;. For the case of a ¢-system we have the following
consequence of Proposition 1. This result can be found in [11] for the pure
difference case and can be adapted directly for any ¢-system considered here.

Proposition 4 ([11], Proposition 2). With the notations of Sect. 3, assume

that Ey(a,b) # 0 and let N := max(Eg(a,b)). Let p # x — = € Clx] be
q

an irreducible polynomial. If p divides the denominator of a non-zero rational

solution of System (2), then there exist 1 <i < N +1 and 0 < j < N such that

i+j € Ey(a,b) and p divides both ¢~*(den(B)) and ¢’ (den(B~1)).

For the sake of clarity, before giving a result in the general case, we first
consider the case of a partial pseudo-linear system with only m = 2 pseudo-
linear systems being written either as a pure differential system or a ¢-system.
We obtain the following result as a consequence of the discussion above and
Proposition 4.

Necessary Condition 1. Let K = C(z1,2z2) and consider a partial pseudo-
linear system

Li(y) =0, La(y)=0. (16)

Let Ay denote the matriz of the system L1(y) = 0 and p € Clx1,x2] be an
irreducible factor of den(A;1) which involves the variable xo. Then we have the
following result depending on the type of each pseudo-linear system:

1. If fori=1,2, L, = I, 6%1- — A; then if p appears in the denominator of a
rational solution of (16), then p | den(As) (see [17, Proposition 8]).

2. If L1 =1, 8%1 — Ay, Ly = I, ¢ — Ao, then if p appears in the denominator
of a rational solution of (16), there exists i € N* such that p | ¢5*(den(Ay)).

8. If L1 =1,¢1 — Ay, Lo =1, 8%2 — Ay, then if p appears in the denominator
of a rational solution of (16), there exists i € N* such that p | ¢t (den(Az)).
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4. If fori =1, 2, L; = I, ¢;— A, then if p appears in the denominator of a ratio-
nal solution of (16), there exists i, j € N* such that p | ¢ (¢y” (den(Az))).

Let us illustrate the latter necessary condition on an example.

Ezample 4. Consider a partial pseudo linear system of the form

0
a—i(m, k) = Az, k)y(z, k), y(z,k+1)=B(z,k)y(z, k),
where the matrices A and B are given by:
-1 —k(k—z)(z+2k) z+k (k—z)(2 k+z+1)
(z+k) (z+k)z3(k27kz+a;) z+k+1 (z+k+1)x2 (k27kz+z)
Az, k) = v Bz, k) = 2
.k 0 (k?—kz+2k+1)(k—x)
(k*w)(kQ*kxﬂLw) (k+1—x)(k2—kw+x)

The factorizations of the denominators of the matrices A and B are given respec-
tively by:
den(A)(z, k) = (z + k) 2® (k* — kz + z) (k — 2),

den(B)(z,k) = (z+ k+1)2® (k* —kz + ) (k+ 1 —x).

The irreducible factor p(z, k) = k? — k2 + x of den(A) clearly satisfies that, for
all i € N* p{den(B)(x, k—1i). Therefore, from Case 2 of Necessary Condition 1,
p can not appear in the denominator of any rational solution of the system.
However, the latter necessary condition does not allow to draw any conclusion
concerning the factors x+k and k—z of den(A) (the factor z does not involve the
variable k so that it can not be considered in our result). We can indeed check
the previous observations as the rational solutions of the system are given by:

1

(z+k)
0

&
2

’ yz(l'):
bt

yi(z) = [

The gain for our algorithm is that when computing a universal denominator for
the differential system g—z(m, k) = A(z, k)y(z, k), there is no need to compute a
simple form at p(z) = k* — kz + z (see Sect. 3).

We now give a generalization of the latter necessary condition in the case
of a partial pseudo-linear system (1) composed of m pseudo-linear systems. We
distinguish the case when the first system is a differential system (Necessary
Condition 2) from that where it is a ¢-system (Necessary Condition 3). Note
that for ¢; # idg, the systems are written here under the form of a pseudo-
linear system 6;(y) = M; ¢;(y) and not of a ¢-system ¢;(y) = B;y. This is the
reason why matrices ~y; ' M; + I, appear in the following results (see Sect. 2).

Necessary Condition 2. Let K = C(x1,...,2,y). Consider a system of the
form (1) and suppose that L1(y) = 0 is a pure differential system, i.e., ¢1 = idg
and 01 = 3%1. Let p € Clx1,...,%y) be an irreducible factor of den(Mi) such
that p involves the variable x; for some i € {2,...,m}. Moreover, suppose that
one of the following two conditions holds:
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1. (¢4, 0:) = (idk, %) and p f den(M;).
2. ¢; #idk (i.e., 0; = ; (idx — ¢1) for some v; € K*) and

Vi €N, ¢l(p) tden((y; ! Mi+ 1) 7).
Then p cannot appear in the denominator of a rational solution of (1).

Necessary Condition 3. Let K = C(x1,...,2y). Consider a system of the
form (1) and suppose that ¢1 # idk (i.e., 61 = v1 (idx — ¢1) for some v, € K*).
Let p € Clz1,...,2m) be an irreducible factor of den((y; "My + 1,,)™1) such that
p involves the variable x; for some i € {2,...,m}. Moreover, suppose that one
of the following two conditions holds:

1. (¢1,6;) = (idk, =) and, for all j € N*, pt ¢](den(}M;)).
2. ¢; #idk (i.e., 0; = (idx — ¢1) for some v; € K*) and

Vi, ke N*,  ptl(e; F(den((y; ' M; + 1))

Then p cannot appear in the denominator of a rational solution of (1).

4.3 Implementation and Comparison of Different Strategies

Algorithm RationalSolutions PLS has been implemented in Maple in our
PseudoLinearSystems package [19]. It includes an implementation of the unified
and efficient algorithm developed in Sect. 3.3 for computing a multiple of the non
¢-fixed part of a universal denominator of ¢-systems. For the ¢-fixed part and for
computing a universal denominator of differential systems, we use our generic
implementation of the simple form algorithm developed in [18]. Moreover our
implementation includes part of the necessary conditions given in Sect. 4.2.

In the recursive process of Algorithm RationalSolutions_PLS, the pseudo-
linear systems in (1) can be considered in an arbitrary order. We have thus tried
to see (through examples) if there are some orders better than others from the
computational point of view. Let us give some timings of one of our experiments
in the case of m = 2 pseudo-linear systems where one system is a pure differential
system (with independent variable x and usual derivation a%) and the other is
a pure difference system (with independent variable k, ¢ : (z,k) — (z,k — 1)
and 6 = idg — ¢). In this experiment the matrices of the systems are generated
from a randomly chosen fundamental matrix of rational solutions but whose
denominator denoted by U is fixed as a product of some of the following three
polynomials:

Ui(z,k) = (x + k) (x — k)* (~k* + o) (k> + 22 +3),

U2 (:L‘7 k) =
— 77k 51 k222 =31 kP 2P +10 k' 2% —68 2% —91 "2 +81 k10— 40 k* 2°+47 k*2° +49 k=,

Ug(x,k) =
k(6k"z +5ka® +6k%2" +3k" +2k2 — 4" +4k*2? + k*z — 32 —5k).

We compare two strategies:
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1. Strategy 1: we start with the differential system.
2. Strategy 2: we start with the difference system.

The following table gives the timings (in seconds) obtained for computing the
fundamental matrix of rational solutions with each strategy, for different dimen-
sions n of the systems, and for different fixed denominators U of the rational
solutions.

U=U U =010, U=UU:U;
n=3n=6mMm=9 n=3|n=6 n=9 n=3 n=6 [n=9
‘Strategy 110.483 12.295 | 9.012|22.928|187.556|574.839|249.924|912.906 |1703.79
‘Stra‘cegy 2/0.399 (2.831 |16.463| 0.354| 2.162| 12.222| 0.948| 3.398| 15.171

The table seems to indicate that Strategy 2, i.e., starting with the differ-
ence system, gives, in general, better timings. We do not have yet a complete
complexity analysis justifying the latter observation but we have made several
experimentations which confirm it. In particular, the difference between the dis-
tinct timings seems to be particularly significant when the denominator includes
large irreducible factors as Uy and Us. In the case U = U;, we do not have large
singularities in the denominator and Strategy 1 behaves well. Going deeper into
the analysis of these timings for each step of the algorithm, we can see that, in
Strategy 1, most of the time is spent in computing simple forms which can be
quite involved for singularities as the ones given by Uy and Us. In Strategy 2,
we have no simple form computations to get a universal denominator of the
first system (as it is a difference system) and then, the large factors Us and Us
disappear as the differential system to be considered next only involves the vari-
able z. For instance, in Example 3, if we start with the differential system with
matrix Mz = As, we must compute a simple form at the singularity given by
the irreducible factor 21 + x3 of den(As). But if we treat first the difference and
the g-difference systems as it is done in Example 3, we can see that at the end of

~11
the process, the differential system to be considered is d3(y) — N3 ¢3(y) = 0,

where ]/V;,u has no finite singularities, and therefore no simple form computations
are needed to get a universal denominator of the differential system.

From these observations (and other comparisons that we have performed),
we make the choice to treat the ¢-systems (¢; # idk) first and to consider the
differential systems at the end of the iterative process, where the systems involve
fewer independent variables and may also be of smaller size.

References

1. Abramov, S.: EG-eliminations. J. Differ. Equations Appl. 5(4-5), 393-433 (1999)
2. Abramov, S.: On the summation of rational functions. USSR Comput. Math. Math.
Phys. 11(4), 324-330 (1971)



60

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. A. Barkatou et al.

Abramov, S.: Rational solutions of linear differential and difference equations with
polynomial coefficients. USSR Comput. Math. Math. Phys. 29(6), 7-12 (1989)
Abramov, S.: A direct algorithm to compute rational solutions of first order linear
g-difference systems. Discret. Math. 246, 3-12 (2002)

Abramov, S., Barkatou, M.A.: Rational solutions of first order linear difference
systems. In: Proceedings of ISSAC 1998, pp. 124-131 (1998)

Abramov, S.A., Gheffar, A., Khmelnov, D.E.: Factorization of polynomials and
GCD computations for finding universal denominators. In: Gerdt, V.P., Koepf,
W., Mayr, E.-W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 4-18.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15274-0_2
Abramov, S., Paule, P., Petkovsek, M.: g-hypergeometric solutions of g-difference
equations. Discret. Math. 180, 3-22 (1998)

Abramov, S.A., Petkovsek, M., Ryabenko, A.A.: Hypergeometric solutions of first-
order linear difference systems with rational-function coefficients. In: Gerdt, V.P.,
Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301,
pp. 1-14. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24021-3_1
Barkatou, M.A.: Contribution a I’étude des équations différentielles et aux
différences dans le champ complexe. Ph.D. Thesis, Institut Nat. Polytech. Grenoble
(1989)

Barkatou, M.A.: On rational solutions of systems of linear differential equations.
J. Symb. Comput. 28, 547-567 (1999)

Barkatou, M.A.: Rational solutions of matrix difference equations: the problem of
equivalence and factorization. In: Proceedings of ISSAC 1999, pp. 277-282 (1999)
Barkatou, M.A.: Factoring Systems of Linear Functional Systems Using Eigenrings.
Computer algebra 2006, 22-42, World Sci. Publ., Hackensack, NJ (2007)
Barkatou, M.A., Broughton, G., Pfliigel, E.: A monomial-by-monomial method for
computing regular solutions of systems of pseudo-linear equations. Math. Comp.
Sci. 4(2-3), 267288 (2010)

Barkatou, M.A., Chen, G.: Some formal invariants of linear difference systems and
their computations. Crelle’s J. 1-23, 2001 (2001)

Barkatou, M.A., Cluzeau, T., El Bacha, C.: Simple forms of higher-order linear
differential systems and their applications in computing regular solutions. J. Symb.
Comput. 46(6), 633-658 (2011)

Barkatou, M.A., Cluzeau, T., El Bacha, C.: On the computation of simple forms
and regular solutions of linear difference systems. In: Schneider, C., Zima, E. (eds.)
WWCA 2016. SPMS, vol. 226, pp. 19-49. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-73232-9_2

Barkatou, M.A., Cluzeau, T., El Bacha, C., Weil, J.A.: Computing closed form solu-
tions of integrable connections. In: Proceedings of ISSAC 2012, pp. 43-50 (2012)
Barkatou, M.A., Cluzeau, T., El Hajj, A.: Simple forms and rational solutions of
pseudo-linear systems. In: Proceedings of ISSAC 2019, pp. 26-33 (2019)
Barkatou, M.A., Cluzeau, T., El Hajj, A.: PseudoLinearSystems - a maple package
for studying systems of pseudo-linear equations. Maple Math. Educ. Res. 327-329.
http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html
Barkatou, M.A., El Bacha, C.: On k-simple forms of first-order linear differential
systems and their computation. J. Symb. Comput. 54, 36-58 (2013)

Barkatou, M.A., El Bacha, C., Pfliigel, E.: An algorithm computing the regular
formal solutions of a system of linear differential equations. In: Proceedings of
ISSAC 2010, pp. 45-52 (2010)

Barkatou, M.A., Pfliigel, E.: Simultaneously row- and column-reduced higher-order
linear differential systems. J. Symb. Comput. 28(4-5), 569-587 (1999)


https://doi.org/10.1007/978-3-642-15274-0_2
https://doi.org/10.1007/978-3-319-24021-3_1
https://doi.org/10.1007/978-3-319-73232-9_2
https://doi.org/10.1007/978-3-319-73232-9_2
http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

On Rational Solutions of Pseudo-linear Systems 61

Barkatou, M.A., Pfliigel, E.: On the Moser- and super-reduction algorithms of
systems of linear differential equations and their complexity. J. Symb. Comput.
44(8), 1017-1036 (2009)

Bronstein, M., Li, Z., Wu, M.: Picard-Vessiot extensions for linear functional sys-
tems. In: Proceedings of ISSAC 2005, pp. 68-75 (2005)

Bronstein, M., Petkovsek, M.: An introduction to pseudo-linear algebra. Theor.
Comput. Sci. 157, 3-33 (1996)

Broughton, G.: Symbolic algorithms for the local analysis of systems of pseudo-
linear equations. Ph.D. Thesis, Kingston University (2013)

Cluzeau, T., van Hoeij, M.: Computing hypergeometric solutions of linear difference
equations. Appl. Algebra Eng. Commun. Comput. 17, 83-115 (2006). https://doi.
org/10.1007/s00200-005-0192-x

Feng, R., Singer, M.F., Wu, M.: An algorithm to compute Liouvillian solutions
of prime order linear difference-differential equations. J. Symb. Comput. 45(3),
306-323 (2010)

Hilali, A., Wazner, A.: Formes super-irréductibles des systeémes différentiels
linéaires. Numer. Math. 50, 429-449 (1987)

Jacobson, N.: Pseudo-linear transformations. Annals Math. 38(2), 484-507 (1937).
Second series

Khmelnov, D.E.: Improved algorithms for solving difference and g-difference equa-
tions. Program. Comput. Softw. 26(2), 107-115 (2000). (translated from Program-
mirovanie No. 2)

Kauers, M., Schneider, C.: Partial denominator bounds for partial linear difference
equations. In: Proceedings of ISSAC 2010, pp. 211-218 (2010)

Kauers, M., Schneider, C.: A refined denominator bounding algorithm for multi-
variate linear difference equations. In: Proceedings of ISSAC 2011, pp. 201-208
(2011)

Li, Z., Singer, M.F., Wu, M., Zheng, D.: A recursive method for determining the
one-dimensional submodules of Laurent-Ore modules. In: Proceedings of ISSAC
2006, pp. 200208 (2006)

Li, Z., Wu, M.: On solutions of linear systems and factorization of Laurent-Ore
modules. Computer algebra 2006, 109-136, World Sci. Publ., Hackensack, NJ
(2007)

Man, Y.K., Write, F.J: Fast polynomial dispersion computation and its application
to indefnite summation. In: Proceedings of ISSAC 1994, pp. 175-180 (1994)
Paramonov, S.V.: On rational solutions of linear partial differential or difference
equations. Program Comput. Soft 39, 57-60 (2013)

Paramonov, S.V.: Checking existence of solutions of partial differential equations
in the fields of Laurent series. Program Comput. Soft. 40, 58—-62 (2014)

Pfliigel, E.: An algorithm for computing exponential solutions of first order linear
differential systems. In: Proceedings of ISSAC 1997, pp. 146-171 (1997)

Singer, M.F.: Liouvillian solutions of linear differential equations with Liouvillian
coeflicients. In: Kaltofen, E., Watt, S.M. (eds.) Computers and Mathematics, pp.
182-191. Springer, New York (1989)

Wu, M.: On solutions of linear functional systems and factorization of modules
over Laurent-Ore algebras. Ph.D. Thesis, Univ. of Nice-Sophia Antipolis (2005)


https://doi.org/10.1007/s00200-005-0192-x
https://doi.org/10.1007/s00200-005-0192-x

)

Check for
updates

On the Relationship Between Differential
Algebra and Tropical Differential
Algebraic Geometry

Francois Boulier! ™ Sebastian Falkensteiner?, Marc Paul Noordman?,
and Omar Leén Sanchez*

! Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de
Recherche en Informatique Signal et Automatique de Lille, 59000 Lille, France
francois.boulier@univ-lille.fr
2 Research Institute for Symbolic Computation (RISC), Johannes Kepler University
Linz, Linz, Austria
3 Bernoulli Institute, University of Groningen, Groningen, The Netherlands
4 Department of Mathematics, University of Manchester, Manchester, UK
omar.sanchez@manchester.ac.uk
https://pro.univ-1lille.fr/francois-boulier,
https://risc. jku.at/m/sebastian-falkensteiner,
https://www.rug.nl/staff/m.p.noordman

Abstract. This paper presents the relationship between differential
algebra and tropical differential algebraic geometry, mostly focusing on
the existence problem of formal power series solutions for systems of poly-
nomial ODE and PDE. Moreover, it improves an approximation theorem
involved in the proof of the fundamental theorem of tropical differential
algebraic geometry which permits to improve this latter by dropping the
base field uncountability hypothesis used in the original version.

1 Introduction

Differential algebra is an algebraic theory for systems of ordinary or partial
polynomial differential equations. It was founded by Ritt in the first half of
the former century [13,14] and developed by Kolchin [10]. Tropical differential
algebraic geometry is a much more recent theory, founded by Grigoriev [8] aiming
at applying the concepts of tropical algebra (aka min-plus algebra) to the study
of formal power series solutions of systems of ODE. Tropical differential algebra
obtained an important impulse by the proof of the fundamental theorem of
tropical differential algebraic geometry [1] which was recently extended to the
partial case in [7]. The common topic of both theories is the existence problem
of formal power series solutions of polynomial differential equations on which an
important paper [6] by Denef and Lipshitz was published in 1984.

In both [1] and [7], the fundamental theorem applies to a polynomial differen-
tial system X with coefficients in formal power series rings .% [[z]] (ordinary case)
or F[[z1,...,Tn]] (partial case) where .% is a characteristic zero differential field
of constants which is both algebraically closed and uncountable. In this paper,
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we prove that the uncountability hypothesis can be dropped. Indeed, we prove
that the fundamental theorem holds provided that .7 is algebraically closed and
has countable! transcendence degree over some field of definition %, of X. This
improvement of the fundamental theorem is achieved by generalizing the proof
of a key proposition, which is an approximation theorem. This generalization
is achieved in our Theorem 1, which is the main result of our paper. The new
versions of the fundamental theorem, which follow, are stated in Theorem 2 and
Theorem 3.

For the sake of simplicity, the introductory part of our paper focuses on the
ordinary case. For completeness, the partial case is covered as well in the more
technical sections. The paper is structured as follows. We recall in Sect.2 the
basic ideas underlying formal power series solutions of ODE and point out issues
and known results, from the differential algebra literature. We state and explain
the fundamental theorem of tropical differential algebra in Sect.3. We provide
our new approximation theorem in Sect. 5 (covering the partial differential case)
and show how it is obtained by adapting the corresponding proposition given
in [7]. The new version of the fundamental theorem, in the ordinary case, is
provided in Sect. 6. In the final Sect. 7, we give an overview on the generalizations
to the partial case, including the partial version of the fundamental theorem.

2 Formal Power Series Solutions of ODE

Let us start with a single autonomous ODE (i.e. an ODE the coefficients of
which do not depend of the independent variable z) in a single differential inde-
terminate y (standing for the unknown function y(x)):

P +8y°—1=0.
Differentiate it many different times.

294 +24y2q,
29y + 242 42442 + 48y y?,

Rename each derivative y*) as vj. Solve the obtained polynomial system
(observe there are infinitely many solutions). The result is a truncated arc v

(’UQ,’Ul, V2,vV3, V4, Vs, Vg, U7, . . ) = (O7 1, O, 0, —24, O,O7 2880, .. ) .

Substitute the arc in the generic formula

! In this paper, “countable” stands for “countably infinite”.
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One obtains a formal power series solution centered at the origin. Since the ODE
is autonomous, the same arc, substituted in the following generic formula

Valw) =Y = (@ =) (1)

provides a formal power series solution centered at any expansion point x = a.
If the ODE is not autonomous, the arc depends on the expansion point. The
process is thus a variant. Consider some non-autonomous ODE

P +8xy> —1=0.
Differentiate the ODE many different times.

2eyi+ > +24xy’y +8y3,

Then fix an expansion point « and evaluate the independent variable at x = a.
Solve the obtained polynomial system. The result is a truncated arc. Substitute
it in (1) (for the chosen value of «). One gets a formal power series solution
centered at z = a.

In the above processes, the only issue lies in the polynomial solving step.
Indeed, each differentiated equation introduces a new leading derivative. These
leading derivatives admit as leading coeflicients the initial or the separant of the
ODE. If these two polynomials do not vanish at the expansion point and the
already secured coordinates of the truncated arc (the initial values, somehow, of
the initial value problem), then the formal power series solution exists, is unique
and straightforward to compute up to any term. However, if these polynomials
vanish, the formal power series solution may fail to exist or be unique.

A device borrowed from [6, page 236] illustrates the issue. It shows how to
build an ODE p with coefficients in Q[z] from a polynomial f(z) in Q[z]. The
ODE admits a formal power series solution centered at the origin if and only if
the polynomial f(z) has no positive integer solution. In the ordinary case, this
device permits to build interesting examples. The approach generalizes to the
partial case. It permits to relate the existence problem of formal power series
solutions centered at the origin for PDE systems to Hilbert’s Tenth Problem and
Matiiassevich undecidability result [6, Theorem 4.11]. For more details see [3,
Sect 1.6].

It is interesting also to observe that any non-autonomous ODE can be viewed
as an autonomous one by performing a change of independent variable and
introducing an extra ODE. Indeed, call £ the new independent variable. View
the former independent variable x as a new differential indeterminate (i.e. as
an unknown function z(§)) and introduce the extra ODE & = 1. This reduction
method only applies to ODE with polynomial coefficients in z. However, if x = «
was a problematic expansion point before the reduction then x(0) = « becomes a
problematic initial value (hence arc coordinate) after reduction. For more details
see [3, Sect 1.4.2].
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In his books [13,14], Ritt implicitly considers autonomous systems (the
“autonomous” qualifier does not belong to differential algebra) and we may
assume he had in mind the above reduction trick. Though Taylor expansions
of solutions are discussed at different places (mostly in a chapter dedicated to
PDE), Ritt does not explicitly address the existence problem of formal power
series solutions. However, he pioneered differential elimination methods by means
of his theory of characteristic sets (which was much developed afterwards, leading
to the theories of regular chains and differential regular chains). This elimina-
tion theory solves in particular the following decision problem: given any finite
system X' of ordinary or partial differential polynomial, does 1 € [X] where [X]
denotes the differential ideal generated by X7 This problem is equivalent to the
following one, which is thus seen to be decidable: does there exist initial values
for which X has formal power series solutions??

In the case of systems of non-autonomous ODE, thanks to the reduction
method to the autonomous case, we can then conclude that the following problem
is decidable: given any system X', do expansion point and initial values exist for
which X has formal power series solutions?

3 The Fundamental Theorem of Tropical Differential
Algebraic Geometry

In the tropical differential case, the systems under consideration belong to some
differential polynomial ring Z[[z]]{v1,...,yn} where .Z is a characteristic zero
field of constants. Differential polynomials have formal power series coefficients.
Thus the reduction trick to the autonomous case does not apply and formal
power series solutions are only sought at a fixed expansion point: the origin. More
precisely, formal power series solutions are sought in the coefficient ring % |[[z]]
of the equations.

The existence problem of such formal power series solutions is much more
difficult. An important related paper is [6]. Indeed, [6, Theorem 3.1] claims that,
in the case of systems with coefficients in Q[z], the existence problem of formal
power series solutions (with coefficients in C, R or Q) is decidable. It is however
important to note that, in the same setting, the existence problem of nonzero
formal power series solutions is undecidable. See [6, Proposition 3.3] which refers
to [16].

In this context, the fundamental theorem of tropical differential geometry
does not solve any problem left open in [6]. It only states the following equiva-
lence

supp(sol(X)) = sol(trop(X)), (2)

2 Indeed, the characteristic sets or reqular differential chains computed by differential
elimination methods can be viewed as differential systems sufficiently simplified to
generalize, for systems of differential equations, the basic methods sketched at the
top of the section for computing formal power series solutions.
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where Y is a differential ideal and the base field .% is both algebraically closed
and uncountable (we relinquish this last condition in this paper).

Before entering sophisticated issues, let us clarify the notations used in (2).
The support® supp(p) of the formal power series (3) is the set {i € N | a; # 0}.

o= aat ®)

Since X depends on n differential indeterminates y1, . . ., ¥y, its formal power
series solutions actually are tuples of n formal power series. One then extends
the above definition to tuples of formal power series: the support of a tuple

0= (P15 ¢n) (4)

is defined as the tuple supp(y) = (supp(p1),...,supp(en)).
On the left hand side of (2), sol(X) denotes the set of formal power series

solutions of X' with coefficients in .%. Hence, the left hand side of (2) is a set of
tuples of the supports of all the formal power series solutions of .

Let us address now the right hand side of (2). The valuation of a formal power
series (3) is defined as oo if ¢ = 0 and as the smallest i € N such that a; # 0
otherwise.

F([2]] == P(N)

J{min
valuation
N

Let us now define the tropicalization of the differential monomial (the coeffi-

cient ¢ € Z[[z]] and the term ¢ is a power product of derivatives vy, ..., v, of
the n differential indeterminates y1,...,yn)
m=ct=coh. . ol (5)
at a tuple of supports
S =(S1,...,5). (6)

Consider any tuple of formal power series (4) whose support is S. Since m is a
monomial, the support of the formal power series m(y) is uniquely defined by S:
it does not depend on the actual coefficients of ¢. We are led to the following
definition?.

The tropicalization of a differential monomial m at S is defined as the valu-
ation of m(p) where @ is any tuple of formal power series whose support is S.
The table below gives a few examples.

monomialm  support S  trop(m)at S
2y {0,1,2} 2
2%y {2} 4
9 {0,3} 6
j° {0, 1} 00

3 In [1,8], the notation trop(¢p) is used instead of supp(y) but may be misleading in
some cases.
* This is not the definition given in [1, sect. 4] but both definitions are equivalent.
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Let us now consider a nonzero differential polynomial, expanded as a sum of
monomials of the form (5) with pairwise distinct terms:

p=my+mg+--+my. (7)

The tropicalization of p at S is defined as

trop(p) = mql? trop(m;) . (8)

1=

The tropicalization of the zero polynomial is defined as oc.
As an example, let us consider the differential polynomial

—4y 9)

whose solutions are ¢ = 0 (support S = @) and ¢ = (z + ¢)? where c is
an arbitrary constant (supports S = {0,1,2} and {2}). The first and second
derivatives of p are

p=y

p="29i— 49,
p=29y® + 2§ —47.

In the next table, all the considered supports are supports of solutions of the
differential polynomials. In the last column, the list of the trop(m;) is provided,
rather than their minimum. The first row indicates that both monomials of p
vanish at ¢ = 0. The second row indicates that the two monomials do not vanish
but may possibly cancel each other at ¢ = as 22, for some as # 0 (indeed, they
vanish but only for as = 1). The third row indicates that, among the three
monomials of {, the first one vanishes at any ¢ = ap 22 while the two last ones
may cancel each other for some ay # 0.

polynomial  support S list trop(m;) at S
p %} [OO, OO]
p {2} [2,2]
P {2} [00,0,0]

In the next table, the considered support S = {0,1} is not the support of any
solution of p, since p has no solution of the form ¢ = ag + a; « with ag,a; # 0.
This fact is not observed on the first row, which considers p itself. It is however
observed on the second row, which considers the first derivative of p: one of the
two monomials vanishes while the second one evaluates to some nonzero formal
power series.

polynomial  support S list trop(m;) at S
p {0,1} [0, 0]
p {o,1} [00, 0]
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The observed phenomena suggest the following definition, which permits to
understand the right hand side of (2).

Let p be a polynomial of the form (7). View trop(p) as a function of n
unknown supports. Then (S1,...,5,) is said to be a solution of trop(p) if either

1. each trop(m;) = oo or
q
2. there exists m;, m; (i # j) such that trop(m;) = trop(m;) = rkn_irll(trop(mk)) .

Let us conclude this section by a few remarks. In the fundamental theo-
rem of tropical differential algebraic geometry, the inclusion supp(sol(X)) C
sol(trop(XY)) is easy. The difficult part is the converse inclusion. It requires X' to
be a differential ideal because one may need to consider arbitrary high derivatives
of the elements of X' in order to observe that a given support is not a solution.
See the example above or even simpler, consider p = § — y and S = {0,...,n}
with n € N: it is necessary to differentiate n times the differential polynomial p
in order to observe that it has no solution with support S. Moreover, the base
field . is required to be algebraically closed because of the polynomial system
solving step and the fact that solutions are sought in .Z#[[z]].

Last, the proof of the converse inclusion relies on an approximation theorem:.
The two versions of this approximation theorem given in [1, Proposition 7.3] and
[7, Proposition 6.3] assume % to be uncountable. Our new version (Theorem 1)
relies on weaker hypotheses.

4 Fields of Definition and Countability

We are concerned with a differential ideal X' [10, I, sect. 2] in a characteristic

zero partial differential polynomial ring Z[[z1,. .., Tm]]{y1,- .., Yn} where .Z is
an algebraically closed field of constants, the m derivation operators d1,...,0n,
act as 9/0x1,...,0/0xy, and y1,...,y, are n differential indeterminates.

Thanks to the Ritt-Raudenbush Basis Theorem (see [4] for details), the
differential ideal X' can be presented by finitely many differential polynomi-
als g1,...,9s € Zllx1,...,xm]]{y1,-..,yn} in the sense that the perfect [10, 0,
sect. 5] differential ideals {X'} and {g1,...,gs} are equal.

A field of definition® of X is any subfield .%; C .# such that there exist
91s---59s € XN Follxr, .. xm][{y1, - -, yn} with X C {g1,...,gs} (the perfect
differential ideal generated by g1, ..., gs)-

Proposition 1. Any differential ideal 3 has a countable algebraically closed
field of definition Fy. Moreover, if F has countable transcendence degree
over %o then % also is countable.

Proof. Let S be the family of the coefficients of the formal power series coeffi-
cients of any basis of X' which are transcendental over the field Q of the rational
numbers. The family S is countable. An algebraically closed field of definition %,
can be defined as the algebraic closure of Q(S5).

5 This definition is adapted from [10, I, sect. 5].
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Now, the field Q is countable. If .Z is a countable field and S is a countable
family of transcendental elements over £ then Z(S) is countable. Moreover,
if .Z is countable then its algebraic closure is countable [9, Theorem 65].

The last statement of the proposition follows using the same arguments.

In the sequel, %y denotes an algebraically closed field of definition of ..

5 The Approximation Theorem

Denote by @ the commutative semigroup of the derivative operators generated
by the derivation operators i.e. @ = {67* ---0%m | ay,...,am € N}.

Define a one-to-one correspondence between the set of all pairs (i,0) €
[1,n] x © and the set N of nonnegative integers. This correspondence permits
us to enumerate all derivatives fy; of the differential indeterminates. Fix a cor-
respondence which defines an orderly ranking (derivatives are enumerated by
increasing order) [10, chap. I, sect. 8]. The derivatives of the y are denoted
Vo, V1,V2, ...

As in Sect. 4, let X be a differential ideal included in the perfect differential
ideal {g1,...,9s} generated by g1, ..., gs € X with field of definition equal to .%.
Define another one-to-one correspondence between the set of all pairs (i,6) €
[1, s] x© and N. This correspondence permits us to enumerate all derivatives 6 g;.
Again, fix a correspondence which defines an orderly ranking on the derivatives
of the g (viewing them as s differential indeterminates). The derivatives of the g,
evaluated at z; = --- = x,, = 0, are denoted fy, f1, f2,... The polynomials f
thus belong to Zo{y1,...,yn}-

Let k£ be a positive integer. Denote

Zk:{fi|0§i§k}7
Yo = {fi|ieN}.

Define k(k) = k as the smallest integer such that Xy C Zplvo,...,vs]. The
index k exists because the ranking is orderly. Define

Ay ={ae ZE | fola) = = fr(a) = 0}.

Let now S be any subset of N. Define Aj g as the set of zeros of Aj which are
compatible with S:

Aps={a€ Ag]a; #0if and only if i € SN0, x|} .

Indeed, thanks to the fixed one-to-one correspondence between the derivatives
of the differential indeterminates and the set N, any such set S encodes a tuple
of n supports of formal power series. Given any field extension & of %, define

Aso(8) ={a € &Y fi(a) = 0 for each i € N},
A s(8)={a € Ax(&) | a; #0 if and only if i € S}.
The elements of A (%) give exactly the formal power series solutions of X. The

elements of Ay s(:#) give the formal power series solutions whose supports are
encoded by S.
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Theorem 1. Assume F has countable transcendence degree over Fy and is
algebraically closed. Let S be any subset of N. If Ay g # @ for each k € N then
Aoo,S(y) 7é a.

There are many proofs which have the following sketch in common:

1. one first proves that ¥, admits a solution compatible with S in some (big)
field extension & of %#y. This solution is an arc a = (a;) with coordinates
a; € & for i € N. With other words, Ao, 5(&) # @ ;

2. the arc a can be mapped to another arc ¢(a) with coordinates in % which is
also a solution of ¥, compatible with S. Thus A s(:#) # @ and Theorem 1
is proved.

There are actually many different ways to prove Step 1 above. The next
sections provide three different variants.

5.1 Proof of Step 1 by Ultraproducts

The idea of this proof is mostly due do Marc Paul Noordman. It is inspired
by techniques used in [6]. A minimal introduction of ultraproducts for casual
readers is provided in Sect. A.

Proof. Let Z be the ring obtained by inversion of all derivatives with indices
in S and quotient by the ideal equal to the sum of the ideal generated by X,
and the ideal generated by the derivatives with indices not in S, i.e.

By Lemma 1 (below), this ring is not the null ring. By Krull’s Theorem, it
contains a maximal ideal m. A suitable field extension & of % is given by Z/m.
The coordinates of the arc (a;) are the images of the derivatives v; by the natural
Fo-algebra homomorphism #Z — % /m.

Lemma 1. The ring # defined in (12) is not the null ring.

Proof. We prove the lemma by showing that X, admits a solution in some
field .Z; (which turns out to be an ultrafield - see Sect. A) and constructing a
map Zo{y1,...,Yn} — F§ which factors as Fo{y1,...,yn} = % — F#{.

To each k € N associate an element a* € Apj,s. We have

a® = (ak,ak, ... ") e FF.

'R

Fix any non principal ultrafilter 2 on N and consider the ultrafield .#; =
(IT;en #0)/ 2. For each i € N define u; € 7§ by

_ (0 1 2 k

ug = (ag, ag, A5y - -5 Ags ---),
_ 0 1 2 k

uy = (ay, aj, aj, ..., aj, ...),
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On each column k of the above “array”, the elements a¥ such that i > x are
not defined. Set them to zero. Observe that on each row, there are only finitely
many such elements.

We have thus defined a map v; — u;.

Let now i € N be the index of some polynomial f; = f. Evaluate f to an
element of #; by substituting u; to v; for each j € N. Ultrafield operations
are performed componentwise and the zeros of the f appear on the columns in
the above array. Thus, f evaluates to zero over the kth coordinate of .% for
all sufficiently large values of k. This set of values of k is cofinite and hence, f
evaluates to zero in Z.

Let now i € N be the index of some derivative v;. By definition of Aj g,
if i ¢ S then all the coordinates of u; are zero so that u; is zero in Z{ ;if i € S
then the coordinates a¥ of u; are nonzero for all sufficiently large values of k
and w; is nonzero in .

The mapping v; — u; thus defines a zero of Y, which is compatible with S
and with coordinates in .%{.

5.2 Proof of Step 1 by a Model Theoretic Argument
The idea of this proof is due to Omar Ledén Sanchez.

Proof. Define
R)={fi=0]ieNtU{vy;=0]i¢ StU{v; A#0]| i€ S}.

For any subcollection £25(v) of £2(v), there is a large enough k£ € N such that
if a € A g then a is a solution of £2y(v). Hence the assumption that Ay g # &,
for all k € N, yields that 2(v) is finitely satisfiable.

By the compactness theorem in first-order logic (see for instance [12,
Chapter 3]) applied in the context of fields, the fact that §2(v) is finitely satis-
fiable implies that there is a field extension & of % and an arc a = (a;) with
coordinates in & solving 2(v).

Remark 1. We note that Theorem 1 should not be too surprising to a model-
theorist; as it can be seen as an application of general results on strongly minimal
theories (for instance, the fact that in a strongly minimal theory there is a
unique non-algebraic complete 1-type over any set of parameters). Here the
theory in mind is algebraically closed fields and the slightly more general result
is as follows: Let = (x;);es be a tuple of variables and L/K a field extension
of transcendence degree at least |I| with L algebraically closed. Suppose T'(z) is
a collection of polynomial equations and in-equations over K. If T'(z) is finitely
satisfiable, then there is a solution of T'(z) in L.

5.3 Proof of Step 1 by Lang’s Infinite Nullstellensatz

The idea of this proof was suggested by an anonymous reviewer.
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Proof. Enlarge the set of derivatives (v;) with another infinite set of deriva-
tives (w;) where i € N. Define

QOO:EOOU{%|i¢S}U{’ini—1|i€S}.

Any solution of 2, provides a solution of X, which is compatible with S. The
set of variables v, w is indexed by N. Let & be any uncountable field. Note that
the ideal generated by {2 in the polynomial ring &[v,w] is proper; otherwise,
1 could be written as a linear combination (over &[v,w]) of finitely many of
the elements of (2., but this implies Ay g = @ for some large enough k£ € N
(contradicting our hypothesis). Then, by [11, Theorem, conditions (ii) and S2],
the system (2o, has a solution in &. Thus A s(&) # 2.

5.4 Proof of Step 2

In Step 1, we have proved that there exists a field extension & of %, such that
A s(&) # 2. Let us prove that A, s(F) # @.

Proof. Consider some a € Ay s(&). Let J C N be such that (a;) e is a tran-
scendence basis of #y(a) over %,. Denote % the algebraic closure of Fy(a;) c.
Then the full arc a has coordinates in .%;. Since .% has countable transcendence
degree over .7, we have trdeg(.% /%) > trdeg(%#1/Fy) = |J|. Moreover, since &
is algebraically closed, there exists a .%#p-algebra homomorphism ¢ : % — F
such that ¢(a) is a solution of X', compatible with S. Thus A g(F) # @.

6 The New Version of the Fundamental Theorem

For completeness, we provide the part of the proof of the fundamental theo-
rem which makes use of our Theorem 1. The proof is the same as that of [1,
Theorem 8]. We start with an easy Lemma [1, Remark 4.1].

Lemma 2. Let S = (S1,...,S,) be a tuple of n supports and m = cv‘li1 copde
be a monomial. Then trop(m) =0 at S if and only if the valuation of c is zero

and each factor v¢ = (y§k))d of m is such that k € S;.

Before stating the fundamental theorem, let us stress that the fields %y and .%
mentioned in Theorem 2 can be assumed to be countable, by Proposition 1.

Theorem 2 (Fundamental Theorem for ODE). Let X be a differential
ideal of F|[x]|{y1,...,yn} where F is an algebraically closed field of constants
and Fo be an algebraically closed field of definition of X. If F# has countable
transcendence degree over q then

supp(sol(X)) = sol(trop(X)) . (13)
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Proof. Let us first address a few particular cases.

Case 1: there exists some nonzero ¢ € XN.Z|[z]]. Differentiating c¢ sufficiently
many times, we see that 1 € X. Then, on the one hand, supp(sol(X)) = @. On
the other hand, sol(trop(1)) = @. Thus the theorem holds in Case 1.

Case 2: ¥ = (0). Then, on the one hand supp(sol(X)) contains all supports.
On the other hand, sol(trop(0)) contains all supports too. Thus the theorem
holds in Case 2.

Let us now address the general case. The inclusion C is easy. We prove the
converse one. We assume that S is not the support of any solution of 3 and we
show that S is not a solution of trop(X).

For this, we are going to build a differential polynomial h € X, expanding to
a sum of monomials

h=mi+my+-+m,, (14)

such that trop(m;) = 0 and trop(m,;) > 0 for 2 < i <r.

By the Ritt-Raudenbush Basis Theorem (see [4] for details), there exists a
finite set g1,...,¢gs of differential polynomials of X such that the solution set
of X is the solution set of the differential ideal [g1, ..., gs] generated by the g.

From now on, we use the notations introduced in Sect. 5. Since [g1,. .., gs]
has no solution with support S we have Ay, s(#) = & whence, by Theorem 1,
there exists some index k such that Ay s = @. Recall that A s is a subset
of the algebraic variety of some polynomial system obtained by prolonging, and
evaluating at x = 0, the system of the g up to some order and that the prolonged
system belongs to some polynomial ring F[vy, ..., v.].

Claim: there exists a differential polynomial

h=m{+ma+-+m; (15)

in the ideal (fo,..., fr) of the Noetherian polynomial ring %y[vy,...,v,] such
that trop(my) = 0 and trop(;) > 0 for 2 < i < 7.

The ideal (fo,..., fr) has no solution compatible with S. This means that
(the right hand side of the first line holds only for a non-empty support S but
the one of the second line holds in general):

[fo=-=fr=0and v; =0 for all v; s.t. j ¢ S] = v, =0 for some £ € S
= H vy =0.
€8, 1<x
1

By Lemma 2 we have trop(7;) = 0 at S. By Hilbert’s Nullstellensatz, we have

’rhl € \/(f())"'afk? (vj)jis)

Thus there exists a positive integer d and monomials Mg, ...,m; defining the
polynomial h as in (15). We have h € (fo,..., fr) and for each 2 < i < 7,
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there exists some j ¢ S for which deg(m;,v;) > 0. By Lemma 2, we thus have
trop(r;) > 0 at S for each 2 <14 <. The claim is thus proved.

Now, since h € (fo,- -, fr) we see that h can also be obtained by evaluating
at x = 0 some polynomial h € X. Consider any monomial m of h, of the form (5).
If the evaluation at * = 0 maps m to zero then the valuation of the coefficient ¢
of m is positive. In such a case, trop(m) > 0 by Lemma 2. If it maps m to some
nonzero monomial 1 then the valuation of ¢ is nonzero, both m and m share the
same term and trop(m) = trop(s). Thus the polynomial h has the form (14)
and the theorem is proved.

7 The Partial Differential Case

In this section we give an overview on the generalization to the case of partial
differential equations.

We seek for solutions of systems X' C .Z[[z1,. .., Tm|{¥1,-- -, Ym} in the ring
of multivariate formal power series .Z[[z1,...,Zn]].

In this case, the algorithmic problems are even worse than in the ordinary
case. According to [6, Theorem 4.11], there even cannot be an algorithm for
deciding solvability of linear systems, a subclass of algebraic differential equa-
tions as we consider. Instead of actually computing the solutions of X' we again
present an equivalent description of the solutions in the form of (2).

As in the ordinary case (m = 1), the support of a formal power series

J— /L
80_ E G’Ix § :azly 7"m)'/'rl r;{L

is the set {I € N™ | a; # 0}. Hence, the left hand side of (2) is defined also
for m > 1.

For the tropicalization of Y, the generalization cannot be done straightfor-
ward, since there is no well-defined minimum of elements in N™. In [7] is used
instead a very specific partial order induced by vertex sets, which we briefly
describe here.

Let X C N™. The Newton polytope N'(X) C R, of X is defined as the convex
hull of X + N™ = {z +n |z € X,n € N"}. Moreover, x € X is called a vertezx
if x ¢ N(X \ {z}), and vert is the set of vertices of X. It follows that vert(X)
is the minimal set in N™ (with respect to the relation “C”) generating N (X).
Let us denote all vertex sets as T,, = {vert | X C N™}. Then, the composition
of taking the support and then its vertex set of the formal power series defines
a non-degenerate valuation such that some ideas of [1] can be recovered.

Fllx1, ... ] =22 P(N™)

J{vert
non—deg.valuation
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The tropicalization of a differential monomial m = cv? - --v% at a tuple of
supports S = (S1,...,5,) C (N™)" is defined as the non-degenerate valuation
of m(p) from above with supp(¢) = S. Let us illustrate this.

monomialm  supportS  trop(m)atS
rizey  {(1,0),(0,1)} {(2,0),(0,2)}
(F° 20,02} {20}
(aﬁ 5-)°  {(2,0),(0,2)}

The tropicalization of a differential polynomial p of the form (5) at S is defined
as

trop(p) = Vert(U trop(m;)) . (16)

Let us consider the polynomial

o 2] 9?2
p= E)Tz : aTEyQ + (_CU% + x%)azlayxz . (17)

polynomial support S list trop(m; ) at S

p {(2,0),(0,2)} {(1,1)}, 2]
p {(2,0). (1, 1), (0,2)} [{(2,0),(1,1), (0.2)},{(2,0). (0.2)}]

Considering trop(p) as a function of n unknown supports, (Si,...,5,) is
said to be a solution of trop(p) if for every vertex J € trop(p) there exists
m;,m; (i # j) such that J € trop(m;) Ntrop(m;). In the example above, we
see that there cannot be a solution of p with support equals {(2,0), (0,2)}, but
@ = 2% + 22175 — 13 is indeed a solution.

For more illustrations of the tropicalization of (partial) differential polyno-
mials, see [5].

As in the ordinary case, the inclusion supp(sol(X')) C sol(trop(X')) in the fun-
damental theorem is relatively easy [7, Proposition 5.7]. The converse inclusion
can be shown exactly as in [7, Section 6], except that we replace Proposition 6.3
by the Approximation Theorem 1.

For consistency let us recall the main result here.

Theorem 3 (Fundamental Theorem for PDE). Let X be a differential
ideal of F([x1,...,xm||{y1,.-.,yn} where F is an algebraically closed field of
constants and Fy be an algebraically closed field of definition of X. If F has
countable transcendence degree over %y then

supp(sol(X)) = sol(trop(X)) . (18)
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A Basic Notions on Ultraproducts

This appendix is much inspired by [15, chap. 2] with the notations of [2]. It is
only provided for the convenience of casual readers.

The set N is used as an index set on which we fix a (so called) non-principal
ultrafilter 2. 1t is by definition a collection of infinite subsets of N closed under
finite intersection, with the property that for any subset £ C N either E or its
complement N\ E belongs to 2. In particular, the empty set does not belong
to Z and, if £ € 2 and F' is an arbitrary set containing F then also F' € 2.
Otherwise, N\ F' € 2 and therefore, @ = EN(N\ F) € 2 : a contradiction.
Since every set in 2 must be infinite, it follows that every set whose complement
is finite (such a set is called cofinite) belongs to 2.

Let #; (i € N) be a collection of rings. We form the ultraproduct #Z* =
(IL;en %)/ 2 (or the ultrapower 2" /2 if all rings #; are the same ring %)
as follows. On the Cartesian product [], . %#; we define the equivalence rela-
tion: a = b if and only if the set of indices i such that a; = b; belongs to the
ultrafilter 2.

We are going to use the following facts.

Consider an element a € %Z* which has no nonzero coordinates. The set of
indices such that a; = 0 is empty. Since the empty set does not belong to the
ultrafilter, a # 0 in Z*.

Consider an element a € Z* which has only finitely many nonzero coordi-
nates. The set of indices such that a; = 0 is cofinite. Thus it belongs to 2.
Thus a = 0 in Z*.

An ultraproduct of rings is a ring: addition and multiplication are performed
componentwise. Let us prove that an ultraproduct of fields is a field (called an
ultrafield). Consider some a # 0 in #Z*. Then the set F = {i € N | a; = 0} does
not belong to 2. Thus its complement F' = N\ E belongs to 2. Define a as
follows: for each i € N, if a; = 0 take a; = 0 else take a; = ai_l. Let v = aa.
The set of indices such that u; = 1 is F, which belongs to 2. Thus a admits an
inverse and &Z* is a field.
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Abstract. Hensel’'s lemma, combined with repeated applications of
Weierstrass preparation theorem, allows for the factorization of poly-
nomials with multivariate power series coefficients. We present a com-
plexity analysis for this method and leverage those results to guide the
load-balancing of a parallel implementation to concurrently update all
factors. In particular, the factorization creates a pipeline where the terms
of degree k of the first factor are computed simultaneously with the
terms of degree k — 1 of the second factor, etc. An implementation chal-
lenge is the inherent irregularity of computational work between fac-
tors, as our complexity analysis reveals. Additional resource utilization
and load-balancing is achieved through the parallelization of Weierstrass
preparation. Experimental results show the efficacy of this mixed parallel
scheme, achieving up to 9x parallel speedup on a 12-core machine.

Keywords: Formal power series - Weierstrass preparation - Hensel’s
lemma - Hensel factorization - Parallel processing - Parallel pipeline

1 Introduction

Factorization via Hensel’s lemma, or simply Hensel factorization, provides a mech-
anism for factorizing univariate polynomials with multivariate power series coefli-
cients. In particular, for a multivariate polynomial in (X1, ..., X,,Y), monic and
square-free as a polynomial in Y, one can compute its roots with respect to Y as
power series in (X71,...,X,,). For a bivariate polynomial in (X7, Y), the classical
Newton—Puiseux method is known to compute the polynomial’s roots with respect
to Y asunivariate Puiseux seriesin X7 . The transition from power series to Puiseux
series arises from handling the non-monic case.

The Hensel-Sasaki Construction or Eztended Hensel Construction (EHC)
was proposed in [24] as an efficient alternative to the Newton—Puiseux method
for the case of univariate coefficients. In the same paper, an extension of the
Hensel-Sasaki construction for multivariate coefficients was proposed, and then
later extended, see e.g., [17,25]. In [1], EHC was improved in terms of algebraic
complexity and practical implementation.
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In this paper, we present a parallel algorithm and its implementation for
Hensel factorization based on repeated applications of Weierstrass preparation
theorem. Our method uses a lazy evaluation scheme, meaning that more terms
can be computed on demand without having to restart the computation. This
contrasts with a truncated implementation where only terms up to a pre-deter-
mined degree are computed. Unfortunately, such a degree often cannot be deter-
mined before calculations start, or later may be found to not go far enough. This
scenario occurs, for instance, when computing limits of real rational functions [1].

Lazy evaluation is not new, having previously been employed in sparse poly-
nomial arithmetic [22] and wunivariate power series arithmetic [9,15]. Our previ-
ous work in [8] is, to the best of our knowledge, the first lazy multivariate power
series implementation. Our implementation of lazy and parallel power series sup-
ports an arbitrary number of variables. However, the complexity estimates of our
proposed methods are measured in the bivariate case; see Sect. 4. This allows us
to obtain sharp complexity estimates, giving the number of operations required
to update each factor of a Hensel factorization individually. This information
helps guide and load-balance our parallel implementation. Further, limiting to
the bivariate case allows for comparison with existing works.

Denote by M (n) a polynomial multiplication time [12, Ch. 8] (the cost suffi-
cient to multiply two polynomials of degree n), Let K be algebraically closed and
f € K[[X1]][Y] have degree dy in Y and total degree d. Our Hensel factorization
computes the first k terms of all factors of f within O(d%k + d3 k?) operations
in K. We conjecture in Sect. 4 that we can achieve O(ds-k + d3- M (k) log k) using
relaxed algorithms [15]. The EHC of [1] computes the first k terms of all factors in
O(d*M (d) + k*dM (d)). Kung and Traub show that, over the complex numbers C,
the Newton—Puiseux method can do the same in O(d*kM (k)) (resp. O(d*M (k)))
operations in C using a linear lifting (resp. quadratic lifting) scheme [18]. This com-
plexity is lowered to O(d?k) by Chudnovsky and Chudnovsky in [10]. Berthomieu,
Lecerf, and Quintin in [7] also present an algorithm and implementation based on
Hensel lifting which performs in O(M (dy ) log(dy ) kM (k)); this is better than pre-
vious methods with respect to d (or dy ), but worse with respect to k.

However, these estimates ignore an initial root finding step. Denote by R(n)
the cost of finding the roots in K of a degree n polynomial (e.g. [12, Th. 14.18]).
Our method then performs in O(d3 k+d2 k*+ R(dy)). Note that the R(dy ) term
does not depend on k, and is thus ignored henceforth. For comparison, however,
Neiger, Rosenkilde, and Schost in [23] present an algorithm based on Hensel
lifting which, ignoring polylogarithmic factors, performs in O(dy k + kR(dy)).

Nonetheless, despite a higher asymptotic complexity, the formulation of EHC
in [1] is shown to be practically much more efficient than that of Kung and Traub.
Our serial implementation of lazy Hensel factorization (using plain, quadratic
arithmetic) has already been shown in [8] to be orders of magnitude faster than
that implementation of EHC. Similarly, in [8], we show that our serial lazy
power series is orders of magnitude faster than the truncated implementations of
MAPLE’s [19] mtaylor and SAGEMATH’s [28] PowerSeriesRing. This highlights
that a lazy scheme using suboptimal routines—but a careful implementation—
can still be practically efficient despite higher asymptotic complexity.
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Further still, it is often the case that asymptotically fast algorithms are much
more difficult to parallelize, and have high parallel overheads, e.g. polynomial
multiplication based on FFT. Hence, in this work, we look to improve the practi-
cal performance (i.e. when k > d) of our previous lazy implementation through
the use of parallel processing rather than by reducing asymptotic bounds.

In Hensel factorization, computing power series terms of each factor relies
on the computed terms of the previous factor. In particular, the output of one
Weierstrass preparation becomes the input to another. These successive depen-
dencies naturally lead to a parallel pipeline or chain of producer-consumer pairs.
Within numerical linear algebra, pipelines have already been employed in par-
allel implementations of singular value decomposition [14], LU decomposition,
and Gaussian elimination [21]. Meanwhile, to the best of our knowledge, the only
use of parallel pipeline in symbolic computation is [5], which examines a parallel
implementation of triangular decomposition of polynomial systems.

However, in our case, work reduces with each pipeline stage, limiting through-
put. To overcome this challenge, we first make use of our complexity estimates
to dynamically estimate the work required to update each factor. Second, we
compose parallel schemes by applying the celebrated map-reduce pattern within
Weierstrass preparation, and thus within a stage of the pipeline. Assigning mul-
tiple threads to a single pipeline stage improves load-balance and increases
throughput. Experimental results show this composition is effective, with a par-
allel speedup of up to 9x on a 12-core machine.

The remainder of this paper is organized as follows. Section 2 reviews mathe-
matical background and notations. Further background on our lazy power series
of [8] is presented in Sect. 3. Algorithms and complexity analyses of Weierstrass
preparation and Hensel factorization are given in Sect. 4. Section 5 presents our
parallel variations, where our complexity estimates are used for dynamic schedul-
ing. Finally, Sect. 6 discusses experimental data.

2 Background

We take this section to present basic concepts and notation of multivariate power
series and univariate polynomials over power series (UPoPS). Further, we present
constructive proofs for the theorems of Weierstrass preparation and Hensel’s
lemma for UPoPS, from which algorithms are adapted; see Sects.4.1 and 4.2.
Further introductory details may be found in the book of G. Fischer [11].

2.1 Power Series and Univariate Polynomials over Power Series

Let K be an algebraically closed field. We denote by K[[X1, ..., X,]] the ring of
formal power series with coefficients in K and with variables X,...,X,.

Let f = ) cnn@eX® be a formal power series, where a, € K, X¢ =
X7t X e = (e1,...,en) € N* and |le] = e + - + e,. Let k be a
non-negative integer. The homogeneous part of f in degree k, denoted f), is
defined by fu) = Z\q:k ae.X¢. The order of f, denoted ord(f), is defined as
min{i | f;) # 0}, if f # 0, and as co otherwise.
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Recall several properties regarding power series. First, K[[X1,...,X,]] is an
integral domain. Second, the set M = {f € K[[Xy,...,X,]] | ord(f) > 1}
is the only maximal ideal of K[[X1,...,X,]]. Third, for all k& € N, we have
M = {f € K[[X1,...,X,]] | ord(f) > k}. Note that for n = 0 we have
M = (0). Further, note that f(;, € M*\ M*™! and fo) € K. Fourth, a unit
u € K[[X1,...,X,]] has ord(u) = 0 or, equivalently, u & M.

Let f,g,h,p € K[[X1,...,X,]]. The sum and difference f = g+ h is given
by ZkeN (g(k) + h(k)) The product p= gh is given by ZkeN (Ei—i-j:k g(i)h(j)) .
Notice that the these formulas naturally suggest a lazy evaluation scheme, where
the result of an arithmetic operation can be incrementally computed for increas-
ing precision. A power series f is said to be known to precision k € N, when
fiy is known for all 0 < ¢ < k. Such an update function, parameterized by k,
for addition or subtraction is simply fx) = gu) & h(x); an update function for
multiplication is p) = Zf:o 9(i)hk—i)- Lazy evaluation is discussed further in
Sect. 3. From these update formulas, the following observation follows.

Observation 2.1 (power series arithmetic). Let f,g,h,p € K[[X1]] with
f=gxfhandp=gh. fi)y = gu) = hw) can be computed in 1 operation in K.
Pk) = Zf:o 9i)h(k—iy can be computed in 2k — 1 operations in K.

Now, let f, g € A[Y] be univariate polynomials over power series where A =
K[[X1,...,X,]]. Writing f = ZLO a;Y?, for a; € A and aq # 0, we have that
the degree of f (denoted deg(f,Y) or simply deg(f)) is d. Note that arithmetic
operations for UPoPS are easily derived from the arithmetic of its power series
coefficients. A UPoPS is said to be known up to precision k if each of its power
series coefficients are known up to precision k. A UPoPS f is said to be general
(in Y) of order j if f mod M[Y] has order j when viewed as a power series in Y.
Thus, for f & M[Y], writing f = Z?:o a;Y', we have a; € M for 0 < i < j
and a; € M.

2.2 Weierstrass Preparation Theorem and Hensel Factorization

The Weierstrass Preparation Theorem (WPT) is fundamentally a theorem
regarding factorization. In the context of analytic functions, WPT implies that
any analytic function resembles a polynomial in the neighbourhood of the ori-
gin. Generally, WPT can be stated for power series over power series, i.e. A[[Y]].
This can be used to prove that A is both a unique factorization domain and a
Noetherian ring. See [8] for such a proof of WPT. Here, it is sufficient to state
the theorem for UPoPS. First, we begin with a simple lemma.

Lemma 2.2. Let f,g,h € K[[X1,...,X,]] such that f = gh. Let f; = fu),9: =
9¢i), hi = hey- If fo = 0 and ho # 0, then gy is uniquely determined by f1,..., fx
and ho, ey hk—l

PROOF. We proceed by induction on k. Since fy = gohg = 0 and hy # 0 both
hold, the statement holds for kK = 0. Now let £ > 0, assuming the hypothesis
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holds for k£ — 1. To determine gy, it is sufficient to expand f = gh modulo M**1:
fit+ fot- 4 fr = grho + (91h1 + g2ho) + - + (grhr—1 + - + gr—1h1 + grho);
and, recalling hg € K\{0}, we have gy = Y/ho (fx — g1hg—1 — -+ — gk—1h1) . O

Theorem 2.3 (Weierstrass Preparation Theorem). Let f be a polynomial
of K[[X1,..., X,]][Y] so that f # 0 mod M[Y] holds. Write f = > a; Y,
with a; € K[[X1,...,Xy]], where d > 0 is the smallest integer such that aq ¢ M
and m is a non-negative integer. Assume f Z0 mod M[Y]. Then, there exists
a unique pair p, a satisfying the following:

(i) f=ra,
(ii) « is an invertible element of K[[ X1, ..., X,]][[Y]],
(iii) p is a monic polynomial of degree d,
(iv) writingp =Y +bg_ 1YL+ ... b)Y + by, we have bg_1,...,bg € M.

PrROOF. If n = 0, writing f = aY? with o = i a;1qY " proves the exis-
tence of the decomposition. Now, assume n > 1. Write o = E:‘io ¢ Y?, with
¢i € K[[X1,...,X,]]. We will determine b, ...,bs—1,cq, - ., ¢n modulo succes-
sive powers of M. Since we require « to be a unit, ¢g ¢ M by definition.
ag, . . .,aq—1 are all 0 mod M. Then, equating coefficients in f = pa we have:

ap = boco
ay = bger + bicg

ag—1 = bocg—1 + bicg—a + -+ ba_a2c1 + bg_1co (1)
aq = bocqg +bicg—1 + -+ bg_1c1 + o

Ad+m—1 = bdflcm + Cm—1
Ad+m = Cm

and thus by, ...,bs—1 are all 0 mod M. Then, ¢; = ag4; mod M for all 0 <
i < m. All coefficients have thus been determined mod M. Let k € Z+. Assume
inductively that all b, ...,bg_1,¢o,- .., Cn have been determined mod M¥.

It follows from Lemma 2.2 that by can be determined mod M**! from the
equation ag = bgcg. Consider now the second equation. Since by is known mod
MFHLand by € M, the product bye; is also known mod M**!. Then, we can
determine by using Lemma 2.2 and the formula a; — bgc; = bicg. This procedure
follows for ba, ..., bg—1. With by, . . ., bg—1 known mod M**1 each co, ..., ¢y can
be determined mod M**+1 from the last m + 1 equations. O

One requirement of WPT is that f £ 0 mod M[Y]. That is to say, f cannot
vanish at (X1,...,X,,) = (0,...,0) and, specifically, f is general of order d =
deg(p). A suitable linear change in coordinates can always be applied to meet this
requirement; see Algorithm 2 in Sect. 4. Since Weierstrass preparation provides
a mechanism to factor a UPoPS into two factors, suitable changes in coordinates
and several applications of WPT can fully factorize a UPoPS. The existence of
such a factorization is given by Hensel’s lemma for UPoPS.
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Theorem 2.4 (Hensel’s Lemma). Let f = Y9 + Zg:_ol a;Y'" be a monic
polynomial with a; € K[[X1,...,X,]]. Let f = £(0,...,0,Y) = (Y —¢)D(Y —
)% (Y —c.) forey,...,c, €K and positive integers dy, . .., d,.. Then, there
exists fi,..., fr € K[[X1,..., Xp]|[Y], all monic in Y, such that:

(i) f=ffr
(i1) deg(f:,Y) =d; for 1 <i<r, and
(iii) fi = (Y —c;)% for1 <i<r.

PRrROOF. We proceed by induction on r. For r = 1, d; = d and we have f; =
f, where f; has all the required properties. Now assume r > 1. A change of
coordinates in Y, sends ¢, to 0. Define g(Xy,...,X,,Y) = f(X1,...,X,,, Y +
c) = (Y+ec,)%+ag_1(Y +¢,.)% 1+ -+ag. By construction, g is general of order
d, and WPT can be applied to obtain ¢ = pa with p being of degree d,. and
p = Y. Reversing the change of coordinates we set f. = p(Y —¢,) and f* =
a(Y —c¢,), and we have f = f*f,.. f, is a monic polynomial of degree d,. in Y with
fr = (Y —c,)%. Moreover, we have f* = (Y —c;)4 (Y —c)% - (Y —cpq )91,
The inductive hypothesis applied to f* implies the existence of fi,..., fr—_1. O

2.3 Parallel Patterns

We are concerned with thread-level parallelism, where multiple threads of execu-
tion within a single process enable concurrent processing. Our parallel implemen-
tation employs several so-called parallel patterns—algorithmic structures and
organizations for efficient parallel processing. We review a few patterns: map,
producer-consumer, and pipeline. See [20] for a detailed discussion.

Map. The map pattern applies a function to each item in a collection, simulta-
neously executing the function on each independent data item. Often, the appli-
cation of a map produces a new collection with the same shape as the input
collection. Alternatively, the map pattern may modify each data item in place
or, when combined with the reduce pattern, produce a single data item. The
reduce pattern combines data items pair-wise using some combiner function.

When data items to be processed outnumber available threads, the map pat-
tern can be applied block-wise, where the data collection is (evenly) partitioned
and each thread assigned a partition rather than a single data item.

Where a for loop has independent iterations, the map pattern is easily
applied to execute each iteration of the loop concurrently. Due to this ubig-
uity, the map pattern is often implicit with such parallel for loops simply being
labelled parallel for. In this way, the number of threads to use and the parti-
tioning of the data collection can be a dynamic property of the algorithm.

Producer-Consumer and Asynchronous Generators. The producer-
consumer pattern describes two functions connected by a queue. The producer
creates data items, pushing them to the queue, meanwhile the consumer pro-
cesses data items, pulling them from the queue. Where both the creation of
data and its processing requires substantial work, producer and consumer may
operate concurrently, with the queue providing inter-thread communication.
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A generator or iterator is a special kind of co-routine function which yields
data elements one at a time, rather than many together as a collection; see, e.g.
[26, Ch. 8]. Combining the producer-consumer pattern with generators allows for
an asynchronous generator, where the generator function is the producer and the
calling function is the consumer. The intermediary queue allows the generator
to produce items meanwhile the calling function processes them.

Pipeline. The pipeline pattern is a sequence of stages, where the output of one
stage is used as the input to another. Two consecutive stages form a producer-
consumer pair, with internal stages being both a consumer and a producer.
Concurrency arises where each stage of the pipeline may be executed in parallel.
Moreover, the pipeline pattern allows for earlier data items to flow from one
stage to the next without waiting for later items to become available.

In terms of the latency of processing a single data item, a pipeline does
not improve upon its serial counterpart. Rather, a parallel pipeline improves
throughput, the amount of data that can be processed in a given amount of
time. Throughput is limited by the slowest stage of a pipeline, and thus special
care must be given to ensure each stage of the pipeline runs in nearly equal time.

A pipeline may be implicitly and dynamically created where an asynchronous
generator consumes data from another asynchronous generator. The number of
asynchronous generator calls, and thus the number of stages in the pipeline, can
be dynamic to fit the needs of the application at runtime.

3 Lazy Power Series

As we have seen in Sect. 2.1, certain arithmetic operations on power series nat-
urally lead to a lazy evaluation scheme. In this scheme, homogeneous parts of
a power series are computed one at a time for increasing degree, as requested.
Our serial implementation of lazy power series is detailed in [8]. The underly-
ing implementation of (sparse multivariate) polynomial arithmetic is that of [4]
(indeed, dense multivariate arithmetic could prove beneficial, but that is left to
future work). For the remainder of this paper, it is sufficient to understand that
lazy power series rely on the following three principles:

(i) an update function to compute the homogeneous part of a given degree;
(ii) capturing of parameters required for that update function; and
(iii) storage of previously computed homogeneous parts.

Where a power series is constructed from arithmetic operations on other
power series, the latter may be called the ancestors of the former. For example,
the power series f = gh has ancestors g and h and an update function f() =

Zf:o 9¢i)h(k—s)- In implementation, and in the algorithms which follow in this
paper, we can thus augment a power series with: (¢) its current precision; (i%)
references to its ancestors, if any; and (i4¢) a reference to its update function.
Under this scheme, we make three remarks. Firstly, a power series can be
lazily constructed using essentially no work. Indeed, the initialization of a lazy
power series only requires specifying the appropriate update function and storing
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references to its ancestors. Secondly, specifying an update function and the ances-
tors of a power series is sufficient for defining and computing that power series.
Thirdly, when updating a particular power series, its ancestors can automatically
and recursively be updated as necessary using their own update functions.

Hence, it is sufficient to simply define the update function of a power series.
For example, Algorithm 1 simultaneously updates p and « as produced from a
Weierstrass preparation. Further, operations on power series should be under-
stood to be only the initialization of a power series, with no terms of the power
series yet computed; e.g., Algorithm 3 for Hensel factorization.

4 Algorithms and Complexity

In this section we present algorithms for Weierstrass preparation and Hensel fac-
torization adapted from their constructive proofs; see Sect. 2. For each algorithm
we analyze its complexity. The algorithms—and eventual parallel variations and
implementations, see Sects. 5—6—are presented for the general multivariate case,
with only the complexity estimates limited to the bivariate case. These results
culminate as Theorem 4.3 and Corollary 4.8, which respectively give the over-
all complexity of our algorithms for WPT and Hensel factorization. Meanwhile,
Observation 4.2, Corollary 4.4, and Theorem 4.6 more closely analyze the dis-
tribution of work to guide and load-balance our parallel algorithms.

4.1 Weierstrass Preparation

From the proof of Weierstrass preparation (Theorem 2.3), we derive WEIER-
STRASSUPDATE (Algorithm 1). That proof proceeds modulo increasing powers
of the maximal ideal M, which is equivalent to computing homogeneous parts of
increasing degree, just as required for our lazy power series. For an application
of Weierstrass preparation producing p and «, this WEIERSTRASSUPDATE acts
as the update function for p and «, updating both simultaneously.

By rearranging the first d equations of (1) and applying Lemma 2.2 we obtain
“phase 1”7 of WEIERSTRASSUPDATE, where each coefficient of p is updated. By
rearranging the next m + 1 equations of (1) we obtain “phase 2” of WEIER-
STRASSUPDATE, where each coefficient of « is updated. From Algorithm 1, it is
then routine to show the following two observations, which lead to Theorem 4.3.

Observation 4.1 (Weierstrass phase 1 complexity). For WEIERSTRASS-
UPDATE over K[[X1]][Y], computing b;,y, for 0 <i < d, requires 2ki + 2k — 1
operations in K if i < m, or 2km + 2k — 1 operations in K if 1 > m.

Observation 4.2 (Weierstrass phase 2 complexity). For WEIERSTRASS-
UPDATE over K[[X1]][Y], computing Cm—i(y), Jor 0 <@ <'m, requires 2ki opera-
tions in K if i < d, or 2kd operations in K if i > d.

Theorem 4.3 (Weierstrass preparation complexity). Weierstrass prepa-
ration producing f = pa, with f,p,a € K[X,]][Y], deg(p) = d, deg(a) = m,
requires dmk? + dk? + dmk operations in K to compute p and « to precision k.



86 A. Brandt and M. Moreno Maza

Algorithm 1. WEIERSTRASSUPDATE(, f, p, @)

Input: f = Zf:gn aY p = Y44 Z;:ol bY', a = Y eY aibiei €
K[[X1, ..., X,]] satisfying Theorem 2.3, with bo, ..., ba—1, co, . . ., ¢m known modulo
M¥, M the maximal ideal of K[[X1, ..., X,]].

Output: bo,...,bg_1,c¢o,...,cm known modulo M**! updated in-place.

1: fori:=0tod—1do > phase 1
2: Fi(k) = Qi(k)

3: if i < m then

4: for j:=0toi—1do

5: | Figy = Figry — (bj cimj) )

6: else

T for j:=0tom—1do

8: | Fiky = Figy — (bitj—m Cm—j)(k)

9: s:=0

10: for j:=1tok—1do

11: ‘ s:=s + bi(kfj) X Co(j)

12: bi(k) = (Fi(k) — S) /CO(O)

13: emw) = Qdm (k) > phase 2

14: for i :=1 to m do
15: if : < d then

16: ‘ Cm—i(k) *= Ad+m—i(k) — 22:1 (bd*jcm—i-‘rj)(k)
17: else

d
18: | emiry = Qatm—iqr) = 251 (Pa—jCm—its) (i)

PROOF. Let ¢ be the index of a coefficient of p or a. Consider the cost of com-
puting the homogeneous part of degree k of each coefficient of p and «. First
consider i < t = min(d, m). From Observations 4.1 and 4.2, computing the kth
homogeneous part of each b; and ¢; respectively requires 2ki + 2k — 1 and 2ki
operations in K. For 0 < i < t, this yields a total of 2kt? + 2kt — t. Next, we
have three cases: (a) t=d=m, (b)) m=t<i<d,or (¢)d=t<i<m.In
case (a) there is no additional work. In case (), phase 1 contributes an additional
(d—m)(2km + 2k — 1) operations. In case (c), phase 2 contributes an additional
(m—d)(2kd) operations. In all cases, the total number of operations to update p
and « from precision k—1 to precision k is 2dmk+ 2dk — d. Finally, to compute p
and o up to precision k requires dmk? + dk? + dmk operations in K. ]

A useful consideration is when the input to Weierstrass preparation is monic;
this arises for each application of WPT in Hensel factorization. Then, « is nec-
essarily monic, and the overall complexity of Weierstrass preparation is reduced.
In particular, we save computing (b; —mCm) k) for the update of b;, i > m (Algo-
rithm 1, Line 8), and save computing (bg—iCm ) ) for the update of each ¢y, i,
i < d (Algorithm 1, Line 16). The following corollary states this result.

Corollary 4.4 (Weierstrass preparation complexity for monic input).
Weierstrass preparation producing f = pa with f,p,a € K[[X1]][Y], f monic
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Algorithm 2. TAYLORSHIFTUPDATE(k, f, S, 7)
Input: For f = Z?:o a;Yi g=f(Y +¢) = Z?:O b; Y7 obtain the homogeneous part
of degree k for b;. 8§ € K(“*D>X(4*1) js a lower triangular matrix of coefficients of
(Y +¢) forj=0,...,d,
Output: b; (), the homogeneous part of degree k of b;.
: b =0

(K

1

2: for £ :=i to d do

3: ji=L0+1—1

4 bi(k) = bi(k) + Sz+1’j>< Qe (k)
5

: return bi(k)

Algorithm 3. HENSELFACTORIZATION( f)

Input: f =Y+ > %" a;Y a; € K[X1,..., X
Output: fi,..., fr satisfying Theorem 2.4.
1 f=f(0,...,0,Y)

2: (c1y.. ., cT)7 (di,...,dr) := roots and their multiplicities of f
3 cy, 6= SORT([c1, - .., ¢r]) by increasing multiplicity > see Theorem 4.6
4 fr=f
5: fori:=1tor—1do
6: gi = fi(Y +ci)
7 Di, @i := WEIERSTRASSPREPARATION(g)
8: sz =pi(Y —¢)
9: fiz1 = ai(Y —c)
10: f := f;
11: return f1,..., fr
pli’fl P2;62>f2 Ps;cifg

+c1 / —c1 o~ +te2 / —c2 ~ +c3 /

f— 01— — f, —> 92 —> 02— f, 93 ag —5 fa

Fig. 1. The ancestor chain for the Hensel factorization f = fif2f3f4. Updating fi
requires updating g¢i,p1,o1; then updating fo requires updating f,, g2, p2, a2; then
updating fs requires updating fS, g3, p3, as; then updating f4 requires only its own
Taylor shift. These groupings form the eventual stages of the Hensel pipeline (Algo-
rithm 8).

in'Y, deg(p) = d and deg(a)) = m, requires dmk? + dmk operations in K to
compute p and o up to precision k.

4.2 Hensel Factorization

Before we begin Hensel factorization, we will first see how to perform a transla-
tion, or Taylor shift, by lazy evaluation. For f = Z?:o a; Y e K[[X1,..., X,]][Y]
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and ¢ € K, computing f(Y + ¢) begins by pre-computing the coefficients of the
binomial expansions (Y + ¢)? for 0 < j < d. These coefficients are stored in
a matrix S. Then, each coeflicient of f(Y +¢) = Z?:o b;Y? is a linear combi-
nation of the coeflicients of f scaled by the appropriate elements of S. Since
those elements of S are only elements of K, this linear combination does not
change the degree and, for some integer k, b; 1) relies only on ay ) for ¢ < £ < d.
This method is described in Algorithm 2; and its complexity is easily stated as
Observation 4.5.

Observation 4.5 (Taylor shift complexity). For a UPoPS f = Z?:o

a; Y € K[[X1]][Y], computing the homogeneous part of degree k for all coeffi-
cients of the shifted UPoPS f(Y + c) requires d* + 2d + 1 operations in K.

Having specified the update functions for WPT and Taylor shift, lazy Hensel
factorization is immediate, requiring only the appropriate chain of ancestors.
Algorithm 3 shows this initialization through repeated applications of Taylor shift
and Weierstrass preparation. Note that factors are sorted by increasing degree to
enable better load-balance in the eventual parallel algorithm. Figure 1 shows the
chain of ancestors created by f = f1 f2 f3 f4 and the grouping of ancestors required
to update each factor; the complexity of which is shown in Theorem 4.6. Corol-
lary 4.7 follows immediately and Corollary 4.8 gives the total complexity of Hensel
factorization. Here, we ignore the initial cost of factorizing f.

Theorem 4.6 (Hensel factorization complexity per factor). Let c@ be the
degree offi during HENSELFACTORIZATION applied to f € K[[X1]][Y], deg(f) =
d. To update f1, deg(f1) = dy to precision k requires d182k2+d2k+d1dk+2d1 k+
2dk+2k operations in K. To update f;, deg(f;) = d;, for 1 < i < r, to precision k
requires dic/l;+1k:2+2c/l;2k+d¢(/i\ik+2dik+4(zk+3k operations in K. To update f,,
deg(f,) = d,, to precision k requires d*k + 2d,.k + k operations in K.

ProoF. Updating the first factor produced by HENSELFACTORIZATION requires
one Taylor shift of degree d, one Weierstrass preparation producing p; and «; of
degree d; and do = d — dy, and one Taylor shift of degree d; to obtain f; from p.
From Observation 4.5 and Corollary 4.4 we have that the Taylor shifts require
k(d?+2d+1) +k(d? + 2d; + 1) operations in K and the Weierstrass preparation
requires dy(d — d1)k? + d1(d — dy)k operations in K. The total cost counted as
operations in K is thus didok? + d*k + dydk + 2d1k + 2dk + 2k.

Updating each following factor, besides the last, requires one Taylor shift of
degree d; to update f, from «;_1, one Taylor shift of degree d; to update g;
from fi, one Weierstrass preparation to obtain p; and «; of degree d; and c/i\iH =
c/l; — d;, and one Taylor shift of degree d; to obtain f; from p;. The Taylor shifts
require 2k((§i2 +2d; + 1) + k(d? + 2d; + 1) operations in K. The Weierstrass
preparation requires dl(c?z —di)k*+ dl(c?2 — d;)k operations in K. The total cost

~ ~92 ~ ~

counted as operations in K is thus d;d; 1 k2 +2d; k + d;d;k + 2d;k + 4d; k + 3k.
Finally, updating the last factor to precision k requires a single Taylor shift

of degree d, costing d?k + 2d,.k + k operations in K. O
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Corollary 4.7 (Hensel factorization complexity per iteration). Let c?l

be the degree offi during the HENSELFACTORIZATION algorithm applied to f €
K[[X1]][Y], deg(f) = d. Computing the kth homogeneous part of f1, deg(f1) =
dy, requires 2d1gl\2k + d? + d? + 2dy + 2d + 2 operations in K. Computing the
kth homogeneous part of f;, deg(fi) = d;, 1 < i < r, requires 2dic@+1k‘ +d? +

~2 —~
2d; +4d;+2d; + 3 operations in K. Computing the kth homogeneous part of f,,
deg(f,) = d,, requires d? + 2d, + 1 operations in K.

Corollary 4.8 (Hensel factorization complexity). HENSELFACTORIZA-
TION producing f = fi1---fr, with f € K[Xi1]][Y], deg(f) = d, requires
O(d3k + d*k?) operations in K to update all factors to precision k.

PRrOOF. Let f1,..., f- have respective degrees dy, . .., d,. Let d; = Z;:z d; (thus
dy =dandd, = d,.). From Theorem 4.6, each f;, 1 < i < r requires O(dic@+1k2—|—
c@zk) operations in K to be updated to precision k (or O(d?k) for f,.). We have
S iy < ST did < @ and Y, 4 < SO, & = rd® < dP. Hence, all
factors can be updated to precision k within O(d3k + d*k?) operations in K. O

Corollary 4.8 shows that the two dominant terms in the cost of computing a
Hensel factorization of a UPoP$ of degree d, up to precision k, are d°k and d?k2.
From the proof of Theorem 4.6, the former term arises from the cost of the Taylor
shifts in Y, meanwhile, the latter term arises from the (polynomial) multiplica-
tion of homogeneous parts in Weierstrass preparation. This observation then
leads to the following conjecture. Recall that M (n) denotes a polynomial mul-
tiplication time [12, Ch. 8]. From [15], relaxed algorithms, which improve the
performance of lazy evaluation schemes, can be used to compute a power series
product in K[[X1]] up to precision k in at most O(M (k)log k) operations in K
(or less, in view of the improved relaxed multiplication of [16]).

Conjecture 4.9. Let f € K[[X1]][Y] factorize as f1--- fr using HENSELFAC-
TORIZATION. Let deg(f) = d. Updating the factors f1,..., fr to precision k using
relazed algorithms requires at most O(d3k + d>M (k) log k) operations in K.

Comparatively, the Hensel-Sasaki Construction requires at most O(d®M (d)+
dM (d)k?) operations in K to compute the first k& terms of all factors of
f € K[X;,Y], where f has total degree d [1]. The method of Kung and Traub
[18], requires O(d?M (k)). Already, Corollary 4.8—where d = deg(f,Y)—shows
that our Hensel factorization is an improvement on Hensel-Sasaki (d?k? versus
dM (d)k?). If Conjecture 4.9 is true, then Hensel factorization can be within
a factor of logk of Kung and Traub’s method. Nonetheless, this conjecture is
highly encouraging where k > d, particularly where we have already seen that
our current, suboptimal, method performs better in practice than Hensel-Sasaki
and the method of Kung and Traub [8]. Proving this conjecture is left to future
work.
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Algorithm 4. UpDATETODEGPARALLEL(K, f, t)

Input: A positive integer k, f € K[[X1,...,X,]] known to at least precision k — 1. If
f has ancestors, it is the result of a binary operation. A positive integer ¢ for the
number of threads to use.

Output: f is updated to precision k, in place.

1: if f() already computed then

2: | return

3: g, h:= FIRSTANCESTOR(f), SECONDANCESTOR( f)
4: UrPDATETODEGPARALLEL(L, g, t);

5: UPDATETODEGPARALLEL(k, h, t);

6: if f is a product then

7

8

V:=10,...,0] > O-indexed list of size ¢
: parallel for j:=0tot—1
9: for i := ik/t to (G+Dk/: — 1 while i < k do
10: | V] = V] + 96y he—a)
1 [ foy =252 VI > reduce
12: else if f is a p from a Weierstrass preparation then
13: | WEIERSTRASSPHASE1PARALLEL(k,g, f,h, WEIERSTRASSDATA(f),t)
14: else if f is an o from a Weierstrass preparation then
15: | WEIERSTRASSPHASE2PARALLEL(K, g, h, f, t)
16: else

17: | UppATETODEG(K, f)

5 Parallel Algorithms

Section 4 presented lazy algorithms for Weierstrass preparation, Taylor shift,
and Hensel factorization. It also presented complexity estimates for those algo-
rithms. Those estimates will soon be used to help dynamically distribute hard-
ware resources (threads) in a parallel variation of Hensel factorization; in par-
ticular, a Hensel factorization pipeline where each pipeline stage updates one or
more factors, see Algorithms 7-9. But first, we will examine parallel processing
techniques for Weierstrass preparation.

5.1 Parallel Algorithms for Weierstrass Preparation

Algorithm 1 shows that p and « from a Weierstrass preparation can be updated
in two phases: p in phase 1, and « in phase 2. Ultimately, these updates rely on
the computation of the homogeneous part of some power series product. Algo-
rithm 4 presents a simple map-reduce pattern (see Sect. 2.3) for computing such
a homogeneous part. Moreover, this algorithm is designed such that, recursively,
all ancestors of a power series product are also updated using parallelism. Note
that UPDATETODEGPARALLEL called on a UPoPS simply recurses on each of
its coeflicients. ‘

Using the notation of Algorithm 1, recall that, e.g., F; := a; — Z;;%) (bjci—j),
for i < m. Using lazy power series arithmetic, this entire formula can be encoded
by a chain of ancestors, and one simply needs to update F; to trigger a cascade of
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Algorithm 5. LEMMAFORWEIERSTRASS(k, f, g, h, t)

Input: f,g,h € K[[X1,...,X,]] such that f = gh, fo) = 0, h) # 0, f known to
precision k, and g, h known to precision k — 1. ¢ > 1 the number of threads to use.

Output: g().

V:=10,...,0] > O-indexed list of size t

: parallel_for j:=0tot—1

for i := ik/t + 1 to G+k/t while i < k do

| VU] =Vl + ge-nha)

end for

return ( f — X525 VIil) /R

DG W

updates through its ancestors. In particular, using Algorithm 4, the homogeneous
part of each product b;c;_; is recursively computed using map-reduce. Similarly,
Lemma 2.2 can be implemented using map-reduce (see Algorithm 5) to replace
Lines 9-12 of Algorithm 1. Phase 1 of Weierstrass, say WEIERSTRASSPHASE1-
PARALLEL, thus reduces to a loop over i from 0 to d — 1, calling Algorithm 4 to
update F; to precision k, and calling Algorithm 5 to compute b; .

Algorithm 4 uses several simple subroutines: FIRSTANCESTOR and SECON-
DANCESTOR gets the first and second ancestor of a power series, WEIERSTRASS-
DATA gets a reference to the list of F;’s, and UPDATETODEG calls the serial
update function of a lazy power series to ensure its precision is at least k; see
Sect. 3.

Now consider phase 2 of WEIERSTRASSUPDATE. Notice that computing the
homogeneous part of degree k for ¢,,,—;, 0 < ¢ < m only requires each ¢,,_; to
be known up to precision k — 1, since each b; € M for 0 < j < d. This implies
that the phase 2 for loop of WEIERSTRASSUPDATE has independent iterations.
We thus apply the map pattern directly to this loop itself, rather than relying
on the map-reduce pattern of UPDATETODEGPARALLEL. However, consider the
following two facts: the cost of computing each ¢,,—; is different (Observation 4.2
and Corollary 4.4), and, for a certain number of available threads ¢, it may be
impossible to partition the iterations of the loop into ¢ partitions of equal work.
Yet, partitioning the loop itself is preferred for greater parallelism.

Hence, for phase 2, a dynamic decision is made to either apply the map
pattern to the loop over ¢,,—;, or to apply the map pattern within UPDATE-
TODEGPARALLEL for each ¢,,_;, or both. This decision process is detailed in
Algorithm 6, where ¢ partitions of equal work try to be found to apply the map
pattern to only the loop itself. If unsuccessful, ¢/2 partitions of equal work try to
be found, with 2 threads to be used within UPDATETODEGPARALLEL of each
partition. If that, too, is unsuccessful, then each c¢,,_; is updated one at a time
using the total number of threads ¢ within UPDATETODEGPARALLEL.

5.2 Parallel Algorithms for Hensel Factorization

Let f = f1---fr be a Hensel factorization where the factors have respective
degrees di, .. .,d,. From Algorithm 3 and Fig. 1, we have already seen that the
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Algorithm 6. WEIERSTRASSPHASE2PARALLEL(E, f, p, , t)
Input: f = Zf:gnaiYi, p = Y44 Z;.iz_olbiYi, a = Y7 aYh aibi,e €

K[[X1,...,X,]] satisfying Theorem 2.3. bo,...,bg—1 know% modulo MFFHL,
Co, - - -, Cm known modulo MF, for M the maximal ideal of K[[X1,..., X,]]. t > 1
for the number of threads to use.
Output: co,...,cm known modulo M*+! updated in-place.
: work : =0
: for ¢ :=1tom do > estimate work using Observation 4.2, Corollary 4.4
if i < d then work := work + i — (aa+m = 0) > eval. Boolean as an integer
else work := work +d

1
2
3
4
5: t' :=1; targ :== work / t
6
7
8

twork:=0;j:=1
: Z:=[-1,0,...,0] > O-indexed list of size t + 1
: for i:=1tom do
9: if ¢ < d then work := work + ¢ — (ag+m = 0)
10: else work := work +d
11: if work > targ then
12: | Z[j] :=i; work :=0; j:=j+1
13: if j <t and t' < 2 then »> work did not distribute evenly; try again with ¢ = t/2
14: ti=t/2;t :=2
15: goto Line 6
16: else if j <t then b still not even, use all threads in UPDATETODEGPARALLEL
170 | Z[l]:==myt =24t :=1
18: parallel for ¢:=1tot
19: for i :=Z[¢( — 1]+ 1 to Z[{] do
20: \ UpPDATETODEGPARALLEL(K, ¢pm—i, t’)

repeated applications of Taylor shift and Weierstrass preparation naturally form
a chain of ancestors, and thus a pipeline. Using the notation of Algorithm 3,
updating fi requires updating gi,p1, 1. Then, updating f> requires updating
fa,92,02, 2, and so on. These groups easily form stages of a pipeline, where
updating f; to degree k — 1 is a prerequisite for updating f; to degree k — 1.
Moreover, meanwhile f5 is being updated to degree k — 1, fi can simultaneously
be updated to degree k. Such a pattern holds for all successive factors.
Algorithms 7 and 8 show how the factors of a Hensel factorization can all
be simultaneously updated to degree k using asynchronous generators, denoted
by the constructor ASYNCGENERATOR, forming the so-called Hensel pipeline.
Algorithm 7 shows a single pipeline stage as an asynchronous generator, which
itself consumes data from another asynchronous generator—just as expected
from the pipeline pattern. Algorithm 8 shows the creation, and joining in
sequence, of those generators. The key feature of these algorithms is that a
generator (say, stage i) produces a sequence of integers (j) which signals to the
consumer (stage i+1) that the previous factor has been computed up to precision
j and thus the required data is available to update its own factor to precision j.
Notice that Algorithm 8 still follows our lazy evaluation scheme. Indeed, the
factors are updated all at once up to precision k, starting from their current
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Algorithm 7. HENSELPIPELINESTAGE(k, fi, t, GEN)

Input: A positive integer k, f; = Y% + Zf 51 a;Y' a; € K[[X1,...,X,]]. A positive
integer ¢ the number of threads to use within this stage. GEN a generator for the
previous pipeline stage.

Output: a sequence of integers j signalling f; is known to precision j. This sequence
ends with k.

1: p := PRECISION(f3) > get the current precision of f;
2: do

3: k" := GEN() > A blocking function call until GEN yields
4: for j:=pto k' do

5: UPDATETODEGPARALLEL(], fi, t)

6: yield j

7 pi=k

8: while ¥’ < k

Algorithm 8. HENSELFACTORIZATIONPIPELINE (K, F, T)

Input: A positive integer k, F = {f1,..., fr}, the output of HENSELFACTORIZATION.
T € Z" a 0-indexed list of the number of threads to use in each stage, 7[r — 1] > 0.

Output: f1,..., fr updated in-place to precision k.
1: GEN := () — {yield k} > An anonymous function asynchronous generator

2: fori:=0tor—1do
3: if 7[i] > 0 then
> Capture HENSELPIPELINESTAGE(K, fi+1,7 [i], GEN) as a
function object, passing the previous GEN as input

4: GEN := ASYNCGENERATOR(HENSELPIPELINESTAGE, k, fi+1, 7[i], GEN)

5: do

6: | k' :=aEN() > ensure last stage completes before returning
7: while k' < k

precision. However, for optimal performance, the updates should be applied for
large increases in precision, rather than repeatedly increasing precision by one.

Further considering performance, Theorem 4.6 showed that the cost for
updating each factor of a Hensel factorization is different. In particular, for
d; = Z , d;, updating factor f; scales as d; dH_lk The work for each stage
of the proposed pipeline is unequal and the pipeline is unlikely to achieve good
parallel speedup. However, Corollary 4.7 shows that the work ratios between
stages do not change for increasing k, and thus a static scheduling scheme is
sufficient.

Notice that Algorithm 7 takes a parameter ¢ for the number of threads to
use internally. As we have seen in Sect. 5.1, the Weierstrass update can be per-
formed in parallel. Consequently, each stage of the Hensel pipeline uses ¢ threads
to exploit such parallelism. We have thus composed the two parallel schemes,
applying map-reduce within each stage of the parallel pipeline. This composition
serves to load-balance the pipeline. For example, the first stage may be given
t1 threads and the second stage given to threads, with ¢; > to, so that the two
stages may execute in nearly equal time.
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Algorithm 9. DISTRIBUTERESOURCESHENSEL(F, tiot)

Input: F = {fi,..., fr} the output of HENSELFACTORIZATION. tio¢ > 1 the total
number of threads.

Output: 7, alist of size r, where 7 [i] is the number of threads to use for updating f;+1.
The number of positive entries in 7 determines the number of pipeline stages.
T[i] = 0 encodes that fi+1 should be computed within the same stage as fit2.

1: T:=[0,...,0,1]; t :=tpor — 1 > 7 [r — 1] = 1 ensures last factor gets updated
2 d:= >, deg(f)

3: W:=10,...,0] > A 0-indexed list of size r
4: fori:=1tor—1do R
5: Wi — 1] := deg(fi)(d — deg(f:)) > Estimate work by Theorem 4.6, d;idi41
6: d :=d — deg(f:)

7. totalWork := 31— d Wi

8:

ratio :== 0; targ :== 1/t

9: for 7 :=0 to r do

10: ratio := ratio + (WI[i] / totalW ork)

11: if ratio > targ then

12: | Ti] :== ROUND(ratio - t); ratio :== 0

13: t:=tior — Z:;Ol 7] > Give any excess threads to the earlier stages
14: for i := 0 tor — 1 while ¢t > 0 do

15: | Th):=T[]+1; t:=t—1

16: return 7

To further encourage load-balancing, each stage of the pipeline need not
update a single factor, but rather a group of successive factors. Algorithm 9
applies Theorem 4.6 to attempt to load-balance each stage s of the pipeline by
assigning a certain number of threads ¢ and a certain group of factors fs, , ..., fs,
to it. The goal is for 72 di{i\i+1 / ts to be roughly equal for each stage.

'L:sl

6 Experimentation and Discussion

The previous section introduced parallel schemes for Weierstrass preparation and
Hensel factorization based on the composition of the map-reduce and pipeline par-
allel patterns. Our lazy power series and parallel schemes have been implemented
in C/C++ as part of the Basic Polynomial Algebra Subprograms (BPAS) library
[2]. These parallel algorithms are implemented using generic support for task par-
allelism, thread pools, and asynchronous generators, also provided in the BPAS
library. The details of this parallel support are discussed in [5] and [6].

Our experimentation was collected on a machine running Ubuntu 18.04.4 with
two Intel Xeon X5650 processors, each with 6 cores (12 cores total) at 2.67 GHz,
and a 12 x 4 GB DDR3 memory configuration at 1.33 GHz. All data shown is an
average of 3 trials. BPAS was compiled using GMP 6.1.2 [13]. We work over Q
as these examples do not require algebraic numbers to factor into linear factors.
We thus borrow univariate integer polynomial factorization from NTL 11.4.3 [27].
Where algebraic numbers are required, the MultivariatePowerSeries package
of MAPLE [3], an extension of our work in [8], is available.
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Fig. 2. Comparing Weierstrass preparation of w, and v, for r € {6,8,10,12} and
number of threads t € {1,6,12}. First column: execution time of w, and v,; second
column: parallel speedup of u, and v,. Profiling of vg shows that its exceptional relative
performance is attributed to remarkably good branch prediction.

We begin by evaluating Weierstrass preparation for two families of examples:

(1) up =Y o(XF+ X0 +0)Y' 4+ (X7 + X0)Y + X7+ X1 X5 + X3,
(i) vr = Y0y (X2 4+ Xo +0) VI + 27N (X2 + Xo) YO 4 X3+ X1 X + X3,

Applying Weierstrass preparation to w, results in p with degree 2. Applying
Weierstrass preparation to v, results in p with degree [r/2]. Figure 2 summarizes
the resulting execution times and parallel speedups. Generally, speedup increases
with increasing degree in Y and increasing precision computed.

Recall that parallelism arises in two ways: computing summations of products
of homogeneous parts (the parallel for loops in Algorithms 4 and 5), and the
parallel_for loop over updating ¢, _; in Algorithm 6. The former has an inherent
limitation: computing a multivariate product with one operand of low degree and
one of high degree is much easier than computing one where both operands are of
moderate degree. Evenly partitioning the iterations of the loop does not result in
even work per thread. This is evident in comparing the parallel speedup between
u, and v,; the former, with higher degree in «, relies less on parallelism coming
from those products. Better partitioning is needed and is left to future work.

We evaluate our parallel Hensel factorization using three families of problems:

(i) o = [, (Y —9) + X1 (Y2 +Y),
(i) yr =1y (Y =)' + X1 (Y? +Y),
(111) Zp = H::I(Y + X1 + X2 - Z) + X1X2(Y3 + Y)
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Fig. 3. Comparing parallel Hensel factorization for z,, y-, and z, for r € {4,6,8,10}.
First column: execution time; second column: parallel speedup. For number of threads
t = 12 resource distribution is determined by Algorithm 9; for ¢ = 12, opt serial execu-
tion time replaces complexity measures as work estimates in Algorithm 9, Lines 4-6.

These families represent three distinct computational configurations: (i) factors
of equal degree, (i7) factors of distinct degrees, and (#i%) multivariate factors.
The comparison between z, and y, is of interest in view of Theorem 4.6.

Despite the inherent challenges of irregular parallelism arising from stages
with unequal work, the composition of parallel patterns allows for load-balancing
between stages and the overall pipeline to achieve relatively good parallel speed-
up. Figure3 summarizes these results while Table1 presents the execution
time per factor (or stage, in parallel). Generally speaking, potential parallelism
increases with increasing degree and increasing precision.

The distribution of a discrete number of threads to a discrete number of
pipeline stages is a challenge; a perfect distribution requires a fractional num-
ber of threads per stage. Nonetheless, in addition to the distribution technique
presented in Algorithm 9, we can examine hand-chosen assignments of threads
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Table 1. Times for updating each factor within the Hensel pipeline, where f; is the
factor with i as the root of f;, for various numbers of threads per stage. Complexity-
estimated threads use complexity estimates to estimate work within Algorithm 9; time-
estimated threads use the serial execution time to estimate work and distribute threads.

factor serial shift Complexity- parallel wait Time-est. parallel wait
time (s) time (s) Est. threads time (s) time (s) threads time (s) time (s)
zqs k= 600 fi 18.1989 0.0012 6 4.5380 0.0000 7 3.5941 0.0000
fa 6.6681 0.0666 4 4.5566 0.8530 3 3.6105 0.6163
f3 3.4335 0.0274 1 4.5748 1.0855 0 - -
fa 0.0009 0.0009 1 4.5750 4.5707 2 3.6257 1.4170
totals 28.3014 0.0961 12 4.5750 6.5092 12 3.6257 2.0333
ya k=100 fi 0.4216 0.0003 3  0.1846 0.0000 4 0.1819 0.0000
f2 0.5122 0.0427 5 0.2759 0.0003 4 0.3080 0.0001
I3 0.4586 0.0315 3 0.2842 0.0183 0 - -
fa 0.0049 0.0048 1 0.2844 0.2780 4 0.3144 0.0154
totals 1.3973 0.0793 12 0.2844 0.2963 12 0.3144 0.0155
24 k = 100 f1 5.2455 0.0018 6 1.5263 0.0000 7 1.3376 0.0000
f2 2.5414 0.0300 4 1.5865 0.2061 3 1.4854 0.0005
f3 1.2525 0.0151 1 1.6504 0.1893 0 - -
fa 0.0018 0.0018 1 1.6506 1.6473 2 1.5208 0.7155
totals 9.0412 0.0487 12 1.6506 2.0427 12 1.5208 0.7160

to stages. One can first determine the time required to update each factor in
serial, say for some small k, and then use that time as the work estimates in
Algorithm 9, rather than using the complexity estimates. This latter technique
is depicted in Fig.3 as opt and in Table1l as Time-est. threads. This is still
not perfect, again because of the discrete nature of threads, and the imperfect
parallelization of computing summations of products of homogeneous parts.

In future, we must consider several important factors to improve performance.
Relaxed algorithms should give better complexity and performance. For paral-
lelism, better partitioning schemes for the map-reduce pattern within Weierstrass
preparation should be considered. Finally, for the Hensel pipeline, more analy-
sis is needed to optimize the scheduling and resource distribution, particularly
considering coefficient sizes and the multivariate case.
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Abstract. We have developed symbolic-numeric algorithms imple-
mented in the Wolfram Mathematica to compute the orthonormal canon-
ical Gel’fand—Tseitlin (G-T), non-canonical Bargmann-Moshinsky (B-M)
and Elliott (E) bases of irreducible representations SU(3) D SO(3) D
SO(2) group for a given orbital of angular momentum. The algorithms
resolve the missing label problem by solving eigenvalue problem for the
“labeling” B-M operator X ). The effective numeric algorithm for con-
struction of the G-T basis provides a unique capability to perform large
scale calculations even with 8 byte real numbers. The algorithms for
the construction of B-M and E bases implemented very fast modified
Gramm-—Schmidt orthonormalization procedure. In B-M basis, a very
effective formula for calculation of the matrix X is derived by graph-
ical method. The implemented algorithm for construction of the B-M
basis makes it possible to perform large scale exact as well as arbitrary
precision calculations. The algorithm for the construction of the E basis
resolves the missing label problem by calculation of the matrix X in
an orthogonal basis from this matrix previously built in non-orthogonal
basis. The implementation of this algorithm provides large scale calcula-
tions with arbitrary precision.

Keywords: Orthonormal non-canonical basis *

SU(3) D SO(3) D SO(2) - Irreducible representations + Missing label
problem - Gram—Schmidt orthonormalization - Gel’fand—Tseitlin
basis - Bargmann—Moshinsky basis - Elliott basis

1 Introduction

One of the main tools for shell type of nuclear models calculations are non-
orthogonal bases of irreducible representations (irrs.) of the non-canonical group
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chain of SU(3)D>S0(3)>S0O(2) [20]. In spite of a long history of application of the
non-orthogonal Elliot (E) basis [1,3-5,10-15,17,27,30], there are still no suffi-
ciently efficient and cost effective algorithms and programs for constructing the
required orthogonal non-canonical bases and calculating tensor operators using
a computer algebra system [25] as it can be done in the canonical orthogonal
Gel'fand—Tseitlin (G-T) basis [16,19,23,26]. First steps to construct the appro-
priate algorithms and programs which can be implemented in the Wolfram Math-
ematica [22] with the non-canonical and non-orthogonal Bargmann—Moshinsky
(B-M) basis [2,6,24] have been presented in [7-9,31].

These bases are characterized by the following quantum numbers: the angular
momentum L and its projection M on the Z axis of the laboratory frame, a
missing label which determines a degeneracy of the basis with respect to L
and M at fixed integers A and p. The latter are determined by the relations
mi3 = A+ p and mo3z = A or mog = p in the conjugate and mi3 = 2mog
(A = p) in the self-conjugate representations of SU(3) group characterized by
a set of integers mi3 > mag > mg3 at m33 = 0 describing the canonical G-
T basis [19,24]. The first set of algorithms resolves the missing label problem
with non-integer eigenvalues x. It is done by solving the eigenvalue problem
for the labeling operator X ) proposed by Bargmann—Moshinsky (B-M), which
belongs to the SU(3) enveloping algebra [6,24]. The construction is performed
in the G-T canonical orthonormal basis and the non-canonical non-orthogonal
B-M and E bases as well as in the non-canonical orthogonal B-M and E bases
calculated with the help of the second set of algorithms. The second set of
algorithms implements the Gramm-Schmidt (G-S) procedure and resolves the
missing label problem with integer quantum numbers o or K. It calculates the
elements of orthogonalized matrices of the non-canonical nonorthogonal B-M or
E bases using some overlap integrals of Ref. [2] or Refs. [4,27], respectively.

The known program for resolving the missing “label” problem by solving the
eigenvalue problem for the “labeling” B-M operator X® in the G-T basis [23] is
capable to produce calculations only for rather moderate scale calculations up to
SU(3) representation (mq3 = 18,ma3 = 9,m33 = 0). In view of the importance of
this basis in nuclear and particle physics it is necessary to elaborate the efficient
algorithms for large scale calculations, i.e., one needs to have at least 10 times
larger labels of the SU(3) representations in G-T basis. The calculations in G-T
basis may serve as a complementary tool for calculations in non-canonical bases.

Application of algebraic methods in nuclear calculations often rely on arbi-
trary precision or even exact arithmetics. In this context, the B-M basis plays
a distinct role because of its well determined algebraic structure. However, due
to the complex nature of the formulae for the overlap integrals in this basis [2],
very effective orthonormalization algorithms as well as formulas with minimal
number of summations for the calculation of operators matrix elements should
be elaborated. The implementation of these algorithms for computation of the
matrix X ®) may provide an opportunity to perform the large scale symbolic
calculations in nuclear physics.

The application of widely used in nuclear physics E basis is related to even
more problems than the problems inherent in the B-M basis. First, the values of
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the E basis overlap integrals have significantly more complex root rational frac-
tional form and second, the negative values of additional quantum number should
be taken into account when calculating the matrix elements of operators [4,27].
There is a number of formulas of the overlap integrals in the E basis [4,27]
which efficiency still needs to be investigated. It is well known that there are
no effective implementations of algorithms for calculation of the matrix X ®) in
the orthogonal E basis. So a very promising solution may be the calculation of
this matrix from its significantly more simple counterpart in the non-orthogonal
basis in the case if any effective basis orthonormalization algorithm is provided.
Because of universal character of the developed orthonormalization algorithm
the large scale calculations of the matrix X ®) may be performed.

In this paper, we have developed symbolic-numeric algorithms and pro-
grams implemented in the Wolfram Mathematica [22] to compute the orthonor-
mal canonical G-T basis [16], and the non-canonical B-M [6,24] and Elliot(E)
bases [15] of symmetric irrs. of the SU(3)DS0(3)>S0(2) group for given orbital
angular momenta. We also calculate required tensor operators. We present
benchmark calculations of the eigenvalue problem for the labeling operator X @)
in the canonical orthogonal G-T basis and use it like a guarantee of correctness
of algorithms and codes elaborated for calculations of matrix elements of tensor
operators in the non-canonical B-M and E bases. In particular, to check the cor-
rectness of calculations of the eigenvalues x having the same absolute values with
opposite signs in conjugate and self-conjugate representations and sufficiency of
the main set of eigenvectors in E basis using our algorithms and code without
an additional extra set eigenvectors at L>A\ for A>p or at L>p for p>A that is
needed in an alternative procedure for solving Eqgs. (129)—(131) of Ref. [27]).

The structure of the paper is following. In Sect. 2, the algorithm for calcu-
lating the eigenvalues and eigenvectors of labeling the B-M operator X ®) in the
orthonormal G-T basis labeled by eigenvalues of two scalars of SO(3) group is
presented. In Sects. 3 and 4, the algorithm of construction of the orthonormal B-
M and E bases and the operator X () and benchmark calculations of orthogonal-
ization matrices and eigenvalues and eigenvectors of labeling the B-M operator
X® are presented. In Sect. 5, the summary of main results and conclusions is
given. The CPU times of the benchmark calculations give needed estimations for
choosing the appropriate versions of the presented symbolic-numeric algorithms
and programs discussed in Conclusions. The computations were performed with
Wolfram Mathematica 10.1 on a PC with a 2.40 GHz Intel i7-36030QM CPU,
8 GB of RAM, and 64-bit Windows 8 OS.

2 Algorithm of Calculating X (®-Orthonormal G-T Basis

The generators of Lie algebra corresponding to the group chain U(3) D SU(2) x
U(1) fulfil the commutation relations [16]

(Eik, Eji] = 0njEq — 0y Ejy. (1)
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The Casimir operators of the second and third orders C2(SU(3)) and C3(SU(3))
are given by

CQ(SU(?’)) = Zik E; Ey;, CJ(SU(?))) = Zijk EijEjkEki- (2)

We are using generators of this Lie algebra that transform under the group SO(3)
as spherical tensors of the rank 1 and 2, respectively. The spherical components
of the angular momentum operator L = JASY (the superscript indicates the rank)
are defined as in [23]

L, =—-E\;—Es;, Lo=FE 1 — E33, L_; = E9; + E3;, (3)

and the spherical components of the quadrupole momentum operator Q = Q(z)
are defined as in [23], but with the factor 3'/2

Q= 6% Es3, Q, = 3%(1*723 —FE13), Qy=E11 + Es3 —2Ey,

Q_, =3%(Es — Ex), Q_, =63E;y). (4)
Using (1), (3), and (4) at k,n = —1,0,+1 and m = —2,—1,0,+1,+2 we obtain
the following commutator relations [Lg, Ly1] = £L4q, [L1,L_1] = —Lg:

[Lin, L] = —V2C1 3507 Linen, [Lo, Qo] = mQ,y,, ()

[Lma Qn] = _\/éclggg;?Qm—&-m [Qrm Qn] = 3\/E021n722tzn1’m+n' (6)

Remark 1. If one interchanges indices 1 and 2 of the operators a;, a;r and corre-
spondingly of E;; for i,j = 1,2,3 in Egs. (8)-(15) of Ref. [27], then one has the
following correspondence of such reordered operators with respect to the ones
determined in Eqs. (3) and (4). The vector operator of the angular momentum

L =LY in Eq. (3) is denoted as Q1) in Eq.(13) of Ref. [27], i.e., L1 = Q\”,
L, = Q(jf and Ly = Qél). The quadrupole operator @ in Eq. (4) coincides
up to the factor v/6 with Q(®) in Eq.(14) of Ref. [27], i.e., Q = V6Q?).

The construction of the complete orthonormal G-T basis with well defined
angular momentum quantum numbers L and —L < M < L, where M is a
projection of L on the Z-axis of a laboratory frame may be performed by means
of two commuting SO(3) scalars.

L? = Z;}l(—l)mLmL_m (7)

and the second one is the labeling operator X 3)

1 2
5 mi1+m
X(3) B \/; Z Z Cllm;;mzzcggn,l—i-mgl —ml—m‘szl QmQL_ml_m27(8)

mi=—1mo=—2

where C?7,, are Clebsch—-Gordan coeflicients of the group SO(3) [29]. The numer-
ical factor for the operator X @) may be chosen arbitrarily. Here, its value —4/5/6
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Table 1. Algorithm for calculating eigenvectors V' and eigenvalues « of the matrix of
the operator X ®) with definite values L through eigenvalues L(L 4 1) of matrices for
square of the orbital angular momentum (L - L) in the G-T basis.

Input:  U(3) representation mis,ma3, ma3

Output: The eigenvalues & and eigenvectors V' of the matrix of the operator x®

1 Calculation of the matrix of the operator X (3) with respect to the
Gel'fand—Tseitlin patterns for a given U(3) representation

2 Computation of eigenvalues x and eigenvectors V' of matrix x®

3 Calculation of the matrix W of the operator (L - L) with respect to the

Gel’'fand-Tseitlin patterns for a given U(3) representation
Computation of the matrix multiplication of the matrices Y =V x W

Determination of L values corresponding to the  and V':

5.1 For every row of the matrix Y calculate the sum 57 of the absolute values of
its entries

5.2 For every row of the matrix V' calculate the sum Sy of the absolute values of
its entries

5.3 For every row of these matrices calculate the L = Floor (1 / %)

6 Reorder the sequence of the obtained L values in the descending order and

correspondingly reorder the rows of * and V' matrices

is chosen to get the same eigenvalues of this operator as the eigenvalues calcu-
lated in other bases considered in this article. In order to get the same eigenvalues
of the operator X ®) presented in [23] the coefficient 3\/% is required. Usually
this factor is taken differently by different authors. The matrix elements of the
operators L? and X ) may be expressed in terms of matrix elements of the
generators E;; calculated within the |GTP) vectors

M3 M3 M33
i3 M23 M33 \ y LMz Mao ™M (9)
LMz - mi2Mma2Mmil 12 22 ’
mM12M22M11 mi1

where m; 41 > My > Miy1, at integer m; . We use the known action of
generators E;; on the G-T basis [16,26] that modify labels of only last two rows
of the G-T pattern (|GT'P)) at a given U(3) representation. After the reduction
of U(3) to SU(3) assuming mgs = 0 the action of Ly = E1; — E33 on the vectors
|GTP) gives the required values of M = mq; + mia + ma2 — my3 — Mag — Ma33.
Since X does not connect patterns with different M, so we can take M = 0.
Then, the irreducible representations are conventionally labeled by indices A =
mi3 — Moz and g = Meo3 — Mas, i.e., 4t = Moz and A > pu, or = my3 — ma3 and
A = Mma3 — Ma3s, i.e., A = mag and p > A. Both bases, i.e., B-M and E bases are,
in addition, labeled by the quantum numbers L, M and missing label which is
an integer number o or K| or noninteger number represented by eigenvalues x of
the labeling operator X (3), as it is explained below. Algorithm given in Table 1
calculates the matrices for square of the orbital angular momentum (L - L) and
the labeling operator X ) in the G-T basis of any arbitrary U(3) irreducible
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Fig. 1. The gray scale output of the matrices of the operators X (left) and (L - L)
(right) with respect to the G-T patterns for U(3) representation mi3 = 16, mas = 6,
mas = 0. The values of elements of the matrix are shown in a discrete array of squares.
The values with larger absolute value are represented by a darker square (zero values
are displayed by white color).

Table 2. Eigenvalues x = x, of the matrix X® with respect to the G-T patterns
for U(3) representation mi3 = 16, m23 = 6,m3s3 = 0. The columns of this table are
formed by eigenvalues FE,1, corresponding to a definite value of angular momentum L,
the eigenvalues are numbered by their sequence number No. (= n) as well.

No., L | 0 2 3 4 5 6 7 8

1 0.000000 —31.3847 | 0.000000 137.0156 93.00000 320.3878 256.2905 —506.4812
2 31.38471 —122.7053 | —93.00000 | —281.7338 | —240.3314 | —204.1943
3 —14.31030 —84.20615 | —15.95906 | 185.7775
4 45.55215 —55.10207
No., L |9 10 11 12 13 14 15 16

1 —447.4137 | —796.0580 | —714.8744 | —633.5932 | —554.7808 | —483.5491 | —418.0000 | —396.6667
2 —155.1731 | —389.3111 | —332.4611 | —295.7156 | —230.5525 | —264.4509

3 109.5868 —160.5985 | —54.66451 | —124.6912

4 31.30092

representation. It computes their eigenvalues L(L+1) and x respectively, solving
the eigenvalue problem xXOv = Ve, eg. Vv-ixOy = x, to find the common
eigenvectors V. It should be noted that the eigenvalues of the matrix X G) will
change their sign under substitution E;; — —E; in Egs. (3) and (4). Also
the eigenvalues of the matrix X B) of a pair of conjugate states differ only in
their signs. The pair of conjugate (contragradient) states are defined to have
the same label my3 = A + p, but if one of states in the pair is characterized by
maz = 1, (A > p) the other state has maz = A, (x> A). The self-conjugate (self-
contragredient) case when A = pu, i.e., miz = 2u and mez = p have completely
different eigenvalues of the matrix X ®) from the previous case. In this case, the
eigenvalues for the same L join in pairs and have the same absolute values, but
differ in sign. However, if the number of eigenvalues with the same L is uneven
(odd) then at least one of these eigenvalues has to be equal to 0.
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Table 3. The example of calculations of the matrix X @ with respect to the G-T
patterns for a number of p and fixed A = 125. The columns of the table are formed by p,
the maximum value of the angular momentum Lmax for a given U(3) representation
with corresponding p and A (the number Luin = 1 and the number of different L is equal
to the Lmax), the dimension of the corresponding matrix X (3), the maximal dimension
of the matrix X® for given y and A of SU(3)D> SO(3) (the minimum dimension of
this matrix is equal to 1), the CPU time for calculations of the matrix X ®) for a given
U(3) representation with corresponding p and A.

¢ | Lmax | dim X®) | max dim X®) | CPU time
10135 | 693 6 47.78 s

20| 145 | 1323 11 1.97 min
40165 | 2583 21 5.62 min
60| 185 | 3843 31 10.91 min
80|205 | 5103 41 18.03 min
100 | 225 | 6363 51 26.78 min
120 | 245 | 7623 61 37.12 min

Remark 2. At M = mq1 + mqa + mags — 3magz = 0, the corrected formula corre-
sponding to Eq. (55) in [19] has the following form

Z <m12m22 ’X(s) m'12/m’22> —0. (10)
mi mi
with summation over my1+mia+mag = miz+mas, mi;+mis+mbhy = miz+mas.

In Table2, we present the eigenvalues x,; of the X ) matrix in the G-
T basis for U(3) representation mis = 16,me3 = 6,ms3 = 0 labeled by the
definite value of the angular momentum L and n which is the sequence number
of eigenvalues and it is introduced here for the convenience only. The dimension
of the X® matrix in the G-T basis, i.e., the number of patterns that exist for
a given irreducible U(3) representation, is 39 (see Fig.1).

In Table3, we present an example of the CPU time of calculations of the
matrix X with respect to the G-T patterns for a number of p and fixed A =
125. It should be stressed that the presented procedure is very effective and
could be applied for large scale calculations since the quantum numbers managed
significantly outperform the considered as “...very large values, e.g., A\~100
and p~10." [25].

3 Algorithm and Calculations in Orthonormal B-M Basis

The B-M basis is constructed by making use of two SO(3) spherical boson vector
operators & and n [29,31] which belong to two fundamental irrs. SU(3):

x = ¥%(§m +1y), =&, n+= IF%(% +umy), mo=mn.. (11)
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The B-M states are polynomials constructed from these operators which act
on the vacuum state denoted by |0). The pairs of creation &, and n,,, and
annihilation £, and ! vector-boson operators are defined by the relations

§;|0> = 777+n|0> =0, [fvtwfn] = [njmnn} = (_1)m5—m,n~ (12)

+ .
oM kz

Fig. 2. The graphical representation of the matrix elements of the general tensor prod-
uct of three operators corresponding to the Eq. (14) is derived by the graphical method
[18].

With the help of £ and 1 one can construct the additional, helpful, irreducible
tensor operators iy = >°  CLN, (6,65 +1un)). The vectors ¢% and nt can
be chosen in the form & = (—1)Y0/0¢_,, nf = (—1)Y9/0n—,, i.e. the vectors
€, nand &1, nt are considered as creation and annihilation operators of two
distinct kinds of vector bosons in the Fock representation. The tensor operators

satisfy the following commutation relations

L L L Lyi+Loy~LMy+M Li Ly L L
FE Fi) = Buy 3 l(-0F - (-Fiopen [t iy ()
L

where Bp, 1, = v/(2L1 + 1)(2L2 + 1) and {77} is 6j Symbol of SO(3) [29].
One can see that for L,,, = v2FY,, Qx = V6FZ, the operators L, (m = 0, £1)
and Qg (k = 0,+1, £2) satisfy the standard commutation relations of the group
SU(3) given by Eqs. (5)—(6) defined in G-T basis and the second-order Casimir
operator Co(SU(3)) = Q- Q+3L- L = 4(A% + pu? + A+ 3\ + 3u) was described
in [2] and implemented as a symbolic algorithm in [7,8]. It is evident (from the
above commutation relations) that the operators L,,, where m = 0, £1 define the
algebra of the angular momentum SO(3) and the operators Q, k = 0,+1, £2,
extend this algebra to the SU(3) algebra. The dimension of any SU(3) irrep for a
given A, u can be calculated by using the following formula: D), = %(A—i—l)(/ﬁ—l)
(A + p + 2). Definition of the corresponding labeling operator X [4] is given
by X® = ([L(l) ® LW@ . Q(2)>. The tensor product X of three angular

momentum operators is expressed as
(iLM | [[T(’“) o UE]2) g W(ks)} * LM
q

= > > (k1qy kagelkragi2) (kr2ai2 ksgs|kq) (14)

" L" M" qq,q2 i" L™ M" q12,q3

) (ALM | T | LM YL M" U E) [ L M )i L" M | W ) | i LM ).
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The effective expression for matrix elements of the three operators tensor prod-
ucts may be derived by the graphical method [18]. Firstly, the general tensor
product of three operators can be expressed in the graphical form as in Fig. 2.
The great advantage of usually this graphical method is that it can significantly
simplify the momentum recoupling coefficients that are inherently presented in
formulas of this type. Secondly, using the graphical methods Eq. (14) may be
simplified

<iLM | |:[T(k1) ® U(kz)](klz) ® W(k‘s)] " | i’L’M’>

q
= (L'M'kqLM) > [(L+1)(2L" +1)(2L" +1)]7/2 (15)
i//L//i///L/l/

~ <iL || T(kl) H i//L//> <7;”L” || U(k2) H i/”L”l> <i’”L’” || W(kg) ” i/L/>

<((L', ((ky, k2)krz, ks)k)LI(((L', ks)L" k) L' k1) L),
where (y||A|ly’) are reduced matrix elements with respect to the SO(3)
group [29]. Finally, the angular momentum recoupling the coeflicients appearing
in Eq. (15) can be simplified significantly by the graphical method. In this way,
a simple formula for matrix elements of the operator X () is derived

A
(] X

The g-coefficients required in the orthonormalization scheme use the non-
normalized overlap integrals and they are defined as

(3)
i, L, M

(An) > L)@ +8) g0 (L) S S (1)

(A) R A k) g—1y(Aw)
nglg Z Zs 0,41 ’LOLM ) g )(A )(a+s)J(L+ k) (17)
where the coefficients a{*) are given in Ref. [9,31] and they read as
W 6+ p-—L-2a-0) (2 _ 12a o =0,
L2 T T (L)L)
a(l)7_62a6(L+2a—u+1)+(>\+,u—L—2a—B)(;L—2a—[3) B 64
o (L+2)(L+1)1/2 (L+1D)1/2
G0 - 200 —p+20) gy 6BA+u—L—2a—p)
T @@ +ny2 Tt T (LA
© _ , LIL+1)=3(L+2a—p+p)> . o L(L+1) = 3(p - 20)?
G = Ao (L+ DL+ 3) 20 H = L= B 20 B 1 3)
30

—(L — p+4a+ ) (1+ L+1)

0 _ 8 +p-L-2a-B)(L-p+2a)(L-p+2a-1)
(L +1)(2L + 3) ’
L0 _ 6+ p— L =20~ B)(p— 20— )~ 20—~ 1)
! (L +1)(2L + 3) ’

|
—

3= 0, A+ p— L even,
11, A+p—Lodd
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The g-coefficients in the orthonormalization scheme that uses the normalized
overlap integrals (defined below and denoted for some formulas simplification by

the same symbol q(A“)(L) as in (17)) are calculated as

by A Ua+s|Ua+s)L+k (k _ A
P = Y A, | et <u' " >Z oA, LR, (18)
a=0,...,amax alta
s=0,%+1

where (uq|uq) denotes the non-normalized overlap integrals.
In this section, we use the following form of the formula for the overlap
integral of the non-canonical B-M states presented in [2]

(e |t} .= < . #)s 9’5)‘2> — O L, AN+ 208 (L — i+ 20)!
XAN=L+p—2a" =B (u—2a"—B+A-1)

S (10 gy ) (s (302 2 A2
l,z

- + 5+ A
(u(fl—)%)!! ((5_26a/+z))u(l_ A+ B—D)N(pu—A—B—22)1
A=L+p—2a—p)! A+ L—A+2) (L+1)!
A=—L+A+2)! A+L—p+2a+8+22+2)I Ll
o AHpt LB+ A+842:4 D! Ap—l-L+A)
A+L+I+58+22+2)1 A+8+1)! A—L+p—2¢ -9
xCa(A\, L, A, z). (19)

Here a > o' and we use the following notations

g 0, A+queve11,A_ 0, A— L even, mY m!
T 11, MX+p—Lodd. “ 11, MA—Lodd, n ) nl(m—n)’

1, LA+ A, W,L>A+A,
Ci(\ L, A) = OFLEADE [ o3y A Ca(M\ LA 2) =9 04 LY Ati42:)0

L+t OFL+A+DN LA+ A

It should be emphasized that the calculation of the matrix X ®) in both cases
with the non-normalized and normalized overlap integrals is performed by using
the same Eq. (16). The only difference is that in the Eq. (16) for calculations
with the non-normalized overlap integrals, the g-coefficients defined in Eq. (17)
should be applied and for the calculations with the normalized overlap integrals,
the g-coefficients Eq. (18) should be used. It is to be noted that the states (2.3)
from paper [2] differ from the states (3.8) from paper [24] in the definition of the

number « and coincide up to phase factor (—1).

3.1 Calculations in the B-M Basis

The transformation from the non-orthogonal basis |u,) to the orthogonal |¢;)
basis is given by the left upper triangle matrix A:

[60) =D Aialua), Aia=0; i>a, U= (ufu)=AT AT
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Table 4. Computation of A matrix for A = 125 and L = 120 (precision = 300).

1 | CPU time exact | CPU time numerical
40 | 748 s 2.33s

60 |36.27 s 11.47 s

80 | 2.10 min 34.23 s

100 | 5.94 min 1.46 min

120 | 15.03 min 3.01 min

Then we have the following relations:
(6il65) =Y (ualALiAjarlua) = Awaltalua ) (A )ary = ;.

The diagonalization example of the matrix X ) defined by Eq. (16) with u = 6,
A =10 and L = 6 in the B-M orthonormal basis with use of the Alisauskas
formula Eq. (19) for the overlap integrals is presented. The entries of the matrix
U are the overlap integrals (uq|ua/), Eq. (19)

1.265307137 1.202208278 0.8437655038 0.6732710727
0.7182987559 0.8437655038 1.042308835 0.9930943247
0.5360438477 0.6732710727 0.9930943247 2.782445237

7.420552446 1.265307137 0.7182087559 0.5360438477
U= x10'°. (20)

The matrix A contains the B-M basis orthonormalization coefficients

0 0 —1.205730325 0.4303423216

—0.4074172336  0.5379900162 —0.1598566047 0.005366888407
A=
0 0 0 0.5994965488

0 —1.400458233 1.228635203 —0.09964711136 ) «10~8. (21)

Comparison of computation times of exact and numerical orthonormalisation of
B-M basis is shown in Table 4.

0 41.32579910 —125.1337108 —89.49710939 (22)

319.7180436 13.74962194 0 0 )
0 0 —89.49710939 —228.7554369

X(S)()\,uL) _ (13.74962194 34.17110415 41.32579910 O

Numerical eigenvalues = = 2 (L) of the matrix X (AuL):

320.3878386 0 0 0
z’\“(L) _ 0 —281.7338447 0 0 i (23)

0 0 —84.20614615 0
0 0 0 45.55215226
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coincide with the eigenvalues calculated in the G-T basis presented in Table 2.
The eigenvectors V of the X ®) (AuL) matrix are of the form

—0.04865546258  —0.06655631440  0.2855709474 0.9548047638
0.004665953573 0.5082672123  —0.8147802593 0.2788831277

0.9988044336 0.001521525127 —0.009720865112 —0.047884164096
1% ( ) (24)
—0.0007604378964 0.8586223750 0.5044679057  —0.09098994985

Since the X ) (AuL) matrix is symmetric, these vectors V are orthonormalized.

The calculation of the matrix X was performed in the B-M orthonormal
basis calculated with the normalized Alisauskas formula (19) for the overlap
integrals as well. For comparison, we use here the same parameters u = 6,
A =10 and L = 6 as in the calculations without overlap integrals.

1.000000000 0.4236312421 0.2582788150 0.1179692678
u (0.4236312421 1.000000000 0.7537610627 0.3681177725) (25)
0.2582788150 0.7537610627 1.000000000 0.5831482514
0.1179692678 0.3681177725 0.5831482514 1.000000000
—1.109832696 0.5898805458 —0.1632032466 0.008952325776
A— ( 0 —1.535536055 1.254357019 —0.1662179900 ) (26)
0 0 —1.230972621 0.7178395313
0 0 0 1.000000000

The matrix X® (AuL) calculated in the normalized B-M basis has the same

entries as in the non-normalized case (22). The matrix X ® (ApL) has the same
eigenvalues from (23) and eigenvectors (24) as in the case of calculations with
non-normalized overlaps.

3.2 Calculations of X with Summation in the B-M Basis

The reduced matrix element of the quadrupole operator is given by
Q@ Ap) — (—1)* V2L +1 ()
], L + k i, L (

L+k, L,20[LL) %k
where the g-coefficients are defined by (17). The matrix elements of the quadru-
pole operator components can be obtained from the reduced matrix elements (27)
by the Wigner—Eckart theorem:
(An)
1) (28)

<(Lz)w' (Au )> (LM?plL’7M’)<( 1)
J i,

iLM 2L + 1 3L
Direct summation in the formula (14) gives

A
(00 ]3] X, ) = e > =i

mi=—1my=-—2
X(Imy —m 2m4 1m .
( 1 4 | 1) <‘7’ [7 [

(An) ‘ ORI > (29)
" <(.Au)

miTma ]7L3L_ml +m4
(Aw) (Aw) I (Aw)
4, L, L —mq +my i, L, L —my 4, L, L —my gL, L/~

v (L), (27)

Q(2) Q(2

x®

(€]

—m1

2
QP
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CPU time (s) ® CPU time (s) ()
Algorithm 2 104

1000 Algorithm 1

1000

Tolstoy 2

Algorithm 3 100 Tolstoy 1

Asherova

u u

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Fig. 3. (a) The CPU time versus parameter u in the interval p = 10...120 for calcula-
tions of the matrix X ® in the B-M basis with A = 125 and L = 120 using the different
computation Algorithms. Algorithm 1 represents the calculations with non-normalized
overlaps, Algorithm 2 with normalized overlaps, and Algorithm 3 with direct summa-
tion formula. The computations were performed with 300 decimal digits of precision.
(b) The CPU time versus the parameter 4 in the interval 4 = 10...120 for calculations
of the matrix X ® in the orthonormal Elliott basis Eq. (39) with A = 125 and L = 120
using the different computation procedures. The computations were performed with
300-digit precision.

The dimension of the quadrupole and angular momentum operator matrices
is D), determined above. The matrix X 3) (AuL) calculated with direct summa-
tion formula has the same entries, eigenvalues, and eigenvectors as in the case
with the non-normalized and normalized overlaps presented in Subsect. 3.1. The
efficiency of the developed algorithms is presented in Fig.3a. The CPU time
versus parameter p in the interval g = 10...120 for calculations of the X 3)
matrix in the Bargmann-Moshinsky basis with A = 125 and L = 120 using the
different algorithms determined by Eqgs. (17), (18) and (29) are presented. The
computations were performed with 300 decimal digits of precision (DDP).!

Remark 3. In the Mathematica language, a matrix of eigenvectors is the matrix
presented by rows but in Maple it is the matrix presented by columns which is a
standard accepted in literature. Below we use a transposed matrix of eigenvectors
calculated in Mathematica.

Y Question: How to decide what accuracy is sufficient? Why 300-DDP? Answer: Cal-
culations are carried out, with very large numbers produced by the presence of
factorials in expressions. Computational accuracy should ensure the accuracy of cal-
culations, which is estimated by the product of normalization tests, eigenvalues, and
equation of eigenvalues. In these calculations, computational accuracy 300-DDP was
taken to ensure that the absolute accuracy of each matrix element of the test result
is not worse than 107°°. It should be noted that when calculating with large quan-
tum numbers (p = 120, A = 125, L = 120), low computational accuracy (200-DDP)
makes the calculations themselves impossible, leading to a division error by zero, and
insufficient computational accuracy (250-DDP) although it already allows you to cal-
culate the matrix X® but not accurately enough, therefore, it is not yet ensured
that its eigenvalues and vectors are found.
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4 Algorithm of Construction and Calculations of the E
Basis

The first overlap ((Au)(K")L' M'|(Au)(K)LM) = 8,163 pp UM (K' LK) where
UM(K'LK) = ( Pk | PE | Pk ) is given by formula (2.14) of Asherova [4]

(@1 | PL, | @300 ) = (L+ K)(L— KL+ K (53— K)) (5(n— K’))!} 2

(L= KN (5(u+EK) (5(n+KN)!
(—1)3 (K'—K) (1@ —1)N(E@A+pu—K') +z—s)!
* LI2L — 1)1 &= 204K 512z — 5)! (z + 3 (K" — K))! (3 (n — K') — z)!
(%(u-ﬁ-K’)-ﬁ-x).
(32X +p+K') = L+a—s)!

(30)

1
x oIy (— (5(2>\+M+K’)—L+x—s>,L—K+1;2L+2;2).

The second overlap integral of the non-orthonormalized E basis is given by the
first formula (43) of the Tolstoy paper [27]

UM (K'LE) = (~1)E= 2+ KD (9 4 1)
x¢<L+K)<L+K'><< ) (51— K))!
(L= K)N(L = K GG+ KDY (G (n+ K1)
!

XZ (—2)Ltr—2t: (L K+ (L-K +r)
ML+ 1+r)! A+ ip—L—r+t ) (L+r—2t)!

N[N —

()"’_Qﬂ_t/) (2/~L+t/)
(#, = 3E)N(# — 3K (p — )t

The third overlap integral of the non-orthonormalized E basis is given by the
second formula (49) of the Tolstoy paper [27]

(31)

UM (K'LK) = (—1)F-2(E+K) (2L 4 1)

" (L+ KL+ KN (5(n = K)! (5(n — K))!

(L = E)NL = K" (5(u+ K (5 (1 + E))!
(=2 A+ Ju— K+ ) A+ Sp— K+ )]
A+ ipu+ L+t + 1)V +ip—L+)!

y (gu+t0)!

(tL — 3 EON(tL — 3K (gu—tL)!
o Fy (—/\—éu L—t —1, —)\—f,u—kL—t’ “A—ip+t]

+

z

A= iu+ K—t, -A—Ltpu+ K -t

3)-62

It should be noted that for conjugate basis |(Ap)(K)LM)z at p > X overlap
AP(K'LK) = (—1)MV2EAKD ABN K LK) from Eq. (80) of Ref. [27]. Tt should
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Table 5. Computation of A matrix for A = 125 and L = 120 (precision = 300)

u | Asherova (30) | Tolstoyl (31) | Tolstoy2 (32)
40 |2.174 s 3.06 s 0.81s
60 | 10.81 s 13.31 s 2.19 s
80 |39.78 s 39.80 s 5.38 s
100 | 1.70 min 1.57 min 11.48s
120 | 3.40 min 3.22 min 21.53s

be stressed that all these formulas for overlap integrals give the same numerical
values but their efficiency is quite different. An example of the orthonormaliza-
tion of the E basis calculated with non-normalized overlap integrals for p = 6,
A =10 and L =6 (here Kuin = 0, Kpax = 6, AK = 2) is shown below

221059 2405 3 1 15
572033 T 5200311 52003 i1 ~ 7429V 77
_ 2405 317467 2963 _181 /15
u)\/,L(L) — 5200311 1716099 81719\/§ 81719 7
67 3 2963 204329 4129 /5 ’
52003 11 81719f 1716099 ~BIT19 7

1 15 41 5 16415
T 7420V 7T 81719 81719 81719

5 /38687 11121 1353 / 3 11 / 3
T 64 91 T 160+/320047 ~ 7320 V 320047 32V 228605

o _ 1 /124210581 _ 15789 300 9333 309
AN (L) _ 80V 3517 30\ 696728251 16 \ 24385488785
_ 7 /294063 _ 4129 637 ’
0 0 2V 396206 14 V 132729010
1 /BI7I9
0 0 0 7V 7335

where UM (L) is the matrix of the overlap integrals U M) (K'LK).
A comparison of CPU time of computation of the matrix A with overlaps in
the E basis given by Eqgs. (30), (31) and (32) is presented in Table 5.

4.1 Calculations of X® in Non-orthogonal E Basis

The normalized E basis calculated with Asherova and Tolstoy formulas (30),
(31) and (32) (A > p, A < ) are given by:

S??’@E L> - u(LK)Z(LK’)u(M)(KLK/)’ (33)

where u2(LK) = UM (K LK). An expansion of eigenvectors of the X&) (uAL)
matrix in terms of the non-orthogonal E basis is

A p)p\ _ e A\ pw)e
a,L,L |~ ZK:KM Cor' |\ 1,1 ) (34)
Here x denotes the eigenvalues of the X ) (AuL) matrix. It should be stressed that

eigenvalues of the matriz X® have the same numerical values independently of
a basis.
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The eigenvalues and eigenvectors of the X (3)(/\ML) matrix can be obtained
by solving the appropriate generalized eigenvalue problem:

Ko
-l (M)E | y3) | (AM)E ANwe (M u)e _
K_ZK:_ OxK<<KLL X ) —"\klrr|kinr)) =0 (5

Matrix elements of the matrix X ) (AuL) in the non-orthogonal E basis read as

A A
(it =)
_ _% <1+ §(2A+u)> (KL +1) - 3K7) <§?Z’i gé/ML)EL>

—%\/(M+K)(ﬂ—K+2)(L+K)(L—K+1)(L+K— 1)(L-K+2)
1)

u(LK)<Ku2E,L,L K’,L,EL> (36)

—%\/(u—K)(;H—K+2)(L—K)(L+K+1)(L—K—1)(L+K+2)

XU(LK+2) A\ e owny:
WLK) \K+2LL|K ,LL/

Below we present the solution of the generalized eigenvalue problem for the
matrix X® = ([L(1)®L(1)](2)~Q(2)) with g = 6, A = 10 and L = 6 in the

non-orthogonal E basis. The matrix X® (AuL) defined by Eq. (36) in the non-
orthogonal E basis reads:

319.7180436 —30.40475773 2.942648053 —0.2996013406
—30.40475773  36.37991665 —45.86740146 12.00462530
2.942648053 —45.86740146 —110.4027084 —53.26181618
—0.2996013406 12.00462530 —53.26181618 —172.8154127

X® (L) =

The matrix U**(L) of the normalized overlap integrals defined by Eqs. (33) of
the non-orthogonal E basis is the following:

1.000000000 —0.05215172237 0.003136702244 —0.0002132393883
Ui (L) = —0.05215172237 1.000000000  —0.1410509515 0.01681957796 (37)
N 0.003136702244 —0.1410509515 1.000000000 —0.2761245773 ’

—0.0002132393883 0.01681957796 —0.2761245773 1.000000000

Numerical eigenvalues & = (L) of the matrix X (AuL) obtained by
solving the generalized eigenvalue problem defined by Eq. (35) coincide with
those from (23). The same eigenvalues will be obtained for the matrix X ® (ApL)
calculated not by normalized overlap integrals U (K LK') Eq. (33), but by
non-normalized overlap integrals Eqgs. (30), (31), (32) as well. Of course the
entries of X (ApL) and UM (L) are completely different in this case.



116 A. Deveikis et al.

Table 6. Computation of the matrix X ® in the non-orthogonal E basis Eq. (36) for
A =125 and L = 120 (precision = 300)

u | Asherova (30) | Tolstoyl (31) | Tolstoy2 (32)
40 |1.17 min 1.5 min 24.84 s

60 |6.13 min 7.05 min 1.43 min

80 | 20.05 min 22.43 min 4.08 min

100 | 53.71 min 53.97 min 8.69 min
1201.92 h 1.82 h 14.27 min

Remark 4. For checking our results the matrix X ) (AuL) was also calculated
by using Eqs. (129)—(131) of Tolstoy paper [27]. The eigenvalues of this matrix
are equal to the eigenvalues of the X (uAL) matrix calculated by Eq. (36).

The eigenvectors C of eigenvalue problem X®)C — UCz = 0 have the form

0.998827 —0.100335 —0.029577 —0.006434
—0.048196 —0.953926 —0.414649 —0.134402
0.004503 0.265111 —0.718457 —0.643440
—0.000793 —0.098353 0.557682 —0.753576

(C1,....,Cq) =

Comparison of the CPU time for computing the matrix X ) in the non-
orthogonal E basis with overlaps Eqgs. (30), (31), (32) is presented in Table 6.

4.2 Calculations of X®) in Orthogonal E Basis

Now we solve the same eigenvalue problem in the orthogonal basis |¢) = |u).A”.
In the orthogonal basis, Egs. (35) are expressed in terms of the operator X 3
calculated in the non-orthogonal basis in the following form

AX®PATB — Bx = 0. (38)

The expression for labeling operator X ) in the orthonormal E basis reads as
X® = AX® AT (39)

For the example with =6, A = 10 and L = 6 the matrix A in the E basis is

—1.001371945 —0.05284392928 —0.004466788619 —0.0005581094723

A— 0 —1.010371879  —0.1491969336  —0.02420291165 (40)
o 0 0 —1.040450798 —0.2872940369
0 0 0 1.000000000

Here the tridiagonal matrix X ®) Eq. (39) in the orthogonal basis reads as

317.482 —20.02009  —2.1 x 10(—10) —9.7 x 10(—11)
%@ _ | —29.02000 20.9536 —66.6970 —3.6 x 10(—9) (41)
—2.1 x 10(—10) —66.697 —165.620 105.065 '
—9.7 x 10(—11) —3.6 x 10(—9) 105.0651 —172.815
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The eigenvalues of the matrix X ® are the same ones as in (23) and the eigen-
vectors normalized by the scalar product BY B = I have the following form

0.994918 —0.096471 —0.027807 —0.007620
—0.099615 —0.903976 —0.384899 —0.157341

(B1,..., Ba) = 0.014330 0.375369 —0.594764 —0.710737 (42)
0.003052 0.180604 —0.705219 0.685593
There is a relation between eigenvector matrices B and C"
B = DDB. (43)

Here D = (A")~'C, D is the diagonal matrix with diagonal elements equal to
the reciprocals of diagonal elements of the matrix D and B is a diagonal matrix
with diagonal elements of the matrix B on its diagonal.

The CPU times versus parameter p in the interval p = 10...120 for cal-
culations of the matrix X® in the orthonormal Elliott basis with A = 125
and L = 120 using different computation procedures with the overlaps given
by Egs. (30), (31) and (32) are presented in Fig.3b. The computations were
performed with 300-digit precision.

Remark 5. In the limit of large X or u, the overlap in the Elliot basis tends to a
diagonal matrix. In this limit, the matrix of the operator X ) and its eigenvalues
and eigenvectors tend to those known for an asymmetric top [4,21,28].

5 Results and Conclusions

In this paper we have developed the symbolic-numeric and fast computation
procedures for calculation of the matrix X3 (AxL) in the Gel’fand-Tseitlin (G-
T), Bargmann—Moshinsky (B-M) and Elliott (E) bases that could be applied to
a very large quantum numbers.

The advantages of the G-T basis from the computational point of view are:
its original orthonormality, the simplicity of expressions for matrix elements of
physically significant operators, and a possibility to construct their matrices with
symbolic calculations. However, one needs to take into account that required
calculations of the matrix X ®)(AuL) for all L have to be performed in one run
that destroys fast performance. This disadvantage of the G-T basis is related to a
necessity to perform the calculations for all L at the same time. So, the dimension
of matrices is significantly larger than in the B-M and E bases. For example,
even if in the B-M and E bases, the dimension of the matrix X® (AuL) for
some particular L is one, the dimension of the corresponding eigenvector column
G-T basis is the sum of dimensions of the matrices X ®)(AuL) for all L. In the
considered example with ¢ = 6 and A = 10, this dimension is 39. For comparison,
in this example, the maximum possible dimension of the matrix X (3)()\/.LL) in
the B-M and E bases is only 4. It should be noted that due to the simplicity of
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the matrix elements of the generators E;; (due to the absence of factorials in
the expressions for the GT basis) calculated within the G-T vectors the machine
precision of Mathematica (18 decimal digits of precision (DDP)) is sufficient for
large scale numerical calculations. This computational accuracy ensures absolute
accuracy of each matrix element of the test result not less than 10~!2. This
advantage of G-T basis greatly increase the number of various computation
systems that could be applied for this kind of calculations.

The notable advantages of the B-M basis are its inherent specification by
angular momentum L and integer values of overlap integrals. The disadvantages
of the B-M basis are its non-orthogonality and complicated formula for calculat-
ing the overlap integrals. In the present paper, we have elaborated new efficient
symbolic-numeric algorithms for the calculation of the matrix X (AuL) in
the B-M basis. The distinct advantage of these algorithms is that they do not
involve any square root operation on the expressions coming from the previous
steps for the computation of the orthonormalization coefficients for this basis.
This makes the proposed method very suitable for symbolic calculations and
calculations with an arbitrary precision as well. The effectiveness of the devel-
oped algorithms derived by graphical methods is demonstrated by their 100-1000
times superiority in CPU time over computations using the direct summation in
the X ®)(AuL) definition formula.

The E basis is well known for its widespread use in nuclear calculations. The
disadvantages of the E basis are its non-orthogonality, complicated formula for
the calculation of overlap integrals and root rational fraction form of some their
values. The calculation of the matrix X (AuL) in the E basis was implemented
by the formulas of Asherova (30) and Tolstoy: (31) and (32). The fastest formula
for the overlap integrals is the Tolstoy formula (32). It significantly outperforms
all other formulas for the overlap integrals in both the E as well as B-M basis.
This is due to the fact of transferring of the large part of computations, in this
case, to very efficient internal Wolfram Mathematica hypergeometric functions.
However, since the overlap integrals in the E basis have the root rational fraction
form the scale of exact calculations in this basis is rather limited comparing
with the computations in the B-M basis. For example, for considered cases of
A =125 and L = 120, Mathematica is able to perform exact computations only
up to u = 9. At the same time, since in the B-M basis, the overlap integrals
are just integer numbers, there are no restrictions for exact calculations in this
basis. Nevertheless in the case of numerical computations, the calculations in
the E basis compete with analogous calculations in the B-M basis.

In the present paper, we have elaborated new efficient symbolic-numeric algo-
rithms and procedures implemented in the Wolfram Mathematica for comput-
ing the matrix X(3)()\uL) in the G-T, B-M and E bases. The developed code
XGTBME solves the non-canonical group chain of SU(3)D>S0(3)D SO(2) label-
ing problem for large-scale calculations in these bases. The program XGTBME
is already prepared and will be published in JINR Program Library.



Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) 119

Acknowledgments. Cestmir Burdik thanks Prof. V.N. Tolstoy for fruitful discus-
sion. The work was partially supported by the RFBR and MECSS, project number
20-51-44001, the Bogoliubov—Infeld program, the Blochintsev—Votruba program, by
the RUDN University Strategic Academic Leadership Program and grant of Plenipo-
tentiary of the Republic of Kazakhstan in JINR.

References

1. Akiyama, Y., Draayer, J.P.: A user’s guide to Fortran programs for Wigner and
Racah coefficients of SU3. Comput. Phys. Commun. 5, 405-415 (1973)

2. Alisauskas, S., Raychev, P., Roussev, R.: Analytical form of the orthonormal basis
of the decomposition SU(3) D O(3) D O(2) for some (A, ) multiplets. J. Phys. G:
Nucl. Phys. 7, 1213-1226 (1981)

3. Asherova, R.M., Smirnov, Y.F.: New expansions of the projecting operator in
Elliot’s SU3 scheme. Nucl. Phys. A 144, 116-128 (1970)

4. Asherova, R.M., Smirnov, Y.F.: On asymptotic properties of a quantum number
Q in a system with SU(3) symmetry. Reports Math. Phys. 4, 83-95 (1973)

5. Bargmann, V., Moshinsky, M.: Group theory of harmonic oscillators (I). Nucl.
Phys. 18, 697-712 (1960)

6. Bargmann, V., Moshinsky, M.: Group theory of harmonic oscillators (II). Nucl.
Phys. 23, 177-199 (1961)

7. Deveikis, A., Gusev, A.A., Gerdt, V.P., Vinitsky, S.I., G6zdz, A., Pedrak, A.: Sym-
bolic algorithm for generating the orthonormal Bargmann—Moshinsky basis for
SU(3) group. In: Gerdt, V.P.; Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.)
CASC 2018. LNCS, vol. 11077, pp. 131-145. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99639-4_9

8. Deveikis, A., et al.: Symbolic-numeric algorithm for computing orthonormal basis
of O(5) x SU(1,1) group. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov,
E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 206—227. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60026-6_12

9. Deveikis, A., et al.: On calculation of quadrupole operator in orthogonal Bargmann-
Moshinsky basis of SU(3) group. J. Phys. Conf. Ser. 1416, 012010 (2019)

10. Draayer, J.P., Pursey, D.L., Williams, S.A.: Elliott angular momentum states pro-
jected from the Gel’fand U(3) Basis. Nuclear Phys. A 119, 577-590 (1968)

11. Draayer, J.P., Williams, S.A.: Coupling coeflicients and matrix elements of arbi-
trary tensors in the Elliott projected angular momentum basis. Nucl. Phys. A 129,
647-665 (1969)

12. Draayer, J.P.: Akiyama, Y: Wigner and Racah coefficients for SU3. J. Math. Phys.
14, 1904-1912 (1973)

13. Bahri, C., Rowe, D.J., Draayer, J.P.: Programs for generating Clebsch-Gordan
coefficients of SU(3) in SU(2) and SO(3) bases. Comput. Phys. Commun. 159,
121-143 (2004)

14. Elliott, J.P.: Collective motion in the nuclear shell model I. Classification schemes
for states of mixed configurations. Proc. R. Soc. London 245, 128-145 (1958)

15. Elliott, J.P.: Collective motion in the nuclear shell model II. The introduction of
intrinsic wave-functions. Proc. R. Soc. London 245, 568-581 (1958)

16. Gel’fand, I.M., Tseitlin, M.L.: Finite-dimensional representations of the group of
unimodular matrices. Dokl. Akad. Nauk SSSR (N.S.) 71, 825-828 (1950). (in Rus-
sian

)


https://doi.org/10.1007/978-3-319-99639-4_9
https://doi.org/10.1007/978-3-319-99639-4_9
https://doi.org/10.1007/978-3-030-60026-6_12

120

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

A. Deveikis et al.

Harvey, M.: The nuclear SU3z model. In: Baranger, M., Vogt, E. (eds.) Advances
in Nuclear Physics, vol. 1, pp. 67-182. Springer, Boston (1968). https://doi.org/
10.1007/978-1-4757-0103-6-2

Jucys, A., Bandzaitis, A.: Theory of angular momentum in quantum mechanics.
Mokslas, Vilnius (1997)

Judd, B.R., Miller, W., Patera, J., Winternitz, P.: Complete sets of commuting
operators and O(3) scalars in the enveloping algebra of SU(3). J. Math. Phys. 15,
1787-1799 (1974)

Kota, V.K.B.: SU(3) Symmetry in Atomic Nuclei. Springer, Singapore (2020).
https://doi.org/10.1007/978-981-15-3603-8

Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-relativistic Theory. Perg-
amon press, N.Y. (1977)

MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com

McKay, W., Patera, J., Sharp, R.T.: Eigenstates and eigenvalues of labelling oper-
ators for O(3) bases of U(3) representations. Comput. Phys. Commun. 10, 1-10
(1975)

Moshinsky, M., Patera, J., Sharp, R.T., Winternitz, P.: Everything you always
wanted to know about SU(3)D O(3). Ann. Phys. 95, 139-169 (1975). F. Gursey
(ed.) Gordon and Breach, New York (1964)

Pan, F., Yuan, S., Launey, K.D., Draayer, J.P.: A new procedure for constructing
basis vectors of SU(3) D SO(3). Nucl. Phys. A 743, 70-99 (2016)

Patera, J.: The Nagel-Moshinsky operators for U(p,1) D U(P). J. Math. Phys. 14,
279-284 (1973)

Tolstoy, V.N.: SU(3) Symmetry for orbital angular momentum and method of
extremal projection operators. Phys. Atomic Nuclei 69(6), 1058-1084 (2006)

Ui, H.: Quantum mechanical rigid rotator with an arbitrary deformation. I. Progr.
Theor. Phys. 44(1), 153-171 (1970)

Varshalovitch, D.A., Moskalev, A.N., Hersonsky, V.K.: Quantum Theory of Angu-
lar Momentum. Nauka, Leningrad (1975). (also World Scientific, Singapore (1988))
Vergados, J.D.: SU (3)D R (3) Wigner coefficients in the 2s-1d shell. Nucl. Phys.
A 111, 681-754 (1968)

Vinitsky, S., et al.: On generation of the Bargmann-Moshinsky basis of SU(3)
group. J. Phys. Conf. Ser. 1194, 012109 (2019)


https://doi.org/10.1007/978-1-4757-0103-6_2
https://doi.org/10.1007/978-1-4757-0103-6_2
https://doi.org/10.1007/978-981-15-3603-8
http://mathworld.wolfram.com

®

Check for
updates

Improved Supersingularity Testing
of Elliptic Curves Using Legendre Form

Yuji Hashimoto'2®) and Koji Nuida?*3

! Graduate School of Information Science and Technology, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
hashimoto-yuji715ewwwd@g.ecc.u-tokyo.ac. jp

2 National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi,
Koto-ku, Tokyo 135-0064, Japan
nuida@imi.kyushu-u.ac. jp
3 Institute of Mathematics for Industry (IMI), Kyushu University, 744 Motooka,
Nishi-ku, Fukuoka 819-0395, Japan

Abstract. There are two types of elliptic curves, ordinary elliptic curves
and supersingular elliptic curves. In 2012, Sutherland proposed an effi-
cient and almost deterministic algorithm for determining whether a given
curve is ordinary or supersingular. Sutherland’s algorithm is based on
sequences of isogenies started from the input curve, and computation
of each isogeny requires square root computations, which is the domi-
nant cost of the algorithm. In this paper, we reduce this dominant cost
of Sutherland’s algorithm to approximately a half of the original. In
contrast to Sutherland’s algorithm using j-invariants and modular poly-
nomials, our proposed algorithm is based on Legendre form of elliptic
curves, which simplifies the expression of each isogeny. Moreover, by
carefully selecting the type of isogenies to be computed, we succeeded in
gathering square root computations at two consecutive steps of Suther-
land’s algorithm into just a single fourth root computation (with experi-
mentally almost the same cost as a single square root computation). The
results of our experiments using Magma are supporting our argument;
for cases of characteristic p of 768-bit to 1024-bit lengths, our algorithm
runs 43.6% to 55.7% faster than Sutherland’s algorithm.

Keywords: Isogenies - Supersingular elliptic curves - Isogeny graphs -
Legendre form

1 Introduction

There are two types of elliptic curves, ordinary elliptic curves and supersingular
elliptic curves. Several supersingularity testing algorithms to determine whether
a given curve is ordinary or supersingular have been proposed (see Sect.1.3).
Among them, Sutherland’s algorithm [18] is both efficient (of order O((log, p)?)
where p is the finite characteristic of the coefficient field) and almost determinis-
tic (i.e., it becomes fully deterministic once a quadratic non-residue and a cubic
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non-residue over [F,» are given as auxiliary inputs). To the best of our knowl-
edge, this is the fastest algorithm in the literature achieving the two properties
simultaneously.

Besides purely mathematical interests, supersingularity testing algorithms
also have potential importance in cryptography. Currently, there are elliptic
curve cryptosystems [10,12] and isogeny-based cryptosystems [3,6] as typical
examples of cryptosystems using elliptic curves. Usually, the former uses ordinary
curves, while the latter uses supersingular curves. For parameter settings in
isogeny-based cryptosystems to select supersingular curves, recently a method
to generate a supersingular curve in a way that nobody can know explicitly
how the curve is generated is proposed as an application of secure multiparty
computation [14]. In such a case, unless the protocol implementation is fully
trustable, a supersingularity testing algorithm is needed for a user to be sure that
the generated curve is indeed supersingular. An efficient supersingularity testing
algorithm will be worthy in real-time use of such cryptographic applications.

1.1 Supersingularity Testing Algorithms Based on Isogeny Graphs

The 2-isogeny graph is a graph where the vertices consist of isomorphism classes
of elliptic curves and the edges correspond to isogenies of degree 2. In 2012,
Sutherland proposed an efficient supersingularity testing algorithm based on
isogeny graphs [18]. Isogeny graphs based on ordinary elliptic curves have a graph
structure called volcano graph [7,11,19] and isogeny graphs based on super-
singular elliptic curves have a graph structure called Ramanujan graph [4,15].
Sutherland’s algorithm can be implemented as a deterministic algorithm when
quadratic and cubic non-residues over IFj> are given as auxiliary inputs. This
algorithm draws a graph by iteratively performing isogeny computations using
a modular polynomial, and determines supersingularity based on whether the
isogeny graph is a volcano graph or a Ramanujan graph. When the input curve is
supersingular, Sutherland’s algorithm must run O(n) square root computations
over [F,» where n = log, p. The computational complexity of square root com-
putation over F: is O(n?(log, n)?). Thus, the total computational complexity
of Sutherland’s algorithm is O(n?(log, n)?). For the above reasons, the square
root computation over Fp,. is dominant in Sutherland’s algorithm. Therefore,
reducing the number of square root computations is important for improving the
efficiency of this supersingularity testing algorithm. For related work, Hashimoto
and Takashima proposed an improved supersingularity testing algorithm [9] by
applying an efficient computation technique in 2-isogeny sequence computation
(proposed by Yoshida and Takashima [20]) to Sutherland’s algorithm. In iterated
computation step dominating the computational time, Sutherland’s algorithm
requires 9 multiplications, 3 square root computations, and 15 constant multi-
plications, whereas Hashimoto-Takashima algorithm requires 3 multiplications,
3 square root computations, and 0 constant multiplication.
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1.2 Contributions

In this paper, we propose a supersingularity testing algorithm that is more effi-
cient than Sutherland’s algorithm. In detail, for n = logy p, in |[n] + 1 iter-
ated isogeny computation steps dominating the computational time, Suther-
land’s algorithm requires 3 square root computations on [F,> per step whereas
our proposed algorithm requires 3/2 fourth root computations on F,2 per step.
Our proposed algorithm can be computed more efficiently than Sutherland’s
algorithm since the computational costs of square root and fourth root compu-
tations are almost equal (see our experimental result in Sect.9). We note that
our proposed algorithm is applicable for any prime p > 5.

The computational cost of our proposed algorithm depends on the isogeny
computations between Legendre form. In detail, whereas Sutherland’s algorithm
uses the j-invariant of the elliptic curve as a tool for determining supersingu-
larity, our proposed algorithm makes it possible to determine supersingularity
by iteratively computing the z-coordinate A of a 2-torsion point of the Legendre
form for each curve. Therefore, it is important to efficiently obtain the values of
A. In order to improve the efficiency, we wanted to utilize the simplest kind of
isogenies at every step, which would enable us to efficiently gather the sequential
isogeny computations. However, our argument in Sect. 4 shows that the simplest
known isogeny in the literature cannot be used consecutively, as it causes back-
tracking on the graph. For avoiding the obstacle, we prove a key result named
A-switching theorem (see Sect.5), which is about efficient composition of the
original isogeny with some isomorphism to obtain a new isogeny. This enabled
us to use a relatively simple isogeny in every iterative step and, therefore, to
improve the average cost for the iterative steps. See Sect. 7 for the description of
our proposed algorithm. We also give theoretical and experimental comparisons
with Sutherland’s algorithm in Sects.8 and 9, respectively. The results of our
experiments are supporting our theoretical argument; for cases of characteristic
p of 768-bit to 1024-bit lengths, our algorithm runs 43.6% to 55.7% faster than
Sutherland’s algorithm.

1.3 Related Work

The requirement that an elliptic curve E over a finite field I, of characteristic p is
supersingular is equivalent to the condition §E(F,;) = 1 mod p. Then, practically,
we can verify the condition by checking that the order of a random point P €
E(F,) is given by p+ 1 or p — 1. (Refer to [5,18] for details.) Since the check
consists of scalar multiplications, the computational complexity is O(nz) Here,
since it can erroneously misidentify ordinary curves (as supersingular one) like
the Miller-Rabin primality testing, we should use multiple random points P for
reducing the error probability [18]. However, the improvement cannot lead to a
deterministic algorithm by using a polynomial number of random points similarly
to the Miller-Rabin. To obtain polynomial time deterministic algorithms, we can
use the Schoof algorithm, i.e., compute orders §E(F,), and then determine the
supersingularity, whose cost is O(n®). Moreover, by using mod ¢ decomposition
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properties of modular polynomials (for ¢ # p) that is the core of the Schoof-
Elkies-Atkin (SEA) algorithm, we can reduce the complexity to O(n*) [18].
However, those algorithms are less efficient than the Sutherland’s algorithm with
complexity O(n?).

2 Preliminaries

In this section, we explain some properties of elliptic curves in Weierstrass form
and Legendre form. By using these properties, we improve supersingularity test-
ing algorithm. Hereafter, let p be a prime with p > 5. F, denotes a finite field of
characteristic p and F,, denotes an algebraic closure of F,. For any o € F, let /o
and /a denote a square root and a fourth root of « (possibly in a larger exten-
sion field), respectively. For simplicity, an expression like VA? will be regarded
as A instead of —A. A similar remark also applies to v/A.

2.1 Weierstrass Curves

In this subsection, we explain elliptic curves (see [16, Chapter 3] for details).
Every elliptic curve E over I, is given by the following short Weierstrass form
such that 443 + 27B2 #£ 0:

E:y*=2%+Ax+ B (A,B€F,).

Op denotes the point at infinity of E. There exists an invariant of elliptic

curves. This invariant is called j-invariant and the j-invariant in Weierstrass
3

form is given as j(A, B) = 1728@%. For two elliptic curves over Fy, their

Jj-invariants are equal if and only if these curves are isomorphic over F,. The

F,-rational points of E over F, are denoted by

E(F,) = {(z,y) € Fy | y* = 2® + Az + B} U{Og}.

Let £ be a prime with £ # p. The group of £-torsion points of an elliptic curve F
over Iy is defined by

Bl = {P € E(F,)| (P = Og}.

It holds that E[l] = Z/¢Z x Z/{Z. Then there exist ({2 —1)/({ —1) = £+ 1
subgroups of order ¢ in E[f]. E[p] is isomorphic to {0} or Z/pZ. An elliptic
curve E over I, is called supersingular if E[p] = {0} and ordinary if E[p] = Z/pZ.

2.2 Legendre Form

In this subsection, we explain basic concepts of Legendre form of elliptic curves
and how to transform from Weierstrass form to Legendre form (see [2,16] for
the details). If p # 2, any elliptic curve can be transformed to Legendre form.
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Proposition 1 ([16, Section 3.1]). Every elliptic curve over F, is isomorphic
to an elliptic curve of Legendre form.

E(,(qu)’/\) : y2 :x(x—l)(a?—)\) ()\EIFP,)\#O,l)
The j-invariant of E(_(x41),») is defined by

, 256 (A2 — A+ 1)°
IECON) = 3Ty

We call A Legendre parameter of this elliptic curve. Next, we explain how to
transform from Weierstrass form to Legendre form.

Proposition 2 ([16, Section 3.1]). Let the short Weierstrass form of an ellip-
tic curve E be factored as y* = (x —e1)(z —e2)(x —e3) (where e, ea,e3 € F, are
different from each other). Then, for A = £=2L E is isomorphic to E(_(x41)x)-

ex—ey’

In the above proposition, by taking into account the order of eq, 2, e3 there exist
6 choices of A (denoted here by A):

° €3 —€1 € — €1 €3 — €9 €1 — €y €1 —€3 €2 —e€3
)\ S [A] == 5 ) ) ) )
€2 —€1 €3 —€1 €1 —€2 €3 €2 €3 —€3 €1 —€3

1 1 AoA-1
_{Mxl_&1XAf A }

The following is a known important property of the Legendre form.

Corollary 1 ([16, Section 3.1]). Let E : y* = (x — e1)(x — e2)(z — e3) (ey, eq,
es € Fp) be an elliptic curve. The transformation from E to Legendre form
E(_(x+1),n) is unique up to isomorphism without depending on the order of
€1, €2, €3.

The following proposition can be used as a condition for determining whether
an elliptic curve is ordinary or supersingular in our proposed algorithm.

Proposition 3 ([1]). If E(_(x+1),)) is a supersingular elliptic curve then X is
m IFPQ.

2.3 Isogenies

In this subsection, we explain isogenies. For the details, refer to [8]. For two
elliptic curves E, E’ over Fy, a homomorphism ¢ : E — E’ which is given by
rational functions (and sends Op to Opg/) is called an isogeny. In this paper,
only non-zero ¢ is considered. Let ¢*: Fy(E’) — F,(E) be the injective homo-
morphism between the corresponding function fields induced by ¢. We call the
isogeny ¢ separable when the field extension F,(E)/¢*(Fq(E")) is a separable
extension. For an integer ¢ > 1 with p f¢, a separable isogeny is called ¢-isogeny
if the kernel Ker ¢ is isomorphic to the cyclic group Z/¢Z. For an {¢-isogeny ¢,
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there exists an isogeny ¢ : E' — E such that ¢ o ¢ = [¢] (f~multiplication on E).
This isogeny ¢E is called the dual isogeny of ¢.

The following proposition is used in isogeny computations between Legendre
curves in the proposed algorithm.

Proposition 4 ([13], [16, Section 3.4]). Let a,b be elements in F, such that
b#0,a%2 —4b#0. Let E(ay) be an elliptic curve represented by

Ep : y? =23 + az® + bz

such that 2-torsion points of the elliptic curve Eyy are Py = (0,0), P, =
(7,0), Ps = (0,0). Then, there exists the following 2-isogeny ¢p, : Epy —

Eap)/(Po): s
¢P0 : (x,y) = (227 y(;f)) .

Eo.p)/(Po) is represented as follows:
Ep/(Po) : y* = 2° — 2a2® + (a® — 4b)x.

Let ¢p, : Ewupy — Ep/(Py) and ¢p; © Eqpy — Eap)/(Ps) be 2-isogenies.
Then, ¢p, (E@p)) s equal to ¢p,(Eay—s~(y—s))) and ¢p;(Ey)) is equal to
0Py (E(26—.5(6-7)))-

We examine ¢P0 (E(g,y_(;,,y(,y_(;))),gﬁpo (E(25_775(5_7))) in detail. The elliptic
curve E(2y_s(y—s)) is represented by

E(2'y75,'y('yf§)) : y2 =z’ + (27 - 6).%‘2 + ’Y(’y - 6).13
Thus, the elliptic curve ¢p, (E(4p)) is represented as follows:
op, (Eap) = By /(Py) 1 y° = 2° = 2(2y = 8)2® + (27 = §)* — 4y(y = 9))z.
By using (2y — 6)? — 4y(y — §) = 62, we obtain the following elliptic curve:
B /(Py) 1 y? = 2% — 2(2y — §)2® + 6°x.

The right-hand side of E(, ) /(P,) is factored as follows:
23 =202y = 8)2® +Pr=a(x+6 — 2y + 212 — ¥8)(x + 3§ — 27 — 2¢/9% — 70).

) 2y=0+2y/72 =8 ol ; 2 _ _ o\
Thus, for M = PR E(q,5)/(Py) is isomorphic to y* = z(z—1)(z—\').

Let v = 1,0 = X be the z-coordinates of 2-torsion points in Legendre curve
E(_(x11),n)- We can also compute ¢p, : E(_(xt1),n) — E(—(r+1),0)/(P1) as above.
Let pp, be amap from Legendre parameter of E(_(y41),x) to Legendre parameter
of the Legendre form of E(_(x11),x)/(P1). Then,

_2—)\+2\/1—)\_<\/1—)\+1)2.

A) = _
erN = s \io
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Similarly, let v = A\, § = 1 be the z-coordinates of 2-torsion points in Legendre
curve E(_(xy1),n)- Let pp, be a map from Legendre parameter of E(_(x11),x) to
Legendre parameter of the Legendre form of E(_(xy1),5)/(Px). Then,

()\)_2)\—1—1-2\/)\2—)\_ AT+ A\
[Ny W R, vy S 5w SRV

We also explain the Legendre form of E(_(x;1),x)/(Fo) obtained by using
bry  E—(ar1),0) = E—(ar1).0)/(Po)- BE—(x41),0)/(Fo) is represented by

Y= +20+ )22+ A= 12z =z(z+ (VA+ D)+ (VA-1)3).

Let ¢p, be a map from Legendre parameter of E(_(yy1)) to the Legendre
parameter of the Legendre form of E(_(y41)x)/(Fo). Then,

or (M) = (@i) .

We call ¢p,, ¢p,, op, fundamental Legendre map (see Sect. 4 for detail).

3 Isogeny Volcano Graphs of Ordinary Curves

In this section, we explain isogeny graphs. For the details, refer to [19]. For ¢
with p £, the f-isogeny graph G (F,2) is the graph in which the vertices consist
of F,2-isomorphism classes of elliptic curves over F,> and the edges correspond to
(-isogenies defined over [F,,2. We denote by G¢(£/F,2) the connected component
of G¢(F,2) containing an elliptic curve E defined over F,.. We note that the
vertex set of a connected component of G¢(IF)2) consists of either ordinary curves
only or supersingular curves only. It is known that the connected component
G((E/F,2) of an isogeny graph at an ordinary elliptic curve E forms an ¢-volcano
graph of height h for some h, defined as follows (see Fig.1 for an example of
volcano graphs).

Fig. 1. An example of 2-volcano graphs of height 2
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Definition 1 (Def.1 in [17]). A connected, undirected, and simple graph V is
an £-volcano graph of height h if there exist h + 1 disjoint subgraphs Vo, ..., Vy
(called level graphs) such that any vertex of V' belongs to some of Vy, ..., Vy, and
the following conditions hold.

1. The degree of vertices except for Vi, is £+ 1 and the degree of vertices in Vj,
is 1 when h > 0 and at most 2 when h = 0 (the degree in this case depends
on the form of V).

2. The Vq is one of the following; a cycle (of at least three vertices), a single
edge (with two vertices), or a single vertex. Moreover, if h > 0, then all the
other outgoing edges from a vertex in Vi are joined to vertices in V7.

3. In the case of h > i > 0, each vertex in the level i graph V; is adjacent to only
one vertex in the level i — 1 graph V;_1 and all the other outgoing edges are
joined to vertices in Viy1.

4. If h > 0, then each vertex of Vi, has only one outgoing edge and it is joined
to a vertex in Vi_1.

The graph G¢(F,2) has a connected component of all the supersingular curves
over I, [11]. Therefore, other connected components in G¢(F,2) consist of ordi-
nary curves. For the connected components of ordinary curves, Sutherland
obtained the following result about the upper bound of the height of the /-
volcano.

Proposition 5 ([19]). Heights of {-volcano connected components of G¢(F2)
are less than or equal to log,(2p).

4 Composition of Fundamental Legendre Maps

In this section, we investigate the compositions of fundamental Legendre maps
and some properties of those compositions. By using fundamental Legendre
maps, it becomes possible to efficiently compute isogenies between Legendre
form. However, it is not possible to draw isogeny graphs using only the funda-
mental Legendre maps without any modification (see Sect.5 for detail).

We explain ¢p, (¢p,(N), ¢r, (r, (N), op, (p, (). Those compositions of
fundamental Legendre maps are backtracking map. In other words, ¢p, (¢p, (A)),

PP, (QpPl ()‘))7 PPy ((pPA ()‘)) € [)‘] In detaiL

PP (QPPO(A)) = Av(pPo (@Pl ()\)) =1- )\,(,DPO ((,DP/\ ()\)) = %

From the point of view of isogeny graphs, after moving through an edge cor-
responding to any of the three inner fundamental Legendre maps, the outer
map ¢p, lets us backtrack the same edge to the original vertex.
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Next, we explain the compositions of the other six pairs of two fundamental
Legendre maps. In detail,

o (pry(V) = (*M\ﬁ) , o (om (V) = (ﬁ“> ,

IV VA-1
enton = (2) L enenon = (Y551

W—Hm%)“ W—H%)“

YXN=1—=1VX AX=T1—-VX

Among the six compositions, the first two involving the map ¢p, have simpler
expressions, so we want to use them in our proposed algorithm. However, now
the issue of backtracking occurs again: not any of these compositions can be
selected in any step because they also are dual of the previous.

From the above, in order to compute the isogenies between Legendre form, it
is necessary to devise so that these fundamental Legendre maps do not backtrack.

op (pp, (V) = ( op, (pry(N) = (

5 A-switching Theorem

In this section, we introduce and prove A-switching theorem. By using A-swit-
ching theorem, we can iteratively compute the isogenies between Legendre form
without backtracking. Note that since 1—pp(A) in [A], the isogenous curve pp(\)
can be taken as 1 — pp ().

Theorem 1 (A-switching). Let P be Py, Py, or Py, and P’ be Py or Py. Then
we have 1 — ¢p, (1 — p(X)) € [A]. Moreover, if the Legendre curve E(_(x;1),x)
is ordinary, then we have 1 — @p/(1 — pp(N)) € [A].

Proof. First, we have
o (VT 1Y
op (1= pp(N) = ( 1—(1—9013()\))—1)

2
_ <V“”P“)“> — on(pr(N) -

ep(A) —1

Hence we have ¢p, (1—pp(X)) = pp,(@p(N)) € [A] as shown in Sect. 4, therefore,
1= o (1— pp(V) € .

Secondly, when E(_(x41),x) is ordinary, by the structure of the connected
component of the 2-isogeny graph being a 2-volcano graph, if a map ¢p, applied
to a vertex lets us backtrack, then the other two maps ¢p, and ¢p, do not let us
backtrack. This and the result above imply that wp/ (1 —@p(A)) € [A], therefore,

L—op (1 —9p(N) &[N U
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In detail, we have

8V-IVA(VA-1)
AVt
8VA(VA+1)
(VA=D1
VIV AW - A-T)
(VI=A-v-Dt
8VI—A(V1I—X+1)
(V1I—A—1)4
1= on1 - g ) = - IO IR,
8YA-D(WVA=T+ VA
(VA=1- V) '
By using A-switching theorem, we can use the fundamental Legendre maps

1 — ¢p(1 — ¢p) twice in a row. In other wards, 1 — ¢p/ (1 — ¢p)()\) is a 22-
isogenious curve of E_f

1- QOPO(]- - <»013()(>‘)) = -

1- (ppx(l - SDPO()\)) =

1- 901:'0(1 —¥p (A)) =

1—op,(1=pp () =—

)

1- <PP>\(1 — PPy (/\)) =

6 Sutherland’s Supersingularity Testing Algorithm

In this section, we describe the Sutherland’s algorithm [18]. In Sutherland’s
algorithm [18], modular polynomials ®,(X,Y) € Z[X,Y] [19] (of 2 variables
X,Y with integral coefficients) play an important role. They are symmetric
with respect to X and Y, and of degree ¢ 4+ 1. In particular, when ¢ is prime
the condition that £y and E; are ¢-isogenous is equivalent to $,(j(E1), j(E2)) =
0. From the above relation between the roots of modular polynomials and j-
invariants of isogenous curves, the graph G¢(IF,2) can be identified with the
(directed, non-simple) graph on vertex set F2 in which (ji,j2) € (Fp2)? is an
edge if and only if ®¢(j1,72) = 0.

Sutherland’s algorithm outputs true if and only if the input is supersingular.
Precisely, the input is an elliptic curve E over F 2 of characteristic p (>5) and
the algorithm is given below.

1. If the cubic polynomial @ (j(F), X) with respect to X does not have three
roots in [F 2, then output false. Otherwise, let the roots be jo, ji, j2(€ Fp2).

2. For p=0,1,2, set j,, « j(E).

3. Let m := |logy p]+1, and iterate the following from ¢ = 1 to m: For p = 0,1, 2:
(a) Calculate the quadratic polynomial

fu(X) = P2(ju, X) /(X *j;g)»

and set j;, < ju.
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(b) If f,(X) has no root in [,
the two roots.
4. (If false is not outputted in the above,) output true.

output false. Otherwise, let j, be one of

If F is ordinary, the 2-isogeny graph is of 2-volcano. In Step 3, we con-
struct three non-backtracking paths whose initial points are jg, j1, j2 in Step 1,
respectively. Therefore, at least one of the paths is descending on the volcano.
Moreover, the descending path cannot have length m + 1 > logy(2p) + 1 by
Proposition 5, and the algorithm outputs false in Step 3 if E is ordinary.

Sutherland gives the following time estimate in [18]. Let n = log,(p) from
now on.

Proposition 6 (Prop.5 in [18]). Sutherland’s algorithm can be implemented
as a deterministic algorithm with running-time O(n®) and space complexity O(n)
when quadratic and cubic non-residues are given as auxiliary inputs.

7 Our Proposed Algorithm

In this section, we explain our proposed supersingularity testing algorithm. Given
the short Weierstrass form E: y? = f(z) of an elliptic curve E over F2, our
proposed algorithm is run as follows.

1. If the cubic polynomial f(x) does not have three different roots in [, then
output false. Otherwise, let the roots be ey, ez, e3(€ Fp2).
2. By using Proposition 2, for A = % compute Legendre form E(_(x11)y) :
y? = x(x — 1)(z — \) of the input curve E.
. Let )\171 = )\, )\1’2 = )\,)\173 = A\
4. The following computations are run.
2
(a) Compute A= {/A1and Ao1=1—pp, (A1) = —ﬁ. Then, output
false if Ao 1 ¢ Fpe.
— 27
(b) By using A in Step (a), compute Az1 =1 — pp, (A1) = —%.
Then, output false if A3 ¢ .
2
(c) Compute B = /1 —X12 and Ao = 1—¢p (A12) = —%. Then,
output false if Ay o & F)2.
— 2_
(d) By using B in Step (c), compute Ao =1 — ¢p,(A22) = —%.
Then, output false if A3 o ¢ 2.
(e) Compute Cl = 14/)\1,3, 02 = \4//\1)3 -1 and )\2)3 =1- (pp/\()\Lg) =
22
—%. Then, output false if Ay 3 ¢ 2.
(f) By using C; and C5 in Step (e), compute M35 = 1 — pp,(A23) =
—8@0:%%1351). Then, output false if A3 3 ¢ 2.
5. Let m := |log, p]+1 and iterate the following from ¢ = 3 to m. For p = 1,2, 3,
execute the following part (a) when ¢ is odd, and the following part (b) when
1 is even.

w
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(a) Compute d;,, = /i, and
A 1 (Nip) A
it =1=ppNip) = -5 -
: @, -~ 17

Then, output false if Ajy1,, & Fpe.
(b) By using d;_1,, in the previous Step (a), compute

A 1 (/\ ) 8\/ _1di71,p‘(d?_17u — 1)
itlu = L = PP (Ai,n) = —
(difl,u V1)

Then, output false if Aiy1,, & Fpe.
6. Output true if false is not output in the above.

8 Comparison

We compare Sutherland’s algorithm [18] in Sect. 6 and our algorithm proposed
in Sect. 7. For both algorithms, the most time-consuming step, i.e., Step 3 of
Sutherland’s algorithm and Step 5 of our proposed algorithm, iterates compu-
tation step including square root or fourth root computation m := |log, p| + 1
times. We call this the fundamental step, and summarize the average numbers
of F,2 operations needed in the fundamental step in Table1. Here we do not
distinguish the numbers of square root computations and fourth root computa-
tions, since our experiment in Sect.9 below shows that the computation times
of these two operations are similar.

Our proposed algorithm reduced the number of square/fourth root computa-
tions by half, which is the dominant cost of supersingularity testing algorithms
based on isogeny graphs. The main reason of this efficiency improvement is that,
in contrast to Sutherland’s algorithm where square root computation is needed
in every iterative step, in our proposed algorithm, fourth root computation is
needed only for the steps with odd index ¢ and is not needed when 1% is even.

Table 1. Average numbers of IF,2 operations in the fundamental step (here “Root”
means square or fourth root computation, “Inv” means multiplicative inverse, “Mult”
means multiplication, and “Const. Mult” means multiplication by constant)

F,2 operations |Root | Inv | Mult | Const. Mult
Sutherland [18] | 3 0 9 15
Our algorithm 3/2 |3 |9 3
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9 Experimental Results

In this section, by using Magma computational algebra system, we compare the
computational time of square root with the computational time of fourth root
over IF,,2. We also compare the performance of our proposed algorithm with the
performance of Sutherland’s algorithm.

All tests were run on the following platform: Magma V2.23-10 on 2.10 GHz
Intel Xeon Skylake Gold 6130 Processor. In experiment of Sutherland’s algo-
rithm, we used Magma code provided by Sutherland himself.

9.1 Computational Time in Square Root and Fourth Root

We investigate the computational time of square root computation and the com-
putational time of fourth root computation of Legendre parameter A\ of 1024-bit
length. We randomly selected ten 1024-bit prime numbers p. For each prime p,
we generated ten Legendre parameters A and investigated those computational
times. Table 2 gives the average execution times. The result in this table suggests
that the time for fourth root computation is almost the same as the time for
square root computation.

Table 2. Average execution time of square root and fourth root

CPU time, ms
Square Root | 40
Fourth Root | 41

9.2 Computational Time in Supersingularity Testing Algorithm

We investigate the performance of Sutherland’s algorithm and the performance
of our proposed algorithm. We denote by b the bit-length of p. For each value b
of bit-length in Table 3, we randomly selected ten b-bit prime numbers p. For
each prime p, we generated a supersingular elliptic curves over [Fpz.

Here we only used supersingular curves because we wanted to evaluate the
computational time for the case where the maximum number of iteration steps
are executed. Table 3 gives the average execution times and the percentages of
the execution times for our proposed algorithm relative to that for Sutherland’s
algorithm. This table shows that the ratio of the computational times for the
two algorithms is almost the same as the ratio of the numbers of square/fourth
root computations in these algorithms, and our improvement of the algorithm
indeed reduces the running time significantly.
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Table 3. Average execution times of the two algorithms

b (CPU times in milliseconds) Percentage
Sutherland’s algorithm | Our algorithm
768 | 48178 20996 43.6
832 | 50533 24354 48.2
896 | 87331 39071 44.7
960 | 89885 43289 48.2
1024 | 110947 61837 55.7
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Abstract. We depart from our approximation of 2000 of all root radii
of a polynomial, which has readily extended Schoénhage’s efficient algo-
rithm of 1982 for a single root radius. We revisit this extension, advance
it, based on our simple but novel idea, and yield significant practical
acceleration of the known near optimal subdivision algorithms for com-
plex and real root-finding of user’s choice. We achieve this by means of
significant saving of exclusion tests and Taylor’s shifts, which are the
bottleneck of subdivision root-finders. This saving relies on our novel
recipes for the initialization of root-finding iterations of independent
interest. We demonstrate our practical progress with numerical tests,
provide extensive analysis of the resulting algorithms, and show that,
like the preceding subdivision root-finders, they support near optimal
Boolean complexity bounds.

Keywords: Real root isolation - Complex root clustering - Root radii
algorithm - Subdivision iterations

1 Introduction

Overview. The recent subdivision iterations for univariate polynomial Complex
Root Clustering (CRC) and Real Root Isolation (RRI) approximate all roots in a
fixed Region of Interest (Rol) and, like the algorithm of Pan (1995, 2002), achieve
near optimal bit complexity for the so called benchmark problem. Furthermore
they allow robust implementations, one of which is currently the user’s choice
for solving the RRI problem, including the task of the approximation of all
real roots. Another implementation, for the CRC problem, is slower by several
orders of magnitude than the package MPSolve (the user’s choice) for the task of
finding all complex roots. However it outperforms MPSolve for solving the CRC
problem where the Rol contains only a small number of roots. We significantly
accelerate these highly efficient root-finding iterations by applying our novel
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techniques for their initialization. Next we specify the background and outline
our contributions.

Polynomial Roots and Root Radii. For a polynomial P of degree d in Z[z]
and a Gaussian integer ¢ € G:={a+1ib | a € Z,b € Z}, let a1 (P, ¢),...,aq(P,c)
be the d non-necessarily distinct roots of P such that

la1 (P, c) —c| > |ag(P,c) —¢| > ... > |ag—1(P,¢c) — ¢| > |aq(P,c) — ¢c|. (1)
For all 1 <1 < d, write r;(P,¢) := |o;(P,¢) — ¢|, a;(P) := a;(P,0) and r;(P) :=
r;(P,0), so that

r1(P,c) > ro(Pyc) > ... > rq-1(P,c) > ra( P, c). (2)

Then

Root Radii Covering (RRC) Problem

Given: a polynomial P € Z[z] of degree d, a Gaussian integer ¢ € G, a real
number § > 0

Output: d positive numbers p.1,. .., pc,q satisfying

Pe,s
= — < rs(P, < c,s+
Vs=1d, L < (PO < (10 3)

Pets- -y Pea of Eq. (3) for fixed ¢ € G and 6 > 0 define d possibly overlaping
concentric annuli. The connected components of their union form a set A, of d. <
d disjoint concentric annuli centered at c. They cover all roots of P and are said
to be an annuli cover of the roots of P. We are going to use them in subdivision
root-finding iterations.

Two Root-Finding Problems. We count roots with multiplicity and consider
discs D(c,r) :={z | |z — ¢| < r} on the complex plane. For a positive § let JA
and 0B denote the concentric §-dilation of a disc A and a real line segment (i.e.
interval) B. Then

Complex Root Clustering (CRC) Problem
Given: a polynomial P € Z[z] of degree d, £ > 0
Output: ¢ < d couples (Al,m'),..., (A%, m’) satisfying:

— the AJ’s are pairwise disjoint discs of radii < ¢,
— A7 and 3A7 contain m’ > 0 roots,
— each complex root of P is in a A7.

Real Root Isolation (RRI) Problem
Given: a polynomial P € Z[z] of degree d
Output: ¢ < d couples (B, m'),..., (B m*) satisfying:

— the B%s are disjoint real line segments,
— each B’ contains a unique real root of multiplicity m7,
— each real root of P is in a B".
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Table 1. Runs of Risolate, RisolateR, Ccluster and CclusterR on two polynomials.
Ccluster and CclusterR are called with input ¢ = 273,

Risolate|| RisolateR Ccluster CclusterR
d T dr|| t n t n t n t n t
Bernoulli polynomial
512 2590 124[[ 6.15 672[] 0.38 17 0.25][ 136 13940|] 50.7 4922 7.59]]
Mignotte polynomial
512 256 4||1.57 49 ||1.67 14 0.27||88.8 10112||28.3 2680 3.05||

It is quite common to pre-process P € Z[z] in order to make it square-free, with
mJ = 1 for all j, but we do not use this option. We can state both CRC and RRI
problems for P with rational coefficients and readily reduce them to the above
versions with integer coeflicients by scaling.

Write || P|| := || P||s and call the value log, || P|| the bit-size of P.

The Benchmark Problem. For the bit-complexity of the so called benchmark
root-finding problem of the isolation of all roots of a square-free P € Z[z] of
degree d and bit-size 7 the record bound of 1995 [13] is O(d%(d + 7)), near
optimal for 7 > d and based on a divide and conquer approach. It was reached
again in 2016 [1,2], based on subdivision iterations and implemented in [8].

Our Contributions. We first present and analyze an algorithm SolveRRC that
solves the RRC problem for polynomials with integer coefficients and any fixed
center ¢ € G. Our algorithm is adapted from work [12] (which has extended
Schoénhage’s highly efficient approximation of a single root radius in [15]) to simul-
taneous approximation of all d root radii. Our specialization of this root radii algo-
rithm to the case of integer polynomials and our analysis of its bit-complexity are
novel. We use SolveRRC for § € d~°() and |¢| € O(1); under such assumptions,
it solves the RRC problem with a bit-complexity in O(d2(d + 7).

We then improve solvers for the RRI and the CRC problems based on subdivi-
sion with annuli covers that we compute by applying SolveRRC. The complexity
of subdivision root-finders is dominated at its bottleneck stages of root-counting
and particularly exclusion tests, at which costly Taylor’s shifts, aka the shifts
of the variable, are applied. We significantly accelerate the root-finders for both
RRI and CRC problems by means of using fewer exclusion tests and calls for
root-counting and hence fewer Taylor’s shifts. We achieve this by limiting com-
plex root-finding to the intersection of three annuli covers of the roots centered
in 0,1 and i and by limiting real root-finding to the intersection of a single annuli
cover centered in 0 with the real line.
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Our improvements are implemented within the C library Ccluster! which pro-
vides an eponymous solver for the CRC problem and a solver for the RRI problem
called Risolate. Our novel solvers are called below CclusterR and RisolateR,
and in Table 1 we overview how those two solvers perform against Ccluster and
Risolate on a Bernoulli and a Mignotte polynomial. For each test polynomial we
show its degree d, its bit-size 7, and the number dg of real roots. For each solver, ¢
denotes the sequential running time in seconds on an Intel (R) Core (TM) 17-8700
CPU @ 3. 20 GHz machine with Linux and n denotes the total number of Taylor’s shift
required in the subdivision process. For CclusterR and RisolateR, t’ is the time
spent on solving the RRC problem with SolveRRC.

We compute the annuli covers in a pre-processing step by applying algorithm
SolveRRC for input relative width § = 1/d?. This choice of § is empiric, and in
this sense our improvement of subdivision is heuristic. From a theoretical point
of view, this allows our algorithms for solving the RRI and the CRC problems to
support a near optimal bit-complexity. From a practical point of view, this allows
us to significantly reduce the running time of solvers based on subdivision by
using fewer Taylor’s shifts in exclusion and root-counting tests, as we highlighted
in Table1 (see the columns t and n).

The distance between roots of a polynomial of degree d and bit-size 7
can be way less than 1/d? (see for instance [11]); thus by computing with
SolveRRC intervals that contain the root radii of relative width § = 1/d?, we
do not intend to separate the roots of input polynomials, and our improvement
has no effect in the cases where distances between some roots are less than J.
We illustrate this in Table 1 for a Mignotte polynomial that has four real roots
among which two roots have a pairwise distance that is close to the theoreti-
cal separation bound. Most of the computational effort in a subdivision solver
for real roots isolation is spent on the separation of the close roots, and this
remains true where we use annuli covers with relative width larger than the
roots separation.

We compare our implementation with ANewDsc (see [10], implementing [14])
and MPSolve (see [3], implementing Ehrlich’s iterations), which are the current
user’s choices for solving the RRI and the CRC problems, respectively.

Related Work. We departed from the subdivision polynomial root-finding for
the CRC and RRI problems in [1] and [14], resp., and from the algorithms for
the RRC problem in [15] (see [15][Cor. 14.3], and [5][Algorithm 2]) and [12]. We
achieved practical progress by complementing these advanced works with our
novel techniques for efficient computation of O(1) annuli covers of the roots. We
rely on the customary framework for the analysis of root-finding algorithms and
cite throughout the relevant sources of our auxiliary techniques.

Organization of the Paper. In Sect. 2 we describe an algorithm for solving
the RRC problem. In Sects. 3 and 4 we present our algorithms for solving the

! https://github.com/rimbach /Ccluster.
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RRI and CRC problem, respectively. In Subsect. 1.1 we introduce definitions. In
Subsect. 1.2 we briefly describe the subdivision algorithm for the CRC problem
of [1] and its adaptation to the solution of the RRI problem.

1.1 Definitions
Write P := P(z) := Py H?Zl(z —a;(P)) = Z?:o Pj2d.

Root Squaring Iterations. For a positive integer ¢ write

P = (P> T[(z - as(P)*) (4)

.

=1

and so Pl = p, pl¥l = (P[e_l])[l] for £ > 1, and
lar (PY)] = Jaz(PY)] > ... > Jaa-1(PY)] > Jaa(PY)]. (5)

Pl is called the ¢-th root squaring iteration of P, aka the ¢-th Dandelin-
Lobachevsky-Griffe (DLG) iteration of P.

Write Pl-1 — Z?ZO(PM 1]) 2, P[e 1] _ Z ( ple- 1)2]23 and P[e 1 _

d-1 .
ZJL:% J(P[Z_l])2j+lzj. Pl can be computed iteratively based on the formula:

pla — (_1)d {(Py*”)z o Z(nyl])Q ' (6)

The j-th coefficient (PI); of Pl is related to the coefficients of P~ by:

-1
(P = (=09t ve Y0 ()P (P )y (7)
k=max(0,2j—d)

L-bit Approximations. For any number ¢ € C, we say that ¢ € C is an L-bit
approximation of ¢ if [[¢ — ¢f| < 27 L. For a polynomial P € C[z], we say that
P € C is an L-bit approximation of P if [|[P — P|| < 2L, or equivalently if
HPJ Pj|| <27 for all j.

Boxes, Quadri-Section, Line Segments, Bi-section. [a — w/2,a + w/2] +
ib — w/2,b+ w/2] is the box B of width w centered at ¢ = a + ib. The disc
A(B) := D(c, 2w) is a cover of B.

Partition B into four congruent boxes (children of B), of width w/2 and
centered at (a £ ) +i(b+ ¥).

A(B) := D(c,w/2) is the minimal disc that covers a real line segment B :=
[c —w/2,c+ w/2] of width w centered at ¢ € R.

Partition the segment B into two segments (children of B) of width w/2
centered at (c+ ¥)).

Let C be a connected component of boxes (resp. real line segments); Be is
the minimal box (resp. real line segment) covering C.
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1.2 Subdivision Approach to Root-Finding

The work [1] describes an algorithm for solving a local version of the CRC
problem: for an initial Rol By (a box) it finds clusters of roots with pairwise
distance less than ¢ in a small inflation of By. Since our CRC problem is for
input polynomials in Z[z], one can define a Rol containing all the roots by
using, for instance, the Fujiwara bound (see [4]).

Subdivision Iterations. The algorithm in [1] uses subdivision iterations or
Quad-tree algorithms (inherited from [7], see also [12]), which constructs a tree
rooted in the Rol By whose nodes are sub-boxes of By. A node B is included
only if 2B contains a root, excluded only if it contains no root. A node is active
if it is neither included nor excluded. At the beginning of a subdivision itera-
tion, each active node B is tested for exclusion. Then active boxes are grouped
into connected components, and for each connected component C such that
4A(Bc) intersect no other connected component, a root-counter is applied to
2A(Be). If 2A(B¢) contains m > 0 roots and A(B¢) has radius less than e,
then (A(Bc),m) is returned as a solution and the boxes of C are marked as
included. Each remaining active node is quadrisected into its four active chil-
dren, to which a new subdivision iteration is applied. Incorporation of Newton’s
iterations enables quadratic convergence toward clusters of radii e.

Solving the RRI Problem. Using a root separation lower bound (e.g., of [11]),
one can derive from [1] a solution of the RRI problem based on the symmetry
of roots of P € Z[z] along the real axis. Let disc D(c,r) with ¢ € R contain m
roots of P. For m =1 the root in D(c,r) is real. If m > 1 and r < sep(P), then
D(c,r) contains a real root of multiplicity m, where sep(P) is a root separation
lower bound for P. For the RRI problem, the Rol By is a line segment, and the
subdivision tree of By is built by means of segment bisection.

The T° and T* Tests. In the algorithm of [1], the exclusion test and root
counter are based on Pellet’s theorem (see [2]). For a disc A = D(c,r), the
counting test T*(A, P) returns an integer k € {—1,0,...,d} such that £ > 0
only if P has k roots in A. A result k = —1 accounts for a failure and holds when
some roots of P are close to the boundary of A. For a given disc A, the exclusion
test TO(A, P) returns 0 if T*(A, P) returns 0 and returns —1 if 7% (A, P) returns
a non-zero integer. The T of [2] takes as an input an L-bit approximation of P
and with working absolute precision L performs about loglogd DLG iterations
of the Taylor’s shift P(c+rz) of P. Write L(A, P) for the precision L required to
carry out the T*-test. Based on Pellet’s theorem we obtain the following results.

Proposition 1 (see [2], Lemmas 4 and 5). Let B be the box (or real line
segment) centered in ¢ with width w. The total cost in bit operations for carrying
out T*(A(B), P) or T°(A(B), P) is bounded by

O(d(log || P|| + dlog max(1, |¢|,w) + L(A, P))). (8)
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T*(A(B), P) returns an integer k € {—1,0,...,d}; if & > 0 then A(B)
contains k roots; if k = —1 then P has a root in 2B \ (1/2)B. T°(A(B), P)
returns an integer k € {—1,0}; if k = 0 then P has no root in A(B); if k = —1
then P has a root in 2B.

Bit Complexity. Proposition 1 enables one to bound the Boolean cost of exclu-
sion tests and root-counting as well as the size of the subdivision tree and hence
the cost of solving the benchmark problem in [1].

By applying subdivision iterations with an exclusion test and a root counter
satisfying Proposition 1 one yields an algorithm with the same bit-complexity

as the algorithm of [1], namely, O(d?(d + 7)) for the benchmark problem.

Implementations. A modified version of [1] for the CRC problem has been
implemented and made public within the library Ccluster. An implementation
of the modified algorithm of [1] solving the RRI problem, called Risolate, is
also available within Ccluster.

2 Root Radii Computation

We describe and analyse an algorithm for solving the RRC problem for a P €
Glz]. Let ¢ € G and Pe(z) := P(c+2), so that rs(P,¢) = rs(Pe) forall 1 < s < d.
Hence the RRC problem for a ¢ # 0 reduces to the RRC problem for ¢ = 0 at
the cost of shifting the variable.

The next remark reduces the RRC problem for ¢ = 0 and any § > 0 to the
RRC problem for 1 + § = 4d by means of DLG iterations:

log(4d

Remark 2. Let g = [log %] , let p' > 0 such that there exist an s with:
o
1< rs(Pcl9) < (4d)p'. (9)

1

Define p = (p')27 and recall that r(Pcl9) = r,(P,¢)2’. Then

)
T4 <rs(P,c) < (1+6)p. (10)

g is in O(logd) if & is in d=OWN) (for instance, 6 > d~" or 6 > d=2).
Now define the RRC* problem as the RRC problem for 1+ 6§ = 4d and ¢ = 0:

RRC* problem
Given: a polynomial P € G[z] of degree d, satisfying P(0) # 0
Output: d positive real numbers pf, ..., p/; satisfying

/
Vs=1,....d, Z—; < 15(P) < (4d)p.. (11)
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In this setting, we assume that 0 is not a root of P and thus Py # 0. When 0
is a root of multiplicity m, then r4(P) = ... = r4—m41(P) =0and Py = ... =
P,,_1 =0, which is easily detected (since P € G[z]) and treated accordingly.

In Subsect. 2.1 we recall an algorithm SolveRRC* satisfying:

Proposition 3. Algorithm SolveRRC* in Algorithm 1 solves the RRC* problem
by involving O(dlog || P||) bit operations.

In Subsect. 2.2 we prove this proposition. In Subsect. 2.3 we present an algorithm
SolveRRC satisfying:

Theorem 4. The algorithm SolveRRC of Subsect. 2.3 solves the RRC problem
for 6 =d~2 at a Boolean cost in

O(d*(dlog(|e| + 1) + log || P[])). (12)

This bound turns into O(d2(d +log | P||)) for |c| € O(1) and into O(d2 log ||P|)
for|c| =0.

Below we will use root radii computation as a pre-processing step for Com-
plex Root Clustering and Real Root Isolation. For Real Root Isolation, we use
SolveRRC to compute an annuli cover centered at 0. For Complex Root Cluster-
ing, we use SolveRRC to compute three annuli covers with the three centers 0, 1, i.
According to our analysis of the RRC problem, the cost of its solution for O(1)
centers ¢ such that |c| € O(1) is dominated by a near optimal bit-complexity of
root-finding.

For ¢ = 0, our algorithm has a larger bit complexity than the algorithm
of [15] (see [15][Cor. 14.3] and [5][Algorithm 2]), which is in O(d?log® d) when
log ||P|| € O(d). Our algorithm, however, computes d root radii at once where
Schonhage’s algorithm computes only a single root radius. It is not clear whether
the latter algorithm can be extended to an algorithm that would solve the RRC
problem within the same bit-complexity bound.

2.1 Solving the RRC* Problem

Recall that P = Zf:(] P,z and define, for i =0, ...,d,
 [log|P| i P, £0,
Pi= { —oo  otherwise. (13)

According to the following result, adapted from Proposition 4.2 and its proof
in [12], one can solve the RRC* problem by computing the upper part of the
convex hull of the set of points {(¢,p;)|i =0, ...,d} and assuming that the points
(i, —00) lie below any line in the plane.

Proposition 5. Given an integer s, let t' and h' be integers s.t.

("t <d+1—s<t+h <d, and
(#3") Y0 < i < d, the point (i,p;) lies below the line ((t',py), (' + W, perin)).
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Py
Pt’+h’

1
i /
satisfies: Ps rs(P) < (2d)pl.

Th =
i .

Call CH the upper part of the convex hull of the points {(i,p;)|i =0,...,d},
and remark that for a given integer s, the integers ¢’ and ¢’ +h' satisfying (i') and
(#4") in Proposition 5 are the abscissee of the endpoints of the segment of CH
above (s,ps). CH can be computed exactly (the P;’s are Gaussian integers).
However for solving the RRC* problem, it is sufficient to compute the upper
part of the convex hull of M-bit approximations of the p;’s with M > 1. For
i=0,...,d, define

M-bit approximation of p; if |P;| > 1,
p; =<0 if |P;| =1, (14)
-0 otherwise.

Let CH be the upper part of the convex hull of {(i,p;)|i = 0,...,d} and let
points (i, —oc) lie below any line in the plane. Given an index s, the following
proposition bounds the slope of the edge of CH above d + 1 — s in terms of the
slope of the edge of CH above d+ 1 — s and M.

Proposition 6. Given an integer s, let t,h,t', and h' be integers such that

pt+hh* Pt g-M+1 < Pt/+hf'LI* b < Pt+hh* bt 49— M+, (15)

For a given integer s, the existence of integers ¢, h,t’, b/ satisfying (i), (i1), (i'),

(7i") follows from the existence of the convex hulls CH and C'H. We postpone

the proof of Proposition 6. Remark that 927" < 1+2L for L > 0, apply
Proposition 5, and obtain:

Corollary 7 (of Proposition 6). Let s,t,h be as in Proposition 6. Define p,’
P o|*
Piin

as . Then

~/
BT gy < T(P) < Q)1+ 274 (16)
We are ready to describe our Algorithm 1, which solves the RRC* problem.
In steps 1-2, 1-bit approximations p; of p; = log |P;| are computed from P;, for
i = 0,...,d. This requires O(dlog ||P||) bit operations. In step 3 we compute
the convex hull CH of a polygon with d + 1 vertices (0,pg), . .., (d, pg) ordered
with respect to their ordinates. Using Graham’s algorithm of [6], we only need
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Algorithm 1. SolveRRC*(P)

Input: P € G[z] of degree d s.t. P(0) # 0.
Output: d positive real numbers p1’, ..., pa .
1: for i =0,...,d do
2: Compute p;, a 1-bit approximation of p;, as defined in Eq. (14).
3: CH «— {(ir,pi,)|k = 0,...,£}, the upper part of the convex hull of {(i,p;)|i =
0,....d}

4: for k=1,...,¢/ do
5: fors=d+1—ig,...,d+1—1,_1 do

P; 1 L. . .
6: ps — | =" ~"k=1 //double precision floating point
7: return p1’,...,pd

O(d) arithmetic operations (additions) with numbers of magnitude O(log || P|)).
In steps 4,5,6, the p,”’s for s = 0, ..., d are computed as in Corollary 7. This task
is performed with rounding to double precision arithmetic and requires O(d) bit
operations. Finally, (1 4+ 27M*+1) < 2 if M > 1; thus the py’s in the output

satisfy Vs = 1,...,d, % < rs(P) < (4d)p,’, and Proposition 3 follows.

2.2 Proof of Proposition 6

) CPLih—Pt o M41
slope: ———— —2

Pith—Pt | o—N
£hIPE 4 o= M+

slope:

] | | d+1—s | |
| 1t/ |t it +h' t+h |
o 1 2 '3 14 5 '6 7 '8
i in , is ' i i is is
J1 J2 J3 Ja J5 Jé J7

Fig. 1. The convex hulls CH and CH (Color figure online)

For i =0,...,d, define p; " and p; as
- i + 27 M if |p;| > — —
p+:{pz+ if pif > OO’,andpi =

: pi — 2~ M if |p;| > —oo0,
¢ —00 otherwise { - (17)

—00 otherwise
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CH is the upper part of the convex hull of {(¢,p;)|i =0, ...,d}. Suppose that it
is the poly-line passing through {(ix, pi, )|k = 0,...,¢}. It defines two poly-lines:

- C"\ﬁ+, the poly-line with vertices {(ik,@;ﬂk =0,...,¢}, and
— CH , the poly-line with vertices {(ix,pi. )|k =0,...,0}.

CH is the upper part of the convex hull of {(¢,p;)|i = 0,...,d}, and suppose
it is the poly-line with vertices {(jx,p;, )|k = 0,...,¢'}. For demonstration see
Fig. 1 where d = 8, the p;’s are drawn with black circles, the intervals [p; ~, p; ]

with bold vertical bars, CH with a bold blue poly-line, CH  and CH  with
dashed blue poly-lines, and C'H with a bold red line. One has:

—+
Proposition 8. The poly-line CH lies below the poly-line CH and above the
poly-line CH .

—+
Proof of Proposition 8: In order to prove that CH lies below CH , we show
that if j;, 4k, ix is a triple of integers such that (ji,p;,) is a vertex of CH and

[Gir, Din 1), (ik/,ﬁ{;+)] is an edge of 5}/{+’ then (j¢,pj,) lies on or below the line
(i, P ), (ik/,ﬁi:er)). Suppose this is not the case, i.e. the point (j;,pj,) lies
strictly above the line ((ix, pi, ), (ik/,ﬁl;+)). Since pj, < pj, ", Dy, lies strictly
above ((ir, Di, ), (ikr,]/)?;+)), thus pj, lies strictly above ((ix, ps,), (ix’, ps,,)) and
CH is not the convex hull of {(i,pi)]i =0,...,d}, which is a contradiction.

In order to show that CH lies below CH, we show that for a given

triple of integers i, jk,jrr such that (it p;, ) is a vertex of CH and
[(Jk>Pjr)s (Gr> pj,, )] is an edge of CH, the point (i;,p;, ) lies on or below the
line ((j&,pj.), (Jr’,pj,,))- Suppose it is not the case. Since p;, > p;, , the point
pi, lies strictly above the line passing through ((jx,pj,), (jr,pj,,)) and CH is
not the convex hull of {(i,p;)|i =0, ...,d}, which is a contradiction. O

Proof of Proposition 6: Given the integer s, let ¢, h,t’, h’ be integers such that
conditions (7), (%), (i) and (4i") hold.

By virtue of (') and (i"), (¢, py), (' + b/, ppryn)] is the edge of CH whose
orthogonal projection onto the abscissa axis contains d + 1 — s, and w
is the slope of that edge. -

By virtue of (¢) and (i7), |(¢,p¢), (t + h,pe1n)] is the edge of CH whose
orthogonal projection onto the abscissa axis contains d + 1 — s. Consider the

two segments |(t,p; ), (t + h, pern )] and (£, 5: 1), (t + h,pryn )] that are the

——— St
edges of CH and C'H |, respectively, whose orthogonal projections onto the
abscissa axis also contain d + 1 — s.

— —
From Proposition 8 C'H is a poly-line enclosed by CH and CH and since

the first coordinates of its vertices are integers, its slope w above d +
1 — s is bounded below by Pih 7Pt 9-M+1 304 above by w 42~ MHL

which proves Proposition 6. See Fig.1 for an illustration. O
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Algorithm 2. SolveRRC(P,c,0)

Input: P € Z[z] of degree d, a center ¢ € G and a relative precision ¢ > 0.
Output: d positive real numbers pcs, ..., pc,a solving task S.
log(4d)
1: log ————

9 [log log(lJr(S)1
compute Pcl!
Py .., ply — SolveRRC* (Pcl9))
for s=0,...,ddo

pe,s — (P
return pc1,...,pPc,d

2.3 Solving the RRC Problem

Using Remark 2, we define in Algorithm 2 the algorithm SolveRRC. To estimate
the cost at steps 2 and 3, let M : N — N be such that two polynomials of
degree at most d and bit-size at most 7 can be multiplied by using O(M(dr))
bit operations. Recall the following:

1. computing Pc requires O(M (d?logd + d?log(|c| + 1) + dlog ||P||)) bit oper-
ations,

2. [|[Pe|l < [IPlI(e] + 1)4, 4 _

3. computing HPCMH from HPC[Z_”H requires O(M(dlog ||Pc[z_1]||)) bit opera-
tions

4. [Pl < (@4 D)(|PET)2 < . < (d+ 1)

| Pel])*

For 1 and 2, see for instance [16][Theorem 2.4] and [16][Lemma 2.1]). 3 and 4
are derived from Egs. (6) and (7), respectively. From 2, 4 and g € O(logd) one
obtains

log | P € O(dlog(d + 1) + dlog ||P|| + d?log(|¢| + 1)), (18)
thus performing g DLG iterations for Pc involves

O(gM(dlog || Pcl9))) = O(log dM(d(dlog(d + 1) + dlog || P|| + d*log(|c| +1))))
(19)

bit operations; this dominates the cost of step 2. Due to Schonhage-Strassen or

Harvey-van der Hoeven multiplication, M(n) € O(n), and so step 2 involves

O(d? log ||P|| + d®log(|c| + 1)) (20)

bit operations. Step 3 involves O(dlog ||[Pcl9||) bit operations, the cost of the
for loop in steps 4-5 is dominated by the cost of step 2, and we complete the
proof of Theorem 4.

2.4 Implementation Details

The exact computation of Pcl9) can involve numbers of very large bit-size (see
Eq. (18)), and the key point for the practical efficiency of our implementation
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of Algorithm 2 is to avoid this. Instead, we use ball arithmetic, i.e. arbitrary
precision floating point arithmetic with absolute error bounds, implemented for
instance in the C library arb (see [9]).

3 Real Root Isolation

In this section, we approximate the root distances to 0 in order to improve in
practice subdivision approaches to real root isolation, and in particular the one
described in Subsect. 1.2. Let us define the notion of annuli cover of the roots
of P € Z|z].

Definition 1. A set A. of disjoint concentric annuli centered in ¢ is an annuli
cover of the roots of P of degree d if

1. VA € A., there are integers t(A) and h(A) such that

Ozt(A)(P, C), Ozt(A)+1(P, C), <o O (A)+R(A) (P, C) € A, (21)
2. Vie{l,...,d}, there is an A € A, such that a;(P,c) € A.

For an annulus A € A., r(A) and T(A) are the interior and exterior radii
of A, respectively. Write s4(A) :== P(c+1(A))P(c+7(A)) and s_(A) :== P(c—
r(A))P(c —T(A)).

Given an annuli cover Ay centered at 0, we can skip many calls for exclusion
and root-counting based on the following:

Remark 9. Let A € Ay such that r(A) > 0.

1. If h(A) = 0 and s+ (A) > 0 (resp. s_(A) > 0), ANR, (resp. ANR_) contains
no real root of P.

2. Ifh(A) =0 and s4(A) <0 (resp. s_(A) <0), ANRy (resp. ANR_) contains
one real Toot of P.

3. If h(A) > 0 and s (A) < 0 (resp. s—(A) <0), ANR, (resp. ANR_) contains
at least one real Toot of P.

In Subsects. 3.1 and 3.2 we describe our exclusion test and root counter based
on Remark 9. In Subsect. 3.3 we describe our algorithm solving the RRI problem.
In Subsect. 3.4 we present the results of our numerical tests.

3.1 Annuli Cover and Exclusion Test

Let B be a real line segment that does not contain 0, let A be an annuli cover
centered in 0, and let A € A. Define that:

— sp, the sign of B, is —1 (resp. 1) if B < 0 (resp. B > 0),
Rsp(A) is ANR_ if sp <0, and is A N Ry otherwise,

— ssp(A) is s_(A) if sp <0, and is s;(A) otherwise,
n(A, B) is the number of annuli A € A s.t. AN B # 0,
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Algorithm 3. C2(B, P, A)
Input: A polynomial P € Z[z] of degree d, a segment B of R, an annuli cover A of
the roots of P centered in 0. Assume 0 ¢ B.
Output: an integer in {—1,0}; if 0 then P has no real root in B; if —1 then there is
a root in 2B.
Compute n(A, B), no(A, B) and n>1(A, B)
if n(A, B) =no(A,B) then
return 0
if n>1(A,B) >=1 then
return —1
return T°(A(B), P)

— ng(A, B) is the number of annuli A € A s.t.

(AN B # D) A (h(A) =0) Assp(A) >0, (22)
— n>1(A, B): the number of annuli A € A s.t.
(ANB# D) A (h(A) >0)Assp(A) <0ARsg(A4) C 2B. (23)

By virtue of Remark 9, if n(A, B) = ng(A, B), then all the annuli intersecting
B contain no root, thus B contains no root. If n>1(A, B) > 1 then 2B contains
at least one real root.

Our exclusion test Cf is described in Algorithm 3. For computing n(A, B),
no(A, B) and n>1(A, B) in Step 1, we use double precision interval arithmetic,
hence Step 1 involves O(d) bit operations. This implies

Proposition 10. Let B be a real line segment with 0 ¢ B, and let A be an annuli
cover of the roots of P centered in 0. The cost of carrying out C3(B, P, A) is
bounded by the cost of carrying out TO(A(B), P).

CR(B, P, A) returns an integer k in {—1,0}. If k = 0, then P has no real
roots in B. If k = —1, then P has a root in 2B.

3.2 Annuli Cover and Root Counter
In order to describe our root counter, we define:
— n1(A, B): the number of annuli A € A s.t. :
(ANB#0) A (h(A) =0)A(ssp(A) <0) A (Rsp(A) C B), (24)
— n5, (A, B): the number of annuli A € A s.t.:
(ANB#DO)A(h(A) >0)Assp(A) <O0A(Rsp(A) C2B\ (1/2)B ). (25)

By virtue of Remark 9, if n(A, B) = ng(A, B) + n1(A, B), B contains exactly
ny(A, B) real roots. If n{ (A, B) > 1 then P has at least one real root in
2B\ (1/2)B. -

Our root counter is described in Algorithm 4. We use double precision interval
arithmetic for computing n(A, B), no(A, B), n1(A, B) and n%, (A, B) in Step 1,
thus Step 1 involves O(d) bit operations. B
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Algorithm 4. C(B, P, A)
Input: A polynomial P € Z[z] of degree d, a segment B of R, an annuli cover A of
the roots of P centered in 0. Assume 0 ¢ 2B.

Output: an integer k in {—1,0,1,...,d}; if K > 0 then P has k roots in B; if —1 then
there is a root in 2B\ (1/2)B.

: Compute n(A, B), no(A, B), n1(A, B) and n%,(A, B)

. if n(A, B) = no(A, B) + ni1(A, B) then

return ni(A, B)

: if nS,(A,B)>1 then

return —1

: return T*(A(B), P)

D T W =

Proposition 11. Let B be a real line segment with 0 ¢ B and let A be an annuli
cover of the roots of P centered in 0. The cost of carrying out CE(B, P, A) is
bounded by the cost of carrying out T*(A(B), P).

C%(B, P, A) returns an integer k in {—1,0,...,d}. If k > 0, then P has k
roots in A(B). If k = —1, then P has a root in 2B\ (1/2)B.

3.3 Annuli Cover and the RRI Problem

Consider the following procedure.

Stage 1: Compute Ag by calling SolveRRC(P,0,d?).
Stage 2: Apply the subdivision procedure of Subsect. 1.2 while using C3(B, P,
Ap) (resp. Cg(B, P, Ap)) as an exclusion test (resp. root counter) for real line
segment B of the subdivision tree. In the verification step of Newton iterations,
use the T*-test of [2].

At Stage 1, we obtain Ag by computing the connected components made up
of the concentric annuli defined by the output of SolveRRC(P,0,d~2).

By virtue of Theorem 4 and Propositions 10 and 11, this procedure solves
the RRI problem, and its bit-complexity is bounded by the bit-complexity of the
algorithm described in [1], thus it is near optimal for the benchmark problem.

3.4 Experimental Results

The procedure given in Subsect. 3.3 has been implemented within the library
Ccluster; we call this implementation RisolateR. Comparison of RisolateR
with Risolate reveals practical improvement due to using our root radii algo-
rithms in subdivision process. We also compare RisolateR with the subdivision
algorithm of [14] whose implementation ANewDsc is described in [10] and is cur-
rently the user’s choice for real root isolation.

Test Polynomials. We consider the following polynomials.
The Bernoulli polynomial of degree d is Bg(z) = ZZ:O (z) ba_12* where the
b;’s are the Bernoulli numbers.
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The Wilkinson polynomial of degree d is Wy(z) = Hle(z — ).
For integers n > 0, we define polynomials with (2n 4+ 1) x (2n + 1) roots on
the nodes of a regular grid centered at 0 as

Piont1yx@2ntn)(2) = H (z —a+1ib). (26)
—n<a,b<n
The Mignotte polynomial of degree d and bitsize 7 is My, (2) = 2% —
2(25 712 — 1)
We also consider dense polynomials of degree d with coefficients randomly
chosen within [—277% 2771] (under the uniform distribution).

Results. In our test polynomials with several degrees/bit-sizes, we used Riso-
late, RisolateR and ANewDsc to solve the RRI problem. Our non-random exam-
ples have only simple roots and for those examples ANewDsc is called with option
-S 1 to avoid testing input polynomial for being square-free.

Times are sequential times in seconds on a Intel(R) Core(TM) i7-8700
CPU @ 3.20GHz machine with Linux. We report in Table 2:

— d, 7 and dg, that is, the degree, the bit-size and the number of real roots,
respectively,

— t1 (resp. t2), the running time of Risolate (resp. RisolateR),

— ny (resp. na), the number of T9-tests in Risolate (resp. RisolateR),

— nj (resp. n}), the number of T*-tests in Risolate (resp. RisolateR),

— tg, the time required to compute the annuli cover in RisolateR,

— t4, the running time in second of ANewDsc.

For random polynomials, we display averages over 10 examples of those val-
ues. We also display o1, 02, and o4, the standard deviation of running time of
Risolate, RisolateR and ANewDsc, respectively.

Compare columns ny,n} and ny, nf in Table 2: using the annuli cover both in
exclusion tests and root counter reduces dramatically the number of Pellet’s tests
performed in the subdivision process, and significantly decreases the running
time (see column ¢9/t1). In the cases where the ratio 7/d is low RisolateR
spent most of the time on solving the RRC problem (see column t3/t3). Finally,
ANewDsc remains faster than RisolateR for polynomials having a few real roots
or a low bit-size, whereas this trend seems to reverse when the ratios of the
number of real roots and/or bit-size over the degree increase (see columns to
and t4). Mignotte polynomials of even degree have four real roots among which
two are separated by a distance way less than the relative size of d~2, the relative
size of annuli in the computed annuli cover. In such cases, the knowledge of root
radii enables no significant improvement because subdivision solvers spend most
of their running time on performing Newton’s iterations that converge to the
cluster of two close roots, and then on separating the two roots.
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Table 2. Runs of Risolate, RisolateR and ANewDsc on our test polynomials
Risolate RisolateR ANewDsc
d T d]]g” t1 (0‘1) nl,n'l “ to (0’2) n2,n'2 t3/t2 (%) ”tQ/tl (%)“ ta (0'4)
10 monic random dense polynomials per degree/bit-size
256 8192 6.00([3.02 (1.13) 128.,80.2 [[.374 (.080) 4.40,25.3  16.3 12.3 .784 (1.73)
256 16384 7.80(5.09 (1.99) 183.,122. |[.499 (.132) 2.60,22.9  22.2 9.80 [|2.76 (5.19)
256 32768 7.40([7.59 (3.20) 172.,125. ||.442 (.174) 4.40,27.4 16.3 5.82 1.18 (.600)
256 65536 7.00([10.7 (6.33) 170.,140. ||.480 (.160) 4.30,25.4  10.4 4.46 1.91 (1.18)
391 8192 7.20([8.87 (2.99) 157.,107. [[1.12 (.310) 4.60,26.0  15.0 12.6 3.29 (5.42)
391 16384 8.40(|10.1 (4.12) 186.,116. |[1.39 (.575) 6.20,28.9 15.3 13.7 10.2 (19.8)
391 32768 8.60([18.6 (6.98) 202.,155. [[1.38 (.528) 4.00,29.0 14.5 7.41 1.67 (.750)
391 65536 7.60((23.9 (13.9) 178.,137. [[1.88 (1.17) 3.90,33.6  18.5 7.86 13.9 (18.9)
512 8192 6.60[[31.1 (18.5) 158.,104. [[3.68 (4.72) 6.00,25.9 12.4 11.8 1.26 (1.03)
512 16384 5.20([41.1 (20.1) 152.,106. ||5.00 (4.63) 6.50,25.8 5.37 12.1 1.70 (2.17)
512 32768 6.00((56.7 (28.1) 167.,122. [|2.00 (.596) 4.40,28.4  18.1 3.53 5.95 (7.61)
512 65536 6.60(|86.5 (34.2) 180.,137. [|4.84 (3.67) 5.90,32.7 5.19 5.60 60.1 (118.)
Bernoulli polynomials
256 1056 64 1.13 292, 82 0.08 12, 3 54.2 7.7 0.20
391 1809 95 2.66 460, 145 0.30 12, 2 76.1 11.2 1.09
512 2590 124 6.15 528, 144 0.38 14, 3 65.9 6.30 1.58
791 4434 187 16.3 892, 264 2.39 20, 1 85.0 14.6 9.92
1024 6138 244 56.3 1048, 283 2.42 12, 3 76.5 4.30 14.9
Wilkinson polynomials
256 1690 256 3.63 1030, 283 0.17 0, 10 41.1 4.90 1.57
391 2815 391 17.6 1802, 541 0.68 0, 10 51.7 3.88 5.69
512 3882 512 25.9 2058, 533 1.04 0, 11 46.9 4.01 27.1
791 6488 791 165. 3698, 1110 7.04 0,11 57.1 4.26 158.
1024 8777 1024 265. 4114, 1049 8.38 0, 12 51.2 3.15 309.
Polynomials with roots on a regular grid
289 741 17 0.40 86, 30 0.13 0, 16 81.7 34.4 0.09
441 1264 21 0.91 106, 36 0.21 0, 20 77.3 23.4 0.39
625 1948 25 1.59 118, 39 0.92 0, 24 89.1 58.0 0.80
841 2800 29 3.30 154, 51 1.67 0, 28 87.4 50.7 2.56
1089 3828 33 8.06 166, 55 2.20 0, 32 76.4 27.3 4.49
Mignotte polynomials
512 256 4 1.57 34, 15 1.67 2,12 16.5 106. 0.76
512 512 4 3.07 34, 15 4.81 2,14 5.70 156. 1.90
512 1024 4 5.91 34, 15 5.96 2,10 4.13 100. 5.28
512 2048 4 13.8 34, 15 13.2 2,9 2.42 95.3 14.1
512 4096 4 29.7 50, 17 30.8 2,6 753 103. 36.0

4 Complex Root Clustering

In this section, by approximating the root distances from three centers, namely
0, 1 and i we improve practical performance of subdivision algorithms for com-
plex root clustering.

Using three annuli covers Ag, . 4; and A; of the roots of P, one can compute
a set D of O(d?) complex discs containing all the roots of P, and then skip
expensive Pellet-based exclusion tests of the boxes that do not intersect the
union of these discs.
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In Subsect. 4.1 we describe an exclusion test using the set D of discs contain-
ing the roots of P, and in Subsect. 4.2 we present a procedure solving the CRC
with near optimal bit complexity. In Subsect. 4.3 we show experimental results.

4.1 Annuli Cover and Exclusion Test

Let D be a set of O(d?) complex discs covering all the roots of P, i.e. any root
of P is in at least one disc in D. A box B such that BN D = () cannot contain
a root of P.

We define an exclusion test based on the above consideration, called C(g—test
and described in Algorithm 5. For a box B having a nonempty intersection with
the real line, the number n>1(Ag, B) of annuli intersecting B and containing at
least one real root in B NR is used to save some T-tests.

Algorithm 5. C(B, P, D, Ay)

Input: A polynomial P € Z[z] of degree d, a box B of C, a set D of O(d*) complex
discs covering all the roots of P, an annuli cover Ay centered in 0
Output: an integer in {—1,0}; if 0 then P has no real root in B; if —1 then there is
a root in 2B.
Compute the number n of discs in D having nonempty intersection with B.
if n=0 then
return 0
if BNR#0 then
Compute n>1(Ao, B)
if n>1(Ao,B) >=1 then
return —1
return T°(A(B), P)

Proposition 12. Let D contain O(d?) discs covering the roots of P and let
Ag be an annuli cover of the roots of P centered in 0. The cost of performing
C2(B, P, D, Ay) is bounded by the cost of performing T°(A(B), P).

C2(B, P, D, Ay) returns an integer k in {—1,0}. If k = 0, then P has no root
in B. If k =—1, then P has a root in 2B.

4.2 Annuli Cover and the CRC Problem

Consider the following procedure.

Stage 1: For ¢ = 0, 1,1, compute A, by calling SolveRRC(P, c,d™2).

Stage 2: Use Ag, A; and A; to compute a set D of at most 2d? discs covering
all roots of P.

Stage 3: Apply the Complex Root Clustering Algorithm of Subsect. 1.2 but
let it apply C2(B,P, D, Ay) instead of T°(A(B), P) as the exclusion test for
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boxes B of the subdivision tree. In the verification step of Newton iterations,
use the T*-test of [2].

In Stage 1, for ¢ = 0,1,1i, A, is obtained by computing the connected com-
ponents of the concentric annnuli defined by the output of SolveRRC(P,c,d ?).
According to Theorem 4, Stage 1 involves O(d2(d + log || P||s0)) bit operations.

In Stage 2, D is computed as follows: using double precision floating point
arithmetic with correct rounding, first compute complex discs containing all
possible intersections of an annulus in Ay with an annulus in A;, and obtain
a set D of at most 2d? complex discs containing all roots of P. Then, for each
disc A in D check if A and its complex conjugate A have a nonempty intersection
with at least one annulus of A;, and remove A from D if it does not. This step
has cost in O(d?).

By virtue of Proposition 12, the cost of performing Stage 3 is bounded by the
cost of performing the algorithm described in Subsect. 1.2. This procedure solves
the CRC problem and supports near optimal complexity for the benchmark
problem.

4.3 Experimental Results

The procedure of Subsect. 4.2 is implemented within Ccluster; below we call
this implementation CclusterR and present experimental results that highlight
practical improvement due to using our root radii algorithm in subdivision.
We used Ccluster and CclusterR with input value € = 27°3 to find clusters
of size at most €. We also used MPSolve-3.2.1, with options ~as -Ga -016 -j1
to find approximations with 16 correct digits of the roots.
For our test polynomials (see 3.4) we report in Table 3:

d and 7 denoting the degree and the bit-size, respectively,

— t1 (resp. t2), the running time of Ccluster (resp. CclusterR),

— ny (resp. na), the number of T%-tests in Ccluster (resp. CclusterR),

t3, the time for computing the three annuli covers in CclusterR, - t4, the
running time of MPSolve in seconds.

For random polynomials, we show averages over 10 examples of those values.
We also show o1, 02, and o4, the standard deviations of the running times
of Ccluster, CclusterR and MPSolve. For the real root isolator presented in
Sect. 3, using root radii enables significant saving of Pellet-based exclusion tests
in the subdivision process (compare columns n; and ns) and yields a speed-up
factor about 3 for our examples (see column ¢4 /¢1 ). This speed-up increases as the
number of real roots increases (see, e.g., Wilkinson polynomials) because some
exclusion tests for boxes B containing the real line are avoided when 2B contains
at least one root which we can see from the number n>i(Ag, B) computed in
the C(g test. The time spent for computing the three annuli covers remains low
compared to the running time of CclusterR (see column t3/t2). MPSolve remains
the user’s choice for approximating all complex roots.
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Table 3. Runs of Ccluster, CclusterR and MPSolve on our test polynomials

H Ccluster H CclusterR [ MPSolve
d TH t] (0'1) ni ” t2 (0'2) no t3/t2 (%)”tz/tl (%)” t4 (0’4)
10 monic random dense polynomials per degree

128 128][[4.43 (.760) 2598.[[1.46 (.235) 463. 7.81 33.1 .031 (.003)
191 191|(13.5 (1.82) 3846.([4.40 (.528) 694.  4.20 32.6 ||.063 (.007)
256 256(]23.7 (2.52) 4888.|7.87 (.672) 909. 7.04 33.2 .106 (.013)
391 391(|70.9 (9.23) 7494.[|22.5 (1.95) 1460. 3.67 31.7 .209 (.037)
512 512(|154. (17.9) 9996. ||46.1 (6.00) 1840. 7.08 29.9 .392 (.102)
Bernoulli polynomials
128 410 3.86 2954 1.25 548 7.48 32.3 0.07
191 689 12.2 4026 4.51 942 8.07 36.8 0.16
256 1056 24.7 5950 10.1 1253 6.57 41.1 0.39
391 1809 75.1 8322 27.4 1907 16.2 36.5 0.97
512 2590 133. 11738 49.9 2645 12.7 37.5 2.32
Wilkinson polynomials
128 721 8.43 3786 1.09 14 14.4 12.9 0.17
191 1183 25.4 5916 2.99 18 27.9 11.7 0.51
256 1690 50.7 7500 6.34 18 21.7 12.4 1.17
391 2815 201. 12780 23.1 22 36.2 11.4 4.30
512 3882 379. 14994 51.3 22 35.6 13.5 9.33
Polynomials with roots on a regular grid
169 369 7.37 3072 1.99 592 4.03 27.1 0.05
289 741 27.1 5864 10.2 1573 3.18 37.9 0.13
441 1264 81.4 9976 24.4 1713 4.28 29.9 0.56
625 1948 228. 15560 70.2 2508 15.0 30.7 1.16
841 2800 493. 19664 169. 4294 5.75 34.2 3.84
Mignotte polynomials
512 256 88.8 9304 28.3 1611 11.0 31.8 0.76
512 512 88.3 9304 29.3 1570 9.20 33.1 0.79
512 1024 101. 9304 32.1 1647 8.62 31.7 0.91
512 2048 106. 9304 33.4 1990 7.50 31.2 1.12
512 4096 102. 9304 50.1 3593 4.88 49.0 1.10
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Abstract. Differential equations describing the motion of a rigid body
with a fixed point under the influence of both a magnetic field gener-
ated by the Barnett—London effect and potential forces are analyzed.
We seek first integrals and invariant manifolds of the equations in the
form of polynomials of the second, third, and fourth degrees and conduct
the qualitative analysis of the equations in the found particular cases of
the existence of additional integrals. Special solutions are found from
the necessary extremum conditions of the integrals and their Lyapunov
stability is investigated. Computer algebra methods such as the reduc-
tion of a polynomial with respect to a list of polynomials, the Grébner
basis method, etc. are used to obtain the integrals and manifolds and to
analyze the equations.

1 Introduction

The paper continues our previous work [9] devoted to finding linear invariant
manifolds of differential equations in the problem on the rotation of a rigid body
with a fixed point in an uniform magnetic field generated by the Barnett—London
effect [2,3], taking into account the moment of potential forces. As was noted
therein, the influence of the Barnett—London effect on the motion of the body
was studied in a number of works in various aspects. Similar problems arise in
many applications, e.g., in space dynamics [4], in designing instruments having
a contactless suspension system [14]. Our interest is in the qualitative analysis
of the equations of motion of the body.

The Euler—Poisson equations of motion of a rigid body with a fixed point in
the problem under consideration can be written as [5]:

Aw = Aw X w+Bw xy+vx (Cy—8), ¥y =79 X w. (1)

Here w = (w1, ws,ws) is the angular velocity of the body, v = (71,72,73) is
the unit vector of the direction of the magnetic field, s = (s1,$2,53) is the
center of mass of the body, A, B, C are the symmetric matrices of 3rd order:
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A is the inertia tensor of the body computed at its fixed point, B is the matrix
characterizing the magnetic moment of the body, C'is the matrix characterizing
the action of potential forces on the body.

Equations (1) admit the two first integrals

Vi=Aw-y=k, h=y-v=1 (2)

and, in the general case, are non-integrable. Therefore, the problem of finding
invariant manifolds (IMs) and additional first integrals of these equations is of
interest for their integrability and analysis. A number of works are devoted to
this question, e.g., [5,10,13]. In [5], a linear invariant relation of the Hess type
[6] has been found for Egs. (1). In [10,13], the integrable cases of the equations
have been presented when the matrices A, B are diagonal, and potential forces
are absent.

In [9], we have proposed a technique to find linear IMs for the equations of
type (1). It is a combination of the method of undetermined coefficients with
the methods of computer algebra and allows one to obtain both the conditions
of the existence of the IMs and the IMs themselves. The aim of this work is to
find IMs and first integrals of Egs. (1) in the form of the polynomials of the
2nd degree and higher and to apply them for the qualitative analysis of these
equations. By the same technique as before, we have found the new polynomial
IMs and additional first integrals of the 2nd—4th degrees. The latter were used in
the qualitative analysis of the equations by the Routh-Lyapunov method [11].
Stationary solutions and IMs were found and their Lyapunov stability was ana-
lyzed. The computer algebra system (CAS) “Mathematica” was employed to
solve computational problems. The software package [1] developed on its base
was used in the analysis of the stability of stationary solutions and IMs.

The paper is organized as follows. In Sect. 2, obtaining the polynomial IMs
and integrals of the 2nd—4th degrees for equations (1) by the above-mentioned
technique is described. In Sects. 3 and 4, the qualitative analysis of these equa-
tions in the particular cases of their integrability is done. In Sect. 5, a conclusion
is given.

2 Obtaining Integrals and Invariant Manifolds

For Egs. (1), we state the problem to find IMs and integrals defined by the
polynomials like

n
(e
P= E aap
a=0
where p® = w'ws?ws3YY5%v5°, a; (1,...,6) are the non-negative integers,

o= 2?21 «; is the degree of the monomial p®.
In the present work, the cases when n = 2,3, 4 are considered.
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2.1 Quadratic Integrals and Invariant Manifolds

Let in Egs. (1) be A = diag(A;, A3, A3), B = diag(By1,B2,Bs), C =
diag(C1,C,C5). IMs and integrals will be sought for these equations in the
form:

3 3 3
F(wr,wa,ws,71,72,73) = Z (Z(ﬂiij wiwj + zij Vi) + Zyij wﬂj)
i=1  j=i J=1
+fiwi + fawz + faws + fa1 + f572 + fevs + fo = 0. (3)

Here x;;, 95, 2i5, fi are constant parameters to be determined.

Compute the derivative of F' (3) by virtue of Egs. (1). The derivative G =
G(wi, i) (i = 1,2,3) is a polynomial of the phase variables w;, ;. Considering G
as the polynomial of one phase variable, e.g., wy, with the coefficients of the rest of
the variables, we can represent it, using the built-in function PolynomialReduce of
CAS “Mathematica” in the form PolynomialReduce|G, {F},{w1}], as follows:

G =QF +R,

where Q = Q(w2,ws,7;), R = R(w1,ws,ws, ;) are some polynomials (the degree
of R < the degree of F'in wy). F defines the IMs of Egs. (1) if R = 0, and their
integral if @ = R = 0.

Equating the coefficients of similar terms in R to zero, we have the system
of polynomial equations with respect to x;j, yij, Vji, 2ij> fx (4,5 = 1,2,3;k =
0,...,6):

Ay f3sg — Az fasz =0, (A1 — A3) for12 =0, (A1 — A3) (fox11 — fiz12) =0,
(A — A3) fax12 =0, (A1 — Ag) for13 =0, (A1 — A2) (fsz11 — fiz3) =0,
(A1 — Ap) for13 =0, Azsgziz — Agsoxiz =0, (A1—Az) 13092 =0,

Ay Az(Ay — Az) iz + A1As(Ar — As) foxio — A1 As(A1—Az) faz13 = 0,
(Al - Az) ($12$13 - $11$23) =0, (A1 - A3) ($121?13 - $11$23) =0,

Ay(Bafs — Asfe) x11 + (A1 —A2) A fax13 — (24353722 — Aasaxaz) 211 =0,
AS(Az(AQ—A3) T11 + Al(Al - A3)$22) Ti2 — A1A2(A1—A2) x13T23 = 0, (4)
2A2(A2 — Ag)Ag,QZ%l + A1A3(A1 — A3)(£L‘%2 — 2$11$22)

+A1A42(A1 — Az)(2z11233 — 235) = 0,

A3(Bsfy — A fs) w11 + (A1 — A3) Az fax1o + (Azszzas — 2A280133) 211 = 0,
(Ay — A3) x12233 = 0,

(Az(A2 - A3)A3=T11 - A1A2(A1 - A2) 5U33) 13 + Al(Al - A3)A3$12$23 =0,
9i(ij, yij> vii, fr) =0 (1 =1,...,29),

hm(xij,yij,yji, Zij, fk) =0 (m = 1, . ,26).

Here g, hy, are the polynomials of xij, yij, Yji, Zij, fr-

So, the problem of seeking the quadratic IMs and integrals of differential Eqs.
(1) is reduced to solving the above system of polynomial algebraic equations. It is
the overdetermined system of 73 equations with the parameters A;, B;, Cy, s; (i =
1,2, 3), the number of unknowns is 28.
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As can be seen, Eqs. (4) are split up into several subsystems in the variables.
The first 18 equations depend only on z;;, fx. We resolve them with respect to
these variables

259(Aa(Az—Az) 211 — A1 (A1 — A3) T22) fom

Ay Ay (A; - Ay) e

As(Al(A1 - A3) ZL22 — AQ(AQ - A3) 3311)
A1Ax(A; — Ag)

283 X292
Ay

(5)

fi=fa=f3=0, fs=

Ti2 = x13 = Tog3 = 0, 233 =

and substitute the found solution into the rest of the equations. The resulting
system consists of 53 equations in the variables fo, fa, T11, T22, Yij, Yji, 2i5. Next,
a lexicographical basis with respect to a part of the variables and parameters,
e.g., fo, f1, %22, Yij, Yji, 25, C1, Ca, C3, B1, Ba, 51, 52, 53 for the polynomials of the
system is constructed. As a result, we have a system decomposing into 2 subsys-
tems. These are not represented here for space reasons.

A lexicographical basis with respect to the above variables was computed for
the polynomials of each subsystem. One of the bases is written as

S1 = 0, S9 = 0, S3 = 07 agBl—ang + 0,133 = O, agCl—agCQ + a103 = O,
(Co—C3)x11 — Ai(222 — 233) =0, 223 =0, 213 =0, 212 =0,

(angcl + CLQ(BQ(CQ*C:;) — Bgcg) —+ alB303) Tr11 — Al(ang — alB3) Z11
+A1(a232 — alBg) Z33 = O,

(a3C1 — a2Cs + a1C3)((C3 — C1) 211 + A1(211 — 233)) = 0,

ys2 =0, y31 =0, Y23 =0, y21 =0, y13 = 0, y12 = 0,

Azyos — Azyszz = 0, A1yss — Azy11 =0,

AsazBy 11 — Ay(agBs — a1 B3) 292 = 0,

A2(0202*a301*a103) 1511*141(&202*&203) $22+A1A203(211*Z33) =0,
(C1 —C3) x93 — Az(211 — 233) = 0, f4 =0,

(6)

where a1 = A; — Ag, ao = A1 — A3, a3 = Ay — As.
Equations (6) have the following solution:
B, - as By *alBg’ o = asCo fang’ [
as as
T2 = A2B205 T1 y Y11 = My Y22 = A2y33’
Ai(agBy — a1 B3) A3 Az
azB(Cy — C3) 713

4= Y12 = Y13 = Yo1 = Y23 = Y31 = Y32 =0, 211 = + 233,
fimy =y =yn =yn=yn =y Ar(asBs — a1 By)
(C2 — C3) 21y

Ay

299 = + 233, z12 = 213 = 223 = 0. (7)

The substitution of (5), (7) into (3) produces the expression

as (AQBQW% + Angwg) a2B2(02 — 03) 2 CQ — Cg 2)
+ — T11

= (w2+
! ! Al(ang - alBg) Al(ang - alBg) n Al 12

1
1. (A1yiwr + Aoyows + Asyaws) Yss + (V1 + 73 +73) 233 = const  (8)
3
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which, as can directly be verified by computation, is the first integral of Eqgs. (1)
under the following constraints on the parameters of the problem:
azBs — a1 Bs a2Cy —a1Cs

B, = , C1 = , 81 =89 =53 =0.
as as

The relation (8) is a linear combination of previously known integrals (the coef-
ficients of y33, 233) and the new integral (the coefficient of x17).
The solution obtained for the 2nd subsystem has the form:

(a1 +A1)A3Bg Az(al +A3)Bg

Br=- Ay(az — Az) 7 Po== Ai(az — Az) 7 G=G=0y
31:32:53:0,111:1,@2:0,

233
yn = Ji=y12 =13 = Y21 = Y22 = Y23 = Y31 = Y32 = 0,

2((11 + Al)a3A3B3 agAg(al + A3)B§ (a1 + A1)2a3AgB§
Yas = alA%((lg — Ad) A= alA‘I’((Ig — A3)2 o2 = alA‘;)(ag — A3)2 ’
Z12 = z13 = 223 = 233 = 0. 9)

Having substituted (5) and (9) into (3), we have the expression

A3a3 233 2(&1 + A1)(13A3B3
2, = 2 2 I
2T A, B " Ao " AZay(ag — Ag) 07
A%ag(al + Ag)B% 2 ((11 + Al)zagAng 2

= t 10
Aday(ag — A3)? T A3a(az — Ay)? Y4 = cons (10)

which is the first integral of Egs. (1) when the following conditions hold:

(a1 + A1)A3B3 As(a1 + As)Bs
Wt )Pl g, 22W AT o o=,
Ai(az — Az) 2 Ai(az — As) 2 ° '

§1 = 89 = 83 = 0. (11)

B =

The integrals {21, {2 correspond to the equations of motion for the asym-
metric body. The following integrals have been obtained under the different
conditions of dynamical symmetry of the body:

1) K = AlBlwf + A3B3(w§ + w%) + Bg(Cl — Cg)’y% —2B3s1im (12)
when A2 = Ag, BQ = Bg, CQ = 03, SS9 = 83 = 0,
2) K2 = A2A3(wf + (.«Jg) — 2A2B2W2"yg — (BQBg + A2(03 — CQ))’Y%
—2A28972;
when A1 = Ag, Bl = Bg, Cl = 03, §1 = 83 = 0;
3) K3 = A2A3(wf + w%) + ZAQBg(wl’)/l + wQ’}/Q) + (BQBg + AQ(Og — 02))

X (V) +73) — 2438373
when Al = AQ, Bl = BQ, Cl = CQ, S1 = S92 = 0.
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Note that for Ay = Ay = A3, C; =0, s, =0 (i = 1,2,3) we have found the
integral previously known [10]:

2K = A} (w] + wj 4+ w3) — 24, (Biw171 + Baways + Bswsys) + B1Bsv;
+ ByB3y? + By Bayi.

As to quadratic IMs in the problem under consideration, we have degenerate
cases. All the equations of such IMs found by us are complete squares. One of
them is given below.

A3a3 (a3 — A3) Bl as 2
=4/ — — B =0. 13
<WI A1a1 wa (a1 + Al) A3 mn A1A3a1 173) ( )

This solution exists when C; = Cy = Cs,

Ag(al + A3)Bl Al(ag — A3)Bl A1a3
By=—F——"—"+"— B3=———""""—,5,=0,83=—4/ S1.
2 (a1 + A1)A3 3 (a1 + Al)Ag 2 3 a1A3 !

In fact, Eq. (13) determines a linear IM.

2.2 Integrals and IMs of 3rd and 4th Degrees

To find IMs and integrals defined by the polynomials of 3rd and 4th degrees,
homogeneous and non-homogeneous polynomials of the above degrees are used as
initial ones. It leads to solving systems of 160-350 polynomial algebraic equations
with parameters, the number of unknowns is up to 130.

Four cubic IMs were obtained for Egs. (1) in the case of the asymmetric body.
The equations of two IMs have the form of a complete cube. The equations of
the other two IMs are written as follows:

Ay — A3/ A3 (241 — A2) B33 B

VA AW (), G ADBY o
A1 A1 — A2 AQ — 2A3

Here the first cofactor defines a linear IM of Egs. (1), and {25 is quadratic integral

(10). These exist under constraints (11).
In the case of the dynamically symmetric body, the cubic integral

<A1w1 + B3y =

B3’}/1 2B1
25 = (w1 + " ) (w% +wj + Ail(wﬂQ + w373)
BiBs — A1(C1 = C3) , 5 4 51, o 2
A, A, (va + ’Ys)) B (w3 +w3)
(B1Bs + A1(Ch — C3)) s1 25771

(V3 +73) + = const,

A1A3B1 ASBl
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and the integral of 4th degree

@w . B2B3(3AlB2 + 2D) 2)
Ay T A1 A,D T

3B2B B3
- Ang (wiys — wsm)® — AAZD (AlB2<2A2w2 + Ben)”

24 = (@ +wi)(wh+uf -

— A3 B3 (242 B3ways + (Agws + 3372)2)) (7 +73)

2B2B;
Aq

3 1
<5wﬂ2 - ﬁ(ﬁ +75 + 73%)) (w1 + wsys) = const, (14)
5

were found. Here D = A;By — A3Bs3. The conditions of their existence are
AQ :A3, BQ :B3, Cg 2037 S92 283207 and A3 = A17 B1 = Bg,CQ = Cg =
C1, s1 = s3 = s3 = 0, respectively.

Further, the qualitative analysis of Egs. (1) is done in some of the above
presented cases of the existence of additional first integrals.

3 The Equations of Motion with an Additional Quadratic
Integral

Let us consider Eqs. (1) when Ay = Aj, By = B3, Cy = C5, s9 = s3 = 0. Under
these conditions, the equations have the form

Ay = Ba(ways — w3e),

Azws = (Bzy1 — (A1 — Az) w1) wz — (Biwi + s1) 13 — (C3 — C1) s,
Azws = ((A1 — A3)wi — Bam)we + (Biwi + s1) 72 + (C3 — C1)7172,

Y1 = wsY2 — waY3, Y2 = W13 — W31, Y3 = W21 — w12 (15)

and admit quadratic integral Ky (12).
Besides K7, Egs. (15) have the integrals

Vi = Ajw; + As(wz +ws) =1, Va = Z% =1 (16)

and the linear integral V3 = Ajw; + B3y; = ¢3 which is directly derived from
the equations themselves. Thus, system (15) is completely integrable. We set the
problem of seeking stationary solutions and IMs [8] of the system and the analysis
of their stability. For this purpose, the Routh—Lyapunov method and some of its
generalizations [7] are used. According to this method, stationary solutions and
IMs of differential equations under study can be obtained by solving a conditional
extremum problem for the first integrals of these equations.
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3.1 Seeking Stationary Solutions and Invariant Manifolds

In accordance with the method chosen, we take the nonlinear combination of
the first integrals of the problem

2W = 200K — 20 Vi — Ao Vo — A3V (17)

and write down the necessary extremum conditions for W with respect to the
variables w;, y;:

8W/8w1 = A1 [()\()Bl - )\3141)(,(11 - ()\1 + )\3B3)’}/1} = 07

6W/6w2 = A3 (A0B3w2 — )\1’}/2) = O,

OW [Ows = A3 (Ao Baws — A\17y3) = 0,

8W/871 =—-A; ()\1 + /\333) w1 + [()\0 (Cl — 03) — /\333) B3 — )\2] Y1
7)\0B351 = 0,

GW/B’VQ = —()\1A3WQ + )\2’}/2) = O, 8W/073 = —()\1143(4)3 + )\2’73) =0.

(18)

First, we seek IMs of maximum dimension, namely, the IMs of codimension 2.
In order to solve this problem, a lexicographical basis with respect to A\g > A1 >
A2 > wy > 2 for the polynomials of system (18) is constructed. As a result, the
system is transformed to the form:

Y3W2 — Yow3 = 0, (19)
(Asws + Bsvys) yiws — (A1ws + Biys) y3w1 + ((C1—Cs)y1—s1) 73 =0,
X2o[B1((Cs — Ci)m + s1) 73 + (A1 Bs — A3B1) mw3] 73 — A3 A3 Baws
[(B1B3zy1 + A1 ((C1 — C3)y1 = 51)) 73 + A1(2B37y3 + Asws) yiws] =0,
[B1 ((C1 — C3)v1 — s1) 73 + (A3B1 — A1 B3)y1w3] 3 — A3 Baws
[(3133’)’1 + A1((C1 = C3)y1 — 51)) 73 + A1(2B373 + Asws) yiws] = 0,
Mo[B1((C3 — C1)y1 + s1) 73 + (A1 B3 — A3B1) y1w3]

+ As[(B1Bsy1 + A1((C1 — Cs)y1 — 51)) 73 + A1(2B3ys + Asws) yiws] = 0.

X
A1
x (20)

Equations (19) determine an IM of codimension 2 of differential Egs. (15). It can
easily be verified by the definition of IM. Equations (20) allow one to obtain
the first integrals of differential equations on this IM. The latter can directly be
verified by computation. To do this, it needs to resolve Egs. (20) with respect to
Ao, A1, A2, and to differentiate the resulting expressions by virtue of the equations
of motion on the IM.

Now IMs of minimum dimension are sought. Again we construct a lex-
icographical basis for the polynomials of system (18), but with respect to
w1 > Y1 > Y2 > 73 > Ao, The system takes the form:

Ag/\% + B3AgXo =0, (21)

)\0330)3 - )\1’}/3 = 07 AoBgu}Q - )\1’}/2 = O,

NoAZA, By + A A1 (A2A5 + A B2(Ao(C1 — Cs) + 2A1)) — Ao By (As\2
+)\OB?2)()\0(01 — 03) — )\333))} Yv1 + )\%B§81()\031 — )\3141) =0, (22)
()\0)\%14133 + /\3A1()\%A3 + /\03%(/\0(01)\0 - 03) + 2/\1)) — XoB1 (A3)\%
+)\oB§(/\0(01 — 03) — )\3B3)))w1 + )\%B%Sl(/\l + )\333) = 0
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Equations (22) together with integral V5 (16) determine a family of one-
dimensional IMs of differential Eqs. (15). Here Mg, A\1, A3 are the parameters of
the family. Next, find Ay = —\?A43/(\gBs3) from Eq.(21) and substitute into
(17). We have

. ~ A2A3
2W =2\ K7 — 2\ V; +
0481 11+ oBs

Vo — A3V (23)

It is easy to verify by computation that the integral W assumes a stationary
value on the elements of the above family of IMs.

In order to find stationary solutions, one needs to add relation V (16) to
Egs. (18) and, for the polynomials of a resulting system, to construct a lexico-
graphical basis with respect to w; > wo > w3 > 71 > 72 > 13 > Ao. As a
result, we have a system of equations decomposing into 3 subsystems. One of
them corresponds to Egs. (22), which the integral V5 is added to, the other two
subsystems are written as:

)\2()\3141 — )\0B1) — [)\%Al + )\033()\3141 — )\031)(01 — 03 + 81)

24
+ A3B3(AoB1Bs + 2A\1 41)] = 0, (24)
3=0, 2=0,71 =21, w3 =0, w2 =0, (25)
(A3A1 — AoB1)wi £ (A3B3 + A1) = 0.
The Eq. (24) gives
A2A1 + )\3B3(}\08133 + 2/\1A1)
Ay =~ XoBs(Cy — C : 26
2 NAr — NoBy + Ao B3 (Cq 3 F s1) (26)
Equations (25) define the two families of solutions of differential Eqs. (15)
A+ A3B
wy 33 =wg="72=7=0,7 ==l (27)

T NGBy — MadA; L2

the elements of which deliver a stationary value to the integral W under the
corresponding values of Az (26).

From a mechanical point of view, the elements of the families of solutions (27)
correspond to permanent rotations of the body about the Oz axis (the system of
axes related to the body) with the angular velocity wy; = £(A1 + A3B3)/(AoB1 —
AszAq).

It is not difficult to show that the family of IMs (22) belongs to IM (19). For
this purpose, we resolve Egs. (22) with respect to w1, 71, 72,73 and substitute a
result into (19). The latter expressions turn into identities. It means that the
elements of the family of IMs (22) are submanifolds of IM (19). Similarly, one
can show that solutions (27) belong to IM (19) and, under the corresponding
values of

_ )\0()\%(31143 — AlB3) + )\%BlBg(Ol — 03 F 81))
BlBg)\% + A1(>\1(A3>\1 + 2)\03%) + )\%B%(Cl —C3F 81))7

to the elements of the family of IMs (22).

A3
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3.2 On the Stability of Stationary Solutions and Invariant Manifolds

In this Section, the algorithms for the analysis of the stability of stationary
solutions and IMs on the base of Lyapunov’s theorems on the stability of motion
are employed. These have been encoded in “Mathematica” and included as some
programs in the software package [1]. The programs are used for obtaining the
necessary and sufficient conditions of stability. More details of their application
can be found in [8].

The Stability of IMs. Let us investigate the stability of the elements of the
family of IMs (22). We use the integral W to obtain sufficient conditions.
The deviations are introduced:

Y1 = w1 — w10, Y2 =71 — V10, Y3 = AoB3wa — A172, Y4 = Ao B3ws — A173,
where

wio = Bss1(A1 + A3B3)D ™", y19 = Bss1(B1 — A341) D7,
D = [M2B2(Cy — C3) + M1 A3](M\3A1 — X\oB1) + Mo B3[\oA3 B, B3
+ )\1A1(2)\333 + )\1)}

The 2nd variation of W is written as

~ A2A
2§2W = Al()\OBl — >\3A1)y% + ( 123 + B3(>\O(Cl - 03) - )‘3B3)) yg
Ao B3

2

NA
— 24, (M + A3B3)yrys + S22 (Y3 +v3)-
AoB3

Using the variation~ of the integral 6V3 = Ay, + B3ys = 0, one can represent

the expression 262W as follows:

XoB1B3 n A2 A3
A1 )\0B3

o, MAz o
+ (Mo(C1 — C3) + 2>\1)B:3) Ya + (y3 +vi)-

gyW:( XoB3

The conditions for the latter quadratic form to be sign definite are sufficient
for the stability of the elements of the family of IMs under study. These have
the form:

A XoB1B2  \2A
3 > 07 001D3 + 1413
)\oBg A1 )\OBS

+ (Ao(C1 — C3) +2X1)B3 > 0. (28)

Evidently, inequalities (28) are consistent when A; > 0,45 > 0, C; > C3 >
0, By >0, B3 >0 and Ay > 0, A\; > 0 are fulfilled. The built-in function Reduce
of CAS “Mathematica” produces the more complete list of the conditions for
the consistency of the inequalities. It is rather long, and only some of these
conditions are represented here:
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BB
A3>o,03>01>0,31<0,33<0,0<A1<ﬁandxo<o,h<o
3 — 1

or
Ay >0,A3>0,C3>Cy>0,B; <0, B3>0 and
- 2>\1A1

B1B3 + Al(Cl — 03)

As can be seen, the above conditions of stability are split up into two groups.
The first (the constraints on the parameters of the problem) gives the sufficient
stability conditions for the elements of the family of IMs (22). The second (the
constraints on Ao, A1) isolates those subfamilies of this family, the elements of
which are stable.

>\1>0,0<)\0§

The Stability of Solutions. Now we investigate the stability of solutions (27).
To obtain sufficient conditions the integral W is used under the constraints
on )\2 (26) and )\3 = (BlBg,)\o — )\1(141 — 2A3))/(2A1.Bg, — 2A3.Bg). Under these
restrictions, the integral and the solutions take the form, respectively:
Bi1B3Ao + A1(243M1 — Ay)
2A1 Bg — 2A333

B3 [243\1 + B1B3Ao + (2430 — A1X)(C1 — C3 F 51)]

+
A; — 243

2W = 200 K1 — 2\ V4 — V32

Va,

Bs
-4 3
A, — 245"

w1 QZW3:’)/2:’)/3:0,’)/1::|:1. (29)

Next, we write down the variations of the integral W for the both solutions.
The 2nd variation of W in the deviations

— F D = = =y Flys = =73 (30)
yl_w1¥A1—2A3’y2_w2’ Ys=ws, Yya =71+ 1, Y5 =72, Y6 = 73
on the linear manifold
AB
0Ky = 1233(1411_712?413 +(C1 — C3 F 51) y4) =0,
= B3y, _ B B B B
Vi = +A, <y1 + 7> =0, 0Vo =42y, =0, 6V3 = A1y1 + B3ys =0
A — 245

is written as 02W = Q; + Q2, where
201 = ay3 + bysys + cyg, 2Q2 = ays + byays + cy3,

B1Bs +2M\A
a = )\0A3B3, b= —2)\1A3, CZBg(AO ;1 3_;14)\1 3
1= 3

The conditions for the quadratic forms (1 and @2 to be sign definite are
sufficient for the stability of solutions (29):
A()B% (AoBlB3+ 2/\1A3)
Ap — 243

(G — Oy — 31)).

AoAz B3> 0, A3( — A Ay— NB3 (C1— C3— 51)) > 0.
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The latter inequalities are consistent under the following constraints on the
parameters A;, B;, C;, s1, Ao, A1:

A3>0, Bl;«éO, 017&0, C’g;éOand (A1>2A3OI‘O<A1<2A3) and
(B3 >0,X\0 > 0or B3 <0, <0) and

A1 2 By B3

AL 70, s> (A%Bg " (A = 2A3)> T A —24,

As in the previous case, we have 2 groups: the sufficient conditions of the
stability of solutions (29) and the constraints on the parameters A\, A\1. The latter
can be used to select a subfamily of the family of the integrals W, which will
allow one to obtain the best sufficient stability conditions (closest to necessary
ones). In order to solve this problem, consider one of the above restrictions on
the parameters \;:

+ C1 — Cs.

A 2 BB
1 )) 1D3 +Cy—Cs.

51>A:)\1A1</\(2)B§ _)\O(A1*2A3 _A172A3

Write down the necessary extremum condition of A with respect to Ay:

% . 2A3>\1 . 214-3
O\ B3NE Mo(Ar —243)

It gives \; = B3)\o/(A; — 243). Under this condition, §°W takes the form:
W = Q1+ Qa,

=0.

where

20, = dy% + l~7y3y6 + &yg, 20, = ays + 5y2y5 + éyg, a = A3Bs,
_ 288 5=B — Ao(C1 — C5 — 51)).
Al — 21437 ¢ 3( (Al — 2A3)2 O(Cl Cg 81))

SN
Il

The conditions of sign-definiteness of §2W are

Ag>07 31750, 017&0, 03750811ng>0, (A1>2A301"0<A1<2A3)
(AlBl - Ag(QBl - Bg))Bg
(A; — 243)? ’

So, solutions (29) are stable when conditions (31) are fulfilled.

The necessary conditions of the stability of solutions (29) are derived on the
base of Lyapunov’s theorem on stability in the linear approximation [12]. The
equations of first approximation, in the case under consideration, in deviations
(30) are written as:

and s; > (O — 03 — (31)

PO B1B3 Bs
=0, v2 = 4 (C1 C3 —s1 A1_2A3)y6 A, o4,
. B3 1 B, B3 .
B (B o4 —0
Ys A1*2A3y2+A3(A172A3 1+ 3+«91)y5a Ya )

. Bs . Bs (32)
y5—A1_2A3y6 Y3, Y6 = Y2 A1—2A3y5'
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The characteristic equation
A2

FrEsrap

— (A} —243)%(C, —C3—51)]> =0

Ay — 2A3)2A3\? + B3(A1 B, + A3(Bs — 2B;))

of system (32) has only zero and purely imaginary roots when the following
conditions are satisfied:

A3>0,B17é0, B37é0, 01750, 03750, (A1>2A3 OI‘O<A1<2A3)
(AlBl — A3(2Bl — B3))B3
(A1 —243)*

and51201—03—

On comparing the latter inequalities with (31) one can conclude that con-
ditions (31) are necessary and sufficient for the stability of solutions (29) with
precision up to the boundary of stability.

4 The Equations of Motion with the Additional Integral
of the 4th Degree

When A3 = Ay, By = B3, C; = Cy = (3, s1 = so = s3 = 0, the equations of
motion (1) take the form

Ay = (Ag — Ay)waws + Boways — Bawsye,

Agte = B3(wsy1 — w173),

Azwz = (A1 — Az)wiws — Bawsy1 + Bawiye,

Y1 = wszYe — w23, Y2 = w1y — W31, Y3 = weY1 — w12 (33)

and admit the polynomial first integral 24 (14) of 4th degree.
Besides (24, equations (33) have the integrals:

= Aswy + Ar(w1 +w3) =c1, Vo = Z’YZ =1,

V_

A B w3 + w3 = ca, V3 = Asws + B3y = c3. (34)
The integral V3 has been derived directly from the equations themselves, and V
has been found by the technique of Sect. 3.

We set the problem of finding stationary solutions and IMs of differential
Egs. (33) and the analysis of their stability.

4.1 Seeking Stationary Solutions and Invariant Manifolds

First, IMs of maximum dimension will be found by the technique of Sect.3.1.
We choose independent integrals from those of system (33) (such as, e.g., V1, V2,
Vs, £24) and compose the linear combination from them:

QW =200V — 20, Vi — Ao Vo — Asf2y (35)
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Next, the necessary extremum conditions of W with respect to the variables
wj, 7y; are written:

OW Jdw; =0, OW /9y, =0 (i = 1,2,3). (36)

These are a system of cubic equations with parameters Ai, As, Bs, B3, Ao,

A1, Az, A3. The equations are bulky and these are not presented explicitly here.
We have found the desired IM through the computation of a lexicographical

basis for the polynomials of system (36) with respect to Ag > A1 > wo > 7o:

B2B3 (A3yBs — 4A1By) A\3¥5 + [2B2B3\3 (TAyBs — 16 A, Bs)(BaBsx1
+2A1 Agxa) + 1641 (A1 By — A3 Bs) (A1 A3\ — 2B3 B33 x3)

+24A, BSB2X\3x1] V5 — (4A1 By — A3 B3)A\3(B2Bsx1 + 241 Azx2)? = 0,
4A9By\3(4A1By — AsB3)(BaBsxi1 + 2A1 Aaxa) wa

+ B2ZB2(4A1By — A3 B3) A\3vs + [3BaB3\3(12A; By — 5A3Bs)(B2Bsx1
+2A1 Agxa) — 1641 (A1 By — A3 Bs)(A1 A3\ — 2B2 B33 x3)

—24A, B3B3 )\3x1] 72 = 0, (37)

where y;1 = 712 + ’y%, X2 = w% + w%, X3 = W17Y1 + wsY3.

It can be verified by the definition of IM that Egs. (37) determine a family of
IMs of codimension 2 of differential Egs. (33), A2, A3 are the parameters of the
family.

Stationary solutions and IMs of minimum dimension will be obtained from
the equations of motion. For this purpose, the right-hand sides of differential
Egs. (33) are equated to zero and then relation V5 =1 (34) is added to them:

(A2 — A1) wowsz + Bawzys — Bawzye = 0, Ba(wsy1 —w1y3) =0,
(A; — Az) wiwz — Boway1 + Bawive = 0,
w3ye —w2v3 =0, w13 —w3y1 =0, weyr — w12 =0,
N+ =1 (38)
For the polynomials of system (38) we construct a lexicographical basis with
respect to some part of the phase variables, e.g., w1 > ws > w3 > y1 > 72. As

a result, the system is transformed to a form which enables us to decompose it
into 3 subsystems:

Dy =07+ —1=0, wy =0, wyy — w1y = 0; (39)
N+ +92-1=0, w; =0, wy =0, w3 =0; (40)
3)Vi+7 +73 —1=0, (Bs — Bs)ys — (A1 — Ax) w3 =0,

(Bs — Ba) 72 + (A1 — A2) wa = 0,

(B — B2) 71 + (A1 — Az)w; = 0. (41)

It is not difficult to verify by the definition of IM that Eqgs. (39)—(41) define IMs
of codimension 4 of differential Egs. (33).
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The differential equations on IM (39) are written as w3 = 0,43 = 0. These
have the following family of solutions:

ws = wl = const, y3 = yJ = const. (42)

Correspondingly, the differential equations on IMs (40), (41) and their solutions
have the form: 41 = 0, 43 = 0 and

1 =) = const, v3 = 7§ = const. (43)

Equations (39) together with (42) determine the 2 families of solutions for
the equations of motion (33):

wO
wy = iw%\/l 9w =0, ws=w, M =E\/1 -8, 72 =073 =15 (44)
3

Equations (40), (41), and (43) allow us to obtain the other 4 families of solutions:

w1 =wp =w3 =0, 7127?7 Y2 = %X, 73:"/:? (45)
and
By — B3 (B2 — Bs) x By — B3 0
= ———— = :l: = =
w1 Al—AQVI’wg A, — A, , W3 Al—AgrY?”% 1
Y2 = £x, 13 =3 (46)
2 o 02

Here y = /1 —~Y — 19"

From a mechanical point of view, the elements of the families of solutions (44)
and (46) correspond to permanent rotations of the body, and the elements of
the families of solutions (45) correspond to its equilibria.

One can show that the above solutions belong to the family of IMs (37) (or
its subfamilies). For this purpose, substitute, e.g., expressions (45) into (37).
The latter relations become identities when Ay = B3B2)\3/(24%2A3), 7§ = +(1 —
27(1)2)1/ 2/2. Thus, the subfamilies of the families of solutions (45) corresponding
toyy = +(1— 27?2)1/ 2/2 belong to a subfamily which is isolated from the family
of IMs (37) under the above value of Ay. We have the same result in the case of
solutions (46).

It is not difficult to derive the families of integrals assuming a stationary
value on solutions (44)—(46) (the technique is described, e.g., in [8]). A similar
problem can be posed for IMs. The following nonlinear combinations of integrals

20, = A2VV 4 (Vo — 1)Vy — V2, &y =V + A\V2
and
2B~ By)Vi | (Ba—B3)*Va (By — B3)2 V2
Al(Al — AQ) (Al — A2)2 AlBg(AQ(Bl — 233) + A1B3)

have been found for IM (39), IM (40), and IM (41), respectively. Their necessary
extremum conditions are satisfied on the IMs under study.

205 =V
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4.2 On the Stability of Stationary Solutions and Invariant Manifolds

Let us investigate the stability of IM (39), using the integral @; to obtain suf-
ficient conditions. The analysis of stability is done in some maps of an atlas on
this IM. The deviations are introduced:

w
Y1 =w1i\/1—7§73, Y2 =wo, Y3 =71 £ \/1 =73, ya ="
3
The 2nd variation of @1 on the linear manifold
w N w
SV =F2/1 -2 2y =0, 6V ::FA1\/1—732(Z/1+*3213) =0,
V3 V3

Vo = :|:2My3 =0, 6V3 = Asyo + Bsys =0
is written as

252%, — (33( fﬂ?’

A1W3) 2

+ 2) + Ys-
V3

2Ws3

The condition of sign-definiteness

Ba~- Ajw:s
Bg( 273 + 2) + 1W3 >0
Aows V3

of the quadratic form §%®; is sufficient for the stability of the IM under study.

Since the integral Vi on IM (39) takes the form Vi|o = Ajws/ys = é1, then
the latter inequality is true, in particular, under the following constraints on the
parameters:

(Al>0,A2>0,BQ>0,B3>0,51>0)OI‘
(A1>O,A2>0,Bg<O,B2>Oand((—Bng<51<O)

A.B
or D — By < &), where D = \/33(33— L 2).

Az

The investigation of the stability of IMs (40), (41) is done similarly. As to the
families of solutions (44)—(46) belonging to IMs (39)—(41), their instability in
the first approximation was proved.

5 Conclusion

The new additional polynomial integrals and IMs for the differential equations
describing the motion of a rigid body with a fixed point under the influence
of both a magnetic field generated by the Barnett—London effect and potential
forces have been found. These are the integrals of the 2nd—4th degrees for the
dynamically symmetric body, the quadratic integrals as well as IMs defined by
the polynomials of the 2nd and 3rd degrees in the case of the asymmetric body.
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To find them, a combination of the method of undetermined coefficients with
computer algebra methods such as the reduction of a polynomial with respect to
a list of polynomials, the Grébner basis method, etc. was applied. The qualita-
tive analysis of the equations in particular cases of the existence of the additional
integrals of the 2nd and 4th degrees was done. The stationary solutions corre-
sponding to the permanent rotations and equilibria of the body as well as the
IMs of various dimensions have been obtained. With the aid of the software
package developed on the base of CAS “Mathematica”, the sufficient conditions
of the Lyapunov stability have been derived for the found solutions. In some
cases, the above conditions were compared with the necessary ones. The pre-
sented results show enough the efficiency of the approaches and computational
tools which were used.
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Abstract. We propose an algorithm to compute the C°°-ring struc-
ture of arbitrary Weil algebra. It allows us to do some analysis with
higher infinitesimals numerically and symbolically. To that end, we first
give a brief description of the (Forward-mode) automatic differentiation
(AD) in terms of C*°-rings. The notion of a C*°-ring was introduced
by Lawvere [10] and used as the fundamental building block of smooth
infinitesimal analysis and synthetic differential geometry [11]. We argue
that interpreting AD in terms of C*°-rings gives us a unifying theoreti-
cal framework and modular ways to express multivariate partial deriva-
tives. In particular, we can “package” higher-order Forward-mode AD
as a Weil algebra, and take tensor products to compose them to achieve
multivariate higher-order AD. The algorithms in the present paper can
also be used for a pedagogical purpose in learning and studying smooth
infinitesimal analysis as well.

Keywords: Automatic differentiation -+ Smooth infinitesimal analysis -
Weil algebras + Smooth algebras and C*°-rings - Symbolic-numeric
algorithms - Symbolic differentiation - Grébner basis -
Zero-dimensional ideals

1 Introduction

Automatic Differentiation (or, AD for short) is a method to calculate derivatives
of (piecewise) smooth functions accurately and efficiently. AD has a long history
of research, and under the recent rise of differentiable programming in machine
learning, AD has been attracting more interests than before recently.

Smooth Infinitesimal Analysis (or, SIA for short), on the other hand, is an
area of mathematics that uses nilpotent infinitesimals to develop the theory of
real analysis. Its central building blocks are Weil algebras, which can be viewed as
the real line augmented with nilpotent infinitesimals. Indeed, STA is a subarea of
Synthetic Differential Geometry (SDG) initiated by Lawvere [10], which studies
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smooth manifolds topos-theoretically, and higher multivariate infinitesimals play
crucial roles in building theory of, e.g. vector fields, differential forms and tangent
spaces. The key observation of Lawvere is that manifolds can be classified solely
by their smooth function ring C*°(M), and both such function rings and Weil
algebras are special cases of C'*°-rings.

It has been pointed out that AD and SIA have some connection; e.g. even
Wikipedia article [14] mentions the connection between first-order Forward-mode
AD with the ring R[X]/X? of dual numbers. However, a precise theoretical
description of this correspondence is not well-communicated, and further gener-
alisation of AD in terms of SIA hasn’t been discussed in depth.

The present paper aims at filling this gap, giving a unified description of AD in
terms of C'*°-rings and Weil algebras. Furthermore, our main contribution is algo-
rithms to compute the C'*°-ring structure of a general Weil algebra. This enables
automatic differentiation done in arbitrary Weil algebras other than dual numbers,
and, together with tensor products, lets us compute higher-order multivariate par-
tial derivatives in a modular and composable manner, packed as Weil algebra. Such
algorithms can also be used to learn and study the theory of STA and SDG.

This paper is organised as follows. In Sect. 2, we review the basic concepts
and facts on C'*°-rings and Weil algebras. This section provides basic theoretical
background—but the proofs of proposed algorithms are, however, not directly
dependent on the content of this section. So readers can skip this section first
and go back afterwards when necessary. Subsequently, we discuss the connection
between Forward-mode automatic differentiation and Weil algebras in Sect. 3.
There, we see how the notion of Weil algebra and C*°-ring can be applied to treat
higher-order partial ADs in a unified and general setting. Then, in Sect. 4, we give
algorithms to compute the C°*°-ring structure of an arbitrary Weil algebra. These
algorithms enable us to do automatic differentiation with higher infinitesimals,
or computational smooth infinitesimal analysis. We give some small examples
in Sect. 5, using our proof-of-concept implementation [6] in Haskell. Finally, we
discuss related and possible future works and conclude in Sect. 6.

2 Preliminaries

In this section, we briefly review classical definitions and facts on Weil algebras
and C'*°-rings without proofs, which will be used in Sect. 4. For theoretical detail,
we refer readers to Moerdijk—Reyes [11, Chapters I and II] or Joyce [8].

We use the following notational convention:

Definition 1 (Notation). Throughout the paper, we use the following nota-
tion:

— go f denotes the composite function from A to C' of functions f : A — B and
g: B — C, that is, the function defined by (go f)(x) = g(f(x)) for all x € A.

— For functions f; : Z — X; (1 < i < n), (f1,...,fn) denotes the prod-
uct of functions f; given by the universality of the product objects. That
is, (f1,...,fn) is the function of type 7 — X1 x --- x X, defined by
(fio-o s f)(2) = (f1(2),..., fa(2) € X1 x -+ x X, forallz€ Z
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Definition 2 (Lawvere [10]). A C*-ring A is a product-preserving functor
from the category CartSp of finite-dimensional Euclidean spaces and smooth
maps to the category Sets of sets.

We identify A with A(R) and A™ with A(R™). For a map f : R™ — R, we
call A(f): A™ — A the C*-lifting of f to A.

Intuitively, a C*°-ring A is an R-algebra A augmented with m-ary operations
A(f) : A™ — A respecting composition, projection and product for all smooth
maps f:R™ — R.

One typical example of a C*°-ring is a formal power series ring;:

Theorem 1 (Implicitly in Lawvere [10]; See [11, 1.3 Borel’s Theorem)]).
The ring R[X1, ..., X,] of formal power series with finitely many variables has
the C'*°-ring structure via Taylor expansion at 0. In particular, lifting of a smooth
map f:R™ — R is given by:

RIXJ() 01,1 9m) = D T DT (g1, 0))(0),

a€eNn

where a! = aq! ... ay! is the multi-index factorial and D® is the partial differen-
tial operator to degree a.

The C*°-rings of central interest in this paper are Weil algebras, and have a
deep connection with R[X]:

Definition 3 (Weil algebra). A Weil algebra W is an associative R-algebra
which can be written as W = R[Xq,...,X,]/I for some ideal I C R[X] such
that (X1,...,X,)F C T for some k € N.

It follows that a Weil algebra W is finite-dimensional as a R-linear space and
hence I is a zero-dimensional ideal. A Weil algebra W can be regarded as a
real line R augmented with nilpotent infinitesimals d; = [X;];. In what follows,
we identify an element uw € W of a k-dimensional Weil algebra W with a k-
dimensional vector u = (ug, ..., u;) € R* of reals.

Although it is unclear from the definition, Weil algebras have the canoni-
cal C*-structure. First note that, if I is zero-dimensional, we have R[X|/T ~
R[X]/I. Hence, in particular, any Weil algebra W can also be regarded as a quo-
tient ring of the formal power series by zero-dimensional ideal. Thus, together
with Theorem 1, the following lemma shows that any Weil algebra W has the
canonical C'*°-ring structure:

Lemma 1 (Implicitly in Lawvere [10]; See [11, 1.2 Proposition]). For any
C*®-ring A and a ring-theoretical ideal I C A, the quotient ring A/I again has
the canonical C'*°-ring structure induced by the canonical quotient mapping:

A/ DN [2alrs - [wm]r) = [A) @1, 2]

where x; € A and f : R™ R In particular, the C*°-structure of Weil
algebra W is induced by the canonical quotient mapping to that of R[X].



Automatic Differentiation with Higher Infinitesimals 177

3 Connection Between Automatic Differentiation
and Weil Algebras

In this section, based on the basic facts on C°°-rings and Weil algebras reviewed
in Sect. 2, we describe the connection of automatic differentiation (AD) and Weil
algebra.

Forward-mode AD is a technique to compute a value and differential coef-
ficient of given univariate composition of smooth function efficiently. It can be
implemented by ad-hoc polymorphism (or equivalently, function overloading).
For detailed implementation, we refer readers to Elliott [2] and Kmett’s ad pack-
age [9].

Briefly speaking, in Forward-mode AD, one stores both the value and differen-
tial coefficient simultaneously, say in a form f(z)+ f/(z)d for d an indeterminate
variable. Then, when evaluating composite functions, one uses the Chain Rule
for implementation:

d
e N@) = f2)g' (f(2))-
The following definitions of functions on dual numbers illustrate the idea:
(a1 + bld) + (ag + bgd) = (a1 + a2) + (bl + bg d,

)
(a1 —+ bld) X (CLQ + bgd) = ajas + (a1b2 —+ agbl)d
cos(ay + b1d) = cos(ay) — by sin(aq)d.

7

The last equation for cos expresses the nontrivial part of Forward-mode AD.
As mentioned above, we regard a; + bid as a pair (a1,b1) = (f(x), f'x) of
value and differential coefficient of some smooth function f at some point x.
So if az + bad = cos(ay + bid), we must have az = cos(f(z)) = cosa; and
bo = L cos(f(z)) = —bisin(ar) by Chain Rule. The first two equations for
addition and multiplication suggest us to regard operations on Forward-mode
AD as extending the algebraic structure of R[d] = R[X]/X?. Indeed, first-order
Forward-mode AD can be identified with the arithmetic on dual numbers:

Definition 4. The dual number ring is a Weil algebra R[X]/X?2. We often write
d = [X]; € R[d] and R[d] := R[X]/X?.
We use an analogous notation for multivariate versions:

R(dy, ..., di] == RIX]/(X?,..., X}).

Since the dual number ring R[d] is a Weil algebra, one can apply Theorem 1

and Lemma 1 to compute its C°°-structure. Letting f : R ", R be a univari-
ate smooth function, then we can derive the C*-lifting R[d](f) : R[d] — RI[d]
as follows:
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RIX](f)(a+bX)
= f(a) + %(f(a +02))(0)X +---  (by Theorem 1)
= f(a) +bf'(a) X +
229 fla) + b (a)d,
RIA()(a+bd) = f(a) + bf (a)d. (by Lemma 1) (x

One can notice that the derived C*°-structure in (x) is exactly the same
as how to implement individual smooth functions for Forward-mode AD.
This describes the connection between Forward-mode AD and dual numbers:
Forward-mode AD is just a (partial) implementation of the C*°-structure of the
dual number ring R[d].

Let us see how this extends to higher-order cases. The most naive way to
compute higher-order derivatives of smooth function is just to successively dif-
ferentiating it. This intuition can be expressed by duplicating the number of the
basis of dual numbers:

Theorem 2. For any f: R R and x € R", we have:

Rdy, ..., di](f)(@+dy+-+dp) = Y fD(@)oh(d)

0<i<n

where, ot (x1,...,x)) denotes the k-variate elementary symmetric polynomial of
degree i.

The above can be proven by an easy induction.

However, as one can easily see, terms in R[X]/(X?); can grow exponentially
and include duplicated coefficients. How could we reduce such duplication and
save space consumption? —this is where general Weil algebras beyond (multi-
variate) dual numbers can play a role. We can get derivatives in more succinct
representation with higher infinitesimal beyond dual numbers:

Lemma 2. Let I = (X", W = R[X]/I and ¢ = [X]; for n € N. Given
f:RﬁR and a € R, we have:

)(a+¢) Zf(k)

k<n

In this representation, we have only (n+1)-terms, and hence it results in succinct
and efficient representation of derivatives.

If we duplicate such higher-order infinitesimals as much as needed, one can
likewise compute multivariate higher-order derivatives all at once, up to some
multidegree (:
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Lemma 3. Let [ = <Xf'i+1 ‘ i< m>, W = R[X1,...,Xnl/I, and &; = [Xi];

for 8= (8i);<,, € N™. For f:R™ C“Randa = (ai)i<m € R™, we have:

— Déf 51 Sm
W(f)(a1+e1,. . am +em)= Y T(a) et ghm.
5:<Bi

Note that the formal power series ring R[X] can be viewed as the inverse
limit of R[X]/(X"”)’s. In other words, if we take a limit 3; — oo, we can compute
any higher derivative up to any finite orders; this is exactly what Tower-mode
AD aims at, modulo factor i,

In this way, we can view AD as a technique to compute higher derivatives
simultaneously by partially implementing a certain C*°-ring!. Forward-mode
AD (of first-order) computes the C'*°-structure of the dual number ring R]d];
Tower-mode AD computes that of the formal power series ring R[X] (modulo
reciprocal factorial).

So far, we have used a Weil algebra of form R[X]/I. So, do we need to
define new ideals by hand whenever one wants to treat multiple variables? The
answer is no:

Lemma 4 (See [11, 4.19 Corollary]). For ideals I C R[X] and J C R[YT],
we have:

RIX]/T e R[Y]/J ~R[X,Y]/(I,J),
where Qg is a tensor product of C°°-rings.

Thanks to this lemma, we don’t have to define I by hand every time, but can take
tensor products to compose predefined Weil algebras to compute multivariate
and higher-order derivatives. Examples of such calculations will be presented
in Sect. 5.

4 Algorithms

In this section, we will present the main results of this paper: concrete algorithms
to compute the C*°-structure of arbitrary Weil algebra and their tensor products.
For examples of applications of the algorithm presented here, the reader can skip
to the next Sect.5 to comprehend the actual use case.

4.1 Computing C°°-Structure of Weil Algebra

Let us start with algorithms to compute the C°°-structure of a general Weil
algebra. Roughly speaking, the algorithm is threefold:

! Such implementation is inherently a partial approximation: there are 28°-many
smooth functions, but there are only countably many computable (floating)
functions.
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1. A procedure deciding Weil-ness of an ideal and returning data required to
compute the C*-structure (WEILTEST, Algorithm 1),

2. A procedure to compute the lifting W(f) : W™ — W to a Weil algebra W
from R[X](f) (LIFTWEIL, Algorithm 2), and

3. A procedure to lift smooth map f : R™ — R to the n-variate formal power
series ring R[X] (LIFTSERIES, Algorithm 3).

We start with Weil-ness testing. First, we define the basic data needed to
compute the C*°-structure of Weil algebras:

Definition 5 (Weil settings). The Weil setting of a Weil algebra W consists
of the following data:

1. Monomial basis {by,...,bs} of W,

2. M, the multiplication table of W in terms of the basis,

3. (k1,...,kn) € N™ such that k; is the maximum satisfying Xlk ¢ I for each i,
and

4. NVw, a table of representations of non-vanishing monomials in W; i.e.
for any a = (a1,...,a,) € N if a; < k; for all i, then NV (X%) =
(c1,...,¢n) € R¥ satisfies [X*] =3, ¢;b;.

A basis and multiplication table allow us to calculate the ordinary R-algebra
structure of Weil algebra W. The latter two data, k and NVyy, are essential in
computing the C*°-structure of W. In theory, (4) is unnecessary if one stores a
Grobner basis of I; but since normal form calculation modulo G can take much
time in some case, we don’t store G itself and use the precalculated data NV.
It might be desirable to calculate NV, as lazily as possible. Since it involves
Grobner basis computation it is more desirable to delay it as much as possible
and do in an on-demand manner.

With this definition, one can decide Weilness and compute their settings:

Algorithm 1 (WeilTest)

Input An ideal I CR[X, ..., X,]

Output Returns the Weil settings of W = R[X|/I if it is a Weil algebra;
otherwise No.

Procedure WEILTEST

1 G «— calcGroebnerBasis([)

> If I is not zero-dimensional

3 Return No

« {by,...,by} — Monomial basis of T

s M <« the Multiplication table of W
s For i in 1..n

7 p; <« the monic generator of INR[X|]
s If p; is not a monomial

9 Return No

10 ki — deg(pi)—l
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i NV« {3

2 For «a in {OZENn|Oti§ki \V/ZSE}
3 Clb1+"‘+6gbz — FG

4 NVW(XQ) — (Cl,...7Ce)

s Return (B,M,E,NVW)

Theorem 3. Algorithm 1 terminates and returns expected values.

Proof. Algorithms to decide the zero-dimensionality and calculate their multipli-
cation table is well-known (for details, we refer readers to Cox—Little-O’Shea |1,
Chapter 2]). So the only non-trivial part is nilpotence detection (Lines 6 to
10). But, again, this is just a variation of radical calculation algorithm for zero-
dimensional ideals. Indeed, since each R[X;] is a PID, we have X € I N R[X,]
iff p; | XF, hence p; is a monomial iff X; is nilpotent in W,

Now that we have the basis and multiplication table at hand, we can calculate
the ordinary algebraic operations just by the standard means.

With upper bounds k of powers and representations NV of non-vanishing
monomials, we can now compute the C'°-structure of an arbitrary Weil algebra,
when given a lifting of smooth mapping f to R[X]:

Algorithm 2 (LiftWeil)

Input I C R[X], an ideal where W = R[X]/T is a Weil algebra, R[X](f) :
R[X]™ — R[X], a lifting of a smooth map f : R™ — R to R[X], and
4= (Up,...,Up) € W™,

Output v =W (f)(@) € W, the value of [ at @ given by C*-structure.

Procedure LIFTWEIL

M, E, NVw) «— WEILTEST(/)
gi — (by,...,bg) -u; e RIX] for i <m
Coh =YX — RIX]()@)
— 0
For o with o; < k; Vi
6 vV — v + CQNVW(XO‘)
;7 Return v

b,

~

The termination and validity of Algorithm 2 are clear. One might feel it
problematic that Algorithm 2 requires functions as its input. This can be any
smooth computable functions on the coefficient type. Practically, we expect a
composite function of standard smooth floating-point functions as its argument,
for example, it can be x — sin(x), (z,y) — e%y2, and so on. In the modern
programming language — like Haskell, Rust, LISP, Ruby, etc. — one don’t need
to worry about their representation, as we can already freely write higher-order
functions that take functions or closures as their arguments. Even in the low-
level languages such as C/C++, one can use function pointers or whatever to

pass an arbitrary function to another function.
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Now that we can compute the R-algebraic and C'*°-structure of a Weil algebra
solely from its Weil setting, one can hard-code pre-calculated Weil settings for
known typical Weil algebras, such as the dual number ring or higher infinitesimal
rings of the form R[X]/(X"*1), to reduce computational overheads.

Computing the C*°-Structure of R[X]. So it remains to compute the C'*°-
structure of R[X]. Thanks to Theorem 1, we know the precise definition of
C*-lifting to R[X]:
D, Gl
RIXI() (g1, gm) = 3 S D (F 0 (g1, 90))(0).

aeNn

As noted in Sect. 3, as a C'°°-ring, the formal power series ring is isomorphic
to multivariate Tower-mode AD. It can be implemented in various ways, such
as Lazy Multivariate Tower AD [13], or nested Sparse Tower AD [9, module
Numeric.AD.Rank1.Sparse|. For reference, we include a succinct and efficient
variant mixing these two techniques in Appendix A.

Both Tower-mode AD and formal power series can be represented as a formal
power series. The difference is the interpretation of coefficients in a given series.
On one hand, a coefficient of X in Tower AD is interpreted as the o™ par-
tial differential coefficient D f(a), where a = (g1(0), ..., gm(0)). On the other
hand, in R[X] it is interpreted as %. To avoid the confusion, we adopt the
following convention: Tower-mode AD is represented as a function from mono-
mials X to coefficient R in what follows, whilst R[X] as-is. Note that this is
purely for notational and descriptional distinctions, and does not indicate any
essential difference.

With this distinction, we use the following notation and transformation:

Definition 6. Tower = {f|f:N" — R} denotes the set of all elements of
Tower-mode AD algebra. We denote C*®°-lifting of f : R™ — R to Tower by
Tower(f) : Tower™ — Tower.

A reciprocal factorial transformation RF : Tower — R[X] is defined as

follows:
RF(f)= ) %X“.
a€eNn )

Then, the inverse reciprocal factorial transformation is given by:

RF~! <Z caXa> = MX). al- 4.

aeNn

Algorithm 3 (LiftSeries)

Input f:R™ =, R, a smooth function which admits Tower AD, g1,...,gn €
R[X], formal power series.

Output R[X](f)(g1,-.-,9m) € R[X], C°-lifting to the formal power series
Ting.
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Procedure LIFTSERIES

! QA, — RF!(g)
o f Tower(f)(gl,... m)
. Return RF(f)

4.2 Tensor Product of Weil Algebras

As indicated by Lemma 4, tensor products enable us to compose multiple Weil
algebras into one and use them to compute higher-order multivariate derivatives.
Here, we give a simple procedure to compute Weil settings of the tensor product.

Algorithm 4 (WeilTensor)

Input Weil settings of two Weil algebras Wy, Wy, with {bi,...,bzi} a basis,
(ki ..., k;) an upper bounds and M; a multiplication table for each W;.

Output Weil settings of W1 Qr Wa.

Procedure WEILTENSOR

1 (b1, bee,) — CONVOL(51,52)

2 M «— {}

s For ({bp,bp}, (c1,....cq)) in M,

¢« For ({by,b}}, (d,...,ds,)) in M

; M({bLb2, bLb%}) «— CONVOL(E, d)
s NVw,gw, «— {3

7 M (Xa, (Cl,...,Cgl)) Q NVW1

: For (Y?, (di,...,ds,)) in NVyy,
5 NV, ew, (X2Y?) «— ConvoL(E, d)
o Return (b, M, (K, k), NV, ow,)

Here, CONVOL is a convolution of two sequences:

Procedure CONVOL((c1, ..., ¢e ), (d1, ..., de,))
v For i in .l x £y)

2 j Léj; k «— ¢ mod {

3 a; <— dek

+ Return (ai,...,ap0,)

The validity proof is routine work.

5 Examples

We have implemented the algorithms introduced in the previous section on top
of two libraries: computational-algebra package [4,5] and ad package [9]. The
code is available on GitHub [6].
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5.1 Higher-Order Derivatives via Dual Numbers and Higher
Infinitesimals

As indicated by Theorem 2 and Lemma 2, to compute higher-order derivatives of
univariate functions, we can use tensor products of Dual numbers or higher-order
infinitesimals.

Let us first compute higher-order derivatives of sin(z) up to 3. First, Let us
use a tensor product of dual numbers:

1 d1, d2, d3 :: Floating a => Weil (D1 |x| D1 |*| D1) a
2 [d1, d2, d3] = map di [0..]

Here, represents the type of Weil algebra with its setting given
in(w), the dual number ideal I = (X?), and the tensor product

operator. Each d; corresponds to " infinitesimal.
Next, we calculate higher-order differential coefficients at * = & up to the
third order:

>>> (sin (pi/6), cos (pi/6), -sin (pi/6), -cos (pi/6))
( 0.49999999999999994, 0.8660254037844387, -0.49999999999999994,
-0.8660254037844387)

>>> sin (pi/6 + do + d1 + d2)

-0.8660254037844387 d(0) d(1) d(2) - 0.49999999999999994 d(@) d(1)
- 0.49999999999999994 d(0) d(2) - 0.49999999999999994 d(1) d(2)
+ 0.8660254037844387 d(0) + 0.8660254037844387 d(1)

+ 0.8660254037844387 d(2) + 0.49999999999999994

It is easy to see that terms of degree i have the coefficients sin( (7 /6). Since
our implementation is polymorphic, if we apply the same function to the type
for symbolic computation, say , we can reconstruct symbolic differ-
entiation and check that the result is indeed correct symbolically:

>>> x :: Weil w Symbolic

nyn

>>> x = injectCoeff (var "x")

>>> normalise <$> sin (x + d@+d1+d2)

((=1.0) = cos x) d(0) d(1) d(2) + (= (sin x)) d(@) d(1)
+ (= (sin x)) d(0) d(2) + (- (sin x)) d(1) d(2)
+ (cos x) d(0) + (cos x) d(1) + (cos x) d(2) + (sin x)

As stated before, the tensor-of-duals approach blows the number of terms
exponentially. Let us see how higher infinitesimal works.

1 eps :: Floating a => Weil (DOrder 4) a
2 eps = di 0
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Here, corresponds to an algebra R[X]/(X™). Note that, accord-

ing to Lemma 2, to calculate an n*® derivative we have to use R[X]/(X"*1).

>>> (sin (pi/6), cos (pi/6), -sin (pi/6)/2, -cos (pi/6)/6)
( ©0.49999999999999994, 0.8660254037844387,
-0.24999999999999997, -0.14433756729740646)

>>> sin (pi/6 + eps)
-0.14433756729740646 d(0)"3 - 0.24999999999999997 d(0)"2
+ 0.8660254037844387 d(0Q) + ©.49999999999999994

>>> normalise <$> sin (x + eps)
((-1.0) * cos x / 6.0) d(@)"3 + ((=(sin x)) / 2.0) d(0)"2
+ (cos x) d(@) + (sin x)

Note that by Lemma 2, each coeflicient is not directly a differential coefficient,
*)
but divided by k!, that is f(z +¢) = 3,y Tri2eh.
Let us see how tensor products of higher Weil algebras can be used to mul-
tivariate higher-order partial derivatives. Suppose we want to calculate partial
derivatives of f(z,y) = e**siny up to (2,1)* order.

eps1, eps2 :: Weil (DOrder 3 |*| DOrder 2) a
(eps1, eps2) = (di 0, di 1)

>>> f (2 + epsl) (pi/6 + eps2)

94.5667698566742 d(@)"2 d(1) + 54.59815003314423 d(0) "2
+ 94.5667698566742 d(0) d(1) + 54.59815003314423 d(0)
+ 47.2833849283371 d(1) + 27.299075016572115

>>> normalise <$> f (x + epsl) (y + eps2)

(4.0 x exp (2.0 * x) / 2.0 * cos y) d(@)"2 d(1)

(4.0 = exp (2.0 * x) / 2.0 x sin y) d(@)"2

(2.0 x exp (2.0 * x) * cos y) d(0) d(1)

(2.0 x exp (2.0 * x) * sin y) d(0)

(exp (2.0 * x) * cos y) d(1) + (exp (2.0 * x) * sin y)

+ + + 4+

One can see that the coefficient of d(0)'d(1)? corresponds exactly to the value
D) f(z,y)/ilj!. In this way, we can freely compose multiple Weil algebra to
calculate various partial derivatives modularly.

5.2 Computation in General Weil Algebra

All examples so far were about the predefined, specific form of a Weil algebra.
Here, we demonstrate that we can determine whether the given ideal defines



186 H. Ishii

WEeil algebras with Algorithm 1, and do some actual calculation in arbitrary
WEeil algebra.
First, we see that WEILTEST rejects invalid ideals:

-- RIX,Y]/(X"3 - Y), not zero-dimensional
>>> isWeil (tolIdeal [x " 3 -y :: Q[x,yJll)
Nothing

-- R[X1/(X"2 - 1), which is zero-dimensional but not Weil
>>> isWeil (tolIdeal [x " 2 - 1 :: Q[xJD)
Nothing

Next, we try to calculate in arbitrary chosen Weil algebra, W = Rz, y]/ (2% —
y3,y*), whose corresponding meaning in AD is unclear but is a Weil algebra as
a matter of fact.

i :: Ideal (Rationallx,y])
i = toldeal [x "2 -y "~ 3,y " 4]

>>> isWeil i
Just WeilSettings

{weilBasis =[[0,0],[0,1]1, ..., [3,0]1]

, honZeroVarMaxPowers = [3,3]

, weilMonomDic =

[([0,2],[0,0,0,1,0,0,0,01), ..., ([1,31,00,0,0,0,0,0,0,11)]

, table = [((2,0),1),((1,3),d(®)"2), ..., ((3,4),d(0)"3)]

}

Let us see what will happen evaluating sin(a 4+ dg + d;), where dy = [2]7,
di = [ylr?

>>> withWeil i (sin (pi/4 + di @ + di 1))
-2.7755575615628914e-17 d(@)"3 - ... + 0.7071067811865476 d(0)
+ 0.7071067811865476 d(1) + 0.7071067811865475

>>> withWeil i (normalise <$> sin (x + di @ + di 1))
((-1.0) * (=(sin x)) / 6.0 + (-1.0) *x cos x / 6.0) d(0)"3
+ ... + (cos x) d(@) + (cos x) d(1) + (sin x)

Carefully analysing each output, one can see that the output coincides with
what is given by Theorem 1 and Lemma 1.

6 Discussions and Conclusions

We have illustrated the connection between automatic differentiation (AD) and
C*°-rings, especially Weil algebras. Methods of AD can be viewed as techniques
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to calculate partial coefficients simultaneously by partially implementing the
C-lifting operator for certain C'*°-ring. Especially, Forward-mode AD com-
putes the C*°-structure of the dual number ring R[d] = R[X]/X? and Tower-
mode computes that of the formal power series ring R[X].

The dual number ring R[d] is an archetypical example of Weil algebra, which
formalises the real line with nilpotent infinitesimals. We generalised this view to
arbitrary Weil algebras beyond dual numbers, enabling us to compute higher-
order derivatives efficiently and succinctly. We gave general algorithms to com-
pute the C*°-structure of Weil algebras. With tensor products, one can easily
compose (univariate) higher-order AD corresponding to Weil algebras into mul-
tivariate ones.

In this last section, we briefly discuss the possible applications other than
AD, related works and future works.

6.1 Possible Applications and Related Works

Beside the reformulation of AD, we can argue that our methods can be used for
a pedagogical purpose in teaching Smooth Infinitesimal Analysis (STA) and Syn-
thetic Differential Geometry (SDG). In those fields, arguing in the appropriate
intuitionistic topos, various infinitesimal spaces corresponding to Weil algebra
is used to build a theory, expressed by the following generalised Kock-Lawvere
aziom [11]:

For any Weil algebra W, the following evaluation map gives an isomor-
phism:

ev (W — RSP W

a Af.f(a)

This is another way to state the fact that Weil algebras are C'°°-rings, viewed
within some topoi. For dual numbers, their meaning is clear: it just couples a
value and their (first-order) differential coefficient. However, solely from Kock-
Lawvere axiom, it is unclear what the result is in general cases. With the algo-
rithms we have proposed, students can use computers to calculate the map given
by the axiom. In STA and SDG, there are plenty of uses of generalised infinites-
imal spaces such as Rlz1,...,z,]/(z;iz;li, j <n) or R[z]/(2™). Hence, concrete
examples for these Weil algebras can help to understand the theory.

In the context of SDG, applying techniques in computer algebra to Weil
algebras has attained only little interest. One such example is Nishimura—
Osoekawa [12]: they apply zero-dimensional ideal algorithms to compute the
generating relation of limits of Weil algebras. However, their purpose is to use
computer algebra to ease heavy calculations needed to develop the theory of
SDG, and hence they are not interested in computing the C°°-structure of
Weil algebras.

Implementing AD in a functional setting has a long history. See, for example,
Elliott [2] for explanation and ad package by Kmett [9] for actual implementation.



188 H. Ishii

In ad package, so-called Skolem trick, or RankN trick is applied to distinguish
multiple directional derivatives. We argue that our method pursues other direc-
tion of formulations; we treat higher infinitesimals as first-class citizens, enabling
us to treat higher-order AD in a more modular and composable manner.

6.2 Future Works

In SDG, C*-ring and higher infinitesimals are used as fundamental building
blocks to formulate manifolds, vector fields, differential forms, and so on. Hence,
if one can extend our method to treat a general C*>°-ring C*°(M) of real-valued
smooth functions on M, it can open up a new door to formulate differential
geometry on a computer. With such a formulation, we can define differential-
geometric objects in more synthetic manner using nilpotent infinitesimals — for
example, one can define the tangent space T,, M at x € M on some manifold M to
be the collection of f : D — M with f(0) = x, where D is the set of nilpotents of
order two. Another virtue of such system is that we can treat infinitesimal spaces
(derived from Weil algebras), manifolds, functions spaces, and vector spaces
uniformly — they are all living in the same category. See Moerdijk—Reyes [11]
for more theoretical details. One major obstacle in this direction is that, even
if C*°(M) is finitely presented as a C*°-ring, it is NOT finitely generated as an
R-algebra, but 2%°-generated, by its very nature. Hence, it seems impossible to
compute C*° (M) in purely symbolic and direct way; we need some workarounds
or distinct formulations to overcome such obstacles.

As for connections with AD, there is also plenty of room for further explo-
ration. There are so many “modes” other than Forward- and Tower-modes in
AD: for examples, Reverse, Mixed, etc. amongst others. From the point of view
of Weil algebras, they are just implementation details. But such details matter
much when one takes the efficiency seriously. It might be desirable to extend
our formulation to handle such differences in implementation method. For such
direction, Elliot [3] proposes the categorical formulation. Exploring how that
approach fits with our algebraic framework could be interesting future work,
and perhaps also shed a light on the way to realise the aforementioned compu-
tational SDG.

Acknowledgments. The author is grateful to Prof. Akira Terui, for encouraging to
write this paper and many helpful feedbacks, and to anonymous reviewers for giving
constructive comments.

A Succinct Multivariate Lazy Tower AD

For completeness, we include the referential implementation of the Tower-mode
AD in Haskell, which can be used in Algorithm 2. The method presented here is a
mixture of Lazy Multivariate Tower [13] and nested Sparse Tower [9]. For details,
we refer readers to the related paper by the author in RIMS Kékytroku [7].
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The idea is simple: we represent each partial derivative as a path in a tree of
finite width and infinite heights. A path goes down if the function is differenti-
ated by the 0'" variable. It goes right if there will be no further differentiation
w.r.t. 0" variable, but differentiations w.r.t. remaining variable can take place.
This intuition is depicted by the following illustration of the ternary case:

This can be seen as a special kind of infinite trie (or prefix-tree) of alphabets
0z,, with available letter eventually decreasing.
This can be implemented by a (co-)inductive type as follows:

1 data STower n a where

2 ZS :: !a -> STower 0 a
3 SS :: !la -> STower (n + 1) a -> STower n a
4 -> STower (n + 1) a

A tree can have an infinite height. Since Haskell is a lazy language, this won’t
eat up the memory and only necessary information will be gradually allocated.
Since making everything lazy can introduce a huge space leak, we force each
coefficient @ when their corresponding data constructors are reduced to weak

head normal form, as expressed by field strictness annotation .
Then a lifting operation for univariate function is given by:

1 1iftSTower :: forall c n a.
2 (KnownNat n, c a, forall x k. ¢ x => ¢ (STower k x) ) =>
3 (forall x. ¢ x => x => x) —->

4 -- " Function
5 (forall x. ¢ x => x => x) —->
6 -- " its first-order derivative

- STower n a ->

s STower n a

o liftSTower f df (ZS a) = ZS (f a)

10 1liftSTower f df x@(SS a da dus)

11 =SS (f a) (da = df x) (liftSTower @c f df dus)

Here, we use type-level constraint to represent to a subclass of smooth

functions, e.g. =| Floating | for elementary functions. Constraint of form

Vak. ¢ x => ¢ (STower k z) is an example of so-called Quantified Constraints.
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This requires to be implemented for any succinct Tower AD, provided
that their coefficient type, say , is also an instance of . This constraint
is used recursively when one implements an actual implementation of instance

[ c (STower n a) ) For example, | Floating | instance (for elementary floating

point operations) can be written as follows:

1 instance Floating a => Floating (STower n a) where
2 sin = liftSTower @Floating sin cos

3 cos = liftSTower @Floating cos (negate . sin)

4 exp = liftSTower @Floating exp exp

5

In this way, we can implement Tower AD for a class of smooth function closed
under differentiation, just by specifying an original and their first derivatives.
More general n-ary case of lifting operator is obtained in just the same way:

1 LiftNAry :: forall ¢ n a m.
( ¢ a, forall x k. (KnownNat k, ¢ x) => c¢ (STower k x) ) =>

N

3 -- | f, an m-ary smooth function

4+ (forall x. ¢ x => Vec m x -> x) —>
s -— | partial derivatives of f,

6 -- wrt. i-th variable in the i-th.

7 Vec m (SmoothFun ¢ m) ->

s Vec m (STower n a) ->

o STower n a

10 1iftNAry f _ Nil = constSS $ f Nil
11 LiftNAry f dfs xss =

12 case sing @1 of

13 Zero -> ZS (f $ constTerm <$> xss)

14 Succ (k :: SNat k) —->

15 SS (f $ constTerm <$> xss)

16 ( sum

17 $ SV.zipWithSame

18 (\fi gi -> topDiffed gi * runSmooth fi xss)
19 dfs xss

20 )

21 (liftNAry @c f dfs $ diffOther <$> xss)

22
23 diffOther :: STower (n + 1) a -> STower n a
24 diffOther (SS _ _ dus) = dus
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Abstract. We continue investigations on the Frobenius norm real stabil-
ity radius computation started in the previous publication by the authors
(LNCS, vol. 12291 (2020)). With the use of the elimination of variables
procedure we reduce the problem to the univariate equation solving. The
structure of the destabilizing perturbation matrix is also discussed as well
as cases of symmetric and orthogonal matrices where the stability radius
can be explicitly expressed via the matrix eigenvalues. Several examples
are presented.

Keywords: Distance to instability - Stability radius - Real
destabilizing perturbation - Frobenius norm

1 Introduction

Matrix A € R™*" is called stable (Routh — Hurwitz stable) if all its eigen-
values are situated in the open left half plane of the complex plane. For a stable
matrix A, some perturbation E € R™*™ may lead to that eigenvalues of A + FE
cross the imaginary axis, i.e., to loss of stability. Given some norm || - || in R™*"
the smallest perturbation E that makes A + E unstable is called the destabi-
lizing real perturbation. It is connected with the notion of the distance to
instability (stability radius) under real perturbations that is formally
defined as

Br(A) = min{||E|| [n(A+ E) > 0,E € R™"}. (1)

Here 7(-) denotes the spectral abscissa of the matrix, i.e., the maximal real
part of its eigenvalues.

The present paper is devoted to the choice of Frobenius norm in (1), and
thereby it is an extension of the investigation by the authors started in [10,11].
It should be mentioned that while the 2-norm variant of the problem and the
application of pseudospectrum to its solution have been explored intensively
[2,3,7,12] including numerical computations of spectral norm of a matrix [13],
there are just a few studies [1,6,9] on the Frobenius norm counterpart. The
treatment of the latter is considered as far more complex than the former due
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to the fundamental difference between the spectral and Frobenius norms. We
refer to the paper [11] for the discussion of the practical applications of the
stated problem and for the related references. The major difficulty in utilization
of numerical procedures for estimation of (1) is that none of them is able to
guarantee the convergence to the global minimum of the distance function. As
an alternative to this approach, we attack the problem with the combination of
symbolical and numerical methods.

It is known that the set of stable matrices in R™*" is bounded by two man-
ifolds, namely the one consisting of singular matrices and the other containing
the matrices with a pair of eigenvalues of the opposite signs. Both boundaries
are algebraic manifolds. The distance from the matrix A to the manifold of sin-
gular matrices is estimated via the least singular value of A. More difficult is
the treatment of the second alternative that is in the focus of the present paper.
In Sect. 3, the so-called distance equation [11,14] is constructed, i.e., the uni-
variate equation whose zero set contains all the critical values of the squared
distance function. We also detail the structures of the nearest matrix B, and
the corresponding matrix of the smallest perturbation E, such that B, = A+ F,.
The result is presented on the feasibility of simultaneous quasi-triangular Schur
decomposition for the matrices B, and F,.

It is utilized in Sect. 4 and in Sect. 5 for the classes of stable matrices where
the distance to instability Or(A) can be explicitly expressed via the eigenvalues
of A. These happen to be symmetric and orthogonal matrices.

Remark. All the numerical computations were performed in CAS Maple 15.0
(LinearAlgebra package and functions discrim, and resultant). We present
the results of the approximate computations with the 10~ accuracy.

2 Algebraic Preliminaries
Let M = [mjy|},—; € R"™" be an arbitrary matrix and

f(z)=det(zl = M) =2"+a12" ' +...+a, €R" (2)
be its characteristic polynomial. Find the real and imaginary part of f(x + iy)

({z,y} CR):
f(2) = f(z +iy) = D(x,y?) + iy¥(z,1°),

where
B(a,¥) = f() — @Y + GO @Y -
U(z,Y)=f(z)— %f(g)(m)Y + éf(‘:’) (x)Y?—....

Compute the resultant of polynomials ¢(0,Y) and ¥(0,Y) in terms of the coef-
ficients of (2):
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= Ry(an —ap_2Y + Cln_4Y2 + .,y —ap_3Y + an_5Y2 + ... ) (3)

Polynomial f(z) possesses a root with the zero real part iff either a, = 0 or
K(f) = 0. This results in the following statement [11].

Theorem 1. Equations
det M =0 (4)
and
K(f) = Ry ((0,Y),¥(0,Y)) = 0 (5)

define implicit manifolds in R™ that compose the boundary for the domain of
stability, i.c., the domain in the matriz space R™*"

P = {vec (M) € R"'|Mis stable}. (6)

Here vec(-) stands for the vectorization of the matriz:
vec(M) = [mu,mgl, ey M1, M2y - o s, M2y o o, Mn, - ..,m,m]T

Therefore, the distance to instability from a stable matrix A is computed as
the smallest of the distances to the two algebraic manifolds in R™. The Euclidean
distance to the set of singular matrices equals the minimal singular value oy (A)
of the matrix A. If Bg(A) = omin(A), then the destabilizing perturbation is given
by the rank-one matrix

E,=-AV,V, (7)
where V, stands for the normalized right singular-vector of A corresponding
to ijn(A).

More complicated is the problem of distance evaluation from A to the man-
ifold (5) corresponding to the matrices with a pair of eigenvalues of opposite
signs (i.e., either £ or +if for {\, 5} C R\ {0}). First of all, the function (3)
treated w.r.t. the entries of the matrix M, is not convex. Indeed, for n = 3, the
characteristic polynomial of the Hessian of this function is as follows

3 3
2% —da,2® — 3Zm?k+7af 24 Zm?k+af+a2 [K(f)) =
j,k=1 J,k=1
3
—8[K(f)]"-

It cannot possess all its (real) zeros of the same sign, and thus, the Hessian is
not a sign definite matrix. Therefore, one may expect that any gradient-based
numerical procedure applied for searching the minimum of the distance function
related to the stated problem will meet the traditional trouble of recognizing the
local minima.

The general problem of finding the Euclidean distance in a multidimensional
space from a point to an implicitly defined algebraic manifold can be solved via
the construction of the so-called distance equation [11,14], i.e., the univariate
equation whose zero set contains all the critical values of the squared distance
function. In the next section, we develop an approach for the construction of
this equation for the case of the manifold (5).
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3 Distance to the Manifold (5)

The starting point in this construction is the following result [15].

Theorem 2. Distance from a stable matriz A € R™*"™ to the manifold (5) equals

mm (8)
where
min = i AX|P+||AY]]? — (X TAY)? — (Y TAX)? 9
z {X}yﬁw{ll I+ [AY]]" = ( )7 = ( )*} (9)
subject to the constraints
X[ =1[Y]|=1, XY =0, (10)
(XTAY)(YTAX) <o.

All vector norms here are 2-norms.

If Or(A) equals the value (8) that is attained at the columns X, and Y, then
the destabilizing perturbation is computed by the formula

E, = (aX.—AY,)Y,) +(bY,—AX,) X, wherea := X AY,,b:=Y, AX,. (11)
It is known [5] that the matrix (11) has rank 2.

Theorem 3 [11]. Ifa # —b, then the matriz (11) has a unique nonzero eigen-
value
A= -XJAX, = -V, Ay, (12)

of the multiplicity 2.

In what follows, we will consider the most general case a # —b.

Constructive computation of (8) is a nontrivial task. Utilization of numerical
optimization procedures results in convergence to several local minima (including
those satisfying inappropriate condition a + b = 0). In [11], the approach was
proposed reducing the problem to that of finding an unconstrained minimum of
an appropriate rational function; unfortunately, the approach is applicable only
for the particular case of the third order matrices.

To treat the general case, we convert the constrained optimization prob-
lem (9)—(10) to a new one with lesser number of variables and constraints. Denote
the objective function in (9) by F(X,Y), and consider the Lagrange function

LX,Y,m,70,0) = F(X,)Y) = (XX —1) = (Y'Y = 1) — (X Y)

with the Lagrange multipliers 71,7 and pu. Its derivatives with respect to X
and Y yield the system

2ATAX —2(XTAY)AY —2(YTAX)ATY —2n X —uY =0,  (13)
2ATAY —2(YTAX)AX —2(XTAY)ATX —21Y —puX =0.  (14)
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Together with conditions (10), this algebraic system contains 2n + 3 variables in
a nonlinear manner. We will make some manipulations aiming at reducing twice
the number of these variables.

Equation (13) together with two of conditions (10) are those providing the
Lagrange equations for the constrained optimization problem

min F(X,Y)st. X'X=1, X'Y =0.
XeRn

Since F(X,Y) is a quadratic function w.r.t. X:
F(X,Y)=XT(Y)X +b(Y),
where
AY):=ATA—AYYTAT —ATYYTA, b(Y):=Y AT AY,

one can apply the traditional method of finding its critical values [4]. First,
resolve (13) w.r.t. X

X:%@-nn4y (15)
Substitute this into X T X = 1:
M2
—ZYWm—nDQY—lzo (16)
and into XY = 0:
gYWm—ﬁn*qu (17)

Next, introduce a new variable z responsible for the critical values of F':
z2—F(X,)Y)=0

and substitute here (15). Skipping some intermediate computations, one
arrives at

2
(Y, 1, p4,2) =2 — %YT(QL —nD)7'Y =7 —b(Y) =0. (18)

Next step consists of the elimination of the parameters 7y and p from (16)—(18).
It can be readily verified that 0®/0u coincides, up to a sign, with the left-hand
side of (17). One may expect that 0®/9m coincides with the left-hand side of
(16). This is not the fact:

0P /011 + {left-hand side of (16)} = —2. (19)

Introduce the functions

= 91—7'1[ /L/2Y
Q(Y7717M7’Z) = T )
w/2Y " z—1 —b(Y) (n+1)x (n41)

(m) == det(A — 7 1).
(20)
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Due to Schur complement formula, one has
b =d/F(n). (21)

Replace @ by @. From (18) deduce

®=0. (22)

From (17) one gets that
0P/opu = 0. (23)
Under condition (22), the following relation is valid
00 _#F-§,2_ 2,
on 32 3
In view of (19), replace (16) by

P +2F=0. (24)

Finally, eliminate 71 and p from (22), (23) and (24) (elimination of 4 is simplified
by the fact that the polynomial @ is a quadratic one w.r.t. this parameter):

YTA-ATY +7 —2=0.

The resulting equation
G(z,Y)=0 (25)

is an algebraic one w.r.t. its variables.
Conjecture 1. One has

deg, G(z,Y)=n—1, degy G(z,Y) =2n,
and the coefficient of 2"~ ' equals YTY .

Equation (25) represents z as an implicit function of Y. We need to find the
minimum of this function subject to the constraint Y 'Y = 1. This can be done

via direct elimination of either of variables y1, 2, ..., Yn, say y1, from the equa-
tions (25) and Y'Y = 1 and further computation of the (absolute) minimum of
the implicitly defined function of the variables yso, ..., %,. The elimination pro-

cedure for these variables consists of the successive resultant computations and
results, on expelling some extraneous factors, in the distance equation F(z) = 0.

Conjecture 2. Generically, one has

deg F(z) = (Z)

while the number of real zeros of F(z) is > (3).
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Real zeros of F(z) = 0 are the critical values of the squared distance function.
In all the examples we have computed, the true distance is provided by the square
root of the least positive zero of this equation!.

Ezxample 1. For the upper triangular matrix

—5 3 —4
A=| o-7 8],
0 0-11

the distance equation to the manifold (5) is as follows:
F(z) := 2761712704 2° — 8117525391152 2% + 9928661199130545 27
—6661449509594611833 2 + 2725873911089976326856 2°
—710084397702478808373248 z* + 117904392917228522430951424 23
—11941405917828362824496906240 2 + 653700309832952667 775747751936 2
—13855088524292326555552906739712 = 0
with real zeros
Zmin ~ 49.502398, zp ~ 178.803874, z3 ~ 207.566503.

Distance to (5) equals \/Zmin ~ 7.035794, and it is provided by the perturbation

matrix
4.346976 0.523508 —0.557899

E, =~ 0.705685 3.592395 1.164459
—1.972167 3.053693 1.430776

Spectrum of the matrix B, = A + E, is = {—13.629850, £1.273346i}.
The perturbation matrix corresponding to the zero z5 of the distance equa-
tion is
3.435003 —5.117729 —0.980014
Ey ~ | —3.957240 6.004731 —0.650159
—0.242289 —0.207877 9.360120

Spectrum of the matrix By = A + E is = {—4.200144, +1.517560}.

Ezample 2. For the matrix

-1-4-1 0
2-3 2 0

A= 4 1-5 —-0.02]"
0 0 01-1

! For the general problem of distance to arbitrary algebraic manifold, this is not always
the case.
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the distance to the manifold (5) equals \/Zmin where zpmin, =~ 10.404067. Vectors
providing this value, as the solution to the constrained optimization problem
(9)—(10), are as follows?:

—0.262202 0.719155

Y.~ —0.089560 V.~ 0.148735
* —0.242204 | °* 0.571599
0.929820 0.366015

The perturbation matrix is determined via (11):

1.550382 0.346249 1.256766 0.018654
—1.735702 —0.386136 —1.405552 —0.066067
—0.125734 —0.027972 —0.101818 —0.004775
—0.061674 —0.048946 —0.083641 1.057733

FE, ~

The only nonzero eigenvalue (12) of this matrix is A, ~ 1.060080. The spectrum
of the corresponding nearest to A matrix B, = A+ FE, is

1~ —5.937509, po ~ —1.942329, p3 4 = £0.066088 i.

Just for the sake of curiosity, let us find the real Schur decomposition [8] for the
matrices B, and FE,. The orthogonal matrix

0.326926 —0.579063 —0.541040 0.514858
—0.403027 0.627108 —0.529829 0.404454
—0.029186 0.045432 0.652787 0.755614

0.854304 0.518994 —0.020604 0.019594

P~

furnishes the lower quasi-triangular Schur decomposition for Bi:

0 0.159482| 0 0
PTB.P~ —0.027386 0 0 0

—0.974903 1.383580| w1 0
2.170730 —3.675229|—2.733014  po

Eigenvalues of the upper left-corner block of this matrix

0 0.159482
—0.027386 0

equal p3 4.
Surprisingly, it turns out that the matrix P provides also the upper quasi-
triangular Schur decomposition for F,:

A« 0 —0.172898 1.393130

T N 0 A« 0.251668 —2.474365
P E.P~ 0 0 O 0
0 0 O 0

O

2 Due to symmetry of the problem w.r.t. the entries of X and Y, the optimal solution
is evaluated up to a sign.
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The discovered property is confirmed by the following result.

Theorem 4. Let A € R™™ ™ be a stable matriz, B, and E, be the nearest to
A matriz in the manifold (5) and the destabilizing perturbation correspondingly:
B, = A+ E,. There exists an orthogonal matrixz P € R™ ™ such that the matrixz
PTE,P contains only two nonzero rows while the matriz P B, P is of the lower
quasi-triangular form.

Proof. Let the orthogonal matrix P furnish the lower quasi-triangular Schur
decomposition for B,:

b1 b2 0...0
PTB*P: bo1 bos 0 ...0 ,
B

where B € R("=2)%" ig the lower quasi-triangular matrix while the matrix

[Ell §12 ] (26)

b21 b22

has its eigenvalues of the opposite signs, i.e., 311 +522 =0.
It turns out that the matrix P provides also the upper quasi-triangular Schur
decomposition for F,:

)\* 0 €13 €1n
PTE,P=|0 Moews ... eom|, (27)
©(n—2)><n

where ), is defined by (12). Indeed, represent PTE, P as a stack matrix:

PTE.P= [El} where E; € R E, € R(*~2)xn,
2
Then
E 611 512 0 ...0
PTAP-F{@;]:‘B where B := [ba1 by 0 ...0 (28)
B-E,
and, consequently,
A+ P [%1] PT — PBPT.

Matrix B still lies in the manifold (5); so does the matrix PBPT. If E; # O,
then the latter is closer to A than B, since

E
HP { 1] PTl = ||E1|| < HE1||2 + ||E2||2 _ ||E*||

O
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This contradicts the assumption. Therefore, the matrix P E,P contains only
two nonzero rows, namely those composing the matrix E;.

Furthermore, the matrix E, has a single real eigenvalue A\, of the multiplic-
ity 2 (Theorem 3). Consider the second order submatrix located in the upper-left

corner of PTE, P:
[611 612] ) (29)

€21 €22
This submatrix has the double eigenvalue A, and its norm is the minimal pos-
sible. Hence, it should have the following form

A 0
0 M|’

Indeed, let us find the minimum of the norm of (29) under the constraints
(e11 — €22)® +dergean = 0, €11 + e = 2,

by the Lagrange multiplier method. We have the Lagrangian function
2

F(e11, €29, €19, €91, p1,v) = Y €5+ p((e11 —e)” +4erzear) +v(en +e22—2\),
Jk=1

where p and v are the Lagrange multipliers. We obtain the system of equations:

e11 + pern —ex) +v =0,
ez — p(enn —ex) +v =0,
e12 + 2ues; =0,

e21 + 2peis =0,

(€11 — e22)? +4ejges =0,
e11 +e2 — 2\ =0

whence it follows that

e12(1 —4p?) =0,
ea1 (1 —4p?) = 0,
e = 2\ — eq1,
V= =M\,
(e11 — M) (1 +2p) =0,
(e11 — Ae)? + er2e1 = 0.

— If p# £1/2, then a1 = ea1 = 0 and e17 = eax = ..
— If 4 = 1/2, then e;a = —ea, after that by the fifth equation, e;; = As, by

the third equation ess = A, and by the last equation, e;5 = —eq; = 0.
—If 4 = —1/2, then e;2 = eg; and by the last equation, e;; = A, and
e12 = 0. O

We next investigate some classes of matrices where the distance to instability
can be directly expressed via the eigenvalues.
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4 Symmetric Matrix

Theorem 5. Let A1, s, ..., A\, be the eigenvalues of a stable symmetric matriz
A arranged in descending order:

An <A1 <L < A <A <0
The distance from A to the manifold (5) equals

[A1 +)\2|/\/§.

Proof. For a symmetric matrix A, the nearest in the manifold (5) matrix B,
possesses two real eigenvalues of the opposite signs. Indeed, in this case, the
block (26) becomes symmetric: bja = bey, and its eigenvalues equal +« where
o= \/5%1 +Z§2.

Since orthogonal transformations preserve the lengths of vectors and angles
between them, we can consider our problem for diagonal matrix A; =
diag {\1, A2, ..., An}. Tt is evident that the matrix Fg. = diag {\., A«,0,...,0}
where A\, = —(A1 + A2)/2 is such that the matrix Bg. = Ay + Eg. belongs to
the manifold (5). The distance from A4 to Bg. equals [A; + A2|/v/2. We need
to prove that this matrix Eg. gives us the destabilizing perturbation, i.e., its
Frobenius norm is the smallest. o B

Assume the converse, i.e., there exist matrices Eg., Bg. and P satisfying
Theorem 4 such that the norm of the matrix E,4, that coincides with the norm
of the matrix

b0 T
PTEuP= |b2bn0...00 —pPTAP=|0X, 83 .. &,
]§ ©(n—2)><n
is smaller than ||Eg4||. Consider the matrix A= PTAP = [@;;]7 1. Since
b1 = —bas, one gets A, = —(a11 + @22)/2. Let us estimate this value:

—20, = M (P} +pha) + Aa(Phy + %) + o+ Aa(P2) + 12)
=Xt +p5r - phg) = AP35+ P)

+ X2 (Pl + D3+ -+ Do) = Aa(Ply + P32+ -+ Ph2)
+Aply + Aopdy + A3 (P31 +p3e) + -+ An(Phy + Pa)
=AM+ A+ A= A)p3; + As = A)p3 4+ ...+ (A — M)piy
+ (M = A2)pty + (A3 = A2)piy + oo+ (An — A2)pin
<A A A2+ (A2 = A)psy + (A2 = A)p3y + -+ (A2 — A)piy
+ (A1 = A2)pTa + (A3 — A2)p3a + - .-+ (A — A2)pio
=M+ A2+ [(A2 = A1) — (A2 = A)pdy — (A2 = A1)piy]

+ (A3 = A2)p3s + .o+ (A — A2)p2y < A1+ Ao
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Both values are non-positive, therefore

2> (/\1 +>\2>2

Finally, we obtain _ _

and it is clear that Fy. = diag{\., A\, 0,...,0} provides the destabilizing per-
turbation for A,.

a

Corollary 1. Destabilizing perturbation providing the distance in Theorem 5 is
given as the rank 2 matrix

B, =—-(M1+A2) (PmP[IJ + PD]PQ]) (30)

1

2
where Py and Plg) are the normalized eigenvectors of A corresponding to the
etgenvalues A1 and Ao correspondingly.

Ezample 8. For the matrix

1 —121 -14 34
A=—-| -14-94 20
34 20 —118

with eigenvalues \;y = —9, Ao = —10, A3 = —18, the orthogonal matrix

P=-

N DN

2
—2
1—

N — DN

reduces it to the diagonal form PT AP = diag {\1, A2, \3}. Distance from A to
the manifold (5) equals

1
V2

The corresponding destabilizing matrix is determined by (30)

9+ 10| ~ 13.435028.

95 —38 76
E, = 8 —38 152 38
76 3895

It is of interest to watch how the general form of the distance equation transforms
for this example:

F(2) = (2—729/2)(2 —361/2)(2 —392)(z — 545)* (2 — 1513/2)? (2 — 1145/2)? = 0.

O
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Conjecture 3. Let {)\;}}_; be the spectrum of a symmetric matriz A. Denote

1
{Ajk = 5()\3 + )\k)Q

1§j<k§n}.

Distance equation for A can be represented as

H (z = Aji) - H (2 — (Aji + Ags))* = 0.

1<j<k<n

The second product is extended to all the possible pairs of indices (j, k) and (¢, s)
such that j < k£ <s and j # L,k # s.

Corollary 2. In notation of Theorem 5 and Corollary 1, the distance to instabil-
ity for a stable symmetric matriz A equals |\1| with the destabilizing perturbation
E, = —AlP[l]P[I].

Though this corollary makes the result of Theorem 5 redundant for solving
the problem of distance to instability evaluation for symmetric matrices, it,
nevertheless, might be useful for establishing the upper bound for this distance
for arbitrary matrices.

Theorem 6. Let A € R"™" be a stable matriz. Denote by d(-) the distance to
the manifold (5). One has:

2

d(A) < \/H; (4 - AT)

+d2 <; (A+AT)>.

Proof follows from the fact that the skew-symmetric matrix A— A" is normal
to the symmetric matrix A + AT with respect to the inner product in R™*™
introduced by (A;, As) := trace(A] Ag).

For instance, this theorem yields the estimation d(A) < 5.654250 for the
matrix of Example 2.

5 Orthogonal Matrix

Now we consider how to find the distance to instability for a stable orthogonal
matrix A € R™*"™, We assume that this matrix has at least one pair of non-real
eigenvalues.

Theorem 7. Let cosoj £isina; j € {1,...,k} be the non-real eigenvalues of
an orthogonal matriz A arranged in descending order of their real parts:

cosap <cosap_1 < ...<cosay <O.

(All the other eigenvalues of A, if any, equal (—1)). The distance from A to the
manifold (5) equals v/2| cos o |.
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Proof. First, there exists an orthogonal transformation bringing the matrix A
to the block diagonal form

A ...
(@)

CcoS iy — sin ay

Ay = where Ay := | .
Sinoy  COSQy

},ée{l,...Jg}.

It is evident that the matrix
E;. = diag{—cos a1, —cosaq,0,...,0} (31)

is such that the matrix By, = A ;+ E . belongs to the manifold (5). The distance
from A; to By, equals v/2|cosa;|. We need to prove that this matrix Ej,
provides the destabilizing perturbation, i.e., its Frobenius norm is the smallest.

Assume the converse, i.e., there exist matrices Ej., Bj. and P satisfying
Theorem 4 such that the norm of the matrix F, that coincides with the norm
of the matrix

5115120...0 X*Ogm

5T D 7 ~ ~ gln
PTE;P= |babn0...00 PTA;P=|0 X, & o
]~3 ©(n—2)><n
is smaller than ||E.||. Consider the matrix A= PTA;P = [Ziijmj:y Since

bi1 = —bao, one gets A\, = —(a@11 + @22)/2. Let us estimate this value:
2%, = (P11 4+ p31) cosan + (p3; +piy)cosag + ...+ (Ph_y 1 + Piay) cOs o
+ (p1y + p3a) cos oy + (P3y + pia) cOsag + ... + (p%zfl,Q + ppy) cOs ay
_pi+1,1 — =D —p%+1,2 — = Dho

Add (and subtract) the terms p3; +p3; +...+p5_ 11 +pp; and p3y +pip+... +
p%_m +p2, to the coefficients of cos o to obtain the sums of squares of the first

and the second columns of the matrix P:
—2X, = 2cos a1 + (cos g — cos ay)(pd; + Py + Pl + Do) + - -
+(cosag —cosar)(pF_y 1 +Piy + Pio12 + PRa)
— cos ozl(piJrLl +p%+1,2 +o P2+ p2y) — piHJ - szr])Q — =P -l
=2cosay + (cosan — cosan)(phy +p3y + 3 +Dia) + - -
+ (cosag —cosan)(Py_1 + DRy + DR 1.2 + Pia)

+(—1— cos al)(p%JrLl +Dprot T DR+ Do)
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Since
cosap —cosag < cosap_1—cosay < ... <cosag—cosag <0,—1—cosag <0,
the following inequality holds

—QX* < 2cosaj.

Finally, we obtain _ _
IE ]| > MvV2 > AV2 = || By,

and it is clear that the matrix (31) provides the destabilizing perturbation for A .
O

Corollary 3. Destabilizing perturbation providing the distance in Theorem 7 is
given as
E,=—cosay [%(Pm)%(P[l])T + %(P[l])%(P[l])T] (32)

where R(Pyy) and S(Pyy) are the normalized real and imaginary parts of the
eigenvector of A corresponding to the eigenvalue cosay + isinag.

Matrix (32) is, evidently, symmetric. In view of Theorem 1, the following
result is valid:

Corollary 4. Ifn(-) denotes the spectral abscissa of the matriz, then the stability
radius of the orthogonal matriz A can be evaluated by the formula

_ \/577(*14) Zf -1 g{)‘la"'a)\n}a
Pr(A) = { min{1, vV2n(—A)} otherwise.

Ezample 4. For the matrix

with the eigenvalues \; = —1, A3 = —% + i?, the orthogonal matrix

V2 2 0

1
P=—7 V2-1-v3
6lvz-1 v3
reduces it to the form
-2 0 0
PTAP=-| 0 -13
0—v3 -1
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The distance from A to instability equals 1/4/2 ~ 0.707106. The corresponding
destabilizing matrix is determined by (32)

2-1-1
E.,=—-]1-1 2-1
-1-1 2

Distance equation for the matrix A transforms into
F(z) = (2 —1/2)(z — 15/8)*(2* =32+ 9)(z — 5)* = 0.

O

The results of the present section can evidently be extended to the case of

matrices orthogonally equivalent to the block-diagonal matrices with real blocks
of the types

cos o — sin «
sina  cos o

[A] and r{ }; r>0,cosa <0, <0.

6 Conclusion

We treat the problem of the Frobenius norm real stability radius evaluation in
the framework of symbolic computations, i.e., we look for the reduction of the
problem to univariate algebraic equation solving. Though the obtained results
clear up some issues of the problem, the latter, in its general statement, remains
still open.

As it is mentioned in Introduction, the main problem of exploiting the numer-
ical procedures for finding the distance to instability estimations is that of relia-
bility of the results. The results of the present paper can supply these procedures
with testing samples of matrix families with trustworthy estimations of the dis-
tance to instability value.

Acknowledgments. The authors are grateful to the anonymous referees for valuable
suggestions that helped to improve the quality of the paper.

References

1. Bobylev, N.A., Bulatov, A.V., Diamond, Ph.: Estimates of the real structured
radius of stability of linear dynamic systems. Autom. Remote Control 62, 505-512
(2001)

2. Embree, M., Trefethen, L.N.: Generalizing eigenvalue theorems to pseudospectra
theorems. STAM J. Sci. Comput. 23(2), 583-590 (2002)

3. Freitag, M.A., Spence, A.: A Newton-based method for the calculation of the dis-
tance to instability. Linear Algebra Appl. 435, 3189-3205 (2011)

4. Gantmakher, F.R.: The Theory of Matrices, vol. I, II. Chelsea, New York (1959)

5. Guglielmi, N., Lubich, C.: Low-rank dynamics for computing extremal points of
real pseudospectra. SIAM J. Matrix Anal. Appl. 34, 40-66 (2013)



208

10.

11.

12.

13.

14.

15.

E. Kalinina and A. Uteshev

Guglielmi, N., Manetta, M.: Approximating real stability radii. IMA J. Numer.
Anal. 35(3), 1401-1425 (2014)

Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I: Modelling, State
Space Analysis, Stability and Robustness. Springer, Heidelberg (2005)

Horn, R.A.; Johnson, Ch.: Matrix Analysis, 2nd edn. Cambridge University Press,
New York (2013)

Katewa, V., Pasqualetti, F.: On the real stability radius of sparse systems. Auto-
matica 113, 108685 (2020)

Kalinina, E.A., Smol’kin, Yu.A., Uteshev, A.Yu.: Stability and distance to instabil-
ity for polynomial matrix families. Complex perturbations. Linear Multilin. Alge-
bra. https://doi.org/10.1080/03081087.2020.1759500

Kalinina, E.A., Smol’kin, Y.A., Uteshev, A.Y.: Routh — Hurwitz stability of
a polynomial matrix family. Real perturbations. In: Boulier, F., England, M.,
Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 316—
334. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6-18

Qiu, L., Bernhardsson, B., Rantzer, A., Davison, E.J., Young, P.M., Doyle, J.C.:
A formula for computation of the real stability radius. Automatica 31(6), 879-890
(1995)

Rump, S.M.: Verified bounds for singular values, in particular for the spectral norm
of a matrix and its inverse. BIT Numer. Math. 51(2), 367-384 (2011)

Uteshev, A.Yu., Goncharova, M.V.: Metric problems for algebraic manifolds: ana-
lytical approach. In: Constructive Nonsmooth Analysis and Related Topics — CNSA
2017 Proceedings 7974027 (2017)

Van Loan, C.F.: How near is a stable matrix to an unstable matrix? In: Datta, B.N.,
et al. (eds.) Linear Algebra and Its Role in Systems Theory 1984, Contemporary
Mathematics, vol. 47, pp. 465-478. American Mathematical Society, Providence,
Rhode Island (1985). https://doi.org/10.1090/conm/047


https://doi.org/10.1080/03081087.2020.1759500
https://doi.org/10.1007/978-3-030-60026-6_18
https://doi.org/10.1090/conm/047

®

Check for
updates

Decoupling Multivariate Fractions

Francois Lemaire™) and Adrien Poteaux

Univ. Lille, CNRS, Inria, Centrale Lille, UMR, 9189 CRIStAL, F-59000 Lille, France

{francois.lemaire,adrien.poteaux}@univ-lille.fr

Abstract. We present a new algorithm for computing compact forms
of multivariate fractions. Given a fraction presented as a quotient of
two polynomials, our algorithm builds a tree where internal nodes are
operators, and leaves are fractions depending on pairwise disjoint sets
of variables. The motivation of this work is to obtain compact forms of
fractions, which are more readable and meaningful for the user or the
modeler, and better suited for interval arithmetic.

Keywords: Multivariate fractions - Decoupling - Compact form

1 Introduction

This article presents a new algorithm decouple for computing compact forms
of multivariate fractions. Informally, given a multivariate fraction given as a
quotient P/Q, Algorithm decouple computes a (usually) more compact repre-
sentative of P/Q in the form of a tree where internal nodes are operators +,
x and -+, and where leaves are fractions depending on pairwise disjoint sets of
variables. As a consequence, the fraction P/Q is usually written as a sum, prod-
uct or quotient of expressions which may also contain fractions. As an example,
our algorithm rewrites the fraction

agbiraz + agbi1bs + agas + a1az + a1bs
b1(13 + b1b2 + aso

as

ai

—az—bz

and rewrites the fraction

X (diﬂz -+ dﬁﬂkl -+ diﬂkg + dklk‘g + Vil’ + ‘/Q.T —+ Vlkg + ‘/le)
(kl + J?) (k’z + .17)

as
V1£L’ VQCU

ki+x ko+z

Our algorithm also works with polynomials, and in that case the expressions

returned are free of quotients. For example, our algorithm rewrites ab + ax +

br + cd + cx + dx + 222 as (z +b) (v + a) + (v + ¢) (z + d).

© Springer Nature Switzerland AG 2021
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This work was mainly motivated by the following reasons. A compact expres-
sion is usually easier to read and understand for a user /modeler. Moreover, if the
variables appear in the least places (ideally only once), the interval arithmetic
should yield sharper results.

Computer algebra software are usually focused on polynomials rather than
fractions. Extracting the numerator of a fraction can produce some expression
swell, especially if the fraction is given as a sum of different fractions with differ-
ent denominators. When fractions are reobtained after applying a polynomial-
based method, our algorithm can help to recover different fractions with different
denominators again.

In order to decompose a fraction into several terms, our method uses a decou-
pling technique on the variables. Roughly speaking, as the term decoupling sug-
gests, our method tries to split a fraction into different terms involving disjoint
sets of variables. As a consequence, our method does nothing on a univariate
fraction, even if the fraction can be written in a compact way using nested frac-
tions.

Simplification of multivariate fractions has already been considered. The
Leinartas decomposition is presented in [7] (see [8, Theorem 2.1] for an English
presentation). It decomposes a fraction into a sum of fractions, using computa-
tions on the varieties associated to the irreducible factors of the fraction denomi-
nator. Also, [9] presents a partial decomposition for multivariate fractions, based
on successive univariate partial decompositions. In both cases, multivariate frac-
tions are rewritten in a more compact way, as a sum of several fractions (thus
nested fractions are never produced).

Our method does not work the same way, and produces a different output.

Our method can produce nested fractions such as ag + ——=z'—- mentioned

—agz—by
earlier in the introduction. However, our method does no simplification on frac-
tions which cannot be decoupled. For example, our algorithm performs no sim-

plification on the fraction F = 2Pytey'teytety gaken from [8, Example 2.5],

Ty ey t1)
whereas [7,8] computes F = -l + ZF, and [9] computes F = 1 + 15 + 1.

It is also worth mentioning [10] which provides “Ten commandments” around
expression simplifications, especially Sects.3 and 4 which discuss some tech-
niques for partially factoring the numerators and denominators of a fraction.
Also, a method for computing Horner’s schemes for multivariate polynomials is
given in [3]. Finally, [11] presents a choice of nice functionalities a computer alge-
bra software should provide for helping the user with expression manipulations.

We implemented our algorithm decouple in Maple 2020. All examples pre-
sented in the paper run under ten seconds (on a i7-8650U CPU 1.90 GHz running
Linux), and the memory footprint in under 180 Mbytes.

Organization of the Paper. Section2 defines the decouplings of fractions and
the splittable fractions. Theorem 1 which characterizes the splittable fractions
is presented, and the existence and uniqueness of the so-called finest partition
(of variables) is proven. Section 3 presents our algorithm decouple, with elements
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of proofs. Section 4 presents some examples. Finally, Sect. 5 presents some com-
plexity results and implementation remarks.

Notations. In this article, K denotes any field of characteristic zero!. Take a frac-
tion F in K(X), where X contains n variables. For brevity, the partial derivatives
g—f, aajgy and % are also written Fy, I, and F; ,x. We denote by Supp(F)
the set {x € X|F, # 0}; it is simply the variables on which F really depends.
We denote by Def(F) the domain of definition of F', which is the set of values
of K™ which does not cancel the denominator of F'.

For any subset Y C X of size m, and any Y° € K™, F(Y = Y") designates
the partial evaluation of F for the variables Y at Y. This partial evaluation
is only defined if the denominator of F' does not identically vanish at Y = Y.
Partitions of a set X will usually be denoted (X;)1<i<p and (¥;)1<i<q, or simply
(X;) and (Y;).

2 Decoupled and Splittable Fractions

2.1 Definitions

Definition 1 (Expression Tree). An Expression Tree in a1,...,a, over a
field K is a finite tree satisfying:

— each internal node is a binary operator: either +, X, or +,

— each leaf is either a variable a;, or an element of K,

— if the tree contains two or more nodes, then any subtree encodes a nonzero
fraction in the variables aq, ..., ap.

Proposition 1 (Expression Tree and associated fraction). The third item
of Definition 1 ensures that no division by zero can occur. As a consequence, any
Ezxpression Tree encodes a fraction in the a; variables. Moreover, any fraction
can be encoded by an Expression Tree (note the Expression Tree is not unique).
If A is an Expression Tree in aq,. .., ap, we simply denote its associated fraction
by A(as,...,ap). Please note that zero can still be encoded by the tree with only
one root node equal to zero. Finally, the tree

is not an Expression Tree since it violates the third item of Definition 1.

Definition 2 (Decoupled Expression Tree (DET)). A Decoupled Expres-
sion Tree in the variables a1, ..., a, is an Expression Tree where each a; appears
exactly once.

! Fields of characteristic nonzero have not been considered by the authors, as they
raise some difficulties. Indeed, most results and algorithms presented here rely on
evaluation and differentiation, which are difficult to handle in nonzero characteristic.
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X - is a DET encoding 1las + 5/a;.

Proposition 2 (Interval arithmetic). Assume K is Q or R. Consider a
fraction F(aq,...,a,) which can be represented as a DET A. If each a; lies in
some interval I;, and if evaluating the tree A using interval arithmetic never
inverses intervals containing zero, then the evaluation computes F(I1,...,Ip).

Proof. We prove it by induction on the number of nodes. The base case with
one node is immediate. If the number of nodes is higher than 2, the induction
hypothesis can be applied on both left and right subtrees, yielding two intervals
I and J. The evaluation of the complete tree consists in evaluating either I + J,
I x J,or I+ J.In all these cases, interval arithmetic gives an exact interval
image (i.e. not overestimated), since both subtrees involve distinct variables (A
is a DET), and because (by assumption) no interval containing zero is inverted.

Remark 1. When inverting an interval containing zero occurs during the evalua-
tion of a DET, difficulties arise, as the following example shows. Take F' = =,
whose image on the interval I = [0,1] is F'(I) = [0,1/2]. The fraction F' can be
written as the DET ﬁ whose evaluation is delicate because % is not defined
at x = 0. However, if F' is written as the DET 1 — H%’ Proposition 2 applies.
In order to generalize Proposition 2 for tackling intervals containing zero,
multi-intervals and handling intervals containing infinity may be required.

Definition 3 (Decoupling of a fraction). Let F a fraction of K(X). We
call decoupling of F a triple (A, (F})i1<i<p, (Xi)1<i<p) where:

— Ais a DET in the variables ay, ..., a, over K,

- (Xi)i<i<p 15 a partition of Supp(F'),

— each F; is a fraction of K(X;) with Supp(F;) = X,

- F = A(Fy,...,F,) where A(F1,...,F,) designates the fraction associated to
A evaluated on the Fj.

In that case, we say that the partition (X;) decouples the fraction F.

Remark 2. Any constant fraction F admits the decoupling (F,0,(). Any non
constant fraction F' € K(X) admits the (trivial) decoupling (a1, (F'), (Supp(F))).

Definition 4 (Splittable fraction). A fraction F of K(X) is said splittable
if there exists a partition (X;)1<i<p of Supp(F) with p > 2, such that (X;)
decouples F. Otherwise, the fraction is said nonsplittable.

Remark 3. Constant and univariate fractions are nonsplittable.
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2.2 Characterization of Splittable Fractions

Theorem 1 below gives a characterization of splittable fractions. It is central
for the decouple algorithm (Algorithm 1). Indeed the decouple algorithm checks
the four different cases and either calls itself recursively if one case succeeds or
concludes that the fraction is nonsplittable.

Lemma 1. Take a splittable fraction F of K(X). Then for any nonzero con-
stant ¢, the fractions c+ F, ¢ X F, ¢/F, and F/c are splittable.

Proof. For each fraction ¢ + F, ¢ x F, ¢/F, and F/c, it suffices to adjust the
tree A of a decoupling (A, (F;)1<i<p, (Xi)i<i<p) of F.

Theorem 1 (Splittable characterization). A fraction F' of K(X) is split-
table if and only if the fraction F can be written in one of the following forms:

Cl G+H C2 c+GH

1 d )
- 4 -
C3 C+G+H C c+1+GH

where

—candd are in K, and d # 0,
- (Y, Z) is a partition of Supp(F),
- GeK(Y) and H € K(Z), with Supp(G) =Y and Supp(H) = Z.

Proof. The right to left implication is immediate.

Let us prove the left to right implication. Assume F' is splittable, and consider
a decoupling (A, (F})1<i<p, (Xi)1<i<p) of F with p > 2. Since the fraction is
splittable, it is necessarily non constant, and the root of the tree A is necessarily
an operator. As a consequence, the tree A has the shape

0
L R.

Substituting the F;’s in the L and R trees, one gets two fractions Fy and Fg.
There are two cases:

Case 1. Both fractions F, and Fr are nonconstant. They have by construction
some disjoint supports. If the operator o is +, then F can be written as F, + Fr
as in the case C1. If the operator is x (resp. +), then F' can be written as in
the case C2, with ¢ =0, G = F, and H = Fg (resp. 1/FR).

Case 2. Among the fractions Fr and Fg, one is constant, and the other one is
nonconstant. The nonconstant fraction is splittable by Lemma 1. We consider
the following scenario by induction: either the splittable fraction satisfies Case 1,
concluding the induction, either we are once again in the Case 2. This process
can only happen a finite number of times (since the tree A is finite). We can
thus assume that the splittable fraction can be written in one of the four cases.
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Assume first that Fr is constant and that the operator is +. If F, has the
form C1 G + H, then F = G + (H + Fg). I F, has form C2, C3 or C4, then
F has the same form as Fy, (by replacing ¢ by ¢+ Fr). By a similar argument,
F' has the same form as F7, is the operator is X or +.

Assume now that F, is constant. It is easy to show that F' has the same form
as F'r is the operator is 4+ or x. If the operator is +, some more computations
are needed. If Fp has form C1, then Fp/Fg has form C3 (with ¢ = 0). If Fg
has form C2 with Fr = ¢+ GH, then F1/Fr has form C2 if ¢ = 0, and form
C4 otherwise. If Fr has form C3 with Fr = ¢ + ﬁ, then Fy,/Fg has form
C1 if ¢ = 0, and form C3 otherwise. If Fr has form C4 with Fr = c+ 1—&-%’
then Fp,/Fg has form C2 if either ¢ = 0 or ¢+ d = 0, and form C4 otherwise. O

Remark 4. Anticipating Propositions 8 and 9, the constant ¢ of Theorem 1 is
unique for the cases C2 and C3. Anticipating Proposition 10, the values of ¢

and d in the case C4 of Theorem 1 are not unique, because a fraction c+ 17 CH

————, which is also of the form C4.
I+a7

can also be written as (¢ + d) +

2.3 Basic Lemmas Around Fractions

This section gives some lemmas around the evaluation of fractions for some
variables. Those lemmas would be quite obvious to prove for polynomials, but
fractions deserve special treatment because of the possible cancellations of the
denominators at some evaluation points.

Lemma 2. Consider a fraction F of K(X). If the fraction F cancels at any
point X© € Def(F), then the fraction F is the zero fraction.

Proof. Write F as P/Q where P and ) are polynomials of K[X]. Denote X =
{z1,...,z,}. Using a Kronecker substitution (see [4, exercise 8.4, page 247] and
references therein), there exists a substitution ¢ of the form z; — u%, ...,
T, — u, where u is a new variable and the a; are positive integers, such that
¢ is injective on the sets of monomials occurring in P and Q.

The polynomial ¢(Q) is nonzero and univariate, so there exists an integer ug
such that ¢(Q)(u) # 0 for any integer u > ug. As a consequence, the set of
points S = {(u®,...,u)|u € N,u > up} is included in Def(F).

Since F' cancels on Def(F') by assumption, P cancels on the set .S, implying
that ¢(P)(u) cancels for any integer u > ug. Since ¢(P) is univariate, ¢(P) is
the zero polynomial. Since the transformation ¢ is injective on the monomials,
P is also the zero polynomial, hence F' = 0. O

Lemma 3. Consider a nonzero fraction F of K(X) and a variable x € X. There
exists a finite subset S of K such that for any z° € K\S, the partial evaluation
F(z = 2%) is well-defined and nonzero, and Supp(F (z = z°)) = Supp(F)\{z}.
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Proof. The lemma is immediate if z does not belong to the support of F. Now
assume z € Supp(F'). Consider the fraction H = F'[] cqupp(r) Fy: Which by
construction is nonzero since F' is nonzero. The fraction can be seen as a uni-
variate fraction H of K(z), where K = K(X\{x}). Consider the set S C K
of elements Zy € K either canceling the numerator or the denominator of H.
This set S is finite. Take S = S N K, which is also finite. Then for any element
20 € K\S, the fraction H(z = z°) is well-defined and nonzero. This ends the
proof since H(x = 2°) # 0 implies F(x = 2°) # 0, and Fy(z = 2°) # 0 for
any y € Supp(X). O

The following lemma is a generalization of Lemma 3 for evaluating two dif-
ferent fractions simultaneously.

Lemma 4. Consider two nonzero fractions F and G of K(X). For any variable
x € X, there exists a finite subset S of K such that for any z° € K\S, the
partial evaluations F(x = 2°) and G(x = z°) are well-defined and nonzero,

Supp(F(x = 2°)) = Supp(F)\{z}, and Supp(G(z = 2°)) = Supp(G)\{z}.

Proof. The proof is similar to that of Lemma 3, simply replace the fraction H
by F(HyESupp(F) Fy) G(HyESupp(G) Gy)- O

Lemma 5. Consider a nonconstant univariate fraction F of K(x). For any
finite set of values S C K, there exists a value z° € K such that F(2°) is
well-defined and F(z") ¢ S.

Proof. Let us assume that the image of the fraction F'is included in S. We prove
that this leads to a contradiction. Since F' is univariate, there exists an integer ug
such that the denominator @ does not cancel on the set D = {u € N|u > wup}.
Since F' is defined on D, and D is infinite, and S is finite, there exists a value v
of S such that F'(u) = v for an infinite number of integers u > ug. This implies
that the numerator of F' — v cancels on an infinite number of integers, hence
F — v is the zero fraction. Contradiction since F' is nonconstant. O

2.4 Finest Decoupling Partition

We prove in this section that for any fraction F', there exists a unique most
refined partition decoupling F'. The following definition is classical.

Definition 5 (Finer partition). A partition (X1,...,X,) of some set X is
finer than a partition (Y1,...,Yy) of X if each X; is included in some Y;. The
finer-than relation is a partial order.

Definition 6 (Partition deprived of one element). Consider a partition
(Xi)1<i<p of some set X, and a variable x € X. Up to a renaming of the X,
assume that x € X,,.

Build a partition (Y;) of X\{z} in the following way: if X, is equal to {x},
then take the partition (Y;)1<i<p—1 where Y; = X; for 1 <4 < p—1. Otherwise
take the partition (Y;)1<i<p where Y; =X, for1 <i<p-—1, and Y, = X,\{z}.

The partition (Y;) is called the partition (X;) deprived of x.
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The following proposition shows how to specialize a variable in a decoupling.

Proposition 3 (Specialization of a decoupling). Let us consider a decou-
pling (A, (F})1<i<p, (Xi)1<i<p) of some fraction F of K(X) and a variable
x € Supp(F). Denote (Y;) the partition (X;) deprived of x.

Then there exists an x° € K such that the partition (Y;) decouples F(x = zV).

Proof. Up to a renaming of the X;, assume that z € X,. Assume that the
set X, equals {z}. Assigning a value a° to the variable a, in the DET A may
not yield a DET because of the third condition of Definition 1. However, there
only exists a finite set S of “unlucky” values a® which break the third condition
of Definition 1. By Lemma 5 on the univariate fraction Fj,(x) and S, there exists
an 20 such that (A(a, = F,(2°)), (F;)1<i<p—1, (Xi)1<i<p—1) is a decoupling of
F(z = 2).

Now assume that the {z} is strictly included in X,. By Lemma 3, there
exists a value ° such that Fj(x = 2°) is well-defined, and Supp(F,(z = 2°)) =
X,\{z}. Thus, replacing F, by F,(z = 2°) and X,, by X,\{z} in the decoupling
(A, (Fy)1<i<p, (Xi)1<i<p) of F yield a decoupling for F(z = ). O

The following proposition is a generalization of Proposition 3 for specializing
two different decouplings of the same fraction F.

Proposition 4 (Simultaneous specialization of two decouplings). Con-
sider two decouplings (A, (Gi)1<i<p, (Xi)1<i<p) and (B, (H;)1<i<q, (Ui)1<i<q) of
the same fraction F' of K(X), and a variable © € Supp(F'). Denote (Y;) the par-
tition (X;) deprived of x, and (V;) the partition (U;) deprived of x.

Then there exists a value 2° € K such that both partitions (Y;) and (V;)
decouples F(x = x0).

Proof. The proof is similar to that of Proposition 3. The only difficulty is the
choice of an 20 which is suitable for both decouplings. Up to a renaming of the X
and U;, assume that € X, and = € U,. If both X, and U, are equal to {z},
then there is a finite number of values for 2° to avoid, hence Lemma 5 concludes.
Assume X, is the singleton {z} and U, strictly contains z. By Lemmas 3 and 5,
there is also a finite number of values for 2° to avoid, which ends the proof. By
symmetry, we need not consider the case where X, strictly contains z and U,
is the singleton {z}. Finally, if z is strictly included in X, and in U,, Lemma 4
concludes. O

Lemma 6. Consider a fraction F' € K(X), and a DET C in one variable a;.
Denote C(F) the fraction obtained by evaluating C' on a; = F. If the fraction
C(F) is splittable, then F is also splittable.

Proof. Consider a DET C in one variable a;. It can be shown by induction that
0,0
u’ +v°a
the fraction C(a;) associated to C' is an homography, i.e. C(a;) = %
ul +vlay
where the u°, v°, u' and v' are in K, and satisfy u’v' — u'v® # 0. Indeed,
the variable a; is an homography, and adding a constant to an homography,

0
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multiplying an homography by a nonzero constant, or taking the inverse of an
homography yield an homography. Since an homography is invertible, and its
inverse is also an homography, C(a1) is invertible and its inverse D(a;) is an
homography, which can easily be encoded by a DET in one variable.

Since C(F) is splittable, adding D to the top of the tree of the decou-
pling of F yields a decoupling of D(C(F)) which is equal to F, hence F is
splittable. O

Proposition 5 (Finest partition). Consider a fraction F € K(X). There
exists a unique finest partition (X;) of Supp(F) decoupling F. A decoupling
(A4, (F;),(X;)) of F is said finest if (X;) is the finest partition decoupling F.

Proof. The set S of partitions decoupling F' is not empty by Remark 2, and is also
finite. Since the finer-than relation is a partial order (Definition 5), the existence
of finest partitions is guaranteed. We now prove that all finest partitions are in
fact equal, which is the difficult part of the proof.

The proposition is immediate for constant fractions. Consider a non constant
fraction F' € K(X), and two different finest partitions (X;)1<i<p and (¥;)1<i<q
decoupling F, along with some corresponding decouplings (A, (G;), (X;)) and
(B, (Hy), (Y1))-

Since the two partitions (X;) and (Y;) are different, there exists a X} inter-
secting at least two different sets of the (Y;) partition. Without loss of generality,
let us assume that the set X; intersects the sets Y7, Y5, ..., Y, with r > 2, and
does not intersect the remaining sets Y;.11, ..., ¥;. See Fig. 1 for an illustration.
We prove below that the set X can be further refined into X, NY7, ..., X1NY,,
leading to a contradiction since (X;) is finest.

Let us apply successively Proposition 4 on all variables of XoUX3U---UX,,
thus obtaining some values X9, ..., XS . We obtain two different decouplings
for F = F(X, = X9, X5 = X§,...,X, = X)). The first one (obtained
from (A, (G)),(X;)) is (C,(G1),(X1)) where C is the (univariate) tree A(az =
Ga(X3),...,ap = Gp(X})). The second one (obtained from (B, (H;),(Y7))) is
(D, (Ri)1Si§T7 (Ui)lgigr) where (Ul) is the partition (Xl NnYy, ..., Xain YT)
of X;. As a consequence, the fraction F' is splittable. Since F' = C(G}) is split-
table, the fraction G is also splittable by Lemma 6. This contradicts the fact
that (X;) is finest, since G; could be split in the decoupling (A4, (G;), (X;))

of F. O
Y1
Yo
Y3
T F
X1 Xo X3

Fig. 1. Two partitions (X;) and (Y;) of X. The sets X1, X2 and X3 are the rectangles
in dark gray, gray and light gray. The set X; intersects the sets Y; and Y2, but not Ys.
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2.5 Decomposition into a Sum and Product

In this section, we give necessary and sufficient conditions for decomposing a
fraction F' € K(X) with Supp(F) = X, into a sum G + H or a product GH,
where G € K(Y), H € K(Z), and (Y, Z) is a partition of X.

Over the reals or the complexes, the conditions are immediate to show using
converging Taylor expansions for example. However, we show them in a more gen-
eral context for any field K of characteristic zero, such as for example Q(a, b, c).
We avoid here the use of converging Taylor expansions, which would require us
to equip K with a norm. By the way, the authors of [2] required a normed vector
space, which was in fact not required by using techniques presented here.

Proposition 6 (Decomposition into sum). Let F' € K(X) with Supp(F) =
X, and (Y, Z) a partition of X. Then there exist two fractions G € K(Y) and
H e K(Z) such that F = G + H if and only if Fy . =0 for any (y,z) € (Y, 2).

Proof. The left to right implication is immediate. To prove the right to left
implication, we assume for simplicity that X only contains two elements y and z.
Consider a point X° = (y°,2%) € Def(F). Without loss of generality, using a
shift on variables y and z, let us assume that X" = (0,0).

Take G = F(z =0) and H = F(y = 0) — F(0,0), and take U = F — (G + H).
Then U, , = F, , is also the zero fraction. Moreover, U cancels on the varieties
y = 0 and z = 0, whenever U is well-defined. We now show that the fraction U
is the zero fraction, which proves that F' = G + H as required.

Write U as P/Q with P and @ polynomials. Since P = QU and using a
classical Taylor expansion on P, one gets

P= Y -L(QU, (0,005, (1)

111
jzomso

where only a finite terms are non zero since P is a polynomial (hence no conver-
gence arguments are needed here).

Since Uy, is the zero fraction, then all terms with j > 1 and k > 1 in Eq. (1)
are zero. We finish the proof by showing (using the symmetry on y and z) that
any term (QU)yj (0,0) is zero, which proves that P is the zero polynomial.

By Lemma 2, the fraction U(z = 0) is the zero fraction, hence (QU)(z = 0) is
the zero polynomial. Using the fact that evaluating at z = 0 and differentiating
w.r.t. y commute, (QU),;(0,0) = ((QU)(z = 0)),;(y =0) = 0. O

Remark 5. Proposition 6 can be interpreted using a graph. Indeed, with nota-
tions of Proposition 6, and writing X = {z1,...,z,}, consider the undirected
graph with nodes z; and with edges the (z;,2;) such that G, »; # 0. Then the
fraction F' can be written as a sum if and only if the graph admits at least two
connected components.
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The next proposition is the equivalent of Proposition 6 for decomposition
a fraction as a product instead of a sum. From an analytical point of view,
decomposing a fraction F' as a product GH corresponds to decomposing In F' as
the sum of In G and In H. The differentiation conditions of Proposition 6 applied

Y,z = F

on InF, yield (In F) (&) = 0. This condition, which does not involve a
logarithm, is used in the followi%g Proposition.

Proposition 7 (Decomposition into product). Consider F' € K(X) with
Supp(F) = X, and (Y, Z) a partition of X. Then there exist two fractions G €

K(Y) and H € K(Z) such that F = GH if and only if (%) = 0 for any
(y,2) € (Y, 2).

Proof. The left to right implication is immediate. To prove the right to left impli-
cation, we assume for simplicity that X only contains two elements y and z. The
fraction F' is not constant since its support X is not empty. By contraposition of
Lemma 2, there exists a point X° € Def(F) such that F(X°) # 0. Without loss
of generality, using a shift on variables y and z, let us assume that X° = (0,0).

Take G = F(z=0) and H = F(y = 0)/F(0,0) and consider U = F/(GH) —
1. We prove below that the fraction U is equal to 0, thus showing that F = GH.

Write U as % with P and ) polynomials. Since U is zero on z = 0, then by
Lemma 2, the fraction U(z = 0) is the zero fraction. Using the commutativity
argument at the end of Proposition 6 proof, Uy;(0,0) = 0 for any nonnegative
integer j. By symmetry on y and z, U_x(0,0) = 0 for any nonnegative integer k.

The condition (%) = 0 can be rewritten as F, . = % This implies
z
that Uy, = %yUz. By an inductive argument on k£ + [, and using the fact that

Uy,i(0,0) = 0 and U,x(0,0) = 0 for any nonnegative integers j and k, one proves
that U,; .x(0,0) = 0 for any nonnegative integers j and k. Using Eq. (1), the
polynomial P is zero, hence U = 0 which ends the proof. a

3 Algorithm decouple

Algorithm decouple takes as input a fraction F' and a list X, such that F' € K(X),
and returns a finest decoupling of F. Unless F' is a constant, or a univariate
fraction, the four cases of Theorem 1 are sequentially checked by calling the four
so-called functions checkCl , ..., checkC4. If one of them succeeds (returning
some G and H plus other results), Algorithm 1 calls itself on G and H and
builds the final result. Otherwise, if no case succeeds, the fraction is proved to
be nonsplittable (by Theorem 1) and F' is returned.

The main difficulty in the process is to prove that the four checkCl | ...,
checkC4 functions are correct, which is done in the four following subsections.
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Algorithm 1: decouple(F, X)

Input: A fraction F € K(X) and a list X = [z1,...,zn]

Output: A finest decoupling (A, [F1,..., Fp],[X1,...,Xp]) of F

if F is constant then return (F,[],[]) ;

else if F' does not depend on z; then return decouple(F, [za,...,zx]) ;
else if F only depends on z; then return (a1, [F], [{z1}]) ;

else if checkC1(F, X) returns G,Y, H, Z then

(A, G,Y) := decouple(G,Y) ;

(Agr, H,Z) := decouple(H, Z) ;

let r be the length of G

shift the variables of Ag by 7 i.e. replace each a; by a4+, in Ax

® N O Otk W N

©

return ( AG/+\AH G+ HY + Z)

10 /* where G+ H and Y + Z are list concatenations */
11 else if checkC2(F, X) returns ¢,G,Y, H, Z then

12 proceed as in Lines 5 to 8 ;

et~ x ~ BT, 5
13 return ( A¢ Ay G+ H, Y+ 2Z)

14 else if checkC3(F, X) returns ¢,G,Y, H, Z then

15 proceed as in Lines 5 to 8 ;
4.
cT o
16 return ( A¢” TAw G+ H,Y+2Z)
17 else if checkC4(F, X) returns ¢,d,G,Y, H, Z then
18 proceed as in Lines 5 to 8 ;
4.
AT+ S
19 return ( A¢"TAy ,G+H,Y +2)

20 else return (a1, [F], [Supp(F)]) ;

3.1 Algorithm checkCl (F = G + H)

Following Proposition 6 and Remark 5, Algorithm checkC1l computes (using
Algorithm 3) the connected component Y containing the node z; of the undi-
rected graph with vertices the z;, and with edges the (z;, z;) such that Fpp o #0.
If this component Y is strictly included in the support of F', then one can split
F as a sum of two fractions G + H as in the case C1, using some (random)
evaluation to compute the (non-unique) G and H fractions.
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Algorithm 2: checkC1(F, X)

Input: A fraction F € K(X) s.t. 1 € Supp(F) and a list X = [z1,...,Zx]
Output: Succeeds by returning G,Y, H, Z if F can be written as G + H (as in
the case C1), and fails otherwise

1 Y := connectedVariablesSum(F, X) ;

2 Z :=Supp(F)\Y ;

3 if Z is empty then FAIL ;

4 else

5 G := F(Z = Z°) where Z° is a random point such that F(Z = Z°) is
well-defined ;

6 H=F-G,;

7 succeed by returning G,Y, H, Z ;

Algorithm 3: connectedVariablesSum(F), X)

Input: A fraction F € K(X) and a list X = [z1,...,zn]
Output: Return the connected component containing x1 of the undirected
graph with nodes x;, and with edges the (x,z;) such that Fy, .; # 0.
visited := {} ;
todo := {1} ;
while todo is not empty do
pick and extract some variable v from todo ;
visited := visited U {v} ;
V' := Supp(Fy) ;
todo := todo U (V\visited) ;

® N0 A W N

return visited

3.2 Algorithm checkC2 (F = c+ GH)

Algorithm checkC2 proceeds similarly to Algorithm checkC1 but it first needs to
compute a constant candidate ¢ such that F' — ¢ can be written as a product as
in the case C2.

Proposition 8. Take a fraction F € K(X) of the form C2 (i.e. F =c+ GH)
where Supp(G) =Y, Supp(H) = Z and (Y, Z) is a partition of Supp(F). Then

c=F— i&fyiz for any (y,2) € (Y, Z).

Moreover, if for some (u,v) € X2, the expression F — % is well-defined

and constant, then it is equal to the ¢ defined above.

Proof. The first part of the proposition is a simple computation (note that the
formula for c is well-defined because Fy , = G, H, which is nonzero).

For the second part of the proposition, there is nothing to prove if (u,v) €
(Y,Z), or (u,v) € (Z,Y). Assume (by symmetry) that both « and v lies in Y,
and that F' — % is well-defined and constant.
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Simple computations show that F — I;F“ =c+ (G- G“G )H. Since this
expression is constant, the term G — % 2Go g pecessarily zero (otherw1se the

expression would not be constant since the supports of G and H are distinct),
which ends the proof. O

Remark 6. The case G — €S2 = (0 in the previous proof occurs for example if
the fraction G can itself be Written as a product of two fractions M and N of
disjoint supports, with u € Supp(M) and v € Supp(N).

Proposition 8 ensures that Algorithm 5 can stop as soon as it finds a constant
candidate c. Indeed, if F' has form C2, then the constant candidate c is correct by
Proposition 8. If F' has not form C2, and if a constant candidate ¢ is computed
(which can happen by Remark 7), then the call to checkProd(F — ¢) at Line 2
of Algorithm 4 will detect that F' has not form C2.

Remark 7. Fix X = {z,y,z}. The following fraction F' = 3+ (z + 2)/(y + 2)
yields F' — Bl _ 3, However, it can be shown (using Algorithm decouple) that
the fraction F cannot be written as C2. This does not contradict Proposition 8,
since Algorithm 2 will detect that F' — 3 cannot be decomposed as a non trivial
product. Finally, note that F' is splittable (of the form C2) if we take for example

X ={z,y} and K= Q(z).

Algorithm 4: checkC2(F, X)

Input: A fraction F € K(X) and a list X = [z1,...,zn]
Output: Succeed by returning G,Y, H, Z if F can be written as ¢+ GH (as in
the case C2), and fails otherwise
1 if findConstantCase2(F, X) returns a constant ¢ then
2 if checkProd(F — ¢, X) returns G,Y, H, Z then

3 ‘ return ¢,G,Y, H, Z
4 else FAIL ;
5 else FAIL ;

Algorithm 5: findConstantCase2(F, X)

Input: A fraction F € K(X) and a list X = [z1,...,zn]

Output: Either return some constant candidate c¢ for case C2, or fails.
1 for i from 2 to n do
2 if Fi\,2; #7 0 then

F. F.,
3 ci=F - 2%
Ffﬁlﬁﬁi
4 if ¢ € K then return c;

5 FAIL
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Algorithm 6: checkProd(F, X)

Input: A fraction F € K(X) with z1 € Supp(F), and a list X = [z1,...,2Zx]
Output: Succeed by returning G,Y, H, Z if F can be written as GH (i.e. as in
the case C2 with ¢ = 0), and fails otherwise
Y := connectedVariablesProd(F, X) ;
Z = Supp(F)\Y ;
if Z is empty then FAIL ;
else
G := F(Z = Z°) where Z° is a random point such that F(Z = Z°) is
well-defined and nonzero ;
H:=F/G;
succeed by returning G,Y, H, Z

Uk W N

N o

Algorithm 7: connectedVariablesProd(F, X)
Input: A fraction F € K(X) and a list X = [z1,...,zn]
Output: Return the connected component containing x1 of the undirected
graph with nodes z;, and with edges the (z;, ;) s.t. (F;’ ) # 0.
zj

F
1 Same algorithm as Algorithm 3 except F, is replaced by % in Line 6

3.3 Algorithm checkC3 (F =c+ 1/(G + H))

Algorithm checkC3 proceeds similarly to Algorithm checkC2 but with a different
formula for computing ¢, G, and H. Once a candidate ¢ is found, Algorithm
checkC3 tries to decompose 1/(F —c¢) into a sum G+ H using Algorithm checkC1.

Proposition 9. Take a fraction F' € K(X) of the form C38 (i.e. c+1/(G+H))
where Supp(G) =Y, Supp(H) = Z and (Y, Z) is a partition of Supp(F). Then
c=F — 2% for any (y,z) € (Y, Z).

Moreover, if for some (u,v) € X2, the expression F — 2% is well-defined
and constant, then it is equal to ¢ defined above.

Proof. The first part of the proof is once again a simple computation. For the
second part, there is nothing to prove if (u,v) € (Y, Z) or (u,v) € (Z,Y). Assume
(by symmetry) that both v and v lies in Y, and that the expression F' — 2%

is well-defined and constant.

Gu,v
Guw(G+ H) - 2G,G,
sion is equal to ¢ when Gy, = 0. If G, , # 0, the numerator of the expression
is free of Z, but the support of denominator contains Z, hence a contradiction
since the expression is constant. a

Computations yields F' — Q%F =c+ . This expres-
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Algorithm 8: checkC3(F, X)

Input: A fraction F € K(X) and a list X = [z1,...,zn]
Output: Succeed by returning ¢, G,Y, H, Z if F' can be written as
¢+ 1/(G+ H) (as in the case C3), and fails otherwise
1 if findConstantCase3(F, X) returns a constant ¢ then
2 U:=1/(F—c¢);
3 if checkC1(U, X) returns G,Y, H, Z then return c¢,G,Y,H,Z ;
4 else FAIL ;
5 else FAIL ;

Algorithm 9: findConstantCase3(F, X)

Input: A fraction F € K(X) and a list X = [z1,...,zn]
Output: Either return some constant candidate c¢ for case C3, or fails.

T Fl‘
1 Same algorithm as Algorithm 5 except Line 3 is replaced by ¢ := F — 2-—=1-"%

T1,T4

3.4 Algorithm checkC4 (F =c+d/(1 + GH))

Algorithm checkC4 proceeds similarly to Algorithms checkC2 and checkC3. Once
candidates ¢ and d are found, Algorithm checkC4 tries to decompose d/(F —c)—1
into a product GH using Algorithm checkProd.

However the computations for finding the candidates ¢ and d are more dif-
ficult, because ¢ and d are solutions of quadratic equations. As a consequence,
some fractions of K(X) are nonsplittable in K(X), but are splittable in K(X)
where K is some extension of K. Here is a quite easy example demonstrating
this fact.

Ezample 1. The fraction F = iy—_;f € K(z,y), where a € K, can be written as

2b

2 2
1= (1= ) (1- 1)

if b satisfies b2 = a. As a consequence, the fraction F is splittable in K(z,y) if a
is a square in K, and nonsplittable in K(z,y) otherwise.

F=-b+

Propositions 10 and 11 below explain the process used by Algorithm 11 for
finding the candidates ¢ and d.

Proposition 10. Take a fraction F' € K(X) of the form C4 (i.e. c+d/(1+GH))
where Supp(G) =Y, Supp(H) = Z, ¢ and d constants, with d # 0.
Then, for any (y,z) € (Y, Z), we have

1 1

2
= 2
F—c + J—c d 2)
where J = F — 2 . Moreover, the couple (c,d) is unique up to the (involutive)
transformation (c d) (c+d,—d).



Decoupling Multivariate Fractions 225

Proof. Take (y,z) € (Y, Z). Note that J is well-defined since F,, = %,

which is nonzero. Computations show that J = ¢ + ﬁ, and Eq. (2) follows.
Eq. (2) can be rewritten as

—(c+d/2)S+c(c+d)+P =0, (3)

where S = F+J and P=F J One proves that S is nonconstant. Indeed if S
were constant, then 2¢ + d(—5+= would be constant

wrom + =cm) » 7er t oom
would be constant, hence G2 H? would be constant, a contradiction since G and
H are nonconstant with disjoint supports.

Since S is non constant, there exist X° and X! such that where S(X°) #
S(X1). Substituting those values in (3) yield a invertible linear system, hence
unique values for @ = —(c + d/2) and b = c(c + d).

Finally, d is solution of d*> = 4(a® — b), and ¢ = —a — d/2. Hence the couple
(¢,d) is unique, up to the (involutive) transformation (¢,d) — (c+d,—d). O

Proposition 11. Take the same hypotheses as in Proposition 10. Take (u,v) €
X? and assume F, ., # 0. Consider J = F—Q%, and S =F+J and P = FJ.

Assume S is not constant. Consider the (unique) solution (a,b) of aS-+b+P = 0,
with @ and b constants, if such a solution exists. Then, if 4(a —b) is nonzero

and admits a squareroot d in K, then (¢,d), where ¢ = —a — d/2, is either (c,d)
or (c+d,—d).

Proof. If (u,v) € (Y,Z) or (u,v) € (Z,Y), Proposition 10 concludes. Assume
(by symmetry) that both «w and v lies in Y. Computations show that J = ¢+

dGu,U+(GGf:izGuGU)H' If Gy = 0, then J = c. It implies that S = F + ¢,

P = cF. As a consequence, S is not constant, and (a,b) = (—c, ¢?) is the unique
solution of aS+b+ P = 0. In that case, 4(a® —b) = 0, which ends the proof. Now

assume that G, , # 0. The fraction J can then be rewritten as J = c+d
where G = G — QG G

Gy v

Let us first consider the case G = —G (which happens for example if G can
be written as a product, see Remark 6). This implies J = ¢ + d+—++, and the
proof ends by following the proof of Proposition 10.

Now consider that G # —G. By taking the numerator of the equation a.S +
b+ P =0, tedious computations? yield:

1
1+GH

1— GH’

GG(2ac+ 2 +b) H* + (2ac+c + b+ (a+c)d)(G+ G) H+
(2ac+c +b+2(a+c)d+d*)=0. (4)
Since the supports of G and H are disjoint, and H is nonconstant, the previous
equation can only hold if the three coefficients in H are the zero fractions. This
implies that the three constants us = 2ac + ¢® + b, u; = 2ac+c? + b+ (a + c)d

and ug = 2ac + ¢® + b+ 2(a + ¢)d + d? are zero. Expanding us — 2uy +ug = 0
yields d? = 0, a contradiction, which ends the proof. O

2 Use your favorite computer algebra system!.
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Algorithm 10: checkC4(F, X)

Input: A fraction F € K(X) and a list X = [z1,...,zn]

Output: Succeed by returning c,d,G,Y, H, Z if F' can be written as
c+d/(1+ GH) (as in the case C4), and fails otherwise

1 if findConstantsCase4(F, X) returns a couple (c,d) then

2 U:=d/(F—-¢)—1;

3 if checkProd(U, X) returns G,Y, H, Z then

4 ‘ return ¢,d,G,Y, H,Z

5

6

else FAIL ;
else FAIL ;

Algorithm 11: findConstantsCase4(F, X)

Input: A fraction F € K(X) and a list X = [z1,...,zn]
Output: Either return some couple candidate (c,d) € K? for case C4, or fails.

1 for ¢ from 2 to n do
2 if Fi 2z, # 0 then
3 J . =F— 27211?; ;
4 S=F+J;
5 P=FxJ;
6 if S is not constant then
7 find two random points X° and X! non canceling the denominators
of F and J, such that S(X°) # S(X*') ;
8 find the solution (@, b) of the linear system aS(X°) 4+ b+ P(X°) =0,
aS(X")+b+P(X')=0;
9 if (the fraction @S + b+ P is the zero fraction, and if 4(a* — b) is
nonzero and admits a squareroot d € K, then
10 Ci=—a—d/2;
11 L succeed by returning (¢, d)
12 FAIL
4 Examples

Ezample 2. The polynomial p = ab+ax+bx+cd-+cx+dr+22? can be decoupled
in K(a, b, ¢,d) with K = Q(z) into (z +b) (z + a) + (z + ¢) (z + d).
Note that p is not splittable in Q(a, b, ¢, d, ).

Ezample 3. We present here a worked out example to illustrate how the decouple
algorithm works. To make the walkthrough readable, we do not fully detail all

values returned by the algorithms. Consider the fraction F = 22 +2+4+ %
T+tu

taken in Q(z,v, 2, t, u), whose expanded form is

tux?z + tuxz + tuy + dtuz + 222 +tu+ 222 + 2+ 22 +y+ 42+ 9
tuz +2+2 '
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When calling decouple(F, [z, y, z, t,u]), the call to checkC1 succeeds. Indeed, the
graph considered during the call to connectedVariablesSum is

Y-u
x X1

t -z

which admits two connected components. The connected component containing
the vertex x is simply {z}, so F' can be written as the sum @ + R, with Q =
Fly=-22=0t=1u=1) =24+2+3 € K@z)and R =F—-Q =
t“”“fjjjgigﬂw € K(y, z,t,u). Please note that the previous evaluation is
chosen randomly in checkCl, we just picked a possible one for the example.
Then the function decouple performs recursive calls on Q and R. The call to

decouple(@, [x]) simply returns @ itself. When calling decouple(R, [y, z, ¢, u]), the

call to checkC2 succeeds. Indeed, the constant ¢ = R — == = 1 is computed

by findConstantCase2. Then checkProd(S, [y, z, ¢, u]) Wherey'S = R —1is able
to split S as a product TU, where T = S(z = 0,t = L,u = 1) =y+1 €
K(y) and U = S/T = tutzif:_zl—i-Z € K(z,t,u). Indeed, the graph considered in
connectedVariablesProd(S, [y, z, t, u]) is

which admits two connected components.

Then the function decouple performs recursive calls on 7" and U. The call
to decouple(T, [y]) simply returns 7. When calling decouple(U, [z, t, u]), the call
to checkC3 succeeds. Indeed, the constant ¢ = U — UUUt = 0 is computed by

findConstantCase3. Then checkC1(1/U, [z,t,u]) is able to split 1/U as a sum
V+W whereV=1/Ut=1u=0)=24+42€K(z)and W =1/U-V = —f_@‘u

Then the function decouple performs recursive calls on V' and W. The call
to decouple(V, [z]) simply returns V. Finally, when calling decouple(W, [t,u]),
checkC4 succeeds. Algorithm findConstantsCase4 computes ¢ = 0 and d = —2
and checkProd(—d/(W — ¢) — 1,[t,u]) decomposes —d/(W —c) —1 = £ as a
product 1 times %.

Putting everything together, decouple(F, [z, y, z,t, u]) returns a tree encoding
the fraction

y+1

2
+z+3)+(1+
@+t 8)+ (1 =

).

1+1

Please note that the output would be different (and slightly more compact)
if Algorithm findConstantsCase4 were returning ¢ = —2 and d = 2, instead of
¢ =0 and d = —2 (see Proposition 10).

Ezample 4. The main point of this example is to show how Eq. (5) below can
be rewritten into Eq. (6). We however quickly explain how to derive Eq. (5)
using [1,6].
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Consider the following reactions, which simulate a gene G regulated by the
protein P it produces: G—I—PéH GS G+ M, M i>M—|—P MMQ)

P Yoiks, (). The three first reactions follow the classical mass action law, and the
two last are Michaelis-Menten degradations. Assuming the bmdlng/unblndmg
of the protein is fast, the following dynamical system can be obtained:

a((fM(t) = Vp)P(t) + fRpM(8)G(2)

H'(t) = -G'(t) = (QG(t) +aP(t) +b)(k, + P(t))

(5)

1y (€G(t) = Vi) M(t) + ek G(t)
M(t) = Ky, + M(t) ’
Pl(t) ((fM(t) = Vu)P(t) + fpM(t))(aP(t) +b)

(aG(t) + aP(t) + b)(ky + P(t))

The right hand sides are quite compact, and one clearly sees some denomina-
tors like ky, + P(t) and k,,, + M (t) coming for the Michaelis-Menten degradations,
and aG(t) + aP(t) + b coming from the fast binding/unbinding hypothesis.

Using Algorithm decouple on the right hand sides of Eq. (5) seen as fractions
of K(Vin, ks Vi, kp, a, by e, f,G, H, M) with K = Q(P), one gets

v, P(1)
, MO
H(0) = =6/ = —— ©)
1 + a @ 7
el0)
M (t) = _km"im +eGl), (7)
TR
-2
Pt = a0
1+

P(t) (1+ o)

Eq. (6) might be of interest for a modeler. For example, the expression of
M’(t) in (6) clearly shows that M’(t) is the contribution of two reactions (the
degradation of M and the production of M by the gene), whereas it is quite
hidden in (5). Expression of M’(t) in (6) clearly indicates a contribution fM (t)—

k‘:‘fp(’éz) (the production of P minus the degradation of P) divided by the special
L4 P(t)

correction term — (1 + %o ) that comes from the fast binding/unbinding

hypothesis.

Please remark that Eq. (6) are not obtained anymore if one considers P as
a variable instead of putting it in the base field. The reason is that P appears
in too many places, which prevents a “nice” decoupling.
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Also, note the term —Y=— in the expression of M’(t) in (6). This term is
M(t)
probably a bit odd for a modeler, who would rather prefer the more classical
form YmM@)
km+M(t)

As a last comment, using the intpakX package [5], here are the intervals
obtained by using either Eq. (5) or (6), on the intervals G = [0.4,0.7], M =
[10.0,15.0], P = [50.0,100.0], V,,, = [130.0,250.0], k,, = [100.0,200.0], V, =
[80.0,160.0], k, = [100.0,200.0], a = [10.0,20.0], b = [5.0,10.0], e = [3.1,4.5],
f=1[7.8,11.6]:

Value for | H'(t) G'(t) M'(t) P'(t)
Eq. (5) | [ —0.07, 8.10] | [ —8.10, 0.07] | [-32.79, —2.97] | [~10.53, 1163.61]
Eq. (6) |[—0.39, 2.21] [ —2.21, 0.39] | [~31.37, —3.04] | [~28.55, 160.04]

Except for the interval for P’(t), the differences between the intervals using
Eq. (5) or (6) is here rather minor.

Example 5. The following example is a bit artificial but illustrates how compact
fractions can become big when being developed. Consider the fraction

a + g €0t e

P bito53 " ht7s
o c1 g1
co+ <5 go + 73
d1+d2+c3 h1+h2+g3

which is in a completely decoupled form since each variable only appears once.

Developing F' as a reduced fraction P/Q yields a polynomial P of degree
10 with 450 monomials, and a polynomial @ of degree 10 with 225 monomials.
Our algorithm decouple recovers from P/Q the fraction F' with some minor sign
differences

a €1
—Q0 — ——wx — - —€p —
_—a3—’>2+b1 f1+f2+(,d )
C1 91
—Co — 5} —go + 5}
T Td—e Th —gs—hy M

Finally, if each variables is replaced by the interval [1.0,5.0], the reduced
fraction P/(Q yields the interval [0.140 x 1075,0.284 x 107], whereas the decoupled
form yields [0.237,16.8].

5 Implementation and Complexity

5.1 Complexity

Algorithm decouple performs O(n?) operations over K(X)?, where n is the num-
ber of variables of X. Indeed, Algorithm decouple performs at most two recursive
calls on a partition of X, plus at most O(n) arithmetic operations: each “check”
algorithm performs a linear number of operations over K(X) (including their
subalgorithms), and there is no other operation in K(X) in Algorithm decouple.

3 We count here only arithmetic operations and differentiations. Note that complexity
is not the main point of this paper, so that we do not go into much details here.
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Note that we are not considering the complexity over K, which is much
higher. Indeed, differentiations, additions, are intensively used and may pro-
duce very large fractions. Also, reduced forms of fractions are computed inten-
sively, causing a lot of ged computations. Some techniques are mentioned in the
next section, in order to limit this problem. Finally, if we consider operations
over K, our algorithm is Las Vegas, as there are some random evaluations in
Algorithms 2 and 11.

5.2 Implementation

Algorithm decouple has been coded in the Maple 2020 computer algebra system.
All examples presented in the paper run under ten seconds (on a i7-8650U CPU
1.90 GHz running Linux), and the memory footprint in under 180 Mbytes.

Our implementation has also been intensively stress-tested in the following
way. It is easy to compute splittable fractions by building a tree representing a
decoupling. Expanding this tree yields a (usually large) fraction which is given
to Algorithm decouple, which then recovers the initial decoupling.

Some heuristics have been used in our code to limit potential costly compu-
tations. For example, when testing that a fraction is zero, some evaluations are
first performed, and the fraction is only developed if all evaluations return zero.

One difficulty in Algorithm 11 is to decide whether the equation d? = 4(a%—b)
admits solution for d in the field K. For the moment, we simply chose to use an
expression with a radical for d, thus assuming d exists.
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project ANR-17-CE40-0036 and DFG-391322026 SYMBIONT. We also want to thank
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Abstract. We provide a procedure which partially extends Fulton’s
intersection multiplicty algorithm to the general case, using a general-
ization of his seven properties. This procedure leads to a novel, standard
basis free approach for computing intersection multiplicities beyond the
case of two planar curves, which can cover cases the current standard
basis free techniques cannot.

1 Introduction

The study of singularities in algebraic sets is one of the driving application areas
of computer algebra and has motivated the development of numerous algorithms
and software, see the books [2,4] for an overview. One important question in that
area is the computation of intersection multiplicities. The first algorithmic solu-
tion was proposed by Mora, for which a modern presentation is given in [4].
Mora’s approach relies on the computation of standard bases. An alternative
approach has been investigated in the 2012 and 2015 CASC papers [1,6], fol-
lowing an observation made by Fulton in [3, Section 3-3] where he exhibits an
algorithm for computing the intersection multiplicity of two plane curves.

Fulton’s algorithm is based on 7 properties (see Sect. 2.4 of the present paper)
which uniquely define the intersection multiplicity of two plane curves at the
origin, and yield a procedure for computing it, see Algorithm 1. If the input is a
pair (fo, go) of bivariate polynomials over some algebraically closed field K, then
Fulton’s 7 properties acts as a set of rewrite rules replacing ( fo, go), by a sequence
of pairs (f1,91), (f2,92), . .. of bivariate polynomials over K, which preserves the
intersection multiplicity at the origin. This process may split the computation
and terminates in each branch once reaching a pair for which the intersection
multiplicity at the origin can be determined. This is an elegant process, which,
experimentally, outperforms Mora’s algorithm, as reported in [9].

Extending Fulton’s algorithm to a general setting was discussed but not
solved in [1,6]. Given n polynomials fi,...,f, € K[zy,...,2,] generating a
zero-dimensional ideal, and a point p € V(f1,..., fn), the authors of [1,6]
propose an algorithmic criterion for reducing the intersection multiplicity of p
© Springer Nature Switzerland AG 2021
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in V(f1,..., fn), to computing another intersection multiplicity with n—1 poly-
nomials in n — 1 variables. For this criterion to be applicable, a transversality
condition must hold. Unfortunately, this assumption is not generically true.

The present paper makes three contributions towards the goal of extending
Fulton’s algorithm to the general, multivariate case.

1. In Sect. 3, we propose and prove an adaptation of Fulton’s algorithm to handle
polynomials in three variables. For f,g,h € K[z,y, 2] which form a regular
sequence in the local ring at p € A3, the proposed algorithm either returns the
intersection multiplicity of p in V(f,g,h), or returns “Fail”. We show that
this algorithm can cover cases which were out of reach of the algorithmic
criterion [1,6].

2. In Sect. 4, we extend the algorithm proposed in Sect. 3 to the general setting
of n-polynomials in n variables, where n > 2.

3. In Sect. 5, we prove that if n polynomials f1, ..., f, € K[z1,...,2,] form both
a triangular set and a regular sequence in the local ring at p € A™, then the
intersection multiplicity of p in V(f1,..., f,) can be obtained immediately
by evaluating f1,..., fn.

The result of Sect. 5 has two important consequences. First, it provides an opti-
mization for Fulton’s algorithm as well as for the algorithms of Sects.3 and 4:
indeed, when these algorithms are applied to a triangular regular sequence, they
immediately return the intersection multiplicity at p of such input system. Sec-
ond, this result suggests a new direction towards the goal of extending Fulton’s
algorithm: develop an algorithm which would decide whether an arbitrary regular
sequence fi,..., f, (in the local ring at p) can be transformed into a triangular
regular sequence.

Lastly, the present paper considers only the theoretical aspects of extending
Fulton’s algorithm. The current implementation, and other interesting topics
such as optimizations, relative performance, and complexity analysis, will be
discussed in a future paper.

2 Preliminaries

2.1 Notation

Let K be an algebraically closed field. Let A™ denote A™(K), the affine space of
dimension n over K. Assume variables x1,...,x, are ordered x1 > ... > x,,. We
define the degree of the zero polynomial to be —oo with respect to any variable.

If I is an ideal of K[zy,...,2,], we denote by V(I) the algebraic set (aka
variety) consisting of the common zeros to all polynomials in I. An algebraic
set V is irreducible, whenever V.= V; U V, for some algebraic sets Vi, Vg,
implies V. = V; or V = V. The ideal of an algebraic set V, denoted by I(V),
is the set of all polynomials which vanish on all points in V. For f1,...,f, €
Klz1,..., 2], wesay V(f1),..., V(f,) have a common component which passes
through p € A™ if when we write V(fi,..., fn) as a union of its irreducible
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components, say Vi U...U V,,, there is a V; which contains p. Similarly, we
say fi,...,fn have a common component through p when V(f1),...,V(f,)
have a common component which passes through p. We say an algebraic set is
zero-dimensional if it contains only finitely many points in A".

2.2 Local Rings and Intersection Multiplicity

Definition 1. Let V be an irreducible algebraic set with p € V. We define the
local ring of V at p as

Ov,p = {; | f,9 € K[z, ..., 2,]/I(V) where g(p) # 0},

Often, we will refer to the local ring of A™ at p, in which case we will simply
say the local ring at p and write

Opnp = {£ | f,9 € Klzy,...,z,] where g(p) # 0},

Local rings have a unique maximal ideal. In the case of Opn , all elements
which vanish on p are in the maximal ideal and all of those that do not are units.
Hence, given an element f € K|zy,...,x,] we can test whether f is invertible
in Ogn , by testing f(p) # 0.

Definition 2. Let fi,... f, € K[z1,...,2,]. We define the intersection multi-
plicity of fi,..., fn at p € A" as the dimension of the local ring at p modulo
the ideal generated by f1,..., fn in the local ring at p, as a vector space over K.
That is,

Im(p; f1,..., fn) :=dimg (Oanp /(f1,-- -, fn)) -

The following observation allows us to write the intersection multiplicity of
a system of polynomials as the intersection multiplicity of a smaller system of
polynomials, in fewer variables, when applicable. It follows from an isomorphism
between the respective residues of local rings in the definition of intersection
multiplicity.

Remark 1. Let f1,... fn € K[z1,...,z,] and p = (p1,...,pn) € A™. If there are
some f; such that f; = x; — p;, say fm,..., fn where 1 < m < n, then

Im(pa fl7"'7.f’n) = Im((p17"'7p7n—1); Fl)' "aFrrL—1)7

where Fj is the image of f; modulo (zp, — pm,. .., Tn — Pn).

2.3 Regular Sequences

Regular sequences are one of the primary tools leveraged in our approach to
compute intersection multiplicities. Given a regular sequence, Corollary 1, along
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side Propositions 3 and 4, describe a set of permissible modifications which
maintain regularity.

Later we will encounter a property of intersection multiplicities which
requires the input polynomials form a regular sequence. Hence, our approach
will be to start with a regular sequence, perform a set of operations on the
input system which are permissible as to maintain being a regular sequence, and
compute the intersection multiplicity.

Proposition 1 can be found in [5, Section3-1] and Proposition 2 in [7,
Section 6-15]. We believe Propositions 3, 4, and 5 can also be found in the
literature but include proofs for completeness, as we refer to these propositions
frequently in later sections.

Definition 3. Let R be a commutative ring and M an R module. Let ry,...,rq
be a sequence of elements in R. Then ry,...,rq is an M-regular sequence if
r; s not a zero diwvisor on M/{ri,...,ri_1)M for all i = 1,...,d and M #
(riy...,ra)M.

When R, M = Oyn ,, we will often refer to a M-regular sequence as a regular
sequence in Oar 5, or simply as a regular sequence.

Proposition 1. Let r1,...,rq form a regular sequence in a Noetherian local
ring R, and suppose all r; are in the mazximal ideal, then any permutation of
71,...,7q 18 a reqular sequence in R.

Corollary 1. Let f1,...,fn € K[z1,...,2z,] where f1,..., fn vanish on some
p € A" and form a regular sequence in Oan . Then any permutation of f1,..., fn
is a regular sequence in Opn p.

Proof: Since fi,..., fn vanish at p they are in the maximal ideal of Ogn p,. The
conclusion follows from Proposition 1. O

With Corollary 1, we can now give a more intuitive explanation of regular
sequences in the local ring at p. Regular sequences in the local ring at p can
be thought of as systems which behave nicely at p. That is, if fi,...,f, €
K[z1,...,x,] is a regular sequence in the local ring at p, no f; is zero, a zero-
divisor, or a unit modulo any subset of the remaining polynomials. Moreover, we
can say there is no pair f;, f; where ¢ # j, modulo any subset of the remaining
polynomials, which has a common component through p.

Proposition 2. If fi,..., fn € Klzi,...,2,] is a reqular sequence in Oyn )
then the irreducible component of V (f1,..., fn) which passes through p is zero-
dimensional.

We may assume V(f1,..., fn) is equal to its component which contains p
since the other components do not affect the intersection multiplicity.
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Proposition 3. Let fi,...,fn € Kxy,...,x,] where fi1,...,fn vanish on
some p € A"™. Fiz some g € {f1,...,fn} and choose some subset I C
{ieN|1<i<n,f; #g}. Foreachi=1,...,n, define
o L Figl
! Sifi_rig ifiEI ’
where s;,r; are in Klz1 ..., x,] and each s; is invertible in Opn .
Then fi,..., fn forms a reqular sequence in Opn ,, if and only if F{,... F!

forms a regular sequence in Opn p.

Proof: By Corollary 1, fi,..., f, is a regular sequence under permutation, thus
we may reorder so that all polynomials with indices in I are at the end of the
sequence. That is, we may assume I = {i e N| N < i <n} for some N € N.
Moreover, we may reorder so that g = fy.

It suffices to show FY is regular modulo (F{,... , F[ ) for each k such that
N < k < n. First observe,
(F{,.. ., F) = {f1,- . [N snsrfNer — PN SNy - skfk — TifN)
= (f1, - SN SN N1 - Sk SR)
= {f1,.- s [)-
Hence, we will show F} is regular modulo (f1, ..., fx—1). Suppose it was not,

thus there are ¢, a1,...,ar—1 in Opn , where ¢ & (f1,..., fe—1) such that,
quI =a1fi+...+ar_1fr—1
@skfe —qrefn =arfi+... Fap_1fr—1

afe = s; (a1 fi + ...+ (qri +an) fx + .+ ag—1 fr1).

Since g & {f1,..., fk—1), this contradicts the regularity of fx modulo {fi,...,
fr—1). The converse follows by the same argument. 0O

Proposition 4. Let f1,..., fn € K[x1,...,z,] where f1,..., fn vanish on some
p € A™. Suppose for some i we have f; = qiq2 for some q1,q2 € Klxq,..., ]
which are not units in Opn . Then fi,..., fn is a regular sequence in Opn p

if and only if both f1,...,q1,...,fn and f1,...,q2,..., [n are reqular sequences
m OAn’p.

Proof: Suppose fi,..., fn is a regular sequence in Oar ,,. By Corollary 1 we may
assume i = n. We may assume neither ¢1,q92 € (f1,..., fn—1) since otherwise,
the result clearly holds.

Suppose f, is not regular, then gq1q92 = qf, = Q1f1 + ... + Qn_1fn_1 for
some ¢,Q1,...,Qn-1 € Oanp where ¢ & (f1,..., fo—1). f qq1 & (f1,--, fa-1)
then go is a zero divisor since g2 & (f1,-.-, fu—1)- If gg1 € {f1,-.., fn—1) then
since q1 & {f1,---, fn-1), q1 is a zero divisor.

Suppose one of q1,qo was a zero divisor, say ¢; and write qq1 = Q1 f1 + ...+
Qn—1fn—1 for some ¢q,Q1,...,Qn-1 € Oan p where ¢ & (f1,..., fn_1). Observe

we have ¢2Q1f1 + ... + 2Qn-1fn—1 = qq1g2 = qf. Since g2 & (f1,..., fu-1), f
is a zero divisor. 0O
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Proposition 5. Let fi,..., fn be polynomials in Klzy,...,x,] which vanish
on p. Suppose fi1, ..., fn form a reqgular sequence in K[xq, ..., x,], then fi,..., fu
form a regular sequence in Opn p.

Proof: The case where n = 1 is straight forward, assume n > 1. Suppose
fis..., fn is not a regular sequence in Oan» ,. Then there is some ¢ > 1 such
that f; is not regular modulo (fi,..., fi—1). Write,

Q1 Qi1 Q

=fit. = fi =i,

U5 qi—1 q

for some Q17"'7Qi—17q17"'7qi—17Q7q € K[xla"'axn] where q1y---54i—1 do
not vanish on p and Q & (f1,..., fi—1). Observe we have,

(@ i+ (@ Gaa)Qicafici = (- - 4im1)Q i,

where ¢ - ... @ - ... gi—1 is the product of ¢ - ... ¢;—1 with g; omitted.
Since Q ¢ (f1,..., fi—1) and since none of ¢y,...,g;—1 vanish on p and all of
fi,---, fi—1 vanish on p, we must have (¢1 ... - ¢-1)Q & (f1,---., fi—1), hence
fi is not regular modulo (fi,..., f;—1) in the polynomial ring. O

Unlike Corollary 1, and Propositions 3 and 4, Proposition 5 does not give a
permissible modification we can make to a regular sequence. Instead, Proposi-
tion 5 states that to test for a regular sequence in the local ring, it is sufficient
to test for a regular sequence in the polynomial ring.

As mentioned earlier, our approach initially requires the input system to be
a regular sequence. Proposition 5 tells us this is a reasonable requirement which
can be tested using techniques for polynomial ideals.

2.4 Bivariate Intersection Multiplicity

It is shown in [3, Section 3-3] that the following seven properties characterize
intersection multiplicity of bivariate curves. Moreover, these seven properties
lead to a constructive procedure which computes the intersection multiplicity of
bivariate curves, which is given in Algorithm 1.

Proposition 6 (Fulton’s Properties). Let p = (p1,p2) € A% and f,g €
K[z, y].

- (2-1) Im(p; f,g) is a non-negative integer when V (f) and V(g) have no
common component at p, otherwise Im(p; f,g) = oo.

(2-2) Tm(p; f,g) = 0 if and only if p ¢ V() NV (g).

~ (2-8) Im(p; f,9g) is invariant under affine changes of coordinates on AZ.

= (2-4) ITm(p; f,g) = Im(p; g, f).
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~ (2-5) Im(p; f,g) > mgmg where my and my are the respective tailing degrees
of f and g expressed in K|z —p1,y—p2]. Moreover, Im(p; f,g) = mymg, when
V (f) and V (g) intersect transversally, i.e. have no tangent lines in common.

= (2-6) Im(p; f,gh) =Im(p; f,9) +Im(p; f,h) for any h € K[z, y].

= (2-7) Im(p; f,g) =Im(p; f, g+ hf) for any h € Kz, y].

Algorithm 1: Fulton’s algorithm

1 Function im(p; f, g)
Input: Let: o >y
1. p € A? the origin.
2. f,9 € K[z, y] such that ged(f,g)(p) # 0.

Output: Im(p; f,g)

2

3 L return 0

4 | redeg, (f(z,0))

5 | s« deg, (g(z,0))

¢ | ifr>sthen /% Green ¥/
7 L return im(p; g, f)

8 if 7 < 0 then /* Yellow, y | f */
9 write g(z,0) = 2™ (am + @Gm+1T + ...)
10 return m + im(p; quo(f, y;y), 9)
11

12 L g =1c(f(2,0) - g = ()" "le(g(,0)) - f

13 return im(p; f,g’)

The following proposition was proved by Fulton in [3, Section3-3]. It is
included here for the readers convenience, as we will use similar arguments in
later sections.

Proposition 7. Algorithm 1 is correct and terminates.

Proof: By (2-3) we may assume p is the origin. Let f, g be polynomials in K[z, y]
with no common component through the origin. By (2-1), Im(p; f,g) is finite.
We induct on Im(p; f,g) to prove termination. Suppose Im(p; f,g) = 0, then
by (2-2), at least one of f or g does not vanish at the origin and Algorithm 1
correctly returns zero.

Now suppose Im(p; f,g) = n > 0 for some n € N. Let r, s be the respective
degrees of f, g evaluated at (x,0). By (2-4) we may reorder f, g to ensure r < s.
Notice 7, s # 0 since f, g vanish at the origin.

If < 0, then f is a univariate polynomial in y which vanishes at the origin,
hence f is divisible by y. By (2-6) we have,

Im(p; f,g) = Im(p; y,9) + Im(p; quo(f,y;),9) -
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By definition of intersection multiplicity Im (p; v, g) = Im(p; y, g(x,0)). Since
g(z,0) vanishes at the origin and since g has no common component with f
at the origin, g(z,0) is a non-zero univariate polynomial divisible by x. Write
9(z,0) = 2™(am + ami1x + ...) for some an, Gpmy1,... € K where m is the
largest positive integer such that a,, # 0. Applying (2-6), (2-5), and (2-2) yields

Im(p; f,9) = m+Im(p; quo(f,y;v),9) -

Thus, Algorithm 1 returns correctly when r < 0. Moreover, we can compute
Im(p; quo(f,y;y),9) < n by induction.

Now suppose 0 < r < s. By (2-7), replacing g with ¢’ preserves the inter-
section multiplicity. Notice such a substitution strictly decreases the degree in x
of g(x,0). After finitely many iterations, we will obtain curves F,G such that
Im(p; f,g9) = Im(p; F,G) and the degree in z of F(z,0) <0. O

2.5 A Generalization of Fulton’s Properties

The following theorem gives a generalization of Fulton’s Properties for n poly-
nomials in n variables. This generalization of Fulton’s Properties was first dis-
covered by the authors of [6] and proved in [9)].

Theorem 1. Let fi,...,fn be polynomials in Klzy,...,z,] such that
V(fi,...fn) is zero-dimensional. Let p = (p1,...,pn) € A™. The
Im(p; f1,..., fn) satisfies (n-1) to (n-7) where:

~ (n-1) Im(p; f1,..., fn) i a non-negative integer.

- (n—,?) Im(p7 fla <. 'afn) =0 Zf and OTLly pr g V(fla s 7f71)

- (n-3) Im(p; f1,..., fn) is invariant under affine changes of coordinates on
A",

= (n-4) Im(p; f1,..., fn) =Im(p; o(f1,..., fn)) where o is any permutation.

- (n-5) Im(p; (x1 —p1)™, ..., (Xn —pu)™) = mi---m, for any
mi,...,Mp € N.

- (n_6) Im(pv f17 R fn—lagh) = Im(p’ fla s 7fn—1vg)+1m(p; fla s afn—lah)
for any g,h € K[z, ..., x,] such that fi,..., fan_1,gh is a reqular sequence
m OAn’p.

- (n'7) Im(p7 fla"'afn) = Im(p7 f17'-'7fn—lafn+g) fOT any g €
(fisooos fam1)

3 Trivariate Fulton’s Algorithm

In this section we show how the n-variate generalization of Fulton’s proper-
ties can be used to create a procedure to compute intersection multiplicity in
the trivariate case. Later we will see this approach generalizes to the n-variate
case, although, it is helpful to first understand the algorithms behaviour in the
trivariate case.
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This procedure is not complete since the syzygy computations, analogous to
those used in Algorithm 1, do not necessarily preserve intersection multiplicity
under (n-7). When this is the case, the procedure returns Fail to signal an error.

When the procedure succeeds, we obtain a powerful tool for computing inter-
section multiplicities in the trivariate case. This allows us to compute intersection
multiplicities that previously could not be computed by other, standard basis
free approaches, namely that of [1] and [9].

Throughout this section we assume p € A3 is the origin.

Definition 4. Let f be in Kz, y, z] where x »= y = z. We define the modular
degree of [ with respect to a variable v € V as deg, (f mod (V.,)), where
V = {x,y, 2z} is the set of variables and V., is the set of all variables less than v
in the giwen ordering. If V., = 0, we define the modular degree of f with respect
to v to be the degree of f with respect to v. Write moddeg(f,v) to denote the
modular degree of f with respect to v.

Remark 2. The definition of modular degree can be generalized to a point

p = (p1,p2,p3) € A3 by replacing Vo, with Vo, = {x —p1,y — p2, 2 — p3}
in Definition 4.

The modular degree is used to generalize the computation of r,s in Algo-
rithm 1. If we fix some variable v, the modular degree with respect to v is the
degree of a polynomial modulo all variables smaller than v in a given ordering.

Below we formally define cases in terms of the colour they are highlighted with
in Algorithm 2. Although not necessary, using a name to distinguish between
cases rather then a set of conditions makes the proof far more readable, especially
when the set of cases is small, as is the case for trivariate intersection multiplicity.

In the n-variate case, we will see that some of these cases are not distinct and
in fact, instances of the same case. We will describe this in more detail later. For
now, we make this distinction to illustrate the similarities to Algorithm 1 and
to help the reader build intuition for this procedure in a more general setting.

Definition 5 (Colour Cases). Consider f,g,h € Kz, y, z].

1. We say we are in the red case if one of f, g, h does not vanish on p.
2. We say we are in the blue case if:

(a) We are not in the red case.

(b) The modular degrees of f,g,h in x are in ascending order.

(c) At least one of f or g has modular degree in x greater than zero.
3. We say we are in the orange case if:

(a) We are not in the red case.

(b) The modular degrees of f,qg,h in x are in ascending order.

(¢) Both f and g have modular degrees in x less than zero.
4. We say we are in the yellow case if:

(a) We are in the orange case.

(b) The modular degrees of f,g,h in x and the modular degrees of f,g in y

are in ascending order.
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(¢) The modular degree of [ in y is less than zero.
5. We say we are in the pink case if:
(a) We are in the orange case.
(b) The modular degrees of f,g,h in x and the modular degrees of f,g in y
are in ascending order.
(¢) The modular degree of f iny is greater than zero.

Remark 3. Note that when we are not in the red case for f, g, h the modular
degrees of f, g, h can never be zero as f, g, h vanish at p.

Algorithm 2 generalizes Fulton’s approach in the trivariate case. The key to
generalizing Fulton’s approach to 3 polynomials in 3 variables is generalizing the
splitting computation. When the yellow case holds, we can split the intersection
multiplicity computation into the sum of smaller intersection multiplicity com-
putations. Thus, the rest of the algorithm is designed to reduce to the yellow
case, or return Fail, in finitely many iterations.

At this time there is no clear way to characterize when Algorithm 2 fails
since it is difficult to determine before runtime which cases will be reached after
rewriting and splitting. Namely, it is difficult to characterize all inputs which will
eventually reach a branch which satisfies the conditions of the pink case. Given
an input that does satisfy the conditions of pink case, it is easy to check whether
Algorithm 2 fails in that iteration, as we will see in the proof of Theorem 2.

Theorem 2. Algorithm 2 correctly computes the intersection multiplicity of a
reqular sequence f,g,h € K[z, y, z] or returns Fail.

Proof: Let f,g,h € K[z,y, 2] be a regular sequence in Oys ,,. By (n-3) we may
assume p is the origin. By Proposition 2, V(f, g, h) is zero-dimensional, hence
by (n-1), Im(p; f,g,h) € N.

To prove termination we induct on Im(p; f, g, h) and show that when Algo-
rithm 2 does not fail, we can either compute Im(p; f, g, h) directly or strictly
decrease Im(p; f, g, h) through splitting.

Suppose Im(p; f, g, h) = 0, then by (n-2), one of f, g, h does not vanish on p,
hence, Algorithm 2 correctly returns zero. Assume that Im(p; f,g,h) = N for
some positive N € N.

By (n-4) and Corollary 1, we may reorder f, g, h so that their modular degrees
with respect to = are in ascending order.

Suppose f, g, h satisfy the conditions of the blue case, that is, at most one
polynomial has modular degree in x less than zero. Depending on how many
polynomials have modular degree in x less than zero, we perform slightly different
syzygy computations, since there is no need to reduce a modular degree in = of
a polynomial that already has modular degree in x less than zero. Notice the
syzygy computations in the blue case preserve intersection multiplicity by (n-
7) and regular sequences by Proposition 3. Since the modular degrees in z of
the resulting polynomials is strictly decreasing, we will reach the orange case in
finitely many iterations.

By (n-4) and Corollary 1, we may reorder f, g so that their modular degrees
with respect to y are in ascending order.
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Suppose f, g, h satisfy the conditions of the pink case. Define,
Ly =le(f(z,y,0);9),

Lg = lc(g(xa yvo)vy)

If Ly is not a unit in Ogn , and does not divide Ly, Algorithm 2 returns Fail
since (n-7) cannot be applied to the syzygy computations.

Suppose either Ly(p) # 0 or Ly | Ly. Then the respective syzygy com-
putations preserve intersection multiplicity by (n-7) and regular sequences
by Proposition 3. Moreover, if ¢’ is the polynomial resulting from either of
the respective syzygy computations, then moddeg(¢’,y) < moddeg(g,y) and
moddeg(¢’, ) < 0. The latter statement follows from both f and g having mod-
ular degree in x less than zero as a result of being in the orange case. Since the
modular degree of g’ with respect to y strictly decreases, we will reach the yellow
case or return Fail in finitely many iterations.

Suppose f, g, h satisfy the conditions of the yellow case. Since moddeg(f, z) <
0, moddeg(f,y) <0, f is non-zero, and f vanishes at the origin, we have z | f.

By Proposition 4, the sequence z, g, h is regular, hence g(z,y,0) is non-zero
and vanishes at the origin. Since moddeg(g, z) < 0 holds, we have y | g(x,y,0).

Write f = zqf, g(x,y,0) = yqq, and mj, = max(m € Z* | h(z,0,0) = 0
mod (z™)). By (n-6) and Proposition 4, it is correct to compute:

Im(p; f,g,h) =Im(p; qr,9,h) + Im(p; z,q4,h) +Im(p; z,y,h)
=Im(p; qr,9,h) +Im(p; 2,q4,h) +my
=Im(p; q¢, 9, h) + Im(p; g4, h(x,y,0)) + mp.

Since my, is a positive integer, we have:

Im (p; qf,9,h) ,Im(p; q¢, h(z,y,0)) <Im(p; f,g,h) = N.

Thus, when Algorithm 2, called on the input g, g, h, does not fail, termination
follows from induction. 0O

To illustrate the utility of this approach we will work through an example
where the available standard basis free techniques used to compute intersection
multiplicity fail. A full description of these techniques can be found in [1] and
[9], although we give a brief overview below.

Suppose for fi,...,fn € Klz1,...,z,], we have V(f1,..., fn) is a zero-
dimensional, that is, Im(p; f1,..., fn) € N, and at least one of fi,..., f, say
fn is non-singular at p. Theorem 1 of [1], states that when the above conditions
hold, and under an additional transversality constraint between V (f1,..., fn—1)
and V(f,), an n-variate intersection multiplicity can be reduced to an n — 1-
variate intersection multiplicity computation.

In [9], the above reduction is combined with an additional reduction proce-
dure referred to as cylindrification. The idea behind this second reduction pro-
cedure is to use pseudo-division by a polynomial, say f,, to reduce the degree
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of f1,..., fn_1 with respect to some variable, say x,. The cylindrification pro-
cedure assumes that f, has a term containing x,, with a non-zero coefficient
invertible in Oan .

The following example contains 3 polynomials which are singular at p, hence
the above reduction cannot be applied. Moreover, one can check that applying
cylindrification does not reduce the input in a way that the first reduction crite-
rion holds. Hence, the current standard basis free techniques fail. Additionally,
this can be verified using the Maple implementation of the techniques in [9].

2

Example 1. Compute Im (p; 2y S — 22,25 — y2) using Algorithm 2.

Notice, 232, y® — 22, 2° —y? form a regular sequence. We compute the modular

degrees with respect to x: 7, < 0,s; < 0,t, = 5, hence, we begin in the orange
case. Since additionally, r, < 0, we are in the yellow case and the computation
reduces to:

Im (p; zyz,y5 — 22,x5 — yz) =Im (p; y2,y5 — 22,15 — y2)+Im (p; y4,x5 — y2)+5.
Start with Im (p; y*,2° — y?), applying Fulton’s bivariate algorithm we get,
Im(p; y4,x5 — y2) = Im(p; y?’,m5 — y2) +5
= Im(p; y? a® — y2) + 10
= Im(p; y,x5 — y2) + 15
= 20.

Next we compute Im (p; 2,y — 22, 2% — y2). Here we have modular degrees
in z: r, < 0,s, < 0,t, = 5, thus we are in the orange case. Computing the
modular degrees in y we get: ry, = 2,5, = 5, hence we enter the pink case. The
leading coefficient in y of y® — 22 evaluated at z = 0 is a unit, hence the pink
case computation is valid. Thus, let ¢’ = (y° — 22) — y3(y?) = —2?% and compute
Im (p; 92, —22,2° — ¢?).

Computing the modular degrees with respect to y we get: r, = 2,5, < 0,
hence we reorder y? and —z2. Again, we enter the yellow case and the compu-
tation reduces to

Im (p; —2%,y%, 2" = ¢*) =Im(p; —2,9%,2° — y°) + Im(p; y,2° — y°) +5.
Clearly Im (p; y, 0 — y2) = 5 by Fulton’s bivariate algorithm. The com-
putation Im (p; —z,y%, 2% — y2) immediately satisfies the yellow case, hence we
may split,
Im (p; —2,9% 2° —y?) = Im(p; —1,9% 2° —y*) +Im (p; y,2° — y°) +5
=0+5+5
= 10.

Combining the intermediate computations, we get,

Im(p; 2% y° — 2%, 25 — y2) = 45.
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Algorithm 2: Trivariate Fulton’s Algorithm

1 Function ims(p; f, g, h)

Input: Let: z >y > 2
1. p € A® the origin.
2. f,g9,h € K[z,y, 2] such that f, g, h form a regular sequence in O3 , or one
of f,g,h is a unit in Oys ,
Output: Im(p; f,g,h) or Fail
z if f(p)#0org(p)#£0orh(p)#0then  /x Red */
3 I_ return 0
4 ry < moddeg(f,y), 7z «— moddeg(f, x)
5 sy < moddeg(g,y), s« < moddeg(g, x)
6 ty, < moddeg(h,y), to — moddeg(h, )
7
8
9
10 if r, < 0 then /* Yellow */
11 myp «— maz(m € N | h mod (y,z) =z (a0 + a1z +...))
12 qr < quo(f,z;z)
13 g < quo(g(z,y,0),y;y)
14 | return ims(p; gr, g, k) + im(p; ¢g, h(2, y,0)) + mn
15 else /* Pink */
16 Ly —le(f(z,y,0);9)
17 Lg —lc(g(z,y,0);9)
18 if Ly(p) # 0 then
19 g — Lig—y" "vL,f
20 return ims(p; f,g’, h)
21 else if Ly | L, then
22 g <—g—ys’""”‘%f
23 return ims(p; f,g’, h)
24 else
25 |_ return Fail
2 | else  /xBlue#/
27 if r, < 0 then
28 R« lc(g(z,0,0); 2)h — z'=~*1lc(h(x, 0,0);2)g
29 return ims(p; f, g, h’)
30 else
31 g« le(f(x,0,0);2)g — z°*"*1c(g(x,0,0); z) f
32 W' —1le(f(z,0,0);2)h — 2=~ Ic(h(z, 0,0); ) f
33 return ims(p; f,g’, h')
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4 Generalized Fulton’s Algorithm

In this section, we give a generalization of Algorithm 1 using properties (n-1)
to (n-7). Unfortunately, the natural generalization using these properties does
not characterize intersection multiplicities as in the bivariate case. There are two
main reasons for this.

First, property (n-6) requires the input polynomials form a regular sequence
in order to split. In the bivariate case, splitting with (2-6) was always possible.
Thus, for our generalization, we must assume our input is a regular sequence
whenever the intersection multiplicity is not zero.

Second, syzygy computations do not necessarily preserve intersection mul-
tiplicity in the n-variate case. In particular, if a leading coefficient used in the
syzygy computation is not invertible in the local ring, (n-7) may not be applica-
ble. In the bivariate case, all leading coefficients considered in such a computa-
tion were units in the local ring. When such a case arises, other techniques must
be used to complete the computation, and hence our generalization will signal
an error.

Throughout this section we assume p € A" is the origin and n > 1.

Definition 6. Let f be in K[zy,...,z,] where 1 = ... = x,. We define the
modular degree of f with respect to a variable v € V as deg, (f mod (V.,)),
where V.= {x1,...,x,} is the set of variables and V,, is the set of all variables
less than v in the given ordering. If V<, = 0, we define the modular degree of f
with respect to v to be the degree of f with respect to v. Write moddeg(f,v) to
denote the modular degree of f with respect to v.

Remark 4. The definition of modular degree can be generalized to a point
p = (p1,...,pn) € A" by replacing Vo, with Ve, = {21 —p1,...,2n — Pn}
in Definition 6.

Remark 5. When f1,..., fn € Klz1,...,2,] form a regular sequence in Opn y,
the modular degrees of f1,..., f, can never be zero since fi,..., f, vanish at p.

Unlike in the trivariate case, it is no longer practical to partition the algorithm
into coloured cases. Moreover, we will see that this does not accurately reflect
the structure of the procedure. The main reason for this is that several of the
cases we encountered in the past are instances of the same, more general case.

Roughly speaking, Algorithm 3 can be divided into 2 key parts. The first is the
main loop which modifies the input using syzygy computations and reordering
polynomials. The second is the splitting part, which occurs as a result of the
main loop successfully terminating.

The purpose of the main loop, in the j-th iteration, is to create n — j poly-
nomials with modular degrees less than zero in x; and in any variable larger
than z;. When we examine Algorithm 2 in this context, we see the orange and
yellow case were simply conditions necessary to move forward an iteration in the
main loop. Moreover, the syzygy computations in the blue and pink case were
separate instances of the same process, which is used to reduce modular degrees
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for different iterations of the main loop. We highlight line 7 of Algorithm 3
with the colour orange to illustrate the similarities between moving forward an
iteration in the loop and satisfying the orange case in Algorithm 2.

Recall in Algorithm 2 there were several possible syzygy computations that
could be performed in the blue case, the deciding factor being, how many of the
input polynomials had modular degree in x less than zero. Extending this to the
context of the n-variate algorithm, in each iteration of the main loop, we check
how many polynomials already satisfy the condition required to move forward an
iteration. As in the blue case, this determines how many syzygy computations to
perform and which polynomials will be used in said computations. To illustrate
these similarities, we highlight line 11 of Algorithm 3 with the colour blue.

When the main loop terminates, assuming the procedure did not fail, our
input system will have a of triangular shape with respect to modular degrees.
That is, consider R, the n x n matrix of modular degrees, where R;; is the
modular degree of f; with respect to x;. Upon successful termination of the
main loop, any entry of R which lies above the anti-diagonal will be negative
infinity. Lemma 1, describes the implications of this triangular shape in terms
of splitting intersection multiplicity computations. To illustrate the similarities
between this splitting procedure, and the procedure used in the yellow case of
Algorithm 2, we highlight line 22 of Algorithm 3 with the colour yellow.

As in the trivariate case, we cannot clearly characterize all cases for which
Algorithm 3 fails before runtime, due to the difficulty in determining how an
input will be rewritten and split. Nonetheless, it is still easy to determine whether
an input will cause Algorithm 3 to fail in a given iteration of the main loop, as
described in the proof of Theorem 3.

Lemma 1. Let fi,..., fn be polynomials in K[x1,...,x,] which form a regular
sequence in Oxn p, where p is the origin. Let V = {x1,...,x,} and let Vs, =
{z; € V | x; >v}. Define the map J : {1,...,n—1} — {2,...,n} such that
Ji)=n—i+1.

Suppose for all i = 1,...,n — 1 we have moddeg(f;,v) < 0 for all v €
Vau,i - Then, we have x5y | fi(x1,...,253,0,...,0). Moreover, if we define
qi = quo(fi(l'1,~ . 'axJ(i),O,' . 70)7xJ(z)7xJ(Z)) th’en;

Im(pa flv"'afn) = Im(p7 Q1af27"'7fn) +Im(p7 x?ﬂQ?a"'af’ﬂ)
+ +Im(p7 x’ru'"axJ(i)+1aqz'7fi+17~-~,fn) +...
+ Im(p7 TnyTn—1,--- 7qn717fn) +m’n7

where m,, = mazx(m € Z" | fn(21,0,...,0) =0 mod (z7")).
Proof: First we will show that we can write fi(z1,...,253:,0,...,0) = T3¢
foralli=1,...,n—1.

Suppose Tn, ..., T j(i)+1, fir- -+, fn is a regular sequence for some 1 <i < n.
The hypothesis moddeg(f;, z1), ..., moddeg(f;, zs;)—1) < 0 and the fact that f;
is regular modulo (z;(;)41,...,2Z,) and vanishes at the origin implies ;)

divides fi(xl,...,xJ(i),O,...,O)
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Algorithm 3: Generalized Fulton’s Algorithm
1 Function imy (p; f1,..., fr)
Input: Let: 1 > ... > xp, n > 2
1. p € A" the origin.
2. fi,..., fn €K[z1,...,z,] such that fi,..., f, form a regular sequence in
Ogun p or one such f; is a unit in Ogn p.

Output: Im(p; fi,..., fn) or Fail

2

3 |_ return 0

4 fori=1,...,ndo

5 for j=1,...,n—1do

6 I_ rj(.’) — moddeg(fi, z;)

7 | forj=1,...,n—1do  /xOrange */
8 Reorder fi,..., fa—j+1 so that r{ < ... <r{"7*Y /x Green */
9 m «— min(i | T‘;—i) > 0) or m « oo if no such ¢ exists

10 if m < (n—j) then

11 fori=m+1,...,n—j+ldo /% Blue %/
12 d«— 7'](»2) — rém)

13 Ly, —le(fm(z1, ..., 25,0,...,0);25)

14 Li<—lC(fi(xl,...,I’j,O,...,O);l’j)

15 if Lyn(p) # 0 then

16 | fi = Lfi = 2fLifm

17 else if L,, | L; then

18 Lf{%fl—x}ii;m

19 else

20 |_ return Fail

21 L return lmn(p7 f17 RS f’ma f7/n+17 RS f'lll—j+l7 RS f’ﬂ)

22 /* Yellow */
23 mp — maz(m € Z" | fn(z1,0,...,0) =0 mod (z7*))

24 fori=1,...,n—1do

25 I_ qi <~ quo(fi(mlv'"7wn*i+1707---70)axn7i+1;xn7i+l)

26 return

27 imn(p;q1,f2,---,fn)
28 + imn—1(p; g2(x1,. - ., n-1,0),..., fa(x1,...,Tn-1,0))

29 +
30 :
31 +1m2(p7 q'n—l(xl, Z2, 07 s 70)7 fn(x17 z2, 07 R 0))
32 +mn
To show @y, ..., % s(i)41, fis- - [n 18 a regular sequence for all 1 < i < n, it
suffices to show x,, fo, ..., fn is a regular sequence, since repeated applications

of Proposition 4, and the above implication will yield the desired result.
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Observe moddeg(f1, 1), ..., moddeg(f1,z,—1) < 0and f; is a non-zero poly-
nomial which vanishes at the origin, and hence, must be divisible by z,. By
applying Proposition 4 we get x,,, fo,..., fn is a regular sequence.

Since f1,..., fn is a regular sequence we may apply (n-6) to get

Im(p; fi, ... fu) = Im(p; zn, fo, ..o fo) + Im(p; g1, fo, ., fn) -
By definition of intersection multiplicity,
Im(p; zp, fo,- -, fn) =Im(p; zp, fo(z1,. .., 20-1,0),..., fu(z1,...,20n-1,0)).
Continuing in this way we get,

Im(p7 fl7"'afn) :Im(pa qlaf2,"'afn) +Im(p7 xn7Q27-~-afn) + ...
+ Im(pa xnuxnflw"uqnfl?fn) +Im(p7 xnw'waufn) .

By definition of intersection multiplicity,
Im(p; Tp,..., 22, fn) = max(m € Z* | f,(21,0,...,0) =0 mod (z7)),
which completes the proof. 0O

Corollary 2. When the conditions of Lemma 1 hold,

Im(p7 fly"'afn) = Im(p7 q15f27"')f7l)
+ Im(pa QQ(xl,...,l‘n_l,O),.. 'afn(x17"'7xn—170)) +

+ Im(p7 QH—l(zlax27 Oa tey 0)7 fn(zlaan Oa ceey 0))

+ My,
Proof: Follows from Lemma 1 and the definition of intersection multiplicity. O

Theorem 3. Algorithm 3 correctly computes the intersection multiplicity of a
reqular sequence fi,..., fn € K[z1,...,2,] or returns Fail.

Proof: Let fi,..., fn € Klz1,...,2,] be aregular sequence in Ogn p,. By (n-3) we

may assume p is the origin. By Proposition 2, V(f1,..., fn) is zero-dimensional,
hence by (n-1) we may assume Im(p; fi,..., fn) € N.

To prove termination we induct on Im(p; f1,..., fn), and show that when
Algorithm 3 does not return Fail, we can either compute Im(p; f1,..., fn)

directly or strictly decrease Im(p; f1,..., f,) through splitting.

Suppose Im(p; f1,...,fn) = 0, then by (n-2), one of fi,...,f, does not
vanish at p, hence Algorithm 3 correctly returns zero. Thus, we may assume
Im(p; fi1,..., fn) = N for some positive N € N.
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First, we claim that either Algorithm 3 returns Fail or the input polynomials
can be modified while preserving intersection multiplicity such that they satisfy
the conditions of Lemma 1. Moreover, we claim such modifications can be per-
formed in finitely many iterations. To modify the input such that they satisfy
the conditions of Lemma 1, we proceed iteratively.

Fix some z; where 1 < j < n — 1, and suppose fi,..., fn—j+& all have
modular degree in x;_, less than zero for any 1 < k < j whenever j > 1. Notice
fis-+-5 fn—j+1 are the polynomials which have modular degree less than zero
in all variables greater then x;. By (n-4) and Corollary 1 we may rearrange
fis--+, fa—jt+1 so that their modular degrees with respect to x; are ascending.

To satisfy the conditions of Lemma 1, in the j-th iteration we must have
n — j polynomials in {f1, ..., fn—j+1} with modular degree in z; less than zero.
Since the modular degrees are in ascending order we may compute,

_Jmin(i | moddeg(f;, ;) > 0) if such an 7 exists,
"= 00 otherwise.

If m > n —j then fi,..., fn—; satisfy the conditions of Lemma 1 for the
variable z; and hence we are done.

Suppose m < n — j. We will use f,, in a syzygy computation with f; for all
t=m+1,...,n— 7+ 1 to reduce the modular degree of each f; with respect

to x;. Define,
L, = lc(fm(xla cee axj707 s 70);xj)7

Li = IC(fZ‘(.%‘l, . .,CCj,O, .. .,0);l‘j),

and
d = moddeg(f;, z;) — moddeg(f,x;).

If L,,(p) = 0 and there is an 4 such that L; fL,,, then (n-7) will not preserve
intersection multiplicity under the syzygy computation since L., is not a unit in
the local ring. When this case occurs, we return Fail.

Suppose either L,,(p) # 0 or for all i we have L, | L;. In which case, (n-7)
allows us to replace f; with f! = L, fi—x%L; fm, or f/ = f;—z¢ LLm fm respectively.
Moreover, Proposition 3 tells us such a substitution preserves regular sequences.

Notice if j > 1, then moddeg(f/,z;_x) < 0 for all 1 < k < j, since, by
assumption, both f; and f,, have modular degree in z;_j less than zero. Thus,
making such a substitution preserves the assumptions of our hypothesis. Lastly,
since moddeg(f/,z;) < moddeg(f;,z;), we will have n — j polynomials with
modular degree in x; less than zero or return Fail, in finitely many iterations.

Thus we may now assume fi, ..., f, satisfy the conditions of Lemma 1, hence
the algorithm correctly splits computations by Lemma 1 and Corollary 2.

To show termination, we may suppose none of the split computations fail,
since in such a case, termination is immediate. Since m,,, as defined in Lemma 1,
is a positive integer, each term has intersection multiplicity strictly less than
Im(p; f1,..., fn) = N and hence termination follows by induction. O
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5 Triangular Regular Sequences

In this section we consider input systems with a triangular shape. We observe
that under a mild constraint, such a system is a regular sequence. Moreover, the
triangular shape combined with being a regular sequence allows us to compute
the intersection multiplicity of such a system using (n-6).

At this time there are no known triangular decomposition techniques that
preserve intersection multiplicity for a polynomial ideal in the local ring;
although, if such a technique were to be discovered, the following observation
could lead to a complete algorithm for computing intersection multiplicity.

Definition 7. The main variable of a polynomial f € K[z, ..., x,]| where x1 >
... = Tp 18 the largest variable x; such that lc(f;x;) is non-zero.

Theorem 4 (McCoy’s Theorem). Let f be a non-zero polynomial in R[z]
where R is a commutative ring. Then f is a reqular element of R[z] if and only
if ever non-zero s € R is such that sf # 0.

McCoy’s Theorem is a well-known result proven in [8].

Corollary 3. Consider a sequence ty,...,t, such that fori=1,...,n, each t;
is a non-zero polynomial in K[z;, ..., x,] with main variable x;.

If at least one non-zero coefficient of t;_1 is invertible modulo {(t;,. .. t,) for
all 1 < i <m, then t1,...,t, is a reqular sequence in K[z1,...,z,]. If t1,...,tn
also vanish on p € A™ then t1,...,t, is a reqular sequence in Opn p.

Proof: The first statement follows from Theorem 4, the second statement follows
from the first statement and Proposition 5. O

Proposition 8. Consider a sequencety, ..., t, such that fori =1,...,n, eacht;
is a non-zero polynomial in Kz, ..., x,] with main variable x;.

Suppose each t1,...,t, vanish at the origin, which we denote by p, and sup-
pose at least one non-zero coefficient of t;—1 is invertible modulo (t;,...,t,) for
1< <n.

Then we may write t;(x;,0,...,0) as z;" f; where m; is the least positive

integer such that f; € K[z;] does not vanish at the origin. Moreover,

Im(p; t1,... tn) =M1 ... My,
Proof: The result is trivial for n = 1, so we may assume n > 1. Since
ti(x;,0,...,0) is a non-zero univariate polynomial in K[z;] which vanishes at
the origin, we may write ¢;(z;,0,...,0) = x;" f; for a positive integer m; and f;

a unit in the local ring at p.
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By Corollary 3, t1, ..., t, is a regular sequence in O~ ;. Hence, we may apply
(n-6) and Proposition 4 repeatedly and finally (n-5) to get,

Im(p; t1,...,tn) =Im(p; t1,. .., tn_1, 20" fn)
=Im(p; t1,...,th—1,2z0'") +Im(p; t1,..., fn)
=myIm(p; t1,...,tn-1(n-1,0),2,) +0

My —
= myIm (p; t, oo, et xn)
= MpMp_1Im(p; t1,...,2p—1,2,) +0
=mq-...-mpyIm(p; x1,...,2,)
=M1-... My.
O
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Hull of Parametric Convex Polygons
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Abstract. Consider a rational convex polygon given by a system of
linear inequalities AT < l_;, where A is a matrix over Z, with m rows and
2 columns, and b is an integer vector. The coordinates b1, ..., by, of b are
treated as parameters while the coefficients of A have fixed values. We
observe that for every 1 < ¢ < m, there exists a positive integer T; so
that, when each b1,...,b,, is large enough, the vertex sets V and V' of
the respective integer hulls of P := P(b1,...,b;—1,bi,bit1,...,bn) and
P .= P(bi,...,bi—1,b; + Ti,bit1,...,bm), respectively, are in a “simple”
one-to-one correspondence. We state and prove explicit formulas for the
pseudo-period T; and that correspondence between V and V’. This result
and the ingredients of its proof lead us to propose a new algorithm for
computing the integer hull of a rational convex polygon.

Keywords: Parametric convex polygon - Integer hull - Pseudo-
periodic functions

1 Introduction

The integer points of rational polyhedral sets are of great interest in various
areas of scientific computing. Two such areas are combinatorial optimization (in
particular integer linear programming) and compiler optimization (in particu-
lar, the analysis, transformation and scheduling of for-loop nests in computer
programs), where a variety of algorithms solve questions related to the points
with integer coordinates belonging to a given polyhedron. Another area is at the
crossroads of computer algebra and polyhedral geometry, with topics like toric
ideals and Hilbert bases, see for instance [16] by Thomas.

One can ask different questions about the integer points of a polyhedral set,
ranging from “whether or not a given rational polyhedron has integer points”
to “describing all such points”. Answers to that latter question can take various
forms, depending on the targeted application. For plotting purposes, one may
want to enumerate all the integer points of a 2D or 3D polytope. Meanwhile, in
the context of combinatorial optimization or compiler optimization, more concise
descriptions are sufficient and more effective.

For a rational convex polyhedron P C Q% defined either by the set of its
facets or that of its vertices, one such description is the integer hull Py of P, that
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is, the convex hull of P N Z%. The set Py is itself polyhedral and can be described
either by its facets, or its vertices. One important family of algorithms for com-
puting the vertex set of Py relies on the so-called cutting plane method, originally
introduced by Gomory in [7] to solve integer linear programs. Chvdtal [3] and
Schrijver [13] developed a procedure to compute Pr based on that latter method.
Schrijver gave a full proof and a complexity study of this method in [12]. Another
approach for computing P; uses the branch and bound method, introduced by
Land and Doig in the early 1960s in [8]. This method recursively divides P into
sub-polyhedra, then the vertices of the integer hull of each part of the partition
are computed.

In addition to finding the description of the whole integer hull P; another
problem that is well studied is that of counting the integer points in a ratio-
nal polyhedron. A well-known theory on that latter subject was proposed by
Pick [11]. In particular, the celebrated Pick’s theorem provides a formula for the
area of a simple polygon P with integer vertex coordinates, in terms of the num-
ber of integer points within P and on its boundary. In the 1990s, Barvinok [1]
created an algorithm for counting the integer points inside a polyhedron, which
runs in polynomial time, for a fixed dimension of the ambient space. Later stud-
ies such as [21] gave a simpler approach for lattice point counting, which divides
a polygon into right-angle triangles and calculates the number of lattice points
within each such triangle. In 2004, the software package LattE presented in [9]
for lattice point enumeration, offers the first implementation of Barvinok’s algo-
rithm.

In practice, polyhedral sets are often parametric. Consider for instance the
for-loop nest, written in a programming language (say C) of a dense matrix
multiplication algorithm. At compile time, the upper bound of the value range
of each loop counter is a symbol. To be more precise, the iterations of that
for-loop nest are the integer points of a polyhedral set P given by a system of
linear inequalities AT < b where A is a matrix with integer coeflicients, bis a
vector of symbols (actually the parameters of the polyhedral set) and Z is the
vector of the loop counters. At execution time, different values of b yield different
shapes and numbers of vertices for P;. So what can be done at compile time?
This is the question motivating this paper. But before we present our results,
let us continue our literature review, returning to the problem of counting the
number of integer points in (parametric) polytopes. Verdoolaege, Seghir, Beyls,
Loechner and Bruynooghe present in [17] a novel method for that latter problem,
based on Barvinok’s decomposition for counting the number of integer points in
a non-parametric polytope. In [15], Seghir, Loechner and Meister deal with the
more general problem of counting the number of images by an affine integer
transformation of the lattice points contained in a parametric polytope.

Since the present paper is concerned with the integer hull of a parametric
polyhedron, it is natural to ask for the number of vertices in an integer hull
of a polyhedron. Note that this problem only considers the vertices not all the
lattice points. The earliest study by Cook, Hartmann, Kannan and McDiarmid,
in [4], shows that the number of vertices of Py is related to the size (as defined
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n [12]) of the coefficients of the inequalities that describe P. More recent studies
such as [18] and [2] use different approaches to reach similar or slightly improved
estimates.

We turn our attention to the main result of our paper. We consider a rational
convex polygon (that is, a rational polyhedral set of dimension 2) given by a
system of linear inequalities AZ < I;, where A is a matrix over Z, with m rows
and d = 2 columns, and bis an integer vector. The coordinates by, ..., b,, of b are
treated as parameters, while the coefficients of A have fixed values. We observe
that for every 1 < i < m, there exists a positive integer T; so that, when each
bi,...,bn is large enough, the vertex sets V and V' of the respectively integer
hulls of

P .= P(bl, .. .7bi,1,bi,bi+1, . ,bm)

and
P = P(b1,...,bi—1,bi + Ti,big 1, .., b)),

respectively, are in “simple” one-to-one correspondence. Here, simple, means
that one can construct a partition Vi,...,V, of V and a partition V'q,...,V’,
of V', together with vectors wy,...,i#. of Z?> so that every vertex of V’;
is the image of a vertex of V; by the translation of w;, for all 1 <
i < c. Section 5 offers various examples, including animated images, which
illustrate our result. Watching those animations requires to use a mod-
ern document viewer like Okular. The animations are also available at
https://github.com/lxwangruc/parametric_integer_hull.

While the arguments yielding to our main result are elementary, the proof is
relatively long and technical. The first and main step is a study of the pseudo-
periodicity of a parametric angular section, see Sect. 3. Since a convex polygon is
an intersection of finitely many angular sectors, angular sectors are the building
blocks of our main result, see Sect. 4, where the partitions of Vi,..., V. of V,
V'y,...,V'.of V', and the vectors w71, . .., U, are explicitly given. This result and
the ingredients of its proof lead us to propose a new algorithm for computing
the integer hull of a rational convex polygon, see Sect. 6.

We note that in [10] Meister presents a new method for computing the integer
hull of a parameterized rational polyhedron. The author introduces a concept
of periodic polyhedron (with facets given by equalities depending on periodic
numbers). Hence, the word “periodic” means that the polyhedron can be defined
in a periodic manner which is different from our perspective.

Last but not least, we recall the work of Eugeme Ehrhart from his articles [6]
and [5]. For each integer n > 1, Ehrhart defined the dilation of the polyhedron P
by n as the polyhedron nP = {nqg € Q% | ¢ € P}. Ehrhart studied the number
of lattice points in nP, that is:

i(P,n) = #nP N ZY = #{qeP | nge Z%.

He proved that there exists an integer N > 0 and polynomials fy, f1,..., fnv—1
such that i(P,n) = fi(n) if n =4 mod N. The quantity i(P,n) is called the
Ehrhart quasi-polynomial of P, in the dilation variable n. Ehrhart’s study on
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quasi-polynomials is focused on counting the lattice points and can be seen as a
higher-dimensional generalization of Pick’s theorem. Meanwhile our research on
the pseudo-periodicity of a parametric convex polygon studies the number and
coordinates of the vertices of the integer hull.

2 Preliminaries

In this review of polyhedral geometry, we follow the concepts and notations of
Schrijver’s book [12], As usual, we denote by Z, Q and R the ring of integers, the
field of rational numbers and the field of real numbers. Unless specified otherwise,
all matrices and vectors have their coefficients in Z. A subset P C Q¢ is called a
convex polyhedron (or simply a polyhedron) if P = {# € Q? | A7 < 5} holds, for a
matrix A € Q"*? and a vector be Q™, where m and d are positive integers; we
call the linear system {AZ < 5} an H-representation of P. Hence, a polyhedron
is the intersection of finitely many affine half-spaces. Here an affine half-space
is a set of the form {Z € Q? | w'%¥ < §} for some nonzero vector @ € Z¢ and
an integer number §. When d = 2, as in the rest of this paper, the term convex
polygon is used for convex polyhedron.

A non-empty subset F C P is a face of P if F = { € P|A'Z = ¥} for
some subsystem A'F < b of AZ < b. A face distinct from P and with maximum
dimension is a facet of P. The lineality space of P is {Z € Q? | A% = 0} and
P is said pointed if its lineality space has dimension zero. Note that, in this
paper, we only consider pointed polyhedra. For a pointed polyhedron P, the
inclusion-minimal faces are the vertices of P.

We are interested in computing P; the integer hull of P, that is, the smallest
convex polyhedron containing the integer points of P. In other words, P; is the
intersection of all convex polyhedra containing P N Z?. If P is pointed, then
P = Py if and only if every vertex of P is integral [14]. Therefore, the convex
hull of all the vertices of Py is Py itself.

In this paper, we also talk about parametric polyhedra. In particular, we use
the notation P(b) = {Z | AZ < b} where b is unknown and P(b;) = {Z | AZ < b}
where b; is an unknown coordinate of the vector b.

3 The Integer Hull of an Angular Sector

Lemma 1 is an elementary result which gives a necessary and sufficient condition
for a line in the affine plane to have integer points. With Lemma 2, we show
that every angular sector S without integer points on its facets can be replaced
by a angular sector S’ with integer points on both of its facets and so that S
and S’ have the same integer hull. With Lemma 3, we perform another reduction
step: we show how the computation of the integer hull of an angular sector with
integer points on its facets can be reduced to that of the integer hull of a triangle
with at least two integer vertices.

Theorem 1 is our main result specialized to the case of a parametric angular
sector. In other words, Theorem 1 describes the pseudo-periodical phenomenon
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observed when varying one of the “right-hand side” parameters over a sufficiently
large range of consecutive integer values. In fact, Theorem 1 precisely gives a
formula for the period as well as a formula for transforming the integer hull of
the parametric angular sector over a period.

Definition 1. An angular sector in an affine plane is defined by the intersection
of two half-planes whose boundaries intersect in a single point, called the vertex
of that angular sector.

Lemma 1. In the affine plane, with Cartesian coordinates (x,y), consider a line
with equation ax + cy = b where a,b and ¢ are all integers so that there is no
common divisor among them, that is, ged(a,b,c) = 1. Then, three cases arise:

— Case 1. If a # 0 and ¢ # 0 then there are integer points along the line if and
only if a and ¢ are coprime. Moreover, if ged(a,c) = 1 holds, then a point
(z,y) on the line is integral if and only if we have:

b
r=—- mod ec.
a

— Case 2. If a = 0, then ¢ must equal to 1 for the line to have integer points.
Moreover, if ¢ = 1, then a point (x,y) on the line is integral if and only if x
15 an integer.

— Case 3. If c = 0, then a must equal to 1 for the line to have integer points.
Moreover, if a = 1 holds, then a point (z,y) on the line is integral if and only
if y is an integer.

PROOF > For Case 1, the y coordinate of a point (z,y) on the line must satisfy:

b—ax
y:

Cc

For each integer x, the above y is an integer if and only if we have:
b—ar=0 modec.

Therefore, every point (z,y) on the line is an integer point if and only if z is an
integer satisfying
b=axr mod c.

If ged(a, ¢) = 1 holds, then a is invertible modulo ¢ and every integer x congruent
to % mod c is a solution. If a and ¢ are not coprime and if the above equation
has a solution in x then ged(a,b,c¢) = 1 cannot hold, which is a contradiction.
Therefore, the line admits integer points if and only if ged(a,c) = 1 holds.

Moreover, when this holds, those points (z,y) satisfy:
b

r=-— mod c,
a

For Case 2, with a = 0, the condition becomes gecd(b,¢) = 1 and the line now

writes cy = b. Therefore, % must be integer in order to have integer points on

the line, which means ¢ must equal to 1. Case 3 is similar to Case 2. <
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Lemma 2. In the affine plane, with Cartesian coordinates (x,y), let S be a
angular sector defined by

arx+cry < b

azr+cay <by

Then, one can find another angular sector S’, given by

arr+cy < b
axx +coy < by

such that & and <+ are coprime where g = ged(ay,c1,b)) > 1 and so that the
integer hull of S’ is the same as that of S.

Fig. 1. The integer hull of sector BAC is the same as that of sector B’ AC’

PROOF > Let A be the vertex of S. Let B (resp. C') be a point on the facet of S
with equation ay x + ¢1y = by (resp. asx + cay = b). The general idea is to
construct S’ by sliding A to the vertex A’ of S’ along the line (AC), with the
facets of S’ being 