
François Boulier
Matthew England
Timur M. Sadykov
Evgenii V. Vorozhtsov (Eds.)

LN
CS

 1
28

65

Computer Algebra
in Scientific Computing
23rd International Workshop, CASC 2021
Sochi, Russia, September 13–17, 2021
Proceedings

Lecture Notes in Computer Science 12865

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

François Boulier ·Matthew England ·
Timur M. Sadykov · Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
in Scientific Computing
23rd International Workshop, CASC 2021
Sochi, Russia, September 13–17, 2021
Proceedings

Editors
François Boulier
Université de Lille
Villeneuve d’Ascq, France

Timur M. Sadykov
Plekhanov Russian University of Economics
Moscow, Russia

Matthew England
Coventry University
Coventry, UK

Evgenii V. Vorozhtsov
Institute of Theoretical and Applied
Mechanics
Novosibirsk, Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-85164-4 ISBN 978-3-030-85165-1 (eBook)
https://doi.org/10.1007/978-3-030-85165-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6663-719X
https://orcid.org/0000-0003-0741-2318
https://orcid.org/0000-0001-5729-3420
https://orcid.org/0000-0003-2753-8399
https://doi.org/10.1007/978-3-030-85165-1

Preface

The International Workshop on Computer Algebra in Scientific Computing (CASC)
provides the opportunity both for researchers in theoretical computer algebra (CA) and
engineers, as well as other allied professionals applying CA tools for solving problems in
industry and in various branches of scientific computing, to present their results annually.
CASC is the forum of excellence for the exploration of the frontiers in the field of
computer algebra and its applications in scientific computing. It brings together scholars,
engineers, and scientists from various disciplines that include computer algebra. This
workshop provides a platform for the delegates to exchange new ideas and application
experiences, share research results, and discuss existing issues and challenges.

Sirius Mathematics Center (SMC), located in the city of Sochi, Russian Federation,
was established in 2019 by the “Talent and Success” Educational Foundation. This is an
international institution for research and postgraduate training in mathematical sciences.
Currently, the center uses the facilities of the Omega Sirius Hotel located between Sochi
Olympic Park and the former Olympic Village near the Black Sea coast. The mission of
the center is to support mathematical research in Russia as well as to promote personal
and scientific contacts between mathematicians. The center strives to be a meeting point
for scientistsworking inmathematical sciences, enabling them to exchange ideas, initiate
new projects, meet, and train students and young scientists.

The SMC Scientific Board is responsible for establishing selection criteria
for proposals of activities at the SMC, evaluating the proposals, and developing
the scientific program of the center. The current members are Maria J. Esteban
(CEREMADE, CNRS, and Université Paris-Dauphine, Paris), Sergey Lando (Higher
School of Economics, Moscow and Skolkovo Institute of Science and Technology,
Moscow), Ari Laptev (Imperial College, London), Alexey Shchuplev (SMC, Director),
and August Tsikh (Siberian Federal University, Krasnoyarsk). In the autumn of 2020,
the SMC administration offered the CASC workshop organizers significant financial
support for arranging the CASC 2021 workshop on the SMC platform.

Therefore, it was decided, in the autumn of 2020, that the 23rd CASC International
Workshop would be held at the Sirius Mathematics Center, Sochi, on September 13–17,
2021.

The organizing committee of the CASC 2021 InternationalWorkshop has beenmon-
itoring the developing COVID-19 pandemic. The safety andwell-being of all conference
participants have been our priority. Due to the current international situation, CASC2021
was exceptionally held in the hybrid format: those able to travel to Sochi have attended
in person while those prevented from coming by the restrictions on international travel
were offered the opportunity to present their work remotely.

This year, the CASC International Workshop had two categories of participation:
(1) talks with accompanying papers to appear in these proceedings, and (2) talks with
accompanying extended abstracts for distribution locally at the conference only. The
latter was for work either already published, or not yet ready for publication, but in

vi Preface

either case still new and of interest to the CASC audience. The former was strictly for
new and original research results, ready for publication.

All papers submitted for theLNCSproceedings received aminimumof three reviews.
In addition, the whole Program Committee was invited to comment and debate on all
papers. In total, this volume contains 23 papers and two invited talks. The paper by
Ioannis Emiris presents an invited talk but went through the regular review process.

The invited talk by Alicia Dickenstein is devoted to the motivation and descrip-
tion of several algebraic-geometric computational techniques used for the study of
families of polynomials that arise in the realm of biochemical reaction networks. The
standard modelling of biochemical reaction networks gives rise to systems of ordinary
polynomial differential equations depending on parameters. One is thus led to study
families of polynomial ordinary differential equations, with a combinatorial structure
that comes from the digraph of reactions. Attempts to explore the parameter space, in
order to predict properties of the associated systems, challenge the standard current
computational tools because, even for moderately small networks, there are many
variables and many parameters. It is shown that different techniques can be strength-
ened and applied for systems with special structure even if the number of variables and
parameters is arbitrarily large; in particular, for the systems defined by Alicia
Dickenstein and Pérez Millán termed MESSI (Modifications of type Enzyme-Substrate
or Swap with Intermediates), which are abundant among the enzymatic mechanisms.

The invited talk presented by Ioannis Emiris addresses one of the main problems in
distance geometry: given a set of distances for some pairs of points, one must determine
the unspecified distances. This is highly motivated by applications in molecular biology,
robotics, civil engineering, sensor networks, and data science. A newmethod is proposed
that introduces a combinatorial process in terms of directed graphs with constrained
orientations, and manages to improve in all dimensions the existing bounds for roots
count; this is achieved by employing the m-Bézout bound, thus arriving at tighter results
than using the classicBézout bound. Themethod readily leads to bounds on them-Bézout
number of a polynomial system, provided that the given system can be modelled by a
graph whose vertices correspond to the variable subsets and whose edges correspond to
the given equations.

Polynomial algebra, which is at the core of CA, is represented by contributions
devoted to the use of comprehensive Gröbner bases for testing binomiality of chemical
reaction networks, the parallel factorization of polynomials with multivariate power
series coefficients, a new version of the root radii algorithm for finding the roots of
a univariate polynomial, the use of subresultant chains for the solution of polynomial
systems, the extension of Fulton’s algorithm for determining the intersectionmultiplicity
of two plane curves to the higher-dimensional case, the use of the resultants and of the
computer algebra system (CAS) Maple in the investigation of the geometric properties
of Fermat–Torricelli points on a sphere, and the derivation with the aid of Gröbner
bases of new optimal symplectic fourth-order Runge–Kutta–Nyström methods for the
numerical solution of molecular dynamics problems.

Four papers deal with ordinary and partial differential equations: the use of
Weil algebras for the symbolic computation of univariate and multivariate higher-
order partial derivatives, establishing the relationship between differential algebra and

Preface vii

tropical differential algebra, applications of primitive recursive ordered fields to the
computability and complexity of solution operators for some partial differential equa-
tions (PDEs), and the solution with guaranteed precision of the Cauchy problem for
linear evolutionary systems of PDEs in the case of real analytic initial data.

Two papers are devoted to the applications of symbolic-numerical computations
for computing orthonormal bases of the SU(3) group for orbital angular momentum
implemented in the CAS Mathematica and symbolic and numeric computations of
the Frobenius norm real stability radius for some classes of matrices.

Applications of computer algebra systems in mechanics, physics, and chemistry
are represented by the following themes: the derivation of first integrals and invariant
manifolds in the generalized problem of the motion of a rigid body in a magnetic field
with the aid of Gröbner bases and the CASMathematica, and the detection of toricity
of steady state varieties of chemical reaction networks with the aid of the CAS Reduce.

The remaining topics include a new algorithm for decoupling multivariate fractions
with the aid of trees, the simplification of nested real radicals in the CASs of a general
kind, improved algorithms for approximate GCD in terms of robustness and distance,
rational solutions of pseudo-linear systems, a new algorithm for testing the supersin-
gularity of elliptic curves by using the Legendre form of elliptic curves, a new deter-
ministic method for computing the Milnor number of an isolated complete intersection
singularity, a new algorithm for computing the integer hull of a rational polyhedral set,
and the construction of 8958 new nonisomorphic parallelisms of the three-dimensional
projective space over the finite field F5.

Sadly, Vladimir P. Gerdt, who was one of the two co-founders (along with Prof.
Dr. Ernst W. Mayr, Technical University of Munich) of the CASC International Work-
shops, passed away on January 5, 2021. In honor and memory of V.P. Gerdt, this volume
contains an obituary which describes his contributions to different branches of computer
algebra and to quantum computing. A special session dedicated to Gerdt’s memory was
held during this workshop.

The CASC 2021 workshop was supported financially by a generous grant from the
Sirius Mathematics Center headed by Dr. Alexey Shchuplev. We appreciate that the
SMC provided free accommodation for a number of participants. We also gratefully
acknowledge support by the Ministry of Science and Higher Education of the Russian
Federation, grant No. FSSW-2020-0008.

The local organizing committee of CASC 2021 at the Sirius Mathematics Center
in Sochi provided excellent conference facilities, which enabled foreign participants to
present their talks remotely.

Our particular thanks are due to the members of the CASC 2021 local organizing
committee and staff at the SMC, i.e., Vitaly Krasikov (Chair), Alexey Shchuplev, Natalia
Tokareva, Irina Klevtsova, Peter Karpov, Sergey Tikhomirov, and Timur Zhukov who
ably handled all the local arrangements in Sochi.

Furthermore, we want to thank all the members of the Program Committee for their
thorough work. We also thank the external referees who provided reviews.

We are grateful to the members of the group headed by Timur Sadykov for their
technical help in the preparation of the camera-ready files for this volume.We are grateful
to Dmitry Lyakhov (King Abdullah University of Science and Technology, Kingdom

viii Preface

of Saudi Arabia) for the design of the conference poster. Finally, we are grateful to the
CASC publicity chairs Hassan Errami and Dmitry Lyakhov for the management of the
conference web page http://www.casc-conference.org/2021/.

July 2021 François Boulier
Matthew England
Timur M. Sadykov

Evgenii V. Vorozhtsov

http://www.casc-conference.org/2021/

Organization

CASC 2021 was hosted by Sirius Mathematics Center, Sochi, Russia.

Workshop General Chairs

François Boulier Université de Lille, France
Timur M. Sadykov Plekhanov Russian University of Economics, Russia

Program Committee Chairs

Matthew England Research Centre for Computational Science &
Mathematical Modelling, UK

Evgenii V. Vorozhtsov Khristianovich Institute of Theoretical and Applied
Mechanics, Russia

Program Committee

Changbo Chen Key Laboratory of Automated Reasoning and Cognition
Center, Chongqing Institute of Green and Intelligent
Technology, Chinese Academy of Sciences, China

Jin-San Cheng KLMM, Institute of Systems Science, AMSS, Chinese
Academy of Sciences, China

Victor F. Edneral Lomonosov Moscow State University, Russia
Matthew England Research Centre for Computational Science &

Mathematical Modelling, UK
Jaime Gutierrez Universidad de Cantabria, Spain
Sergey A. Gutnik MGIMO University, Russia
Amir Hashemi Isfahan University of Technology, Iran
Hui Huang Dalian University of Technology, China
François Lemaire Centre de Recherche en Informatique, Signal et

Automatique, France
Dominik L. Michels KAUST, Saudi Arabia
Marc Moreno Maza University of Western Ontario, Canada
Chenqi Mou Beihang University, China
Gleb Pogudin Institute Polytechnqiue de Paris, France
Alexander Prokopenya Warsaw University of Life Sciences – SGGW, Poland
Hamid Rahkooy Max Planck Institute for Informatics, Germany
Eugenio Roanes-Lozano Universidad Complutense de Madrid, Spain
Timur M. Sadykov Plekhanov Russian University of Economics, Russia
Doru Stefanescu (†) University of Bucharest, Romania
Thomas Sturm Lorraine Research Laboratory in Computer Science and its

Applications, France
Akira Terui University of Tsukuba, Japan
Elias Tsigaridas Inria Paris, France
Jan Verschelde University of Illinois at Chicago, USA

x Organization

Local Organization

Vitaly Krasikov (Chair) Plekhanov Russian University of Economics, Russia
Alexey Shchuplev Sirius Mathematics Center, Russia
Peter Karpov Plekhanov Russian University of Economics, Russia
Sergey Tikhomirov Yaroslavl State Pedagogical University, Russia
Timur Zhukov Plekhanov Russian University of Economics, Russia

Publicity Chairs

Hassan Errami Universität Bonn, Germany
Dmitry Lyakhov KAUST, Saudi Arabia

Advisory Board

Vladimir P. Gerdt (†) Joint Institute for Nuclear Research, Russia
Wolfram Koepf Universität Kassel, Germany
Ernst W. Mayr Technische Universität München, Germany
Werner M. Seiler Universität Kassel, Germany

Website

http://casc-conference.org/2021/
(Webmaster: Peter Karpov)

http://casc-conference.org/2021/

Memories on Vladimir Gerdt

Ernst W. Mayr1, Werner M. Seiler2, and Evgenii V. Vorozhtsov3

1 Technical University of Munich, Dept. of Informatics, Chair of Efficient Algorithms, I14,
Boltzmannstrasse 3, 85748 Garching, Germany

2 Institute for Mathematics, University of Kassel, 34109 Kassel, Germany
3 Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch

of the Russian Academy of Sciences, Novosibirsk 630090, Russia
mayr@in.tum.de, seiler@mathematik.uni-kassel.de, vevg46@mail.ru

Prof. Vladimir P. Gerdt

It is our deepest regret to inform you that Vladimir Petrovich Gerdt, Professor, Head of
the Algebraic andQuantumComputing Group of the Scientific Department of Computa-
tional Physics of the Laboratory of Information Technologies (LIT) at the Joint Institute
ofNuclear Research (JINR) inDubna,OblastMoscow,Russia, died on January 5th, 2021
at the age of 73, following complications caused byCOVID-19. VladimirGerdt was born
on January 21, 1947 in the town of Engels, Saratov region of the USSR. He began his
scientific career at JINR in November 1971, after graduating from the Physics Depart-
ment of Saratov State University, first in the Department of Radiation Safety, and from
February 1977 on in the Laboratory of Computer Technology and Automation, which,
in the year 2000, was renamed to Laboratory of Information Technologies, where he was
engaged in the deployment of analytical computing software systems on the comput-
ers of the JINR Central Research Center, as well as their development and application
for solving physical problems. In 1983, he became the head of the Computer Algebra
Research Group (renamed in 2007 to Algebraic and QuantumComputing Group) at LIT.
In 1976, Vladimir Gerdt successfully defended his Ph.D. thesis (for Kandidat nauk) in
the field Theoretical and Mathematical Physics, and in 1992, his doctoral dissertation

xii E. W. Mayr et al.

(forDoktor nauk, D.Sc.) in the field Application of Computer Technology, Mathematical
Modeling, and Mathematical Methods for Scientific Research. In 1997, he was awarded
the academic title of Professor. In his long and distinguished research career, Vladimir
Gerdt worked on many different topics. Even when he started to work on something
new, he never forgot the old topics. Often, he also looked for, in a creative form, possible
relationships between his various research questions exhibiting numerous interesting
connections. In the following, we try to organize his research works into seven fields
in which he was active and which we list roughly in chronological order according to
his first publication in the respective field (and we also apologize for any omissions or
errors due to our bias and the requirement to be succinct):

1. Physics: high energy physics, gauge theory and constrained dynamics
2. Differential equations: integrable systems, symmetry theory and completion ques-

tions
3. Lie algebra: representations and classifications
4. Commutative algebra: Gröbner and involutive bases, polynomial system solving
5. Differential and difference algebra: differential/difference ideal theory and non-

commutative Gröbner and involutive bases
6. Quantum computing: quantum circuits and related algebraic problems, simulation

of quantum algorithms, quantum error correction, mixed states
7. Numerical analysis: algebraic construction of finite difference methods, symbolic-

numerical solution of quantum mechanical problems

In the sequel, we try to trace the main steps in Vladimir’s scientific activities over
his whole career spanning a period of almost 50 years. Of course, it is not possible to
present everything he did, and our selection is certainly subjective and biased by our
own research interest and, possibly, lack of knowledge. Nevertheless, we believe that this
account is able to convey how broad his research interests were and howmany important
contributions he made. As, over the years, Vladimir collaborated with so many different
people, we here omit the names of his cooperation partners in the various fields.

Vladimir began his career like many of the pioneers in computer algebra as a physi-
cist. His first publications in the mid 1970s were concerned with phenomenological
computations in high energy physics aiming at predicting the results of accelerator
experiments. As such computations tend to be very demanding and time consuming, it
was a natural thought to try to automatize them at least partially using computer algebra.
Thus, his first publication with the words “computer algebra” in the title appeared in
1978 andwas concernedwith the computation of Feynman integrals (essentially the same
problem that inspired a bit over a decade earlier Tony Hearn to develop Reduce, together
with Macsyma the first general purpose computer algebra systems). At this time, for
most physicists or mathematicians, computer algebra was still something rather exotic
and a comprehensive list of articles describing such applications of computer algebra
was rather short.

As many problems in physics boil down to the analysis of differential equations, it is
not surprising that from the early 1980s on Vladimir got more and more involved in their
theory. In the beginning, he was mainly interested in two topics: the explicit solution
of ordinary differential equations and the theory of (completely) integrable systems. He

Memories on Vladimir Gerdt xiii

developed for example a method to solve certain linear ordinary differential equations
in terms of elliptic functions. Following ideas developed in the school of A.B. Shabat,
he worked on computer algebra methods for the algorithmic classification of integrable
systems in the form of evolution equations using symmetry methods (mainly general-
ized symmetries, often incorrectly called Lie-Bäcklund symmetries, although neither
Lie nor Bäcklund ever worked on them). Again, in most cases, a symmetry analysis
requires extensive computations and thus represents a natural application field for com-
puter algebra. In fact, Vladimir never ceased to be interested in symmetry methods for
differential equations. It was probably through theseworks that for the first timeVladimir
also attracted the attention of a larger audience in the western computer algebra world,
when he published no less than four articles in the proceedings of the EUROCAL ’87
conference in Leipzig. His first paper in the Journal of Symbolic Computation, published
in 1990, was also devoted to integrable systems.

The integrability analysis of evolution equations raises many interesting problems.
In intermediate steps, one often has to solve large overdetermined systems of linear
differential equations or one has to deal with polynomial systems. Symmetry reductions
typically lead to ordinary differential equations, which one would like to solve analyti-
cally. The theory of Lie groups and algebras also features here prominently. Hence, in
the early 1990s Vladimir started to work on these topics, independently from their direct
application in the context of integrability analysis. He co-authored a computer algebra
package for the analysis of polynomial systems using Gröbner basis techniques. In par-
allel, he began with the investigation of (super) Lie algebras — partially again using
Gröbner bases. In the beginning, he was interested in automatically recognizing isomor-
phic Lie algebras. Later, he was more concerned with finitely presented Lie algebras and
superalgebras. Here he developed in particular an algorithm for the construction of such
(super)algebras out of a finite set of generators and relations.

The late 1990s represent a key phase in Vladimir’s scientific oeuvre. From his
research in Lie symmetry theory, he was familiar with the Janet-Riquier theory of dif-
ferential equations, as it provides a popular approach to analyzing the large determining
systems arising in the construction of Lie symmetry algebras. And, as just mentioned,
he also was familiar with Gröbner bases from commutative algebra. From Janet’s work
on differential equations, he abstracted a general notion of what he called an involu-
tive division and introduced, by combining it with concepts like normal forms and term
orders, the notion of an involutive basis of a polynomial ideal as a Gröbner basis with
additional combinatorial properties. For the rest of his life, involutive bases played a
dominant role in Vladimir’s research.

He was particularly interested in their algorithmic aspects. The basic involutive
algorithm —rooted in Janet’s work— can be seen as an optimization of the basic form
of Buchberger’s algorithm for the construction of Gröbner bases. Vladimir developed
further optimizations specific to the involutive algorithm and adapted optimizations for
the Buchberger algorithm to make them applicable also in the involutive setting. His
group at JINR wrote the GINV package in C/C++ as a standalone program for (mainly)
computing Janet bases and he participated in a Maple implementation of involutive
bases.

xiv E. W. Mayr et al.

Being a physicist, Vladimir recognized the possibilities offered by Gröbner or invo-
lutive bases in the context of mechanical systems with constraints. The famous Dirac
procedure is essentially a differential completion procedure for the special case ofHamil-
tonian systems with constraints followed by a separation of the constraints into two
different classes: first, constraints generating gauge symmetries, and second, constraints
reducing the dimension of the phase space. While, in principle, the procedure is quite
straightforward, it involves a notorious number of subtleties and pitfalls when applied
to concrete systems. Vladimir showed that in the case of a polynomial Lagrangian most
of these can be handled using Gröbner bases and provided a corresponding Maple pack-
age. Later, he co-authored a number of papers where these ideas were used to extend
the classical Dirac procedure to light-cone Yang-Mills mechanics.

Rings of linear differential or difference operators may be considered as simple
examples of non-commutative polynomial rings, and it is rather straightforward to adapt
Gröbner or involutive bases to them.All implementations of involutive bases co-authored
byVladimir cover these two cases as well. For systems of linear differential or difference
equations, such algorithms for instance allow for an effective completion to involutive
or passive form, i.e., for the construction of all hidden integrability conditions, a fact
relevant for analytic as well as numerical studies of the systems. In particular, it is crucial
for determining the size of the solution space or consistent initial value problems.

The situation becomesmuchmore complicated for non-linear systems.Around 2000,
Vladimir started to look more deeply into differential algebra, in particular into differen-
tial ideal theory, and a bit later also into difference algebra. His key achievement here was
the revival of the Thomas decomposition, an almost forgotten approach to both algebraic
and differential ideal theory based on triangular sets and — in the differential case —
Janet-Riquier theory. In aThomas decomposition, an arbitrary systemcomposed of equa-
tions and inequations is split into a disjoint union of so-called simple systems which are
comparatively easy to analyze, because of their special properties. The disjointness of
the resulting simple systems represents a specific feature of the Thomas decomposition,
setting it apart from most other decompositions. Together with a group at RWTH in
Aachen, Vladimir developed a fully algorithmic version of both the algebraic and the
differential Thomas decomposition and co-authored implementations of them in Maple.

In effect, the Thomas decomposition was the second research topic which Vladimir
studied intensively right until his death. He applied it in many different fields, rang-
ing from the integrability analysis of fully non-linear systems of (partial) differential
equations to an extension of the Dirac procedure to cases where the ranks of certain
Jacobians are not constant (a case about which one can find nothing in the classical liter-
ature, but which is not uncommon in applications). His last significant and unfortunately
unfinished project consisted of developing a difference version of it.

One reason for Vladimir’s interest in difference algebra was the analysis and con-
struction of numerical methods. So-called mimetic methods aim at setting up difference
equations that have qualitative properties similar to the original differential equations.
Such qualitative properties can be conserved quantities or more generally symmetries,

Memories on Vladimir Gerdt xv

but also certain structural features, in particular for equations which are not in Cauchy-
Kovalevskaya form. Starting in the mid 2000s, Vladimir became interested in the effec-
tive construction of finite difference and finite volume methods preserving certain alge-
braic structures of the differential ideal generated by the given differential equations. A
rigorous formulation of these ideas required parallel theories of differential and differ-
ence algebra. For linear differential equations, classical techniques from Gröbner and
involutive bases were sufficient to effectively realize his approach; for a fully algorithmic
treatment in the case of non-linear equations a difference Thomas decomposition would
have been necessary. Vladimir treated a number of concrete non-linear examples, but
the algebraic computations had to be done partially by hand. The numerical methods
arising from this approach are quite non-standard, differing significantly from the usu-
ally applied methods, and the numerical experiments presented so far appear to indicate
good performance. For the analysis of these methods, he introduced new notions of
consistency and developed computer algebra methods for verifying the corresponding
conditions.

In another line of work combining many of his research interests, Vladimir partici-
pated in projects for the symbolic-numerical solution of quantum mechanical problems,
in particular in atomic physics, ranging from solving time-dependent Schrödinger equa-
tions to eigenvalue problems and on to the computation of matrix elements and boundary
value problems for elliptic systems. The emphasis was on finite-dimensional quantum
systems like atoms in external fields or quantum dots.

Also since the mid 2000s, Vladimir and his group was quite active in the field of
quantum computing (in fact, to such an extent that his group at JINR was renamed
to better reflect this additional research focus). He concentrated on related algebraic
problems to which he applied e.g. involutive methods. In the beginning, the emphasis
was on the circuit model of quantum computing. Vladimir developed algorithms for
the construction of polynomial systems or unitary matrices describing such circuits
and co-authored corresponding Mathematica and C# packages. He was also concerned
with the simulation of quantum computations on classical computers and co-authored
a Mathematica package for this task. After a brief study of quantum error correction,
he moved on to investigating mixed states, mainly by group-theoretic means. Here the
emphasis was on the effective construction of local invariants, since these facilitate
checking whether a state is entangled or uncoupled. For this purpose, he showed how
involutive bases can be used within computational invariant theory.

During his last years, Vladimir returned to the topic of Lie symmetry theory. He
was interested in the algorithmic linearization of ordinary differential equations, i.e.,
in the construction of a point transformation reducing the given equation to a linear
one. Lie already had shown for certain cases that one can decide whether a given non-
linear ordinary differential equation can be linearized, based on its Lie symmetry group.
Later, this topic was studied extensively by Bluman and his group. Vladimir derived
fully algorithmic criteria for linearizability (in part based on the differential Thomas
decomposition), a result for which he and his co-authors received the distinguished
paper award at the ISSAC conference in 2017. He continued to work on improvements
of this result, putting more emphasis on the symmetry algebra instead of the symmetry
group, but, unfortunately, he died before this project was finished.

xvi E. W. Mayr et al.

Altogether, Vladimir was the author or co-author of more than 240 scientific papers
(a listing is available at his CV at JINR, and he was a leading expert in the field of
symbolic and algebraic computation. He devoted a lot of effort and energy to train young
researchers in these modern scientific areas. He was a professor at the Department of
Distributed Information Computing Systems of Dubna State University, where, under
his supervision, seven students successfully defended their Ph.D. thesis.

Vladimir also was the organizer of many international conferences on computer
algebra. He was the (co-)chair of 29 conferences, a member of the organizing committee
of 11 conferences, a member of the Program Committee for 27 conferences, and a
member of the Scientific and Advisory Committee of 7 conferences: 74 conferences in
total during the period from1979 to 2020. Thus,Vladimir had, on average, organizational
roles in almost two conferences each year, showing his inexhaustible energy.

In the context of this CASC conference (of 2021 in Sochi), it may be an opportunity
(and even appropriate) to enlarge a bit on the history ofCASC, the internationalworkshop
series Computer Algebra in Scientific Computing, in particular the events before its birth
in St. Petersburg on April 20, 1998. The other co-founder of CASC (one of the present
authors, referred to EWM in the text below), first became aware of Vladimir’s scientific
work in October of 1996 when he (EWM) was working together with his Ph.D. student
Klaus Kühnle on an optimal worst-case space bound for algorithms to compute Gröbner
bases. Since this bound (exponential space) is independent of the algorithm used, the
news about involutive bases were very interesting. The year after, on June 5, EWM
invited Vladimir to give a seminar talk about Involutive Gröbner Bases at TUM, which
was very well received. During the after-session-get-together at the Parkcafe in Munich,
the question was raised about the share of theoretical talks vs. the talks devoted to the
numerous applications of the methods and algorithms of computer algebra in the natural
sciences. EWM said that “I am a theoretician and trying to connect to applications”, and
Vladimir said “I am more applied but don’t mind theory”. The two of them also agreed
that there were excellent scientists in the computer algebra field in Russia as well as in
Germany. EWM also said that he admired the science that had been going on in certain
parts of what was then the Commonwealth of Independent States (CIS) (like Tashkent)
since his early study years, that he always had wanted to go there but never managed
(since, among other things, he went to Stanford and the US for almost ten years). And
suddenly the idea was “Why don’t we have a joint (between Russia and Germany, or
CIS and Germany) scientific workshop (with the title CASC, that was discussed there
already)”. Vladimir then right away persuaded Ph.D. Nikolay Vasiliev in St. Petersburg
to organize the first instantiation), so this went very fast. For the following fifteen years,
the team at EWM’s chair at TUM could always rely on Vladimir and his excellent
connections in Russia and CIS to persuade very competent colleagues at a number of
very interesting places to locally organize CASC.

http://compalg.jinr.ru/CAGroup/Gerdt/GerdtCV.html

Memories on Vladimir Gerdt xvii

It also turned out that the Deutsche Forschungsgemeinschaft (DFG) was willing to
support the CASC workshop in St. Petersburg as well as those in the series for about
the following ten years. This support was very helpful in the beginning of CASC, since
whenever CASC took place outside of CIS, the funds were used solely for supporting
participants from CIS; for CASC workshops in CIS, the method was a bit more difficult
and indirect, but with basically the same result. It is clear that in the beginning of CASC,
when the financial situation was much more restricted than now, this support from DFG
was invaluable. Of course, there was also some organizational work for the conference
(in addition to the local organization; like designing and putting out the call for papers
(including the conference poster), running the PC, organizing travel, –, putting together
the proceedings, ...). As everybody handling the nitty-gritty of conferences knows this
was considerable work, at times quite stressful (the less money you have the more
stress), and performed by just a few people in EWM’s group (in particular, his secretary
A. Schmidt, his research assistant Dr. W. Meixner, his programmer Ernst Bayer, and his
Russian-Bavarian coordinator Dr. Victor Ganzha). They also deserve a lot of thanks for
their efforts and contributions.

Since 1998, the CASC workshops have been held annually (with one gap in 2008,
because of political unrest in Georgia), alternating in principle between Russia and
Germany, but also including other countries of CIS, in Western and Central Europe, and
even in Japan and China. Giving evidence to its widespread attractiveness, the sequence
of locations was: St. Petersburg, Herrsching (Munich), Samarkand, Konstanz, Big Yalta,
Passau, St. Petersburg/Ladoga, Kalamata, Chisinau, Bonn, – , Kobe, Tsakhkadzor, Kas-
sel, Maribor, Berlin, Warsaw, Aachen, Bucharest, Beijing, Lille, Moscow, Linz, Sochi
(also see the CASC bibliography).

Vladimir was the co-chair of the CASC series from its foundation in 1998 onward
until 2019. He also was very active in the Applications of Computer Algebra (ACA)
conference series where he regularly organized sessions, in particular on differential and
difference algebra.

He was a member of the editorial board of the Journal of Symbolic Computation
(JSC), from its foundation on until 2020. Since 1991, he was a member of the largest
international scientific and educational computing society Association for Computing
Machinery (ACM) and the German special interest group for Computer Algebra.

http://www.casc-conference.org/bibliography.html

xviii E. W. Mayr et al.

During the period from 1981 to 2013, Vladimir presented 34 lecture courses for
students and young scientists in various universities of the USSR/Russian Federation
as well as in China, France, Sweden, and especially in Germany. As his family was
partially of German origin, he felt very attached to Germany, where he had a number of
relatives, whom he frequently visited. Since the late 1990s, he came to Germany almost
every year. As a guest lecturer or visiting professor, he spent in total more than five years
at German universities and applied universities in Greifswald, Ravensburg-Weingarten,
Aachen and Kassel, teaching a wide variety of courses.

Vladimir was the winner of the first prize of JINR in 1986, the second prize of JINR
in 2015 in the competition of scientific and methodological works. He was awarded the
medal “In memory of the 850th anniversary of Moscow”, the departmental badge of
distinction in the field “Veteran of Nuclear Energy and Industry”, and the “Certificate
of Honor” of JINR. He was the founder of and a scientific leader at the School of
Computer Algebra and Quantum Computing of JINR. As such, he largely defined the
public perception of the Laboratory.

Optimism, openness, goodwill, and sincere interest in science always characterized
Vladimir. He will be sadly missed by all who had the pleasure to collaborate and interact
with him, and we would like to extend our sincere condolences to his colleagues and
friends and, above all, his wife Evgeniya Almazova and his two sons, Anton and Peter.

Contents

Families of Polynomials in the Study of Biochemical Reaction Networks 1
Alicia Dickenstein

The m-Bézout Bound and Distance Geometry . 6
Evangelos Bartzos, Ioannis Z. Emiris, and Charalambos Tzamos

Computational Schemes for Subresultant Chains . 21
Mohammadali Asadi, Alexander Brandt, and Marc Moreno Maza

On Rational Solutions of Pseudo-linear Systems . 42
Moulay A. Barkatou, Thomas Cluzeau, and Ali El Hajj

On the Relationship Between Differential Algebra and Tropical
Differential Algebraic Geometry . 62
François Boulier, Sebastian Falkensteiner, Marc Paul Noordman,
and Omar León Sánchez

On the Complexity and Parallel Implementation of Hensel’s Lemma
and Weierstrass Preparation . 78
Alexander Brandt and Marc Moreno Maza

Symbolic-Numeric Algorithms for Computing Orthonormal Bases
of SU(3) Group for Orbital Angular Momentum . 100
Algirdas Deveikis, Alexander Gusev, Sergue Vinitsky, Andrzej Góźdź,
Aleksandra Pȩdrak, Čestmir Burdik, and George Pogosyan

Improved Supersingularity Testing of Elliptic Curves Using Legendre Form . . . 121
Yuji Hashimoto and Koji Nuida

Root Radii and Subdivision for Polynomial Root-Finding 136
Rémi Imbach and Victor Y. Pan

On First Integrals and Invariant Manifolds in the Generalized Problem
of the Motion of a Rigid Body in a Magnetic Field . 157
Valentin Irtegov and Tatiana Titorenko

Automatic Differentiation with Higher Infinitesimals, or Computational
Smooth Infinitesimal Analysis in Weil Algebra . 174
Hiromi Ishii

xx Contents

On the Real Stability Radius for Some Classes of Matrices 192
Elizaveta Kalinina and Alexei Uteshev

Decoupling Multivariate Fractions . 209
François Lemaire and Adrien Poteaux

Towards Extending Fulton’s Algorithm for Computing Intersection
Multiplicities Beyond the Bivariate Case . 232
Marc Moreno Maza and Ryan Sandford

On the Pseudo-Periodicity of the Integer Hull of Parametric Convex
Polygons . 252
Marc Moreno Maza and Linxiao Wang

Relaxed NewtonSLRA for Approximate GCD . 272
Kosaku Nagasaka

Simplification of Nested Real Radicals Revisited . 293
Nikolay N. Osipov and Alexey A. Kytmanov

Parametric Toricity of Steady State Varieties of Reaction Networks 314
Hamid Rahkooy and Thomas Sturm

Testing Binomiality of Chemical ReactionNetworksUsingComprehensive
Gröbner Systems . 334
Hamid Rahkooy and Thomas Sturm

Primitive Recursive Ordered Fields and Some Applications 353
Victor Selivanov and Svetlana Selivanova

Exact Real Computation of Solution Operators for Linear Analytic
Systems of Partial Differential Equations . 370
Svetlana Selivanova, Florian Steinberg, Holger Thies, and Martin Ziegler

A New Deterministic Method for Computing Milnor Number of an ICIS 391
Shinichi Tajima and Katsusuke Nabeshima

New Parallelisms of PG(3, 5) with Automorphisms of Order 8 409
Svetlana Topalova and Stela Zhelezova

Optimal Four-Stage Symplectic Integrators for Molecular Dynamics
Problems . 420
Evgenii V. Vorozhtsov and Sergey P. Kiselev

Contents xxi

On Geometric Property of Fermat–Torricelli Points on Sphere 442
Zhenbing Zeng, Yu Chen, Xiang Sun, and Yuzheng Wang

Author Index . 463

Families of Polynomials in the Study
of Biochemical Reaction Networks

Alicia Dickenstein(B)

Department of Mathematics, FCEN, University of Buenos Aires and IMAS
(UBA-CONICET), C. Universitaria, Pab. I, C1428EGA Buenos Aires, Argentina

alidick@dm.uba.ar

Abstract. The standard mass-action kinetics modeling of the dynam-
ics of biochemical reaction networks gives rise to systems of ordinary
polynomial differential equations with (in general unknown) parameters.
Attempts to explore the parameter space in order to predict properties
of the associated systems challenge the standard current computational
tools because even for moderately small networks we need to study fam-
ilies of polynomials with many variables and many parameters. These
polynomials have a combinatorial structure that comes from the digraph
of reactions. We show that different techniques can be strengthened and
applied for biochemical networks with special structure.

1 Introduction

The basic definitions and properties of chemical reaction networks, together with
the features of some important biochemical networks, can be found in the sur-
veys [7–9] and Chap. 5 of the book [6], as well as in the book [12]. The starting
information is a finite directed graph with r labeled edges that correspond to
the reactions and nodes that correspond to complexes, given by nonnegative
integer linear combinations of a set of s chemical species. The concentrations
x = (x1, . . . , xs) of the chemical species are viewed as functions of time. Under
mass-action kinetics, the labels of the edges are positive numbers called reaction
rate constants and x is assumed to satisfy an autonomous system of ordinary
differential equations dx

dt = f(x). Here f = (f1, . . . , fs) is a vector of real poly-
nomials that reflects the combinatorics of the graph.

The reaction rate constants are in general unknown or difficult to measure.
Standard methods in other sciences involve exhaustive sampling. Instead, we
think the vector κ of reaction rate constants as a vector of parameters. In general,
there are further parameters involved in this setting. Linear relations describing
the span S of the difference of the complexes on each side of a reaction give
rise to linear conservation constants of the dynamics. This means that given
a basis �1, . . . , �d of the orthogonal subspace S⊥, any solution x defined in an
interval satisfies linear constraints of the form �1(x) = T1, . . . , �d(x) = Td. We
say that T = (T1, . . . , Td) is a vector of total amounts and we consider (κ, T) as
parameters.
c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 1–5, 2021.
https://doi.org/10.1007/978-3-030-85165-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_1

2 A. Dickenstein

The steady states of the the system dx
dt = f(x) are the constant trajectories,

that is the values of x∗ for which f(x∗) = 0. If a trajectory converges, its limit
is a steady state. Stable steady states attract nearby trajectories and unstable
steady states also drive the dynamics. Multistationarity is a crucial property
for chemical reaction networks modeling biological processes, since it allows for
different “responses” of the cell. It corresponds to the existence of more than
one positive steady state with the same total amounts, that is, to the existence
of at least two positive zeros of the ideal 〈f1 . . . , fs, �1 − T1, . . . , �d − Td〉.

We look at these systems as special families of polynomial ordinary differ-
ential equations in s variables with r + d parameters. Our aim is to explore
the parameter space in order to predict properties of the systems associated to
networks studied in systems biology, which usually have too many variables and
too many parameters. There are many useful mathematical and computational
tools, but we are forced to extend the mathematical results and to understand
the structure of the networks to make the computations feasible.

In the following sections, I will very briefly summarize two of these recent
advances. Besides consulting the references, the reader is invited to attend my
lecture or to watch later the video for more information.

2 The ERK Pathway

As an example of more general results, we discuss the ERK pathway. It is an
enzymatic network that consists of a cascade of phosphorylation of proteins in the
cell that communicates a signal from a receptor on the outside membrane to the
DNA inside the nucleus. It controlls different responses such as cell division [19].
It is known that the ERK pathway has the capacity for multistationarity and
there are oscillatory solutions.

Deciding mulstistationarity is a question in real algebraic geometry that can
be effectively decided in practice, but the associated family has 21 variables and
36 = 30 + 6 parameters. So, how is it that we can study it with an algebro-
geometric approach? This important signaling cascade, as most popular models
in systems biology, has a MESSI structure [21]. There is a partition of the set
of species and only certain type of reactions occur. Using this structure, we give
combinatorial conditions on the network that ensure the following:

– There are no relevant boundary steady states. That is, there are no steady
states (zeros of the polynomials f1, . . . , f21) in the boundary of the nonneg-
ative orthant which lie in the closure of the linear variety ST = {�1(x) =
T1, . . . , �d(x) = T6}, for any choice of κ ∈ R

30
>0 and T such that ST intersects

the positive orthant.
– The intersections ST ∩ R

21
≥0 are compact and so the system is conservative.

– The system is linearly binomial, a concept introduced in [11], which implies
that there is a system of binomial generators of the ideal 〈f1, . . . , f21〉 obtained
by linear algebra operations over Q(κ), involving rational functions whose
denominators do not vanish over R

30
>0.

Families of Polynomials in the Study of Biochemical Reaction Networks 3

– The positive points of the steady state variety {x ∈ R
21
>0 : f(x) = 0} can be

cut out by explicit binomials, and thus parametrized by explicit monomials
with coefficients in Q(κ) as above.

One way to approximate the dynamics of biological models while dealing
with less variables and parameters, is the elimination of the intermediate com-
plexes [14]. Following [24], one could ask which are the minimal sets (with respect
to inclusion) of intermediates that still give rise to multistationarity. These sets
are termed circuits of multistationarity. We show in our forthcoming paper [10]
that systems like the ERK pathway without intermediates cannot be multista-
tionary and we use a computer algebra system to find all the corresponding
circuits of multistationarity. We can also identify the circuits of multistationar-
ity for phosphorylation networks with any number of species. The theoretical
results are based on [5,22].

3 Degenerations and Open Regions of Multistationarity

In the beautiful paper [3], regular subdivisions of the (convex hull of the) set of
exponents of a polynomial system are used to get a lower bound on the number
of positive solutions, with combinatorial arguments to get new lower bounds in
terms of the number of variables and the difference between the cardinality of
the support and the number of variables. This is based on classical results on
degenerations that were used in [25] to study real roots of complete intersections.
The idea is to add a parameter u raised to the different heights of a fixed lifting
whose projection produces the given regular subdivision, thus giving a deforma-
tion of the coefficients of the system along a curve. For small positive values of u,
one obtains a degeneration of the original system for which a lower bound on
the number of positive roots can be given in terms of decorated simplices in the
regular subdivision. Again, this is in general unfeasible in practice when there
are many variables and many monomials.

On one side, we show how to replace a deformation using a single parameter
with an open set defined in terms of the cone of all height functions that produce
the regular subdivision. This way, we get an open region in parameter space
where multistationarity occurs [2]. Even if deciding if simplices are part of a
same regular subdivision is algorithmic, in order to do this when the dimension
or the number of monomials is big, we use the simple idea that if two simplices
share a facet, then this is always the case. Moreover, we heavily use results about
the structure of s-toric MESSI systems from [21]. This allows us to find these
open regions for cascades with any number of layers in [15], but the lower bound
that we get is three. Regions of multistationarity with higher lower bounds are in
general unknown, except for the case of sequential distributive phosphorylation
networks [16]. There is also a degeneration approach with one parameter using
arguments from geometric singular perturbation theory in [13].

4 A. Dickenstein

4 Other Computational Approaches

There are several other computational approaches to study these systems. Of
course, symbolic software using Gröbner bases and in particular real algebraic
geometry libraries, as well as Cylindrical Algebraic Decomposition software. Also
numerical methods in algebraic geometry can be used [17,18], as well as tropical
tools to separate time scales [23]. Machine learning tools started to be used to
improve both the symbolic and numeric calculations [1,4,20].

Acknowledgments. We acknowledge the support of ANPCyT PICT 2016-0398,
UBACYT 20020170100048BA and CONICET PIP 11220150100473, Argentina.

References

1. Bernal, E., Hauenstein, J., Mehta, D, Regan, M., Tang, T.: Machine learning the
discriminant locus. Preprint available at arXiv:2006.14078 (2020)

2. Bihan, F., Giaroli, M., Dickenstein, A.: Lower bounds for positive roots and regions
of multistationarity in chemical reaction networks. J. Algebra 542, 367–411 (2020)

3. Bihan, F., Santos, F., Spaenlehauer, P.-J.: A polyhedral method for sparse systems
with many positive solutions. SIAM J. Appl. Algebra Geom. 2(4), 620–645 (2018)

4. Böhm, J., Decker, W., Frühbis-Krüger, A., Pfreundt, F.-J., Rahn, M., Ristau, L.:
Towards massively parallel computations in algebraic geometry. Found. Comput.
Math. 21(3), 767–806 (2020). https://doi.org/10.1007/s10208-020-09464-x

5. Conradi, C., Feliu, E., Mincheva, M., Wiuf, C.: Identifying parameter regions for
multistationarity. PLoS Comput. Biol. 13(10), e1005751 (2017)

6. Cox, D.A.: Applications of Polynomial Systems, with contributions by C.
D’Andrea, A. Dickenstein, J. Hauenstein, H.Schenck, and J. Sidman. Co-
publication of the AMS and CBMS (2020)

7. Dickenstein, A.: Biochemical reaction networks: an invitation for algebraic geome-
ters. In: MCA 2013, Contemporary Mathematics, vol. 656, pp. 65–83 (2016)

8. Dickenstein, A.: Algebra and geometry in the study of enzymatic cascades. In:
Araujo, C., Benkart, G., Praeger, C.E., Tanbay, B. (eds.) World Women in Math-
ematics 2018. AWMS, vol. 20, pp. 57–81. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-21170-7 2

9. Dickenstein, A.: Algebraic geometry tools in systems biology. Notices Amer. Math.
Soc. 67(11), 1706–1715 (2020)

10. Dickenstein, A., Giaroli, M., Pérez Millán, M., Rischter, R.: Detecting the multi-
stationarity structure in enzymatic networks. Manuscript (2021)

11. Dickenstein, A., Pérez Millán, M., Shiu, A., Tang, X.: Mutistationarity in struc-
tured reaction networks. Bull. Math. Biol. 81, 1527–1581 (2019)

12. Feinberg, M.: Foundations of Chemical Reaction Network Theory. AMS, vol. 202.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03858-8

13. Feliu, E., Rendall, A., Wiuf, C.: A proof of unlimited multistability for phospho-
rylation cycles. Nonlinearity 33(11), 5629 (2020)

14. Feliu, E., Wiuf, C.: Simplifying biochemical models with intermediate species. J.
R. Soc. Interface 10, 20130484 (2013)

15. Giaroli, M., Bihan, F., Dickenstein, A.: Regions of multistationarity in cascades of
Goldbeter-Koshland loops. J. Math. Biol. 78(4), 1115–1145 (2019)

http://arxiv.org/abs/2006.14078
https://doi.org/10.1007/s10208-020-09464-x
https://doi.org/10.1007/978-3-030-21170-7_2
https://doi.org/10.1007/978-3-030-21170-7_2
https://doi.org/10.1007/978-3-030-03858-8

Families of Polynomials in the Study of Biochemical Reaction Networks 5

16. Giaroli, M., Rischter, R., Pérez Millán, M., Dickenstein, A.: Parameter regions that
give rise to 2�n

2
� + 1 positive steady states in the n-site phosphorylation system.

Math. Biosci. Eng. 16(6), 7589–7615 (2019)
17. Gross, E., Harrington, H.A., Rosen, Z., Sturmfels, B.: Algebraic systems biology:

a case study for the Wnt pathway. Bull. Math. Biol. 78(1), 21–51 (2015). https://
doi.org/10.1007/s11538-015-0125-1

18. Nam, K., Gyori, B., Amethyst, S., Bates, D., Gunawardena, J.: Robustness and
parameter geography in post-translational modification systems. PLoS Comput.
Biol. 16(5), e1007573 (2020)

19. Patel, A., Shvartsman, S.: Outstanding questions in developmental ERK signaling.
Development 145(14), dev143818 (2018)

20. Peifer, D., Stillman, M., Halpern-Leistner, D.: Learning selection strategies in
Buchberger’s algorithm. In: Proceedings of the 37th International Conference on
Machine Learning, Online, PMLR 119, pp. 7575–7585 (2020)

21. Pérez Millán, M., Dickenstein, A.: The structure of MESSI biological systems.
SIAM J. Appl. Dyn. Syst. 17(2), 1650–1682 (2018)

22. Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems
with toric steady states. Bull. Math. Biol. 74(5), 1027–1065 (2012)

23. Radulescu, O.: Tropical geometry of biological systems (Invited Talk). In: Boulier,
F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS,
vol. 12291, pp. 1–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
60026-6 1

24. Sadeghimanesh, A., Feliu, E.: The multistationarity structure of networks with
intermediates and a binomial core network. Bull. Math. Biol. 81, 2428–2462 (2019)

25. Sturmfels, B.: On the number of real roots of a sparse polynomial system. In:
Hamiltonian and Gradient Flows, Algorithms and Control, Fields Inst. Commun.,
3, Amer. Math. Soc., Providence, RI, pp. 137–143 (1994)

https://doi.org/10.1007/s11538-015-0125-1
https://doi.org/10.1007/s11538-015-0125-1
https://doi.org/10.1007/978-3-030-60026-6_1
https://doi.org/10.1007/978-3-030-60026-6_1

The m-Bézout Bound and Distance
Geometry

Evangelos Bartzos1,2(B), Ioannis Z. Emiris2,1, and Charalambos Tzamos1

1 Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, 15784 Athens, Greece

{vbartzos,emiris,ctzamos}@di.uoa.gr
2 “Athena” Research Center, 15125 Maroussi, Greece

emiris@athenarc.gr

Abstract. We offer a closed-form bound on the m-Bézout bound for
multi-homogeneous systems whose equations include two variable subsets
of the same degree. Our bound is expectedly not tight, since computation
of the m-Bézout number is #P-hard by reduction to the permanent. On the
upside, our bound is tighter than the existing closed-form bound derived
from the permanent, which applies only to systems characterized by fur-
ther structure.

Our work is inspired by the application of the m-Bézout bound to count-
ing Euclidean embeddings of distance graphs. Distance geometry and
rigidity theory study graphs with a finite number of configurations, up to
rigid transformations, which are prescribed by the edge lengths. Counting
embeddings is an algebraic question once one constructs a system whose
solutions correspond to the different embeddings. Surprisingly, the best
asymptotic bound on the number of embeddings had for decades been
Bézout’s, applied to the obvious system of quadratic equations express-
ing the length constraints. This is essentially 2dn, for graphs of n vertices
in d dimensions, and implies a bound of 4n for the most famous case of
Laman graphs in the plane. However, the best lower bound is about 2.5n,
which follows by numerically solving appropriate instances.

In [3], the authors leverage the m-Bézout bound and express it by the
number of certain constrained orientations of simple graphs. A combina-
torial process on these graphs has recently improved the bound on orienta-
tions and, therefore, has improved the bounds on the number of distance
graph embeddings [4]. For Laman graphs the new bound is inferior to 3.8n

thus improving upon Bézout’s bound for the first time. In this paper, we
obtain a closed-form bound on the m-Bézout number of a class of multi-
homogeneous systems that subsumes the systems encountered in distance
graph embeddings.

Keywords: Graph embeddings · Graph orientations · Multi-
homogeneous Bézout bound · Matrix permanent

EB was fully supported by project ARCADES which has received funding from the
European Union’s Horizon 2020 research and innovation programme under the Marie
Sk�lodowska-Curie grant agreement No 675789. The authors are members of team ARO-
MATH, joint between INRIA Sophia-Antipolis, France, and NKUA.

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 6–20, 2021.
https://doi.org/10.1007/978-3-030-85165-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_2

The m-Bézout Bound and Distance Geometry 7

1 Introduction

Distance Geometry is the branch of mathematics studying configurations of sets
of points, when only (some of) their distances are known. Given a set of distances
for some pairs of points, one of the main problems in Distance Geometry is to
determine the unspecified distances. This is highly motivated by applications
in molecular biology [16], robotics [26], civil engineering [1,13], sensor network
localization [27], data science [18], material theory [8,22].

Rigidity theory studies the properties of graphs that have rigid embeddings
in Euclidean space for fixed edge weights that represent length between points.
Rigidity is defined for a specific embedding space. Let G = (V,E) be a simple
undirected graph and p = {p1, . . . , p|V |} ∈ R

d·|V | be a conformation of |V | points
in R

d. The framework G(p) is rigid if and only if there are only finite embeddings
that satisfy the given edge lengths λ = (‖pu − pv‖)(u,v)∈E induced by p, where
pv ∈ R

d are the coordinates of vertex v. A graph is generically rigid if it is rigid
for almost all conformations and this is a property of the underlying graph (and
not of the specific embedding). In other words, genericity refers to the prescribed
edge lengths of the graph.

A major open problem in rigidity theory is to find tight upper bounds on the
number of realizations of minimally rigid graphs, e.g. [15]; we refer to this number
as embedding number. A Euclidean embedding is related to the real solutions of a
well-constrained system of algebraic equations. The complex solutions extend the
notion of real to complex embeddings and allow one to leverage complex algebraic
geometry. Direct application of Bézout’s bound of the quadratic polynomial
system that corresponds to the edge constraints yields a bound of O(2d·|V |).
In [7], they presented an upper bound that had been the best until recently,
applying a theorem on the degree of determinantal varieties [14]. However, it
does not improve asymptotically upon Bézout’s. For d = 2, techniques using
mixed volume have been introduced in [24], without managing to improve the
bound. A recent result in algebraic frame theory establishes a bound on the
degree of the projections of finite unit norm tight frames [5] using algebraic
matroids.

Two recent publications dealing with that problem managed to improve
the asymptotic bound based on the combinatorial properties of minimally rigid
graphs. This is the approach on which the present work relies. In [3], outdegree-
constrained orientations as well as matrix permanents are related to the m-
Bézout bound of certain algebraic systems that compute the embedding number.
This work resulted to improved asymptotic upper bounds for d ≥ 5, using the
Brégman-Minc permanent bound [9,21]. More importantly, this work led to the
following combinatorial technique. In [4], the target is on a method that bounds
the number of outdegree-constrained orientations. It managed to improve the
bound on embeddings for all d ≥ 2 (the case of d = 1 is trivial) and proved that
the permanent bounds can be ameliorated in that case. For instance, in the case
of d = 2, this approach results to an upper bound of O(3.77n), while the Bézout
bound is O(4n).

8 E. Bartzos et al.

It is well known that, applied to the same system, Bézout’s bound is smaller or
equal to the multi-homogeneous Bézout bound (m-Bézout) [23], which is smaller
or equal to the BKK bound expressed by mixed volume [6]. The bounds coincide
for dense systems, where all coefficients for a given total degree are nonzero, but
differ as the system becomes sparser. Of course, each bound counts roots in a
different ambient variety. These bounds are compared in [12], with emphasis on
computing mixed volume, which coincides with the m-Bézout number for multi-
homogeneous systems whose maximal monomials have nonzero coefficients. For-
mally, the latter condition requires that none of the monomials corresponding
to vertices of the Newton polytopes vanishes.

Computing the m-Bézout number for a given variable partition is #P-hard
by reduction to the permanent, which is the cornerstone #P-hard problem. The
same hardness result holds for mixed volume, which coincides with the m-Bézout
number for certain polynomial structures; when the system is sparse, in order
words has certain zero coefficients, the mixed volume may be smaller. More-
over, it is known that mixed volume is APX-hard, in other words it is hard to
deterministically approximate it within an error which is asymptotically smaller
than exponential in the system’s number of variables. Another problem is, given
an algebraic system, to find the optimal variable partition so that the system
is modeled as a multi-homogeneous one with minimum m-Bézout number, see
Definition 2. This problem is not in APX, unless P = NP [19].

Recently, other approaches came to our attention relating polynomial systems
with graph theoretical concepts. More precisely, there are connections of the
polynomial system with chordal graphs in order to enhance Cylindrical Algebraic
Decomposition (CAD) [17] and Gröbner bases [10] algorithms.

Our Contribution. In this paper, we generalize the aforementioned approach
to bounding the m-Bézout bound of a quite general class of multi-homogeneous
polynomial systems, which subsumes the class of systems encountered in rigidity
theory. We exploit the connection between the system’s m-Bézout number and
the number of constrained orientations of a simple graph that we specify for the
systems under investigation, then bound the number of the graph’s orientations.
This procedure relies on the proofs in [3,4]. It offers the first closed-form bound
on m-Bézout numbers; we hope this may prove useful in a fast estimation of
the algebraic complexity of problems modeled by multi-homogeneous algebraic
equations. Trivially, our closed-form upper bounds the mixed volume of these
multi-homogeneous systems.

Our main result concerns any multi-homogeneous 0-dimensional polynomial
system P (x) = (P1(x), P2(x), . . . , Pm(x)) that cannot be split to smaller sub-
systems: formally, there is no subset of equations P ′ including only a sub-
set of variables that do not appear in P \P ′. The multi-homogeneous struc-
ture is manifest by partitioning the variables to subsets (X1,X2, . . . Xn) with
|Xi| = di, d1 + · · · + dn = m, so that each Pi is homogeneous in each Xj (see
Definition 2 for more details).

The m-Bézout Bound and Distance Geometry 9

Theorem 1. Given multi-homogeneous system P as above, let us assume that

– every Pi contains at most two variable subsets,
– two polynomials Pi, Pj do not contain the same pair of variables, and
– the degree of each Pi, denoted by δi, is the same in both variable sets.

Let d = max
1≤i≤n

(di), k = nd − m, then the m-Bézout number of P is bounded by

αn
d · βk−1

d ·
m∏

i=1

δi, (1)

where

αd = max
p≥d

(
2p−d

(
p

d

)2d−3
) 1

2p−3

, βd =

(
2
(

p

d

)−2
) 1

2p−3

,

and p ∈ N appearing in βd is the one which maximizes αd.

Notice that βd < 1, so an
d gives the asymptotic order of this bound. An

asymptotic expression of ad is given in [4]:

αd �
√

1
2

(
2d

d

) (
1 + O

(
ln2 d

d

))
.

Upper bounds on αn
d are provided in Table 1.

Table 1. Upper bounds on αn
d .

d 2 3 4 5 6 7 8 9

αn
d 1.88n 3.41n 6.34n 11.9n 22.7n 43.7n 84.4n 163.7n

Paper Structure. The rest of the paper is organized as follows. In Sect. 2, we
discuss established methods that relate the m-Bézout bound with the number
of orientations of a graph, and methods that improve the upper bounds on the
number of embeddings. In Sect. 3, we extend these methods to a class of multi-
homogeneous systems, thus bounding their m-Bézout number. Finally, in Sect. 4
we present concluding remarks and present ideas of future work.

2 Bounds on the Embedding Number

In this section, we start by offering further background on rigid graphs. Then
we present previous work, that relates the number of orientations of a graph to
the m-Bézout, and methods that harness this relation to improve the asymptotic
upper bounds on the embedding number.

10 E. Bartzos et al.

A generically minimally rigid graph is a rigid graph that loses the rigidity
property if any of its edges is removed. A fundamental theorem in graph rigidity
due to Maxwell, gives a necessary condition for a graph and all its subgraphs to be
rigid. In particular, if a graph G is minimally rigid in R

d, then |E| = d·|V |−(
d+1
2

)
,

and for every subgraph G′(V ′, E′) ⊂ G it holds that |E′| ≤ d · |V ′| − (
d+1
2

)
[20].

Below this number of edge constraints shall become quite intuitive since it equals
the number of unknown variables in the respective algebraic system.

In order to compute the embeddings of a rigid graph up to rigid motions,
we use the following formulation used also in [11,24], which is called sphere
equations in [2].

Definition 1 ([2]). Let G = (V,E) be a graph. We denote by λ the lengths of
the edges on G and by X̃u = {xu,1, ..., xu,d} the d variables that correspond to the
coordinates of a vertex u. The following system of equations gives the embedding
number for G:

||X̃u||2 = su, ∀u ∈ V

su + sv − 2〈X̃u, X̃v〉 = λ2
u,v, ∀(u, v) ∈ E\E(Kd)

where 〈X̃u, X̃v〉 is the Euclidean inner product. The first set of equations shall
be called magnitude equations, while the second are the edge equations.

This formulation is suitable for sparse elimination theory (see [3] for a general
discussion on the algebraic system). In order to factor out rigid motions, if G
possesses a complete subgraph in d vertices, the coordinates of these vertices
shall be fixed.

Notice that, when we fix d vertices, the above algebraic system has d · n − d2

edge equations and n − d magnitude equations. In [3] the variables are parti-
tioned into subsets, such that each subset of variables contains these ones which
correspond to the coordinates and the magnitude of a vertex Xu = X̃u ∪ {su}.

Let us formally define multi-homogeneous systems in general, thus subsuming
the systems presented in the Introduction.

Definition 2. Let x be a vector of m variables and P (x) be a system of m poly-
nomial equations in C[x]. Let X1 = (x1,1, x1,2, . . . , x1,d1), X2 = (x2,1, x2,2, . . . ,
x2,d2), . . . , Xn = (xn,1, xn,2, . . . , xn,dn

) be a partition of the affine variables,
such that |Xi| = di, and d1 + · · · + dn = m. The degree of a polynomial Pi in
a variable set Xj is the same as the degree of this polynomial, if all variables
xj′,k /∈ Xj were treated as coefficients and is denoted with δi,j. Every Pi is homo-
geneous in each variable set Xj, with homogenizing variable xi,0 and multidegree
specified by vector δi = (δi,1, δi,2, . . . , δi,n). Then P is multi-homogeneous of type

(d1, . . . , dn; δ1, . . . , δn).

If all positive entries have the same value in a multidegree vector δi , then this
value will be denoted with mdeg(Pi).

The m-Bézout Bound and Distance Geometry 11

Let us recall a classic theorem from algebraic geometry, see e.g. [23], defining
the m-Bézout bound.

Theorem 2. Consider the multi-homogeneous system P (x) defined above. The
coefficient of the monomial Y d1

1 · · · Y dn
n in the polynomial defined by the product

m∏

i=1

(δi,1 · Y1 + · · · + δi,n · Yn). (2)

bounds the number of roots of P (x) in P
d1 ×· · ·×P

dn , where Yi are new symbolic
parameters, and P

j is the j-dimensional projective space over C. The bound is
tight for generic coefficients of P (x).

The most efficient method to compute the m-Bézout bound is by evaluating
the permanent of a matrix capturing the polynomial structure, see [12]. Let this
matrix be A for a multi-homogeneous system P as above, and let per(A) denote
the permanent of this matrix. Then the m-Bézout bound equals

1
d1!d2! · · · dn!

· per(A). (3)

By applying Theorem 2, the following expansion is considered in the case of
sphere equations (see Definition 1):

∏

u∈V ′
2 · Yu

∏

(u,v)∈E′
(Yu + Yv) = 2n−d ·

∏

u∈V ′
Yu

∏

(u,v)∈E′
(Yu + Yv),

where G′(V ′, E′) = G\Kd. Thus, it suffices to find the coefficient of
∏

u∈V ′
Y d
u in

the expansion of the product:
∏

(u,v)∈E′
(Yu + Yv).

In [3], it is proven that this coefficient equals the cardinality of the set of
those orientations of G′ = (V,E\E(Kd)) satisfying the conditions set in the
following theorem.

Theorem 3 ([3]). Let G = (V,E) be a minimally rigid graph that contains
at least one complete subgraph on d vertices, denoted by Kd = (v1, . . . , vd). Let
B(G,Kd), stand for the number of outdegree-constrained orientations of G′ =
(V,E\E(Kd)), such that:

– the outdegree of v1, . . . , vd is 0.
– the outdegree of every vertex in V \{v1, ..., vd} is d.

The orientations that satisfy these constraints are called valid. Then the number
of embeddings of G in C

d, does not exceed

2|V |−d · B(G,Kd).

12 E. Bartzos et al.

v1 v2 v3

v4 v5 v6

v2 v6

v5 v3

Fig. 1. Left: Graph K3,3 where v1, v2 are chosen as fixed vertices (d = 2). Right: the
resulting pseudograph, after removing the fixed vertices. (Color figure online)

The theorem extends to the case where a fixed Kd does not exist [4].
In [4], this method yields the current record upper bounds on the number

of embeddings. To achieve this, the valid orientations of Theorem 3 are associ-
ated to a graphical structure in which the vertices that have fixed outdegree 0
are omitted. This graphical structure is called pseudograph [4], and extends the
notion of a standard graph by allowing hanging edges, which have a single end-
point; hanging edges are always oriented outwards from its incident vertex. In
correspondence with Theorem 3, the hanging edges represent edges incident to
the missing vertices in the original graph. It is thus a collection G = (V,E,H),
where V denotes the vertices, E the edges with two endpoints and H the hanging
edges.

An elimination process that applies to a pseudograph bounds the number of
orientations. At each step, one or more vertices (see Fig. 2) are removed from
the pseudograph and their incident edges are either removed or become hanging
edges in a smaller graph. The number of possible outcomes in every step multi-
plies the current count until a terminal condition is reached; the overall product
bounds the number of valid orientations.

Fig. 2. Excerpt from [4]. Left: a (blue) vertex with 3 neighbours and no hanging edges.
Right: 3 possible cases for the orientation, after the removal of the blue vertex, when
d = 2. The number of possible cases is multiplied in every elimination step, which
eventually bounds the number of valid orientations. (Color figure online)

The m-Bézout Bound and Distance Geometry 13

We remark that from an algebraic point of view, the hanging edges corre-
spond to variables that can be eliminated linearly using the edge equations from
Definition 1. In other words, they represent a reduction in the cardinality of the
variables set of the specific vertex (see Fig. 1).

Theorem 4 ([4]). Let Bd(n, k) denote the maximal number of orientations
with outdegree d for a connected pseudograph with n vertices and k hanging
edges. Then it holds that:

Bd(n, k) ≤ αn
d · βk−1

d ,

where αd and βd are defined as in Theorem 1.

For d = 2, . . . , 9, the formula yields improved bounds on the number of orien-
tations which are expressed by an

d , see Table 1, since βd < 1. Due to Theorem 3,
these quantities multiplied by 2n, bound the number of embeddings in the d-
dimensional complex space. In the case of d = 2 and d = 3, this improved
the asymptotic bound on the embedding number to O(3.77n) and O(6.82n)
respectively.

3 Algebraic Systems Modeled by Simple Graphs

In this section we exploit the methods described above to bound the m-Bézout
number of a class of multi-homogeneous algebraic systems that shall be modeled
via a simple graph.

Recall the polynomial systems described in Theorem 1: For every polyno-
mial Pi containing variable sets Xu,Xv, it holds for the degree mdeg(Pi) = δi,j
only for j ∈ {u, v}, whereas δi,j = 0, for all j �∈ {u, v}. We also require that
the polynomial system cannot be split into smaller subsystems with disjoint
variables, and that two different polynomials cannot contain the same pair of
variable sets.

We call such systems simple graph polynomial systems since they define a
simple connected graph G(P) = (V,E) as follows: The vertices of G correspond
to the n variable subsets, while each polynomial yields an edge whose endpoints
are the respective vertices. There are no loops, because no polynomial contains a
single variable set. Since the pair of variable sets is unique for each polynomial,
there can be only one edge with the same endpoints, hence no multiple edges
appear. Furthermore, if the graph was disconnected, every connected component
would contain vertices corresponding to sets of variables that do not appear in
the other connected components, which has been excluded. All these conditions
indicate that the graph is simple and connected.

The main observation here is that we can relate the m-Bézout bound in the
cases of simple graph polynomial systems with valid orientations, as described
in Sect. 2, but we can relax those conditions since it is not necessary to restrain
these constraints to outdegree d and outdegree 0 cases (see Theorem 3).

14 E. Bartzos et al.

Theorem 5. Let P be a simple graph polynomial system with m equations for
a partition of variables X1,X2, . . . , Xn and let G(P) = (V,E) be the associated
simple graph. Let |Xj | = dj, d = (d1, d2, . . . dn) and mdeg(P(u,v)) = δ(u,v), where
(u, v) is the edge associated with the polynomial containing Xu,Xv. We denote
by B(G(P),d) the number of orientations of G(P), constrained so that each
vertex u representing Xu has outdegree du. Then, the m-Bézout number for P
under this variable partition is exactly

B(G(P),d) ·
∏

(u,v)∈E

δ(u,v).

Proof. The m-Bézout bound is the coefficient of the term Y = Y d1
1 · · · Y d2

2 · Y dn
n

in the polynomial
∏

(u,v)∈E

(δ(u,v) ·Yu+δ(u,v) ·Yv), where every Yk is a new symbolic

parameter. Clearly the latter is equal with
⎛

⎝
∏

(u,v)∈E

δ(u,v)

⎞

⎠ ·
∏

(u,v)∈E

(Yu + Yv).

Using a similar argument to that in the proof of Theorem 3 in [3], the mono-
mial Y appears only if each term Yu is selected exactly du times in the expansion
of this product. Since each set of variables represents a vertex and each poly-
nomial represents an edge in G(P), this can be connected to du edges directed
outwards from u in a graph orientation.
�

Now, we can derive general upper bounds on the m-Bézout number using
the pseudograph formulation. Combining Theorem 5 and Theorem 4 leads to
the following proof of Theorem 1.

Proof (of Theorem 1). Let d = max(d), for a system P , with d as defined
above. Let G = (V,E,H) be a pseudograph, such that V,E are the vertices and
the edges of G(P), respectively, H are the hanging edges, where a vertex v has
exactly d − dv hanging edges as specified in Sect. 2. Now, if a vertex v has no
hanging edges, then all of its dv = d edges should be directed outwards from
it. On the other hand, for a vertex v that has kv = d − dv hanging edges, then
dv edges in E should be out-directed, which correspond to dv edges directed
outwards in G(P). These cases capture exactly all valid orientations of G(P).
The latter orientations are used to compute the m-Bézout bound of a simple
graph polynomial in Theorem 5.

Now, it suffices to bound the number of valid orientations of this pseudograph,
by extending the techniques of [4]. The bound on valid orientations with fixed
outdegree d for all pseudographs with |V | = n vertices and |H| = k hanging
edges is given by Theorem 4, thus establishing that Equation (1) bounds the
m-Bézout bound.
�

Let us present two examples of simple graph polynomial systems, by com-
puting the m-Bézout number, and by deriving the bound in Theorem 1 that
concerns all systems whose graph has the same vertices and hanging edges.

The m-Bézout Bound and Distance Geometry 15

X2

X1

X3

X4

X2

X1

X3

X4

X2

X1

X3

X4

X2

X1

X3

X4

Fig. 3. The 4 outdegree-constrained orientations of G(P) in Example 1. Since |X1| =
|X3| = 2, |X2| = |X4| = 1, the outdegree of X1, X3 is 2, while that of X2, X4 is 1.
(Color figure online)

Example 1. The following system P is a simple graph polynomial system:

P(X1,X2) = x1,1x2,1 + 5x1,2x2,1 + 2x1,2 + 3

P(X1,X3) = 2x2
1,1x

2
3,1 + 2x2

1,1x
2
3,2 + 2x2

1,2x
2
3,2 + x1,1x1,2x3,1x3,2 + 2x1,2 − 13

P(X1,X4) = x1,1x1,2x
2
4,1 − x2

1,1x
2
4,1 + x1,2x4,1

P(X2,X3) = 4x3
2,1x

2
3,1x3,2 + x2,1x

2
3,1x3,2 + 2x3,2 + 7

P(X2,X4) = 2x2,1x4,1 + 3x2,1 + 5x4,1 − 9
P(X3,X4) = 4x3,1x4,1 + 5x3,2x4,1 + 7x3,1 + 2x4,1

for the partition of variables X1 = {x1,1, x1,2}, X2 = {x2,1}, X3 = {x3,1, x3,2},
X4 = {x4,1}. Of course, it is sparse in the sense that not all expected terms appear
with nonzero coefficient; hence, one would expect its mixed volume to be inferior
to its m-Bézout number. The vertices of G(P) are labeled by these subsets; the
cardinalities are |X1| = |X3| = 2 and |X2| = |X4| = 1, hence d = (2, 1, 2, 1).
The edge set is:

E = {(X1,X2), (X1,X3), (X1,X4), (X2,X3), (X2,X4), (X3,X4)}.

The multi-homogeneous degrees are δ(X1,X2) = 1, δ(X1,X3) = 2, δ(X1,X4) = 2,
δ(X2,X3) = 3, δ(X2,X4) = 1, δ(X3,X4) = 1.

We compute the m-Bézout bound by Theorem 5. Since d1 = d3 = 2, d2 =
d4 = 1 the outdegree of vertices X1,X3 should be 2, while that of X2,X4 should
be 1 for a valid orientation. There are 4 such orientations (Fig. 3). Therefore
the m-Bézout bound is 12 · 4 = 48. The BKK bound gives a tighter bound by
exploiting sparseness: using phcpy [25], we found a mixed volume of 44, which
is the actual number of complex roots.

16 E. Bartzos et al.

In order to apply Theorem 1, we set d = max(d) = 2, so α2 = 241/5 and
β2 = 18−1/5. Since the number of vertices of G(P) is n = 4 and the number
of equations m = 6, we have k = nd − m = 2, and

∏
E δ(Xi,Xj) = 12, then the

bound is �12 · 244/5 · 18−1/5� = 85.
Let us compare this estimate to the Bézout bound. The total degrees of the

equations are 2, 4, 6, 2, 4, 2; the Bézout bound is therefore 768.

In the second example the multidegree vector has either zeros or ones. This
means that we can relate the m-Bézout bound to the permanent of a (0, 1)-
matrix A capturing the polynomial structure. For this kind of matrices, there is
a permanent bound, better known as the Brègman-Minc bound [9,21]. Therefore,
we shall also compare this bound to ours.

Example 2. The following system Q is a simple graph polynomial system:

Q(X1,X2) = x1,1x2,1 + 2x1,1 + 3x2,1

Q(X1,X3) = 2x1,1x3,1 + x1,1x3,2 + x3,1 + x3,2 + 2x1,1

Q(X1,X5) = 5x1,1x5,1 + 2x1,1x5,2 + x5,1 + x5,2 + x1,1

Q(X2,X4) = 9x2,1x4,1 + x2,1x4,2 + x4,1 + x4,2 + x2,1

Q(X2,X5) = 9x2,1x5,1 + x2,1x5,2 + x5,1 + x5,2 + x2,1

Q(X3,X4) = 4x3,2x4,1 + 2x3,2x4,2 + 5x3,1x4,1 + 9x3,1x4,2 + x3,1 + x3,2 + x4,1

Q(X3,X5) = 3x3,2x5,1 + 4x3,2x5,2 + x3,1x5,1 + 7x3,1x5,2 + x3,1 + x3,2 + 2x5,1

Q(X4,X5) = x4,2x5,1 + 9x4,2x5,2 + 3x4,1x5,1 + 4x4,1x5,2 + 2x4,1 + x4,2 + 14x5,1

for the partition of variables X1 = {x1,1}, X2 = {x2,1}, X3 = {x3,1, x3,2},
X4 = {x4,1, x4,2},X5 = {x5,1, x5,2}; the cardinalities of the subsets are |X1| =
|X2| = 1, |X3| = |X4| = |X5| = 2, indicating that d = (1, 1, 2, 2, 2). The multi-
homogeneous degree is δ(Xi,Xj) = 1 for all (Xi,Xj) ∈ E but, of course, there are
some terms missing due to vanishing coefficients.

The vertices of G(Q) are labeled by these subsets. The edge set E is:

{(X1,X2), (X1,X3), (X1,X5), (X2,X4), (X2,X5), (X3,X4), (X3,X5), (X4,X5)}.

We count orientations such that the outdegrees of X1,X2 is d1 = d2 = 1, while
that of X3,X4,X5 is d3 = d4 = d5 = 2. Thus the m-Bézout number is the same
as the number of the orientations namely 6 (See Fig. 4). In that case this bound
is exact, since the number of roots is also 6, and so is the BKK bound.

We have d = 2, so α2 = 241/5 and β2 = 18−1/5. We have n = 5 and k = 2,
indicating that the bound from Theorem 1 is �24 · 18−1/5� = 13.

In order to use the Brègman-Minc bound, one constructs a matrix with rows
representing the variables and columns representing the equations (see [12] for
details). The entry (i′, j) equals δi,j for all xi′ ∈ Xi. The matrix is:

The m-Bézout Bound and Distance Geometry 17

X3 X4

X1 X2

X5

X3 X4

X1 X2

X5

X3 X4

X1 X2

X5

X3 X4

X1 X2

X5

X3 X4

X1 X2

X5

X3 X4

X1 X2

X5

Fig. 4. The 6 valid orientations of the graph in Example 2. (Color figure online)

Q(X1,X2) Q(X1,X3) Q(X1,X5) Q(X2,X4) Q(X2,X5) Q(X3,X4) Q(X3,X5) Q(X4,X5)

x1,1 1 1 1 0 0 0 0 0

x2,1 1 0 0 1 1 0 0 0

x3,1 0 1 0 0 0 1 1 0

x3,2 0 1 0 0 0 1 1 0

x4,1 0 0 0 1 0 1 0 1

x4,2 0 0 0 1 0 1 0 1

x5,1 0 0 1 0 1 0 1 1

x5,2 0 0 1 0 1 0 1 1

The Brègman-Minc bound for (0, 1)-matrices is
∏

i(ri!)
1/ri , where ri is the

sum of entries in row i. Thus the permanent is bounded by 62 · 241/2. Based on

Equation (3) one divides by
n∏

i=1

di! = 8 and obtains a bound of �9√
6� = 22 on

the m-Bézout number, which is looser than our method’s.
The Bézout bound is 256, since all total degrees are 2.

In both examples above, the maximum outdegree d for a vertex in the asso-
ciated graphs was 2. To conclude let us give some brief examples for the com-
putation of the bound using the closed-formula of Theorem 1 for larger d, given
the same graph with different cardinalities for the sets of variables. In all cases
we will consider δi = 1.

The graph that will be analyzed has 6 vertices and 13 edges. The edge
set is the following (see Fig. 5): (X1,X2), (X1,X3), (X1,X4), (X1,X5), (X2,X3),
(X2,X4), (X2,X5), (X3,X4), (X4,X5), (X5,X6).

18 E. Bartzos et al.

We will first consider the case that the cardinalities are |X1| = |X3| = 1,
|X4| = 2, |X2| = |X5| = |X6| = 3. We have d = 3, so α3 = 401/3, β3 = 200−1/9,
while k = 5. All these lead to �402 · 200−4/9� = 151 as a bound.

If the cardinalities change so do the constraints on the outdegrees. For
example for the following case |X6| = |X3| = 1, |X4| = |X5| = 2, |X1| =
3, |X2| = 4 we have clearly that d = 4, so k = 11. This means that we shall
use α4 = 29/13 · 355/13, β4 = 2−1/13 · 35−2/13, concluding that the bound is
�243/13 · 358/13� = 160.

Finally, let us present the case that |X1| = 5, |X2| = 3, |X3| = 2, |X4| =
|X5| = |X6| = 1. Now d = 5, k = 17 and also α5 = 219/17 · 637/17,
β5 = 2−3/17 · 63−2/17. The bound in that case is �266/17 · 6310/17� = 168.

X1

X3

X4

X5

X6

X2

Fig. 5. An example graph on 6 vertices and 13 edges. The bound for simple graph
polynomial systems with different variable set cardinalities is analyzed in the text.

4 Conclusion

In this paper, we studied methods that use the multi-homogeneous Bézout to
improve the upper bounds on the number of embeddings of minimally rigid
graphs. We generalized these methods to polynomial systems which represent
simple graphs, and not only minimally rigid graphs. An open question is to
further understand the algebraic implications of our results. The graph elimi-
nation process that yields the closed-form bound on the number of orientations
can be paralleled to algebraic variable elimination. The main open question is
whether our approach may be extended to a wider class of well-constrained alge-
braic systems. This would require extending the proof that bounds the number
of graph orientations to the graph corresponding to the more general class of
algebraic systems.

Another open question is to obtain tight upper bound on the number of
orientations of graphs. A result on this would immediately improve the upper

The m-Bézout Bound and Distance Geometry 19

bound on the m-Bézout number. This is actually our current work. A more
theoretical question would be to estimate the error of our approximation.

References

1. Baglivo, J., Graver, J.: Incidence and Symmetry in Design and Architecture. No. 7
in Cambridge Urban and Architectural Studies, Cambridge University Press (1983)

2. Bartzos, E., Emiris, I., Legerský, J., Tsigaridas, E.: On the maximal number of
real embeddings of minimally rigid graphs in R

2, R3 and S2. J. Symbol. Comput.
102, 189–208 (2021). https://doi.org/10.1016/j.jsc.2019.10.015

3. Bartzos, E., Emiris, I., Schicho, J.: On the multihomogeneous Bézout bound on the
number of embeddings of minimally rigid graphs. J. Appl. Algebra Eng. Commun.
Comput. 31 (2020). https://doi.org/10.1007/s00200-020-00447-7

4. Bartzos, E., Emiris, I., Vidunas, R.: New upper bounds for the number of embed-
dings of minimally rigid graphs. arXiv:2010.10578 [math.CO] (2020)

5. Bernstein, D., Farnsworth, C., Rodriguez, J.: The algebraic matroid of the finite
unit norm tight frame (FUNTF) variety. J. Pure Appl. Algebra 224(8) (2020).
https://doi.org/10.1016/j.jpaa.2020.106351

6. Bernstein, D.: The number of roots of a system of equations. Func. Anal. Appl.
9(3), 183–185 (1975). https://doi.org/10.1007/BF01075595

7. Borcea, C., Streinu, I.: The number of embeddings of minimally rigid graphs. Dis-
cret. Comput. Geomet. 31(2), 287–303 (2004). https://doi.org/10.1007/s00454-
003-2902-0

8. Borcea, C., Streinu, I.: Periodic tilings and auxetic deployments. Math. Mech.
Solids 26(2), 199–216 (2021). https://doi.org/10.1177/1081286520948116

9. Brègman, L.: Some properties of nonnegative matrices and their permanents. Dokl.
Akad. Nauk SSSR 211(1), 27–30 (1973)

10. Cifuentes, D., Parrilo, P.: Exploiting chordal structure in polynomial ideals: a
Gröbner bases approach. SIAM J. Discret. Math. 30(3), 1534–1570 (2016). https://
doi.org/10.1137/151002666

11. Emiris, I., Tsigaridas, E., Varvitsiotis, A.: Mixed volume and distance geometry
techniques for counting Euclidean embeddings of rigid graphs. In: Mucherino, A.,
Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods
and Applications, pp. 23–45. Springer, New York (2013). https://doi.org/10.1007/
978-1-4614-5128-0 2

12. Emiris, I., Vidunas, R.: Root ounts of semi-mixed systems, and an application
to counting Nash equilibria. In: Proceedings of ACM International Symposium
Symbolic & Algebraic Computation, pp. 154–161. ISSAC, ACM (2014). https://
doi.org/10.1145/2608628.2608679

13. Emmerich, D.: Structures Tendues et Autotendantes. Ecole d’Architecture de
Paris, La Villette, France (1988)

14. Harris, J., Tu, L.: On symmetric and skew-symmetric determinantal varieties.
Topology 23, 71–84 (1984)

15. Jackson, W., Owen, J.: Equivalent realisations of a rigid graph. Discrete Appl.
Math. 256, 42–58 (2019). https://doi.org/10.1016/j.dam.2017.12.009. Special Issue
on Distance Geometry: Theory & Applications’16

16. Lavor, C., et al.: Minimal NMR distance information for rigidity of protein graphs.
Discrete Appl. Math. 256, 91–104 (2019). www.sciencedirect.com/science/article/
pii/S0166218X18301793. Special Issue on Distance Geometry Theory & Applica-
tions’16

https://doi.org/10.1016/j.jsc.2019.10.015
https://doi.org/10.1007/s00200-020-00447-7
http://arxiv.org/abs/2010.10578
https://doi.org/10.1016/j.jpaa.2020.106351
https://doi.org/10.1007/BF01075595
https://doi.org/10.1007/s00454-003-2902-0
https://doi.org/10.1007/s00454-003-2902-0
https://doi.org/10.1177/1081286520948116
https://doi.org/10.1137/151002666
https://doi.org/10.1137/151002666
https://doi.org/10.1007/978-1-4614-5128-0_2
https://doi.org/10.1007/978-1-4614-5128-0_2
https://doi.org/10.1145/2608628.2608679
https://doi.org/10.1145/2608628.2608679
https://doi.org/10.1016/j.dam.2017.12.009
www.sciencedirect.com/science/article/pii/S0166218X18301793
www.sciencedirect.com/science/article/pii/S0166218X18301793

20 E. Bartzos et al.

17. Li, H., Xia, B., Zhang, H., Zheng, T.: Choosing the variable ordering for cylin-
drical algebraic decomposition via exploiting chordal structure. In: Proceedings of
International Symposium on Symbolic and Algebraic Computation, ISSAC 2021.
ACM (2021)

18. Liberti, L.: Distance geometry and data science. TOP 28, 271–339 (2020)
19. Malajovich, G., Meer, K.: Computing minimal multi-homogeneous Bezout numbers

is Hard. Theory Comput. Syst. 40(4), 553–570 (2007). https://doi.org/10.1007/
s00224-006-1322-y

20. Maxwell, J.: On the calculation of the equilibrium and stiffness of frames. Philos.
Mag. 39(12) (1864)

21. Minc, H.: Upper bounds for permanents of (0, 1)-matrices. Bull. AMS 69, 789–791
(1963). https://doi.org/10.1090/S0002-9904-1963-11031-9

22. Rocklin, D., Zhou, S., Sun, K., Mao, X.: Transformable topological mechanical
metamaterials. Nat. Commun. 8 (2017). https://doi.org/10.1038/ncomms14201

23. Shafarevich, I.: Intersection Numbers, pp. 233–283. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37956-7 4

24. Steffens, R., Theobald, T.: Mixed volume techniques for embeddings of Laman
graphs. Comput. Geom. 43, 84–93 (2010)

25. Verschelde, J.: Modernizing PHCpack through phcpy. In: Proceedings of the 6th
European Conference on Python in Science (EuroSciPy 2013), pp. 71–76 (2014)

26. Zelazo, D., Franchi, A., Allgöwer, F., Bülthoff, H.H., Giordano, P.: Rigidity main-
tenance control for multi-robot systems. In: Proceedings of Robotics: Science &
Systems, Sydney, Australia (2012)

27. Zhu, Z., So, A.C., Ye, Y.: Universal rigidity and edge sparsification for sensor
network localization. SIAM J. Optim. 20(6), 3059–3081 (2010)

https://doi.org/10.1007/s00224-006-1322-y
https://doi.org/10.1007/s00224-006-1322-y
https://doi.org/10.1090/S0002-9904-1963-11031-9
https://doi.org/10.1038/ncomms14201
https://doi.org/10.1007/978-3-642-37956-7_4

Computational Schemes for Subresultant
Chains

Mohammadali Asadi(B), Alexander Brandt, and Marc Moreno Maza

Department of Computer Science, University of Western Ontario, London, Canada
{masadi4,abrandt5}@uwo.ca, moreno@csd.uwo.ca

Abstract. Subresultants are one of the most fundamental tools in com-
puter algebra. They are at the core of numerous algorithms including,
but not limited to, polynomial GCD computations, polynomial system
solving, and symbolic integration. When the subresultant chain of two
polynomials is involved in a client procedure, not all polynomials of the
chain, or not all coefficients of a given subresultant, may be needed. Based
on that observation, this paper discusses different practical schemes, and
their implementation, for efficiently computing subresultants. Extensive
experimentation supports our findings.

Keywords: Resultant · Subresultant chain · Modular arithmetic ·
Polynomial system solving · GCDs

1 Introduction

The goal of this paper is to investigate how several optimization techniques for
subresultant chain computations benefit polynomial system solving in practice.
These optimizations rely on ideas which have appeared in previous works, but
without the support of successful experimental studies. Therefore, this paper
aims at filling this gap.

The first of these optimizations takes advantage of the Half-GCD algorithm
for computing GCDs of univariate polynomials over a field k. For input poly-
nomials of degree (at most) n, this algorithm runs within O(M(n) log n) oper-
ations in k, where M(n) is a polynomial multiplication time, as defined in [12,
Chapter 8]. The Half-GCD algorithm originated in the ideas of [16,18] and [26],
while a robust implementation was a challenge for many years. One of the earliest
correct designs was introduced in [28].

The idea of speeding up subresultant chain computations by means of the
Half-GCD algorithm takes various forms in the literature. In [25], Reischert
proposes a fraction-free adaptation of the Half-GCD algorithm, which can be
executed over an effective integral domain B, within O(M(n) log n) operations
in B. We are not aware of any implementation of Reischert’s algorithm.

In [20], Lickteig and Roy propose a “divide and conquer” algorithm for com-
puting subresultant chains, the objective of which is to control coefficient growth

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 21–41, 2021.
https://doi.org/10.1007/978-3-030-85165-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_3

22 M. Asadi et al.

in defective cases. Lecerf in [17] introduces extensions and a complexity anal-
ysis of the algorithm of Lickteig and Roy, with a particular focus on bivariate
polynomials. When run over an effective ring endowed with the partially defined
division routine, the algorithm yields a running time estimate similar to that of
Reischert’s. Lecerf realized an implementation of that algorithm, but observed
that computations of subresultant chains based on Ducos’ algorithm [10], or on
evaluation-interpolation strategies, were faster in practice.

In [12, Chapter 11], von zur Gathen and Gerhard show how the nominal leading
coefficients (see Sect. 2 for this term) of the subresultant chain of two univariate
polynomials a, b over a field can be computed within O(M(n) log n) operations in
k, by means of an adaptation of the Half-GCD algorithm. In this paper, we extend
their approach to compute any pair of consecutive non-zero subresultants of a, b
within the same time bound. The details are presented in Sect. 3.

Our next optimization for subresultant chain computations relies on the
observation that not all non-zero subresultants of a given subresultant chain
may be needed. To illustrate this fact, consider two commutative rings A and
B, two non-constant univariate polynomials a, b in A[y] and a ring homomor-
phism Ψ from A to B so that Ψ(lc(a)) �= 0 and Ψ(lc(b)) �= 0 both hold. Then,
the specialization property of subresultants (see the precise statement in Sect. 2)
tells us that the subresultant chain of Ψ(a), Ψ(b) is the image of the subresultant
chain of a, b via Ψ .

This property has at least two important practical applications. When B is
polynomial ring over a field, say B is Z/pZ[x] and A is Z/pZ, then one can com-
pute a GCD of Ψ(a), Ψ(b) via evaluation and interpolation techniques. Similarly,
say B is Q[x]/〈m(x)〉, where m(x) is a square-free polynomial, then B is a prod-
uct of fields then, letting A be Q[x], one can compute a GCD of Ψ(a), Ψ(b) using
the celebrated D5 Principle [8]. More generally, if B is Q[x1, . . . , xn]/〈T 〉, where
T = (t1(x1), . . . , tn(x1, . . . , xn)) is a zero-dimensional regular chain (generating
a radical ideal), and A is Q[x1, . . . , xn], then one can compute a so-called regular
GCD of a and b modulo 〈T 〉, see [5]. The principle of that calculation generalizes
the D5 Principle as follows:

1. if the resultant of a, b is invertible modulo 〈T 〉 then 1 is a regular GCD of a
and b modulo 〈T 〉;

2. if, for some k, the nominal leading coefficients s0, . . . , sk−1 are all zero modulo
〈T 〉, and sk is invertible modulo 〈T 〉, then the subresultant Sk of index k of
a, b is a regular GCD of a and b modulo 〈T 〉; and

3. one can always reduce to one of the above two cases by splitting T , when a
zero-divisor of B is encountered.

In practice, in the above procedure, k is often zero, which can be seen as a
consequence of the celebrated Shape Lemma [4]. This suggests to compute the
subresultant chain of a, b in A[y] speculatively. To be precise, and taking advan-
tage of the Half-GCD algorithm, it is desirable to compute the subresultants of
index 0 and 1, delaying the computation of subresultants of higher index until
proven necessary.

Computational Schemes for Subresultant Chains 23

We discuss that idea of computing subresultants speculatively in Sect. 3.
Making that approach successful, in comparison to non-speculative approaches,
requires to overcome several obstacles:

1. computing efficiently the subresultants S0 and S1, via the Half-GCD; and
2. developing an effective “recovery” strategy in case of “misprediction”, that

is, when subresultants of index higher than 1 turn out to be needed.

To address the first obstacle, our implementation combines various schemes for
the Half-GCD, inspired by the work done in NTL [27]. To address the second
obstacle, when we compute the subresultants of index 0 and 1 via the Half-GCD,
we record or cache the sequence of quotients (associated with the Euclidean
remainders) so as to easily obtain subresultants of index higher than 1, if needed.

There are subresultant algorithms in almost all computer algebra software.
Most notably, the RegularChains library [19] in Maple provides three different
algorithms to compute the entire chain based on Ducos’ optimization [9], Bézout
matrix [1], or evaluation-interpolation based on FFT. Each one is well-suited for
a particular type of input polynomials w.r.t the number of variables and the
coefficients ring; see the Maple help page for SubresultantChain command.
Similarly, the Algebramix library in Mathemagix [14] implements different
subresultant algorithms, including routines based on evaluation-interpolation,
Ducos’ algorithm, and an enhanced version of Lickteig-Roy’ s algorithm [17].

The extensive experimentation results in Sect. 5 indicate that the perfor-
mance of our univariate polynomials over finite fields (based on FFT) are closely
comparable with their counterparts in NTL. In addition, we have aggressively
tuned our subresultant schemes based on evaluation-interpolation techniques.
Our modular subresultant chain algorithms are up to 10× and 400× faster than
non-modular counterparts (mainly Ducos’ subresultant chain algorithm) in Z[y]
and Z[x, y], respectively. Further, utilizing the Half-GCD algorithm to compute
subresultants yields an additional speed-up factor of 7× and 2× for polynomials
in Z[y] and Z[x, y], respectively.

Further still, we present a third optimization for subresultant chain compu-
tations through a simple improvement of Ducos’ subresultant chain algorithm.
In particular, we consider memory usage and data locality to improve prac-
tical performance; see Sect. 4. We have implemented both the original Ducos
algorithm [10] and our optimized version over arbitrary-precision integers. For
univariate polynomials of degree as large as 2000, the optimized algorithm uses
3.2× and 11.7× less memory, respectively, than our implementation of the orig-
inal Ducos’ algorithm and the implementation of Ducos’ algorithm in Maple.

All of our code, providing also univariate and multivariate polynomial arith-
metic, is open source and part of the Basic Polynomial Algebra Subprograms
(BPAS) library available at www.bpaslib.org. Our many subresultant schemes
have been integrated, tested, and utilized in the multithreaded BPAS polynomial
system solver [3].

This paper is organized as follows. Section 2 presents a review of subresultant
theory following the presentations of [9] and [15]. Our modular method to compute

www.bpaslib.org

24 M. Asadi et al.

subresultants speculatively via Half-GCD is discussed in Sect. 3. Section 4 exam-
ines practical memory optimizations for Ducos’ subresultant chain algorithm.
Lastly, implementation details and experimental results are presented in Sect. 5.

2 Review of Subresultant Theory

In this review of subresultant theory, we follow the presentations of [9] and [15].
Let B be a commutative ring with identity and let m ≤ n be positive integers.
Let M be a m×n matrix with coefficients in B. Let Mi be the square submatrix
of M consisting of the first m − 1 columns of M and the i-th column of M , for
m ≤ i ≤ n; let det(Mi) be the determinant of Mi. The determinantal polynomial
of M denoted by dpol(M) is a polynomial in B[y], given by

dpol(M) = det(Mm)yn−m + det(Mm+1)yn−m−1 + · · · + det(Mn).

Note that, if dpol(M) is not zero, then its degree is at most n−m. Let f1, . . . , fm

be polynomials of B[y] of degree less than n. We denote by mat(f1, . . . , fm) the
m × n matrix whose i-th row contains the coefficients of fi, sorted in order of
decreasing degree, and such that fi is treated as a polynomial of degree n−1. We
denote by dpol(f1, . . . , fm) the determinantal polynomial of mat(f1, . . . , fm).

Let a, b ∈ B[y] be non-constant polynomials of respective degrees m = deg(a),
n = deg(b) with m ≥ n. The leading coefficient of a w.r.t. y is denoted by lc(a).
Let k be an integer with 0 ≤ k < n. Then, the k-th subresultant of a and b (also
known as the subresultant of index k of a and b), denoted by Sk(a, b), is

Sk(a, b) = dpol(yn−k−1a, yn−k−2a, . . . , a, ym−k−1b, . . . , b).

This is a polynomial which belongs to the ideal generated by a and b in B[y].
In particular, S0(a, b) is the resultant of a and b denoted by res(a, b). Observe
that if Sk(a, b) is not zero then its degree is at most k. If Sk(a, b) has degree
k, then Sk(a, b) is said to be non-defective or regular; if Sk(a, b) �= 0 and
deg(Sk(a, b)) < k, then Sk(a, b) is said to be defective. We call k-th nominal
leading coefficient, demoted by sk, the coefficient of Sk(a, b) in yk. Observe that
if Sk(a, b) is defective, then we have sk = 0. For convenience, we extend the
definition to the n-th subresultant as follows:

Sn(a, b) =
{

γ(b)b, if m > n or lc(b) ∈ B is regular
undefined, otherwise

,

where γ(b) = lc(b)m−n−1. In the above, regular means not a zero-divisor. Note
that when m equals n and lc(b) is a regular element in B, then Sn(a, b) = lc(b)−1

b
is in fact a polynomial over the total fraction ring of B. We call specialization
property of subresultants the following property. Let A be another commutative
ring with identity and Ψ a ring homomorphism from B to A such that we have
Ψ(lc(a)) �= 0 and Ψ(lc(b)) �= 0. Then, for 0 ≤ k ≤ n, we have Sk(Ψ(a), Ψ(b)) =
Ψ(Sk(a, b)).

From now on, we assume that the ring B is an integral domain. Writing
δ = deg(a) − deg(b), there exists a unique pair (q, r) of polynomials in B[y] sat-
isfying ha = qb + r, where h = lc(b)δ+1, and either r = 0 or deg(r) < deg(b);

Computational Schemes for Subresultant Chains 25

the polynomials q and r, denoted respectively pquo(a, b) and prem(a, b), are the
pseudo-quotient and pseudo-reminder of a by b. The subresultant chain of a and b,
defined as subres(a, b) = (Sn(a, b), Sn−1(a, b), Sn−2(a, b), . . . , S0(a, b)), satisfies
relations which induce a Euclidean-like algorithm for computing the entire sub-
resultant chain: subres(a, b). This algorithm runs within O(n2) operations in B,
when m = n, see [9]. For convenience, we simply write Sk instead of Sk(a, b) for
each k. We write a ∼ b, for a, b ∈ B[y], whenever a, b are associate elements in
frac(B)[y], the field of fractions of B. Then for 1 ≤ k < n, we have:

(i) Sn−1 = prem(a,−b); if Sn−1 is non-zero, defining e := deg(Sn−1), then we
have:

Se−1 =
prem(b,−Sn−1)

lc(b)(m−n)(n−e)+1
,

(ii) if Sk−1 �= 0, defining e := deg(Sk−1) and assuming e < k−1 (thus assuming
Sk−1 defective), then we have:

(a) deg(Sk) = k, thus Sk is non-defective,
(b) Sk−1 ∼ Se and lc(Sk−1)

k−e−1
Sk−1 = sk

k−e−1Se, thus Se is non-defective,
(c) Sk−2 = Sk−3 = · · · = Se+1 = 0,

(iii) if both Sk and Sk−1 are non-zero, with respective degrees k and e then we
have:

Se−1 =
prem(Sk,−Sk−1)

lc(Sk)k−e+1
.

Algorithm 1. Subresultant (a, b, y)

Input: a, b ∈ B[y] with m = deg(a) ≥ n = deg(b) and B is an integral domain
Output: the non-zero subresultants from (Sn, Sn−1, Sn−2, . . . , S0)
1: if m > n then
2: S := (lc(b)m−n−1b)
3: else S := ()

4: s := lc(b)m−n

5: A := b; B := prem(a, −b)
6: while true do
7: d := deg(A); e := deg(B)
8: if B = 0 then return S
9: S := (B) ∪ S; δ := d − e

10: if δ > 1 then

11: C :=
lc(B)δ−1

B

sδ−1

12: S := (C) ∪ S
13: else C := B
14: if e = 0 then return S

15: B :=
prem(A, −B)

sδlc(A)
16: A := C; s := lc(A)
17: end while

Algorithm 1 from [10] is a known version of this procedure that computes
all non-zero subresultants a, b ∈ B[y]. Note that the core of this algorithm is the

26 M. Asadi et al.

while-loop in which the computation of the subresultants Se and Se−1, with the
notations of the above points (ii) and (iii), are carried out.

3 Computing Subresultant Chains Speculatively

As discussed in the introduction, when the ring B is a field k, the computation
of the subresultant chain of the polynomials a, b ∈ B[y] can take advantage of
asymptotically fast algorithms for computing gcd(a, b). After recalling its speci-
fications, we explain how we take advantage of the Half-GCD algorithm in order
to compute the subresultants in subres(a, b) speculatively.

Consider two non-zero univariate polynomials a, b ∈ k[y] with n0 := deg(a),
n1 := deg(b) with n0 ≥ n1. The extended Euclidean algorithm (EEA) computes
the successive remainders (r0 := a, r1 := b, r2, . . . , r� = gcd(a, b)) with degree
sequence (n0, n1, n2 := deg(r2) . . . , n� := deg(r�)) and the corresponding quo-
tients (q1, q2, . . . , q�) defined by ri+1 = rem(ri, ri−1) = ri−1 − qiri, for 1 ≤ i ≤ �,
qi = quo(ri, ri−1) for 1 ≤ i ≤ �, ni+1 < ni, for 1 ≤ i < �, and r�+1 = 0 with
deg(rl+1) = −∞. This computation requires O(n2) operations in k. We denote

by Qi, the quotient matrices, defined, for 1 ≤ i ≤ �, by Qi =
[
0 1
1 −qi

]
, so that,

for 1 ≤ i < �, we have
[
ri

ri+1

]
= Qi

[
ri−1

ri

]
= Qi . . . Q1

[
r0
r1

]
. (1)

We define mi := deg(qi), so that we have mi = ni−1 − ni for 1 ≤ i ≤ �.
The degree sequence (n0, . . . , nl) is said to be normal if ni+1 = ni − 1 holds, for
1 ≤ i < �, or, equivalently if deg(qi) = 1 holds, for 1 ≤ i ≤ �.

Using the remainder and degree sequences of non-zero polynomials a, b ∈ k[y],
Proposition 1, known as the fundamental theorem on subresultants, introduces
a procedure to compute the nominal leading coefficients of polynomials in the
subresultant chain.

Proposition 1. For k = 0, . . . , n1, the nominal leading coefficient of the k-th
subresultant of (a, b) is either 0 or sk if there exists i ≤ � such that k = deg(ri),

sk = (−1)τi

∏
1≤j<i

lc(rj)
nj−1−nj+1 lc(ri)

ni−1−ni ,

where τi =
∑

1≤j<i(nj−1 − ni)(nj − ni) [12, Theorem 11.16].

The Half-GCD, also known as the fast extended Euclidean algorithm, is a
divide and conquer algorithm for computing a single row of the EEA, say the
last one. This can be interpreted as the computation of a 2×2 matrix Q over k[y]
so that we have: [

gcd(a, b)
0

]
= Q

[
a
b

]
.

Computational Schemes for Subresultant Chains 27

The major difference between the classical EEA and the Half-GCD algorithm
is that, while the EEA computes all the remainders r0, r1, . . . , r� = gcd(r0, r1),
the Half-GCD computes only two consecutive remainders, which are derived
from the Qi quotient matrices, which in turn are obtained from a sequence of
“truncated remainders”, instead of the original ri remainders.

Here, we take advantage of the Half-GCD algorithm presented in [12,
Chapter 11]. For a non-negative k ≤ n0, this algorithm computes the quotients
q1, . . . , qhk

where hk is defined as

hk = max
{

0 ≤ j ≤ � |
j∑

i=1

mi ≤ k
}

, (2)

the maximum j ∈ N so that
∑

1≤i≤j deg(qi) ≤ k. This is done within (22M(k)+
O(k)) log k operations in k. From Eq. 2, hk ≤ min(k, �), and

hk∑
i=1

mi =
hk∑
i=1

(ni−1 − ni) = n0 − nhk
≤ k <

hk+1∑
i=1

mi = n0 − nhk+1. (3)

Thus, nhk+1 < n0 − k ≤ nhk
, and so hk can be uniquely determined; see Algo-

rithm 11.6 in [12] for more details.
Due to the deep relation between subresultants and the remainders of the

EEA, the Half-GCD technique can support computing subresultants. This app-
roach is studied in [12]. The Half-GCD algorithm is used to compute the nom-
inal leading coefficient of subresultants up to sρ for ρ = nhk

by computing
the quotients q1, . . . , qhk

, calculating the lc(ri) = lc(ri−1)/lc(qi) from lc(r0) for
1 ≤ i ≤ hk, and applying Proposition 1. The resulting procedure runs within
the same complexity as the Half-GCD algorithm.

However, for the purpose of computing two successive subresultants
Snv

, Snv+1 given 0 ≤ ρ < n1, for 0 ≤ v < � so that nv+1 ≤ ρ < nv, we
need to compute quotients q1, . . . , qhρ

where hρ is defined as

hρ = max
{

0 ≤ j < � | nj > ρ
}

, (4)

using Half-GCD. Let k = n0 − ρ, Eqs. 3 and 4 deduce nhρ+1 ≤ n0 − k < nhρ
,

and hρ ≤ hk. So, to compute the array of quotients q1, . . . , qhρ
, we can utilize

an adaptation of the Half-GCD algorithm of [12]. Algorithm 2 is this adaptation
and runs within the same complexity as the algorithm of [12].

Algorithm 2 receives as input two polynomials r0 := a, r1 := b in k[y], with
n0 ≥ n1, 0 ≤ k ∈ N, ρ ≤ n0 where ρ, by default, is n0 − k, and the array A of
the leading coefficients of the remainders that have been computed so far. This
array should be initialized to size n0 + 1 with A[n0] = lc(r0) and A[i] = 0 for
0 ≤ i < n0. A is updated in-place as necessary. The algorithm returns the array
of quotients Q := (q1, . . . , qhρ

) and matrix M := Qhρ
· · · Q1.

Algorithm 2 and the fundamental theorem on subresultants yield Algorithm 3.
This algorithm is a speculative subresultant algorithm based on Half-GCD to

28 M. Asadi et al.

Algorithm 2. AdaptedHGCD(r0, r1, k, ρ, A)

Input: r0, r1 ∈ k[y] with n0 = deg(r0) ≥ n1 = deg(r1), 0 ≤ k ≤ n0, 0 ≤ ρ ≤ n0 is
an upper bound for the degree of the last computed remainder that, by default,
is n0 − k and is fixed in recursive calls (See Algorithm 3), the array A of the
leading coefficients of the remainders (in the Euclidean sequence) which have been
computed so far

Output: hρ ∈ N so that hρ = max{j | nj > ρ}, the array Q := (q1, . . . , qhρ) of the
first hρ quotients associated with remainders in the Euclidean sequence and the
matrix M := Qhρ · · · Q1; the array A of leading coefficients is updated in-place

1: if r1 = 0 or ρ ≥ n1 then return
(
0, (),

[
1 0
0 1

])

2: if k = 0 and n0 = n1 then

3: return
(
1, (lc(r0)/lc(r1)),

[
0 1
1 −lc(r0)/lc(r1)

])

4: m1 := � k
2
�; δ1 := max(deg(r0) − 2 (m1 − 1), 0); λ := max(deg(r0) − 2k, 0)

5:
(
h′, (q1, . . . , qh′), R

)
:= AdaptedHGCD(quo(r0, y

δ1), quo(r1, y
δ1), m1 − 1, ρ, A)

6:

[
c
d

]
:= R

[
quo(r0, y

λ)

quo(r1, y
λ)

]
where R :=

[
R00 R01

R10 R11

]

7: m2 := deg(c) + deg(R11) − k

8: if d = 0 or m2 > deg(d) then return
(
h′, (q1, . . . , qh′), R

)

9: r := rem(c, d); q := quo(c, d); Q :=

[
0 1
1 −q

]

10: nh′+1 := nh′ − deg(q)

11: if nh′+1 ≤ ρ then return
(
h′, (q1, . . . , qh′ , q), R

)

12: A[nh′+1] := A[nh′]/lc(q)
13: δ2 := max(2m2 − deg(d), 0)

14:
(
h∗, (qh′+2, . . . , qh′+h∗+1), S

)
:=

AdaptedHGCD(quo(d, yδ2), quo(r, yδ2), deg(d) − m2, ρ, A)

15: return
(
hρ := h′ + h∗ + 1, Q := (q1, . . . , qhρ), M := SQR

)

calculate two successive subresultants without computing others in the chain.
Moreover, this algorithm returns intermediate data that has been computed by
the Half-GCD algorithm—the array R of the remainders, the array Q of the
quotients and the array A of the leading coefficients of the remainders in the
Euclidean sequence—to later calculate higher subresultants in the chain without
calling Half-GCD again. This caching scheme is shown in Algorithm 4.

Let us explain this technique with an example. For non-zero polynomials
a, b ∈ k[y] with n0 = deg(a), n1 = deg(b), so that we have n0 ≥ n1. The
subresultant call Subresultant(a, b, 0) returns S0(a, b), S1(a, b) speculatively
without computing (Sn1 , Sn1−1, Sn1−2, . . . , S2), arrays Q = (q1, . . . , q�), R =
(r�, r�−1), and A. Therefore, any attempt to compute subresultants with higher
indices can be addressed by utilizing the arrays Q,R,A instead of calling Half-
GCD again. In the Triangularize algorithm for solving systems of polynomial

Computational Schemes for Subresultant Chains 29

Algorithm 3. Subresultant(a, b, ρ)

Input: a, b ∈ k[x] \ {0} with n0 = deg(a) ≥ n1 = deg(b), 0 ≤ ρ ≤ n0

Output: Subresultants Snv (a, b), Snv+1(a, b) for such 0 ≤ v < � so that nv+1 ≤ ρ <
nv, the array Q of the quotients, the array R of the remainders, and the array A
of the leading coefficients of the remainders (in the Euclidean sequence) that have
been computed so far

1: A := (0, . . . , 0, lc(a)) where A[n0] = lc(a) and A[i] = 0 for 0 ≤ i < n0

2: if ρ ≥ n1 then
3: A[n1] = lc(b)

4: return
(
(a, lc(b)m−n−1b), (), (), A

)

5: (v, Q, M) := AdaptedHGCD(a, b, n0 − ρ, ρ, A)

6: deduce
(
n0 = deg(a), n1 = deg(b), . . . , nv = deg(rv)

)
from a, b and Q.

7:

[
rv

rv+1

]
:= M

[
a
b

]
; R := (rv, rv+1); nv+1 := deg(rv+1)

8: τv := 0; τv+1 := 0; α := 1
9: for j from 1 to v − 1 do

10: τv := τv + (nj−1 − nv)(nj − nv)
11: τv+1 := τv+1 + (nj−1 − nv+1)(nj − nv+1)
12: α := α A[nj]

nj−1−nj+1

13: τv+1 := τv+1 + (nv−1 − nv+1)(nv − nv+1)
14: Snv := (−1)τv α rv

15: Snv+1 := (−1)τv+1α A[nv]nv−1−nv+1 rv+1

16: return
(
(Snv , Snv+1), Q, R, A

)

equations by triangular decomposition, the RegularGCD subroutine relies on this
technique for improved performance; see [3,5] for more details and algorithms.

For polynomials a, b ∈ Z[y] with integer coefficients, a modular algorithm
can be achieved by utilizing the Chinese remainder theorem (CRT). In this
approach, we use Algorithms 2 and 3 for a prime field k. We define Zp[y] as
the ring of univariate polynomials with coefficients in Z/pZ, for some prime p.
Further, we use an iterative and probabilistic approach to CRT from [22]. We
iteratively calculate subresultants modulo different primes p0, p1, . . ., continuing
to add modular images to the CRT direct product Zp0 ⊗· · ·⊗Zpi

for i ∈ N until
the reconstruction stabilizes. That is to say, the reconstruction does not change
from Zp0 ⊗ · · · ⊗ Zpi−1 to Zp0 ⊗ · · · ⊗ Zpi

.
We further exploit this technique to compute subresultants of bivariate poly-

nomials over prime fields and the integers. Let a, b ∈ B[y] be polynomials with
coefficients in B = Zp[x], thus B[y] = Zp[x, y], where the main variable is y
and p ∈ N is an odd prime. A desirable subresultant algorithm then uses an
evaluation-interpolation scheme and the aforementioned univariate routines to
compute subresultants of univariate images of a, b over Zp[y] and then interpo-
lates back to obtain subresultants over Zp[x, y]. This approach is well-studied
in [22] to compute the resultant of bivariate polynomials. We can use the same

30 M. Asadi et al.

Algorithm 4. Subresultant(a, b, ρ, Q, R, A)

Input: a, b ∈ k[x] \ {0} with n0 = deg(a) ≥ n1 = deg(b), 0 ≤ ρ ≤ n0, the list Q
of all the quotients in the Euclidean sequence, the list R of the remainders that
have been computed so far; we assume that R contains at least rμ, . . . r�−1, r� with
0 ≤ μ ≤ � − 1, and the list A of the leading coefficients of the remainders in the
Euclidean sequence

Output: Subresultants Snv (a, b), Snv+1(a, b) for such 0 ≤ v < � so that nv+1 ≤ ρ <
nv; the list R of the remainders is updated in-place

1: deduce
(
n0 = deg(a), n1 = deg(b), . . . , n� = deg(r�)

)
from a, b and Q

2: if n� ≤ ρ then v := �
3: else find 0 ≤ v < � such that nv+1 ≤ ρ < nv.

4: if v = 0 then
5: return

(
a, lc(b)m−n−1b

)

6: for i from max(v, μ + 1) down to v do
7: ri := ri+1qi+1 + ri+2; R := R ∪ (ri)

8: compute Snv , Snv+1 using Proposition 1 from rv, rv+1

9: return
(
Snv , Snv+1

)

technique to compute the entire subresultant chain, or even particular subresul-
tants speculatively through Algorithms 2 and 3.

We begin with choosing a set of evaluation points of size N ∈ N and
evaluate each coefficient of a, b ∈ Zp[x, y] with respect to the main variable
(y). Then, we call the subresultant algorithm to compute subresultants images
over Zp[y]. Finally, we can retrieve the bivariate subresultants by interpolat-
ing each coefficient of each subresultant from the images. The number of eval-
uation points is determined from an upper-bound on the degree of subresul-
tants and resultants with respect to x. From [12], the following inequality holds:
N ≥ deg(b, y) deg(a, x) + deg(a, y) deg(b, x) + 1.

For bivariate polynomials with integer coefficients, we can use the CRT algo-
rithm in a similar manner to that which has already been reviewed for univari-
ate polynomials over Z. Figure 1 demonstrates this procedure for two polyno-
mials a, b ∈ Z[x, y]. In this commutative diagram, ā, b̄ represent the modular
images of the polynomials a, b modulo prime pi for 0 ≤ i ≤ e.

In practice, as the number of variables increases, the use of dense evaluation-
interpolation schemes become less effective, since degree bound estimates become
less sharp. In fact, sparse evaluation-interpolation schemes become more attrac-
tive [23,29], and we will consider them in future works.

4 Optimized Ducos’ Subresultant Chain

In [10], Ducos proposes two optimizations for Algorithm 1. The first one,
attributed to Lazard, deals with the potentially expensive exponentiations and
division at Line 11 of Algorithm 1. The second optimizations considers the poten-
tially expensive exact division (of a pseudo-remainder by an element from the

Computational Schemes for Subresultant Chains 31

Fig. 1. Computing the subresultant chain of a, b ∈ Z[x, y] using modular arithmetic,
evaluation-interpolation and CRT algorithms where (t0, . . . , tN) is the list of evaluation
points, (p0, . . . , pi,) is the list of distinct primes, ā = a mod pi, and b̄ = b mod pi

coefficient ring) at Line 15 of this algorithm. Applying both improvements to
Algorithm 1 yields an efficient subresultant chain procedure that is known as
Ducos’ algorithm.

Algorithm 5. Ducos Optimization (Sd, Sd−1, Se, sd)

Input: Given Sd, Sd−1, Se ∈ B[y] and sd ∈ B

Output: Se−1, the next subresultant in the subresultant chain of subres(a, b)
1: (d, e) := (deg(Sd), deg(Sd−1))
2: (cd−1, se) := (lc(Sd−1), lc(Se))
3: for j = 0, . . . , e − 1 do
4: Hj := sey

j

5: He := sey
e − Se

6: for j = e + 1, . . . , d − 1 do

7: Hj := yHj−1 − coeff(yHj−1, e)Sd−1
cd−1

8: D :=

d−1∑

j=0
coeff(Sd, j)Hj

lc(Sd)

9: return (−1)d−e+1 cd−1(yHd−1+D)−coeff(yHd−1, e)Sd−1
sd

The Ducos optimization that is presented in Algorithm 5, and borrowed
from [10], is a well-known improvement of Algorithm 1 to compute the subresul-
tant Se−1 (Line 15). This optimization provides a faster procedure to compute
the pseudo-division of two successive subresultants, namely Sd, Sd−1 ∈ B[y], and
a division by a power of lc(Sd). The main part of this algorithm is for-loops to
compute:

D :=

d−1∑
j=0

coeff(Sd, j)Hj

lc(Sd)
,

where coeff(Sd, j) is the coefficient of Sd in yj .
We now introduce a new optimization for this algorithm to make better use of

memory resources through in-place arithmetic. This is shown in Algorithm 6. In

32 M. Asadi et al.

this algorithm we use a procedure named InplaceTail to compute the tail (the
reductum of a polynomial with respect to its main variable) of a polynomial, and
its leading coefficient, in-place. This operation is essentially a coefficient shift.
In this way, we reuse existing memory allocations for the tails of polynomials
Sd, Sd−1, and Se.

Algorithm 6. memory-efficient Ducos Optimization (Sd, Sd−1, Se, sd)

Input: Sd, Sd−1, Se ∈ B[y] and sd ∈ B

Output: Se−1, the next subresultant in the subresultant chain of subres(a, b)
1: (p, cd) := InplaceTail(Sd)
2: (q, cd−1) := InplaceTail(Sd−1)
3: (h, se) := InplaceTail(Se)
4: Convert p to a recursive representation format in-place
5: h := −h; a := coeff(p, e) h
6: for i = e + 1, . . . , d − 1 do
7: if deg(h) = e − 1 then
8: h := y tail(h) − ExactQuotient(lc(h) q, cd−1)
9: else h := y tail(h)

10: a := a + lc(coeff(p, i)) h

11: a := a + se

∑e−1
i=0 coeff(p, i)yi

12: a := ExactQuotient(a, cd)
13: if deg(h) = e − 1 then
14: a := cd−1 (y tail(h) + a) − lc(h) q
15: else a := cd−1 (y h + a)

16: return (−1)d−e+1
ExactQuotient(a, sd)

Furthermore, we reduce the cost of calculating
∑d−1

j=e coeff(Sd, j)Hj with com-
puting the summation iteratively and in-place in the same for-loop that is used
to update polynomial h (lines 6–10 in Algorithm 6). This greatly improves data
locality. We also update the value of h depending on its degree with respect to y
as deg(h) ≤ e − 1 for all e + 1 ≤ i < d. We utilize an optimized exact division
algorithm denoted by ExactQuotient to compute quotients rather a classical
Euclidean algorithm.

5 Implementation and Experimentation

In this section, we discuss the implementation and performance of our various
subresultant algorithms and their underlying core routines. Our methods are
implemented as part of the Basic Polynomial Algebra Subprograms (BPAS)
library [2] and we compare their performance against the NTL library [27] and
Maple 2020 [21]. Throughout this section, our benchmarks were collected on
a machine running Ubuntu 18.04.4, BPAS v1.791, GMP 6.1.2, and NTL 11.4.3,
with an Intel Xeon X5650 processor running at 2.67 GHz, with 12×4GB DDR3
memory at 1.33 GHz.

Computational Schemes for Subresultant Chains 33

Fig. 2. Comparing plain, Karatsuba,
and FFT-based multiplication in BPAS
with the wrapper mul method in NTL
to compute ab for polynomials a, b ∈
Zp[y] with deg(a) = deg(b) + 1 = d

Fig. 3. Comparing Euclidean and fast
division algorithms in BPAS with the divi-
sion method in NTL to compute rem(a, b)
and quo(a, b) for polynomials a, b ∈ Zp[y]
with deg(a) = 2(deg(b) − 1) = d

Fig. 4. Comparing Euclidean-based
GCD and Half-GCD-based GCD algo-
rithms in BPAS with the GCD algo-
rithm in NTL to compute gcd(a, b) =
1 for polynomials a, b ∈ Zp[y] with
deg(a) = deg(b) + 1 = d

Fig. 5. Comparing EEA, modular sub-
resultant, and Half-GCD-based subresul-
tant (BPAS specSRC, ρ = 0, 2), in BPAS
for dense polynomials a, b ∈ Zp[y] with
deg(a) = deg(b) + 1 = d

5.1 Routines over Zp [y]

We begin with foundational routines for arithmetic in finite fields and polyno-
mials over finite fields. For basic arithmetic over a prime field Zp where p is an
odd prime, Montgomery multiplication, originally presented in [24], is used to
speed up multiplication. This method avoids division by the modulus without
any effect on the performance of addition, and so, yields faster modular inverse
and division algorithms.

We have developed a dense representation of univariate polynomials which
take advantage of Montgomery arithmetic (following the implementation in [6])
for prime fields with p < 264. Throughout this section we examine the perfor-
mance of each operation for two randomly generated dense polynomials a, b ∈ Zp

with a 64-bit prime p = 4179340454199820289. Figures 2, 3, 4 and 5 examine,
respectively, multiplication, division, GCD, and subresultant chain operations.
These plots compare the various implementations within BPAS against NTL.

Our multiplication over Zp[y] dynamically chooses the appropriate algorithm
based on the input polynomials: plain or Karatsuba algorithms (following the

34 M. Asadi et al.

routines in [12, Chapter 8]), or multiplication based on fast Fourier transform
(FFT). The implementation of FFT itself follows that which was introduced in [7].
Figure 2 shows the performance of these routines in BPAS against a similar “wrap-
per” multiplication routine in NTL. From empirical data, our wrapper multipli-
cation function calls the appropriate implementation of multiplication as follows.
For polynomials a, b over Zp[y], with p < 263, the plain algorithm is called when
s := min (deg(a),deg(b)) < 200 and the Karatsuba algorithm is called when
s ≥ 200. For 64-bit primes (p > 263), plain and Karatsuba algorithms are called
when s < 10 and s < 40, respectively, otherwise FFT-based multiplication is per-
formed.

The division operation is again a wrapper function, dynamically choosing
between Euclidean (plain) and fast division algorithms. The fast algorithm is
an optimized power series inversion procedure that is firstly implemented in
Aldor [11] using the so-called middle-product trick. Figure 3 shows the perfor-
mance of these two algorithms in comparison with the NTL division over Zp[y].
For polynomials a, b over Zp[y], b the divisor, empirical data again guides the
choice of appropriate implementation. Plain division is called for primes p < 263

and deg(b) < 1000. However, for 64-bit primes, the plain algorithm is used when
deg(b) < 100, otherwise fast division supported by FFT is used.

Our GCD operation over Zp[y] had two implementations: the classical
extended Euclidean algorithm (EEA) and the Half-GCD (fast EEA) algorithm,
respectively following the pseudo-codes in [12, Chapter 11] and the implemen-
tation in the NTL library [27]. Figure 4 shows the performance of these two
approaches named BPAS plainGCD and BPAS fastGCD, respectively, in comparison
with the NTL GCD algorithm for polynomials a, b ∈ Zp[y] where gcd(a, b) = 1.

To analyze the performance of our subresultant schemes, we compare the
näıve EEA algorithm with the modular subresultant chain and the speculative
subresultant algorithm for ρ = 0, 2 in Fig. 5. As this figure shows, using the
Half-GCD algorithm to compute two successive subresultants S1, S0 for ρ = 0
is approximately 5× faster than computing the entire chain, while calculating
other subresultants, e.g. S3, S2 for ρ = 2 with taking advantage of the cached
information from the first call (for ρ = 0), is nearly instantaneous.

5.2 Subresultants over Z[y] and Z[x, y]

We have developed a dense representation of univariate and bivariate polyno-
mials over arbitrary-precision integers, using low-level procedures of the GNU
Multiple Precision Arithmetic library (GMP) [13]. Basic dense arithmetic opera-
tions, like addition, multiplication, and division, follows [12]. The representation
of a dense bivariate polynomial a ∈ Z[x, y] (or Zp[x, y] for a prime p) is stored
as a dense array of coefficients (polynomials in Z[x]), possibly including zeros.

Following our previous discussion of various schemes for subresultants, we
have implemented several subresultant algorithms over Z[y] and Z[x, y]. We have
four families of implementations:

(i) BPAS modSRC, that computes the entire subresultant chain using Proposi-
tion 1 and the CRT algorithm (and evaluation-interpolation over Z[x, y]);

Computational Schemes for Subresultant Chains 35

Fig. 6. Comparing (optimized) Ducos’
subresultant chain algorithm, modu-
lar subresultant chain, and speculative
subresultant for ρ = 0, 2, algorithms in
BPAS with Ducos’ subresultant chain
algorithm in Maple for polynomials
a, b ∈ Z[y] with deg(a) = deg(b)+1 = d

Fig. 7. Comparing (optimized) Ducos’
subresultant chain, modular subresultant
chain, and speculative subresultant for ρ =
0, 2, 4, 6, in BPAS with Ducos’ algorithm in
Maple for dense polynomials a, b ∈ Z[x <
y] with deg(a, y) = deg(b, y) + 1 = 50 and
deg(a, x) = deg(b, x) + 1 = d

(ii) BPAS specSRC, that refers to Algorithms 3 and 4 to compute two successive
subresultants using Half-GCD and caching techniques;

(iii) BPAS Ducos, for Ducos’ algorithm, based on Algorithm 5; and
(iv) BPAS OptDucos, for Ducos’ algorithm based on Algorithm 6.

Figure 6 compares the running time of those subresultant schemes over Z[y]
in the BPAS library and Maple. The modular approach is up to 5× faster
than the optimized Ducos’ algorithm. Using speculative algorithms to compute
only two successive subresultants yields a speedup factor of 7 for d = 2000.
Figure 7 provides a favourable comparison between the family of subresultant
schemes in BPAS and the subresultant algorithm in Maple for dense bivariate
polynomials a, b ∈ Z[x, y] where the main degree is fixed to 50, i.e. deg(a, y) =
deg(b, y) + 1 = 50, and deg(a, x) = deg(b, x) + 1 = d for d ∈ {10, 20, . . . , 100}.
Note that the BPAS specSRC algorithm for ρ = 0, 2, 4, 6 is caching the information
for the next call with taking advantage of Algorithm 4.

We further compare our routines with the Ducos subresultant chain algo-
rithm in Maple, which is implemented as part of the RegularChains library [19].
Table 1 shows the memory usage for computing the entire subresultant chain of
polynomials a, b ∈ Z[y], with deg(a) = deg(b) + 1 = d. The table presents
BPAS Ducos, BPAS OptDucos, and Maple Ducos. For d = 2000, Table 1 shows
that the optimized algorithm uses approximately 3× and 11× less memory than
our original implementation and the Ducos’ algorithm in Maple, respectively.

We next compare more closely the two main ways of computing an entire
subresultant chain: the direct approach following Algorithm 1, and a mod-
ular approach using evaluation-interpolation and CRT (see Fig. 1). Figure 8
shows the performance of the direct approach (the top surface), calling our
memory-optimized Ducos’ algorithm BPAS OptDucos, in comparison with the
modular approach (the bottom surface), calling BPAS modSRC. Note that, in this
figure, interpolation may be based on Lagrange interpolation or FFT algorithms
depending on the degrees of the input polynomials.

36 M. Asadi et al.

Table 1. Comparing memory usage (GB) of Ducos’ subresultant chain algorithms for
polynomials a, b ∈ Z[y] with deg(a) = deg(b) + 1 = d in Fig. 6 over Z[y]

Degree BPAS Ducos BPAS OptDucos Maple Ducos

1000 1.088 0.320 3.762

1100 1.450 0.430 5.080

1200 1.888 0.563 6.597

1300 2.398 0.717 8.541

1400 2.968 0.902 10.645

1500 3.655 1.121 12.997

1600 4.443 1.364 15.924

1700 5.341 1.645 19.188

1800 6.325 1.958 23.041

1900 7.474 2.332 27.353

2000 8.752 2.721 31.793

Next, Fig. 9 highlights the benefit of our speculative approach to compute
the resultant and subresultant of index 1 compared to computing the entire.
The FFT-based modular algorithm is presented as the top surface, while the
speculative subresultant algorithm based on the Half-GCD is the bottom surface.

Fig. 8. Comparing Opt. Ducos’ algo-
rithm (the top surface) and modular
subresultant chain (the bottom sur-
face) to compute the entire chain for
polynomials a, b ∈ Z[x < y] with
deg(a, y) = deg(b, y) + 1 = Y and
deg(a, x) = deg(b, x) + 1 = X

Fig. 9. Comparing modular subresultant
chain with using FFT (the top surface),
and speculative subresultant (ρ = 0) (the
bottom surface) for polynomials a, b ∈
Z[x < y] with deg(a, y) = deg(b, y)+1 = Y
and deg(a, x) = deg(b, x) + 1 = X

Computational Schemes for Subresultant Chains 37

Table 2. Comparing the execution time (in seconds) of subresultant schemes on the
BPAS Triangularize solver for well-known bivariate systems in the literature. We call
optimized Ducos’ subresultant chain algorithm in the OptDucos mode, modular subre-
sultant chain algorithms (FFT and Lagrange) in the ModSRC mode, and Half-GCD based
subresultant algorithms in the SpecSRCnaı̈ve and SpecSRCcached modes. We do cache subre-
sultant information for further calls in the ModSRC and SpecSRCcached modes; deg(src[idx])
shows a list of minimum main degrees of the computed subresultants in each subresul-
tant call and Indexes indicates a list of requested subresultant indexes.

SysName ModSRC SpecSRCnaı̈ve SpecSRCcached OptDucos deg(src[idx]) Indexes

13 sings 9 3.416 3.465 3.408 3.417 (1) (0)

compact surf 11.257 26.702 10.26 10.258 (0, 2, 4, 6) (0, 3, 5, 6)

curve24 4.992 4.924 4.911 4.912 (0, 0, 1) (0, 0, 0)

curve issac 2.554 2.541 2.531 2.528 (0, 0, 1) (0, 0, 0)

cusps and flexes 4.656 8.374 4.656 4.488 (0, . . . , 2) (0, . . . , 2)

degree 6 surf 81.887 224.215 79.394 344.564 (0, 2, 4, 4) (0, 2, 4, 4)

hard one 48.359 197.283 47.213 175.847 (0, . . . , 2) (0, . . . , 2)

huge cusp 23.406 33.501 23.41 23.406 (0, 2, 2) (0, 2, 2)

L6 circles 32.906 721.49 33.422 32.347 (0, . . . , 6) (0, . . . , 6)

large curves 65.353 64.07 63.018 366.432 (0, 0, 1, 1) (0, 0, 0, 0)

mignotte xy 348.406 288.214 287.248 462.432 (1) (0)

SA 2 4 eps 4.141 37.937 4.122 4.123 (0, . . . , 6) (0, . . . , 6)

SA 4 4 eps 222.825 584.318 216.065 197.816 (0, . . . , 3) (0, . . . , 6)

spider 293.701 294.121 295.198 293.543 (0, 0, 1, 1) (0, 0, 0, 0)

spiral29 24 647.469 643.88 644.379 643.414 (1) (0)

ten circles 3.255 56.655 2.862 2.116 (0, . . . , 4) (0, . . . , 4)

tryme 3728.085 4038.539 2415.28 4893.04 (0, 2) (0, 2)

vert lines 1.217 24.956 1.02 1.021 (0, . . . , 6) (0, . . . , 6)

Lastly, we investigate the effects of different subresultant algorithms on the
performance of the BPAS polynomial system solved based on triangular decom-
position and regular chains; see [3,5]. Subresultants play a crucial role in com-
puting regular GCDs (see Sect. 1) and thus in solving systems via triangular
decomposition. Tables 2, 3, and 4 investigate the performance of BPAS modSRC,
and BPAS specSRC and the caching technique, for system solving.

Table 2 shows the running time of well-known and challenging bivariate sys-
tems, where we have forced the solver to use only one particular subresultant
scheme. In SpecSRCnaı̈ve, BPAS specSRC does not cache data and thus does not
reuse the sequence of quotients computed from previous calls. Among those
systems, the caching ratio (SpecSRCnaı̈ve/SpecSRCcached) of vert lines, L6 circles,
ten circles, and SA 2 4 eps are 24.5, 21.6, 19.8, 9.2, respectively, while the
speculative ratio (ModSRC/SpecSRCcached) of tryme, mignotte xy, and vert lines are
1.5, 1.2, and 1.2, respectively.

38 M. Asadi et al.

Tables 3 and 4 examine the performance of the polynomial system solver on
constructed systems which aim to exploit the maximum speed-up of these new
schemes. Listing 1.1 and 1.2 in Appendix A provide the Maple code to construct
these input systems. For those systems created by Listing 1.1, we get 3× speed-
up through caching the intermediate speculative data rather than repeatedly
calling the Half-GCD algorithm for each subresultant call. Using BPAS specSRC
provides a 1.5× speed-up over using the BPAS modSRC algorithm. Another family
of constructed examples created by Listing 1.2 is evaluated in Table 4. Here, we
get up to 3× speed-up with the use of cached data, and up to 2× speed-up over
the modular method.

Table 3. Comparing the execution time (in seconds) of subresultant schemes on the
BPAS Triangularize system solver for constructed bivariate systems in Listing 1.1 to
exploit the speculative scheme. Column headings follow Table 2, and FFTBlockSize is
block size used in the FFT-based evaluation and interpolation algorithms.

n ModSRC SpecSRCnaı̈ve SpecSRCcached deg(src[idx]) Indexes FFTBlockSize

50 9.382 25.025 6.295 (0, 25, 50, 75) (0, 26, 51, 75) 512

60 22.807 82.668 23.380 (0, 30, 60, 90) (0, 31, 61, 90) 1024

70 23.593 105.253 30.477 (0, 35, 70, 105) (0, 36, 71, 105) 1024

80 36.658 156.008 47.008 (0, 40, 80, 120) (0,41,81,120) 1024

100 171.213 272.939 83.966 (0, 50, 100, 150) (0, 51, 101, 150) 1024

110 280.952 370.628 117.106 (0, 55, 110, 165) (0, 56, 111, 165) 1024

120 491.853 1035.810 331.601 (0, 60, 120, 180) (0, 61, 121, 180) 2048

130 542.905 1119.720 362.631 (0, 65, 130, 195) (0, 66, 131, 195) 2048

140 804.982 1445.000 470.649 (0, 70, 140, 210) (0, 71, 141, 210) 2048

150 1250.700 1963.920 639.031 (0, 75, 150, 225) (0, 76, 151, 225) 2048

Table 4. Comparing the execution time (in seconds) of subresultant schemes on the
BPAS Triangularize system solver for constructed bivariate systems in Listing 1.2 to
exploit the speculative scheme. Column headings follow Table 3.

n ModSRC SpecSRCnaı̈ve SpecSRCcached deg(src[idx]) Indexes FFTBlockSize

100 894.139 1467.510 474.241 (0, 2, 2) (0, 2, 2) 512

110 1259.850 2076.920 675.806 (0, 2, 2) (0, 2, 2) 512

120 1807.060 2757.390 963.547 (0, 2, 2) (0, 2, 2) 512

130 2897.150 4311.990 1505.080 (0, 2, 2) (0, 2, 2) 1024

140 4314.300 5881.640 2134.190 (0, 2, 2) (0, 2, 2) 1024

150 5177.410 7869.700 2609.170 (0, 2, 2) (0, 2, 2) 1024

Acknowledgments. The authors would like to thank Robert H. C. Moir and NSERC
of Canada (award CGSD3-535362-2019).

Computational Schemes for Subresultant Chains 39

A Maple code for Polynomial Systems

1 SystemGenerator1 := proc(n)

2 local R := PolynomialRing ([x,y]);

3 local J := PolynomialIdeals :-Intersect(<x^2+1,xy+2>,

4 <x^2+3,xy^floor(n/2)+floor(n/2)+1>);

5 J := PolynomialIdeals :-Intersect(J, <x^2+3,xy^n+n+1>);

6 local dec := Triangularize(Generators(J),R);

7 dec := map(NormalizeRegularChain ,dec ,R);

8 dec := EquiprojectableDecomposition ([%[1][1] ,%[2][1]] ,R);

9 return map(expand , Equations(op(dec),R));

10 end proc:

Listing 1.1. Maple code of constructed polynomials in Table 3.

1 SystemGenerator2 := proc(n)

2 local R := PolynomialRing ([x,y]);

3 local f := randpoly ([x],dense ,coeffs=rand (-1..1),degree=n);

4 local J := <f,xy+2>;

5 J := PolynomialIdeals:-Intersect(J,<x^2+2,(x^2+3x+1)y^2+3>);

6 local dec := Triangularize (Generators(J),R);

7 dec := map(NormalizeRegularChain ,dec ,R);

8 dec := EquiprojectableDecomposition ([%[1][1] ,%[2][1]] ,R);

9 return map(expand ,Equations(op(dec),R));

10 end proc:

Listing 1.2. Maple code of constructed polynomials in Table 4.

References

1. Abdeljaoued, J., Diaz-Toca, G.M., González-Vega, L.: Bezout matrices, subresul-
tant polynomials and parameters. Appl. Math. Comput. 214(2), 588–594 (2009)

2. Asadi, M., et al.: Basic Polynomial Algebra Subprograms (BPAS) (version 1.791)
(2021). http://www.bpaslib.org

3. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M., Xie, Y.: Parallelization
of triangular decompositions: techniques and implementation. J. Symb. Comput.
(2021, to appear)

4. Becker, E., Mora, T., Grazia Marinari, M., Traverso, C.: The shape of the shape
lemma. In: Proceedings of ISSAC 1994, pp. 129–133. ACM (1994)

5. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition
of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

6. Covanov, S., Mohajerani, D., Moreno Maza, M., Wang, L.: Big prime field FFT
on multi-core processors. In: Proceedings of the 2019 International Symposium on
Symbolic and Algebraic Computation (ISSAC), pp. 106–113. ACM (2019)

7. Covanov, S., Moreno Maza, M.: Putting Fürer algorithm into practice. Tech-
nical report (2014). http://www.csd.uwo.ca/∼moreno//Publications/Svyatoslav-
Covanov-Rapport-de-Stage-Recherche-2014.pdf

http://www.bpaslib.org
http://www.csd.uwo.ca/~moreno//Publications/Svyatoslav-Covanov-Rapport-de-Stage-Recherche-2014.pdf
http://www.csd.uwo.ca/~moreno//Publications/Svyatoslav-Covanov-Rapport-de-Stage-Recherche-2014.pdf

40 M. Asadi et al.

8. Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in
algebraic number fields. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204,
pp. 289–290. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15984-
3 279

9. Ducos, L.: Algorithme de Bareiss, algorithme des sous-résultants. Informatique
Théorique et Applications 30(4), 319–347 (1996)

10. Ducos, L.: Optimizations of the subresultant algorithm. J. Pure Appl. Algebra
145(2), 149–163 (2000)

11. Filatei, A., Li, X., Moreno Maza, M., Schost, E.: Implementation techniques for fast
polynomial arithmetic in a high-level programming environment. In: Proceedings
of ISSAC, pp. 93–100 (2006)

12. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge
University Press, Cambridge (2013)

13. Granlund, T.: The GMP Development Team: GNU MP: the GNU multiple preci-
sion arithmetic library (version 6.1.2) (2020). http://gmplib.org

14. van der Hoeven, J., Lecerf, G., Mourrain, B.: Mathemagix (from 2002). http://
www.mathemagix.org

15. Kahoui, M.E.: An elementary approach to subresultants theory. J. Symb. Comput.
35(3), 281–292 (2003)

16. Knuth, D.E.: The analysis of algorithms. Actes du congres international des
Mathématiciens 3, 269–274 (1970)

17. Lecerf, G.: On the complexity of the Lickteig-Roy subresultant algorithm. J. Symb.
Comput. 92, 243–268 (2019)

18. Lehmer, D.H.: Euclid’s algorithm for large numbers. Am. Math. Mon. 45(4), 227–
233 (1938)

19. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in MAPLE.
In: Maple Conference, vol. 5, pp. 355–368 (2005)

20. Lickteig, T., Roy, M.F.: Semi-algebraic complexity of quotients and sign determi-
nation of remainders. J. Complex. 12(4), 545–571 (1996)

21. Maplesoft, a division of Waterloo Maple Inc.: Maple (2020). www.maplesoft.com
22. Monagan, M.: Probabilistic algorithms for computing resultants. In: Proceedings

of ISSAC 2005, pp. 245–252. ACM (2005)
23. Monagan, M., Tuncer, B.: Factoring multivariate polynomials with many factors

and huge coefficients. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V.
(eds.) CASC 2018. LNCS, vol. 11077, pp. 319–334. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99639-4 22

24. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

25. Reischert, D.: Asymptotically fast computation of subresultants. In: Proceedings
of ISSAC 1997, pp. 233–240. ACM (1997)

26. Schönhage, A.: Schnelle Berechnung von Kettenbruchentwicklungen. Acta Infor-
matica 1, 139–144 (1971)

27. Shoup, V., et al.: NTL: a library for doing number theory (version 11.4.3) (2021).
www.shoup.net/ntl

https://doi.org/10.1007/3-540-15984-3_279
https://doi.org/10.1007/3-540-15984-3_279
http://gmplib.org
http://www.mathemagix.org
http://www.mathemagix.org
www.maplesoft.com
https://doi.org/10.1007/978-3-319-99639-4_22
https://doi.org/10.1007/978-3-319-99639-4_22
www.shoup.net/ntl

Computational Schemes for Subresultant Chains 41

28. Thull, K., Yap, C.: A unified approach to HGCD algorithms for polynomials and
integers. Manuscript (1990)

29. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)
Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Hei-
delberg (1979). https://doi.org/10.1007/3-540-09519-5 73

https://doi.org/10.1007/3-540-09519-5_73

On Rational Solutions of Pseudo-linear
Systems

Moulay A. Barkatou, Thomas Cluzeau(B), and Ali El Hajj

University of Limoges, CNRS, XLIM UMR 7252, 123 Avenue Albert Thomas,
87060 Limoges Cedex, France

{moulay.barkatou,thomas.cluzeau,ali.el-hajj}@unilim.fr

Abstract. We develop a new algorithm for computing rational solutions
of partial pseudo-linear systems. The algorithm uses a recursive process
based on the computation of rational solutions for a sole pseudo-linear
system. Using the general setting of pseudo-linear algebra, we revisit the
computation of rational solutions for a pseudo-linear system. In particu-
lar, we provide a unified and efficient approach for computing a universal
denominator. All the algorithms are implemented in Maple.

1 Introduction

Let C be a field of characteristic zero and K = C(x1, . . . , xm) the field of rational
functions in m independent variables x1, . . . , xm with coefficients in C. In the
present paper, the object of study is a partial pseudo-linear system of the form:

⎧
⎪⎨

⎪⎩

δ1(y) − M1 φ1(y) = 0,
...

δm(y) − Mm φm(y) = 0,
(1)

where y is a vector of n unknown functions of x1, . . . , xm, for all i = 1, . . . , m,
Mi ∈ Mn(K), φi is a C-automorphism of K, and δi is a φi-derivation such
that for all j �= i, xj is a constant with respect to φi and δi, i.e., φi(xj) = xj

and δi(xj) = 0. One underlying motivation for considering such partial pseudo-
linear systems is that many special functions are solutions of such systems. For
instance, one can think of Hermite or Legendre polynomials. We assume that
System (1) satisfies the integrability conditions: [Li, Lj] := Li ◦ Lj − Lj ◦ Li = 0,
for all i, j = 1, . . . ,m, where Li := In δi − Mi φi denotes the matrix operator
associated to the ith equation of System (1). A rational solution of System (1) is
a vector y ∈ Kn that satisfies Li(y) = 0, for all i = 1, . . . ,m. In this paper we are
interested in computing rational solutions of an integrable system of the form (1).
The integrability conditions assure that the space of rational solutions of such a
system is of finite dimension over C (at most n). This implies, in particular, that
there exists a (not necessarily unique) polynomial (called universal denominator)
U ∈ C[x1, . . . , xm] such that for any rational solution y of (1), Uy is a vector of
polynomials. The concept of universal denominators was introduced first in [3].
c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 42–61, 2021.
https://doi.org/10.1007/978-3-030-85165-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_4

On Rational Solutions of Pseudo-linear Systems 43

Note that, the existence of a universal denominator is not always guaranteed if
one considers other kinds of linear partial differential (or difference) systems or
equations. For instance, it was shown in [37,38] that there is no algorithm for
testing the existence of a universal denominator for rational solutions of linear
partial differential or difference equations with rational function coefficients. One
can also consult [32,33] where it was shown that for some scalar linear partial
difference equations (such as y(x1+1, x2)−y(x1, x2+1 = 0), there is no universal
denominator for all rational solutions.

The computation of rational solutions and other kind of closed form (as
polynomial, hypergeometric,. . .) solutions of linear functional systems has been
widely studied in the particular cases of differential and (q-)difference systems:
see, for instance, [4,5,7,8,10,27,39,40]. Moreover, algorithms to compute ratio-
nal and hyperexponential solutions of integrable connections (i.e., the case of
System (1) with m differential systems) have been developed in [17]. Also,
in [24,28,34,35,41], the authors study different issues concerning partial pseudo-
linear systems.

The main contribution of the present paper is a new efficient algorithm for com-
puting rational solutions of System (1). To the authors’ knowledge, there exist
no algorithm performing such a task, except in the purely differential case [17].
The basic ideas of our algorithm were already given in our previous work [18] for
a partial pseudo-linear system composed of one pure differential system and one
pure difference system. The recursive method, described in details in Sect. 4.1, uses
the same strategy as in [17]. In particular, it requires, for i = 1, . . . , m, an algo-
rithm for computing rational solutions of a sole pseudo-linear system of the form
δi(y) − N φi(y) = 0, where N ∈ Ms(C(p1, . . . , pr)(xi)), 1 ≤ s ≤ n and p1, . . . , pr

are parameters which are constants with respect to φi and δi.
Therefore, before considering the case of a partial pseudo-linear system, we

first concentrate on the case of a single pseudo-linear system, (i.e., m = 1 in
System (1)). The setting of pseudo-linear algebra used in the present paper has
been introduced in [30] (see also [13,25,26]). It allows to have a unified setting
for handling many classes of linear functional systems including differential and
(q-)difference systems. In this spirit, the next contribution of our paper is to
provide a unified algorithm for computing a universal denominator for rational
solutions of all difference systems of the form

φ(y) = B y, (2)

where B ∈ GLn(C(x)) and φ(f(x)) = f(qx + r) for all f ∈ C(x). Here r ∈ C
and q ∈ C∗ is not a root of unity, but if r �= 0 then q is allowed to be equal
to 1. We will refer to a system of the form (2) as a φ–system. Such a system
can be written (in various ways) as a pseudo-linear system δ(y) = M φ(y) (see
Sect. 2). Systems of the form (2) include pure difference (q = 1 and r �= 0)
and pure q-difference (r = 0) systems for which algorithms for computing a
universal denominator and rational solutions have been respectively developed
in [11] and [4]. Generalizing the methods in [4,11] to more general values for r
and q �= 1, we write a universal denominator for System (2) under the form

44 M. A. Barkatou et al.

(x− r
1−q)α U(x), where the polynomial U(x) is not divisible by x− r

1−q and α ∈ N.
On one hand, we obtain a bound for α by computing a simple form (see [18] and
references therein) of our system at the φ–fixed singularity xφ = r

1−q . On the
other hand, following the ideas of [36] (see also [6,31]), we propose an efficient
algorithm for computing U(x).

Another important aspect of our contribution is that the different algorithms
developed in the present paper are fully implemented in the Maple package
PseudoLinearSystems [19]. In order to speed up the computation of rational solu-
tions of System (1), our implementation takes into account two aspects. First, some
necessary conditions for an irreducible polynomial to appear in the denominator of
a rational solution are obtained by inspecting the irreducible factors of the denom-
inators of all the matrices Mi (see Sect. 4.2). Moreover, in the recursive process, as
the m pseudo-linear systems in (1) can be considered in an arbitrary order, we tried
to see (through examples) if there are some orders better than others from the com-
putational point of view.The timings obtained fromour experiments (see Sect. 4.3)
indicate that the best strategy seems to be to consider first the non-differential sys-
tems (i.e., φi �= id) and then the differential systems.

The rest of the paper is organised as follows. The next section recalls useful
notions on pseudo-linear systems. Section 3 concerns the case of a sole pseudo-
linear system for which we provide a unified efficient approach for computing a
universal denominator for rational solutions. In Sect. 4, we present our recur-
sive algorithm for computing rational solutions of partial pseudo-linear sys-
tems. Finally, we provide some explanations concerning our implementation.
This includes necessary conditions for an irreducible polynomial to appear in
the denominator of a rational solution and this also includes timings comparing
different strategies.

2 Pseudo-linear Systems

Let K be a commutative field of characteristic zero, φ an automorphism of K,
and δ a φ-derivation that is a map from K to K satisfying δ(a+ b) = δ(a)+ δ(b)
and δ(ab) = φ(a)δ(b) + δ(a)b (Leibniz rule), for all a, b ∈ K.
If φ = idK , then δ is a usual derivation. Otherwise, i.e. when φ �= idK , it is known
(see, e.g., [25]) that δ is necessarily of the form γ (idK − φ) for some γ ∈ K∗.
The subfield CK ⊂ K containing all elements c in K that satisfy φ(c) = c and
δ(c) = 0 is called the field of constants of K.

A first order pseudo-linear system of size n over K is a system of the form

δ(y) = M φ(y), (3)

where y is a vector of n unknown functions and M ∈ Mn(K). A solution of Sys-
tem (3) over K is a vector y ∈ Kn such that δ(y) = M φ(y). The set of solutions
of System (3) over K is a vector space over CK of dimension at most n (see [12]).

When K = C(x) and φ �= idK , one often prefer to write a pseudo-linear sys-
tem (3) in the form of a φ-system (2). On one hand, every φ-system can be easily
converted into a pseudo-linear system of the form (3) (see [13, Appendix A.1]).

On Rational Solutions of Pseudo-linear Systems 45

On the other hand, if we note δ = γ (idK − φ) for some γ ∈ K∗, then Sys-
tem (3) is either equivalent to the φ-system φ̃(y) = B y with φ̃ = φ−1 and
B = φ̃(γ−1M + In) or to φ(y) = B y with B = (γ−1 M + In)−1 provided that
this inverse exists. This is the reason why, in the following of the paper, when we
consider a pseudo-linear system (3) with φ �= idK and δ = γ (idK − φ) for some
γ ∈ K∗, we will always assume that the matrix M + γ In is invertible. In this
case, System (3) is called fully integrable. Note that for a φ-system (2), being
fully integrable means that B is invertible.

Remark 1. Considering solutions over a suitable field extension F of K, every
fully integrable system admits a solution space of dimension n over CF = CK .
We refer to [35] for a notion of Picard-Vessiot extensions in the present setting.
Moreover, from [14, Proposition 2], every φ-system can be effectively reduced to
a φ-system of smaller size with either B invertible (i.e., we have an equivalent
fully integrable system) or B = 0. For instance, the system

δ(y) =

⎛

⎜
⎜
⎜
⎜
⎝

−1 1 · · · 1

0
.

...
...

. 1
0 · · · 0 −1

⎞

⎟
⎟
⎟
⎟
⎠

φ(y), φ �= idK , δ = idK − φ,

is not fully integrable. It can be reduced to the scalar pseudo-linear equation
δ(y) = −φ(y) which is equivalent to y = 0.

In Sect. 3, we shall consider the case of m = 1 pseudo-linear system of the
form (3) and more particularly, we will show how to handle φ-systems of the
form (2) in a unified manner. Then, in Sect. 4, we consider the general case of a
partial pseudo-linear system of the form (1). In the latter general case, in addition
to the assumption that each φ-system is fully integrable (i.e., for all i = 1, . . . ,m
with φi �= idK and δi = γi (idK − φi) with γi ∈ K∗, the matrix Mi + γi In

is invertible), in which case we shall say that System (1) is fully integrable,
we suppose that System (1) satisfies the integrability conditions: namely, if for
i = 1, . . . ,m, Li := In δi − Mi φi denotes the matrix operator associated to the
ith equation of System (1), then we assume that [Li, Lj] := Li ◦Lj −Lj ◦Li = 0,
for all i, j = 1, . . . ,m.

3 Universal Denominators of Rational Solutions
of a Single Pseudo-linear System

The computation of rational solutions for differential, difference, and q-difference
systems has been studied respectively in [10,11], and [4]. In the latter works,
the algorithms developed share a common strategy for computing rational solu-
tions. They first compute a universal denominator, namely, a polynomial that is
a multiple of the denominator of any rational solution. Then a suitable change
of dependent variables reduces the problem to computing polynomial solutions

46 M. A. Barkatou et al.

of a system of the same type. In the present section, we focus on the computa-
tion of a universal denominator for a pseudo-linear system. Polynomial solutions
can then be computed using, for instance, the monomial-by-monomial approach
developed in [13].

In the general setting of pseudo-linear algebra with K = C(x), two cases can
be distinguished:

1. The case φ = idK corresponds to differential systems.
2. The case φ �= idK corresponds to φ-systems of the form (2) which includes

the pure difference and q-difference cases.

In the differential case φ = idK , assuming that δ = d
dx is the usual derivation

of K = C(x), we have a linear differential system of the form y′ = Ay, with
′ := d

dx and A ∈ Mn(K). Here, the poles of any rational solution are among the
poles of the matrix A. Consequently, the denominator of any rational solution
has the form

∏s
i=1 pαi

i , where p1, . . . , ps are the irreducible factors of the denom-
inator den(A) of the matrix A and, for i = 1, . . . , s, αi is a local exponent at pi

(see, for instance, [10]). A universal denominator can thus be deduced from the
knowledge of the local exponents at each pi which can be computed using either
super-reduction algorithms [9,13,23,26,29] or by computing a simple form of the
differential system at pi. The interested reader can consult [10,18,20] for details
about simple forms and their computations.

Concerning the case φ �= idK , algorithms for computing a universal denom-
inator have been developed only for the pure difference [11] and q-difference [4]
cases. In Sect. 3.2, we shall develop a unified and efficient method for computing
a universal denominator of a φ-system (2) in the case where the automorphism
φ of K = C(x) is given by φ(f(x)) = f(q x + r) for all f ∈ C(x), with r ∈ C
and q ∈ C∗ is not a root of unity, but if r �= 0 then q is allowed to be equal to 1.
Note that this restriction on the automorphism φ of C(x) is natural as, for the
purposes of the present paper, one needs φ to send polynomials to polynomials.
From the denominators of the matrix B ∈ GLn(C(x)) of System (2) and its
inverse, we define the following two polynomials in the variable x:

a := φ−1(den(B)), b := den(B−1). (4)

The dispersion set Eφ(a, b) of the polynomials a and b is defined as:

Eφ(a, b) := {s ∈ N ; deg (gcd(a, φs(b))) > 0} , (5)

and plays an important role in the following. Note that the notion of the disper-
sion set was firstly introduced in [2]. Except in the pure difference case (r �= 0 and
q = 1) which is considered in Sect. 3.1 below, a universal denominator for rational
solutions of System (2) is decomposed into two distinct parts, i.e., two polyno-
mial factors, that are treated separately and with different methods. One part is
called the φ-fixed part as it corresponds to the φ-fixed singularity xφ := r

1−q (see
Proposition 2 below) and the other part is called the non φ-fixed part. On one
hand, the computation of the φ-fixed part can be tackled by computing a simple

On Rational Solutions of Pseudo-linear Systems 47

form (see [18] and references therein) at xφ to get the local exponents at xφ (it is
similar to the computation of the part of a universal denominator corresponding
to a given pi in the differential case considered above). On the other hand, the
non φ-fixed part can be computed from the dispersion set Eφ(a, b) of a and b.
The computation of the non φ-fixed part is the purpose of the rest of this section.
Before developing our unified and efficient approach (see Sect. 3.2) to compute
this non φ-fixed part, we briefly recall how one proceeds in the known cases of
pure difference and q-difference systems.

3.1 Existing Methods for Pure Difference and q-Difference Systems

Let us consider a pure difference system of the form φ(y) = B y, where, for all
f ∈ C(x), φ(f(x)) = f(x + 1), i.e., q = r = 1, and B ∈ GLn(C(x)). From [11,
Proposition 1], we know that the irreducible factors of a universal denominator
are among the irreducible factors of a and b defined by (4) or their shifts. We
have the following result:

Proposition 1 ([11], Theorem 1). If Eφ(a, b) = ∅, then U(x) = 1 is a uni-
versal denominator, i.e., all rational solutions are polynomials. Otherwise, a
universal denominator is given by:

U(x) = gcd

⎛

⎝
N∏

i=0

φ−i(a(x)),
N∏

j=0

φj(b(x))

⎞

⎠ , N := max(Eφ(a, b)). (6)

We refer to [11] for more details. From a computational point of view, the result
in [11, Proposition 3] (see also [5, Section 3.1]) allows to compute a universal
denominator without expanding the products in Formula (6).

Let us now consider a pure q-difference system of the form φ(y) = B y, where,
for all f ∈ C(x), φ(f(x)) = f(q x), q is not a root of unity, and B ∈ GLn(C(x)).
The computation of rational solutions of q-difference systems is studied in [4].
A universal denominator is written under the form xα U(x), where α ∈ N and
U(x) ∈ C[x] is not divisible by x. Note that, here, x is the only monic irreducible
polynomial that is fixed by φ in the sense that x and φ(x) divide each other (see
also Proposition 2 below for r = 0). The factor xα of a universal denominator is
thus what we call the φ-fixed part. A bound for α can be obtained from the local
exponents at the φ-fixed singularity xφ = 0 which can be computed either using
the technique of EG-eliminations (see [1, Section 2.2]) or by computing a simple
form at 0 (see [18, Section 5]). The other factor U(x) of a universal denominator
is what we call the non φ-fixed part. It can be computed as in the pure difference
case using the formula (6) in Proposition 1 above. The reader can consult [1,4]
for additional details concerning universal denominators and rational solutions
of q-difference systems.

48 M. A. Barkatou et al.

3.2 A Unified and Efficient Approach for Pseudo-linear Systems

We consider a φ-system (2), where the automorphism φ of K = C(x) is given
by φ(f(x)) = f(q x + r) for all f ∈ C(x), with r ∈ C and q ∈ C∗ is not a root of
unity, but if r �= 0 then q is allowed to be equal to 1.

Let us first remark that in the case r �= 0 and q �= 1 is not a root of unity,
performing the change of independent variable x = z − r

1−q , we are reduced to a
pure q-difference system. In other words, after performing (if necessary) a change
of independent variables, the computation of a universal denominator for the
class of φ-systems considered here can always be done using one of the algorithms
recalled in Sect. 3.1 for the pure difference and q-difference cases. However, in
the following, we prefer to develop a unified approach treating directly all the
φ-systems.

As for pure q-difference systems, we shall decompose a universal denominator
as a product of two factors: the φ-fixed part and the non φ-fixed part. To achieve
this, we first need to determine the polynomials that are fixed by φ. We say that
two polynomials p1 and p2 in C[x] are associated, and we write p1 ∼ p2, if they
divide each other. We introduce the set

Fφ := {p ∈ C[x]\{0} ; deg(p) ≥ 1, ∃s ∈ N
∗, p ∼ φs(p)} ,

where φs(p(x)) = p(φs(x)). We remark that

∀s ∈ N, φs(x) = qs x + r [s]q, [s]q :=

⎧
⎨

⎩

qs − 1
q − 1

; q �= 1,

s ; q = 1.

(7)

Proposition 2. With the previous notation, we have the following:

1. If q = 1, then Fφ = ∅.
2. Otherwise, Fφ =

{
c
(
x − r

1−q

)s

; c ∈ C∗, s ∈ N
∗
}
.

Proof. If q = 1, then p ∼ φj(p) for some j �= 0 if and only if p is a constant and
we are done. Now let q �= 1. From (7), we have that, for all j ∈ N

∗, φj(x) = qj x+
r qj−1

q−1 = q̃ x+ r̃ has the same form as φ(x) = q x+r so that it suffices to look for
non constant polynomials p such that p ∼ φ(p). Let us write p(x) =

∑s
i=0 pi xs−i

with p0 = 1 and s ≥ 1. Then p ∼ φ(p) means that there exists α ∈ C∗ such that
φ(p) = α p which yields

(q x + r)s + p1 (q x + r)s−1 + · · · + ps = α (xs + p1 xs−1 + · · · + ps).

By expanding the lefthand side of the latter equality and equating the coefficients
of each xi, i = 0, . . . , s, we get

qs = α, ∀i = 1, . . . , s, (qi − 1) pi =
i−1∑

j=0

(
s − j

s − i

)

ri−j pj .

On Rational Solutions of Pseudo-linear Systems 49

Solving the latter linear system successively for p1, p2, . . . , ps, we obtain

∀i = 1, . . . , s, pi =
(

s

i

)(r

q − 1

)i

,

which yields p(x) =
(
x − r

1−q

)s

and ends the proof.

From Proposition 2, for q = 1 and r �= 0, the set Fφ is empty which justifies
why in the pure difference case, one does not have to consider a φ-fixed part
in a universal denominator. Moreover, for the pure q-difference case q �= 1 and
r = 0, Proposition 2 implies that the only monic irreducible element in Fφ is x,
meaning that the only φ-fixed singularity is xφ = 0. In the general case with
q �= 1, the only monic irreducible element in Fφ is x − r

1−q and we thus write a
universal denominator as a product

(

x − r

1 − q

)α

U(x), (8)

where α ∈ N and the polynomial U(x) is not divisible by x − r
1−q . Here,

(
x − r

1−q

)α

is the φ-fixed part and U(x) is the non φ-fixed part. In order to
construct a universal denominator, one needs to determine both a bound for α
and a multiple of the polynomial U(x) in (8). On one hand, an upper bound for α
can be obtained from a simple form at the φ- fixed singularity xφ = r

1−q . We
refer to [18] for a unified algorithm computing simple of pseudo-linear systems.
On the other hand, a multiple of the non φ-fixed part U(x) can be obtained using
Proposition 1. As we have already noticed, the result developed in [11, Proposi-
tion 3] (see also [5, Section 3.1], [4, Section 2.1]) allows to compute U(x) with the
formula (6) of Proposition 1 without expanding the products. To achieve this,
one first needs to compute the dispersion set Eφ(a, b), which is usually done by
a resultant computation, and then, for each m ∈ Eφ(a, b), several gcd’s are com-
puted in order to get U(x). However, in [36] (see also [6,31]), the authors remark
that if we first compute a factorization of the polynomials a and b, then Eφ(a, b)
can be computed without computing resultants, which is often more efficient in
practice. Note that [36] also includes a complexity analysis confirming the tim-
ings observed in practice. In the next section, we give a unified version of the
latter efficient approach for all φ-systems.

3.3 Computing the Dispersion Set and the Non φ-Fixed Part

Let us consider a φ-system (2). The dispersion set Eφ(a, b) defined by (5) is
usually computed as follows. One first compute the resultant Resx(a, φm(b)).
This resultant is a polynomial in [m]q defined in (7) and the elements of Eφ(a, b)
are computed from the roots in C of this polynomial. In this section, we extend
the ideas of [36] to compute the dispersion set Eφ(a, b) for any φ defined by
φ(f(x)) = f(q x + r) for all f ∈ C(x), with r ∈ C and q ∈ C∗ is not a root of

50 M. A. Barkatou et al.

unity, but if r �= 0 then q is allowed to be equal to 1. The approach relies on a
factorization into irreducible factors of the polynomials a and b given in (4).

First note that there exists s ∈ N such that deg (gcd(a, φs(b))) > 0 if and
only if there exist an irreducible factor f of a and an irreducible factor g of b
such that f ∼ φs(g). Then, we have the following result:

Proposition 3. Let us consider two monic irreducible polynomials f and g of
the same degree d and write f(x) =

∑d
i=0 fi xd−i, f0 = 1, g(x) =

∑d
i=0 gi xd−i,

g0 = 1. If f ∼ φs(g), then we have the following explicit formulas for s:

1. If q = 1, then s = f1−g1
d r (see [36]).

2. Otherwise, if f and g are both different from x − r
1−q , then if k denotes the

smallest positive integer such that (q − 1)k fk − (dk
)
rk �= 0, we have

s =
log(Ak)
k log(q)

, Ak := 1 +
(q − 1)k (gk − fk)

(q − 1)k fk − (dk
)
rk

. (9)

Proof. If f ∼ φs(g), then necessarily φs(g) = qd s f . Now, a direct calculation
shows that

φs(g) =
d∑

k=0

d∑

i=d−k

qs (d−k)

(
i

d − k

)

gd−i ri−d+k [s]i−d+k
q xd−k.

Therefore, equating the coefficients of xd−k in the equality φs(g) = qd s f , for
k ∈ {1, . . . , d}, yields an equation of degree k in [s]q which can be written as:

fk − gk +
k∑

i=1

(
fk

(
k

i

)

(q − 1)i −
(

d − k + i

i

)

ri gk−i

)
[s]iq = 0. (10)

For k = 1, Eq. (10) implies
(
(q − 1)f1 − d r

)
[s]q + f1 − g1 = 0. (11)

If q = 1, then (11) yields [s]q = s = f1−g1
d r which was also the result obtained

in [36]. Otherwise, when q �= 1, it may happen (namely, when f1 (q−1)−d r = 0)
that the coefficient of [s]q in (11) vanishes which implies g1 = f1 and in this case
Eq. (10) for k = 1 will not provide any formula for [s]q.

Let k be the smallest positive integer such that fk (q −1)k − (dk
)
rk �= 0. Such

a k always exists as, by hypothesis, f(x) �= x − r
q−1 /∈ Fφ. From Eq. (10), we

then have that, for all i = 1, . . . , k, gk−i = fk−i = (d
k−i)rk−i

(q−1)k−i . Moreover, Eq. (10)
has then exactly degree k in [s]q and can be simplified to get:

fk − gk +
(
fk −

(
d
k

)
rk

(q − 1)k

)(
(1 + (q − 1) [s]q)k − 1

)
= 0.

Finally, using the definition (7) of [s]q, we obtain qs k = Ak where Ak is defined
in the statement of the proposition. This ends the proof.

On Rational Solutions of Pseudo-linear Systems 51

Proposition 3 leads to an efficient unified algorithm for computing the dis-
persion set. Note also that, for our purpose, an important advantage of this
approach, compared to resultant based algorithms that still need gcd’s calcula-
tions, is that it also provides directly the factors of a multiple of the non φ-fixed
part of a universal denominator of the rational solutions of a φ-system. This is
summarized in the following scheme:

Input: A system of the form (2).
Output: The dispersion set Eφ(a, b) of a and b defined by (4) and a multiple
of the non φ-fixed part of a universal denominator for rational solutions of (2).

1. Set Eφ(a, b) = ∅ and U = 1.
2. Factor a and b defined by (4) as products of powers of distinct monic irre-

ducible polynomials called respectively uj ’s and vl’s.
3. For each pair (uj , vl) such that deg(vl) = deg(uj) = d

(we write uj(x) =
∑d

i=0 fi xd−i, vl(x) =
∑d

i=0 gi xd−i - see Proposition 3)
– If q = 1, then s = f1−g1

d r .
Else let k be the smallest positive integer such that
fk (q − 1)k − (dk

)
rk �= 0 and s be as in (9).

End If
– If s ∈ N and uj ∼ φs(vl), then we set Eφ(a, b) = Eφ(a, b) ∪ {s} and

U = U
∏s

i=0 φ−i(uj).
End If

End For
4. Return Eφ(a, b) and U .

Example 1. Let us consider the φ-system (2) with q = 3, r = 2 and

B :=

⎡

⎣

3 x+2
9x 0

2(x+1)3(13 x+2)
3(3 x+2)(3 x+1)x

(x−1)(x−2)
3(3 x+2)(3 x+1)

⎤

⎦ .

The only φ-fixed singularity is xφ = −1 and we thus write a universal denomina-
tor under the form (x+1)α U(x), where U(x) is not divisible by x+1. Using the
algorithm of [18] for computing a simple form at xφ = −1, we get the local expo-
nents at xφ = −1 and the bound 2 for α. The factorizations of the polynomials a
and b defined in (4) are given by:

a(x) = x (x − 1) (x − 2) , b(x) = (x − 1) (x − 2)
(

x +
2
3

)

.

Here, by directly inspecting the pairs of irreducible factors of a and b, we easily
check that:

x ∼ φ1(x − 2), x − 1 ∼ φ0(x − 1), x − 2 ∼ φ0(x − 2)

are the only possible associations. The dispersion set is thus Eφ(a, b) = {0, 1}
and the multiple of U(x) obtained is φ0(x)φ−1(x)φ0(x−1)φ0(x−2) = x (x−1)

52 M. A. Barkatou et al.

(x− 2)2 because φ−1(x) = 1
3 (x− 2). Finally a universal denominator is given by

(x + 1)2 x (x − 1) (x − 2)2 which agrees with the fact that a basis of the rational
solutions of the φ-system is given by:

y1(x) =

[x
(x+1)2

1

]

, y2(x) =

[
0
1

x(x−1)(x−2)

]

.

4 Rational Solutions of Partial Pseudo-linear Systems

In this section, we present a new algorithm for computing rational solutions
of a partial pseudo-linear system (1) which is fully integrable and satisfies the
integrability conditions (see Sect. 2). We extend the ideas developed in [17] for
integrable connections (i.e., the case where all the systems are differential sys-
tems). For i = 1, . . . ,m, the pseudo-linear system Li(y) = 0 is viewed as a
pseudo-linear system with respect to one independent variable xi as, by assump-
tions, the other variables xj , j �= i are constants with respect to φi and δi and
can thus be considered as constant parameters.

Definition 1. Let K = C(x1, . . . , xm). A rational solution of System (1) is a
vector y ∈ Kn that satisfies Li(y) = 0, for all i = 1, . . . ,m.

Example 2. Let K = C(x1, x2) and consider the partial pseudo-linear system
{δ1(y) = (x2/x1)φ1(y), δ2(y) = (x1 − 1)φ2(y)} , where φ1 = idK , δ1 = ∂

∂x1
,

φ2 : (x1, x2)
→ (x1, x2 − 1), and δ2 = idK − φ2. One can check that the function
y(x1, x2) = xx2

1 is a solution of the system but it is not a rational solution in the
sense of Definition 1.

4.1 A Recursive Approach

Our method proceeds by recursion and relies on an algorithm for computing
rational solutions of each pseudo-linear system δi(y) = Mi φi(y), i = 1, . . . , m.
Such an algorithm has been described in Sect. 3 both for differential systems
(φi = idK) and for φ-systems such that φ(f(x)) = f(q x + r) for all f ∈ C(x),
with r ∈ C and q ∈ C∗ is not a root of unity, but if r �= 0 then q is allowed to
be equal to 1. Consequently, for all i = 1, . . . ,m such that φi �= idK , we assume
that φi satisfies the above conditions.

Let us now give the details of our recursive approach. We first consider the
pseudo-linear system L1(y) = 0 (see also Sect. 4.3) over K = C(x2, . . . , xm)
(x1). We compute a basis u1, . . . ,us ∈ Kn (0 ≤ s ≤ n) of rational solutions
of L1(y) = 0 (see Sect. 3). If we do not find any nonzero rational solution,
then we stop as (1) does not admit any nonzero rational solution. Otherwise,
denote by U ∈ Mn×s(K) the matrix whose columns are the ui’s. We complete
u1, . . . ,us into a basis u1, . . . ,un of Kn and define P = (U V) ∈ GLn(K),

On Rational Solutions of Pseudo-linear Systems 53

where V ∈ Mn×(n−s)(K) has us+1, . . . ,un as columns. Performing the change
of dependent variables y = P z in System (1), we obtain the equivalent system

⎧
⎪⎨

⎪⎩

L̃1(z) := δ1(z) − N1 φ1(z) = 0,
...

L̃m(z) := δm(z) − Nm φm(z) = 0,

(12)

where Ni := P−1 [Mi φi(P) − δi(P)], i = 1, . . . ,m.

Lemma 1. With the above notations, let us decompose the matrices Ni’s of
System (12) by blocks as

Ni =

[
N11

i N12
i

N21
i N22

i

]

,

where N11
i ∈ Ms(K). Then, for all i = 1, . . . ,m, N11

i ∈ Ms(C(x2, . . . , xm)) does
not depend on x1. Moreover it can be computed as the unique solution of the
matrix linear system U N11

i = −Li(U), and, in particular N11
1 = 0. Finally, for

all i = 1, . . . , m, N21
i = 0.

Proof. The equation P Ni = Mi φi(P) − δi(P) yields U N11
i + V N21

i = −Li(U).
From the integrability conditions Li◦Lj −Lj ◦Li = 0, for all 1 ≤ i, j ≤ m, we get
that, for all i = 1, . . . ,m, Li(U) is a rational solution of the system L1(y) = 0
so that there exists a unique constant matrix W ∈ Ms(C(x2, . . . , xm)), i.e., not
depending on x1, such that Li(U) = U W . We then obtain, for all i = 1, . . . , m,
U (N11

i + W) + V N21
i = 0 which ends the proof as the columns of P = (U V)

form a basis of Kn.

From Lemma 1, we deduce the following result justifying the correctness of
our iterative algorithm for computing rational solutions of System (1).

Theorem 1. Let U ∈ Mn×s(K) be a matrix whose columns form a basis of the
rational solutions of L1(y) = 0. For i = 2, . . . , m, let N11

i ∈ Ms(C(x2, . . . , xm))
be the unique solution of the matrix linear system U N11

i = −Li(U). Suppose
that Z ∈ Ms×r(C(x2, . . . , xm)) is a matrix whose columns form a basis of the
rational solutions of the partial pseudo-linear system of size s over C(x2, . . . , xm)

⎧
⎪⎨

⎪⎩

δ2(y) − N11
2 φ2(y) = 0,

...
δm(y) − N11

m φm(y) = 0,
(13)

then the columns of the matrix UZ ∈ Mn×r(K) form a basis of all rational
solutions of (1).

Proof. Let Z ∈ Ms×r(C(x2, . . . , xm)) be a matrix whose columns form a basis
of all rational solutions of (13) and let us consider Y = UZ. We have L1(Y) =
δ1(U)φ1(Z) + Uδ1(Z) − M1φ1(U)φ1(Z) = δ1(U)Z − M1φ1(U)Z = 0. Now for
i = 2, . . . , m, by definition of N11

i , we have Li(Y) = δi(U)φi(Z) + Uδi(Z) −

54 M. A. Barkatou et al.

Miφi(U)φi(Z) = [δi(U) + UN11
i − Miφi(U)]φi(Z) = 0. This ends the first part

of the proof. Now let Y be a solution of (1). In particular, Y is a rational
solution of L1(y) = 0 so that there exists Z ∈ Ms(C(x2, . . . , xm)) such that
Y = UZ = (U V) (ZT 0T)T . Thus, for i = 2, . . . ,m, Y is a solution of
Li(y) = 0 if and only if (ZT 0T)T is a solution of the system (12). This is
equivalent to Z being a solution to system (13) and yields the desired result.

Theorem 1 shows that rational solutions of (1) can be computed recursively.
Indeed, we have reduced the problem of computing rational solutions of Sys-
tem (1) of size n in m variables to that of computing rational solutions of Sys-
tem (13) of size s ≤ n in m − 1 variables. This leads to the following iterative
algorithm for computing a basis of rational solutions of System (1). It proceeds
as follows:

Algorithm RationalSolutions PLS

Input: A system of the form (1).
Output: A matrix whose columns form a basis of rational solutions of (1) or
0n (the zero vector of dimension n) if no non-trivial rational solution exists.

1. Compute a basis of rational solutions of L1(y) = 0 (see Section 3).
2. If there are no non-trivial rational solutions of L1(y) = 0, then Return 0n

and Stop.
3. Let U ∈ Mn×s(K) be a matrix whose columns form a basis of the rational

solutions of L1(y) = 0.
4. If m = 1, then Return U and Stop.
5. For i = 2, . . . , m, compute the unique solution N11

i ∈ Ms(C(x2, . . . , xm)) of
the matrix linear system U N11

i = −Li(U).
6. Return U multiplied by the result of applying the algorithm to Sys-

tem (13).

Let us illustrate our algorithm on the following example.

Example 3. We consider a partial pseudo-linear system composed of one pure
difference system, one pure q-difference system and one pure differential system
defined as follows:

⎧
⎨

⎩

y(x1 + 1, x2, x3) = A1(x1, x2, x3)y(x1, x2, x3),
y(x1, qx2, x3) = A2(x1, x2, x3)y(x1, x2, x3),

∂
∂x3

y(x1, x2, x3) = A3(x1, x2, x3)y(x1, x2, x3),
(14)

where q ∈ Q
∗ is not a root of unity. Let K = Q(q)(x1, x2, x3). The matrices

A1, A2 ∈ GL2(K) and A3 ∈ M2(K) are given by:

A1 =

⎡

⎣

x1+1
x1

−qx3(x3+x1)
x2
2 x1

0 x3+x1
x3+x1+1

⎤

⎦ , A2 =

⎡

⎣
1 −x3(x3+x1)(q−1)

x2
2

0 q

⎤

⎦ , A3 =

⎡

⎣
0 q(x3+x1)

x2
2

0 −1
x1+x3

⎤

⎦ .

On Rational Solutions of Pseudo-linear Systems 55

Rewriting the three φ-systems as pseudo-linear systems (see Sect. 2 for more
details), System (14) can be transformed into the form (1) with

⎧
⎨

⎩

L1(y) := δ1(y) − M1 φ1(y), M1 = φ1(A1) − I2,
L2(y) := δ2(y) − M2 φ2(y), M2 = φ2(A2) − I2,
L3(y) := δ3(y) − M3 φ3(y), M3 = A3,

(15)

where the φi’s are the automorphisms defined by:

φ1 : (x1, x2, x3)
→ (x1 − 1, x2, x3), φ2 : (x1, x2, x3)
→ (x1, x2/q, x3), φ3 = idK ,

and the δi’s are the φi-derivations defined by:

δ1 = idK − φ1, δ2 = idK − φ2, δ3 = ∂/∂x3.

Let us describe our iterative process for computing rational solutions of Sys-
tem (15). Computing rational solutions of the pure difference system L1(y) = 0,
we get two linearly independent rational solutions given by the columns of

U1 =

⎡

⎣

x1−x3
x4
2

1
x4
2

−1
q x2

2 (x3+x1)
1

q x2
2 x3(x3+x1)

⎤

⎦ .

Solving the linear systems U1 N11
2 = −L2(U1) and U1 N11

3 = −L3(U1) we get:

N11
2 =

[−q4 + 1 0

−q3 (q − 1) x3 −q3 + 1

]

, N11
3 =

[
0 0

0 −1

]

.

We are then reduced to solving the partial pseudo-linear system
{

L̃2(y) := δ2(y) − N11
2 φ2(y) = 0,

L̃3(y) := δ3(y) − N11
3 φ3(y) = 0.

The rational solutions of the pure q-difference system L̃2(y) = 0 are given by
the columns of the matrix

U2 =

[
x4
2 0

x4
2 x3 x3

2

]

.

Now, solving the linear system U2 N̂3

11
= −L̃3(U2), we get

N̂3

11
=

[
0 0

0 −1

]

.

We are next reduced to computing rational solutions of the pure differential
system δ3(y) − N̂3

11
φ3(y) = 0. We find that they are given by the columns of

the matrix

U3 =

[
0 1

x3 0

]

.

56 M. A. Barkatou et al.

Finally, a basis of rational solutions of (14) is spanned by the columns of

U1 U2 U3 =

[x3
x2

x1

x2
(x3+x1)q

0

]

.

4.2 Necessary Conditions for Denominators

A rational solution of the partial pseudo-linear system (1) is, in particular, a
rational solution of each pseudo-linear system δi(y) = Mi φ(y), i = 1, . . . , m.
This necessarily imposes some necessary conditions on the irreducible factors of
the denominator of a rational solution of System (1) (see [17, Proposition 8] in the
integrable connection case). In some cases, taking into account these necessary
conditions can significantly speed up the timings of Algorithm RationalSolu-
tions PLS as it allows to not consider some irreducible factors when computing
universal denominators.

For a pure differential system (φi = idK and δi = ∂/∂xi), we know that
an irreducible factor of the denominator of a rational solution must divide the
denominator of the matrix Mi. For the case of a φ-system we have the following
consequence of Proposition 1. This result can be found in [11] for the pure
difference case and can be adapted directly for any φ-system considered here.

Proposition 4 ([11], Proposition 2). With the notations of Sect. 3, assume
that Eφ(a, b) �= ∅ and let N := max(Eφ(a, b)). Let p �= x − r

1−q ∈ C[x] be
an irreducible polynomial. If p divides the denominator of a non-zero rational
solution of System (2), then there exist 1 ≤ i ≤ N + 1 and 0 ≤ j ≤ N such that
i + j ∈ Eφ(a, b) and p divides both φ−i(den(B)) and φj(den(B−1)).

For the sake of clarity, before giving a result in the general case, we first
consider the case of a partial pseudo-linear system with only m = 2 pseudo-
linear systems being written either as a pure differential system or a φ-system.
We obtain the following result as a consequence of the discussion above and
Proposition 4.

Necessary Condition 1. Let K = C(x1, x2) and consider a partial pseudo-
linear system

L1(y) = 0, L2(y) = 0. (16)

Let A1 denote the matrix of the system L1(y) = 0 and p ∈ C[x1, x2] be an
irreducible factor of den(A1) which involves the variable x2. Then we have the
following result depending on the type of each pseudo-linear system:

1. If for i = 1, 2, Li = In
∂

∂xi
− Ai then if p appears in the denominator of a

rational solution of (16), then p | den(A2) (see [17, Proposition 8]).
2. If L1 = In

∂
∂x1

− A1, L2 = In φ2 − A2, then if p appears in the denominator
of a rational solution of (16), there exists i ∈ N

∗ such that p | φ−i
2 (den(A2)).

3. If L1 = In φ1 − A1, L2 = In
∂

∂x2
− A2, then if p appears in the denominator

of a rational solution of (16), there exists i ∈ N
∗ such that p | φi

1(den(A2)).

On Rational Solutions of Pseudo-linear Systems 57

4. If for i = 1, 2, Li = In φi−Ai, then if p appears in the denominator of a ratio-
nal solution of (16), there exists i, j ∈ N

∗ such that p | φi
1(φ

−j
2 (den(A2))).

Let us illustrate the latter necessary condition on an example.

Example 4. Consider a partial pseudo linear system of the form

∂y
∂x

(x, k) = A(x, k)y(x, k), y(x, k + 1) = B(x, k)y(x, k),

where the matrices A and B are given by:

A(x, k) =

⎡
⎢⎣

−1
(x+k)

−k(k−x)(x+2 k)

(x+k)x3(k2−kx+x)

0 k
(k−x)(k2−kx+x)

⎤
⎥⎦ , B(x, k) =

⎡
⎢⎢⎣

x+k
x+k+1

(k−x)(2 k+x+1)

(x+k+1)x2(k2−kx+x)

0
(k2−kx+2 k+1)(k−x)

(k+1−x)(k2−kx+x)

⎤
⎥⎥⎦ .

The factorizations of the denominators of the matrices A and B are given respec-
tively by:

den(A)(x, k) = (x + k) x3
(
k2 − kx + x

)
(k − x) ,

den(B)(x, k) = (x + k + 1) x2
(
k2 − kx + x

)
(k + 1 − x) .

The irreducible factor p(x, k) = k2 − k x + x of den(A) clearly satisfies that, for
all i ∈ N

∗, p � den(B)(x, k− i). Therefore, from Case 2 of Necessary Condition 1,
p can not appear in the denominator of any rational solution of the system.
However, the latter necessary condition does not allow to draw any conclusion
concerning the factors x+k and k−x of den(A) (the factor x does not involve the
variable k so that it can not be considered in our result). We can indeed check
the previous observations as the rational solutions of the system are given by:

y1(x) =

[1
(x+k)

0

]

, y2(x) =

[
k
x2

k + x
k−x

]

.

The gain for our algorithm is that when computing a universal denominator for
the differential system ∂y

∂x (x, k) = A(x, k)y(x, k), there is no need to compute a
simple form at p(x) = k2 − k x + x (see Sect. 3).

We now give a generalization of the latter necessary condition in the case
of a partial pseudo-linear system (1) composed of m pseudo-linear systems. We
distinguish the case when the first system is a differential system (Necessary
Condition 2) from that where it is a φ-system (Necessary Condition 3). Note
that for φi �= idK , the systems are written here under the form of a pseudo-
linear system δi(y) = Mi φi(y) and not of a φ-system φi(y) = Bi y. This is the
reason why matrices γ−1

i Mi + In appear in the following results (see Sect. 2).

Necessary Condition 2. Let K = C(x1, . . . , xm). Consider a system of the
form (1) and suppose that L1(y) = 0 is a pure differential system, i.e., φ1 = idK

and δ1 = ∂
∂x1

. Let p ∈ C[x1, . . . , xm] be an irreducible factor of den(M1) such
that p involves the variable xi for some i ∈ {2, . . . , m}. Moreover, suppose that
one of the following two conditions holds:

58 M. A. Barkatou et al.

1. (φi, δi) = (idK, ∂
∂xi

) and p � den(Mi).
2. φi �= idK (i.e., δi = γi (idK − φi) for some γi ∈ K∗) and

∀j ∈ N
∗, φj

i (p) � den((γ−1
i Mi + In)−1).

Then p cannot appear in the denominator of a rational solution of (1).

Necessary Condition 3. Let K = C(x1, . . . , xm). Consider a system of the
form (1) and suppose that φ1 �= idK (i.e., δ1 = γ1 (idK −φ1) for some γ1 ∈ K∗).
Let p ∈ C[x1, . . . , xm] be an irreducible factor of den((γ−1

1 M1 + In)−1) such that
p involves the variable xi for some i ∈ {2, . . . , m}. Moreover, suppose that one
of the following two conditions holds:

1. (φi, δi) = (idK, ∂
∂xi

) and, for all j ∈ N
∗, p � φj

i (den(Mi)).
2. φi �= idK (i.e., δi = γi (idK − φi) for some γi ∈ K∗) and

∀j, k ∈ N
∗, p � φj

1(φ
−k
i (den((γ−1

i Mi + In)−1))).

Then p cannot appear in the denominator of a rational solution of (1).

4.3 Implementation and Comparison of Different Strategies

Algorithm RationalSolutions PLS has been implemented in Maple in our
PseudoLinearSystems package [19]. It includes an implementation of the unified
and efficient algorithm developed in Sect. 3.3 for computing a multiple of the non
φ-fixed part of a universal denominator of φ-systems. For the φ-fixed part and for
computing a universal denominator of differential systems, we use our generic
implementation of the simple form algorithm developed in [18]. Moreover our
implementation includes part of the necessary conditions given in Sect. 4.2.

In the recursive process of Algorithm RationalSolutions PLS, the pseudo-
linear systems in (1) can be considered in an arbitrary order. We have thus tried
to see (through examples) if there are some orders better than others from the
computational point of view. Let us give some timings of one of our experiments
in the case of m = 2 pseudo-linear systems where one system is a pure differential
system (with independent variable x and usual derivation ∂

∂x) and the other is
a pure difference system (with independent variable k, φ : (x, k)
→ (x, k − 1)
and δ = idK − φ). In this experiment the matrices of the systems are generated
from a randomly chosen fundamental matrix of rational solutions but whose
denominator denoted by U is fixed as a product of some of the following three
polynomials:

U1(x, k) = (x + k) (x − k)2
(−k2 + x

) (−k3 + x2 + 3
)
,

U2(x, k) =
−77 k8x6+51 k2x12−31 k5x8+10 k4x9−68x13−91x12+81 k10−40 k4x6+47 k2x5+49 kx,

U3(x, k) =

k (6 k10x + 5 kx9 + 6 k2x7 + 3 k7 + 2 k6x − 4x7 + 4 k4x2 + k4x − 3x4 − 5 k).

We compare two strategies:

On Rational Solutions of Pseudo-linear Systems 59

1. Strategy 1: we start with the differential system.
2. Strategy 2: we start with the difference system.

The following table gives the timings (in seconds) obtained for computing the
fundamental matrix of rational solutions with each strategy, for different dimen-
sions n of the systems, and for different fixed denominators U of the rational
solutions.

U = U1 U = U1U2 U = U1U2U3

n = 3 n = 6 n = 9 n = 3 n = 6 n = 9 n = 3 n = 6 n = 9

Strategy 1 0.483 2.295 9.012 22.928 187.556 574.839 249.924 912.906 1703.79

Strategy 2 0.399 2.831 16.463 0.354 2.162 12.222 0.948 3.398 15.171

The table seems to indicate that Strategy 2, i.e., starting with the differ-
ence system, gives, in general, better timings. We do not have yet a complete
complexity analysis justifying the latter observation but we have made several
experimentations which confirm it. In particular, the difference between the dis-
tinct timings seems to be particularly significant when the denominator includes
large irreducible factors as U2 and U3. In the case U = U1, we do not have large
singularities in the denominator and Strategy 1 behaves well. Going deeper into
the analysis of these timings for each step of the algorithm, we can see that, in
Strategy 1, most of the time is spent in computing simple forms which can be
quite involved for singularities as the ones given by U2 and U3. In Strategy 2,
we have no simple form computations to get a universal denominator of the
first system (as it is a difference system) and then, the large factors U2 and U3

disappear as the differential system to be considered next only involves the vari-
able x. For instance, in Example 3, if we start with the differential system with
matrix M3 = A3, we must compute a simple form at the singularity given by
the irreducible factor x1 + x3 of den(A3). But if we treat first the difference and
the q-difference systems as it is done in Example 3, we can see that at the end of
the process, the differential system to be considered is δ3(y) − N̂3

11
φ3(y) = 0,

where N̂3

11
has no finite singularities, and therefore no simple form computations

are needed to get a universal denominator of the differential system.
From these observations (and other comparisons that we have performed),

we make the choice to treat the φ-systems (φi �= idK) first and to consider the
differential systems at the end of the iterative process, where the systems involve
fewer independent variables and may also be of smaller size.

References

1. Abramov, S.: EG-eliminations. J. Differ. Equations Appl. 5(4–5), 393–433 (1999)
2. Abramov, S.: On the summation of rational functions. USSR Comput. Math. Math.

Phys. 11(4), 324–330 (1971)

60 M. A. Barkatou et al.

3. Abramov, S.: Rational solutions of linear differential and difference equations with
polynomial coefficients. USSR Comput. Math. Math. Phys. 29(6), 7–12 (1989)

4. Abramov, S.: A direct algorithm to compute rational solutions of first order linear
q-difference systems. Discret. Math. 246, 3–12 (2002)

5. Abramov, S., Barkatou, M.A.: Rational solutions of first order linear difference
systems. In: Proceedings of ISSAC 1998, pp. 124–131 (1998)

6. Abramov, S.A., Gheffar, A., Khmelnov, D.E.: Factorization of polynomials and
GCD computations for finding universal denominators. In: Gerdt, V.P., Koepf,
W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 4–18.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15274-0 2

7. Abramov, S., Paule, P., Petkovsek, M.: q-hypergeometric solutions of q-difference
equations. Discret. Math. 180, 3–22 (1998)

8. Abramov, S.A., Petkovšek, M., Ryabenko, A.A.: Hypergeometric solutions of first-
order linear difference systems with rational-function coefficients. In: Gerdt, V.P.,
Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301,
pp. 1–14. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24021-3 1

9. Barkatou, M.A.: Contribution à l’étude des équations différentielles et aux
différences dans le champ complexe. Ph.D. Thesis, Institut Nat. Polytech. Grenoble
(1989)

10. Barkatou, M.A.: On rational solutions of systems of linear differential equations.
J. Symb. Comput. 28, 547–567 (1999)

11. Barkatou, M.A.: Rational solutions of matrix difference equations: the problem of
equivalence and factorization. In: Proceedings of ISSAC 1999, pp. 277–282 (1999)

12. Barkatou, M.A.: Factoring Systems of Linear Functional Systems Using Eigenrings.
Computer algebra 2006, 22–42, World Sci. Publ., Hackensack, NJ (2007)

13. Barkatou, M.A., Broughton, G., Pflügel, E.: A monomial-by-monomial method for
computing regular solutions of systems of pseudo-linear equations. Math. Comp.
Sci. 4(2–3), 267–288 (2010)

14. Barkatou, M.A., Chen, G.: Some formal invariants of linear difference systems and
their computations. Crelle’s J. 1–23, 2001 (2001)

15. Barkatou, M.A., Cluzeau, T., El Bacha, C.: Simple forms of higher-order linear
differential systems and their applications in computing regular solutions. J. Symb.
Comput. 46(6), 633–658 (2011)

16. Barkatou, M.A., Cluzeau, T., El Bacha, C.: On the computation of simple forms
and regular solutions of linear difference systems. In: Schneider, C., Zima, E. (eds.)
WWCA 2016. SPMS, vol. 226, pp. 19–49. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-73232-9 2

17. Barkatou, M.A., Cluzeau, T., El Bacha, C., Weil, J.A.: Computing closed form solu-
tions of integrable connections. In: Proceedings of ISSAC 2012, pp. 43–50 (2012)

18. Barkatou, M.A., Cluzeau, T., El Hajj, A.: Simple forms and rational solutions of
pseudo-linear systems. In: Proceedings of ISSAC 2019, pp. 26–33 (2019)

19. Barkatou, M.A., Cluzeau, T., El Hajj, A.: PseudoLinearSystems - a maple package
for studying systems of pseudo-linear equations. Maple Math. Educ. Res. 327–329.
http://www.unilim.fr/pages perso/ali.el-hajj/PseudoLinearSystems.html

20. Barkatou, M.A., El Bacha, C.: On k-simple forms of first-order linear differential
systems and their computation. J. Symb. Comput. 54, 36–58 (2013)

21. Barkatou, M.A., El Bacha, C., Pflügel, E.: An algorithm computing the regular
formal solutions of a system of linear differential equations. In: Proceedings of
ISSAC 2010, pp. 45–52 (2010)

22. Barkatou, M.A., Pflügel, E.: Simultaneously row- and column-reduced higher-order
linear differential systems. J. Symb. Comput. 28(4–5), 569–587 (1999)

https://doi.org/10.1007/978-3-642-15274-0_2
https://doi.org/10.1007/978-3-319-24021-3_1
https://doi.org/10.1007/978-3-319-73232-9_2
https://doi.org/10.1007/978-3-319-73232-9_2
http://www.unilim.fr/pages_perso/ali.el-hajj/PseudoLinearSystems.html

On Rational Solutions of Pseudo-linear Systems 61

23. Barkatou, M.A., Pflügel, E.: On the Moser- and super-reduction algorithms of
systems of linear differential equations and their complexity. J. Symb. Comput.
44(8), 1017–1036 (2009)

24. Bronstein, M., Li, Z., Wu, M.: Picard-Vessiot extensions for linear functional sys-
tems. In: Proceedings of ISSAC 2005, pp. 68–75 (2005)

25. Bronstein, M., Petkovsek, M.: An introduction to pseudo-linear algebra. Theor.
Comput. Sci. 157, 3–33 (1996)

26. Broughton, G.: Symbolic algorithms for the local analysis of systems of pseudo-
linear equations. Ph.D. Thesis, Kingston University (2013)

27. Cluzeau, T., van Hoeij, M.: Computing hypergeometric solutions of linear difference
equations. Appl. Algebra Eng. Commun. Comput. 17, 83–115 (2006). https://doi.
org/10.1007/s00200-005-0192-x

28. Feng, R., Singer, M.F., Wu, M.: An algorithm to compute Liouvillian solutions
of prime order linear difference-differential equations. J. Symb. Comput. 45(3),
306–323 (2010)

29. Hilali, A., Wazner, A.: Formes super-irréductibles des systèmes différentiels
linéaires. Numer. Math. 50, 429–449 (1987)

30. Jacobson, N.: Pseudo-linear transformations. Annals Math. 38(2), 484–507 (1937).
Second series

31. Khmelnov, D.E.: Improved algorithms for solving difference and q-difference equa-
tions. Program. Comput. Softw. 26(2), 107–115 (2000). (translated from Program-
mirovanie No. 2)

32. Kauers, M., Schneider, C.: Partial denominator bounds for partial linear difference
equations. In: Proceedings of ISSAC 2010, pp. 211–218 (2010)

33. Kauers, M., Schneider, C.: A refined denominator bounding algorithm for multi-
variate linear difference equations. In: Proceedings of ISSAC 2011, pp. 201–208
(2011)

34. Li, Z., Singer, M.F., Wu, M., Zheng, D.: A recursive method for determining the
one-dimensional submodules of Laurent-Ore modules. In: Proceedings of ISSAC
2006, pp. 200–208 (2006)

35. Li, Z., Wu, M.: On solutions of linear systems and factorization of Laurent-Ore
modules. Computer algebra 2006, 109–136, World Sci. Publ., Hackensack, NJ
(2007)

36. Man, Y.K., Write, F.J: Fast polynomial dispersion computation and its application
to indefnite summation. In: Proceedings of ISSAC 1994, pp. 175–180 (1994)

37. Paramonov, S.V.: On rational solutions of linear partial differential or difference
equations. Program Comput. Soft 39, 57–60 (2013)

38. Paramonov, S.V.: Checking existence of solutions of partial differential equations
in the fields of Laurent series. Program Comput. Soft. 40, 58–62 (2014)

39. Pflügel, E.: An algorithm for computing exponential solutions of first order linear
differential systems. In: Proceedings of ISSAC 1997, pp. 146–171 (1997)

40. Singer, M.F.: Liouvillian solutions of linear differential equations with Liouvillian
coefficients. In: Kaltofen, E., Watt, S.M. (eds.) Computers and Mathematics, pp.
182–191. Springer, New York (1989)

41. Wu, M.: On solutions of linear functional systems and factorization of modules
over Laurent-Ore algebras. Ph.D. Thesis, Univ. of Nice-Sophia Antipolis (2005)

https://doi.org/10.1007/s00200-005-0192-x
https://doi.org/10.1007/s00200-005-0192-x

On the Relationship Between Differential
Algebra and Tropical Differential

Algebraic Geometry

François Boulier1(B), Sebastian Falkensteiner2, Marc Paul Noordman3,
and Omar León Sánchez4

1 Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de
Recherche en Informatique Signal et Automatique de Lille, 59000 Lille, France

francois.boulier@univ-lille.fr
2 Research Institute for Symbolic Computation (RISC), Johannes Kepler University

Linz, Linz, Austria
3 Bernoulli Institute, University of Groningen, Groningen, The Netherlands
4 Department of Mathematics, University of Manchester, Manchester, UK

omar.sanchez@manchester.ac.uk

https://pro.univ-lille.fr/francois-boulier,

https://risc.jku.at/m/sebastian-falkensteiner,

https://www.rug.nl/staff/m.p.noordman

Abstract. This paper presents the relationship between differential
algebra and tropical differential algebraic geometry, mostly focusing on
the existence problem of formal power series solutions for systems of poly-
nomial ODE and PDE. Moreover, it improves an approximation theorem
involved in the proof of the fundamental theorem of tropical differential
algebraic geometry which permits to improve this latter by dropping the
base field uncountability hypothesis used in the original version.

1 Introduction

Differential algebra is an algebraic theory for systems of ordinary or partial
polynomial differential equations. It was founded by Ritt in the first half of
the former century [13,14] and developed by Kolchin [10]. Tropical differential
algebraic geometry is a much more recent theory, founded by Grigoriev [8] aiming
at applying the concepts of tropical algebra (aka min-plus algebra) to the study
of formal power series solutions of systems of ODE. Tropical differential algebra
obtained an important impulse by the proof of the fundamental theorem of
tropical differential algebraic geometry [1] which was recently extended to the
partial case in [7]. The common topic of both theories is the existence problem
of formal power series solutions of polynomial differential equations on which an
important paper [6] by Denef and Lipshitz was published in 1984.

In both [1] and [7], the fundamental theorem applies to a polynomial differen-
tial system Σ with coefficients in formal power series rings F [[x]] (ordinary case)
or F [[x1, . . . , xm]] (partial case) where F is a characteristic zero differential field
of constants which is both algebraically closed and uncountable. In this paper,
c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 62–77, 2021.
https://doi.org/10.1007/978-3-030-85165-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_5

On the Relationship Between Diff. Alg. and Tropical Diff. Alg. Geometry 63

we prove that the uncountability hypothesis can be dropped. Indeed, we prove
that the fundamental theorem holds provided that F is algebraically closed and
has countable1 transcendence degree over some field of definition F0 of Σ. This
improvement of the fundamental theorem is achieved by generalizing the proof
of a key proposition, which is an approximation theorem. This generalization
is achieved in our Theorem 1, which is the main result of our paper. The new
versions of the fundamental theorem, which follow, are stated in Theorem 2 and
Theorem 3.

For the sake of simplicity, the introductory part of our paper focuses on the
ordinary case. For completeness, the partial case is covered as well in the more
technical sections. The paper is structured as follows. We recall in Sect. 2 the
basic ideas underlying formal power series solutions of ODE and point out issues
and known results, from the differential algebra literature. We state and explain
the fundamental theorem of tropical differential algebra in Sect. 3. We provide
our new approximation theorem in Sect. 5 (covering the partial differential case)
and show how it is obtained by adapting the corresponding proposition given
in [7]. The new version of the fundamental theorem, in the ordinary case, is
provided in Sect. 6. In the final Sect. 7, we give an overview on the generalizations
to the partial case, including the partial version of the fundamental theorem.

2 Formal Power Series Solutions of ODE

Let us start with a single autonomous ODE (i.e. an ODE the coefficients of
which do not depend of the independent variable x) in a single differential inde-
terminate y (standing for the unknown function y(x)):

ẏ2 + 8 y3 − 1 = 0 .

Differentiate it many different times.

2 ẏ ÿ + 24 y2 ẏ ,
2 ẏ y(3) + 2 ÿ2 + 24 y2 ÿ + 48 y ẏ2 ,

...

Rename each derivative y(k) as vk. Solve the obtained polynomial system
(observe there are infinitely many solutions). The result is a truncated arc v

(v0, v1, v2, v3, v4, v5, v6, v7, . . .) = (0, 1, 0, 0,−24, 0, 0, 2880, . . .) .

Substitute the arc in the generic formula

Ψ(v) =
∑ vi

i !
xi .

1 In this paper, “countable” stands for “countably infinite”.

64 F. Boulier et al.

One obtains a formal power series solution centered at the origin. Since the ODE
is autonomous, the same arc, substituted in the following generic formula

Ψα(v) =
∑ vi

i !
(x − α)i (1)

provides a formal power series solution centered at any expansion point x = α.
If the ODE is not autonomous, the arc depends on the expansion point. The

process is thus a variant. Consider some non-autonomous ODE

x ẏ2 + 8x y3 − 1 = 0 .

Differentiate the ODE many different times.

2x ẏ ÿ + ẏ2 + 24x y2 ẏ + 8 y3 ,
...

Then fix an expansion point α and evaluate the independent variable at x = α.
Solve the obtained polynomial system. The result is a truncated arc. Substitute
it in (1) (for the chosen value of α). One gets a formal power series solution
centered at x = α.

In the above processes, the only issue lies in the polynomial solving step.
Indeed, each differentiated equation introduces a new leading derivative. These
leading derivatives admit as leading coefficients the initial or the separant of the
ODE. If these two polynomials do not vanish at the expansion point and the
already secured coordinates of the truncated arc (the initial values, somehow, of
the initial value problem), then the formal power series solution exists, is unique
and straightforward to compute up to any term. However, if these polynomials
vanish, the formal power series solution may fail to exist or be unique.

A device borrowed from [6, page 236] illustrates the issue. It shows how to
build an ODE p with coefficients in Q[x] from a polynomial f(z) in Q[z]. The
ODE admits a formal power series solution centered at the origin if and only if
the polynomial f(z) has no positive integer solution. In the ordinary case, this
device permits to build interesting examples. The approach generalizes to the
partial case. It permits to relate the existence problem of formal power series
solutions centered at the origin for PDE systems to Hilbert’s Tenth Problem and
Matiiassevich undecidability result [6, Theorem 4.11]. For more details see [3,
Sect 1.6].

It is interesting also to observe that any non-autonomous ODE can be viewed
as an autonomous one by performing a change of independent variable and
introducing an extra ODE. Indeed, call ξ the new independent variable. View
the former independent variable x as a new differential indeterminate (i.e. as
an unknown function x(ξ)) and introduce the extra ODE ẋ = 1. This reduction
method only applies to ODE with polynomial coefficients in x. However, if x = α
was a problematic expansion point before the reduction then x(0) = α becomes a
problematic initial value (hence arc coordinate) after reduction. For more details
see [3, Sect 1.4.2].

On the Relationship Between Diff. Alg. and Tropical Diff. Alg. Geometry 65

In his books [13,14], Ritt implicitly considers autonomous systems (the
“autonomous” qualifier does not belong to differential algebra) and we may
assume he had in mind the above reduction trick. Though Taylor expansions
of solutions are discussed at different places (mostly in a chapter dedicated to
PDE), Ritt does not explicitly address the existence problem of formal power
series solutions. However, he pioneered differential elimination methods by means
of his theory of characteristic sets (which was much developed afterwards, leading
to the theories of regular chains and differential regular chains). This elimina-
tion theory solves in particular the following decision problem: given any finite
system Σ of ordinary or partial differential polynomial, does 1 ∈ [Σ] where [Σ]
denotes the differential ideal generated by Σ? This problem is equivalent to the
following one, which is thus seen to be decidable: does there exist initial values
for which Σ has formal power series solutions2?

In the case of systems of non-autonomous ODE, thanks to the reduction
method to the autonomous case, we can then conclude that the following problem
is decidable: given any system Σ, do expansion point and initial values exist for
which Σ has formal power series solutions?

3 The Fundamental Theorem of Tropical Differential
Algebraic Geometry

In the tropical differential case, the systems under consideration belong to some
differential polynomial ring F [[x]]{y1, . . . , yn} where F is a characteristic zero
field of constants. Differential polynomials have formal power series coefficients.
Thus the reduction trick to the autonomous case does not apply and formal
power series solutions are only sought at a fixed expansion point: the origin. More
precisely, formal power series solutions are sought in the coefficient ring F [[x]]
of the equations.

The existence problem of such formal power series solutions is much more
difficult. An important related paper is [6]. Indeed, [6, Theorem 3.1] claims that,
in the case of systems with coefficients in Q[x], the existence problem of formal
power series solutions (with coefficients in C, R or Qp) is decidable. It is however
important to note that, in the same setting, the existence problem of nonzero
formal power series solutions is undecidable. See [6, Proposition 3.3] which refers
to [16].

In this context, the fundamental theorem of tropical differential geometry
does not solve any problem left open in [6]. It only states the following equiva-
lence

supp(sol(Σ)) = sol(trop(Σ)) , (2)

2 Indeed, the characteristic sets or regular differential chains computed by differential
elimination methods can be viewed as differential systems sufficiently simplified to
generalize, for systems of differential equations, the basic methods sketched at the
top of the section for computing formal power series solutions.

66 F. Boulier et al.

where Σ is a differential ideal and the base field F is both algebraically closed
and uncountable (we relinquish this last condition in this paper).

Before entering sophisticated issues, let us clarify the notations used in (2).
The support3 supp(ϕ) of the formal power series (3) is the set {i ∈ N | ai �= 0}.

ϕ =
∑

ai xi (3)

Since Σ depends on n differential indeterminates y1, . . . , yn, its formal power
series solutions actually are tuples of n formal power series. One then extends
the above definition to tuples of formal power series: the support of a tuple

ϕ = (ϕ1, . . . , ϕn) (4)

is defined as the tuple supp(ϕ) = (supp(ϕ1), . . . , supp(ϕn)).
On the left hand side of (2), sol(Σ) denotes the set of formal power series

solutions of Σ with coefficients in F . Hence, the left hand side of (2) is a set of
tuples of the supports of all the formal power series solutions of Σ.

Let us address now the right hand side of (2). The valuation of a formal power
series (3) is defined as ∞ if ϕ = 0 and as the smallest i ∈ N such that ai �= 0
otherwise.

F [[x]] P(N)

N

supp

valuation
min

Let us now define the tropicalization of the differential monomial (the coeffi-
cient c ∈ F [[x]] and the term t is a power product of derivatives v1, . . . , vr of
the n differential indeterminates y1, . . . , yn)

m = c t = c vd1
1 · · · vdr

r (5)

at a tuple of supports

S = (S1, . . . , Sn) . (6)

Consider any tuple of formal power series (4) whose support is S. Since m is a
monomial, the support of the formal power series m(ϕ) is uniquely defined by S:
it does not depend on the actual coefficients of ϕ. We are led to the following
definition4.

The tropicalization of a differential monomial m at S is defined as the valu-
ation of m(ϕ) where ϕ is any tuple of formal power series whose support is S.
The table below gives a few examples.

monomial m supportS trop(m) at S
x2 y {0, 1, 2} 2
x2 y {2} 4
ẏ3 {0, 3} 6
ÿ3 {0, 1} ∞

3 In [1,8], the notation trop(ϕ) is used instead of supp(ϕ) but may be misleading in
some cases.

4 This is not the definition given in [1, sect. 4] but both definitions are equivalent.

On the Relationship Between Diff. Alg. and Tropical Diff. Alg. Geometry 67

Let us now consider a nonzero differential polynomial, expanded as a sum of
monomials of the form (5) with pairwise distinct terms:

p = m1 + m2 + · · · + mq . (7)

The tropicalization of p at S is defined as

trop(p) =
q

min
i=1

trop(mi) . (8)

The tropicalization of the zero polynomial is defined as ∞.
As an example, let us consider the differential polynomial

p = ẏ2 − 4 y (9)

whose solutions are ϕ = 0 (support S = ∅) and ϕ = (x + c)2 where c is
an arbitrary constant (supports S = {0, 1, 2} and {2}). The first and second
derivatives of p are

ṗ = 2 ẏ ÿ − 4 ẏ , (10)
p̈ = 2 ẏ y(3) + 2 ÿ2 − 4 ÿ . (11)

In the next table, all the considered supports are supports of solutions of the
differential polynomials. In the last column, the list of the trop(mi) is provided,
rather than their minimum. The first row indicates that both monomials of p
vanish at ϕ = 0. The second row indicates that the two monomials do not vanish
but may possibly cancel each other at ϕ = a2 x2, for some a2 �= 0 (indeed, they
vanish but only for a2 = 1). The third row indicates that, among the three
monomials of p̈, the first one vanishes at any ϕ = a2 x2 while the two last ones
may cancel each other for some a2 �= 0.

polynomial supportS list trop(mi) at S
p ∅ [∞,∞]
p {2} [2, 2]
p̈ {2} [∞, 0, 0]

In the next table, the considered support S = {0, 1} is not the support of any
solution of p, since p has no solution of the form ϕ = a0 + a1 x with a0, a1 �= 0.
This fact is not observed on the first row, which considers p itself. It is however
observed on the second row, which considers the first derivative of p: one of the
two monomials vanishes while the second one evaluates to some nonzero formal
power series.

polynomial supportS list trop(mi) at S
p {0, 1} [0, 0]
ṗ {0, 1} [∞, 0]

68 F. Boulier et al.

The observed phenomena suggest the following definition, which permits to
understand the right hand side of (2).

Let p be a polynomial of the form (7). View trop(p) as a function of n
unknown supports. Then (S1, . . . , Sn) is said to be a solution of trop(p) if either

1. each trop(mi) = ∞ or

2. there exists mi,mj (i �= j) such that trop(mi) = trop(mj) =
q

min
k=1

(trop(mk)) .

Let us conclude this section by a few remarks. In the fundamental theo-
rem of tropical differential algebraic geometry, the inclusion supp(sol(Σ)) ⊂
sol(trop(Σ)) is easy. The difficult part is the converse inclusion. It requires Σ to
be a differential ideal because one may need to consider arbitrary high derivatives
of the elements of Σ in order to observe that a given support is not a solution.
See the example above or even simpler, consider p = ẏ − y and S = {0, . . . , n}
with n ∈ N: it is necessary to differentiate n times the differential polynomial p
in order to observe that it has no solution with support S. Moreover, the base
field F is required to be algebraically closed because of the polynomial system
solving step and the fact that solutions are sought in F [[x]].

Last, the proof of the converse inclusion relies on an approximation theorem.
The two versions of this approximation theorem given in [1, Proposition 7.3] and
[7, Proposition 6.3] assume F to be uncountable. Our new version (Theorem 1)
relies on weaker hypotheses.

4 Fields of Definition and Countability

We are concerned with a differential ideal Σ [10, I, sect. 2] in a characteristic
zero partial differential polynomial ring F [[x1, . . . , xm]]{y1, . . . , yn} where F is
an algebraically closed field of constants, the m derivation operators δ1, . . . , δm

act as ∂/∂x1, . . . , ∂/∂xm and y1, . . . , yn are n differential indeterminates.
Thanks to the Ritt-Raudenbush Basis Theorem (see [4] for details), the

differential ideal Σ can be presented by finitely many differential polynomi-
als g1, . . . , gs ∈ F [[x1, . . . , xm]]{y1, . . . , yn} in the sense that the perfect [10, 0,
sect. 5] differential ideals {Σ} and {g1, . . . , gs} are equal.

A field of definition5 of Σ is any subfield F0 ⊂ F such that there exist
g1, . . . , gs ∈ Σ ∩ F0[[x1, . . . , xm]]{y1, . . . , yn} with Σ ⊆ {g1, . . . , gs} (the perfect
differential ideal generated by g1, . . . , gs).

Proposition 1. Any differential ideal Σ has a countable algebraically closed
field of definition F0. Moreover, if F has countable transcendence degree
over F0 then F also is countable.

Proof. Let S be the family of the coefficients of the formal power series coeffi-
cients of any basis of Σ which are transcendental over the field Q of the rational
numbers. The family S is countable. An algebraically closed field of definition F0

can be defined as the algebraic closure of Q(S).
5 This definition is adapted from [10, I, sect. 5].

On the Relationship Between Diff. Alg. and Tropical Diff. Alg. Geometry 69

Now, the field Q is countable. If L is a countable field and S is a countable
family of transcendental elements over L then L (S) is countable. Moreover,
if L is countable then its algebraic closure is countable [9, Theorem 65].

The last statement of the proposition follows using the same arguments.

In the sequel, F0 denotes an algebraically closed field of definition of Σ.

5 The Approximation Theorem

Denote by Θ the commutative semigroup of the derivative operators generated
by the derivation operators i.e. Θ = {δa1

1 · · · δam
m | a1, . . . , am ∈ N}.

Define a one-to-one correspondence between the set of all pairs (i, θ) ∈
[1, n] × Θ and the set N of nonnegative integers. This correspondence permits
us to enumerate all derivatives θyi of the differential indeterminates. Fix a cor-
respondence which defines an orderly ranking (derivatives are enumerated by
increasing order) [10, chap. I, sect. 8]. The derivatives of the y are denoted
v0, v1, v2, . . .

As in Sect. 4, let Σ be a differential ideal included in the perfect differential
ideal {g1, . . . , gs} generated by g1, . . . , gs ∈ Σ with field of definition equal to F0.
Define another one-to-one correspondence between the set of all pairs (i, θ) ∈
[1, s]×Θ and N. This correspondence permits us to enumerate all derivatives θ gi.
Again, fix a correspondence which defines an orderly ranking on the derivatives
of the g (viewing them as s differential indeterminates). The derivatives of the g,
evaluated at x1 = · · · = xm = 0, are denoted f0, f1, f2, . . . The polynomials f
thus belong to F0{y1, . . . , yn}.

Let k be a positive integer. Denote

Σk = {fi | 0 ≤ i ≤ k} ,

Σ∞ = {fi | i ∈ N} .

Define κ(k) = κ as the smallest integer such that Σk ⊂ F0[v0, . . . , vκ]. The
index κ exists because the ranking is orderly. Define

Ak = {a ∈ Fκ+1
0 | f0(a) = · · · = fk(a) = 0} .

Let now S be any subset of N. Define Ak,S as the set of zeros of Ak which are
compatible with S:

Ak,S = {a ∈ Ak | ai �= 0 if and only if i ∈ S ∩ [0, κ]} .

Indeed, thanks to the fixed one-to-one correspondence between the derivatives
of the differential indeterminates and the set N, any such set S encodes a tuple
of n supports of formal power series. Given any field extension E of F0, define

A∞(E) = {a ∈ E N | fi(a) = 0 for each i ∈ N} ,

A∞,S(E) = {a ∈ A∞(E) | ai �= 0 if and only if i ∈ S} .

The elements of A∞(F) give exactly the formal power series solutions of Σ. The
elements of A∞,S(F) give the formal power series solutions whose supports are
encoded by S.

70 F. Boulier et al.

Theorem 1. Assume F has countable transcendence degree over F0 and is
algebraically closed. Let S be any subset of N. If Ak,S �= ∅ for each k ∈ N then
A∞,S(F) �= ∅.

There are many proofs which have the following sketch in common:

1. one first proves that Σ∞ admits a solution compatible with S in some (big)
field extension E of F0. This solution is an arc a = (ai) with coordinates
ai ∈ E for i ∈ N. With other words, A∞,S(E) �= ∅ ;

2. the arc a can be mapped to another arc φ(a) with coordinates in F which is
also a solution of Σ∞ compatible with S. Thus A∞,S(F) �= ∅ and Theorem 1
is proved.

There are actually many different ways to prove Step 1 above. The next
sections provide three different variants.

5.1 Proof of Step 1 by Ultraproducts

The idea of this proof is mostly due do Marc Paul Noordman. It is inspired
by techniques used in [6]. A minimal introduction of ultraproducts for casual
readers is provided in Sect.A.

Proof. Let R be the ring obtained by inversion of all derivatives with indices
in S and quotient by the ideal equal to the sum of the ideal generated by Σ∞
and the ideal generated by the derivatives with indices not in S, i.e.

R = F0[vi, v
−1
j | i ∈ N, j ∈ S]/(fi, vj | i ∈ N, j /∈ S) . (12)

By Lemma 1 (below), this ring is not the null ring. By Krull’s Theorem, it
contains a maximal ideal m. A suitable field extension E of F0 is given by R/m.
The coordinates of the arc (ai) are the images of the derivatives vi by the natural
F0-algebra homomorphism R → R/m.

Lemma 1. The ring R defined in (12) is not the null ring.

Proof. We prove the lemma by showing that Σ∞ admits a solution in some
field F ∗

0 (which turns out to be an ultrafield - see Sect.A) and constructing a
map F0{y1, . . . , yn} → F ∗

0 which factors as F0{y1, . . . , yn} → R → F ∗
0 .

To each k ∈ N associate an element ak ∈ Ak,S . We have

ak = (ak
0 , a

k
1 , . . . , a

k
κ) ∈ Fκ

0 .

Fix any non principal ultrafilter D on N and consider the ultrafield F ∗
0 =

(
∏

i∈N
F0)/D . For each i ∈ N define ui ∈ F ∗

0 by

u0 = (a0
0, a1

0, a2
0, . . . , ak

0 , . . .) ,

u1 = (a0
1, a1

1, a2
1, . . . , ak

1 , . . .) ,

...
ui = (a0

i , a1
i , a2

i , . . . , ak
i , . . .) ,

...

On the Relationship Between Diff. Alg. and Tropical Diff. Alg. Geometry 71

On each column k of the above “array”, the elements ak
i such that i > κ are

not defined. Set them to zero. Observe that on each row, there are only finitely
many such elements.

We have thus defined a map vi
→ ui.
Let now i ∈ N be the index of some polynomial fi = f . Evaluate f to an

element of F ∗
0 by substituting uj to vj for each j ∈ N. Ultrafield operations

are performed componentwise and the zeros of the f appear on the columns in
the above array. Thus, f evaluates to zero over the kth coordinate of F ∗

0 for
all sufficiently large values of k. This set of values of k is cofinite and hence, f
evaluates to zero in F ∗

0 .
Let now i ∈ N be the index of some derivative vi. By definition of Ak,S ,

if i /∈ S then all the coordinates of ui are zero so that ui is zero in F ∗
0 ; if i ∈ S

then the coordinates ak
i of ui are nonzero for all sufficiently large values of k

and ui is nonzero in F ∗
0 .

The mapping vi
→ ui thus defines a zero of Σ∞ which is compatible with S
and with coordinates in F ∗

0 .

5.2 Proof of Step 1 by a Model Theoretic Argument

The idea of this proof is due to Omar León Sánchez.

Proof. Define

Ω(v) = {fi = 0 | i ∈ N} ∪ {vi = 0 | i /∈ S} ∪ {vi �= 0 | i ∈ S} .

For any subcollection Ω0(v) of Ω(v), there is a large enough k ∈ N such that
if a ∈ Ak,S then a is a solution of Ω0(v). Hence the assumption that Ak,S �= ∅,
for all k ∈ N, yields that Ω(v) is finitely satisfiable.

By the compactness theorem in first-order logic (see for instance [12,
Chapter 3]) applied in the context of fields, the fact that Ω(v) is finitely satis-
fiable implies that there is a field extension E of F0 and an arc a = (ai) with
coordinates in E solving Ω(v).

Remark 1. We note that Theorem 1 should not be too surprising to a model-
theorist; as it can be seen as an application of general results on strongly minimal
theories (for instance, the fact that in a strongly minimal theory there is a
unique non-algebraic complete 1-type over any set of parameters). Here the
theory in mind is algebraically closed fields and the slightly more general result
is as follows: Let x = (xi)i∈I be a tuple of variables and L/K a field extension
of transcendence degree at least |I| with L algebraically closed. Suppose T (x) is
a collection of polynomial equations and in-equations over K. If T (x) is finitely
satisfiable, then there is a solution of T (x) in L.

5.3 Proof of Step 1 by Lang’s Infinite Nullstellensatz

The idea of this proof was suggested by an anonymous reviewer.

72 F. Boulier et al.

Proof. Enlarge the set of derivatives (vi) with another infinite set of deriva-
tives (wi) where i ∈ N. Define

Ω∞ = Σ∞ ∪ {vi | i /∈ S} ∪ {vi wi − 1 | i ∈ S} .

Any solution of Ω∞ provides a solution of Σ∞ which is compatible with S. The
set of variables v, w is indexed by N. Let E be any uncountable field. Note that
the ideal generated by Ω∞ in the polynomial ring E [v, w] is proper; otherwise,
1 could be written as a linear combination (over E [v, w]) of finitely many of
the elements of Ω∞, but this implies Ak,S = ∅ for some large enough k ∈ N

(contradicting our hypothesis). Then, by [11, Theorem, conditions (ii) and S2],
the system Ω∞ has a solution in E . Thus A∞,S(E) �= ∅.

5.4 Proof of Step 2

In Step 1, we have proved that there exists a field extension E of F0 such that
A∞,S(E) �= ∅. Let us prove that A∞,S(F) �= ∅.

Proof. Consider some a ∈ A∞,S(E). Let J ⊂ N be such that (aj)j∈J is a tran-
scendence basis of F0(a) over F0. Denote F1 the algebraic closure of F0(aj)j∈J .
Then the full arc a has coordinates in F1. Since F has countable transcendence
degree over F0 we have trdeg(F/F0) ≥ trdeg(F1/F0) = |J |. Moreover, since F
is algebraically closed, there exists a F0-algebra homomorphism φ : F1 → F
such that φ(a) is a solution of Σ∞ compatible with S. Thus A∞,S(F) �= ∅.

6 The New Version of the Fundamental Theorem

For completeness, we provide the part of the proof of the fundamental theo-
rem which makes use of our Theorem 1. The proof is the same as that of [1,
Theorem 8]. We start with an easy Lemma [1, Remark 4.1].

Lemma 2. Let S = (S1, . . . , Sn) be a tuple of n supports and m = c vd1
1 · · · vdr

r

be a monomial. Then trop(m) = 0 at S if and only if the valuation of c is zero
and each factor vd = (y(k)

j)d of m is such that k ∈ Sj.

Before stating the fundamental theorem, let us stress that the fields F0 and F
mentioned in Theorem 2 can be assumed to be countable, by Proposition 1.

Theorem 2 (Fundamental Theorem for ODE). Let Σ be a differential
ideal of F [[x]]{y1, . . . , yn} where F is an algebraically closed field of constants
and F0 be an algebraically closed field of definition of Σ. If F has countable
transcendence degree over F0 then

supp(sol(Σ)) = sol(trop(Σ)) . (13)

On the Relationship Between Diff. Alg. and Tropical Diff. Alg. Geometry 73

Proof. Let us first address a few particular cases.
Case 1: there exists some nonzero c ∈ Σ∩F [[x]]. Differentiating c sufficiently

many times, we see that 1 ∈ Σ. Then, on the one hand, supp(sol(Σ)) = ∅. On
the other hand, sol(trop(1)) = ∅. Thus the theorem holds in Case 1.

Case 2: Σ = (0). Then, on the one hand supp(sol(Σ)) contains all supports.
On the other hand, sol(trop(0)) contains all supports too. Thus the theorem
holds in Case 2.

Let us now address the general case. The inclusion ⊂ is easy. We prove the
converse one. We assume that S is not the support of any solution of Σ and we
show that S is not a solution of trop(Σ).

For this, we are going to build a differential polynomial h ∈ Σ, expanding to
a sum of monomials

h = m1 + m2 + · · · + mr , (14)

such that trop(m1) = 0 and trop(mi) > 0 for 2 ≤ i ≤ r.
By the Ritt-Raudenbush Basis Theorem (see [4] for details), there exists a

finite set g1, . . . , gs of differential polynomials of Σ such that the solution set
of Σ is the solution set of the differential ideal [g1, . . . , gs] generated by the g.

From now on, we use the notations introduced in Sect. 5. Since [g1, . . . , gs]
has no solution with support S we have A∞,S(F) = ∅ whence, by Theorem 1,
there exists some index k such that Ak,S = ∅. Recall that Ak,S is a subset
of the algebraic variety of some polynomial system obtained by prolonging, and
evaluating at x = 0, the system of the g up to some order and that the prolonged
system belongs to some polynomial ring F0[v1, . . . , vκ].

Claim: there exists a differential polynomial

ĥ = m̂d
1 + m̂2 + · · · + m̂r̂ (15)

in the ideal (f0, . . . , fk) of the Noetherian polynomial ring F0[v1, . . . , vκ] such
that trop(m̂1) = 0 and trop(m̂i) > 0 for 2 ≤ i ≤ r̂.

The ideal (f0, . . . , fk) has no solution compatible with S. This means that
(the right hand side of the first line holds only for a non-empty support S but
the one of the second line holds in general):

[f0 = · · · = fk = 0 and vj = 0 for all vj s.t. j /∈ S] ⇒ v� = 0 for some � ∈ S

⇒
∏

�∈S, �≤κ

v�

︸ ︷︷ ︸
m̂1

= 0 .

By Lemma 2 we have trop(m̂1) = 0 at S. By Hilbert’s Nullstellensatz, we have

m̂1 ∈
√

(f0, . . . , fk, (vj)j /∈S).

Thus there exists a positive integer d and monomials m̂2, . . . , m̂r̂ defining the
polynomial ĥ as in (15). We have ĥ ∈ (f0, . . . , fk) and for each 2 ≤ i ≤ r̂,

74 F. Boulier et al.

there exists some j /∈ S for which deg(m̂i, vj) > 0. By Lemma 2, we thus have
trop(m̂i) > 0 at S for each 2 ≤ i ≤ r̂. The claim is thus proved.

Now, since ĥ ∈ (f0, . . . , fk) we see that ĥ can also be obtained by evaluating
at x = 0 some polynomial h ∈ Σ. Consider any monomial m of h, of the form (5).
If the evaluation at x = 0 maps m to zero then the valuation of the coefficient c
of m is positive. In such a case, trop(m) > 0 by Lemma 2. If it maps m to some
nonzero monomial m̂ then the valuation of c is nonzero, both m and m̂ share the
same term and trop(m) = trop(m̂). Thus the polynomial h has the form (14)
and the theorem is proved.

7 The Partial Differential Case

In this section we give an overview on the generalization to the case of partial
differential equations.

We seek for solutions of systems Σ ⊂ F [[x1, . . . , xm]]{y1, . . . , ym} in the ring
of multivariate formal power series F [[x1, . . . , xm]].

In this case, the algorithmic problems are even worse than in the ordinary
case. According to [6, Theorem 4.11], there even cannot be an algorithm for
deciding solvability of linear systems, a subclass of algebraic differential equa-
tions as we consider. Instead of actually computing the solutions of Σ, we again
present an equivalent description of the solutions in the form of (2).

As in the ordinary case (m = 1), the support of a formal power series

ϕ =
∑

aI xI =
∑

a(i1,...,im) xi1
1 · · · xim

m

is the set {I ∈ Nm | aI �= 0}. Hence, the left hand side of (2) is defined also
for m > 1.

For the tropicalization of Σ, the generalization cannot be done straightfor-
ward, since there is no well-defined minimum of elements in Nm. In [7] is used
instead a very specific partial order induced by vertex sets, which we briefly
describe here.

Let X ⊂ Nm. The Newton polytope N (X) ⊆ Rm
≥0 of X is defined as the convex

hull of X + Nm = {x + n | x ∈ X,n ∈ Nm}. Moreover, x ∈ X is called a vertex
if x /∈ N (X \ {x}), and vert is the set of vertices of X. It follows that vert(X)
is the minimal set in Nm (with respect to the relation “⊂”) generating N (X).
Let us denote all vertex sets as Tm = {vert | X ⊂ Nm}. Then, the composition
of taking the support and then its vertex set of the formal power series defines
a non-degenerate valuation such that some ideas of [1] can be recovered.

F [[x1, . . . , xm]] P(Nm)

Tm

supp

non−deg.valuation
vert

On the Relationship Between Diff. Alg. and Tropical Diff. Alg. Geometry 75

The tropicalization of a differential monomial m = cvd1
1 · · · vdr

r at a tuple of
supports S = (S1, . . . , Sn) ⊂ (Nm)n is defined as the non-degenerate valuation
of m(ϕ) from above with supp(ϕ) = S. Let us illustrate this.

monomial m supportS trop(m) at S
x1x2 y {(1, 0), (0, 1)} {(2, 0), (0, 2)}
(∂ y

∂x1
)2 {(2, 0), (0, 2)} {(2, 0)}

(∂2 y
∂x1 ∂x2

)2 {(2, 0), (0, 2)} ∅

The tropicalization of a differential polynomial p of the form (5) at S is defined
as

trop(p) = vert(
q⋃

i=1

trop(mi)) . (16)

Let us consider the polynomial

p = ∂ y
∂x1

· ∂ y
∂x2

+ (−x2
1 + x2

2)
∂2 y

∂x1∂x2
. (17)

polynomial supportS list trop(mi) at S
p {(2, 0), (0, 2)} [{(1, 1)}, ∅]
p {(2, 0), (1, 1), (0, 2)} [{(2, 0), (1, 1), (0, 2)}, {(2, 0), (0, 2)}]

Considering trop(p) as a function of n unknown supports, (S1, . . . , Sn) is
said to be a solution of trop(p) if for every vertex J ∈ trop(p) there exists
mi,mj (i �= j) such that J ∈ trop(mi) ∩ trop(mj) . In the example above, we
see that there cannot be a solution of p with support equals {(2, 0), (0, 2)}, but
ϕ = x2

1 + 2x1x2 − x2
2 is indeed a solution.

For more illustrations of the tropicalization of (partial) differential polyno-
mials, see [5].

As in the ordinary case, the inclusion supp(sol(Σ)) ⊂ sol(trop(Σ)) in the fun-
damental theorem is relatively easy [7, Proposition 5.7]. The converse inclusion
can be shown exactly as in [7, Section 6], except that we replace Proposition 6.3
by the Approximation Theorem 1.

For consistency let us recall the main result here.

Theorem 3 (Fundamental Theorem for PDE). Let Σ be a differential
ideal of F [[x1, . . . , xm]]{y1, . . . , yn} where F is an algebraically closed field of
constants and F0 be an algebraically closed field of definition of Σ. If F has
countable transcendence degree over F0 then

supp(sol(Σ)) = sol(trop(Σ)) . (18)

Acknowledgments. The authors would like to thank Zoé Chatzidakis and Mercedes
Haiech for their help and their comments. The first author would like to acknowledge
the support of the bilateral project ANR-17-CE40-0036 DFG-391322026 SYMBIONT.
The second author was supported by the AustrianScience Fund (FWF): P 31327-N32.

76 F. Boulier et al.

A Basic Notions on Ultraproducts

This appendix is much inspired by [15, chap. 2] with the notations of [2]. It is
only provided for the convenience of casual readers.

The set N is used as an index set on which we fix a (so called) non-principal
ultrafilter D . It is by definition a collection of infinite subsets of N closed under
finite intersection, with the property that for any subset E ⊂ N either E or its
complement N \ E belongs to D . In particular, the empty set does not belong
to D and, if E ∈ D and F is an arbitrary set containing E then also F ∈ D .
Otherwise, N \ F ∈ D and therefore, ∅ = E ∩ (N \ F) ∈ D : a contradiction.
Since every set in D must be infinite, it follows that every set whose complement
is finite (such a set is called cofinite) belongs to D .

Let Ri (i ∈ N) be a collection of rings. We form the ultraproduct R∗ =
(
∏

i∈N
Ri)/D (or the ultrapower RN/D if all rings Ri are the same ring R)

as follows. On the Cartesian product
∏

i∈N
Ri we define the equivalence rela-

tion: a ≡ b if and only if the set of indices i such that ai = bi belongs to the
ultrafilter D .

We are going to use the following facts.
Consider an element a ∈ R∗ which has no nonzero coordinates. The set of

indices such that ai = 0 is empty. Since the empty set does not belong to the
ultrafilter, a �= 0 in R∗.

Consider an element a ∈ R∗ which has only finitely many nonzero coordi-
nates. The set of indices such that ai = 0 is cofinite. Thus it belongs to D .
Thus a = 0 in R∗.

An ultraproduct of rings is a ring: addition and multiplication are performed
componentwise. Let us prove that an ultraproduct of fields is a field (called an
ultrafield). Consider some a �= 0 in R∗. Then the set E = {i ∈ N | ai = 0} does
not belong to D . Thus its complement F = N \ E belongs to D . Define ā as
follows: for each i ∈ N, if ai = 0 take āi = 0 else take āi = a−1

i . Let u = a ā.
The set of indices such that ui = 1 is F , which belongs to D . Thus a admits an
inverse and R∗ is a field.

References

1. Aroca, F., Garay, C., Toghani, Z.: The fundamental theorem of tropical differential
algebraic geometry. Pacific J. Math. 283(2), 257–270 (2016)

2. Becker, J., Denef, J., Lipshitz, L., van den Dries, L.: Ultraproducts and approxi-
mation in local rings I. Invent. Math. 51, 189–203 (1979)

3. Boulier, F.: A differential algebra introduction for tropical differential geometry.
In: Lecture Notes for the Workshop on Tropical Differential Geometry, Queen
Mary College of the University of London, 2–7 December. Available at https://
hal.archives-ouvertes.fr/hal-02378197

4. Boulier, F., Haiech, M.: The Ritt-Raudenbush Theorem and Tropical Differential
Geometry (2019). https://hal.archives-ouvertes.fr/hal-02403365

5. Cotterill, E., Garay, C., Luviano, J.: Exploring tropical differential equations.
Preprint available at http://arxiv.org/abs/2012.14067 (2020)

https://hal.archives-ouvertes.fr/hal-02378197
https://hal.archives-ouvertes.fr/hal-02378197
https://hal.archives-ouvertes.fr/hal-02403365
http://arxiv.org/abs/2012.14067

On the Relationship Between Diff. Alg. and Tropical Diff. Alg. Geometry 77

6. Denef, J., Lipshitz, L.: Power series solutions of algebraic differential equations.
Math. Ann. 267, 213–238 (1984)

7. Falkensteiner, S., Garay-López, C., Haiech, M., Noordman, M.P., Toghani, Z.,
Boulier, F.: The Fundamental Theorem of Tropical Partial Differential Algebraic
Geometry. In: Proceedings of ISSAC 2020, Kalamata, Greece, pp. 178–185 (2020)

8. Grigoriev, D.: Tropical differential equations. Adv. Appl. Math. 82, 120–128 (2017)
9. Kaplansky, I.: Fields and Rings, 2nd edn. The University of Chicago, Chicago

(1972)
10. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New

York (1973)
11. Lang, S.: Hilbert’s Nullstellensatz in infinite-dimensional space. Proc. Am. Math.

Soc. 3(3), 407–410 (1952)
12. Marker, D.: Model Theory: An Introduction, vol. 217. Springer, New York (2006).

https://doi.org/10.1007/b98860
13. Ritt, J.F.: Differential Equations from the Algebraic Standpoint. American Mathe-

matical Society Colloquium Publications, vol. 14. American Mathematical Society,
New York (1932)

14. Ritt, J.F.: Differential Algebra, American Mathematical Society Colloquium Pub-
lications, vol. 33. American Mathematical Society, New York (1950)

15. Schoutens, H.: The Use of Ultraproducts in Commutative Algebra. LNCS,
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13368-8

16. Singer, M.: The model theory of ordered differential fields. J. Symb. Log. 43(1),
82–91 (1978)

https://doi.org/10.1007/b98860
https://doi.org/10.1007/978-3-642-13368-8

On the Complexity and Parallel
Implementation of Hensel’s Lemma

and Weierstrass Preparation

Alexander Brandt(B) and Marc Moreno Maza

Department of Computer Science, The University of Western Ontario,
London, Canada

abrandt5@uwo.ca, moreno@csd.uwo.ca

Abstract. Hensel’s lemma, combined with repeated applications of
Weierstrass preparation theorem, allows for the factorization of poly-
nomials with multivariate power series coefficients. We present a com-
plexity analysis for this method and leverage those results to guide the
load-balancing of a parallel implementation to concurrently update all
factors. In particular, the factorization creates a pipeline where the terms
of degree k of the first factor are computed simultaneously with the
terms of degree k − 1 of the second factor, etc. An implementation chal-
lenge is the inherent irregularity of computational work between fac-
tors, as our complexity analysis reveals. Additional resource utilization
and load-balancing is achieved through the parallelization of Weierstrass
preparation. Experimental results show the efficacy of this mixed parallel
scheme, achieving up to 9× parallel speedup on a 12-core machine.

Keywords: Formal power series · Weierstrass preparation · Hensel’s
lemma · Hensel factorization · Parallel processing · Parallel pipeline

1 Introduction

Factorization via Hensel’s lemma, or simply Hensel factorization, provides a mech-
anism for factorizing univariate polynomials with multivariate power series coeffi-
cients. In particular, for a multivariate polynomial in (X1, . . . , Xn, Y), monic and
square-free as a polynomial in Y , one can compute its roots with respect to Y as
power series in (X1, . . . , Xn). For a bivariate polynomial in (X1, Y), the classical
Newton–Puiseux method is known to compute the polynomial’s roots with respect
to Y as univariate Puiseux series in X1. The transition from power series to Puiseux
series arises from handling the non-monic case.

The Hensel–Sasaki Construction or Extended Hensel Construction (EHC)
was proposed in [24] as an efficient alternative to the Newton–Puiseux method
for the case of univariate coefficients. In the same paper, an extension of the
Hensel–Sasaki construction for multivariate coefficients was proposed, and then
later extended, see e.g., [17,25]. In [1], EHC was improved in terms of algebraic
complexity and practical implementation.
c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 78–99, 2021.
https://doi.org/10.1007/978-3-030-85165-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_6&domain=pdf
http://orcid.org/0000-0002-1294-9710
https://doi.org/10.1007/978-3-030-85165-1_6

Complexity, Parallel Impl. of Hensel’s Lemma and Weierstrass Prep. 79

In this paper, we present a parallel algorithm and its implementation for
Hensel factorization based on repeated applications of Weierstrass preparation
theorem. Our method uses a lazy evaluation scheme, meaning that more terms
can be computed on demand without having to restart the computation. This
contrasts with a truncated implementation where only terms up to a pre-deter-
mined degree are computed. Unfortunately, such a degree often cannot be deter-
mined before calculations start, or later may be found to not go far enough. This
scenario occurs, for instance, when computing limits of real rational functions [1].

Lazy evaluation is not new, having previously been employed in sparse poly-
nomial arithmetic [22] and univariate power series arithmetic [9,15]. Our previ-
ous work in [8] is, to the best of our knowledge, the first lazy multivariate power
series implementation. Our implementation of lazy and parallel power series sup-
ports an arbitrary number of variables. However, the complexity estimates of our
proposed methods are measured in the bivariate case; see Sect. 4. This allows us
to obtain sharp complexity estimates, giving the number of operations required
to update each factor of a Hensel factorization individually. This information
helps guide and load-balance our parallel implementation. Further, limiting to
the bivariate case allows for comparison with existing works.

Denote by M(n) a polynomial multiplication time [12, Ch. 8] (the cost suffi-
cient to multiply two polynomials of degree n), Let K be algebraically closed and
f ∈ K[[X1]][Y] have degree dY in Y and total degree d. Our Hensel factorization
computes the first k terms of all factors of f within O(d3Y k + d2Y k2) operations
in K. We conjecture in Sect. 4 that we can achieve O(d3Y k + d2Y M(k) log k) using
relaxed algorithms [15]. The EHC of [1] computes the first k terms of all factors in
O(d3M(d)+k2dM(d)). Kung and Traub show that, over the complex numbers C,
the Newton–Puiseux method can do the same in O(d2kM(k)) (resp. O(d2M(k)))
operations inC using a linear lifting (resp. quadratic lifting) scheme [18]. This com-
plexity is lowered to O(d2k) by Chudnovsky and Chudnovsky in [10]. Berthomieu,
Lecerf, and Quintin in [7] also present an algorithm and implementation based on
Hensel lifting which performs in O(M(dY) log(dY) kM(k)); this is better than pre-
vious methods with respect to d (or dY), but worse with respect to k.

However, these estimates ignore an initial root finding step. Denote by R(n)
the cost of finding the roots in K of a degree n polynomial (e.g. [12, Th. 14.18]).
Our method then performs in O(d3Y k+d2Y k2+R(dY)). Note that the R(dY) term
does not depend on k, and is thus ignored henceforth. For comparison, however,
Neiger, Rosenkilde, and Schost in [23] present an algorithm based on Hensel
lifting which, ignoring polylogarithmic factors, performs in O(dY k + kR(dY)).

Nonetheless, despite a higher asymptotic complexity, the formulation of EHC
in [1] is shown to be practically much more efficient than that of Kung and Traub.
Our serial implementation of lazy Hensel factorization (using plain, quadratic
arithmetic) has already been shown in [8] to be orders of magnitude faster than
that implementation of EHC. Similarly, in [8], we show that our serial lazy
power series is orders of magnitude faster than the truncated implementations of
Maple’s [19] mtaylor and SageMath’s [28] PowerSeriesRing. This highlights
that a lazy scheme using suboptimal routines—but a careful implementation—
can still be practically efficient despite higher asymptotic complexity.

80 A. Brandt and M. Moreno Maza

Further still, it is often the case that asymptotically fast algorithms are much
more difficult to parallelize, and have high parallel overheads, e.g. polynomial
multiplication based on FFT. Hence, in this work, we look to improve the practi-
cal performance (i.e. when k � d) of our previous lazy implementation through
the use of parallel processing rather than by reducing asymptotic bounds.

In Hensel factorization, computing power series terms of each factor relies
on the computed terms of the previous factor. In particular, the output of one
Weierstrass preparation becomes the input to another. These successive depen-
dencies naturally lead to a parallel pipeline or chain of producer-consumer pairs.
Within numerical linear algebra, pipelines have already been employed in par-
allel implementations of singular value decomposition [14], LU decomposition,
and Gaussian elimination [21]. Meanwhile, to the best of our knowledge, the only
use of parallel pipeline in symbolic computation is [5], which examines a parallel
implementation of triangular decomposition of polynomial systems.

However, in our case, work reduces with each pipeline stage, limiting through-
put. To overcome this challenge, we first make use of our complexity estimates
to dynamically estimate the work required to update each factor. Second, we
compose parallel schemes by applying the celebrated map-reduce pattern within
Weierstrass preparation, and thus within a stage of the pipeline. Assigning mul-
tiple threads to a single pipeline stage improves load-balance and increases
throughput. Experimental results show this composition is effective, with a par-
allel speedup of up to 9× on a 12-core machine.

The remainder of this paper is organized as follows. Section 2 reviews mathe-
matical background and notations. Further background on our lazy power series
of [8] is presented in Sect. 3. Algorithms and complexity analyses of Weierstrass
preparation and Hensel factorization are given in Sect. 4. Section 5 presents our
parallel variations, where our complexity estimates are used for dynamic schedul-
ing. Finally, Sect. 6 discusses experimental data.

2 Background

We take this section to present basic concepts and notation of multivariate power
series and univariate polynomials over power series (UPoPS). Further, we present
constructive proofs for the theorems of Weierstrass preparation and Hensel’s
lemma for UPoPS, from which algorithms are adapted; see Sects. 4.1 and 4.2.
Further introductory details may be found in the book of G. Fischer [11].

2.1 Power Series and Univariate Polynomials over Power Series

Let K be an algebraically closed field. We denote by K[[X1, . . . , Xn]] the ring of
formal power series with coefficients in K and with variables X1, . . . , Xn.

Let f =
∑

e∈Nn aeX
e be a formal power series, where ae ∈ K, Xe =

Xe1
1 · · · Xen

n , e = (e1, . . . , en) ∈ N
n, and |e| = e1 + · · · + en. Let k be a

non-negative integer. The homogeneous part of f in degree k, denoted f(k), is
defined by f(k) =

∑
|e|=k aeX

e. The order of f , denoted ord(f), is defined as
min{i | f(i) �= 0}, if f �= 0, and as ∞ otherwise.

Complexity, Parallel Impl. of Hensel’s Lemma and Weierstrass Prep. 81

Recall several properties regarding power series. First, K[[X1, . . . , Xn]] is an
integral domain. Second, the set M = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ 1}
is the only maximal ideal of K[[X1, . . . , Xn]]. Third, for all k ∈ N, we have
Mk = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ k}. Note that for n = 0 we have
M = 〈0〉. Further, note that f(k) ∈ Mk \ Mk+1 and f(0) ∈ K. Fourth, a unit
u ∈ K[[X1, . . . , Xn]] has ord(u) = 0 or, equivalently, u �∈ M.

Let f, g, h, p ∈ K[[X1, . . . , Xn]]. The sum and difference f = g ± h is given
by

∑
k∈N

(g(k) ± h(k)). The product p = g h is given by
∑

k∈N

(
Σi+j=k g(i)h(j)

)
.

Notice that the these formulas naturally suggest a lazy evaluation scheme, where
the result of an arithmetic operation can be incrementally computed for increas-
ing precision. A power series f is said to be known to precision k ∈ N, when
f(i) is known for all 0 ≤ i ≤ k. Such an update function, parameterized by k,
for addition or subtraction is simply f(k) = g(k) ± h(k); an update function for
multiplication is p(k) =

∑k
i=0 g(i)h(k−i). Lazy evaluation is discussed further in

Sect. 3. From these update formulas, the following observation follows.

Observation 2.1 (power series arithmetic). Let f, g, h, p ∈ K[[X1]] with
f = g ± h and p = g h. f(k) = g(k) ± h(k) can be computed in 1 operation in K.
p(k) =

∑k
i=0 g(i)h(k−i) can be computed in 2k − 1 operations in K.

Now, let f, g ∈ A[Y] be univariate polynomials over power series where A =
K[[X1, . . . , Xn]]. Writing f =

∑d
i=0 aiY

i, for ai ∈ A and ad �= 0, we have that
the degree of f (denoted deg(f, Y) or simply deg(f)) is d. Note that arithmetic
operations for UPoPS are easily derived from the arithmetic of its power series
coefficients. A UPoPS is said to be known up to precision k if each of its power
series coefficients are known up to precision k. A UPoPS f is said to be general
(in Y) of order j if f mod M[Y] has order j when viewed as a power series in Y .
Thus, for f �∈ M[Y], writing f =

∑d
i=0 aiY

i, we have ai ∈ M for 0 ≤ i < j
and aj �∈ M.

2.2 Weierstrass Preparation Theorem and Hensel Factorization

The Weierstrass Preparation Theorem (WPT) is fundamentally a theorem
regarding factorization. In the context of analytic functions, WPT implies that
any analytic function resembles a polynomial in the neighbourhood of the ori-
gin. Generally, WPT can be stated for power series over power series, i.e. A[[Y]].
This can be used to prove that A is both a unique factorization domain and a
Noetherian ring. See [8] for such a proof of WPT. Here, it is sufficient to state
the theorem for UPoPS. First, we begin with a simple lemma.

Lemma 2.2. Let f, g, h ∈ K[[X1, . . . , Xn]] such that f = gh. Let fi = f(i), gi =
g(i), hi = h(i). If f0 = 0 and h0 �= 0, then gk is uniquely determined by f1, . . . , fk

and h0, . . . , hk−1

Proof. We proceed by induction on k. Since f0 = g0h0 = 0 and h0 �= 0 both
hold, the statement holds for k = 0. Now let k > 0, assuming the hypothesis

82 A. Brandt and M. Moreno Maza

holds for k − 1. To determine gk it is sufficient to expand f = gh modulo Mk+1:
f1 + f2 + · · · + fk = g1h0 + (g1h1 + g2h0) + · · · + (g1hk−1 + · · · + gk−1h1 + gkh0);
and, recalling h0 ∈ K\{0}, we have gk = 1/h0 (fk − g1hk−1 − · · · − gk−1h1) .
�
Theorem 2.3 (Weierstrass Preparation Theorem). Let f be a polynomial
of K[[X1, . . . , Xn]][Y] so that f �≡ 0 mod M[Y] holds. Write f =

∑d+m
i=0 aiY

i,
with ai ∈ K[[X1, . . . , Xn]], where d ≥ 0 is the smallest integer such that ad �∈ M
and m is a non-negative integer. Assume f �≡ 0 mod M[Y]. Then, there exists
a unique pair p, α satisfying the following:

(i) f = pα,
(ii) α is an invertible element of K[[X1, . . . , Xn]][[Y]],
(iii) p is a monic polynomial of degree d,
(iv) writing p = Y d + bd−1Y

d−1 + · · · b1Y + b0, we have bd−1, . . . , b0 ∈ M.

Proof. If n = 0, writing f = αY d with α =
∑m

i=0 ai+dY
i proves the exis-

tence of the decomposition. Now, assume n ≥ 1. Write α =
∑m

i=0 ciY
i, with

ci ∈ K[[X1, . . . , Xn]]. We will determine b0, . . . , bd−1, c0, . . . , cm modulo succes-
sive powers of M. Since we require α to be a unit, c0 �∈ M by definition.
a0, . . . , ad−1 are all 0 mod M. Then, equating coefficients in f = pα we have:

a0 = b0c0
a1 = b0c1 + b1c0

...
ad−1 = b0cd−1 + b1cd−2 + · · · + bd−2c1 + bd−1c0

ad = b0cd + b1cd−1 + · · · + bd−1c1 + c0
...

ad+m−1 = bd−1cm + cm−1

ad+m = cm

(1)

and thus b0, . . . , bd−1 are all 0 mod M. Then, ci ≡ ad+i mod M for all 0 ≤
i ≤ m. All coefficients have thus been determined mod M. Let k ∈ Z

+. Assume
inductively that all b0, . . . , bd−1, c0, . . . , cm have been determined mod Mk.

It follows from Lemma 2.2 that b0 can be determined mod Mk+1 from the
equation a0 = b0c0. Consider now the second equation. Since b0 is known mod
Mk+1, and b0 ∈ M, the product b0c1 is also known mod Mk+1. Then, we can
determine b1 using Lemma 2.2 and the formula a1 − b0c1 = b1c0. This procedure
follows for b2, . . . , bd−1. With b0, . . . , bd−1 known mod Mk+1 each c0, . . . , cm can
be determined mod Mk+1 from the last m + 1 equations.
�

One requirement of WPT is that f �≡ 0 mod M[Y]. That is to say, f cannot
vanish at (X1, . . . , Xn) = (0, . . . , 0) and, specifically, f is general of order d =
deg(p). A suitable linear change in coordinates can always be applied to meet this
requirement; see Algorithm 2 in Sect. 4. Since Weierstrass preparation provides
a mechanism to factor a UPoPS into two factors, suitable changes in coordinates
and several applications of WPT can fully factorize a UPoPS. The existence of
such a factorization is given by Hensel’s lemma for UPoPS.

Complexity, Parallel Impl. of Hensel’s Lemma and Weierstrass Prep. 83

Theorem 2.4 (Hensel’s Lemma). Let f = Y d +
∑d−1

i=0 aiY
i be a monic

polynomial with ai ∈ K[[X1, . . . , Xn]]. Let f̄ = f(0, . . . , 0, Y) = (Y − c1)d1(Y −
c2)d2 · · · (Y −cr)dr for c1, . . . , cr ∈ K and positive integers d1, . . . , dr. Then, there
exists f1, . . . , fr ∈ K[[X1, . . . , Xn]][Y], all monic in Y, such that:

(i) f = f1 · · · fr,
(ii) deg(fi, Y) = di for 1 ≤ i ≤ r, and
(iii) f̄i = (Y − ci)di for 1 ≤ i ≤ r.

Proof. We proceed by induction on r. For r = 1, d1 = d and we have f1 =
f , where f1 has all the required properties. Now assume r > 1. A change of
coordinates in Y , sends cr to 0. Define g(X1, . . . , Xn, Y) = f(X1, . . . , Xn, Y +
cr) = (Y +cr)d+ad−1(Y +cr)d−1+· · ·+a0. By construction, g is general of order
dr and WPT can be applied to obtain g = pα with p being of degree dr and
p̄ = Y dr . Reversing the change of coordinates we set fr = p(Y − cr) and f∗ =
α(Y −cr), and we have f = f∗fr. fr is a monic polynomial of degree dr in Y with
f̄r = (Y − cr)dr . Moreover, we have f̄∗ = (Y − c1)d1(Y − c2)d2 · · · (Y − cr−1)dr−1 .
The inductive hypothesis applied to f∗ implies the existence of f1, . . . , fr−1.
�

2.3 Parallel Patterns

We are concerned with thread-level parallelism, where multiple threads of execu-
tion within a single process enable concurrent processing. Our parallel implemen-
tation employs several so-called parallel patterns—algorithmic structures and
organizations for efficient parallel processing. We review a few patterns: map,
producer-consumer, and pipeline. See [20] for a detailed discussion.

Map. The map pattern applies a function to each item in a collection, simulta-
neously executing the function on each independent data item. Often, the appli-
cation of a map produces a new collection with the same shape as the input
collection. Alternatively, the map pattern may modify each data item in place
or, when combined with the reduce pattern, produce a single data item. The
reduce pattern combines data items pair-wise using some combiner function.

When data items to be processed outnumber available threads, the map pat-
tern can be applied block-wise, where the data collection is (evenly) partitioned
and each thread assigned a partition rather than a single data item.

Where a for loop has independent iterations, the map pattern is easily
applied to execute each iteration of the loop concurrently. Due to this ubiq-
uity, the map pattern is often implicit with such parallel for loops simply being
labelled parallel for. In this way, the number of threads to use and the parti-
tioning of the data collection can be a dynamic property of the algorithm.

Producer-Consumer and Asynchronous Generators. The producer-
consumer pattern describes two functions connected by a queue. The producer
creates data items, pushing them to the queue, meanwhile the consumer pro-
cesses data items, pulling them from the queue. Where both the creation of
data and its processing requires substantial work, producer and consumer may
operate concurrently, with the queue providing inter-thread communication.

84 A. Brandt and M. Moreno Maza

A generator or iterator is a special kind of co-routine function which yields
data elements one at a time, rather than many together as a collection; see, e.g.
[26, Ch. 8]. Combining the producer-consumer pattern with generators allows for
an asynchronous generator, where the generator function is the producer and the
calling function is the consumer. The intermediary queue allows the generator
to produce items meanwhile the calling function processes them.

Pipeline. The pipeline pattern is a sequence of stages, where the output of one
stage is used as the input to another. Two consecutive stages form a producer-
consumer pair, with internal stages being both a consumer and a producer.
Concurrency arises where each stage of the pipeline may be executed in parallel.
Moreover, the pipeline pattern allows for earlier data items to flow from one
stage to the next without waiting for later items to become available.

In terms of the latency of processing a single data item, a pipeline does
not improve upon its serial counterpart. Rather, a parallel pipeline improves
throughput, the amount of data that can be processed in a given amount of
time. Throughput is limited by the slowest stage of a pipeline, and thus special
care must be given to ensure each stage of the pipeline runs in nearly equal time.

A pipeline may be implicitly and dynamically created where an asynchronous
generator consumes data from another asynchronous generator. The number of
asynchronous generator calls, and thus the number of stages in the pipeline, can
be dynamic to fit the needs of the application at runtime.

3 Lazy Power Series

As we have seen in Sect. 2.1, certain arithmetic operations on power series nat-
urally lead to a lazy evaluation scheme. In this scheme, homogeneous parts of
a power series are computed one at a time for increasing degree, as requested.
Our serial implementation of lazy power series is detailed in [8]. The underly-
ing implementation of (sparse multivariate) polynomial arithmetic is that of [4]
(indeed, dense multivariate arithmetic could prove beneficial, but that is left to
future work). For the remainder of this paper, it is sufficient to understand that
lazy power series rely on the following three principles:

(i) an update function to compute the homogeneous part of a given degree;
(ii) capturing of parameters required for that update function; and
(iii) storage of previously computed homogeneous parts.

Where a power series is constructed from arithmetic operations on other
power series, the latter may be called the ancestors of the former. For example,
the power series f = g h has ancestors g and h and an update function f(k) =
∑k

i=0 g(i)h(k−i). In implementation, and in the algorithms which follow in this
paper, we can thus augment a power series with: (i) its current precision; (ii)
references to its ancestors, if any; and (iii) a reference to its update function.

Under this scheme, we make three remarks. Firstly, a power series can be
lazily constructed using essentially no work. Indeed, the initialization of a lazy
power series only requires specifying the appropriate update function and storing

Complexity, Parallel Impl. of Hensel’s Lemma and Weierstrass Prep. 85

references to its ancestors. Secondly, specifying an update function and the ances-
tors of a power series is sufficient for defining and computing that power series.
Thirdly, when updating a particular power series, its ancestors can automatically
and recursively be updated as necessary using their own update functions.

Hence, it is sufficient to simply define the update function of a power series.
For example, Algorithm 1 simultaneously updates p and α as produced from a
Weierstrass preparation. Further, operations on power series should be under-
stood to be only the initialization of a power series, with no terms of the power
series yet computed; e.g., Algorithm 3 for Hensel factorization.

4 Algorithms and Complexity

In this section we present algorithms for Weierstrass preparation and Hensel fac-
torization adapted from their constructive proofs; see Sect. 2. For each algorithm
we analyze its complexity. The algorithms—and eventual parallel variations and
implementations, see Sects. 5–6—are presented for the general multivariate case,
with only the complexity estimates limited to the bivariate case. These results
culminate as Theorem 4.3 and Corollary 4.8, which respectively give the over-
all complexity of our algorithms for WPT and Hensel factorization. Meanwhile,
Observation 4.2, Corollary 4.4, and Theorem 4.6 more closely analyze the dis-
tribution of work to guide and load-balance our parallel algorithms.

4.1 Weierstrass Preparation

From the proof of Weierstrass preparation (Theorem 2.3), we derive Weier-

strassUpdate (Algorithm 1). That proof proceeds modulo increasing powers
of the maximal ideal M, which is equivalent to computing homogeneous parts of
increasing degree, just as required for our lazy power series. For an application
of Weierstrass preparation producing p and α, this WeierstrassUpdate acts
as the update function for p and α, updating both simultaneously.

By rearranging the first d equations of (1) and applying Lemma 2.2 we obtain
“phase 1” of WeierstrassUpdate, where each coefficient of p is updated. By
rearranging the next m + 1 equations of (1) we obtain “phase 2” of Weier-

strassUpdate, where each coefficient of α is updated. From Algorithm 1, it is
then routine to show the following two observations, which lead to Theorem 4.3.

Observation 4.1 (Weierstrass phase 1 complexity). For Weierstrass-

Update over K[[X1]][Y], computing bi(k), for 0 ≤ i < d, requires 2ki + 2k − 1
operations in K if i ≤ m, or 2km + 2k − 1 operations in K if i > m.

Observation 4.2 (Weierstrass phase 2 complexity). For Weierstrass-

Update over K[[X1]][Y], computing cm−i(k), for 0 ≤ i < m, requires 2ki opera-
tions in K if i ≤ d, or 2kd operations in K if i > d.

Theorem 4.3 (Weierstrass preparation complexity). Weierstrass prepa-
ration producing f = pα, with f, p, α ∈ K[[X1]][Y], deg(p) = d, deg(α) = m,
requires dmk2 + dk2 + dmk operations in K to compute p and α to precision k.

86 A. Brandt and M. Moreno Maza

Algorithm 1. WeierstrassUpdate(k, f , p, α)

Input: f =
∑d+m

i=0 aiY
i, p = Y d +

∑d−1
i=0 biY

i, α =
∑m

i=0 ciY
i, ai, bi, ci ∈

K[[X1, . . . , Xn]] satisfying Theorem 2.3, with b0, . . . , bd−1, c0, . . . , cm known modulo
Mk, M the maximal ideal of K[[X1, . . . , Xn]].

Output: b0, . . . , bd−1, c0, . . . , cm known modulo Mk+1, updated in-place.

1: for i := 0 to d − 1 do � phase 1
2: Fi(k) := ai(k)

3: if i ≤ m then
4: for j := 0 to i − 1 do
5: Fi(k) := Fi(k) − (bj ci−j)(k)

6: else
7: for j := 0 to m − 1 do
8: Fi(k) := Fi(k) − (bi+j−m cm−j)(k)

9: s := 0
10: for j := 1 to k − 1 do
11: s := s + bi(k−j) × c0(j)

12: bi(k) :=
(
Fi(k) − s

)
/c0(0)

13: cm(k) := ad+m(k) � phase 2
14: for i := 1 to m do
15: if i ≤ d then
16: cm−i(k) := ad+m−i(k) −

∑i
j=1 (bd−jcm−i+j)(k)

17: else
18: cm−i(k) := ad+m−i(k) −

∑d
j=1 (bd−jcm−i+j)(k)

Proof. Let i be the index of a coefficient of p or α. Consider the cost of com-
puting the homogeneous part of degree k of each coefficient of p and α. First
consider i < t = min(d,m). From Observations 4.1 and 4.2, computing the kth
homogeneous part of each bi and ci respectively requires 2ki + 2k − 1 and 2ki
operations in K. For 0 ≤ i < t, this yields a total of 2kt2 + 2kt − t. Next, we
have three cases: (a) t = d = m, (b) m = t < i < d, or (c) d = t < i < m. In
case (a) there is no additional work. In case (b), phase 1 contributes an additional
(d−m)(2km+2k − 1) operations. In case (c), phase 2 contributes an additional
(m−d)(2kd) operations. In all cases, the total number of operations to update p
and α from precision k−1 to precision k is 2dmk+2dk−d. Finally, to compute p
and α up to precision k requires dmk2 + dk2 + dmk operations in K.
�

A useful consideration is when the input to Weierstrass preparation is monic;
this arises for each application of WPT in Hensel factorization. Then, α is nec-
essarily monic, and the overall complexity of Weierstrass preparation is reduced.
In particular, we save computing (bi−mcm)(k) for the update of bi, i ≥ m (Algo-
rithm 1, Line 8), and save computing (bd−icm)(k) for the update of each cm−i,
i ≤ d (Algorithm 1, Line 16). The following corollary states this result.

Corollary 4.4 (Weierstrass preparation complexity for monic input).
Weierstrass preparation producing f = pα with f, p, α ∈ K[[X1]][Y], f monic

Complexity, Parallel Impl. of Hensel’s Lemma and Weierstrass Prep. 87

Algorithm 2. TaylorShiftUpdate(k, f , S, i)

Input: For f =
∑d

j=0 ajY
j , g = f(Y + c) =

∑d
j=0 bjY

j , obtain the homogeneous part

of degree k for bi. S ∈ K
(d+1)×(d+1) is a lower triangular matrix of coefficients of

(Y + c)j for j = 0, . . . , d,
Output: bi(k), the homogeneous part of degree k of bi.
1: bi(k) := 0
2: for � := i to d do
3: j := � + 1 − i
4: bi(k) := bi(k) + S�+1,j× a�(k)

5: return bi(k)

Algorithm 3. HenselFactorization(f)

Input: f = Y d +
∑d−1

i=0 aiY
i, ai ∈ K[[X1, . . . , Xn]].

Output: f1, . . . , fr satisfying Theorem 2.4.
1: f̄ = f(0, . . . , 0, Y)
2: (c1, . . . , cr), (d1, . . . , dr) := roots and their multiplicities of f̄
3: c1, . . . , cr := sort([c1, . . . , cr]) by increasing multiplicity � see Theorem 4.6

4: f̂1 := f
5: for i := 1 to r − 1 do
6: gi := f̂ i(Y + ci)
7: pi, αi := WeierstrassPreparation(g)
8: fi := pi(Y − ci)

9: f̂ i+1 := αi(Y − ci)

10: fr := f̂r

11: return f1, . . . , fr

Fig. 1. The ancestor chain for the Hensel factorization f = f1f2f3f4. Updating f1
requires updating g1, p1, α1; then updating f2 requires updating f̂2, g2, p2, α2; then

updating f3 requires updating f̂3, g3, p3, α3; then updating f4 requires only its own
Taylor shift. These groupings form the eventual stages of the Hensel pipeline (Algo-
rithm 8).

in Y , deg(p) = d and deg(α) = m, requires dmk2 + dmk operations in K to
compute p and α up to precision k.

4.2 Hensel Factorization

Before we begin Hensel factorization, we will first see how to perform a transla-
tion, or Taylor shift, by lazy evaluation. For f =

∑d
i=0 aiY

i ∈ K[[X1, . . . , Xn]][Y]

88 A. Brandt and M. Moreno Maza

and c ∈ K, computing f(Y + c) begins by pre-computing the coefficients of the
binomial expansions (Y + c)j for 0 ≤ j ≤ d. These coefficients are stored in
a matrix S. Then, each coefficient of f(Y + c) =

∑d
i=0 biY

i is a linear combi-
nation of the coefficients of f scaled by the appropriate elements of S. Since
those elements of S are only elements of K, this linear combination does not
change the degree and, for some integer k, bi(k) relies only on a�(k) for i ≤ � ≤ d.
This method is described in Algorithm 2; and its complexity is easily stated as
Observation 4.5.

Observation 4.5 (Taylor shift complexity). For a UPoPS f =
∑d

i=0

aiY
i ∈ K[[X1]][Y], computing the homogeneous part of degree k for all coeffi-

cients of the shifted UPoPS f(Y + c) requires d2 + 2d + 1 operations in K.

Having specified the update functions for WPT and Taylor shift, lazy Hensel
factorization is immediate, requiring only the appropriate chain of ancestors.
Algorithm 3 shows this initialization through repeated applications of Taylor shift
and Weierstrass preparation. Note that factors are sorted by increasing degree to
enable better load-balance in the eventual parallel algorithm. Figure 1 shows the
chain of ancestors created by f = f1f2f3f4 and the grouping of ancestors required
to update each factor; the complexity of which is shown in Theorem 4.6. Corol-
lary 4.7 follows immediately and Corollary 4.8 gives the total complexity of Hensel
factorization. Here, we ignore the initial cost of factorizing f̄ .

Theorem 4.6 (Hensel factorization complexity per factor). Let d̂i be the
degree of f̂ i during HenselFactorization applied to f ∈ K[[X1]][Y], deg(f) =
d. To update f1, deg(f1) = d1 to precision k requires d1d̂2k

2+d2k+d1dk+2d1k+
2dk+2k operations in K. To update fi, deg(fi) = di, for 1 < i < r, to precision k

requires did̂i+1k
2+2d̂i

2
k+did̂ik+2dik+4d̂ik+3k operations in K. To update fr,

deg(fr) = dr, to precision k requires d2rk + 2drk + k operations in K.

Proof. Updating the first factor produced by HenselFactorization requires
one Taylor shift of degree d, one Weierstrass preparation producing p1 and α1 of
degree d1 and d̂2 = d−d1, and one Taylor shift of degree d1 to obtain f1 from p.
From Observation 4.5 and Corollary 4.4 we have that the Taylor shifts require
k(d2 +2d+1)+k(d21 +2d1 +1) operations in K and the Weierstrass preparation
requires d1(d − d1)k2 + d1(d − d1)k operations in K. The total cost counted as
operations in K is thus d1d̂2k

2 + d2k + d1dk + 2d1k + 2dk + 2k.
Updating each following factor, besides the last, requires one Taylor shift of

degree d̂i to update f̂ i from αi−1, one Taylor shift of degree d̂i to update gi

from f̂ i, one Weierstrass preparation to obtain pi and αi of degree di and d̂i+1 =
d̂i − di, and one Taylor shift of degree di to obtain fi from pi. The Taylor shifts
require 2k(d̂i

2
+ 2d̂i + 1) + k(d2i + 2di + 1) operations in K. The Weierstrass

preparation requires di(d̂i − di)k2 + di(d̂i − di)k operations in K. The total cost

counted as operations in K is thus did̂i+1k
2 + 2d̂i

2
k + did̂ik + 2dik + 4d̂ik + 3k.

Finally, updating the last factor to precision k requires a single Taylor shift
of degree dr costing d2rk + 2drk + k operations in K.
�

Complexity, Parallel Impl. of Hensel’s Lemma and Weierstrass Prep. 89

Corollary 4.7 (Hensel factorization complexity per iteration). Let d̂i

be the degree of f̂ i during the HenselFactorization algorithm applied to f ∈
K[[X1]][Y], deg(f) = d. Computing the kth homogeneous part of f1, deg(f1) =
d1, requires 2d1d̂2k + d21 + d2 + 2d1 + 2d + 2 operations in K. Computing the
kth homogeneous part of fi, deg(fi) = di, 1 < i < r, requires 2did̂i+1k + d2i +

2d̂i

2
+4d̂i +2di +3 operations in K. Computing the kth homogeneous part of fr,

deg(fr) = dr, requires d2r + 2dr + 1 operations in K.

Corollary 4.8 (Hensel factorization complexity). HenselFactoriza-

tion producing f = f1 · · · fr, with f ∈ K[[X1]][Y], deg(f) = d, requires
O(d3k + d2k2) operations in K to update all factors to precision k.

Proof. Let f1, . . . , fr have respective degrees d1, . . . , dr. Let d̂i =
∑r

j=i dj (thus
d̂1 = d and d̂r = dr). From Theorem 4.6, each fi, 1 ≤ i < r requires O(did̂i+1k

2+

d̂i

2
k) operations in K to be updated to precision k (or O(d2rk) for fr). We have

∑r−1
i=1 did̂i+1 ≤ ∑r−1

i=1 did < d2 and
∑r

i=1 d̂i

2 ≤ ∑r
i=1 d2 = rd2 ≤ d3. Hence, all

factors can be updated to precision k within O(d3k + d2k2) operations in K.
�
Corollary 4.8 shows that the two dominant terms in the cost of computing a

Hensel factorization of a UPoPS of degree d, up to precision k, are d3k and d2k2.
From the proof of Theorem 4.6, the former term arises from the cost of the Taylor
shifts in Y , meanwhile, the latter term arises from the (polynomial) multiplica-
tion of homogeneous parts in Weierstrass preparation. This observation then
leads to the following conjecture. Recall that M(n) denotes a polynomial mul-
tiplication time [12, Ch. 8]. From [15], relaxed algorithms, which improve the
performance of lazy evaluation schemes, can be used to compute a power series
product in K[[X1]] up to precision k in at most O(M(k) log k) operations in K

(or less, in view of the improved relaxed multiplication of [16]).

Conjecture 4.9. Let f ∈ K[[X1]][Y] factorize as f1 · · · fr using HenselFac-

torization. Let deg(f) = d. Updating the factors f1, . . . , fr to precision k using
relaxed algorithms requires at most O(d3k + d2M(k) log k) operations in K.

Comparatively, the Hensel–Sasaki Construction requires at most O(d3M(d)+
dM(d)k2) operations in K to compute the first k terms of all factors of
f ∈ K[X1, Y], where f has total degree d [1]. The method of Kung and Traub
[18], requires O(d2M(k)). Already, Corollary 4.8—where d = deg(f, Y)—shows
that our Hensel factorization is an improvement on Hensel–Sasaki (d2k2 versus
dM(d)k2). If Conjecture 4.9 is true, then Hensel factorization can be within
a factor of log k of Kung and Traub’s method. Nonetheless, this conjecture is
highly encouraging where k � d, particularly where we have already seen that
our current, suboptimal, method performs better in practice than Hensel–Sasaki
and the method of Kung and Traub [8]. Proving this conjecture is left to future
work.

90 A. Brandt and M. Moreno Maza

Algorithm 4. UpdateToDegParallel(k, f , t)

Input: A positive integer k, f ∈ K[[X1, . . . , Xn]] known to at least precision k − 1. If
f has ancestors, it is the result of a binary operation. A positive integer t for the
number of threads to use.

Output: f is updated to precision k, in place.
1: if f(k) already computed then
2: return
3: g, h := FirstAncestor(f), SecondAncestor(f)
4: UpdateToDegParallel(k, g, t);
5: UpdateToDegParallel(k, h, t);
6: if f is a product then
7: V := [0, . . . , 0] � 0-indexed list of size t
8: parallel for j := 0 to t − 1
9: for i := jk/t to (j+1)k/t − 1 while i ≤ k do

10: V[j] := V[j] + g(i)h(k−i)

11: f(k) :=
∑t−1

j=0 V[j] � reduce
12: else if f is a p from a Weierstrass preparation then
13: WeierstrassPhase1Parallel(k,g,f ,h,WeierstrassData(f),t)
14: else if f is an α from a Weierstrass preparation then
15: WeierstrassPhase2Parallel(k, g, h, f , t)
16: else
17: UpdateToDeg(k, f)

5 Parallel Algorithms

Section 4 presented lazy algorithms for Weierstrass preparation, Taylor shift,
and Hensel factorization. It also presented complexity estimates for those algo-
rithms. Those estimates will soon be used to help dynamically distribute hard-
ware resources (threads) in a parallel variation of Hensel factorization; in par-
ticular, a Hensel factorization pipeline where each pipeline stage updates one or
more factors, see Algorithms 7–9. But first, we will examine parallel processing
techniques for Weierstrass preparation.

5.1 Parallel Algorithms for Weierstrass Preparation

Algorithm 1 shows that p and α from a Weierstrass preparation can be updated
in two phases: p in phase 1, and α in phase 2. Ultimately, these updates rely on
the computation of the homogeneous part of some power series product. Algo-
rithm 4 presents a simple map-reduce pattern (see Sect. 2.3) for computing such
a homogeneous part. Moreover, this algorithm is designed such that, recursively,
all ancestors of a power series product are also updated using parallelism. Note
that UpdateToDegParallel called on a UPoPS simply recurses on each of
its coefficients.

Using the notation of Algorithm 1, recall that, e.g., Fi := ai −∑i−1
j=0(bjci−j),

for i ≤ m. Using lazy power series arithmetic, this entire formula can be encoded
by a chain of ancestors, and one simply needs to update Fi to trigger a cascade of

Complexity, Parallel Impl. of Hensel’s Lemma and Weierstrass Prep. 91

Algorithm 5. LemmaForWeierstrass(k, f , g, h, t)

Input: f, g, h ∈ K[[X1, . . . , Xn]] such that f = gh, f(0) = 0, h(0) �= 0, f known to
precision k, and g, h known to precision k − 1. t ≥ 1 the number of threads to use.

Output: g(k).
1: V := [0, . . . , 0] � 0-indexed list of size t
2: parallel for j := 0 to t − 1
3: for i := jk/t + 1 to (j+1)k/t while i < k do
4: V[j] := V[j] + g(k−i)h(i)

5: end for
6: return

(
f(k) −

∑t−1
j=0 V[j]

)
/h(0)

updates through its ancestors. In particular, using Algorithm 4, the homogeneous
part of each product bjci−j is recursively computed using map-reduce. Similarly,
Lemma 2.2 can be implemented using map-reduce (see Algorithm 5) to replace
Lines 9–12 of Algorithm 1. Phase 1 of Weierstrass, say WeierstrassPhase1-

Parallel, thus reduces to a loop over i from 0 to d − 1, calling Algorithm 4 to
update Fi to precision k, and calling Algorithm 5 to compute bi(k).

Algorithm 4 uses several simple subroutines: FirstAncestor and Secon-

dAncestor gets the first and second ancestor of a power series, Weierstrass-

Data gets a reference to the list of Fi’s, and UpdateToDeg calls the serial
update function of a lazy power series to ensure its precision is at least k; see
Sect. 3.

Now consider phase 2 of WeierstrassUpdate. Notice that computing the
homogeneous part of degree k for cm−i, 0 ≤ i ≤ m only requires each cm−i to
be known up to precision k − 1, since each bj ∈ M for 0 ≤ j < d. This implies
that the phase 2 for loop of WeierstrassUpdate has independent iterations.
We thus apply the map pattern directly to this loop itself, rather than relying
on the map-reduce pattern of UpdateToDegParallel. However, consider the
following two facts: the cost of computing each cm−i is different (Observation 4.2
and Corollary 4.4), and, for a certain number of available threads t, it may be
impossible to partition the iterations of the loop into t partitions of equal work.
Yet, partitioning the loop itself is preferred for greater parallelism.

Hence, for phase 2, a dynamic decision is made to either apply the map
pattern to the loop over cm−i, or to apply the map pattern within Update-

ToDegParallel for each cm−i, or both. This decision process is detailed in
Algorithm 6, where t partitions of equal work try to be found to apply the map
pattern to only the loop itself. If unsuccessful, t/2 partitions of equal work try to
be found, with 2 threads to be used within UpdateToDegParallel of each
partition. If that, too, is unsuccessful, then each cm−i is updated one at a time
using the total number of threads t within UpdateToDegParallel.

5.2 Parallel Algorithms for Hensel Factorization

Let f = f1 · · · fr be a Hensel factorization where the factors have respective
degrees d1, . . . , dr. From Algorithm 3 and Fig. 1, we have already seen that the

92 A. Brandt and M. Moreno Maza

Algorithm 6. WeierstrassPhase2Parallel(k, f , p, α, t)

Input: f =
∑d+m

i=0 aiY
i, p = Y d +

∑d−1
i=0 biY

i, α =
∑m

i=0 ciY
i, ai, bi, ci ∈

K[[X1, . . . , Xn]] satisfying Theorem 2.3. b0, . . . , bd−1 known modulo Mk+1,
c0, . . . , cm known modulo Mk, for M the maximal ideal of K[[X1, . . . , Xn]]. t ≥ 1
for the number of threads to use.

Output: c0, . . . , cm known modulo Mk+1, updated in-place.
1: work := 0
2: for i := 1 to m do � estimate work using Observation 4.2, Corollary 4.4
3: if i ≤ d then work := work + i − (ad+m = 0) � eval. Boolean as an integer
4: else work := work + d

5: t′ := 1; targ := work / t
6: work := 0; j := 1
7: I := [−1, 0, . . . , 0] � 0-indexed list of size t + 1
8: for i := 1 to m do
9: if i ≤ d then work := work + i − (ad+m = 0)

10: else work := work + d

11: if work ≥ targ then
12: I[j] := i; work := 0; j := j + 1

13: if j ≤ t and t′ < 2 then � work did not distribute evenly; try again with t = t/2
14: t := t / 2; t′ := 2
15: goto Line 6
16: else if j ≤ t then � still not even, use all threads in UpdateToDegParallel

17: I[1] := m; t′ := 2t; t := 1

18: parallel for � := 1 to t
19: for i := I[� − 1] + 1 to I[�] do
20: UpdateToDegParallel(k, cm−i, t′)

repeated applications of Taylor shift and Weierstrass preparation naturally form
a chain of ancestors, and thus a pipeline. Using the notation of Algorithm 3,
updating f1 requires updating g1, p1, α1. Then, updating f2 requires updating
f̂2, g2, p2, α2, and so on. These groups easily form stages of a pipeline, where
updating f1 to degree k − 1 is a prerequisite for updating f2 to degree k − 1.
Moreover, meanwhile f2 is being updated to degree k −1, f1 can simultaneously
be updated to degree k. Such a pattern holds for all successive factors.

Algorithms 7 and 8 show how the factors of a Hensel factorization can all
be simultaneously updated to degree k using asynchronous generators, denoted
by the constructor AsyncGenerator, forming the so-called Hensel pipeline.
Algorithm 7 shows a single pipeline stage as an asynchronous generator, which
itself consumes data from another asynchronous generator—just as expected
from the pipeline pattern. Algorithm 8 shows the creation, and joining in
sequence, of those generators. The key feature of these algorithms is that a
generator (say, stage i) produces a sequence of integers (j) which signals to the
consumer (stage i+1) that the previous factor has been computed up to precision
j and thus the required data is available to update its own factor to precision j.

Notice that Algorithm 8 still follows our lazy evaluation scheme. Indeed, the
factors are updated all at once up to precision k, starting from their current

Complexity, Parallel Impl. of Hensel’s Lemma and Weierstrass Prep. 93

Algorithm 7. HenselPipelineStage(k, fi, t, gen)

Input: A positive integer k, fi = Y di +
∑di−1

i=0 aiY
i, ai ∈ K[[X1, . . . , Xn]]. A positive

integer t the number of threads to use within this stage. gen a generator for the
previous pipeline stage.

Output: a sequence of integers j signalling fi is known to precision j. This sequence
ends with k.

1: p := Precision(fi) � get the current precision of fi

2: do
3: k′ := gen() � A blocking function call until gen yields
4: for j := p to k′ do
5: UpdateToDegParallel(j, fi, t)
6: yield j

7: p := k′

8: while k′ < k

Algorithm 8. HenselFactorizationPipeline(k, F , T)

Input: A positive integer k, F = {f1, . . . , fr}, the output of HenselFactorization.
T ∈ Z

r a 0-indexed list of the number of threads to use in each stage, T [r −1] > 0.
Output: f1, . . . , fr updated in-place to precision k.
1: gen := () → {yield k} � An anonymous function asynchronous generator
2: for i := 0 to r − 1 do
3: if T [i] > 0 then

� Capture HenselPipelineStage(k, fi+1, T [i], gen) as a
function object, passing the previous gen as input

4: gen := AsyncGenerator(HenselPipelineStage, k, fi+1, T [i], gen)

5: do
6: k′ := gen() � ensure last stage completes before returning
7: while k′ < k

precision. However, for optimal performance, the updates should be applied for
large increases in precision, rather than repeatedly increasing precision by one.

Further considering performance, Theorem 4.6 showed that the cost for
updating each factor of a Hensel factorization is different. In particular, for
d̂i :=

∑r
j=i dj , updating factor fi scales as did̂i+1k

2. The work for each stage
of the proposed pipeline is unequal and the pipeline is unlikely to achieve good
parallel speedup. However, Corollary 4.7 shows that the work ratios between
stages do not change for increasing k, and thus a static scheduling scheme is
sufficient.

Notice that Algorithm 7 takes a parameter t for the number of threads to
use internally. As we have seen in Sect. 5.1, the Weierstrass update can be per-
formed in parallel. Consequently, each stage of the Hensel pipeline uses t threads
to exploit such parallelism. We have thus composed the two parallel schemes,
applying map-reduce within each stage of the parallel pipeline. This composition
serves to load-balance the pipeline. For example, the first stage may be given
t1 threads and the second stage given t2 threads, with t1 > t2, so that the two
stages may execute in nearly equal time.

94 A. Brandt and M. Moreno Maza

Algorithm 9. DistributeResourcesHensel(F , ttot)

Input: F = {f1, . . . , fr} the output of HenselFactorization. ttot > 1 the total
number of threads.

Output: T , a list of size r, where T [i] is the number of threads to use for updating fi+1.
The number of positive entries in T determines the number of pipeline stages.
T [i] = 0 encodes that fi+1 should be computed within the same stage as fi+2.

1: T := [0, . . . , 0, 1]; t := ttot − 1 � T [r − 1] = 1 ensures last factor gets updated
2: d :=

∑r
i=1 deg(fi)

3: W := [0, . . . , 0] � A 0-indexed list of size r
4: for i := 1 to r − 1 do
5: W[i − 1] := deg(fi)(d − deg(fi)) � Estimate work by Theorem 4.6, did̂i+1

6: d := d − deg(fi)

7: totalWork :=
∑r−1

i=0 W[i]
8: ratio := 0; targ := 1 / t
9: for i := 0 to r do

10: ratio := ratio + (W[i] / totalWork)
11: if ratio ≥ targ then
12: T [i] := round(ratio · t); ratio := 0

13: t := ttot −
∑r−1

i=0 T [i] � Give any excess threads to the earlier stages
14: for i := 0 to r − 1 while t > 0 do
15: T [i] := T [i] + 1; t := t − 1

16: return T

To further encourage load-balancing, each stage of the pipeline need not
update a single factor, but rather a group of successive factors. Algorithm 9
applies Theorem 4.6 to attempt to load-balance each stage s of the pipeline by
assigning a certain number of threads ts and a certain group of factors fs1 , . . . , fs2

to it. The goal is for
∑s2

i=s1
did̂i+1 / ts to be roughly equal for each stage.

6 Experimentation and Discussion

The previous section introduced parallel schemes for Weierstrass preparation and
Hensel factorization based on the composition of the map-reduce and pipeline par-
allel patterns. Our lazy power series and parallel schemes have been implemented
in C/C++ as part of the Basic Polynomial Algebra Subprograms (BPAS) library
[2]. These parallel algorithms are implemented using generic support for task par-
allelism, thread pools, and asynchronous generators, also provided in the BPAS
library. The details of this parallel support are discussed in [5] and [6].

Our experimentation was collected on a machine running Ubuntu 18.04.4 with
two Intel Xeon X5650 processors, each with 6 cores (12 cores total) at 2.67 GHz,
and a 12 × 4 GB DDR3 memory configuration at 1.33 GHz. All data shown is an
average of 3 trials. BPAS was compiled using GMP 6.1.2 [13]. We work over Q

as these examples do not require algebraic numbers to factor into linear factors.
We thus borrow univariate integer polynomial factorization from NTL 11.4.3 [27].
Where algebraic numbers are required, the MultivariatePowerSeries package
of Maple [3], an extension of our work in [8], is available.

Complexity, Parallel Impl. of Hensel’s Lemma and Weierstrass Prep. 95

Fig. 2. Comparing Weierstrass preparation of ur and vr for r ∈ {6, 8, 10, 12} and
number of threads t ∈ {1, 6, 12}. First column: execution time of ur and vr; second
column: parallel speedup of ur and vr. Profiling of v6 shows that its exceptional relative
performance is attributed to remarkably good branch prediction.

We begin by evaluating Weierstrass preparation for two families of examples:

(i) ur =
∑r

i=2(X
2
1 + X2 + i)Y i + (X2

1 + X2)Y + X2
1 + X1X2 + X2

2 ,

(ii) vr =
∑r

i=�r/2�(X
2
1 +X2 + i)Y i +

∑�r/2�−1
i=1 (X2

1 +X2)Y i +X2
1 +X1X2 +X2

2 .

Applying Weierstrass preparation to ur results in p with degree 2. Applying
Weierstrass preparation to vr results in p with degree
r/2�. Figure 2 summarizes
the resulting execution times and parallel speedups. Generally, speedup increases
with increasing degree in Y and increasing precision computed.

Recall that parallelism arises in two ways: computing summations of products
of homogeneous parts (the parallel for loops in Algorithms 4 and 5), and the
parallel for loop over updating cm−i in Algorithm 6. The former has an inherent
limitation: computing a multivariate product with one operand of low degree and
one of high degree is much easier than computing one where both operands are of
moderate degree. Evenly partitioning the iterations of the loop does not result in
even work per thread. This is evident in comparing the parallel speedup between
ur and vr; the former, with higher degree in α, relies less on parallelism coming
from those products. Better partitioning is needed and is left to future work.

We evaluate our parallel Hensel factorization using three families of problems:

(i) xr =
∏r

i=1(Y − i) + X1(Y 3 + Y),
(ii) yr =

∏r
i=1(Y − i)i + X1(Y 3 + Y),

(iii) zr =
∏r

i=1(Y + X1 + X2 − i) + X1X2(Y 3 + Y).

96 A. Brandt and M. Moreno Maza

Fig. 3. Comparing parallel Hensel factorization for xr, yr, and zr for r ∈ {4, 6, 8, 10}.
First column: execution time; second column: parallel speedup. For number of threads
t = 12 resource distribution is determined by Algorithm 9; for t = 12, opt serial execu-
tion time replaces complexity measures as work estimates in Algorithm 9, Lines 4–6.

These families represent three distinct computational configurations: (i) factors
of equal degree, (ii) factors of distinct degrees, and (iii) multivariate factors.
The comparison between xr and yr is of interest in view of Theorem 4.6.

Despite the inherent challenges of irregular parallelism arising from stages
with unequal work, the composition of parallel patterns allows for load-balancing
between stages and the overall pipeline to achieve relatively good parallel speed-
up. Figure 3 summarizes these results while Table 1 presents the execution
time per factor (or stage, in parallel). Generally speaking, potential parallelism
increases with increasing degree and increasing precision.

The distribution of a discrete number of threads to a discrete number of
pipeline stages is a challenge; a perfect distribution requires a fractional num-
ber of threads per stage. Nonetheless, in addition to the distribution technique
presented in Algorithm 9, we can examine hand-chosen assignments of threads

Complexity, Parallel Impl. of Hensel’s Lemma and Weierstrass Prep. 97

Table 1. Times for updating each factor within the Hensel pipeline, where fi is the
factor with i as the root of f̄i, for various numbers of threads per stage. Complexity-
estimated threads use complexity estimates to estimate work within Algorithm 9; time-
estimated threads use the serial execution time to estimate work and distribute threads.

factor
serial shift Complexity- parallel wait Time-est. parallel wait
time (s) time (s) Est. threads time (s) time (s) threads time (s) time (s)

x4 k = 600 f1 18.1989 0.0012 6 4.5380 0.0000 7 3.5941 0.0000
f2 6.6681 0.0666 4 4.5566 0.8530 3 3.6105 0.6163
f3 3.4335 0.0274 1 4.5748 1.0855 0 - -
f4 0.0009 0.0009 1 4.5750 4.5707 2 3.6257 1.4170

totals 28.3014 0.0961 12 4.5750 6.5092 12 3.6257 2.0333

y4 k = 100 f1 0.4216 0.0003 3 0.1846 0.0000 4 0.1819 0.0000
f2 0.5122 0.0427 5 0.2759 0.0003 4 0.3080 0.0001
f3 0.4586 0.0315 3 0.2842 0.0183 0 - -
f4 0.0049 0.0048 1 0.2844 0.2780 4 0.3144 0.0154

totals 1.3973 0.0793 12 0.2844 0.2963 12 0.3144 0.0155

z4 k = 100 f1 5.2455 0.0018 6 1.5263 0.0000 7 1.3376 0.0000
f2 2.5414 0.0300 4 1.5865 0.2061 3 1.4854 0.0005
f3 1.2525 0.0151 1 1.6504 0.1893 0 - -
f4 0.0018 0.0018 1 1.6506 1.6473 2 1.5208 0.7155

totals 9.0412 0.0487 12 1.6506 2.0427 12 1.5208 0.7160

to stages. One can first determine the time required to update each factor in
serial, say for some small k, and then use that time as the work estimates in
Algorithm 9, rather than using the complexity estimates. This latter technique
is depicted in Fig. 3 as opt and in Table 1 as Time-est. threads. This is still
not perfect, again because of the discrete nature of threads, and the imperfect
parallelization of computing summations of products of homogeneous parts.

In future, we must consider several important factors to improve performance.
Relaxed algorithms should give better complexity and performance. For paral-
lelism, better partitioning schemes for the map-reduce pattern within Weierstrass
preparation should be considered. Finally, for the Hensel pipeline, more analy-
sis is needed to optimize the scheduling and resource distribution, particularly
considering coefficient sizes and the multivariate case.

Acknowledgments. The authors would like to thank the reviewers for their helpful
comments and NSERC of Canada (award CGSD3-535362-2019).

References

1. Alvandi, P., Ataei, M., Kazemi, M., Moreno Maza, M.: On the extended Hensel
construction and its application to the computation of real limit points. J. Symb.
Comput. 98, 120–162 (2020)

2. Asadi, M., et al.: Basic Polynomial Algebra Subprograms (BPAS) (version 1.791)
(2021). http://www.bpaslib.org

3. Asadi, M., Brandt, A., Kazemi, M., Moreno Maza, M., Postma, E.: Multivariate
power series in Maple. In: Proceedings of MC 2020 (2021, to appear)

http://www.bpaslib.org

98 A. Brandt and M. Moreno Maza

4. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M.: Algorithms and data
structures for sparse polynomial arithmetic. Mathematics 7(5), 441 (2019)

5. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M., Xie, Y.: On the paral-
lelization of triangular decompositions. In: Proceedings of ISSAC 2020, pp. 22–29.
ACM (2020)

6. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M., Xie, Y.: Parallelization
of triangular decompositions: techniques and implementation. J. Symb. Comput.
(2021, to appear)

7. Berthomieu, J., Lecerf, G., Quintin, G.: Polynomial root finding over local rings
and application to error correcting codes. Appl. Algebra Eng. Commun. Comput.
24(6), 413–443 (2013)

8. Brandt, A., Kazemi, M., Moreno-Maza, M.: Power series arithmetic with the BPAS
library. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC
2020. LNCS, vol. 12291, pp. 108–128. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-60026-6 7

9. Burge, W.H., Watt, S.M.: Infinite structures in scratchpad II. In: Davenport, J.H.
(ed.) EUROCAL 1987. LNCS, vol. 378, pp. 138–148. Springer, Heidelberg (1989).
https://doi.org/10.1007/3-540-51517-8 103

10. Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in
power and Puiseux series I. J. Complex. 2(4), 271–294 (1986)

11. Fischer, G.: Plane Algebraic Curves. AMS (2001)
12. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge

University Press, New York (2003)
13. Granlund, T.: The GMP development team: GNU MP: The GNU Multiple Preci-

sion Arithmetic Library (version 6.1.2) (2020). http://gmplib.org
14. Haidar, A., Kurzak, J., Luszczek, P.: An improved parallel singular value algorithm

and its implementation for multicore hardware. In: Proceedings of SC 2013. ACM
(2013)

15. van der Hoeven, J.: Relax, but don’t be too lazy. J. Symb. Comput. 34(6), 479–542
(2002)

16. van der Hoeven, J.: Faster relaxed multiplication. In: Proceedings of ISSAC 2014,
pp. 405–412. ACM (2014)

17. Iwami, M.: Analytic factorization of the multivariate polynomial. In: Proceedings
of CASC 2003, pp. 213–225 (2003)

18. Kung, H.T., Traub, J.F.: All algebraic functions can be computed fast. J. ACM
25(2), 245–260 (1978)

19. Maplesoft, a division of Waterloo Maple Inc.: Maple (2020). www.maplesoft.com/
20. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns

for Efficient Computation. Elsevier, Amsterdam (2012)
21. Michailidis, P.D., Margaritis, K.G.: Parallel direct methods for solving the system

of linear equations with pipelining on a multicore using OpenMP. J. Comput. Appl.
Math. 236(3), 326–341 (2011)

22. Monagan, M., Vrbik, P.: Lazy and forgetful polynomial arithmetic and applications.
In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol.
5743, pp. 226–239. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04103-7 20

23. Neiger, V., Rosenkilde, J., Schost, É.: Fast computation of the roots of polynomials
over the ring of power series. In: Proceedings of ISSAC 2017, pp. 349–356. ACM
(2017)

24. Sasaki, T., Kako, F.: Solving multivariate algebraic equation by Hensel construc-
tion. Japan J. Indust. Appl. Math. 16(2), 257–285 (1999)

https://doi.org/10.1007/978-3-030-60026-6_7
https://doi.org/10.1007/978-3-030-60026-6_7
https://doi.org/10.1007/3-540-51517-8_103
http://gmplib.org
www.maplesoft.com/
https://doi.org/10.1007/978-3-642-04103-7_20
https://doi.org/10.1007/978-3-642-04103-7_20

Complexity, Parallel Impl. of Hensel’s Lemma and Weierstrass Prep. 99

25. Sasaki, T., Inaba, D.: Enhancing the extended Hensel construction by using
Gröbner bases. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.)
CASC 2016. LNCS, vol. 9890, pp. 457–472. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45641-6 29

26. Scott, M.L.: Programming Language Pragmatics, 3rd edn. Academic Press, New
York (2009)

27. Shoup, V., et al.: NTL: A library for doing number theory (version 11.4.3) (2020).
www.shoup.net/ntl/

28. The Sage Developers: SageMath, the Sage Mathematics Software System (version
9.1) (2020). https://www.sagemath.org

https://doi.org/10.1007/978-3-319-45641-6_29
https://doi.org/10.1007/978-3-319-45641-6_29
www.shoup.net/ntl/
https://www.sagemath.org

Symbolic-Numeric Algorithms for
Computing Orthonormal Bases of SU(3)
Group for Orbital Angular Momentum

Algirdas Deveikis1, Alexander Gusev2(B), Sergue Vinitsky2,3, Andrzej Góźdź4,
Aleksandra Pȩdrak5, Čestmir Burdik6, and George Pogosyan7

1 Vytautas Magnus University, Kaunas, Lithuania
2 Joint Institute for Nuclear Research, Dubna, Russia

gooseff@jinr.ru
3 RUDN University, 6 Miklukho-Maklaya, 117198 Moscow, Russia

4 Institute of Physics, Maria Curie-Sk�lodowska University, Lublin, Poland
5 National Centre for Nuclear Research, Warsaw, Poland
6 Czech Technical University, Prague, Czech Republic

7 Yerevan State University, Yerevan, Armenia

Abstract. We have developed symbolic-numeric algorithms imple-
mented in the Wolfram Mathematica to compute the orthonormal canon-
ical Gel’fand–Tseitlin (G-T), non-canonical Bargmann-Moshinsky (B-M)
and Elliott (E) bases of irreducible representations SU(3) ⊃ SO(3) ⊃
SO(2) group for a given orbital of angular momentum. The algorithms
resolve the missing label problem by solving eigenvalue problem for the
“labeling” B-M operator X (3). The effective numeric algorithm for con-
struction of the G-T basis provides a unique capability to perform large
scale calculations even with 8 byte real numbers. The algorithms for
the construction of B-M and E bases implemented very fast modified
Gramm–Schmidt orthonormalization procedure. In B-M basis, a very
effective formula for calculation of the matrix X (3) is derived by graph-
ical method. The implemented algorithm for construction of the B-M
basis makes it possible to perform large scale exact as well as arbitrary
precision calculations. The algorithm for the construction of the E basis
resolves the missing label problem by calculation of the matrix X (3) in
an orthogonal basis from this matrix previously built in non-orthogonal
basis. The implementation of this algorithm provides large scale calcula-
tions with arbitrary precision.

Keywords: Orthonormal non-canonical basis ·
SU(3) ⊃ SO(3) ⊃ SO(2) · Irreducible representations · Missing label
problem · Gram–Schmidt orthonormalization · Gel’fand–Tseitlin
basis · Bargmann–Moshinsky basis · Elliott basis

1 Introduction

One of the main tools for shell type of nuclear models calculations are non-
orthogonal bases of irreducible representations (irrs.) of the non-canonical group
c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 100–120, 2021.
https://doi.org/10.1007/978-3-030-85165-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_7

Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) 101

chain of SU(3)⊃SO(3)⊃SO(2) [20]. In spite of a long history of application of the
non-orthogonal Elliot (E) basis [1,3–5,10–15,17,27,30], there are still no suffi-
ciently efficient and cost effective algorithms and programs for constructing the
required orthogonal non-canonical bases and calculating tensor operators using
a computer algebra system [25] as it can be done in the canonical orthogonal
Gel’fand–Tseitlin (G-T) basis [16,19,23,26]. First steps to construct the appro-
priate algorithms and programs which can be implemented in the Wolfram Math-
ematica [22] with the non-canonical and non-orthogonal Bargmann–Moshinsky
(B-M) basis [2,6,24] have been presented in [7–9,31].

These bases are characterized by the following quantum numbers: the angular
momentum L and its projection M on the Z axis of the laboratory frame, a
missing label which determines a degeneracy of the basis with respect to L
and M at fixed integers λ and μ. The latter are determined by the relations
m13 = λ + μ and m23 = λ or m23 = μ in the conjugate and m13 = 2m23

(λ = μ) in the self-conjugate representations of SU(3) group characterized by
a set of integers m13 ≥ m23 ≥ m33 at m33 = 0 describing the canonical G-
T basis [19,24]. The first set of algorithms resolves the missing label problem
with non-integer eigenvalues x. It is done by solving the eigenvalue problem
for the labeling operator X(3) proposed by Bargmann–Moshinsky (B-M), which
belongs to the SU(3) enveloping algebra [6,24]. The construction is performed
in the G-T canonical orthonormal basis and the non-canonical non-orthogonal
B-M and E bases as well as in the non-canonical orthogonal B-M and E bases
calculated with the help of the second set of algorithms. The second set of
algorithms implements the Gramm–Schmidt (G-S) procedure and resolves the
missing label problem with integer quantum numbers α or K. It calculates the
elements of orthogonalized matrices of the non-canonical nonorthogonal B-M or
E bases using some overlap integrals of Ref. [2] or Refs. [4,27], respectively.

The known program for resolving the missing “label” problem by solving the
eigenvalue problem for the “labeling” B-M operator X(3) in the G-T basis [23] is
capable to produce calculations only for rather moderate scale calculations up to
SU(3) representation (m13 = 18,m23 = 9,m33 = 0). In view of the importance of
this basis in nuclear and particle physics it is necessary to elaborate the efficient
algorithms for large scale calculations, i.e., one needs to have at least 10 times
larger labels of the SU(3) representations in G-T basis. The calculations in G-T
basis may serve as a complementary tool for calculations in non-canonical bases.

Application of algebraic methods in nuclear calculations often rely on arbi-
trary precision or even exact arithmetics. In this context, the B-M basis plays
a distinct role because of its well determined algebraic structure. However, due
to the complex nature of the formulae for the overlap integrals in this basis [2],
very effective orthonormalization algorithms as well as formulas with minimal
number of summations for the calculation of operators matrix elements should
be elaborated. The implementation of these algorithms for computation of the
matrix X(3) may provide an opportunity to perform the large scale symbolic
calculations in nuclear physics.

The application of widely used in nuclear physics E basis is related to even
more problems than the problems inherent in the B-M basis. First, the values of

102 A. Deveikis et al.

the E basis overlap integrals have significantly more complex root rational frac-
tional form and second, the negative values of additional quantum number should
be taken into account when calculating the matrix elements of operators [4,27].
There is a number of formulas of the overlap integrals in the E basis [4,27]
which efficiency still needs to be investigated. It is well known that there are
no effective implementations of algorithms for calculation of the matrix X(3) in
the orthogonal E basis. So a very promising solution may be the calculation of
this matrix from its significantly more simple counterpart in the non-orthogonal
basis in the case if any effective basis orthonormalization algorithm is provided.
Because of universal character of the developed orthonormalization algorithm
the large scale calculations of the matrix X(3) may be performed.

In this paper, we have developed symbolic-numeric algorithms and pro-
grams implemented in the Wolfram Mathematica [22] to compute the orthonor-
mal canonical G-T basis [16], and the non-canonical B-M [6,24] and Elliot(E)
bases [15] of symmetric irrs. of the SU(3)⊃SO(3)⊃SO(2) group for given orbital
angular momenta. We also calculate required tensor operators. We present
benchmark calculations of the eigenvalue problem for the labeling operator X(3)

in the canonical orthogonal G-T basis and use it like a guarantee of correctness
of algorithms and codes elaborated for calculations of matrix elements of tensor
operators in the non-canonical B-M and E bases. In particular, to check the cor-
rectness of calculations of the eigenvalues x having the same absolute values with
opposite signs in conjugate and self-conjugate representations and sufficiency of
the main set of eigenvectors in E basis using our algorithms and code without
an additional extra set eigenvectors at L>λ for λ>μ or at L>μ for μ>λ that is
needed in an alternative procedure for solving Eqs. (129)–(131) of Ref. [27]).

The structure of the paper is following. In Sect. 2, the algorithm for calcu-
lating the eigenvalues and eigenvectors of labeling the B-M operator X(3) in the
orthonormal G-T basis labeled by eigenvalues of two scalars of SO(3) group is
presented. In Sects. 3 and 4, the algorithm of construction of the orthonormal B-
M and E bases and the operator X(3) and benchmark calculations of orthogonal-
ization matrices and eigenvalues and eigenvectors of labeling the B-M operator
X(3) are presented. In Sect. 5, the summary of main results and conclusions is
given. The CPU times of the benchmark calculations give needed estimations for
choosing the appropriate versions of the presented symbolic-numeric algorithms
and programs discussed in Conclusions. The computations were performed with
Wolfram Mathematica 10.1 on a PC with a 2.40 GHz Intel i7-36030QM CPU,
8 GB of RAM, and 64-bit Windows 8 OS.

2 Algorithm of Calculating X(3)-Orthonormal G-T Basis

The generators of Lie algebra corresponding to the group chain U(3) ⊃ SU(2) ×
U(1) fulfil the commutation relations [16]

[Eik,Ejl] = δkjEil − δilEjk. (1)

Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) 103

The Casimir operators of the second and third orders C2(SU(3)) and C3(SU(3))
are given by

C2(SU(3)) =
∑

ik
EikEki, C3(SU(3)) =

∑
ijk

EijEjkEki. (2)

We are using generators of this Lie algebra that transform under the group SO(3)
as spherical tensors of the rank 1 and 2, respectively. The spherical components
of the angular momentum operator L ≡ L(1) (the superscript indicates the rank)
are defined as in [23]

L1 = −E12 − E23, L0 = E11 − E33, L−1 = E21 + E32, (3)

and the spherical components of the quadrupole momentum operator Q ≡ Q(2)

are defined as in [23], but with the factor 31/2

Q2 = 6
1
2 E13, Q1 = 3

1
2 (E23 − E12), Q0 = E11 + E33 − 2E22,

Q−1 = 3
1
2 (E21 − E32), Q−2 = 6

1
2 E31. (4)

Using (1), (3), and (4) at k, n = −1, 0,+1 and m = −2,−1, 0,+1,+2 we obtain
the following commutator relations [L0,L±1] = ±L±1, [L1,L−1] = −L0:

[Lm,Ln] = −
√

2C1m+n
1m1n Lm+n, [L0,Qm] = mQm, (5)

[Lm,Qn] = −
√

6C2m+n
1m2n Qm+n, [Qm,Qn] = 3

√
10C1m+n

2m2n Lm+n. (6)

Remark 1. If one interchanges indices 1 and 2 of the operators ai, a+
i and corre-

spondingly of Eij for i, j = 1, 2, 3 in Eqs. (8)–(15) of Ref. [27], then one has the
following correspondence of such reordered operators with respect to the ones
determined in Eqs. (3) and (4). The vector operator of the angular momentum
L = L(1) in Eq. (3) is denoted as Q(1) in Eq.(13) of Ref. [27], i.e., L+1 = Q

(1)
1 ,

L−1 = Q
(1)
−1 and L0 = Q

(1)
0 . The quadrupole operator Q in Eq. (4) coincides

up to the factor
√

6 with Q(2) in Eq.(14) of Ref. [27], i.e., Q =
√

6Q(2).

The construction of the complete orthonormal G-T basis with well defined
angular momentum quantum numbers L and −L ≤ M ≤ L, where M is a
projection of L on the Z-axis of a laboratory frame may be performed by means
of two commuting SO(3) scalars.

L2 =
∑1

m=−1
(−1)mLmL−m (7)

and the second one is the labeling operator X(3)

X(3) = −
√

5
6

1∑

m1=−1

2∑

m2=−2

C1m1+m2
1m12m2

C00
1m1+m21−m1−m2

Lm1Qm2
L−m1−m2 ,(8)

where C∗∗
∗∗∗∗ are Clebsch–Gordan coefficients of the group SO(3) [29]. The numer-

ical factor for the operator X(3) may be chosen arbitrarily. Here, its value −√
5/6

104 A. Deveikis et al.

Table 1. Algorithm for calculating eigenvectors V and eigenvalues x of the matrix of
the operator X (3) with definite values L through eigenvalues L(L + 1) of matrices for
square of the orbital angular momentum (L · L) in the G-T basis.

Input: U(3) representation m13, m23, m33

Output: The eigenvalues x and eigenvectors V of the matrix of the operator X (3)

1 Calculation of the matrix of the operator X (3) with respect to the
Gel’fand–Tseitlin patterns for a given U(3) representation

2 Computation of eigenvalues x and eigenvectors V of matrix X (3)

3 Calculation of the matrix W of the operator (L · L) with respect to the
Gel’fand-Tseitlin patterns for a given U(3) representation

4 Computation of the matrix multiplication of the matrices Y = V × W

5 Determination of L values corresponding to the x and V :

5.1 For every row of the matrix Y calculate the sum S1 of the absolute values of
its entries

5.2 For every row of the matrix V calculate the sum S2 of the absolute values of
its entries

5.3 For every row of these matrices calculate the L = Floor
(√

S1
S2

)

6 Reorder the sequence of the obtained L values in the descending order and
correspondingly reorder the rows of x and V matrices

is chosen to get the same eigenvalues of this operator as the eigenvalues calcu-
lated in other bases considered in this article. In order to get the same eigenvalues
of the operator X(3) presented in [23] the coefficient 3

√
5/6 is required. Usually

this factor is taken differently by different authors. The matrix elements of the
operators L2 and X(3) may be expressed in terms of matrix elements of the
generators Eij calculated within the |GTP 〉 vectors

∣∣∣∣
m13 m23 m33

LM x

〉
=

∑

m12m22m11

V LMx
m12m22m11

∣∣∣∣∣∣

m13 m23 m33

m12 m22

m11

〉
, (9)

where mi,k+1 ≥ mi,k ≥ mi+1,k at integer mi,k. We use the known action of
generators Eij on the G-T basis [16,26] that modify labels of only last two rows
of the G-T pattern (|GTP 〉) at a given U(3) representation. After the reduction
of U(3) to SU(3) assuming m33 = 0 the action of L0 = E11 −E33 on the vectors
|GTP 〉 gives the required values of M = m11 + m12 + m22 − m13 − m23 − m33.
Since X(3) does not connect patterns with different M , so we can take M = 0.
Then, the irreducible representations are conventionally labeled by indices λ =
m13 − m23 and μ = m23 − m33, i.e., μ = m23 and λ ≥ μ, or μ = m13 − m23 and
λ = m23 − m33, i.e., λ = m23 and μ ≥ λ. Both bases, i.e., B-M and E bases are,
in addition, labeled by the quantum numbers L, M and missing label which is
an integer number α or K, or noninteger number represented by eigenvalues x of
the labeling operator X(3), as it is explained below. Algorithm given in Table 1
calculates the matrices for square of the orbital angular momentum (L · L) and
the labeling operator X(3) in the G-T basis of any arbitrary U(3) irreducible

Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) 105

Fig. 1. The gray scale output of the matrices of the operators X (3) (left) and (L · L)
(right) with respect to the G-T patterns for U(3) representation m13 = 16, m23 = 6,
m33 = 0. The values of elements of the matrix are shown in a discrete array of squares.
The values with larger absolute value are represented by a darker square (zero values
are displayed by white color).

Table 2. Eigenvalues x = xnL of the matrix X (3) with respect to the G-T patterns
for U(3) representation m13 = 16, m23 = 6, m33 = 0. The columns of this table are
formed by eigenvalues EnL corresponding to a definite value of angular momentum L,
the eigenvalues are numbered by their sequence number No. (≡ n) as well.

No., L 0 2 3 4 5 6 7 8

1 0.000000 −31.3847 0.000000 137.0156 93.00000 320.3878 256.2905 −506.4812

2 31.38471 −122.7053 −93.00000 −281.7338 −240.3314 −204.1943

3 −14.31030 −84.20615 −15.95906 185.7775

4 45.55215 −55.10207

No., L 9 10 11 12 13 14 15 16

1 −447.4137 −796.0580 −714.8744 −633.5932 −554.7808 −483.5491 −418.0000 −396.6667

2 −155.1731 −389.3111 −332.4611 −295.7156 −230.5525 −264.4509

3 109.5868 −160.5985 −54.66451 −124.6912

4 31.30092

representation. It computes their eigenvalues L(L+1) and x respectively, solving
the eigenvalue problem X(3)V = V x, e.g. V −1X(3)V = x, to find the common
eigenvectors V . It should be noted that the eigenvalues of the matrix X(3) will
change their sign under substitution Eik → −Eki in Eqs. (3) and (4). Also
the eigenvalues of the matrix X(3) of a pair of conjugate states differ only in
their signs. The pair of conjugate (contragradient) states are defined to have
the same label m13 = λ + μ, but if one of states in the pair is characterized by
m23 = μ, (λ > μ) the other state has m23 = λ, (μ > λ). The self-conjugate (self-
contragredient) case when λ = μ, i.e., m13 = 2μ and m23 = μ have completely
different eigenvalues of the matrix X(3) from the previous case. In this case, the
eigenvalues for the same L join in pairs and have the same absolute values, but
differ in sign. However, if the number of eigenvalues with the same L is uneven
(odd) then at least one of these eigenvalues has to be equal to 0.

106 A. Deveikis et al.

Table 3. The example of calculations of the matrix X (3) with respect to the G-T
patterns for a number of μ and fixed λ = 125. The columns of the table are formed by μ,
the maximum value of the angular momentum Lmax for a given U(3) representation
with corresponding μ and λ (the number Lmin = 1 and the number of different L is equal
to the Lmax), the dimension of the corresponding matrix X (3), the maximal dimension
of the matrix X (3) for given μ and λ of SU(3)⊃ SO(3) (the minimum dimension of
this matrix is equal to 1), the CPU time for calculations of the matrix X (3) for a given
U(3) representation with corresponding μ and λ.

μ Lmax dim X (3) max dim X (3) CPU time

10 135 693 6 47.78 s

20 145 1323 11 1.97min

40 165 2583 21 5.62min

60 185 3843 31 10.91min

80 205 5103 41 18.03min

100 225 6363 51 26.78min

120 245 7623 61 37.12min

Remark 2. At M = m11 + m12 + m22 − 3m23 = 0, the corrected formula corre-
sponding to Eq. (55) in [19] has the following form

∑ 〈
m12m22

m11

∣∣∣X(3)
∣∣∣ m′

12m
′
22

m′
11

〉
= 0. (10)

with summation over m11+m12+m22 = m13+m23, m′
11+m′

12+m′
22 = m13+m23.

In Table 2, we present the eigenvalues xnL of the X(3) matrix in the G-
T basis for U(3) representation m13 = 16,m23 = 6,m33 = 0 labeled by the
definite value of the angular momentum L and n which is the sequence number
of eigenvalues and it is introduced here for the convenience only. The dimension
of the X(3) matrix in the G-T basis, i.e., the number of patterns that exist for
a given irreducible U(3) representation, is 39 (see Fig. 1).

In Table 3, we present an example of the CPU time of calculations of the
matrix X(3) with respect to the G-T patterns for a number of μ and fixed λ =
125. It should be stressed that the presented procedure is very effective and
could be applied for large scale calculations since the quantum numbers managed
significantly outperform the considered as “. . . very large values, e.g., λ∼100
and μ∼10.” [25].

3 Algorithm and Calculations in Orthonormal B-M Basis

The B-M basis is constructed by making use of two SO(3) spherical boson vector
operators ξ and η [29,31] which belong to two fundamental irrs. SU(3):

ξ± = ∓ 1√
2
(ξx ± ıξy), ξ0 = ξz, η± = ∓ 1√

2
(ηx ± ıηy), η0 = ηz. (11)

Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) 107

The B-M states are polynomials constructed from these operators which act
on the vacuum state denoted by |0〉. The pairs of creation ξm and ηm, and
annihilation ξ+m and η+

m vector-boson operators are defined by the relations

ξ+m|0〉 = η+
m|0〉 = 0, [ξ+m, ξn] = [η+

m, ηn] = (−1)mδ−m,n. (12)

Fig. 2. The graphical representation of the matrix elements of the general tensor prod-
uct of three operators corresponding to the Eq. (14) is derived by the graphical method
[18].

With the help of ξ and η one can construct the additional, helpful, irreducible
tensor operators FL

M =
∑

μν CLM
1μ1ν(ξμξ+ν + ημη+

ν). The vectors ξ+ and η+ can
be chosen in the form ξ+ν = (−1)ν∂/∂ξ−ν , η+

ν = (−1)ν∂/∂η−ν , i.e. the vectors
ξ, η and ξ+, η+ are considered as creation and annihilation operators of two
distinct kinds of vector bosons in the Fock representation. The tensor operators
satisfy the following commutation relations

[F L1
M1

, F L2
M2

] = BL1,L2

∑
L

[(−1)L − (−1)L1+L2]CLM1+M2
L1M1L2M2

{
L1 L2 L
1 1 1

}
F L

M1+M2
, (13)

where BL1,L2 =
√

(2L1 + 1)(2L2 + 1) and {∗
∗
∗
∗
∗
∗} is 6j Symbol of SO(3) [29].

One can see that for Lm =
√

2F 1
m, Qk =

√
6F 2

k , the operators Lm(m = 0,±1)
and Qk(k = 0,±1,±2) satisfy the standard commutation relations of the group
SU(3) given by Eqs. (5)–(6) defined in G–T basis and the second-order Casimir
operator C2(SU(3)) = Q · Q + 3L · L = 4(λ2 + μ2 + λμ + 3λ + 3μ) was described
in [2] and implemented as a symbolic algorithm in [7,8]. It is evident (from the
above commutation relations) that the operators Lm, where m = 0,±1 define the
algebra of the angular momentum SO(3) and the operators Qk, k = 0,±1,±2,
extend this algebra to the SU(3) algebra. The dimension of any SU(3) irrep for a
given λ, μ can be calculated by using the following formula: Dλμ = 1

2 (λ+1)(μ+1)
(λ + μ + 2). Definition of the corresponding labeling operator X(3) [4] is given
by X(3) =

(
[L(1) ⊗ L(1)](2) · Q(2)

)
. The tensor product X(3) of three angular

momentum operators is expressed as

〈
iLM

∣∣
[
[T (k1) ⊗ U (k2)](k12) ⊗ W (k3)

](k)
q

∣∣ i′L′M ′ 〉

=
∑

i′′L′′M ′′q1,q2

∑

i′′′L′′′M ′′′q12,q3

(k1q1 k2q2|k12q12)(k12q12 k3q3|kq) (14)

×〈
iLM

∣∣ T (k1)
q1

∣∣ i′′L′′M ′′ 〉〈 i′′L′′M ′′ ∣∣ U (k2)
q2

∣∣ i′′′L′′′M ′′′ 〉〈 i′′′L′′′M ′′′ ∣∣ W (k3)
q3

∣∣ i′L′M ′ 〉.

108 A. Deveikis et al.

The effective expression for matrix elements of the three operators tensor prod-
ucts may be derived by the graphical method [18]. Firstly, the general tensor
product of three operators can be expressed in the graphical form as in Fig. 2.
The great advantage of usually this graphical method is that it can significantly
simplify the momentum recoupling coefficients that are inherently presented in
formulas of this type. Secondly, using the graphical methods Eq. (14) may be
simplified

〈
iLM

∣∣
[
[T (k1) ⊗ U (k2)](k12) ⊗ W (k3)

](k)
q

∣∣ i′L′M ′ 〉

= (L′M ′ kq|LM)
∑

i′′L′′i′′′L′′′
[(2L + 1)(2L′′ + 1)(2L′′′ + 1)]−1/2 (15)

× 〈
iL

∣∣∣∣ T (k1)
∣∣∣∣ i′′L′′ 〉 〈

i′′L′′ ∣∣∣∣ U (k2)
∣∣∣∣ i′′′L′′′ 〉 〈

i′′′L′′′ ∣∣∣∣ W (k3)
∣∣∣∣ i′L′ 〉

×〈(L′, ((k1, k2)k12, k3)k)L|(((L′, k3)L′′′, k2)L′′, k1)L〉,
where 〈y||A||y′〉 are reduced matrix elements with respect to the SO(3)
group [29]. Finally, the angular momentum recoupling the coefficients appearing
in Eq. (15) can be simplified significantly by the graphical method. In this way,
a simple formula for matrix elements of the operator X(3) is derived

〈
(λμ)
j, L′,M ′

∣∣∣∣ X(3)

∣∣∣∣
(λμ)
i, L,M

〉
=

1
6
(L + 1)(2L + 3) q

(λμ)
ij0 (L) δLL′ δMM ′ . (16)

The q-coefficients required in the orthonormalization scheme use the non-
normalized overlap integrals and they are defined as

q
(λμ)
ijk (L) =

∑αmax

α=0

∑
s=0,±1

A(λμ)
i,α (L)a(k)

s (A−1)
(λμ)

(α+s),j(L + k), (17)

where the coefficients a
(k)
s are given in Ref. [9,31] and they read as

a
(2)
0 =

6(λ + μ − L − 2α − β)

[(L + 2)(2L + 3)]1/2
, a

(2)
−1 =

12α

[(L + 2)(2L + 3)]1/2
, a

(2)
−1 = 0,

a
(1)
0 = −6

2αβ(L + 2α − μ + 1) + (λ + μ − L − 2α − β)(μ − 2α − β)

(L + 2)(L + 1)1/2
− 6β

(L + 1)1/2
,

a
(1)
−1 =

12α(λ − μ + 2α)

(L + 2)(L + 1)1/2
, a

(1)
1 =

6β(λ + μ − L − 2α − β)

(L + 2)(L + 1)1/2
,

a
(0)
0 = 4α

L(L + 1) − 3(L + 2α − μ + β)2

(L + 1)(2L + 3)
− 2(λ + μ − L − β − 2α)

L(L + 1) − 3(μ − 2α)2

(L + 1)(2L + 3)

−(L − μ + 4α + β)

(
1 +

3β

L + 1

)
,

a
(0)
−1 =

6(λ + μ − L − 2α − β)(L − μ + 2α)(L − μ + 2α − 1)
(L + 1)(2L + 3)

,

a
(0)
1 = −6(λ + μ − L − 2α − β)(μ − 2α − β)(μ − 2α − β − 1)

(L + 1)(2L + 3)
,

β =
{

0, λ + μ − L even,
1, λ + μ − L odd.

Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) 109

The q-coefficients in the orthonormalization scheme that uses the normalized
overlap integrals (defined below and denoted for some formulas simplification by
the same symbol q

(λμ)
ijk (L) as in (17)) are calculated as

q
(λμ)
ijk (L) =

∑

α=0,...,αmax
s=0,±1

A(λμ)
i,α (L)

√
〈uα+s|uα+s〉L+k

〈uα|uα〉L
a
(k)
s (A−1)

(λμ)
(α+s),j(L + k), (18)

where 〈uα|uα′〉L denotes the non-normalized overlap integrals.
In this section, we use the following form of the formula for the overlap

integral of the non-canonical B-M states presented in [2]

〈uα|uα′〉L≡
〈

(λ, μ)B

α,L, L

∣∣∣∣
(λ, μ)B

α′, L, L

〉
= C1(λ,L,Δ)(λ + 2)β(L − μ + 2α)!

×(λ − L + μ − 2α′ − β)!!(μ − 2α′ − β + Δ − 1)!!

×
∑

l,z

(
α′

1/2(l − β − Δ)

)
(−1)(μ+2α−Δ−β)/2+z

(
1
2 (μ − 2α − Δ − β)

z

)

× (μ − l)!!
(μ − l − 2z)!!

(μ + β + Δ)!!
(μ − 2α′ + l)!!

(l − Δ + β − 1)!!(μ − Δ − β − 2z)!!

× (λ − L + μ − 2α − β)!!
(λ − L + Δ + 2z)!!

(λ + L − Δ + 2)!!
(λ + L − μ + 2α + β + 2z + 2)!!

(L + l)!
L!

× (λ + μ + L + β + 2)!!
(λ + L + l + β + 2z + 2)!!

(λ + β + 2z + 1)!
(λ + β + 1)!

(λ + μ − l − L + Δ)!!
(λ − L + μ − 2α′ − β)!!

×C2(λ,L,Δ, z). (19)

Here α ≥ α′ and we use the following notations

β =
{

0, λ + μ − L even,
1, λ + μ − L odd.

Δ =
{

0, λ − L even,
1, λ − L odd,

(
m
n

)
=

m!
n!(m − n)!

,

C1(λ, L, Δ) =

{
1, L>λ + Δ,
(λ+L+Δ+1)!!

(2L+1)!!
, L≤λ + Δ,

C2(λ, L, Δ, z) =

{(λ+L+Δ+1+2z)!!
(2L+1)!!

, L>λ + Δ,
(λ+L+Δ+1+2z)!!

(λ+L+Δ+1)!!
, L≤λ + Δ.

It should be emphasized that the calculation of the matrix X(3) in both cases
with the non-normalized and normalized overlap integrals is performed by using
the same Eq. (16). The only difference is that in the Eq. (16) for calculations
with the non-normalized overlap integrals, the q-coefficients defined in Eq. (17)
should be applied and for the calculations with the normalized overlap integrals,
the q-coefficients Eq. (18) should be used. It is to be noted that the states (2.3)
from paper [2] differ from the states (3.8) from paper [24] in the definition of the
number α and coincide up to phase factor (−1)α.

3.1 Calculations in the B-M Basis

The transformation from the non-orthogonal basis |uα〉 to the orthogonal |φi〉
basis is given by the left upper triangle matrix A:

|φi〉 =
∑

α
Aiα|uα〉, Aiα = 0; i > α, U = 〈u|u′〉 = A−1(AT)−1.

110 A. Deveikis et al.

Table 4. Computation of A matrix for λ = 125 and L = 120 (precision = 300).

μ CPU time exact CPU time numerical

40 7.48 s 2.33 s

60 36.27 s 11.47 s

80 2.10 min 34.23 s

100 5.94 min 1.46 min

120 15.03 min 3.01 min

Then we have the following relations:

〈φi|φj〉 =
∑

αα′ 〈uα|AT
αiAjα′ |uα′〉 =

∑
αα′ Aiα〈uα|uα′〉(AT)α′j = δij .

The diagonalization example of the matrix X(3) defined by Eq. (16) with μ = 6,
λ = 10 and L = 6 in the B-M orthonormal basis with use of the Alisauskas
formula Eq. (19) for the overlap integrals is presented. The entries of the matrix
U are the overlap integrals 〈uα|uα′〉, Eq. (19)

U =

⎛
⎜⎝

7.420552446 1.265307137 0.7182987559 0.5360438477
1.265307137 1.202208278 0.8437655038 0.6732710727
0.7182987559 0.8437655038 1.042308835 0.9930943247
0.5360438477 0.6732710727 0.9930943247 2.782445237

⎞
⎟⎠ ×10

16
. (20)

The matrix A contains the B-M basis orthonormalization coefficients

A =

⎛
⎜⎝

−0.4074172336 0.5379900162 −0.1598566047 0.005366888407
0 −1.400458233 1.228635203 −0.09964711136
0 0 −1.205730325 0.4303423216
0 0 0 0.5994965488

⎞
⎟⎠ ×10

−8
. (21)

Comparison of computation times of exact and numerical orthonormalisation of
B-M basis is shown in Table 4.

X
(3)

(λμL) =

⎛
⎜⎝

319.7180436 13.74962194 0 0
13.74962194 34.17110415 41.32579910 0
0 41.32579910 −125.1337108 −89.49710939
0 0 −89.49710939 −228.7554369

⎞
⎟⎠. (22)

Numerical eigenvalues x ≡ xλμ(L) of the matrix X(3)(λμL):

x
λμ

(L) =

⎛
⎜⎝

320.3878386 0 0 0
0 −281.7338447 0 0
0 0 −84.20614615 0
0 0 0 45.55215226

⎞
⎟⎠, (23)

Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) 111

coincide with the eigenvalues calculated in the G-T basis presented in Table 2.
The eigenvectors V of the X(3)(λμL) matrix are of the form

V =

⎛
⎜⎝

0.9988044336 0.001521525127 −0.009720865112 −0.047884164096
−0.04865546258 −0.06655631440 0.2855709474 0.9548047638
0.004665953573 0.5082672123 −0.8147802593 0.2788831277

−0.0007604378964 0.8586223750 0.5044679057 −0.09098994985

⎞
⎟⎠. (24)

Since the X(3)(λμL) matrix is symmetric, these vectors V are orthonormalized.
The calculation of the matrix X(3) was performed in the B-M orthonormal

basis calculated with the normalized Alisauskas formula (19) for the overlap
integrals as well. For comparison, we use here the same parameters μ = 6,
λ = 10 and L = 6 as in the calculations without overlap integrals.

U =

⎛
⎜⎝

1.000000000 0.4236312421 0.2582788150 0.1179692678
0.4236312421 1.000000000 0.7537610627 0.3681177725
0.2582788150 0.7537610627 1.000000000 0.5831482514
0.1179692678 0.3681177725 0.5831482514 1.000000000

⎞
⎟⎠, (25)

A =

⎛
⎜⎝

−1.109832696 0.5898805458 −0.1632032466 0.008952325776
0 −1.535536055 1.254357019 −0.1662179900
0 0 −1.230972621 0.7178395313
0 0 0 1.000000000

⎞
⎟⎠. (26)

The matrix X(3)(λμL) calculated in the normalized B-M basis has the same
entries as in the non-normalized case (22). The matrix X(3)(λμL) has the same
eigenvalues from (23) and eigenvectors (24) as in the case of calculations with
non-normalized overlaps.

3.2 Calculations of X (3) with Summation in the B-M Basis

The reduced matrix element of the quadrupole operator is given by
〈

(λμ)
j, L + k

∣∣∣∣

∣∣∣∣ Q(2)

∣∣∣∣

∣∣∣∣
(λμ)
i, L

〉
= (−1)k

√
2L + 1

(L + k, L, 20|LL)
q
(λ,μ)
i,j,k (L) , (27)

where the q-coefficients are defined by (17). The matrix elements of the quadru-
pole operator components can be obtained from the reduced matrix elements (27)
by the Wigner–Eckart theorem:

〈
(λμ)
jL′M ′

∣∣∣∣ Q(2)
p

∣∣∣∣
(λμ)
iLM

〉
=

(LM 2p|L′,M ′)√
2L′ + 1

〈
(λμ)
j, L′

∣∣∣∣

∣∣∣∣ Q(2)

∣∣∣∣

∣∣∣∣
(λμ)
i, L

〉
. (28)

Direct summation in the formula (14) gives

〈
(λμ)
j, L′, L′

∣∣∣∣ X(3)

∣∣∣∣
(λμ)
i, L, L

〉
=

√
5
6
δLL′

1∑

m1=−1

2∑

m4=−2

(1m11 − m1|00)

×(1m1 − m42m4|1m1)
〈

(λμ)
j, L, L

∣∣∣∣ L
(1)
m1−m4

∣∣∣∣
(λμ)
j, L, L − m1 + m4

〉
(29)

×
〈

(λμ)
j, L, L − m1 + m4

∣∣∣∣ Q(2)
m4

∣∣∣∣
(λμ)
i, L, L − m1

〉 〈
(λμ)
j, L, L − m1

∣∣∣∣ L
(1)
−m1

∣∣∣∣
(λμ)
j, L, L

〉
.

112 A. Deveikis et al.

Fig. 3. (a) The CPU time versus parameter μ in the interval μ = 10 . . . 120 for calcula-
tions of the matrix X (3) in the B-M basis with λ = 125 and L = 120 using the different
computation Algorithms. Algorithm 1 represents the calculations with non-normalized
overlaps, Algorithm 2 with normalized overlaps, and Algorithm 3 with direct summa-
tion formula. The computations were performed with 300 decimal digits of precision.
(b) The CPU time versus the parameter μ in the interval μ = 10 . . . 120 for calculations

of the matrix X̄
(3)

in the orthonormal Elliott basis Eq. (39) with λ = 125 and L = 120
using the different computation procedures. The computations were performed with
300-digit precision.

The dimension of the quadrupole and angular momentum operator matrices
is Dλμ determined above. The matrix X(3)(λμL) calculated with direct summa-
tion formula has the same entries, eigenvalues, and eigenvectors as in the case
with the non-normalized and normalized overlaps presented in Subsect. 3.1. The
efficiency of the developed algorithms is presented in Fig. 3a. The CPU time
versus parameter μ in the interval μ = 10 . . . 120 for calculations of the X(3)

matrix in the Bargmann–Moshinsky basis with λ = 125 and L = 120 using the
different algorithms determined by Eqs. (17), (18) and (29) are presented. The
computations were performed with 300 decimal digits of precision (DDP).1

Remark 3. In the Mathematica language, a matrix of eigenvectors is the matrix
presented by rows but in Maple it is the matrix presented by columns which is a
standard accepted in literature. Below we use a transposed matrix of eigenvectors
calculated in Mathematica.

1 Question: How to decide what accuracy is sufficient? Why 300-DDP? Answer: Cal-
culations are carried out, with very large numbers produced by the presence of
factorials in expressions. Computational accuracy should ensure the accuracy of cal-
culations, which is estimated by the product of normalization tests, eigenvalues, and
equation of eigenvalues. In these calculations, computational accuracy 300-DDP was
taken to ensure that the absolute accuracy of each matrix element of the test result
is not worse than 10−50. It should be noted that when calculating with large quan-
tum numbers (μ = 120, λ = 125, L = 120), low computational accuracy (200-DDP)
makes the calculations themselves impossible, leading to a division error by zero, and
insufficient computational accuracy (250-DDP) although it already allows you to cal-
culate the matrix X(3) but not accurately enough, therefore, it is not yet ensured
that its eigenvalues and vectors are found.

Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) 113

4 Algorithm of Construction and Calculations of the E
Basis

The first overlap 〈(λμ)(K ′)L′M ′|(λμ)(K)LM〉 = δLL′δMM ′U (λμ)(K ′LK) where
U (λμ)(K ′LK) =

〈
ΦK

∣∣ PL
KK′

∣∣ΦK′
〉

is given by formula (2.14) of Asherova [4]

〈
ΦK

∣∣ P L
KK′

∣∣ ΦK′
〉
=

[
(L + K)!(L − K)!(L + K′)!

(
1
2
(μ − K)

)
!
(
1
2
(μ − K′)

)
!

(L − K′)!
(
1
2
(μ + K)

)
!
(
1
2
(μ + K′)

)
!

] 1
2

× (−1)
1
2 (K′−K)

L!(2L − 1)!!

∑
x,s

(−1)s(2x − 1)!!
(
1
2
(2λ + μ − K′) + x − s

)
!

2x+K′
s!(2x − s)!

(
x + 1

2
(K′ − K)

)
!
(
1
2
(μ − K′) − x

)
!

(30)

×
(
1
2
(μ + K′) + x

)
!(

1
2
(2λ + μ + K′) − L + x − s

)
!

×2F1

(
−

(
1

2
(2λ + μ + K′) − L + x − s

)
, L − K + 1; 2L + 2; 2

)
.

The second overlap integral of the non-orthonormalized E basis is given by the
first formula (43) of the Tolstoy paper [27]

U (λμ)(K ′LK) = (−1)L− 1
2 (K+K′)(2L + 1)

×
√

(L + K)! (L + K ′)! (12 (μ − K))! (12 (μ − K ′))!
(L − K)! (L − K ′)! (12 (μ + K))! (12 (μ + K ′))!

×
∑

rt′
z

(−2)L+r−2t′
z (L − K + r)! (L − K ′ + r)!

r! (2L + 1 + r)! (λ + 1
2μ − L − r + t′z)! (L + r − 2t′z)!

× (λ + 1
2μ − t′z)! (12μ + t′z)!

(t′z − 1
2K)! (t′z − 1

2K ′)! (12μ − t′z)!
. (31)

The third overlap integral of the non-orthonormalized E basis is given by the
second formula (49) of the Tolstoy paper [27]

U (λμ)(K ′LK) = (−1)L− 1
2 (K+K′)(2L + 1)

×
√

(L + K)! (L + K ′)! (12 (μ − K))! (12 (μ − K ′))!
(L − K)! (L − K ′)! (12 (μ + K))! (12 (μ + K ′))!

×
∑

t′
z

(−2)λ+ 1
2μ−t′

z (λ + 1
2μ − K + t′z)! (λ + 1

2μ − K ′ + t′z)!
(λ + 1

2μ + L + t′z + 1)! (λ + 1
2μ − L + t′z)!

× (12μ + t′z)!
(t′z − 1

2K)! (t′z − 1
2K ′)! (12μ − t′z)!

×3F2

(−λ − 1
2μ − L − t′z − 1, −λ − 1

2μ + L − t′z, −λ − 1
2μ + t′z

−λ − 1
2μ + K − t′z, −λ − 1

2μ + K ′ − t′z

∣∣∣∣
1
2

)
.(32)

It should be noted that for conjugate basis |(λμ)(K)LM〉L at μ > λ overlap
Aλμ

L (K ′LK) = (−1)λ−1/2(K+K′)Aμλ
L (K ′LK) from Eq. (80) of Ref. [27]. It should

114 A. Deveikis et al.

Table 5. Computation of A matrix for λ = 125 and L = 120 (precision = 300)

μ Asherova (30) Tolstoy1 (31) Tolstoy2 (32)

40 2.174 s 3.06 s 0.81 s

60 10.81 s 13.31 s 2.19 s

80 39.78 s 39.80 s 5.38 s

100 1.70 min 1.57 min 11.48 s

120 3.40 min 3.22 min 21.53 s

be stressed that all these formulas for overlap integrals give the same numerical
values but their efficiency is quite different. An example of the orthonormaliza-
tion of the E basis calculated with non-normalized overlap integrals for μ = 6,
λ = 10 and L = 6 (here Kmin = 0, Kmax = 6,ΔK = 2) is shown below

Uλμ(L) =

⎛

⎜⎜⎝

221059
572033 − 2405

52003
√

11
67

52003

√
3
11 − 1

7429

√
15
77

− 2405
52003

√
11

317467
1716099 − 2963

81719
√

3
181

81719

√
15
7

67
52003

√
3
11 − 2963

81719
√

3
204329
1716099 − 4129

81719

√
5
7

− 1
7429

√
15
77

181
81719

√
15
7 − 4129

81719

√
5
7

16415
81719

⎞

⎟⎟⎠ ,

Aλμ(L) =

⎛

⎜⎝

− 5
64

√
38687

91 − 11121
160

√
320047

− 1353
320

√
3

320047 − 11
32

√
3

228605

0 − 1
80

√
124210581

3517 − 15789
20

√
209

696728251 − 9333
16

√
209

24385488785

0 0 − 7
2

√
294063
396206 − 4129

14

√
627

132729010

0 0 0 1
7

√
81719
335

⎞

⎟⎠ ,

where Uλμ(L) is the matrix of the overlap integrals U (λμ)(K ′LK).
A comparison of CPU time of computation of the matrix A with overlaps in

the E basis given by Eqs. (30), (31) and (32) is presented in Table 5.

4.1 Calculations of X (3) in Non-orthogonal E Basis

The normalized E basis calculated with Asherova and Tolstoy formulas (30),
(31) and (32) (λ ≥ μ, λ ≤ μ) are given by:

U (λμ)(KLK ′) =
〈

(λ, μ)E

K,L,L

∣∣∣∣
(λ, μ)E

K ′, L, L

〉
=

1
u(LK)u(LK ′)

U (λμ)(KLK ′), (33)

where u2(LK) = U (λμ)(KLK). An expansion of eigenvectors of the X(3)(μλL)
matrix in terms of the non-orthogonal E basis is

∣∣∣∣
(λ, μ)E

x,L, L

〉
=

∑Kmax

K=Kmin
CxK

∣∣∣∣
(λ, μ)E

K,L,L

〉
. (34)

Here x denotes the eigenvalues of the X(3)(λμL) matrix. It should be stressed that
eigenvalues of the matrix X(3) have the same numerical values independently of
a basis.

Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) 115

The eigenvalues and eigenvectors of the X(3)(λμL) matrix can be obtained
by solving the appropriate generalized eigenvalue problem:

Kmax∑

K=Kmin

CxK

(〈
(λμ)E

KLL

∣∣∣∣ X(3)

∣∣∣∣
(λμ)E

K ′L′L

〉
− x

〈
(λ, μ)E

K,L,L

∣∣∣∣
(λ, μ)E

K ′, L, L

〉)
= 0. (35)

Matrix elements of the matrix X(3)(λμL) in the non-orthogonal E basis read as
〈

(λμ)E

KLL

∣∣∣∣ X(3)

∣∣∣∣
(λμ)E

K ′L′L

〉

= −1
2

(
1 +

1
3
(2λ + μ)

)(
L(L + 1) − 3K2

) 〈
(λ, μ)E

K,L,L

∣∣∣∣
(λ, μ)E

K ′, L, L

〉

−1
4

√
(μ + K)(μ − K + 2)(L + K)(L − K + 1)(L + K − 1)(L − K + 2)

×u(LK − 2)
u(LK)

〈
(λ, μ)E

K − 2, L, L

∣∣∣∣
(λ, μ)E

K ′, L, L

〉
(36)

−1
4

√
(μ − K)(μ + K + 2)(L − K)(L + K + 1)(L − K − 1)(L + K + 2)

×u(LK + 2)
u(LK)

〈
(λ, μ)E

K + 2, L, L

∣∣∣∣
(λ, μ)E

K ′, L, L

〉
.

Below we present the solution of the generalized eigenvalue problem for the
matrix X(3) =

(
[L(1)⊗L(1)](2)·Q(2)

)
with μ = 6, λ = 10 and L = 6 in the

non-orthogonal E basis. The matrix X(3)(λμL) defined by Eq. (36) in the non-
orthogonal E basis reads:

X(3)(λμL) =

⎛

⎜⎜⎝

319.7180436 −30.40475773 2.942648053 −0.2996013406
−30.40475773 36.37991665 −45.86740146 12.00462530

2.942648053 −45.86740146 −110.4027084 −53.26181618
−0.2996013406 12.00462530 −53.26181618 −172.8154127

⎞

⎟⎟⎠.

The matrix Uμλ(L) of the normalized overlap integrals defined by Eqs. (33) of
the non-orthogonal E basis is the following:

U
λ μ

(L) =

⎛
⎜⎜⎜⎝

1.000000000 −0.05215172237 0.003136702244 −0.0002132393883

−0.05215172237 1.000000000 −0.1410509515 0.01681957796

0.003136702244 −0.1410509515 1.000000000 −0.2761245773

−0.0002132393883 0.01681957796 −0.2761245773 1.000000000

⎞
⎟⎟⎟⎠. (37)

Numerical eigenvalues x ≡ xλμ(L) of the matrix X(3)(λμL) obtained by
solving the generalized eigenvalue problem defined by Eq. (35) coincide with
those from (23). The same eigenvalues will be obtained for the matrix X(3)(λμL)
calculated not by normalized overlap integrals U (λμ)(KLK ′) Eq. (33), but by
non-normalized overlap integrals Eqs. (30), (31), (32) as well. Of course the
entries of X(3)(λμL) and Uλμ(L) are completely different in this case.

116 A. Deveikis et al.

Table 6. Computation of the matrix X (3) in the non-orthogonal E basis Eq. (36) for
λ = 125 and L = 120 (precision = 300)

μ Asherova (30) Tolstoy1 (31) Tolstoy2 (32)

40 1.17 min 1.5 min 24.84 s

60 6.13 min 7.05 min 1.43 min

80 20.05 min 22.43 min 4.08 min

100 53.71 min 53.97 min 8.69 min

120 1.92 h 1.82 h 14.27 min

Remark 4. For checking our results the matrix X(3)(λμL) was also calculated
by using Eqs. (129)–(131) of Tolstoy paper [27]. The eigenvalues of this matrix
are equal to the eigenvalues of the X(3)(μλL) matrix calculated by Eq. (36).

The eigenvectors C of eigenvalue problem X(3)C − UCx = 0 have the form

(C1, ..., C4) =

⎛

⎜⎜⎝

0.998827 −0.100335 −0.029577 −0.006434
−0.048196 −0.953926 −0.414649 −0.134402

0.004503 0.265111 −0.718457 −0.643440
−0.000793 −0.098353 0.557682 −0.753576

⎞

⎟⎟⎠ .

Comparison of the CPU time for computing the matrix X(3) in the non-
orthogonal E basis with overlaps Eqs. (30), (31), (32) is presented in Table 6.

4.2 Calculations of X (3) in Orthogonal E Basis

Now we solve the same eigenvalue problem in the orthogonal basis |φ〉 = |u〉AT .
In the orthogonal basis, Eqs. (35) are expressed in terms of the operator X(3)

calculated in the non-orthogonal basis in the following form

AX(3)AT B − Bx = 0. (38)

The expression for labeling operator X̄
(3) in the orthonormal E basis reads as

X̄
(3) = AX(3)AT . (39)

For the example with μ = 6, λ = 10 and L = 6 the matrix A in the E basis is

A =

⎛
⎜⎜⎝

−1.001371945 −0.05284392928 −0.004466788619 −0.0005581094723
0 −1.010371879 −0.1491969336 −0.02420291165
0 0 −1.040450798 −0.2872940369
0 0 0 1.000000000

⎞
⎟⎟⎠ . (40)

Here the tridiagonal matrix X̄
(3) Eq. (39) in the orthogonal basis reads as

X̄
(3)

=

⎛
⎜⎜⎝

317.482 −29.02009 −2.1 × 10(−10) −9.7 × 10(−11)
−29.02009 20.9536 −66.6970 −3.6 × 10(−9)
−2.1 × 10(−10) −66.697 −165.620 105.065
−9.7 × 10(−11) −3.6 × 10(−9) 105.0651 −172.815

⎞
⎟⎟⎠ . (41)

Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) 117

The eigenvalues of the matrix X̄
(3) are the same ones as in (23) and the eigen-

vectors normalized by the scalar product BT B = I have the following form

(B1, ..., B4) =

⎛

⎜⎜⎝

0.994918 −0.096471 −0.027807 −0.007620
−0.099615 −0.903976 −0.384899 −0.157341

0.014330 0.375369 −0.594764 −0.710737
0.003052 0.180604 −0.705219 0.685593

⎞

⎟⎟⎠ . (42)

There is a relation between eigenvector matrices B and C:

B = DDB. (43)

Here D = (AT)−1C, D is the diagonal matrix with diagonal elements equal to
the reciprocals of diagonal elements of the matrix D and B is a diagonal matrix
with diagonal elements of the matrix B on its diagonal.

The CPU times versus parameter μ in the interval μ = 10 . . . 120 for cal-
culations of the matrix X̄

(3) in the orthonormal Elliott basis with λ = 125
and L = 120 using different computation procedures with the overlaps given
by Eqs. (30), (31) and (32) are presented in Fig. 3b. The computations were
performed with 300-digit precision.

Remark 5. In the limit of large λ or μ, the overlap in the Elliot basis tends to a
diagonal matrix. In this limit, the matrix of the operator X(3) and its eigenvalues
and eigenvectors tend to those known for an asymmetric top [4,21,28].

5 Results and Conclusions

In this paper we have developed the symbolic-numeric and fast computation
procedures for calculation of the matrix X(3)(λμL) in the Gel’fand–Tseitlin (G-
T), Bargmann–Moshinsky (B-M) and Elliott (E) bases that could be applied to
a very large quantum numbers.

The advantages of the G-T basis from the computational point of view are:
its original orthonormality, the simplicity of expressions for matrix elements of
physically significant operators, and a possibility to construct their matrices with
symbolic calculations. However, one needs to take into account that required
calculations of the matrix X(3)(λμL) for all L have to be performed in one run
that destroys fast performance. This disadvantage of the G-T basis is related to a
necessity to perform the calculations for all L at the same time. So, the dimension
of matrices is significantly larger than in the B-M and E bases. For example,
even if in the B-M and E bases, the dimension of the matrix X(3)(λμL) for
some particular L is one, the dimension of the corresponding eigenvector column
G-T basis is the sum of dimensions of the matrices X(3)(λμL) for all L. In the
considered example with μ = 6 and λ = 10, this dimension is 39. For comparison,
in this example, the maximum possible dimension of the matrix X(3)(λμL) in
the B-M and E bases is only 4. It should be noted that due to the simplicity of

118 A. Deveikis et al.

the matrix elements of the generators Eij (due to the absence of factorials in
the expressions for the GT basis) calculated within the G-T vectors the machine
precision of Mathematica (18 decimal digits of precision (DDP)) is sufficient for
large scale numerical calculations. This computational accuracy ensures absolute
accuracy of each matrix element of the test result not less than 10−12. This
advantage of G-T basis greatly increase the number of various computation
systems that could be applied for this kind of calculations.

The notable advantages of the B-M basis are its inherent specification by
angular momentum L and integer values of overlap integrals. The disadvantages
of the B-M basis are its non-orthogonality and complicated formula for calculat-
ing the overlap integrals. In the present paper, we have elaborated new efficient
symbolic-numeric algorithms for the calculation of the matrix X(3)(λμL) in
the B-M basis. The distinct advantage of these algorithms is that they do not
involve any square root operation on the expressions coming from the previous
steps for the computation of the orthonormalization coefficients for this basis.
This makes the proposed method very suitable for symbolic calculations and
calculations with an arbitrary precision as well. The effectiveness of the devel-
oped algorithms derived by graphical methods is demonstrated by their 100–1000
times superiority in CPU time over computations using the direct summation in
the X(3)(λμL) definition formula.

The E basis is well known for its widespread use in nuclear calculations. The
disadvantages of the E basis are its non-orthogonality, complicated formula for
the calculation of overlap integrals and root rational fraction form of some their
values. The calculation of the matrix X(3)(λμL) in the E basis was implemented
by the formulas of Asherova (30) and Tolstoy: (31) and (32). The fastest formula
for the overlap integrals is the Tolstoy formula (32). It significantly outperforms
all other formulas for the overlap integrals in both the E as well as B-M basis.
This is due to the fact of transferring of the large part of computations, in this
case, to very efficient internal Wolfram Mathematica hypergeometric functions.
However, since the overlap integrals in the E basis have the root rational fraction
form the scale of exact calculations in this basis is rather limited comparing
with the computations in the B-M basis. For example, for considered cases of
λ = 125 and L = 120, Mathematica is able to perform exact computations only
up to μ = 9. At the same time, since in the B-M basis, the overlap integrals
are just integer numbers, there are no restrictions for exact calculations in this
basis. Nevertheless in the case of numerical computations, the calculations in
the E basis compete with analogous calculations in the B-M basis.

In the present paper, we have elaborated new efficient symbolic-numeric algo-
rithms and procedures implemented in the Wolfram Mathematica for comput-
ing the matrix X(3)(λμL) in the G-T, B-M and E bases. The developed code
XGTBME solves the non-canonical group chain of SU(3)⊃SO(3)⊃ SO(2) label-
ing problem for large-scale calculations in these bases. The program XGTBME
is already prepared and will be published in JINR Program Library.

Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) 119

Acknowledgments. Čestmir Burdik thanks Prof. V.N. Tolstoy for fruitful discus-
sion. The work was partially supported by the RFBR and MECSS, project number
20-51-44001, the Bogoliubov–Infeld program, the Blochintsev–Votruba program, by
the RUDN University Strategic Academic Leadership Program and grant of Plenipo-
tentiary of the Republic of Kazakhstan in JINR.

References

1. Akiyama, Y., Draayer, J.P.: A user’s guide to Fortran programs for Wigner and
Racah coefficients of SU3. Comput. Phys. Commun. 5, 405–415 (1973)

2. Alisauskas, S., Raychev, P., Roussev, R.: Analytical form of the orthonormal basis
of the decomposition SU(3) ⊃ O(3) ⊃ O(2) for some (λ, μ) multiplets. J. Phys. G:
Nucl. Phys. 7, 1213–1226 (1981)

3. Asherova, R.M., Smirnov, Y.F.: New expansions of the projecting operator in
Elliot’s SU3 scheme. Nucl. Phys. A 144, 116–128 (1970)

4. Asherova, R.M., Smirnov, Y.F.: On asymptotic properties of a quantum number
Ω in a system with SU(3) symmetry. Reports Math. Phys. 4, 83–95 (1973)

5. Bargmann, V., Moshinsky, M.: Group theory of harmonic oscillators (I). Nucl.
Phys. 18, 697–712 (1960)

6. Bargmann, V., Moshinsky, M.: Group theory of harmonic oscillators (II). Nucl.
Phys. 23, 177–199 (1961)

7. Deveikis, A., Gusev, A.A., Gerdt, V.P., Vinitsky, S.I., Góźdź, A., Pȩdrak, A.: Sym-
bolic algorithm for generating the orthonormal Bargmann–Moshinsky basis for
SU(3) group. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.)
CASC 2018. LNCS, vol. 11077, pp. 131–145. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99639-4 9

8. Deveikis, A., et al.: Symbolic-numeric algorithm for computing orthonormal basis
of O(5)×SU(1,1) group. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov,
E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 206–227. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60026-6 12

9. Deveikis, A., et al.: On calculation of quadrupole operator in orthogonal Bargmann-
Moshinsky basis of SU(3) group. J. Phys. Conf. Ser. 1416, 012010 (2019)

10. Draayer, J.P., Pursey, D.L., Williams, S.A.: Elliott angular momentum states pro-
jected from the Gel’fand U(3) Basis. Nuclear Phys. A ll9, 577–590 (1968)

11. Draayer, J.P., Williams, S.A.: Coupling coefficients and matrix elements of arbi-
trary tensors in the Elliott projected angular momentum basis. Nucl. Phys. A 129,
647–665 (1969)

12. Draayer, J.P.: Akiyama, Y: Wigner and Racah coefficients for SU3. J. Math. Phys.
14, 1904–1912 (1973)

13. Bahri, C., Rowe, D.J., Draayer, J.P.: Programs for generating Clebsch-Gordan
coefficients of SU(3) in SU(2) and SO(3) bases. Comput. Phys. Commun. 159,
121–143 (2004)

14. Elliott, J.P.: Collective motion in the nuclear shell model I. Classification schemes
for states of mixed configurations. Proc. R. Soc. London 245, 128–145 (1958)

15. Elliott, J.P.: Collective motion in the nuclear shell model II. The introduction of
intrinsic wave-functions. Proc. R. Soc. London 245, 568–581 (1958)

16. Gel’fand, I.M., Tseitlin, M.L.: Finite-dimensional representations of the group of
unimodular matrices. Dokl. Akad. Nauk SSSR (N.S.) 71, 825–828 (1950). (in Rus-
sian)

https://doi.org/10.1007/978-3-319-99639-4_9
https://doi.org/10.1007/978-3-319-99639-4_9
https://doi.org/10.1007/978-3-030-60026-6_12

120 A. Deveikis et al.

17. Harvey, M.: The nuclear SU3 model. In: Baranger, M., Vogt, E. (eds.) Advances
in Nuclear Physics, vol. 1, pp. 67–182. Springer, Boston (1968). https://doi.org/
10.1007/978-1-4757-0103-6 2

18. Jucys, A., Bandzaitis, A.: Theory of angular momentum in quantum mechanics.
Mokslas, Vilnius (1997)

19. Judd, B.R., Miller, W., Patera, J., Winternitz, P.: Complete sets of commuting
operators and O(3) scalars in the enveloping algebra of SU(3). J. Math. Phys. 15,
1787–1799 (1974)

20. Kota, V.K.B.: SU(3) Symmetry in Atomic Nuclei. Springer, Singapore (2020).
https://doi.org/10.1007/978-981-15-3603-8

21. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-relativistic Theory. Perg-
amon press, N.Y. (1977)

22. MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com
23. McKay, W., Patera, J., Sharp, R.T.: Eigenstates and eigenvalues of labelling oper-

ators for O(3) bases of U(3) representations. Comput. Phys. Commun. 10, 1–10
(1975)

24. Moshinsky, M., Patera, J., Sharp, R.T., Winternitz, P.: Everything you always
wanted to know about SU(3)⊃ O(3). Ann. Phys. 95, 139–169 (1975). F. Gursey
(ed.) Gordon and Breach, New York (1964)

25. Pan, F., Yuan, S., Launey, K.D., Draayer, J.P.: A new procedure for constructing
basis vectors of SU(3) ⊃ SO(3). Nucl. Phys. A 743, 70–99 (2016)

26. Patera, J.: The Nagel-Moshinsky operators for U(p, 1) ⊃ U(P). J. Math. Phys. 14,
279–284 (1973)

27. Tolstoy, V.N.: SU(3) Symmetry for orbital angular momentum and method of
extremal projection operators. Phys. Atomic Nuclei 69(6), 1058–1084 (2006)

28. Ui, H.: Quantum mechanical rigid rotator with an arbitrary deformation. I. Progr.
Theor. Phys. 44(1), 153–171 (1970)

29. Varshalovitch, D.A., Moskalev, A.N., Hersonsky, V.K.: Quantum Theory of Angu-
lar Momentum. Nauka, Leningrad (1975). (also World Scientific, Singapore (1988))

30. Vergados, J.D.: SU (3)⊃ R (3) Wigner coefficients in the 2s-1d shell. Nucl. Phys.
A 111, 681–754 (1968)

31. Vinitsky, S., et al.: On generation of the Bargmann-Moshinsky basis of SU(3)
group. J. Phys. Conf. Ser. 1194, 012109 (2019)

https://doi.org/10.1007/978-1-4757-0103-6_2
https://doi.org/10.1007/978-1-4757-0103-6_2
https://doi.org/10.1007/978-981-15-3603-8
http://mathworld.wolfram.com

Improved Supersingularity Testing
of Elliptic Curves Using Legendre Form

Yuji Hashimoto1,2(B) and Koji Nuida2,3

1 Graduate School of Information Science and Technology, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
hashimoto-yuji715ewwwd@g.ecc.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi,
Koto-ku, Tokyo 135-0064, Japan

nuida@imi.kyushu-u.ac.jp
3 Institute of Mathematics for Industry (IMI), Kyushu University, 744 Motooka,

Nishi-ku, Fukuoka 819-0395, Japan

Abstract. There are two types of elliptic curves, ordinary elliptic curves
and supersingular elliptic curves. In 2012, Sutherland proposed an effi-
cient and almost deterministic algorithm for determining whether a given
curve is ordinary or supersingular. Sutherland’s algorithm is based on
sequences of isogenies started from the input curve, and computation
of each isogeny requires square root computations, which is the domi-
nant cost of the algorithm. In this paper, we reduce this dominant cost
of Sutherland’s algorithm to approximately a half of the original. In
contrast to Sutherland’s algorithm using j-invariants and modular poly-
nomials, our proposed algorithm is based on Legendre form of elliptic
curves, which simplifies the expression of each isogeny. Moreover, by
carefully selecting the type of isogenies to be computed, we succeeded in
gathering square root computations at two consecutive steps of Suther-
land’s algorithm into just a single fourth root computation (with experi-
mentally almost the same cost as a single square root computation). The
results of our experiments using Magma are supporting our argument;
for cases of characteristic p of 768-bit to 1024-bit lengths, our algorithm
runs 43.6% to 55.7% faster than Sutherland’s algorithm.

Keywords: Isogenies · Supersingular elliptic curves · Isogeny graphs ·
Legendre form

1 Introduction

There are two types of elliptic curves, ordinary elliptic curves and supersingular
elliptic curves. Several supersingularity testing algorithms to determine whether
a given curve is ordinary or supersingular have been proposed (see Sect. 1.3).
Among them, Sutherland’s algorithm [18] is both efficient (of order Õ((log2 p)3)
where p is the finite characteristic of the coefficient field) and almost determinis-
tic (i.e., it becomes fully deterministic once a quadratic non-residue and a cubic
c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 121–135, 2021.
https://doi.org/10.1007/978-3-030-85165-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_8

122 Y. Hashimoto and K. Nuida

non-residue over Fp2 are given as auxiliary inputs). To the best of our knowl-
edge, this is the fastest algorithm in the literature achieving the two properties
simultaneously.

Besides purely mathematical interests, supersingularity testing algorithms
also have potential importance in cryptography. Currently, there are elliptic
curve cryptosystems [10,12] and isogeny-based cryptosystems [3,6] as typical
examples of cryptosystems using elliptic curves. Usually, the former uses ordinary
curves, while the latter uses supersingular curves. For parameter settings in
isogeny-based cryptosystems to select supersingular curves, recently a method
to generate a supersingular curve in a way that nobody can know explicitly
how the curve is generated is proposed as an application of secure multiparty
computation [14]. In such a case, unless the protocol implementation is fully
trustable, a supersingularity testing algorithm is needed for a user to be sure that
the generated curve is indeed supersingular. An efficient supersingularity testing
algorithm will be worthy in real-time use of such cryptographic applications.

1.1 Supersingularity Testing Algorithms Based on Isogeny Graphs

The 2-isogeny graph is a graph where the vertices consist of isomorphism classes
of elliptic curves and the edges correspond to isogenies of degree 2. In 2012,
Sutherland proposed an efficient supersingularity testing algorithm based on
isogeny graphs [18]. Isogeny graphs based on ordinary elliptic curves have a graph
structure called volcano graph [7,11,19] and isogeny graphs based on super-
singular elliptic curves have a graph structure called Ramanujan graph [4,15].
Sutherland’s algorithm can be implemented as a deterministic algorithm when
quadratic and cubic non-residues over Fp2 are given as auxiliary inputs. This
algorithm draws a graph by iteratively performing isogeny computations using
a modular polynomial, and determines supersingularity based on whether the
isogeny graph is a volcano graph or a Ramanujan graph. When the input curve is
supersingular, Sutherland’s algorithm must run O(n) square root computations
over Fp2 where n = log2 p. The computational complexity of square root com-
putation over Fp2 is O(n2(log2 n)2). Thus, the total computational complexity
of Sutherland’s algorithm is O(n3(log2 n)2). For the above reasons, the square
root computation over Fp2 is dominant in Sutherland’s algorithm. Therefore,
reducing the number of square root computations is important for improving the
efficiency of this supersingularity testing algorithm. For related work, Hashimoto
and Takashima proposed an improved supersingularity testing algorithm [9] by
applying an efficient computation technique in 2-isogeny sequence computation
(proposed by Yoshida and Takashima [20]) to Sutherland’s algorithm. In iterated
computation step dominating the computational time, Sutherland’s algorithm
requires 9 multiplications, 3 square root computations, and 15 constant multi-
plications, whereas Hashimoto–Takashima algorithm requires 3 multiplications,
3 square root computations, and 0 constant multiplication.

Improved Supersingularity Testing of Elliptic Curves Using Legendre Form 123

1.2 Contributions

In this paper, we propose a supersingularity testing algorithm that is more effi-
cient than Sutherland’s algorithm. In detail, for n = log2 p, in �n� + 1 iter-
ated isogeny computation steps dominating the computational time, Suther-
land’s algorithm requires 3 square root computations on Fp2 per step whereas
our proposed algorithm requires 3/2 fourth root computations on Fp2 per step.
Our proposed algorithm can be computed more efficiently than Sutherland’s
algorithm since the computational costs of square root and fourth root compu-
tations are almost equal (see our experimental result in Sect. 9). We note that
our proposed algorithm is applicable for any prime p ≥ 5.

The computational cost of our proposed algorithm depends on the isogeny
computations between Legendre form. In detail, whereas Sutherland’s algorithm
uses the j-invariant of the elliptic curve as a tool for determining supersingu-
larity, our proposed algorithm makes it possible to determine supersingularity
by iteratively computing the x-coordinate λ of a 2-torsion point of the Legendre
form for each curve. Therefore, it is important to efficiently obtain the values of
λ. In order to improve the efficiency, we wanted to utilize the simplest kind of
isogenies at every step, which would enable us to efficiently gather the sequential
isogeny computations. However, our argument in Sect. 4 shows that the simplest
known isogeny in the literature cannot be used consecutively, as it causes back-
tracking on the graph. For avoiding the obstacle, we prove a key result named
λ-switching theorem (see Sect. 5), which is about efficient composition of the
original isogeny with some isomorphism to obtain a new isogeny. This enabled
us to use a relatively simple isogeny in every iterative step and, therefore, to
improve the average cost for the iterative steps. See Sect. 7 for the description of
our proposed algorithm. We also give theoretical and experimental comparisons
with Sutherland’s algorithm in Sects. 8 and 9, respectively. The results of our
experiments are supporting our theoretical argument; for cases of characteristic
p of 768-bit to 1024-bit lengths, our algorithm runs 43.6% to 55.7% faster than
Sutherland’s algorithm.

1.3 Related Work

The requirement that an elliptic curve E over a finite field Fq of characteristic p is
supersingular is equivalent to the condition �E(Fq) ≡ 1 mod p. Then, practically,
we can verify the condition by checking that the order of a random point P ∈
E(Fq) is given by p + 1 or p − 1. (Refer to [5,18] for details.) Since the check
consists of scalar multiplications, the computational complexity is Õ(n2). Here,
since it can erroneously misidentify ordinary curves (as supersingular one) like
the Miller–Rabin primality testing, we should use multiple random points P for
reducing the error probability [18]. However, the improvement cannot lead to a
deterministic algorithm by using a polynomial number of random points similarly
to the Miller–Rabin. To obtain polynomial time deterministic algorithms, we can
use the Schoof algorithm, i.e., compute orders �E(Fq), and then determine the
supersingularity, whose cost is O(n5). Moreover, by using mod � decomposition

124 Y. Hashimoto and K. Nuida

properties of modular polynomials (for � �= p) that is the core of the Schoof–
Elkies–Atkin (SEA) algorithm, we can reduce the complexity to O(n4) [18].
However, those algorithms are less efficient than the Sutherland’s algorithm with
complexity Õ(n3).

2 Preliminaries

In this section, we explain some properties of elliptic curves in Weierstrass form
and Legendre form. By using these properties, we improve supersingularity test-
ing algorithm. Hereafter, let p be a prime with p ≥ 5. Fq denotes a finite field of
characteristic p and F̄p denotes an algebraic closure of Fq. For any α ∈ Fq, let

√
α

and 4
√

α denote a square root and a fourth root of α (possibly in a larger exten-
sion field), respectively. For simplicity, an expression like

√
A2 will be regarded

as A instead of −A. A similar remark also applies to 4
√

A.

2.1 Weierstrass Curves

In this subsection, we explain elliptic curves (see [16, Chapter 3] for details).
Every elliptic curve E over Fq is given by the following short Weierstrass form
such that 4A3 + 27B2 �= 0:

E : y2 = x3 + Ax + B (A,B ∈ Fq).

OE denotes the point at infinity of E. There exists an invariant of elliptic
curves. This invariant is called j-invariant and the j-invariant in Weierstrass
form is given as j(A,B) = 1728 4A3

4A3+27B2 . For two elliptic curves over Fq, their
j-invariants are equal if and only if these curves are isomorphic over F̄p. The
Fq-rational points of E over Fq are denoted by

E(Fq) = {(x, y) ∈ Fq | y2 = x3 + Ax + B} ∪ {OE}.

Let � be a prime with � �= p. The group of �-torsion points of an elliptic curve E
over Fq is defined by

E[�] = {P ∈ E(F̄p) | �P = OE}.

It holds that E[�] ∼= Z/�Z × Z/�Z. Then there exist (�2 − 1)/(� − 1) = � + 1
subgroups of order � in E[�]. E[p] is isomorphic to {0} or Z/pZ. An elliptic
curve E over Fq is called supersingular if E[p] ∼= {0} and ordinary if E[p] ∼= Z/pZ.

2.2 Legendre Form

In this subsection, we explain basic concepts of Legendre form of elliptic curves
and how to transform from Weierstrass form to Legendre form (see [2,16] for
the details). If p �= 2, any elliptic curve can be transformed to Legendre form.

Improved Supersingularity Testing of Elliptic Curves Using Legendre Form 125

Proposition 1 ([16, Section 3.1]). Every elliptic curve over F̄p is isomorphic
to an elliptic curve of Legendre form.

E(−(λ+1),λ) : y2 = x(x − 1)(x − λ) (λ ∈ F̄p, λ �= 0, 1)

The j-invariant of E(−(λ+1),λ) is defined by

j(E(−(λ+1),λ)) =
256

(
λ2 − λ + 1

)3

λ2(λ − 1)2
.

We call λ Legendre parameter of this elliptic curve. Next, we explain how to
transform from Weierstrass form to Legendre form.

Proposition 2 ([16, Section 3.1]). Let the short Weierstrass form of an ellip-
tic curve E be factored as y2 = (x−e1)(x−e2)(x−e3) (where e1, e2, e3 ∈ F̄p are
different from each other). Then, for λ = e3−e1

e2−e1
, E is isomorphic to E(−(λ+1),λ).

In the above proposition, by taking into account the order of e1, e2, e3 there exist
6 choices of λ (denoted here by λ̂):

λ̂ ∈ [λ] =
{

e3 − e1
e2 − e1

,
e2 − e1
e3 − e1

,
e3 − e2
e1 − e2

,
e1 − e2
e3 − e2

,
e1 − e3
e2 − e3

,
e2 − e3
e1 − e3

}

=
{

λ,
1
λ

, 1 − λ,
1

1 − λ
,

λ

λ − 1
,
λ − 1

λ

}
.

The following is a known important property of the Legendre form.

Corollary 1 ([16, Section 3.1]). Let E : y2 = (x − e1)(x − e2)(x − e3) (e1, e2,
e3 ∈ F̄p) be an elliptic curve. The transformation from E to Legendre form
E(−(λ+1),λ) is unique up to isomorphism without depending on the order of
e1, e2, e3.

The following proposition can be used as a condition for determining whether
an elliptic curve is ordinary or supersingular in our proposed algorithm.

Proposition 3 ([1]). If E(−(λ+1),λ) is a supersingular elliptic curve then λ is
in Fp2 .

2.3 Isogenies

In this subsection, we explain isogenies. For the details, refer to [8]. For two
elliptic curves E,E′ over Fq, a homomorphism φ : E → E′ which is given by
rational functions (and sends OE to OE′) is called an isogeny. In this paper,
only non-zero φ is considered. Let φ∗ : Fq(E′) → Fq(E) be the injective homo-
morphism between the corresponding function fields induced by φ. We call the
isogeny φ separable when the field extension Fq(E)/φ∗(Fq(E′)) is a separable
extension. For an integer � ≥ 1 with p � |�, a separable isogeny is called �-isogeny
if the kernel Kerφ is isomorphic to the cyclic group Z/�Z. For an �-isogeny φ,

126 Y. Hashimoto and K. Nuida

there exists an isogeny φ̂ : E′ → E such that φ̂ ◦ φ = [�] (�-multiplication on E).
This isogeny φ̂ is called the dual isogeny of φ.

The following proposition is used in isogeny computations between Legendre
curves in the proposed algorithm.

Proposition 4 ([13], [16, Section 3.4]). Let a, b be elements in Fq such that
b �= 0, a2 − 4b �= 0. Let E(a,b) be an elliptic curve represented by

E(a,b) : y2 = x3 + ax2 + bx

such that 2-torsion points of the elliptic curve E(a,b) are P0 = (0, 0), Pγ =
(γ, 0), Pδ = (δ, 0). Then, there exists the following 2-isogeny φP0 : E(a,b) →
E(a,b)/〈P0〉:

φP0 : (x, y) �→
(

y2

x2
,
y(b − x2)

x2

)
.

E(a,b)/〈P0〉 is represented as follows:

E(a,b)/〈P0〉 : y2 = x3 − 2ax2 + (a2 − 4b)x.

Let φPγ
: E(a,b) → E(a,b)/〈Pγ〉 and φPδ

: E(a,b) → E(a,b)/〈Pδ〉 be 2-isogenies.
Then, φPγ

(E(a,b)) is equal to φP0(E(2γ−δ,γ(γ−δ))) and φPδ
(E(a,b)) is equal to

φP0(E(2δ−γ,δ(δ−γ))).

We examine φP0(E(2γ−δ,γ(γ−δ))), φP0(E(2δ−γ,δ(δ−γ))) in detail. The elliptic
curve E(2γ−δ,γ(γ−δ)) is represented by

E(2γ−δ,γ(γ−δ)) : y2 = x3 + (2γ − δ)x2 + γ(γ − δ)x.

Thus, the elliptic curve φPγ
(E(a,b)) is represented as follows:

φPγ
(E(a,b)) = E(a,b)/〈Pγ〉 : y2 = x3 − 2(2γ − δ)x2 + ((2γ − δ)2 − 4γ(γ − δ))x.

By using (2γ − δ)2 − 4γ(γ − δ) = δ2, we obtain the following elliptic curve:

E(a,b)/〈Pγ〉 : y2 = x3 − 2(2γ − δ)x2 + δ2x.

The right-hand side of E(a,b)/〈Pγ〉 is factored as follows:

x3 − 2(2γ − δ)x2 + δ2x = x(x + δ − 2γ + 2
√

γ2 − γδ)(x + δ − 2γ − 2
√

γ2 − γδ).

Thus, for λ′ = 2γ−δ+2
√

γ2−γδ

2γ−δ−2
√

γ2−γδ
, E(a,b)/〈Pγ〉 is isomorphic to y2 = x(x−1)(x−λ′).

Let γ = 1, δ = λ be the x-coordinates of 2-torsion points in Legendre curve
E(−(λ+1),λ). We can also compute φP1 : E(−(λ+1),λ) → E(−(λ+1),λ)/〈P1〉 as above.
Let ϕP1 be a map from Legendre parameter of E(−(λ+1),λ) to Legendre parameter
of the Legendre form of E(−(λ+1),λ)/〈P1〉. Then,

ϕP1(λ) =
2 − λ + 2

√
1 − λ

2 − λ − 2
√

1 − λ
=

(√
1 − λ + 1√
1 − λ − 1

)2

.

Improved Supersingularity Testing of Elliptic Curves Using Legendre Form 127

Similarly, let γ = λ, δ = 1 be the x-coordinates of 2-torsion points in Legendre
curve E(−(λ+1),λ). Let ϕPλ

be a map from Legendre parameter of E(−(λ+1),λ) to
Legendre parameter of the Legendre form of E(−(λ+1),λ)/〈Pλ〉. Then,

ϕPλ
(λ) =

2λ − 1 + 2
√

λ2 − λ

2λ − 1 − 2
√

λ2 − λ
=

(√
λ − 1 +

√
λ√

λ − 1 − √
λ

)2

.

We also explain the Legendre form of E(−(λ+1),λ)/〈P0〉 obtained by using
φP0 : E(−(λ+1),λ) → E(−(λ+1),λ)/〈P0〉. E(−(λ+1),λ)/〈P0〉 is represented by

y2 = x3 + 2(λ + 1)x2 + (λ − 1)2x = x(x + (
√

λ + 1)2)(x + (
√

λ − 1)2).

Let ϕP0 be a map from Legendre parameter of E(−(λ+1),λ) to the Legendre
parameter of the Legendre form of E(−(λ+1),λ)/〈P0〉. Then,

ϕP0(λ) =

(√
λ + 1√
λ − 1

)2

.

We call ϕP0 , ϕP1 , ϕPλ
fundamental Legendre map (see Sect. 4 for detail).

3 Isogeny Volcano Graphs of Ordinary Curves

In this section, we explain isogeny graphs. For the details, refer to [19]. For �
with p � �, the �-isogeny graph G�(Fp2) is the graph in which the vertices consist
of Fp2 -isomorphism classes of elliptic curves over Fp2 and the edges correspond to
�-isogenies defined over Fp2 . We denote by G�(E/Fp2) the connected component
of G�(Fp2) containing an elliptic curve E defined over Fp2 . We note that the
vertex set of a connected component of G�(Fp2) consists of either ordinary curves
only or supersingular curves only. It is known that the connected component
G�(E/Fp2) of an isogeny graph at an ordinary elliptic curve E forms an �-volcano
graph of height h for some h, defined as follows (see Fig. 1 for an example of
volcano graphs).

Fig. 1. An example of 2-volcano graphs of height 2

128 Y. Hashimoto and K. Nuida

Definition 1 (Def. 1 in [17]). A connected, undirected, and simple graph V is
an �-volcano graph of height h if there exist h + 1 disjoint subgraphs V0, . . . , Vh

(called level graphs) such that any vertex of V belongs to some of V0, . . . , Vh and
the following conditions hold.

1. The degree of vertices except for Vh is � + 1 and the degree of vertices in Vh

is 1 when h > 0 and at most 2 when h = 0 (the degree in this case depends
on the form of V0).

2. The V0 is one of the following; a cycle (of at least three vertices), a single
edge (with two vertices), or a single vertex. Moreover, if h > 0, then all the
other outgoing edges from a vertex in V0 are joined to vertices in V1.

3. In the case of h > i > 0, each vertex in the level i graph Vi is adjacent to only
one vertex in the level i − 1 graph Vi−1 and all the other outgoing edges are
joined to vertices in Vi+1.

4. If h > 0, then each vertex of Vh has only one outgoing edge and it is joined
to a vertex in Vh−1.

The graph G�(Fp2) has a connected component of all the supersingular curves
over F̄p [11]. Therefore, other connected components in G�(Fp2) consist of ordi-
nary curves. For the connected components of ordinary curves, Sutherland
obtained the following result about the upper bound of the height of the �-
volcano.

Proposition 5 ([19]). Heights of �-volcano connected components of G�(Fp2)
are less than or equal to log�(2p).

4 Composition of Fundamental Legendre Maps

In this section, we investigate the compositions of fundamental Legendre maps
and some properties of those compositions. By using fundamental Legendre
maps, it becomes possible to efficiently compute isogenies between Legendre
form. However, it is not possible to draw isogeny graphs using only the funda-
mental Legendre maps without any modification (see Sect. 5 for detail).

We explain ϕP0(ϕP0(λ)), ϕP0(ϕP1(λ)), ϕP0(ϕPλ
(λ)). Those compositions of

fundamental Legendre maps are backtracking map. In other words, ϕP0(ϕP0(λ)),
ϕP0(ϕP1(λ)), ϕP0(ϕPλ

(λ)) ∈ [λ]. In detail,

ϕP0(ϕP0(λ)) = λ, ϕP0(ϕP1(λ)) = 1 − λ, ϕP0(ϕPλ
(λ)) =

λ − 1
λ

.

From the point of view of isogeny graphs, after moving through an edge cor-
responding to any of the three inner fundamental Legendre maps, the outer
map ϕP0 lets us backtrack the same edge to the original vertex.

Improved Supersingularity Testing of Elliptic Curves Using Legendre Form 129

Next, we explain the compositions of the other six pairs of two fundamental
Legendre maps. In detail,

ϕP1(ϕP0(λ)) =

(
4
√

λ +
√−1

4
√

λ − √−1

)4

, ϕPλ
(ϕP0(λ)) =

(
4
√

λ + 1
4
√

λ − 1

)4

,

ϕP1(ϕP1(λ)) =
(4

√
1 − λ +

√−1
4
√

1 − λ − √−1

)4

, ϕPλ
(ϕP1(λ)) =

(4
√

1 − λ + 1
4
√

1 − λ − 1

)4

,

ϕP1(ϕPλ
(λ)) =

(
4
√

λ − 1 +
√−1 4

√
λ

4
√

λ − 1 − √−1 4
√

λ

)4

, ϕPλ
(ϕPλ

(λ)) =

(
4
√

λ − 1 + 4
√

λ
4
√

λ − 1 − 4
√

λ

)4

.

Among the six compositions, the first two involving the map ϕP0 have simpler
expressions, so we want to use them in our proposed algorithm. However, now
the issue of backtracking occurs again: not any of these compositions can be
selected in any step because they also are dual of the previous.

From the above, in order to compute the isogenies between Legendre form, it
is necessary to devise so that these fundamental Legendre maps do not backtrack.

5 λ-switching Theorem

In this section, we introduce and prove λ-switching theorem. By using λ-swit-
ching theorem, we can iteratively compute the isogenies between Legendre form
without backtracking. Note that since 1−ϕP (λ) in [λ], the isogenous curve ϕP (λ)
can be taken as 1 − ϕP (λ).

Theorem 1 (λ-switching). Let P be P0, P1, or Pλ, and P ′ be P0 or Pλ. Then
we have 1 − ϕP1(1 − ϕP (λ)) ∈ [λ]. Moreover, if the Legendre curve E(−(λ+1),λ)

is ordinary, then we have 1 − ϕP ′(1 − ϕP (λ)) �∈ [λ].

Proof. First, we have

ϕP1(1 − ϕP (λ)) =

(√
1 − (1 − ϕP (λ)) + 1

√
1 − (1 − ϕP (λ)) − 1

)2

=

(√
ϕP (λ) + 1

√
ϕP (λ) − 1

)2

= ϕP0(ϕP (λ)) .

Hence we have ϕP1(1−ϕP (λ)) = ϕP0(ϕP (λ)) ∈ [λ] as shown in Sect. 4, therefore,
1 − ϕP1(1 − ϕP (λ)) ∈ [λ].

Secondly, when E(−(λ+1),λ) is ordinary, by the structure of the connected
component of the 2-isogeny graph being a 2-volcano graph, if a map ϕP1 applied
to a vertex lets us backtrack, then the other two maps ϕP0 and ϕPλ

do not let us
backtrack. This and the result above imply that ϕP ′(1−ϕP (λ)) �∈ [λ], therefore,
1 − ϕP ′(1 − ϕP (λ)) �∈ [λ]. ��

130 Y. Hashimoto and K. Nuida

In detail, we have

1 − ϕP0(1 − ϕP0(λ)) = −8
√−1 4

√
λ(

√
λ − 1)

(4
√

λ − √−1)4
,

1 − ϕPλ
(1 − ϕP0(λ)) = −8 4

√
λ(

√
λ + 1)

(4
√

λ − 1)4
,

1 − ϕP0(1 − ϕP1(λ)) = −8
√−1 4

√
1 − λ(

√
1 − λ − 1)

(4
√

1 − λ − √−1)4
,

1 − ϕPλ
(1 − ϕP1(λ)) = −8 4

√
1 − λ(

√
1 − λ + 1)

(4
√

1 − λ − 1)4
,

1 − ϕP0(1 − ϕPλ
(λ)) = −8

√−1 4
√

λ(λ − 1)(
√

λ − 1 − √
λ)

(4
√

λ − 1 − √−1 4
√

λ)4
,

1 − ϕPλ
(1 − ϕPλ

(λ)) = −8 4
√

λ(λ − 1)(
√

λ − 1 +
√

λ)
(4
√

λ − 1 − 4
√

λ)4
.

By using λ-switching theorem, we can use the fundamental Legendre maps
1 − ϕP ′(1 − ϕP) twice in a row. In other wards, 1 − ϕP ′(1 − ϕP)(λ) is a 22-
isogenious curve of E−(λ+1),λ.

6 Sutherland’s Supersingularity Testing Algorithm

In this section, we describe the Sutherland’s algorithm [18]. In Sutherland’s
algorithm [18], modular polynomials Φ�(X,Y) ∈ Z[X,Y] [19] (of 2 variables
X,Y with integral coefficients) play an important role. They are symmetric
with respect to X and Y , and of degree � + 1. In particular, when � is prime
the condition that E1 and E2 are �-isogenous is equivalent to Φ�(j(E1), j(E2)) =
0. From the above relation between the roots of modular polynomials and j-
invariants of isogenous curves, the graph G�(Fp2) can be identified with the
(directed, non-simple) graph on vertex set Fp2 in which (j1, j2) ∈ (Fp2)2 is an
edge if and only if Φ�(j1, j2) = 0.

Sutherland’s algorithm outputs true if and only if the input is supersingular.
Precisely, the input is an elliptic curve E over Fp2 of characteristic p (≥5) and
the algorithm is given below.

1. If the cubic polynomial Φ2(j(E),X) with respect to X does not have three
roots in Fp2 , then output false. Otherwise, let the roots be j0, j1, j2(∈ Fp2).

2. For μ = 0, 1, 2, set j′
μ ← j(E).

3. Let m := �log2 p�+1, and iterate the following from i = 1 to m: For μ = 0, 1, 2:
(a) Calculate the quadratic polynomial

fμ(X) ← Φ2(jμ,X)/(X − j′
μ),

and set j′
μ ← jμ.

Improved Supersingularity Testing of Elliptic Curves Using Legendre Form 131

(b) If fμ(X) has no root in Fp2 , output false. Otherwise, let jμ be one of
the two roots.

4. (If false is not outputted in the above,) output true.

If E is ordinary, the 2-isogeny graph is of 2-volcano. In Step 3, we con-
struct three non-backtracking paths whose initial points are j0, j1, j2 in Step 1,
respectively. Therefore, at least one of the paths is descending on the volcano.
Moreover, the descending path cannot have length m + 1 ≥ log2(2p) + 1 by
Proposition 5, and the algorithm outputs false in Step 3 if E is ordinary.

Sutherland gives the following time estimate in [18]. Let n = log2(p) from
now on.

Proposition 6 (Prop. 5 in [18]). Sutherland’s algorithm can be implemented
as a deterministic algorithm with running-time Õ(n3) and space complexity O(n)
when quadratic and cubic non-residues are given as auxiliary inputs.

7 Our Proposed Algorithm

In this section, we explain our proposed supersingularity testing algorithm. Given
the short Weierstrass form E : y2 = f(x) of an elliptic curve E over Fp2 , our
proposed algorithm is run as follows.

1. If the cubic polynomial f(x) does not have three different roots in Fp2 , then
output false. Otherwise, let the roots be e1, e2, e3(∈ Fp2).

2. By using Proposition 2, for λ = e3−e1
e2−e1

compute Legendre form E(−(λ+1),λ) :
y2 = x(x − 1)(x − λ) of the input curve E.

3. Let λ1,1 := λ, λ1,2 := λ, λ1,3 := λ.
4. The following computations are run.

(a) Compute A = 4
√

λ1,1 and λ2,1 = 1−ϕP0(λ1,1) = − 4A2

(A2−1)2 . Then, output
false if λ2,1 /∈ Fp2 .

(b) By using A in Step (a), compute λ3,1 = 1 − ϕP0(λ2,1) = − 8
√−1A(A2−1)

(A−√−1)4
.

Then, output false if λ3,1 /∈ Fp2 .
(c) Compute B = 4

√
1 − λ1,2 and λ2,2 = 1 − ϕP1(λ1,2) = − 4B2

(B2−1)2 . Then,
output false if λ2,2 /∈ Fp2 .

(d) By using B in Step (c), compute λ3,2 = 1 − ϕP0(λ2,2) = − 8
√−1B(B2−1)

(B−√−1)4
.

Then, output false if λ3,2 /∈ Fp2 .
(e) Compute C1 = 4

√
λ1,3, C2 = 4

√
λ1,3 − 1 and λ2,3 = 1 − ϕPλ

(λ1,3) =

− 4C2
1C2

2
(C2

2−C2
1)

2 . Then, output false if λ2,3 /∈ Fp2 .
(f) By using C1 and C2 in Step (e), compute λ3,3 = 1 − ϕP0(λ2,3) =

− 8
√−1C1C2(C

2
2−C2

1)

(C2−√−1C1)4
. Then, output false if λ3,3 /∈ Fp2 .

5. Let m := �log2 p�+1 and iterate the following from i = 3 to m. For μ = 1, 2, 3,
execute the following part (a) when i is odd, and the following part (b) when
i is even.

132 Y. Hashimoto and K. Nuida

(a) Compute di,μ = 4
√

λi,μ and

λi+1,μ = 1 − ϕP0(λi,μ) = − 4d2i,μ
(d2i,μ − 1)2

.

Then, output false if λi+1,μ /∈ Fp2 .
(b) By using di−1,μ in the previous Step (a), compute

λi+1,μ = 1 − ϕP0(λi,μ) = −8
√−1di−1,μ(d2i−1,μ − 1)

(di−1,μ − √−1)4
.

Then, output false if λi+1,μ /∈ Fp2 .
6. Output true if false is not output in the above.

8 Comparison

We compare Sutherland’s algorithm [18] in Sect. 6 and our algorithm proposed
in Sect. 7. For both algorithms, the most time-consuming step, i.e., Step 3 of
Sutherland’s algorithm and Step 5 of our proposed algorithm, iterates compu-
tation step including square root or fourth root computation m := �log2 p� + 1
times. We call this the fundamental step, and summarize the average numbers
of Fp2 operations needed in the fundamental step in Table 1. Here we do not
distinguish the numbers of square root computations and fourth root computa-
tions, since our experiment in Sect. 9 below shows that the computation times
of these two operations are similar.

Our proposed algorithm reduced the number of square/fourth root computa-
tions by half, which is the dominant cost of supersingularity testing algorithms
based on isogeny graphs. The main reason of this efficiency improvement is that,
in contrast to Sutherland’s algorithm where square root computation is needed
in every iterative step, in our proposed algorithm, fourth root computation is
needed only for the steps with odd index i and is not needed when i is even.

Table 1. Average numbers of Fp2 operations in the fundamental step (here “Root”
means square or fourth root computation, “Inv” means multiplicative inverse, “Mult”
means multiplication, and “Const. Mult” means multiplication by constant)

Fp2 operations Root Inv Mult Const. Mult

Sutherland [18] 3 0 9 15
Our algorithm 3/2 3 9 3

Improved Supersingularity Testing of Elliptic Curves Using Legendre Form 133

9 Experimental Results

In this section, by using Magma computational algebra system, we compare the
computational time of square root with the computational time of fourth root
over Fp2 . We also compare the performance of our proposed algorithm with the
performance of Sutherland’s algorithm.

All tests were run on the following platform: Magma V2.23-10 on 2.10 GHz
Intel Xeon Skylake Gold 6130 Processor. In experiment of Sutherland’s algo-
rithm, we used Magma code provided by Sutherland himself.

9.1 Computational Time in Square Root and Fourth Root

We investigate the computational time of square root computation and the com-
putational time of fourth root computation of Legendre parameter λ of 1024-bit
length. We randomly selected ten 1024-bit prime numbers p. For each prime p,
we generated ten Legendre parameters λ and investigated those computational
times. Table 2 gives the average execution times. The result in this table suggests
that the time for fourth root computation is almost the same as the time for
square root computation.

Table 2. Average execution time of square root and fourth root

CPU time, ms

Square Root 40
Fourth Root 41

9.2 Computational Time in Supersingularity Testing Algorithm

We investigate the performance of Sutherland’s algorithm and the performance
of our proposed algorithm. We denote by b the bit-length of p. For each value b
of bit-length in Table 3, we randomly selected ten b-bit prime numbers p. For
each prime p, we generated a supersingular elliptic curves over Fp2 .

Here we only used supersingular curves because we wanted to evaluate the
computational time for the case where the maximum number of iteration steps
are executed. Table 3 gives the average execution times and the percentages of
the execution times for our proposed algorithm relative to that for Sutherland’s
algorithm. This table shows that the ratio of the computational times for the
two algorithms is almost the same as the ratio of the numbers of square/fourth
root computations in these algorithms, and our improvement of the algorithm
indeed reduces the running time significantly.

134 Y. Hashimoto and K. Nuida

Table 3. Average execution times of the two algorithms

b (CPU times in milliseconds) Percentage
Sutherland’s algorithm Our algorithm

768 48178 20996 43.6
832 50533 24354 48.2
896 87331 39071 44.7
960 89885 43289 48.2

1024 110947 61837 55.7

Acknowledgments. We thank Andrew V. Sutherland for kindly sending us the
Magma code of Sutherland’s algorithm. We thank Momonari Kudo for his helpful
comments. This work was supported by JSPS KAKENHI Grant Number JP19J23395.

References

1. Auer, R., Top, J.: Legendre elliptic curves over finite fields. J. Number Theory
95(2), 303–312 (2002)

2. Brillhart, J., Morton, P.: Class numbers of quadratic fields, Hasse invariants of
elliptic curves, and the supersingular polynomial. J. Number Theory 106, 79–111
(2004)

3. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

4. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009)

5. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

6. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

7. Fouquet, M., Morain, F.: Isogeny volcanoes and the SEA algorithm. In: Fieker, C.,
Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 276–291. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45455-1 23

8. Galbraith, S.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

9. Hashimoto, Y., Takashima, K.: Improved supersingularity testing of elliptic curves.
JSIAM Lett. 13, 29–32 (2021)

10. Koblitz, K.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
11. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis,

University of California, Berkeley (1996)
12. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)

CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/3-540-45455-1_23
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31

Improved Supersingularity Testing of Elliptic Curves Using Legendre Form 135

13. Miret, J.M., Moreno, R., Sadornil, D., Tena, J., Valls, M.: An algorithm to compute
volcanoes of 2-isogenies of elliptic curves over finite fields. Appl. Math. Comput.
176, 739–750 (2006)

14. Moriya, T., Takashima, K., Takagi, T.: Group key exchange from CSIDH and
its application to trusted setup in supersingular isogeny cryptosystems. In: Liu,
Z., Yung, M. (eds.) Inscrypt 2019. LNCS, vol. 12020, pp. 86–98. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-42921-8 5

15. Pizer, A.: Ramanujan graphs and Hecke operators. Bull. AMS 23(1), 127–137
(1990)

16. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, Hei-
delberg (1986). https://doi.org/10.1007/978-1-4757-1920-8

17. Sutherland, A.V.: Computing Hilbert class polynomials with the Chinese remain-
der theorem. Math. Comput. 80(273), 501–538 (2011). https://doi.org/10.1090/
S0025-5718-2010-02373-7

18. Sutherland, A.: Identifying supersingular elliptic curves. LMS J. Comput. Math.
15, 317–325 (2012)

19. Sutherland, A.: Isogeny volcanoes. In: Howe, E.W., Kedlaya, K. (eds.) ANTS X.
The Open Book Series, vol. 1, no. 1, pp. 507–530. Mathematical Sciences Publish-
ers, Berkeley (2013)

20. Yoshida, R., Takashima, K.: Computing a sequence of 2-isogenies on supersingular
elliptic curves. IEICE Trans. Fundam. 96-A(1), 158–165 (2013)

https://doi.org/10.1007/978-3-030-42921-8_5
https://doi.org/10.1007/978-1-4757-1920-8
https://doi.org/10.1090/S0025-5718-2010-02373-7
https://doi.org/10.1090/S0025-5718-2010-02373-7

Root Radii and Subdivision
for Polynomial Root-Finding

Rémi Imbach1(B) and Victor Y. Pan2

1 Courant Institute of Mathematical Sciences, New York University, New York, USA
remi.imbach@nyu.edu

2 Lehman College and Graduate Center of City University of New York,
New York, USA

victor.pan@lehman.cuny.edu

Abstract. We depart from our approximation of 2000 of all root radii
of a polynomial, which has readily extended Schönhage’s efficient algo-
rithm of 1982 for a single root radius. We revisit this extension, advance
it, based on our simple but novel idea, and yield significant practical
acceleration of the known near optimal subdivision algorithms for com-
plex and real root-finding of user’s choice. We achieve this by means of
significant saving of exclusion tests and Taylor’s shifts, which are the
bottleneck of subdivision root-finders. This saving relies on our novel
recipes for the initialization of root-finding iterations of independent
interest. We demonstrate our practical progress with numerical tests,
provide extensive analysis of the resulting algorithms, and show that,
like the preceding subdivision root-finders, they support near optimal
Boolean complexity bounds.

Keywords: Real root isolation · Complex root clustering · Root radii
algorithm · Subdivision iterations

1 Introduction

Overview. The recent subdivision iterations for univariate polynomial Complex
Root Clustering (CRC) and Real Root Isolation (RRI) approximate all roots in a
fixed Region of Interest (RoI) and, like the algorithm of Pan (1995, 2002), achieve
near optimal bit complexity for the so called benchmark problem. Furthermore
they allow robust implementations, one of which is currently the user’s choice
for solving the RRI problem, including the task of the approximation of all
real roots. Another implementation, for the CRC problem, is slower by several
orders of magnitude than the package MPSolve (the user’s choice) for the task of
finding all complex roots. However it outperforms MPSolve for solving the CRC
problem where the RoI contains only a small number of roots. We significantly
accelerate these highly efficient root-finding iterations by applying our novel

Victor’s work is supported by NSF Grants CCF 1563942 and CCF 1733834 and PSC
CUNY Award 63677 00 51.

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 136–156, 2021.
https://doi.org/10.1007/978-3-030-85165-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_9

Root Radii and Subdivision for Polynomial Root-Finding 137

techniques for their initialization. Next we specify the background and outline
our contributions.

Polynomial Roots and Root Radii. For a polynomial P of degree d in Z[z]
and a Gaussian integer c ∈ G:= {a + ib | a ∈ Z, b ∈ Z}, let α1(P, c), . . . , αd(P, c)
be the d non-necessarily distinct roots of P such that

|α1(P, c) − c| ≥ |α2(P, c) − c| ≥ . . . ≥ |αd−1(P, c) − c| ≥ |αd(P, c) − c|. (1)

For all 1 ≤ i ≤ d, write ri(P, c) := |αi(P, c) − c|, αi(P) := αi(P, 0) and ri(P) :=
ri(P, 0), so that

r1(P, c) ≥ r2(P, c) ≥ . . . ≥ rd−1(P, c) ≥ rd(P, c). (2)

Then

Root Radii Covering (RRC) Problem
Given: a polynomial P ∈ Z[z] of degree d, a Gaussian integer c ∈ G, a real
number δ > 0
Output: d positive numbers ρc,1, . . . , ρc,d satisfying

∀s = 1, . . . , d,
ρc,s

1 + δ
≤ rs(P, c) ≤ (1 + δ)ρc,s. (3)

ρc,1, . . . , ρc,d of Eq. (3) for fixed c ∈ G and δ > 0 define d possibly overlaping
concentric annuli. The connected components of their union form a set Ac of dc ≤
d disjoint concentric annuli centered at c. They cover all roots of P and are said
to be an annuli cover of the roots of P . We are going to use them in subdivision
root-finding iterations.

Two Root-Finding Problems. We count roots with multiplicity and consider
discs D(c, r) := {z | |z − c| ≤ r} on the complex plane. For a positive δ let δΔ
and δB denote the concentric δ-dilation of a disc Δ and a real line segment (i.e.
interval) B. Then

Complex Root Clustering (CRC) Problem
Given: a polynomial P ∈ Z[z] of degree d, ε > 0
Output: � ≤ d couples (Δ1,m1), . . . , (Δ�,m�) satisfying:

– the Δj ’s are pairwise disjoint discs of radii ≤ ε,
– Δj and 3Δj contain mj > 0 roots,
– each complex root of P is in a Δj .

Real Root Isolation (RRI) Problem
Given: a polynomial P ∈ Z[z] of degree d
Output: � ≤ d couples (B1,m1), . . . , (B�,m�) satisfying:

– the Bi’s are disjoint real line segments,
– each Bi contains a unique real root of multiplicity mj ,
– each real root of P is in a Bi.

138 R. Imbach and V. Y. Pan

Table 1. Runs of Risolate, RisolateR, Ccluster and CclusterR on two polynomials.
Ccluster and CclusterR are called with input ε = 2−53.

Risolate RisolateR Ccluster CclusterR

d τ dR t n t n t′ ′

Bernoulli polynomial
6.15 672

t n

0.38 17 0.25 136 13940

t n t

50.7 4922 7.59
Mignotte polynomial

512 2590 124

512 256 4 1.57 49 1.67 14 0.27 88.8 10112 28.3 2680 3.05

Risolate RisolateR Ccluster CclusterR

d τ dR t n t n t′ ′

Bernoulli polynomial
6.15 672

t n

0.38 17 0.25 136 13940

t n t

50.7 4922 7.59
Mignotte polynomial

512 2590 124

512 256 4 1.57 49 1.67 14 0.27 88.8 10112 28.3 2680 3.05

It is quite common to pre-process P ∈ Z[z] in order to make it square-free, with
mj = 1 for all j, but we do not use this option. We can state both CRC and RRI
problems for P with rational coefficients and readily reduce them to the above
versions with integer coefficients by scaling.

Write ‖P‖ := ‖P‖∞ and call the value log2 ‖P‖ the bit-size of P .

The Benchmark Problem. For the bit-complexity of the so called benchmark
root-finding problem of the isolation of all roots of a square-free P ∈ Z[z] of
degree d and bit-size τ the record bound of 1995 [13] is ˜O(d2(d + τ)), near
optimal for τ > d and based on a divide and conquer approach. It was reached
again in 2016 [1,2], based on subdivision iterations and implemented in [8].

Our Contributions. We first present and analyze an algorithm SolveRRC that
solves the RRC problem for polynomials with integer coefficients and any fixed
center c ∈ G. Our algorithm is adapted from work [12] (which has extended
Schönhage’s highly efficient approximation of a single root radius in [15]) to simul-
taneous approximation of all d root radii. Our specialization of this root radii algo-
rithm to the case of integer polynomials and our analysis of its bit-complexity are
novel. We use SolveRRC for δ ∈ d−O(1) and |c| ∈ O(1); under such assumptions,
it solves the RRC problem with a bit-complexity in ˜O(d2(d + τ)).

We then improve solvers for the RRI and the CRC problems based on subdivi-
sion with annuli covers that we compute by applying SolveRRC. The complexity
of subdivision root-finders is dominated at its bottleneck stages of root-counting
and particularly exclusion tests, at which costly Taylor’s shifts, aka the shifts
of the variable, are applied. We significantly accelerate the root-finders for both
RRI and CRC problems by means of using fewer exclusion tests and calls for
root-counting and hence fewer Taylor’s shifts. We achieve this by limiting com-
plex root-finding to the intersection of three annuli covers of the roots centered
in 0, 1 and i and by limiting real root-finding to the intersection of a single annuli
cover centered in 0 with the real line.

Root Radii and Subdivision for Polynomial Root-Finding 139

Our improvements are implemented within the C library Ccluster1 which pro-
vides an eponymous solver for the CRC problem and a solver for the RRI problem
called Risolate. Our novel solvers are called below CclusterR and RisolateR,
and in Table 1 we overview how those two solvers perform against Ccluster and
Risolate on a Bernoulli and a Mignotte polynomial. For each test polynomial we
show its degree d, its bit-size τ , and the number dR of real roots. For each solver, t
denotes the sequential running time in seconds on an Intel(R) Core(TM) i7-8700
CPU @ 3.20 GHzmachinewithLinux andndenotes the total number ofTaylor’s shift
required in the subdivision process. For CclusterR and RisolateR, t′ is the time
spent on solving the RRC problem with SolveRRC.

We compute the annuli covers in a pre-processing step by applying algorithm
SolveRRC for input relative width δ = 1/d2. This choice of δ is empiric, and in
this sense our improvement of subdivision is heuristic. From a theoretical point
of view, this allows our algorithms for solving the RRI and the CRC problems to
support a near optimal bit-complexity. From a practical point of view, this allows
us to significantly reduce the running time of solvers based on subdivision by
using fewer Taylor’s shifts in exclusion and root-counting tests, as we highlighted
in Table 1 (see the columns t and n).

The distance between roots of a polynomial of degree d and bit-size τ
can be way less than 1/d2 (see for instance [11]); thus by computing with
SolveRRC intervals that contain the root radii of relative width δ = 1/d2, we
do not intend to separate the roots of input polynomials, and our improvement
has no effect in the cases where distances between some roots are less than δ.
We illustrate this in Table 1 for a Mignotte polynomial that has four real roots
among which two roots have a pairwise distance that is close to the theoreti-
cal separation bound. Most of the computational effort in a subdivision solver
for real roots isolation is spent on the separation of the close roots, and this
remains true where we use annuli covers with relative width larger than the
roots separation.

We compare our implementation with ANewDsc (see [10], implementing [14])
and MPSolve (see [3], implementing Ehrlich’s iterations), which are the current
user’s choices for solving the RRI and the CRC problems, respectively.

Related Work. We departed from the subdivision polynomial root-finding for
the CRC and RRI problems in [1] and [14], resp., and from the algorithms for
the RRC problem in [15] (see [15][Cor. 14.3], and [5][Algorithm 2]) and [12]. We
achieved practical progress by complementing these advanced works with our
novel techniques for efficient computation of O(1) annuli covers of the roots. We
rely on the customary framework for the analysis of root-finding algorithms and
cite throughout the relevant sources of our auxiliary techniques.

Organization of the Paper. In Sect. 2 we describe an algorithm for solving
the RRC problem. In Sects. 3 and 4 we present our algorithms for solving the

1 https://github.com/rimbach/Ccluster.

https://github.com/rimbach/Ccluster

140 R. Imbach and V. Y. Pan

RRI and CRC problem, respectively. In Subsect. 1.1 we introduce definitions. In
Subsect. 1.2 we briefly describe the subdivision algorithm for the CRC problem
of [1] and its adaptation to the solution of the RRI problem.

1.1 Definitions

Write P := P (z) := Pd

∏d
i=1(z − αi(P)) =

∑d
j=0 Pjz

j .

Root Squaring Iterations. For a positive integer � write

P [�] := (Pd)2
�

d
∏

i=1

(z − αi(P)2
�

) (4)

and so P [0] = P , P [�] = (P [�−1])
[1]

for � ≥ 1, and

|α1(P [�])| ≥ |α2(P [�])| ≥ . . . ≥ |αd−1(P [�])| ≥ |αd(P [�])|. (5)

P [�] is called the �-th root squaring iteration of P , aka the �-th Dandelin-
Lobachevsky-Gräffe (DLG) iteration of P .

Write P [�−1] =
∑d

j=0(P
[�−1])jz

j , P
[�−1]
e =

∑� d
2 �

j=0(P
[�−1])2jz

j and P
[�−1]
o =

∑� d−1
2 �

j=0 (P [�−1])2j+1z
j . P [�] can be computed iteratively based on the formula:

P [�] = (−1)d
[

(P [�−1]
e)2 − z(P [�−1]

o)2
]

. (6)

The j-th coefficient (P [�])j of P [�] is related to the coefficients of P [�−1] by:

(P [�])j = (−1)d−j(P [�−1])2j + 2
j−1
∑

k=max(0,2j−d)

(−1)d−j(P [�−1])k(P [�−1])2j−k (7)

L-bit Approximations. For any number c ∈ C, we say that c̃ ∈ C is an L-bit
approximation of c if ‖c̃ − c‖ ≤ 2−L. For a polynomial P ∈ C[z], we say that
˜P ∈ C is an L-bit approximation of P if ‖ ˜P − P‖ ≤ 2−L, or equivalently if
‖˜Pj − Pj‖ ≤ 2−L for all j.

Boxes, Quadri-Section, Line Segments, Bi-section. [a − w/2, a + w/2] +
i[b − w/2, b + w/2] is the box B of width w centered at c = a + ib. The disc
Δ(B) := D(c, 3

4w) is a cover of B.
Partition B into four congruent boxes (children of B), of width w/2 and

centered at (a ± w
4) + i(b ± w

4).
Δ(B) := D(c, w/2) is the minimal disc that covers a real line segment B :=

[c − w/2, c + w/2] of width w centered at c ∈ R.
Partition the segment B into two segments (children of B) of width w/2

centered at (c ± w
4)).

Let C be a connected component of boxes (resp. real line segments); BC is
the minimal box (resp. real line segment) covering C.

Root Radii and Subdivision for Polynomial Root-Finding 141

1.2 Subdivision Approach to Root-Finding

The work [1] describes an algorithm for solving a local version of the CRC
problem: for an initial RoI B0 (a box) it finds clusters of roots with pairwise
distance less than ε in a small inflation of B0. Since our CRC problem is for
input polynomials in Z[z], one can define a RoI containing all the roots by
using, for instance, the Fujiwara bound (see [4]).

Subdivision Iterations. The algorithm in [1] uses subdivision iterations or
Quad-tree algorithms (inherited from [7], see also [12]), which constructs a tree
rooted in the RoI B0 whose nodes are sub-boxes of B0. A node B is included
only if 2B contains a root, excluded only if it contains no root. A node is active
if it is neither included nor excluded. At the beginning of a subdivision itera-
tion, each active node B is tested for exclusion. Then active boxes are grouped
into connected components, and for each connected component C such that
4Δ(BC) intersect no other connected component, a root-counter is applied to
2Δ(BC). If 2Δ(BC) contains m > 0 roots and Δ(BC) has radius less than ε,
then (Δ(BC),m) is returned as a solution and the boxes of C are marked as
included. Each remaining active node is quadrisected into its four active chil-
dren, to which a new subdivision iteration is applied. Incorporation of Newton’s
iterations enables quadratic convergence toward clusters of radii ε.

Solving the RRI Problem. Using a root separation lower bound (e.g., of [11]),
one can derive from [1] a solution of the RRI problem based on the symmetry
of roots of P ∈ Z[z] along the real axis. Let disc D(c, r) with c ∈ R contain m
roots of P . For m = 1 the root in D(c, r) is real. If m ≥ 1 and r ≤ sep(P), then
D(c, r) contains a real root of multiplicity m, where sep(P) is a root separation
lower bound for P . For the RRI problem, the RoI B0 is a line segment, and the
subdivision tree of B0 is built by means of segment bisection.

The T 0 and T ∗ Tests. In the algorithm of [1], the exclusion test and root
counter are based on Pellet’s theorem (see [2]). For a disc Δ = D(c, r), the
counting test T ∗(Δ, P) returns an integer k ∈ {−1, 0, . . . , d} such that k ≥ 0
only if P has k roots in Δ. A result k = −1 accounts for a failure and holds when
some roots of P are close to the boundary of Δ. For a given disc Δ, the exclusion
test T 0(Δ, P) returns 0 if T ∗(Δ, P) returns 0 and returns −1 if T ∗(Δ, P) returns
a non-zero integer. The T ∗ of [2] takes as an input an L-bit approximation of P
and with working absolute precision L performs about log log d DLG iterations
of the Taylor’s shift P (c+rz) of P . Write L(Δ, P) for the precision L required to
carry out the T ∗-test. Based on Pellet’s theorem we obtain the following results.

Proposition 1 (see [2], Lemmas 4 and 5). Let B be the box (or real line
segment) centered in c with width w. The total cost in bit operations for carrying
out T ∗(Δ(B), P) or T 0(Δ(B), P) is bounded by

˜O(d(log ‖P‖ + d log max(1, |c|, w) + L(Δ, P))). (8)

142 R. Imbach and V. Y. Pan

T ∗(Δ(B), P) returns an integer k ∈ {−1, 0, . . . , d}; if k ≥ 0 then Δ(B)
contains k roots; if k = −1 then P has a root in 2B \ (1/2)B. T 0(Δ(B), P)
returns an integer k ∈ {−1, 0}; if k = 0 then P has no root in Δ(B); if k = −1
then P has a root in 2B.

Bit Complexity. Proposition 1 enables one to bound the Boolean cost of exclu-
sion tests and root-counting as well as the size of the subdivision tree and hence
the cost of solving the benchmark problem in [1].

By applying subdivision iterations with an exclusion test and a root counter
satisfying Proposition 1 one yields an algorithm with the same bit-complexity
as the algorithm of [1], namely, ˜O(d2(d + τ)) for the benchmark problem.

Implementations. A modified version of [1] for the CRC problem has been
implemented and made public within the library Ccluster. An implementation
of the modified algorithm of [1] solving the RRI problem, called Risolate, is
also available within Ccluster.

2 Root Radii Computation

We describe and analyse an algorithm for solving the RRC problem for a P ∈
G[z]. Let c ∈ G and Pc(z) := P (c+z), so that rs(P, c) = rs(Pc) for all 1 ≤ s ≤ d.
Hence the RRC problem for a c �= 0 reduces to the RRC problem for c = 0 at
the cost of shifting the variable.

The next remark reduces the RRC problem for c = 0 and any δ > 0 to the
RRC problem for 1 + δ = 4d by means of DLG iterations:

Remark 2. Let g = �log
log(4d)

log(1 + δ)
	, let ρ′ > 0 such that there exist an s with:

ρ′

4d
< rs(Pc[g]) < (4d)ρ′. (9)

Define ρ = (ρ′)
1
2g and recall that rs(Pc[g]) = rs(P, c)2

g

. Then

ρ

1 + δ
< rs(P, c) < (1 + δ)ρ. (10)

g is in O(log d) if δ is in d−O(1) (for instance, δ ≥ d−1 or δ ≥ d−2).

Now define the RRC∗ problem as the RRC problem for 1+δ = 4d and c = 0:

RRC∗ problem
Given: a polynomial P ∈ G[z] of degree d, satisfying P (0) �= 0
Output: d positive real numbers ρ′

1, . . . , ρ
′
d satisfying

∀s = 1, . . . , d,
ρ′

s

4d
< rs(P) < (4d)ρ′

s. (11)

Root Radii and Subdivision for Polynomial Root-Finding 143

In this setting, we assume that 0 is not a root of P and thus P0 �= 0. When 0
is a root of multiplicity m, then rd(P) = . . . = rd−m+1(P) = 0 and P0 = . . . =
Pm−1 = 0, which is easily detected (since P ∈ G[z]) and treated accordingly.

In Subsect. 2.1 we recall an algorithm SolveRRC∗ satisfying:

Proposition 3. Algorithm SolveRRC∗ in Algorithm1 solves the RRC∗ problem
by involving O(d log ‖P‖) bit operations.

In Subsect. 2.2 we prove this proposition. In Subsect. 2.3 we present an algorithm
SolveRRC satisfying:

Theorem 4. The algorithm SolveRRC of Subsect. 2.3 solves the RRC problem
for δ = d−2 at a Boolean cost in

˜O(d2(d log(|c| + 1) + log ‖P‖)). (12)

This bound turns into ˜O(d2(d + log ‖P‖)) for |c| ∈ O(1) and into ˜O(d2 log ‖P‖)
for |c| = 0.

Below we will use root radii computation as a pre-processing step for Com-
plex Root Clustering and Real Root Isolation. For Real Root Isolation, we use
SolveRRC to compute an annuli cover centered at 0. For Complex Root Cluster-
ing, we use SolveRRC to compute three annuli covers with the three centers 0, 1, i.
According to our analysis of the RRC problem, the cost of its solution for O(1)
centers c such that |c| ∈ O(1) is dominated by a near optimal bit-complexity of
root-finding.

For c = 0, our algorithm has a larger bit complexity than the algorithm
of [15] (see [15][Cor. 14.3] and [5][Algorithm 2]), which is in ˜O(d2 log2 d) when
log ‖P‖ ∈ O(d). Our algorithm, however, computes d root radii at once where
Schönhage’s algorithm computes only a single root radius. It is not clear whether
the latter algorithm can be extended to an algorithm that would solve the RRC
problem within the same bit-complexity bound.

2.1 Solving the RRC∗ Problem

Recall that P =
∑d

i=0 Piz
i and define, for i = 0, . . . , d,

pi =
{

log |Pi| if Pi �= 0,
−∞ otherwise. (13)

According to the following result, adapted from Proposition 4.2 and its proof
in [12], one can solve the RRC∗ problem by computing the upper part of the
convex hull of the set of points {(i, pi)|i = 0, . . . , d} and assuming that the points
(i,−∞) lie below any line in the plane.

Proposition 5. Given an integer s, let t′ and h′ be integers s.t.

(i′) t′ < d + 1 − s ≤ t′ + h′ ≤ d, and
(ii′) ∀0 ≤ i ≤ d, the point (i, pi) lies below the line ((t′, pt′), (t′ + h′, pt′+h′)).

144 R. Imbach and V. Y. Pan

Then ρ′
s =

∣

∣

∣

∣

Pt′

Pt′+h′

∣

∣

∣

∣

1
h′

satisfies:
ρ′

s

2d
< rs(P) < (2d)ρ′

s.

Call CH the upper part of the convex hull of the points {(i, pi)|i = 0, . . . , d},
and remark that for a given integer s, the integers t′ and t′+h′ satisfying (i′) and
(ii′) in Proposition 5 are the abscissæ of the endpoints of the segment of CH
above (s, ps). CH can be computed exactly (the Pi’s are Gaussian integers).
However for solving the RRC∗ problem, it is sufficient to compute the upper
part of the convex hull of M -bit approximations of the pi’s with M ≥ 1. For
i = 0, . . . , d, define

p̃i :=

⎧

⎨

⎩

M -bit approximation of pi if |Pi| > 1,
0 if |Pi| = 1,
−∞ otherwise.

(14)

Let ˜CH be the upper part of the convex hull of {(i, p̃i)|i = 0, . . . , d} and let
points (i,−∞) lie below any line in the plane. Given an index s, the following
proposition bounds the slope of the edge of CH above d + 1 − s in terms of the
slope of the edge of ˜CH above d + 1 − s and M .

Proposition 6. Given an integer s, let t, h, t′, and h′ be integers such that

(i) t < d + 1 − s ≤ t + h ≤ d,
(ii) ∀0 ≤ i ≤ d, the point (i, p̃i) lies below the line ((t, p̃t), (t + h, p̃t+h)),
(i′) t′ < d + 1 − s ≤ t′ + h′ ≤ d, and

(ii′) ∀0 ≤ i ≤ d, the points (i, pi) lie below the line ((t′, pt′), (t′ + h′, pt′+h′)).

Then
p̃t+h − p̃t

h
− 2−M+1 ≤ pt′+h′ − pt′

h′ ≤ p̃t+h − p̃t

h
+ 2−M+1. (15)

For a given integer s, the existence of integers t, h, t′, h′ satisfying (i), (ii), (i′),
(ii′) follows from the existence of the convex hulls CH and ˜CH. We postpone
the proof of Proposition 6. Remark that 22

−L ≤ 1 + 2−L for L ≥ 0, apply
Proposition 5, and obtain:

Corollary 7 (of Proposition 6). Let s, t, h be as in Proposition 6. Define ρ̃s
′

as
∣

∣

∣

∣

Pt

Pt+h

∣

∣

∣

∣

1
h

. Then

ρ̃s
′

(2d)(1 + 2−M+1)
< rs(P) < (2d)(1 + 2−M+1)ρ̃s

′. (16)

We are ready to describe our Algorithm 1, which solves the RRC∗ problem.
In steps 1–2, 1-bit approximations p̃i of pi = log |Pi| are computed from Pi, for
i = 0, . . . , d. This requires O(d log ‖P‖) bit operations. In step 3 we compute
the convex hull ˜CH of a polygon with d + 1 vertices (0, p̃0), . . . , (d, p̃d) ordered
with respect to their ordinates. Using Graham’s algorithm of [6], we only need

Root Radii and Subdivision for Polynomial Root-Finding 145

Algorithm 1. SolveRRC∗(P)
Input: P ∈ G[z] of degree d s.t. P (0) �= 0.
Output: d positive real numbers ρ̃1

′, . . . , ρ̃d
′.

1: for i = 0, . . . , d do
2: Compute p̃i, a 1-bit approximation of pi, as defined in Eq. (14).

3: ˜CH ← {(ik, p̃ik)|k = 0, . . . , �}, the upper part of the convex hull of {(i, p̃i)|i =
0, . . . , d}

4: for k = 1, . . . , � do
5: for s = d + 1 − ik, . . . , d + 1 − ik−1 do

6: ρ̃s
′ ← |Pik−1

Pik
|

1
ik−ik−1 //double precision floating point

7: return ρ̃1
′, . . . , ρ̃d

′

O(d) arithmetic operations (additions) with numbers of magnitude O(log ‖P‖).
In steps 4,5,6, the ρ̃s

′’s for s = 0, . . . , d are computed as in Corollary 7. This task
is performed with rounding to double precision arithmetic and requires O(d) bit
operations. Finally, (1 + 2−M+1) ≤ 2 if M ≥ 1; thus the ρ̃s

′’s in the output
satisfy ∀s = 1, . . . , d, ρ̃s

′

4d < rs(P) < (4d)ρ̃s
′, and Proposition 3 follows.

2.2 Proof of Proposition 6

Fig. 1. The convex hulls CH and ˜CH (Color figure online)

For i = 0, . . . , d, define p̃i
+ and p̃i

− as

p̃i
+ =

{

p̃i + 2−M if |p̃i| > −∞,
−∞ otherwise , and p̃i

− =
{

p̃i − 2−M if |p̃i| > −∞,
−∞ otherwise . (17)

146 R. Imbach and V. Y. Pan

˜CH is the upper part of the convex hull of {(i, p̃i)|i = 0, . . . , d}. Suppose that it
is the poly-line passing through {(ik, p̃ik

)|k = 0, . . . , �}. It defines two poly-lines:

– ˜CH
+
, the poly-line with vertices {(ik, p̃ik

+|k = 0, . . . , �}, and
– ˜CH

−
, the poly-line with vertices {(ik, p̃ik

−)|k = 0, . . . , �}.

CH is the upper part of the convex hull of {(i, pi)|i = 0, . . . , d}, and suppose
it is the poly-line with vertices {(jk, pjk

)|k = 0, . . . , �′}. For demonstration see
Fig. 1 where d = 8, the p̃i’s are drawn with black circles, the intervals [p̃i

−, p̃i
+]

with bold vertical bars, ˜CH with a bold blue poly-line, ˜CH
+

and ˜CH
−

with
dashed blue poly-lines, and CH with a bold red line. One has:

Proposition 8. The poly-line CH lies below the poly-line ˜CH
+

and above the
poly-line ˜CH

−
.

Proof of Proposition 8: In order to prove that CH lies below ˜CH
+
, we show

that if jt, ik, ik′ is a triple of integers such that (jt, pjt
) is a vertex of CH and

[(ik, p̃ik

+), (ik′ , p̃ik′
+)] is an edge of ˜CH

+
, then (jt, pjt

) lies on or below the line
((ik, p̃ik

+), (ik′ , p̃ik′
+)). Suppose this is not the case, i.e. the point (jt, pjt

) lies
strictly above the line ((ik, p̃ik

+), (ik′ , p̃ik′
+)). Since pjt

≤ p̃jt

+, p̃jt

+ lies strictly
above ((ik, p̃ik

+), (ik′ , p̃ik′
+)), thus p̃jt

lies strictly above ((ik, p̃ik
), (ik′ , p̃ik′)) and

˜CH is not the convex hull of {(i, p̃i)|i = 0, . . . , d}, which is a contradiction.

In order to show that ˜CH
−

lies below CH, we show that for a given
triple of integers it, jk, jk′ such that (it, p̃it

−) is a vertex of ˜CH
−

and
[(jk, pjk

), (jk′ , pjk′)] is an edge of CH, the point (it, p̃it

−) lies on or below the
line ((jk, pjk

), (jk′ , pjk′)). Suppose it is not the case. Since pit
≥ p̃it

−, the point
pit

lies strictly above the line passing through ((jk, pjk
), (jk′ , pjk′)) and CH is

not the convex hull of {(i, pi)|i = 0, . . . , d}, which is a contradiction. ��
Proof of Proposition 6: Given the integer s, let t, h, t′, h′ be integers such that
conditions (i), (ii), (i′) and (ii′) hold.

By virtue of (i′) and (ii′),](t′, pt′), (t′ + h′, pt′+h′)] is the edge of CH whose

orthogonal projection onto the abscissa axis contains d + 1 − s, and
pt′+h′ − pt′

h′
is the slope of that edge.

By virtue of (i) and (ii),](t, p̃t), (t + h, p̃t+h)] is the edge of ˜CH whose
orthogonal projection onto the abscissa axis contains d + 1 − s. Consider the
two segments](t, p̃t

−), (t + h, p̃t+h
−)] and](t, p̃t

+), (t + h, p̃t+h
+)] that are the

edges of ˜CH
−

and ˜CH
+

, respectively, whose orthogonal projections onto the
abscissa axis also contain d + 1 − s.

From Proposition 8 CH is a poly-line enclosed by ˜CH
−

and ˜CH
+

and since

the first coordinates of its vertices are integers, its slope
pt′+h′ − pt′

h′ above d +

1−s is bounded below by
p̃t+h − p̃t

h
−2−M+1 and above by

p̃t+h − p̃t

h
+2−M+1,

which proves Proposition 6. See Fig. 1 for an illustration. ��

Root Radii and Subdivision for Polynomial Root-Finding 147

Algorithm 2. SolveRRC(P, c, δ)
Input: P ∈ Z[z] of degree d, a center c ∈ G and a relative precision δ > 0.
Output: d positive real numbers ρc,s, . . . , ρc,d solving task S.

1: g ← �log
log(4d)

log(1 + δ)
�

2: compute Pc[g]

3: ρ′
1, . . . , ρ

′
d ← SolveRRC∗(Pc[g])

4: for s = 0, . . . , d do
5: ρc,s ← (ρ′

s)
1/2g

6: return ρc,1, . . . , ρc,d

2.3 Solving the RRC Problem

Using Remark 2, we define in Algorithm 2 the algorithm SolveRRC. To estimate
the cost at steps 2 and 3, let M : N → N be such that two polynomials of
degree at most d and bit-size at most τ can be multiplied by using O(M(dτ))
bit operations. Recall the following:

1. computing Pc requires O(M(d2 log d + d2 log(|c| + 1) + d log ‖P‖)) bit oper-
ations,

2. ‖Pc‖ ≤ ‖P‖(|c| + 1)d,
3. computing ‖Pc[i]‖ from ‖Pc[i−1]‖ requires O(M(d log ‖Pc[i−1]‖)) bit opera-

tions,
4. ‖Pc[i]‖ ≤ (d + 1)(‖Pc[i−1]‖)2 ≤ . . . ≤ (d + 1)2

i

(‖Pc‖)2
i

.

For 1 and 2, see for instance [16][Theorem 2.4] and [16][Lemma 2.1]). 3 and 4
are derived from Eqs. (6) and (7), respectively. From 2, 4 and g ∈ O(log d) one
obtains

log ‖Pc[g]‖ ∈ O(d log(d + 1) + d log ‖P‖ + d2 log(|c| + 1)), (18)

thus performing g DLG iterations for Pc involves

O(gM(d log ‖Pc[g]‖)) = O(log dM(d(d log(d + 1) + d log ‖P‖ + d2 log(|c| + 1))))
(19)

bit operations; this dominates the cost of step 2. Due to Schönhage-Strassen or
Harvey-van der Hoeven multiplication, M(n) ∈ ˜O(n), and so step 2 involves

˜O(d2 log ‖P‖ + d3 log(|c| + 1)) (20)

bit operations. Step 3 involves O(d log ‖Pc[g]‖) bit operations, the cost of the
for loop in steps 4–5 is dominated by the cost of step 2, and we complete the
proof of Theorem 4.

2.4 Implementation Details

The exact computation of Pc[g] can involve numbers of very large bit-size (see
Eq. (18)), and the key point for the practical efficiency of our implementation

148 R. Imbach and V. Y. Pan

of Algorithm 2 is to avoid this. Instead, we use ball arithmetic, i.e. arbitrary
precision floating point arithmetic with absolute error bounds, implemented for
instance in the C library arb (see [9]).

3 Real Root Isolation

In this section, we approximate the root distances to 0 in order to improve in
practice subdivision approaches to real root isolation, and in particular the one
described in Subsect. 1.2. Let us define the notion of annuli cover of the roots
of P ∈ Z[z].

Definition 1. A set Ac of disjoint concentric annuli centered in c is an annuli
cover of the roots of P of degree d if

1. ∀A ∈ Ac, there are integers t(A) and h(A) such that

αt(A)(P, c), αt(A)+1(P, c), . . . , αt(A)+h(A)(P, c) ∈ A, (21)

2. ∀i ∈ {1, . . . , d}, there is an A ∈ Ac such that αi(P, c) ∈ A.

For an annulus A ∈ Ac, r(A) and r(A) are the interior and exterior radii
of A, respectively. Write s+(A) := P (c + r(A))P (c + r(A)) and s−(A) := P (c −
r(A))P (c − r(A)).

Given an annuli cover A0 centered at 0, we can skip many calls for exclusion
and root-counting based on the following:

Remark 9. Let A ∈ A0 such that r(A) > 0.

1. If h(A) = 0 and s+(A) > 0 (resp. s−(A) > 0), A∩R+ (resp. A∩R−) contains
no real root of P .

2. If h(A) = 0 and s+(A) < 0 (resp. s−(A) < 0), A∩R+ (resp. A∩R−) contains
one real root of P .

3. If h(A) > 0 and s+(A) < 0 (resp. s−(A) < 0), A∩R+ (resp. A∩R−) contains
at least one real root of P .

In Subsects. 3.1 and 3.2 we describe our exclusion test and root counter based
on Remark 9. In Subsect. 3.3 we describe our algorithm solving the RRI problem.
In Subsect. 3.4 we present the results of our numerical tests.

3.1 Annuli Cover and Exclusion Test

Let B be a real line segment that does not contain 0, let A be an annuli cover
centered in 0, and let A ∈ A. Define that:

– sB , the sign of B, is −1 (resp. 1) if B < 0 (resp. B > 0),
– RsB(A) is A ∩ R− if sB < 0, and is A ∩ R+ otherwise,
– ssB(A) is s−(A) if sB < 0, and is s+(A) otherwise,
– n(A, B) is the number of annuli A ∈ A s.t. A ∩ B �= ∅,

Root Radii and Subdivision for Polynomial Root-Finding 149

Algorithm 3. C0
R
(B,P,A)

Input: A polynomial P ∈ Z[z] of degree d, a segment B of R, an annuli cover A of
the roots of P centered in 0. Assume 0 /∈ B.

Output: an integer in {−1, 0}; if 0 then P has no real root in B; if −1 then there is
a root in 2B.

1: Compute n(A, B), n0(A, B) and n≥1(A, B)
2: if n(A, B) = n0(A, B) then
3: return 0
4: if n≥1(A, B) >= 1 then
5: return −1

6: return T 0(Δ(B), P)

– n0(A, B) is the number of annuli A ∈ A s.t.

(A ∩ B �= ∅) ∧ (h(A) = 0) ∧ ssB(A) > 0, (22)

– n≥1(A, B): the number of annuli A ∈ A s.t.

(A ∩ B �= ∅) ∧ (h(A) ≥ 0) ∧ ssB(A) < 0 ∧ RsB(A) ⊆ 2B. (23)

By virtue of Remark 9, if n(A, B) = n0(A, B), then all the annuli intersecting
B contain no root, thus B contains no root. If n≥1(A, B) ≥ 1 then 2B contains
at least one real root.

Our exclusion test C0
R

is described in Algorithm 3. For computing n(A, B),
n0(A, B) and n≥1(A, B) in Step 1, we use double precision interval arithmetic,
hence Step 1 involves O(d) bit operations. This implies

Proposition 10. Let B be a real line segment with 0 /∈ B, and let A be an annuli
cover of the roots of P centered in 0. The cost of carrying out C0

R
(B,P,A) is

bounded by the cost of carrying out T 0(Δ(B), P).
C0

R
(B,P,A) returns an integer k in {−1, 0}. If k = 0, then P has no real

roots in B. If k = −1, then P has a root in 2B.

3.2 Annuli Cover and Root Counter

In order to describe our root counter, we define:

– n1(A, B): the number of annuli A ∈ A s.t. :

(A ∩ B �= ∅) ∧ (h(A) = 0) ∧ (ssB(A) < 0) ∧ (RsB(A) ⊆ B), (24)

– n′
≥1(A, B): the number of annuli A ∈ A s.t.:

(A ∩ B �= ∅) ∧ (h(A) ≥ 0) ∧ ssB(A) < 0 ∧ (RsB(A) ⊆ 2B \ (1/2)B). (25)

By virtue of Remark 9, if n(A, B) = n0(A, B) + n1(A, B), B contains exactly
n1(A, B) real roots. If n′

≥1(A, B) ≥ 1 then P has at least one real root in
2B \ (1/2)B.

Our root counter is described in Algorithm4. We use double precision interval
arithmetic for computing n(A, B), n0(A, B), n1(A, B) and n′

≥1(A, B) in Step 1,
thus Step 1 involves O(d) bit operations.

150 R. Imbach and V. Y. Pan

Algorithm 4. C∗
R
(B,P,A)

Input: A polynomial P ∈ Z[z] of degree d, a segment B of R, an annuli cover A of
the roots of P centered in 0. Assume 0 /∈ 2B.

Output: an integer k in {−1, 0, 1, . . . , d}; if k ≥ 0 then P has k roots in B; if −1 then
there is a root in 2B \ (1/2)B.

1: Compute n(A, B), n0(A, B), n1(A, B) and n′
≥1(A, B)

2: if n(A, B) = n0(A, B) + n1(A, B) then
3: return n1(A, B)

4: if n′
≥1(A, B) ≥ 1 then

5: return −1

6: return T ∗(Δ(B), P)

Proposition 11. Let B be a real line segment with 0 /∈ B and let A be an annuli
cover of the roots of P centered in 0. The cost of carrying out C∗

R
(B,P,A) is

bounded by the cost of carrying out T ∗(Δ(B), P).
C∗

R
(B,P,A) returns an integer k in {−1, 0, . . . , d}. If k ≥ 0, then P has k

roots in Δ(B). If k = −1, then P has a root in 2B \ (1/2)B.

3.3 Annuli Cover and the RRI Problem

Consider the following procedure.

Stage 1: Compute A0 by calling SolveRRC(P, 0, d−2).
Stage 2: Apply the subdivision procedure of Subsect. 1.2 while using C0

R
(B,P,

A0) (resp. C∗
R
(B,P,A0)) as an exclusion test (resp. root counter) for real line

segment B of the subdivision tree. In the verification step of Newton iterations,
use the T ∗-test of [2].

At Stage 1, we obtain A0 by computing the connected components made up
of the concentric annuli defined by the output of SolveRRC(P, 0, d−2).

By virtue of Theorem 4 and Propositions 10 and 11, this procedure solves
the RRI problem, and its bit-complexity is bounded by the bit-complexity of the
algorithm described in [1], thus it is near optimal for the benchmark problem.

3.4 Experimental Results

The procedure given in Subsect. 3.3 has been implemented within the library
Ccluster; we call this implementation RisolateR. Comparison of RisolateR
with Risolate reveals practical improvement due to using our root radii algo-
rithms in subdivision process. We also compare RisolateR with the subdivision
algorithm of [14] whose implementation ANewDsc is described in [10] and is cur-
rently the user’s choice for real root isolation.

Test Polynomials. We consider the following polynomials.
The Bernoulli polynomial of degree d is Bd(z) =

∑d
k=0

(

d
k

)

bd−kzk where the
bi’s are the Bernoulli numbers.

Root Radii and Subdivision for Polynomial Root-Finding 151

The Wilkinson polynomial of degree d is Wd(z) =
∏d

i=1(z − i).
For integers n > 0, we define polynomials with (2n + 1) × (2n + 1) roots on

the nodes of a regular grid centered at 0 as

P(2n+1)×(2n+1)(z) =
∏

−n≤a,b≤n

(z − a + ib). (26)

The Mignotte polynomial of degree d and bitsize τ is Md,τ (z) = zd −
2(2

τ
2 −1z − 1)2.
We also consider dense polynomials of degree d with coefficients randomly

chosen within [−2τ−1, 2τ−1] (under the uniform distribution).

Results. In our test polynomials with several degrees/bit-sizes, we used Riso-
late, RisolateR and ANewDsc to solve the RRI problem. Our non-random exam-
ples have only simple roots and for those examples ANewDsc is called with option
-S 1 to avoid testing input polynomial for being square-free.

Times are sequential times in seconds on a Intel(R) Core(TM) i7-8700
CPU @ 3.20 GHz machine with Linux. We report in Table 2:

– d, τ and dR, that is, the degree, the bit-size and the number of real roots,
respectively,

– t1 (resp. t2), the running time of Risolate (resp. RisolateR),
– n1 (resp. n2), the number of T 0-tests in Risolate (resp. RisolateR),
– n′

1 (resp. n′
2), the number of T ∗-tests in Risolate (resp. RisolateR),

– t3, the time required to compute the annuli cover in RisolateR,
– t4, the running time in second of ANewDsc.

For random polynomials, we display averages over 10 examples of those val-
ues. We also display σ1, σ2, and σ4, the standard deviation of running time of
Risolate, RisolateR and ANewDsc, respectively.

Compare columns n1, n
′
1 and n2, n

′
2 in Table 2: using the annuli cover both in

exclusion tests and root counter reduces dramatically the number of Pellet’s tests
performed in the subdivision process, and significantly decreases the running
time (see column t2/t1). In the cases where the ratio τ/d is low RisolateR
spent most of the time on solving the RRC problem (see column t3/t2). Finally,
ANewDsc remains faster than RisolateR for polynomials having a few real roots
or a low bit-size, whereas this trend seems to reverse when the ratios of the
number of real roots and/or bit-size over the degree increase (see columns t2
and t4). Mignotte polynomials of even degree have four real roots among which
two are separated by a distance way less than the relative size of d−2, the relative
size of annuli in the computed annuli cover. In such cases, the knowledge of root
radii enables no significant improvement because subdivision solvers spend most
of their running time on performing Newton’s iterations that converge to the
cluster of two close roots, and then on separating the two roots.

152 R. Imbach and V. Y. Pan

Table 2. Runs of Risolate, RisolateR and ANewDsc on our test polynomials

Risolate RisolateR ANewDsc

d τ dR t1 (σ1) n1, n′
1 t2 (σ2) n2, n′

2 t3/t2 (%) t2/t1 (%) t4 (σ4)
10 monic random dense polynomials per degree/bit-size

256 8192 6.00 3.02 (1.13) 128.,80.2 .374 (.080) 4.40,25.3 16.3 12.3 .784 (1.73)
256 16384 7.80 5.09 (1.99) 183.,122. .499 (.132) 2.60,22.9 22.2 9.80 2.76 (5.19)
256 32768 7.40 7.59 (3.20) 172.,125. .442 (.174) 4.40,27.4 16.3 5.82 1.18 (.600)
256 65536 7.00 10.7 (6.33) 170.,140. .480 (.160) 4.30,25.4 10.4 4.46 1.91 (1.18)
391 8192 7.20 8.87 (2.99) 157.,107. 1.12 (.310) 4.60,26.0 15.0 12.6 3.29 (5.42)
391 16384 8.40 10.1 (4.12) 186.,116. 1.39 (.575) 6.20,28.9 15.3 13.7 10.2 (19.8)
391 32768 8.60 18.6 (6.98) 202.,155. 1.38 (.528) 4.00,29.0 14.5 7.41 1.67 (.750)
391 65536 7.60 23.9 (13.9) 178.,137. 1.88 (1.17) 3.90,33.6 18.5 7.86 13.9 (18.9)
512 8192 6.60 31.1 (18.5) 158.,104. 3.68 (4.72) 6.00,25.9 12.4 11.8 1.26 (1.03)
512 16384 5.20 41.1 (20.1) 152.,106. 5.00 (4.63) 6.50,25.8 5.37 12.1 1.70 (2.17)
512 32768 6.00 56.7 (28.1) 167.,122. 2.00 (.596) 4.40,28.4 18.1 3.53 5.95 (7.61)
512 65536 6.60 86.5 (34.2) 180.,137. 4.84 (3.67) 5.90,32.7 5.19 5.60 60.1 (118.)

Bernoulli polynomials
256 1056 64 1.13 292, 82 0.08 12, 3 54.2 7.77 0.20
391 1809 95 2.66 460, 145 0.30 12, 2 76.1 11.2 1.09
512 2590 124 6.15 528, 144 0.38 14, 3 65.9 6.30 1.58
791 4434 187 16.3 892, 264 2.39 20, 1 85.0 14.6 9.92

1024 6138 244 56.3 1048, 283 2.42 12, 3 76.5 4.30 14.9
Wilkinson polynomials

256 1690 256 3.63 1030, 283 0.17 0, 10 41.1 4.90 1.57
391 2815 391 17.6 1802, 541 0.68 0, 10 51.7 3.88 5.69
512 3882 512 25.9 2058, 533 1.04 0, 11 46.9 4.01 27.1
791 6488 791 165. 3698, 1110 7.04 0, 11 57.1 4.26 158.

1024 8777 1024 265. 4114, 1049 8.38 0, 12 51.2 3.15 309.
Polynomials with roots on a regular grid

289 741 17 0.40 86, 30 0.13 0, 16 81.7 34.4 0.09
441 1264 21 0.91 106, 36 0.21 0, 20 77.3 23.4 0.39
625 1948 25 1.59 118, 39 0.92 0, 24 89.1 58.0 0.80
841 2800 29 3.30 154, 51 1.67 0, 28 87.4 50.7 2.56

1089 3828 33 8.06 166, 55 2.20 0, 32 76.4 27.3 4.49
Mignotte polynomials

512 256 4 1.57 34, 15 1.67 2, 12 16.5 106. 0.76
512 512 4 3.07 34, 15 4.81 2, 14 5.70 156. 1.90
512 1024 4 5.91 34, 15 5.96 2, 10 4.13 100. 5.28
512 2048 4 13.8 34, 15 13.2 2, 9 2.42 95.3 14.1
512 4096 4 29.7 50, 17 30.8 2, 6 .753 103. 36.0

4 Complex Root Clustering

In this section, by approximating the root distances from three centers, namely
0, 1 and i we improve practical performance of subdivision algorithms for com-
plex root clustering.

Using three annuli covers A0,A1 and Ai of the roots of P , one can compute
a set D of O(d2) complex discs containing all the roots of P , and then skip
expensive Pellet-based exclusion tests of the boxes that do not intersect the
union of these discs.

Root Radii and Subdivision for Polynomial Root-Finding 153

In Subsect. 4.1 we describe an exclusion test using the set D of discs contain-
ing the roots of P , and in Subsect. 4.2 we present a procedure solving the CRC
with near optimal bit complexity. In Subsect. 4.3 we show experimental results.

4.1 Annuli Cover and Exclusion Test

Let D be a set of O(d2) complex discs covering all the roots of P , i.e. any root
of P is in at least one disc in D. A box B such that B ∩ D = ∅ cannot contain
a root of P .

We define an exclusion test based on the above consideration, called C0
C
-test

and described in Algorithm5. For a box B having a nonempty intersection with
the real line, the number n≥1(A0, B) of annuli intersecting B and containing at
least one real root in B ∩ R is used to save some T 0-tests.

Algorithm 5. C0
C
(B,P,D,A0)

Input: A polynomial P ∈ Z[z] of degree d, a box B of C, a set D of O(d2) complex
discs covering all the roots of P , an annuli cover A0 centered in 0

Output: an integer in {−1, 0}; if 0 then P has no real root in B; if −1 then there is
a root in 2B.

1: Compute the number n of discs in D having nonempty intersection with B.
2: if n = 0 then
3: return 0
4: if B ∩ R �= ∅ then
5: Compute n≥1(A0, B)
6: if n≥1(A0, B) >= 1 then
7: return −1

8: return T 0(Δ(B), P)

Proposition 12. Let D contain O(d2) discs covering the roots of P and let
A0 be an annuli cover of the roots of P centered in 0. The cost of performing
C0

C
(B,P,D,A0) is bounded by the cost of performing T 0(Δ(B), P).
C0

C
(B,P,D,A0) returns an integer k in {−1, 0}. If k = 0, then P has no root

in B. If k = −1, then P has a root in 2B.

4.2 Annuli Cover and the CRC Problem

Consider the following procedure.

Stage 1: For c = 0, 1, i, compute Ac by calling SolveRRC(P, c, d−2).
Stage 2: Use A0, A1 and Ai to compute a set D of at most 2d2 discs covering
all roots of P .
Stage 3: Apply the Complex Root Clustering Algorithm of Subsect. 1.2 but
let it apply C0

C
(B,P,D,A0) instead of T 0(Δ(B), P) as the exclusion test for

154 R. Imbach and V. Y. Pan

boxes B of the subdivision tree. In the verification step of Newton iterations,
use the T ∗-test of [2].

In Stage 1, for c = 0, 1, i, Ac is obtained by computing the connected com-
ponents of the concentric annnuli defined by the output of SolveRRC(P, c, d−2).
According to Theorem 4, Stage 1 involves ˜O(d2(d + log ‖P‖∞)) bit operations.

In Stage 2, D is computed as follows: using double precision floating point
arithmetic with correct rounding, first compute complex discs containing all
possible intersections of an annulus in A0 with an annulus in A1, and obtain
a set D of at most 2d2 complex discs containing all roots of P . Then, for each
disc Δ in D check if Δ and its complex conjugate Δ have a nonempty intersection
with at least one annulus of Ai, and remove Δ from D if it does not. This step
has cost in O(d3).

By virtue of Proposition 12, the cost of performing Stage 3 is bounded by the
cost of performing the algorithm described in Subsect. 1.2. This procedure solves
the CRC problem and supports near optimal complexity for the benchmark
problem.

4.3 Experimental Results

The procedure of Subsect. 4.2 is implemented within Ccluster; below we call
this implementation CclusterR and present experimental results that highlight
practical improvement due to using our root radii algorithm in subdivision.

We used Ccluster and CclusterR with input value ε = 2−53 to find clusters
of size at most ε. We also used MPSolve-3.2.1, with options -as -Ga -o16 -j1
to find approximations with 16 correct digits of the roots.

For our test polynomials (see 3.4) we report in Table 3:

– d and τ denoting the degree and the bit-size, respectively,
– t1 (resp. t2), the running time of Ccluster (resp. CclusterR),
– n1 (resp. n2), the number of T 0-tests in Ccluster (resp. CclusterR),
– t3, the time for computing the three annuli covers in CclusterR, - t4, the

running time of MPSolve in seconds.

For random polynomials, we show averages over 10 examples of those values.
We also show σ1, σ2, and σ4, the standard deviations of the running times
of Ccluster, CclusterR and MPSolve. For the real root isolator presented in
Sect. 3, using root radii enables significant saving of Pellet-based exclusion tests
in the subdivision process (compare columns n1 and n2) and yields a speed-up
factor about 3 for our examples (see column t2/t1). This speed-up increases as the
number of real roots increases (see, e.g., Wilkinson polynomials) because some
exclusion tests for boxes B containing the real line are avoided when 2B contains
at least one root which we can see from the number n≥1(A0, B) computed in
the C0

C
test. The time spent for computing the three annuli covers remains low

compared to the running time of CclusterR (see column t3/t2). MPSolve remains
the user’s choice for approximating all complex roots.

Root Radii and Subdivision for Polynomial Root-Finding 155

Table 3. Runs of Ccluster, CclusterR and MPSolve on our test polynomials

Ccluster CclusterR MPSolve

d τ t1 (σ1) n1 t2 (σ2) n2 t3/t2 (%) t2/t1 (%) t4 (σ4)
10 monic random dense polynomials per degree

128 128 4.43 (.760) 2598. 1.46 (.235) 463. 7.81 33.1 .031 (.003)
191 191 13.5 (1.82) 3846. 4.40 (.528) 694. 4.20 32.6 .063 (.007)
256 256 23.7 (2.52) 4888. 7.87 (.672) 909. 7.04 33.2 .106 (.013)
391 391 70.9 (9.23) 7494. 22.5 (1.95) 1460. 3.67 31.7 .209 (.037)
512 512 154. (17.9) 9996. 46.1 (6.00) 1840. 7.08 29.9 .392 (.102)

Bernoulli polynomials
128 410 3.86 2954 1.25 548 7.48 32.3 0.07
191 689 12.2 4026 4.51 942 8.07 36.8 0.16
256 1056 24.7 5950 10.1 1253 6.57 41.1 0.39
391 1809 75.1 8322 27.4 1907 16.2 36.5 0.97
512 2590 133. 11738 49.9 2645 12.7 37.5 2.32

Wilkinson polynomials
128 721 8.43 3786 1.09 14 14.4 12.9 0.17
191 1183 25.4 5916 2.99 18 27.9 11.7 0.51
256 1690 50.7 7500 6.34 18 21.7 12.4 1.17
391 2815 201. 12780 23.1 22 36.2 11.4 4.30
512 3882 379. 14994 51.3 22 35.6 13.5 9.33

Polynomials with roots on a regular grid
169 369 7.37 3072 1.99 592 4.03 27.1 0.05
289 741 27.1 5864 10.2 1573 3.18 37.9 0.13
441 1264 81.4 9976 24.4 1713 4.28 29.9 0.56
625 1948 228. 15560 70.2 2508 15.0 30.7 1.16
841 2800 493. 19664 169. 4294 5.75 34.2 3.84

Mignotte polynomials
512 256 88.8 9304 28.3 1611 11.0 31.8 0.76
512 512 88.3 9304 29.3 1570 9.20 33.1 0.79
512 1024 101. 9304 32.1 1647 8.62 31.7 0.91
512 2048 106. 9304 33.4 1990 7.50 31.2 1.12
512 4096 102. 9304 50.1 3593 4.88 49.0 1.10

References

1. Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis of root
clustering for a complex polynomial. In: Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2016, pp. 71–78.
ACM, New York (2016)

2. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algo-
rithm for complex root isolation based on Pellet test and Newton iteration. J.
Symb. Comput. 86, 51–96 (2018)

3. Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision
algorithm. J. Comput. Appl. Math. 272, 276–292 (2014)

4. Fujiwara, M.: Über die obere schranke des absoluten betrages der wurzeln einer
algebraischen gleichung. Tohoku Math. J. First Series 10, 167–171 (1916)

5. Gourdon, X.: Algorithmique du theoreme fondamental de l’algebre. Research
Report RR-1852, INRIA (1993). https://hal.inria.fr/inria-00074820

6. Graham, R.L., Yao, F.F.: Finding the convex hull of a simple polygon. J. Algo-
rithms 4(4), 324–331 (1983)

7. Henrici, P., Gargantini, I.: Uniformly convergent algorithms for the simultaneous
approximation of all zeros of a polynomial. In: Constructive Aspects of the Fun-
damental Theorem of Algebra, pp. 77–113. Wiley-Interscience New York (1969)

8. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root
clustering algorithm. Math. Softw. - ICMS 2018, 235–244 (2018)

https://hal.inria.fr/inria-00074820

156 R. Imbach and V. Y. Pan

9. Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arith-
metic. IEEE Trans. Comput. 66, 1281–1292 (2017)

10. Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real polynomials
... and now for real! In: Proceedings of the ACM on International Symposium on
Symbolic and Algebraic Computation, ISSAC 2016, pp. 303–310. ACM, New York
(2016)

11. Mignotte, M.: On the distance between the roots of a polynomial. Appl. Algebra
Eng. Commun. Comput. 6(6), 327–332 (1995)

12. Pan, V.Y.: Approximating complex polynomial zeros: modified Weyl’s quadtree
construction and improved Newton’s iteration. J. Complex. 16(1), 213–264 (2000)

13. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for numerical fac-
torization and root-finding. J. Symb. Comput. 33(5), 701–733 (2002)

14. Sagraloff, M., Mehlhorn, K.: Computing real roots of real polynomials. J. Symb.
Comput. 73, 46–86 (2016)

15. Schönhage, A.: The fundamental theorem of algebra in terms of computational
complexity. Preliminary report, University of Tübingen, Germany (1982)

16. Von Zur Gathen, J., Gerhard, J.: Fast algorithms for Taylor shifts and certain differ-
ence equations. In: Proceedings of the 1997 International Symposium on Symbolic
and Algebraic Computation, pp. 40–47. ACM (1997)

On First Integrals and Invariant
Manifolds in the Generalized Problem

of the Motion of a Rigid Body
in a Magnetic Field

Valentin Irtegov and Tatiana Titorenko(B)

Institute for System Dynamics and Control Theory, SB RAS,
134, Lermontov str., Irkutsk 664033, Russia

{irteg,titor}@icc.ru

Abstract. Differential equations describing the motion of a rigid body
with a fixed point under the influence of both a magnetic field gener-
ated by the Barnett–London effect and potential forces are analyzed.
We seek first integrals and invariant manifolds of the equations in the
form of polynomials of the second, third, and fourth degrees and conduct
the qualitative analysis of the equations in the found particular cases of
the existence of additional integrals. Special solutions are found from
the necessary extremum conditions of the integrals and their Lyapunov
stability is investigated. Computer algebra methods such as the reduc-
tion of a polynomial with respect to a list of polynomials, the Gröbner
basis method, etc. are used to obtain the integrals and manifolds and to
analyze the equations.

1 Introduction

The paper continues our previous work [9] devoted to finding linear invariant
manifolds of differential equations in the problem on the rotation of a rigid body
with a fixed point in an uniform magnetic field generated by the Barnett–London
effect [2,3], taking into account the moment of potential forces. As was noted
therein, the influence of the Barnett–London effect on the motion of the body
was studied in a number of works in various aspects. Similar problems arise in
many applications, e.g., in space dynamics [4], in designing instruments having
a contactless suspension system [14]. Our interest is in the qualitative analysis
of the equations of motion of the body.

The Euler–Poisson equations of motion of a rigid body with a fixed point in
the problem under consideration can be written as [5]:

Aω̇ = Aω × ω + Bω × γ + γ × (Cγ − s), γ̇ = γ × ω. (1)

Here ω = (ω1, ω2, ω3) is the angular velocity of the body, γ = (γ1, γ2, γ3) is
the unit vector of the direction of the magnetic field, s = (s1, s2, s3) is the
center of mass of the body, A, B, C are the symmetric matrices of 3rd order:
c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 157–173, 2021.
https://doi.org/10.1007/978-3-030-85165-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_10

158 V. Irtegov and T. Titorenko

A is the inertia tensor of the body computed at its fixed point, B is the matrix
characterizing the magnetic moment of the body, C is the matrix characterizing
the action of potential forces on the body.

Equations (1) admit the two first integrals

V1 = Aω · γ = κ, V2 = γ · γ = 1 (2)

and, in the general case, are non-integrable. Therefore, the problem of finding
invariant manifolds (IMs) and additional first integrals of these equations is of
interest for their integrability and analysis. A number of works are devoted to
this question, e.g., [5,10,13]. In [5], a linear invariant relation of the Hess type
[6] has been found for Eqs. (1). In [10,13], the integrable cases of the equations
have been presented when the matrices A, B are diagonal, and potential forces
are absent.

In [9], we have proposed a technique to find linear IMs for the equations of
type (1). It is a combination of the method of undetermined coefficients with
the methods of computer algebra and allows one to obtain both the conditions
of the existence of the IMs and the IMs themselves. The aim of this work is to
find IMs and first integrals of Eqs. (1) in the form of the polynomials of the
2nd degree and higher and to apply them for the qualitative analysis of these
equations. By the same technique as before, we have found the new polynomial
IMs and additional first integrals of the 2nd–4th degrees. The latter were used in
the qualitative analysis of the equations by the Routh–Lyapunov method [11].
Stationary solutions and IMs were found and their Lyapunov stability was ana-
lyzed. The computer algebra system (CAS) “Mathematica” was employed to
solve computational problems. The software package [1] developed on its base
was used in the analysis of the stability of stationary solutions and IMs.

The paper is organized as follows. In Sect. 2, obtaining the polynomial IMs
and integrals of the 2nd–4th degrees for equations (1) by the above-mentioned
technique is described. In Sects. 3 and 4, the qualitative analysis of these equa-
tions in the particular cases of their integrability is done. In Sect. 5, a conclusion
is given.

2 Obtaining Integrals and Invariant Manifolds

For Eqs. (1), we state the problem to find IMs and integrals defined by the
polynomials like

P =
n∑

α=0

aαpα,

where pα = ωα1
1 ωα2

2 ωα3
3 γα4

1 γα5
2 γα6

3 , αi (1, . . . , 6) are the non-negative integers,
α =

∑6
i=1 αi is the degree of the monomial pα.

In the present work, the cases when n = 2, 3, 4 are considered.

Generalized Problem of the Motion of a Rigid Body in a Magnetic Field 159

2.1 Quadratic Integrals and Invariant Manifolds

Let in Eqs. (1) be A = diag(A1, A2, A3), B = diag(B1, B2, B3), C =
diag(C1, C2, C3). IMs and integrals will be sought for these equations in the
form:

F (ω1, ω2, ω3, γ1, γ2, γ3) =
3∑

i=1

(3∑

j=i

(xij ωiωj + zij γiγj) +
3∑

j=1

yij ωiγj

)

+f1ω1 + f2ω2 + f3ω3 + f4γ1 + f5γ2 + f6γ3 + f0 = 0. (3)

Here xij , yij , zij , fl are constant parameters to be determined.
Compute the derivative of F (3) by virtue of Eqs. (1). The derivative G =

G(ωi, γi) (i = 1, 2, 3) is a polynomial of the phase variables ωi, γi. Considering G
as the polynomial of one phase variable, e.g., ω1, with the coefficients of the rest of
the variables, we can represent it, using the built-in function PolynomialReduce of
CAS “Mathematica” in the form PolynomialReduce[G, {F}, {ω1}], as follows:

G = QF + R,

where Q = Q(ω2, ω3, γj), R = R(ω1, ω2, ω3, γj) are some polynomials (the degree
of R < the degree of F in ω1). F defines the IMs of Eqs. (1) if R ≡ 0, and their
integral if Q = R ≡ 0.

Equating the coefficients of similar terms in R to zero, we have the system
of polynomial equations with respect to xij , yij , yji, zij , fk (i, j = 1, 2, 3; k =
0, . . . , 6):

A2f3s2 − A3f2s3 = 0, (A1 − A3) f0x12 = 0, (A1 − A3) (f2x11 − f1x12) = 0,
(A1 − A3) f3x12 = 0, (A1 − A2) f0x13 = 0, (A1 − A2) (f3x11 − f1x13) = 0,
(A1 − A2) f2x13 = 0, A3s3x12 − A2s2x13 = 0, (A1−A2)x13x22 = 0,
A2A3(A2 − A3)f1x11 + A1A3(A1 − A3)f2x12 − A1A2(A1−A2)f3x13 = 0,
(A1 − A2) (x12x13 − x11x23) = 0, (A1 − A3) (x12x13 − x11x23) = 0,
A2(B2f3 − A3f6)x11 + (A1−A2)A2f4x13 − (2A3s3x22 − A2s2x23)x11 = 0,
A3(A2(A2−A3) x11 + A1(A1 − A3)x22)x12 − A1A2(A1−A2)x13x23 = 0,
2A2(A2 − A3)A3x

2
11 + A1A3(A1 − A3)(x2

12 − 2x11x22)
+A1A2(A1 − A2)(2x11x33 − x2

13) = 0,
A3(B3f2 − A2f5)x11 + (A1 − A3)A3f4x12 + (A3s3x23 − 2A2s2x33)x11 = 0,
(A1 − A3)x12x33 = 0,
(A2(A2 − A3)A3x11 − A1A2(A1 − A2)x33)x13 + A1(A1 − A3)A3x12x23 = 0,
gl(xij , yij , yji, fk) = 0 (l = 1, . . . , 29),
hm(xij , yij , yji, zij , fk) = 0 (m = 1, . . . , 26).

(4)

Here gl, hm are the polynomials of xij , yij , yji, zij , fk.
So, the problem of seeking the quadratic IMs and integrals of differential Eqs.

(1) is reduced to solving the above system of polynomial algebraic equations. It is
the overdetermined system of 73 equations with the parameters Ai, Bi, Ci, si (i =
1, 2, 3), the number of unknowns is 28.

160 V. Irtegov and T. Titorenko

As can be seen, Eqs. (4) are split up into several subsystems in the variables.
The first 18 equations depend only on xij , fk. We resolve them with respect to
these variables

f1= f2= f3= 0, f5=
2s2(A2(A2−A3)x11−A1(A1−A3)x22)

A1A2(A1−A2)
, f6= −2s3 x22

A2
,

x12 = x13 = x23 = 0, x33 =
A3(A1(A1 − A3)x22 − A2(A2 − A3)x11)

A1A2(A1 − A2)
(5)

and substitute the found solution into the rest of the equations. The resulting
system consists of 53 equations in the variables f0, f4, x11, x22, yij , yji, zij . Next,
a lexicographical basis with respect to a part of the variables and parameters,
e.g., f0, f4, x22, yij , yji, zij , C1, C2, C3, B1, B2, s1, s2, s3 for the polynomials of the
system is constructed. As a result, we have a system decomposing into 2 subsys-
tems. These are not represented here for space reasons.

A lexicographical basis with respect to the above variables was computed for
the polynomials of each subsystem. One of the bases is written as

s1 = 0, s2 = 0, s3 = 0, a3B1−a2B2 + a1B3 = 0, a3C1−a2C2 + a1C3 = 0,
(C2−C3)x11 − A1(z22 − z33) = 0, z23 = 0, z13 = 0, z12 = 0,
(a3B3C1 + a2(B2(C2−C3) − B3C2) + a1B3C3)x11 − A1(a2B2 − a1B3) z11
+A1(a2B2 − a1B3) z33 = 0,
(a3C1 − a2C2 + a1C3)((C3 − C1)x11 + A1(z11 − z33)) = 0,
y32 = 0, y31 = 0, y23 = 0, y21 = 0, y13 = 0, y12 = 0,
A3y22 − A2y33 = 0, A1y33 − A3y11 = 0,
A2a3B2 x11 − A1(a2B2 − a1B3)x22 = 0,
A2(a2C2−a3C1−a1C3)x11−A1(a2C2−a2C3)x22+A1A2a3(z11−z33) = 0,
(C1 − C3)x22 − A2(z11 − z33) = 0, f4 = 0,

(6)

where a1 = A1 − A2, a2 = A1 − A3, a3 = A2 − A3.
Equations (6) have the following solution:

B1 =
a2B2 − a1B3

a3
, C1 =

a2C2 − a1C3

a3
, s1 = s2 = s3 = 0,

x22 =
A2B2a3 x11

A1(a2B2 − a1B3)
, y11 =

A1y33
A3

, y22 =
A2y33

A3
,

f4 = y12 = y13 = y21 = y23 = y31 = y32 = 0, z11 =
a2B2(C2 − C3)x11

A1(a2B2 − a1B3)
+ z33,

z22 =
(C2 − C3)x11

A1
+ z33, z12 = z13 = z23 = 0. (7)

The substitution of (5), (7) into (3) produces the expression

Ω1=
(
ω2
1 +

a3 (A2B2ω
2
2 + A3B3ω

2
3)

A1(a2B2 − a1B3)
+

a2B2(C2 − C3)
A1(a2B2 − a1B3)

γ2
1 +

C2 − C3

A1
γ2
2

)
x11

+
1

A3
(A1γ1ω1 + A2γ2ω2 + A3γ3ω3) y33 + (γ2

1 + γ2
2 + γ2

3) z33 = const (8)

Generalized Problem of the Motion of a Rigid Body in a Magnetic Field 161

which, as can directly be verified by computation, is the first integral of Eqs. (1)
under the following constraints on the parameters of the problem:

B1 =
a2B2 − a1B3

a3
, C1 =

a2C2 − a1C3

a3
, s1 = s2 = s3 = 0.

The relation (8) is a linear combination of previously known integrals (the coef-
ficients of y33, z33) and the new integral (the coefficient of x11).

The solution obtained for the 2nd subsystem has the form:

B1 = − (a1 + A1)A3B3

A1(a3 − A3)
, B2 = −A2(a1 + A3)B3

A1(a3 − A3)
, C2 = C3 = C1,

s1 = s2 = s3 = 0, x11 = 1, x22 = 0,

y11 =
2B3

A1
, f4 = y12 = y13 = y21 = y22 = y23 = y31 = y32 = 0,

y33 =
2(a1 + A1)a3A3B3

a1A2
1(a3 − A3)

, z11 =
a2A

2
2(a1 + A3)B2

3

a1A3
1(a3 − A3)2

, z22 =
(a1 + A1)2a3A3B

2
3

a1A3
1(a3 − A3)2

,

z12 = z13 = z23 = z33 = 0. (9)

Having substituted (5) and (9) into (3), we have the expression

Ω2 = ω2
1 − A3a3

A1a1
ω2
3 +

2B3

A1
ω1γ1 +

2(a1 + A1)a3A3B3

A2
1a1(a3 − A3)

ω3γ3

+
A2

2a2(a1 + A3)B2
3

A3
1a1(a3 − A3)2

γ2
1 +

(a1 + A1)2a3A3B
2
3

A3
1a1(a3 − A3)2

γ2
2 = const (10)

which is the first integral of Eqs. (1) when the following conditions hold:

B1 = − (a1 + A1)A3B3

A1(a3 − A3)
, B2 = −A2(a1 + A3)B3

A1(a3 − A3)
, C2 = C3 = C1,

s1 = s2 = s3 = 0. (11)

The integrals Ω1, Ω2 correspond to the equations of motion for the asym-
metric body. The following integrals have been obtained under the different
conditions of dynamical symmetry of the body:

1) K1 = A1B1ω
2
1 + A3B3(ω2

2 + ω2
3) + B3(C1 − C3)γ2

1 − 2B3s1γ1 (12)

when A2 = A3, B2 = B3, C2 = C3, s2 = s3 = 0;

2) K2 = A2A3(ω2
1 + ω2

3) − 2A2B2ω2γ2 − (B2B3 + A2(C3 − C2))γ2
2

−2A2s2γ2;

when A1 = A3, B1 = B3, C1 = C3, s1 = s3 = 0;

3) K3 = A2A3(ω2
1 + ω2

3) + 2A2B3(ω1γ1 + ω2γ2) + (B2B3 + A2(C3 − C2))
×(γ2

1 + γ2
2) − 2A3s3γ3

when A1 = A2, B1 = B2, C1 = C2, s1 = s2 = 0.

162 V. Irtegov and T. Titorenko

Note that for A1 = A2 = A3, Ci = 0, si = 0 (i = 1, 2, 3) we have found the
integral previously known [10]:

2K = A2
1(ω

2
1 + ω2

2 + ω2
3) − 2A1(B1ω1γ1 + B2ω2γ2 + B3ω3γ3) + B1B3γ

2
2

+B2B3γ
2
1 + B1B2γ

2
3 .

As to quadratic IMs in the problem under consideration, we have degenerate
cases. All the equations of such IMs found by us are complete squares. One of
them is given below.

(
ω1 −

√
A3a3

A1a1
ω3 − (a3 − A3)B1

(a1 + A1)A3
γ1 −

√
a3

A1A3a1
B1γ3

)2

= 0. (13)

This solution exists when C1 = C2 = C3,

B2 =
A2(a1 + A3)B1

(a1 + A1)A3
, B3 = −A1(a3 − A3)B1

(a1 + A1)A3
, s2 = 0, s3 = −

√
A1a3

a1A3
s1.

In fact, Eq. (13) determines a linear IM.

2.2 Integrals and IMs of 3rd and 4th Degrees

To find IMs and integrals defined by the polynomials of 3rd and 4th degrees,
homogeneous and non-homogeneous polynomials of the above degrees are used as
initial ones. It leads to solving systems of 160–350 polynomial algebraic equations
with parameters, the number of unknowns is up to 130.

Four cubic IMs were obtained for Eqs. (1) in the case of the asymmetric body.
The equations of two IMs have the form of a complete cube. The equations of
the other two IMs are written as follows:

(
A1ω1 + B3γ1 ±

√
A2 − A3

√
A3√

A1

√
A1 − A2

(
A1 ω3 − (2A1 − A2)B3γ3

A2 − 2A3

))
Ω2 = 0.

Here the first cofactor defines a linear IM of Eqs. (1), and Ω2 is quadratic integral
(10). These exist under constraints (11).

In the case of the dynamically symmetric body, the cubic integral

Ω3 =
(
ω1 +

B3γ1
A1

)(
ω2
2 + ω2

3 +
2B1

A1
(ω2γ2 + ω3γ3)

+
B1B3 − A1(C1 − C3)

A1A3
(γ2

2 + γ2
3)

)
− s1

B1
(ω2

2 + ω2
3)

+
(B1B3 + A1(C1 − C3)) s1

A1A3B1
(γ2

2 + γ2
3) +

2s21γ1
A3B1

= const,

Generalized Problem of the Motion of a Rigid Body in a Magnetic Field 163

and the integral of 4th degree

Ω4 = (ω2
1 + ω2

3)
(
ω2
1 + ω2

3 − 4B2

A1
ω2γ2 − B2B3(3A1B2 + 2D)

A1A2D
γ2
2

)

−3B2
2B3

A2D
(ω1γ3 − ω3γ1)2 − B2

2

A2
1A

2
2D

(
A1B2(2A2ω2 + B3γ2)2

−A2B3 (2A2B3ω2γ2 + (A2ω2 + B3γ2)2)
)

(γ2
1 + γ2

3)

+
2B2

2B3

A1

(3
D

ω2γ2 − 1
A2

2

(γ2
1 + γ2

2 + γ2
3)

)
(ω1γ1 + ω3γ3) = const, (14)

were found. Here D = A1B2 − A2B3. The conditions of their existence are
A2 = A3, B2 = B3, C2 = C3, s2 = s3 = 0, and A3 = A1, B1 = B3, C2 = C3 =
C1, s1 = s2 = s3 = 0, respectively.

Further, the qualitative analysis of Eqs. (1) is done in some of the above
presented cases of the existence of additional first integrals.

3 The Equations of Motion with an Additional Quadratic
Integral

Let us consider Eqs. (1) when A2 = A3, B2 = B3, C2 = C3, s2 = s3 = 0. Under
these conditions, the equations have the form

A1ω̇1 = B3(ω2γ3 − ω3γ2),
A3ω̇2 = (B3γ1 − (A1 − A3)ω1)ω3 − (B1ω1 + s1) γ3 − (C3 − C1)γ1γ3,
A3ω̇3 = ((A1 − A3)ω1 − B3γ1)ω2 + (B1ω1 + s1) γ2 + (C3 − C1)γ1γ2,
γ̇1 = ω3γ2 − ω2γ3, γ̇2 = ω1γ3 − ω3γ1, γ̇3 = ω2γ1 − ω1γ2 (15)

and admit quadratic integral K1 (12).
Besides K1, Eqs. (15) have the integrals

Ṽ1 = A1ω1 + A3(ω2 + ω3) = c1, V2 =
3∑

i=1

γ2
i = 1 (16)

and the linear integral V3 = A1ω1 + B3γ1 = c3 which is directly derived from
the equations themselves. Thus, system (15) is completely integrable. We set the
problem of seeking stationary solutions and IMs [8] of the system and the analysis
of their stability. For this purpose, the Routh–Lyapunov method and some of its
generalizations [7] are used. According to this method, stationary solutions and
IMs of differential equations under study can be obtained by solving a conditional
extremum problem for the first integrals of these equations.

164 V. Irtegov and T. Titorenko

3.1 Seeking Stationary Solutions and Invariant Manifolds

In accordance with the method chosen, we take the nonlinear combination of
the first integrals of the problem

2W = 2λ0K1 − 2λ1Ṽ1 − λ2 V2 − λ3V
2
3 (17)

and write down the necessary extremum conditions for W with respect to the
variables ωi, γi:

∂W/∂ω1 = A1 [(λ0B1 − λ3A1)ω1 − (λ1 + λ3B3) γ1] = 0,
∂W/∂ω2 = A3 (λ0B3ω2 − λ1γ2) = 0,
∂W/∂ω3 = A3 (λ0B3ω3 − λ1γ3) = 0,
∂W/∂γ1 = −A1 (λ1 + λ3B3)ω1 + [(λ0 (C1 − C3) − λ3B3)B3 − λ2] γ1

−λ0B3s1 = 0,
∂W/∂γ2 = −(λ1A3ω2 + λ2γ2) = 0, ∂W/∂γ3 = −(λ1A3ω3 + λ2γ3) = 0.

(18)

First, we seek IMs of maximum dimension, namely, the IMs of codimension 2.
In order to solve this problem, a lexicographical basis with respect to λ0 > λ1 >
λ2 > ω1 > γ2 for the polynomials of system (18) is constructed. As a result, the
system is transformed to the form:

γ3ω2 − γ2ω3 = 0,
(A3ω3 + B3γ3) γ1ω3−(A1ω3 + B1γ3) γ3ω1 + ((C1−C3)γ1−s1) γ2

3 = 0,
(19)

λ2[B1((C3 − C1)γ1 + s1) γ2
3 + (A1B3 − A3B1) γ1ω

2
3] γ

2
3 − λ3A3B3ω

2
3

× [(B1B3γ1 + A1((C1 − C3)γ1 − s1)) γ2
3 + A1(2B3γ3 + A3ω3) γ1ω3] = 0,

λ1[B1 ((C1 − C3)γ1 − s1) γ2
3 + (A3B1 − A1B3)γ1ω2

3] γ3 − λ3B3ω3

× [(B1B3γ1 + A1((C1 − C3)γ1 − s1)) γ2
3 + A1(2B3γ3 + A3ω3) γ1ω3] = 0,

λ0[B1((C3 − C1)γ1 + s1) γ2
3 + (A1B3 − A3B1) γ1ω

2
3]

+λ3[(B1B3γ1 + A1((C1 − C3)γ1 − s1)) γ2
3 + A1(2B3γ3 + A3ω3) γ1ω3] = 0.

(20)

Equations (19) determine an IM of codimension 2 of differential Eqs. (15). It can
easily be verified by the definition of IM. Equations (20) allow one to obtain
the first integrals of differential equations on this IM. The latter can directly be
verified by computation. To do this, it needs to resolve Eqs. (20) with respect to
λ0, λ1, λ2, and to differentiate the resulting expressions by virtue of the equations
of motion on the IM.

Now IMs of minimum dimension are sought. Again we construct a lex-
icographical basis for the polynomials of system (18), but with respect to
ω1 > γ1 > γ2 > γ3 > λ2. The system takes the form:

A3λ
2
1 + B3λ0λ2 = 0, (21)

λ0B3ω3 − λ1γ3 = 0, λ0B3ω2 − λ1γ2 = 0,

[λ0λ
2
1A1B3 + λ3A1(λ2

1A3 + λ0B
2
3(λ0(C1 − C3) + 2λ1)) − λ0B1(A3λ

2
1

+λ0B
2
3(λ0(C1 − C3) − λ3B3))] γ1 + λ2

0B
2
3s1(λ0B1 − λ3A1) = 0,

(λ0λ
2
1A1B3 + λ3A1(λ2

1A3 + λ0B
2
3(λ0(C1λ0 − C3) + 2λ1)) − λ0B1(A3λ

2
1

+λ0B
2
3(λ0(C1 − C3) − λ3B3)))ω1 + λ2

0B
2
3s1(λ1 + λ3B3) = 0.

(22)

Generalized Problem of the Motion of a Rigid Body in a Magnetic Field 165

Equations (22) together with integral V2 (16) determine a family of one-
dimensional IMs of differential Eqs. (15). Here λ0, λ1, λ3 are the parameters of
the family. Next, find λ2 = −λ2

1A3/(λ0B3) from Eq. (21) and substitute into
(17). We have

2W̃ = 2λ0K1 − 2λ1Ṽ1 +
λ2
1A3

λ0B3
V2 − λ3V

2
3 . (23)

It is easy to verify by computation that the integral W̃ assumes a stationary
value on the elements of the above family of IMs.

In order to find stationary solutions, one needs to add relation V2 (16) to
Eqs. (18) and, for the polynomials of a resulting system, to construct a lexico-
graphical basis with respect to ω1 > ω2 > ω3 > γ1 > γ2 > γ3 > λ2. As a
result, we have a system of equations decomposing into 3 subsystems. One of
them corresponds to Eqs. (22), which the integral V2 is added to, the other two
subsystems are written as:

λ2(λ3A1 − λ0B1) − [λ2
1A1 + λ0B3(λ3A1 − λ0B1)(C1 − C3 ∓ s1)

+λ3B3(λ0B1B3 + 2λ1A1)] = 0, (24)

γ3 = 0, γ2 = 0, γ1 = ±1, ω3 = 0, ω2 = 0,
(λ3A1 − λ0B1)ω1 ± (λ3B3 + λ1) = 0. (25)

The Eq. (24) gives

λ2 =
λ2
1A1 + λ3B3(λ0B1B3 + 2λ1A1)

λ3A1 − λ0B1
+ λ0B3(C1 − C3 ∓ s1). (26)

Equations (25) define the two families of solutions of differential Eqs. (15)

ω1 = ± λ1 + λ3B3

λ0B1 − λ3A1
, ω2 = ω3 = γ2 = γ3 = 0, γ1 = ±1, (27)

the elements of which deliver a stationary value to the integral W under the
corresponding values of λ2 (26).

From a mechanical point of view, the elements of the families of solutions (27)
correspond to permanent rotations of the body about the Ox axis (the system of
axes related to the body) with the angular velocity ω1 = ±(λ1 +λ3B3)/(λ0B1 −
λ3A1).

It is not difficult to show that the family of IMs (22) belongs to IM (19). For
this purpose, we resolve Eqs. (22) with respect to ω1, γ1, γ2, γ3 and substitute a
result into (19). The latter expressions turn into identities. It means that the
elements of the family of IMs (22) are submanifolds of IM (19). Similarly, one
can show that solutions (27) belong to IM (19) and, under the corresponding
values of

λ3 =
λ0(λ2

1(B1A3 − A1B3) + λ2
0B1B

2
3(C1 − C3 ∓ s1))

B1B3
3λ

2
0 + A1(λ1(A3λ1 + 2λ0B2

3) + λ2
0B

2
3(C1 − C3 ∓ s1))

,

to the elements of the family of IMs (22).

166 V. Irtegov and T. Titorenko

3.2 On the Stability of Stationary Solutions and Invariant Manifolds

In this Section, the algorithms for the analysis of the stability of stationary
solutions and IMs on the base of Lyapunov’s theorems on the stability of motion
are employed. These have been encoded in “Mathematica” and included as some
programs in the software package [1]. The programs are used for obtaining the
necessary and sufficient conditions of stability. More details of their application
can be found in [8].

The Stability of IMs. Let us investigate the stability of the elements of the
family of IMs (22). We use the integral W̃ to obtain sufficient conditions.

The deviations are introduced:

y1 = ω1 − ω10, y2 = γ1 − γ10, y3 = λ0B3ω2 − λ1γ2, y4 = λ0B3ω3 − λ1γ3,

where

ω10 = B3s1(λ1 + λ3B3)D−1, γ10 = B3s1(B1 − λ3A1)D−1,

D = [λ2
0B

2
3(C1 − C3) + λ2

1A3](λ3A1 − λ0B1) + λ0B3[λ0λ3B1B
2
3

+λ1A1(2λ3B3 + λ1)].

The 2nd variation of W̃ is written as

2δ2W̃ = A1(λ0B1 − λ3A1)y2
1 +

(λ2
1A3

λ0B3
+ B3(λ0(C1 − C3) − λ3B3)

)
y2
2

− 2A1(λ1 + λ3B3)y1y2 +
λ2
1A3

λ0B3
(y2

3 + y2
4).

Using the variation of the integral δV3 = A1y1 + B3y2 = 0, one can represent
the expression 2δ2W̃ as follows:

2δ2W̃ =
(λ0B1B

2
3

A1
+

λ2
1A3

λ0B3
+ (λ0(C1 − C3) + 2λ1)B3

)
y2
2 +

λ2
1A3

λ0B3
(y2

3 + y2
4).

The conditions for the latter quadratic form to be sign definite are sufficient
for the stability of the elements of the family of IMs under study. These have
the form:

A3

λ0B3
> 0,

λ0B1B
2
3

A1
+

λ2
1A3

λ0B3
+ (λ0(C1 − C3) + 2λ1)B3 > 0. (28)

Evidently, inequalities (28) are consistent when A1 > 0, A3 > 0, C1 > C3 >
0, B1 > 0, B3 > 0 and λ0 > 0, λ1 > 0 are fulfilled. The built-in function Reduce
of CAS “Mathematica” produces the more complete list of the conditions for
the consistency of the inequalities. It is rather long, and only some of these
conditions are represented here:

Generalized Problem of the Motion of a Rigid Body in a Magnetic Field 167

A3 > 0, C3 > C1 > 0, B1 < 0, B3 < 0, 0 < A1 <
B1B3

C3 − C1
and λ0 < 0, λ1 < 0

or
A1 > 0, A3 > 0, C3 > C1 > 0, B1 < 0, B3 > 0 and

λ1 > 0, 0 < λ0 ≤ − 2λ1A1

B1B3 + A1(C1 − C3)
.

As can be seen, the above conditions of stability are split up into two groups.
The first (the constraints on the parameters of the problem) gives the sufficient
stability conditions for the elements of the family of IMs (22). The second (the
constraints on λ0, λ1) isolates those subfamilies of this family, the elements of
which are stable.

The Stability of Solutions. Now we investigate the stability of solutions (27).
To obtain sufficient conditions the integral W is used under the constraints
on λ2 (26) and λ3 = (B1B3λ0 − λ1(A1 − 2A3))/(2A1B3 − 2A3B3). Under these
restrictions, the integral and the solutions take the form, respectively:

2W̄ = 2λ0K1 − 2λ1V1 − B1B3λ0 + λ1(2A3λ1 − A1)
2A1B3 − 2A3B3

V 2
3

+
B3 [2A3λ1 + B1B3λ0 + (2A3λ0 − A1λ0)(C1 − C3 ∓ s1)]

A1 − 2A3
V2,

ω1 = ± B3

A1 − 2A3
, ω2 = ω3 = γ2 = γ3 = 0, γ1 = ±1. (29)

Next, we write down the variations of the integral W̄ for the both solutions.
The 2nd variation of W̄ in the deviations

y1 = ω1 ∓ B3

A1 − 2A3
, y2 = ω2, y3 = ω3, y4 = γ1 ∓ 1, y5 = γ2, y6 = γ3 (30)

on the linear manifold

δK1 = ±2B3

(A1B1 y1
A1 − 2A3

+ (C1 − C3 ∓ s1) y4

)
= 0,

δṼ1 = ±A1

(
y1 +

B3y4
A1 − 2A3

)
= 0, δV2 = ±2y4 = 0, δV3 = A1y1 + B3y4 = 0

is written as δ2W̄ = Q1 + Q2, where

2Q1 = ay2
3 + by3y6 + cy2

6 , 2Q2 = ay2
2 + by2y5 + cy2

5 ,

a = λ0A3B3, b = −2λ1A3, c = B3

(λ0B1B3 + 2λ1A3

A1 − 2A3
− λ0(C1 − C3 − s1)

)
.

The conditions for the quadratic forms Q1 and Q2 to be sign definite are
sufficient for the stability of solutions (29):

λ0A3B3> 0, A3

(λ0B
2
3 (λ0B1B3+ 2λ1A3)

A1 − 2A3
− λ2

1A2− λ2
0B

2
3 (C1− C3− s1)

)
> 0.

168 V. Irtegov and T. Titorenko

The latter inequalities are consistent under the following constraints on the
parameters Ai, Bi, Ci, s1, λ0, λ1:

A3 > 0, B1 �= 0, C1 �= 0, C3 �= 0 and (A1 > 2A3 or 0 < A1 < 2A3) and
(B3 > 0, λ0 > 0 or B3 < 0, λ0 < 0) and

λ1 �= 0, s1 > λ1A1

(λ1

λ2
0B

2
3

− 2
λ0(A1 − 2A3)

)
− B1B3

A1 − 2A3
+ C1 − C3.

As in the previous case, we have 2 groups: the sufficient conditions of the
stability of solutions (29) and the constraints on the parameters λ0, λ1. The latter
can be used to select a subfamily of the family of the integrals W̄ , which will
allow one to obtain the best sufficient stability conditions (closest to necessary
ones). In order to solve this problem, consider one of the above restrictions on
the parameters λi:

s1 > Λ = λ1A1

(λ1

λ2
0B

2
3

− 2
λ0(A1 − 2A3)

)
− B1B3

A1 − 2A3
+ C1 − C3.

Write down the necessary extremum condition of Λ with respect to λ1:

∂Λ

∂λ1
=

2A3λ1

B2
3λ

2
0

− 2A3

λ0(A1 − 2A3)
= 0.

It gives λ1 = B2
3λ0/(A1 − 2A3). Under this condition, δ2W̄ takes the form:

δ2W̌ = Q̃1 + Q̃2,

where

2Q̃1 = ãy2
3 + b̃y3y6 + c̃y2

6 , 2Q̃2 = ãy2
2 + b̃y2y5 + c̃y2

5 , ã = A3B3,

b̃ = − 2A3B
2
3

A1 − 2A3
, c̃ = B3

(B3(A1B1 + 2A3(B3 − B1))
(A1 − 2A3)2

− λ0(C1 − C3 − s1)
)
.

The conditions of sign-definiteness of δ2W̌ are

A3 > 0, B1 �= 0, C1 �= 0, C3 �= 0 and B3 > 0, (A1 > 2A3 or 0 < A1 < 2A3)

and s1 > C1 − C3 − (A1B1 − A3(2B1 − B3))B3

(A1 − 2A3)2
. (31)

So, solutions (29) are stable when conditions (31) are fulfilled.
The necessary conditions of the stability of solutions (29) are derived on the

base of Lyapunov’s theorem on stability in the linear approximation [12]. The
equations of first approximation, in the case under consideration, in deviations
(30) are written as:

ẏ1 = 0, ẏ2 =
1

A3

(
C1 − C3 − s1 − B1B3

A1 − 2A3

)
y6 − B3

A1 − 2A3
y3,

ẏ3 =
B3

A1 − 2A3
y2 +

1
A3

(B1B3

A1 − 2A3
− C1 + C3 + s1

)
y5, ẏ4 = 0,

ẏ5 =
B3

A1 − 2A3
y6 − y3, ẏ6 = y2 − B3

A1 − 2A3
y5. (32)

Generalized Problem of the Motion of a Rigid Body in a Magnetic Field 169

The characteristic equation

λ2

(A1 − 2A3)4A2
3

[(A1 − 2A3)2A3λ
2 + B3(A1B1 + A3(B3 − 2B1))

− (A1 − 2A3)2(C1 − C3 − s1)]2 = 0

of system (32) has only zero and purely imaginary roots when the following
conditions are satisfied:

A3 > 0, B1 �= 0, B3 �= 0, C1 �= 0, C3 �= 0, (A1 > 2A3 or 0 < A1 < 2A3)

and s1 ≥ C1 − C3 − (A1B1 − A3(2B1 − B3))B3

(A1 − 2A3)2
.

On comparing the latter inequalities with (31) one can conclude that con-
ditions (31) are necessary and sufficient for the stability of solutions (29) with
precision up to the boundary of stability.

4 The Equations of Motion with the Additional Integral
of the 4th Degree

When A3 = A1, B1 = B3, C1 = C2 = C3, s1 = s2 = s3 = 0, the equations of
motion (1) take the form

A1ω̇1 = (A2 − A1)ω2ω3 + B2ω2γ3 − B3ω3γ2,

A2ω̇2 = B3(ω3γ1 − ω1γ3),
A3ω̇3 = (A1 − A3)ω1ω2 − B2ω2γ1 + B3ω1γ2,

γ̇1 = ω3γ2 − ω2γ3, γ̇2 = ω1γ3 − ω3γ1, γ̇3 = ω2γ1 − ω1γ2 (33)

and admit the polynomial first integral Ω4 (14) of 4th degree.
Besides Ω4, equations (33) have the integrals:

V̂1 = A2ω2 + A1(ω1 + ω3) = c1, V2 =
3∑

i=1

γ2
i = 1,

V = ω2
1 +

A2B2

A1B3
ω2
2 + ω2

3 = c2, V̄3 = A2ω2 + B3γ2 = c3. (34)

The integral V̄3 has been derived directly from the equations themselves, and V
has been found by the technique of Sect. 3.

We set the problem of finding stationary solutions and IMs of differential
Eqs. (33) and the analysis of their stability.

4.1 Seeking Stationary Solutions and Invariant Manifolds

First, IMs of maximum dimension will be found by the technique of Sect. 3.1.
We choose independent integrals from those of system (33) (such as, e.g., V̂1, V2,
V̄3, Ω4) and compose the linear combination from them:

2Ŵ = 2λ0V − 2λ1V̂1 − λ2 V2 − λ3Ω4 (35)

170 V. Irtegov and T. Titorenko

Next, the necessary extremum conditions of Ŵ with respect to the variables
ωi, γi are written:

∂Ŵ/∂ωi = 0, ∂Ŵ/∂γi = 0 (i = 1, 2, 3). (36)

These are a system of cubic equations with parameters A1, A2, B2, B3, λ0,
λ1, λ2, λ3. The equations are bulky and these are not presented explicitly here.

We have found the desired IM through the computation of a lexicographical
basis for the polynomials of system (36) with respect to λ0 > λ1 > ω2 > γ2:

B2
2B

2
3 (A2B3 − 4A1B2)λ3 γ4

2 + [2B2B3λ3 (7A2B3 − 16A1B2)(B2B3χ1

+ 2A1A2χ2) + 16A1(A1B2 − A2B3)(A1A
2
2λ2 − 2B2

2B3λ3χ3)
+ 24A1B

3
2B

2
3λ3χ1] γ2

2 − (4A1B2 − A2B3)λ3(B2B3χ1 + 2A1A2χ2)2 = 0,

4A2B2λ3(4A1B2 − A2B3)(B2B3χ1 + 2A1A2χ2)ω2

+B2
2B

2
3(4A1B2 − A2B3)λ3 γ3

2 + [3B2B3λ3(12A1B2 − 5A2B3)(B2B3χ1

+ 2A1A2χ2) − 16A1(A1B2 − A2B3)(A1A
2
2λ2 − 2B2

2B3λ3χ3)
− 24A1B

3
2B

2
3λ3χ1] γ2 = 0, (37)

where χ1 = γ2
1 + γ2

3 , χ2 = ω2
1 + ω2

3 , χ3 = ω1γ1 + ω3γ3.
It can be verified by the definition of IM that Eqs. (37) determine a family of

IMs of codimension 2 of differential Eqs. (33), λ2, λ3 are the parameters of the
family.

Stationary solutions and IMs of minimum dimension will be obtained from
the equations of motion. For this purpose, the right-hand sides of differential
Eqs. (33) are equated to zero and then relation V2 = 1 (34) is added to them:

(A2 − A1)ω2ω3 + B2ω2γ3 − B3ω3γ2 = 0, B3(ω3γ1 − ω1γ3) = 0,
(A1 − A3)ω1ω2 − B2ω2γ1 + B3ω1γ2 = 0,

ω3γ2 − ω2γ3 = 0, ω1γ3 − ω3γ1 = 0, ω2γ1 − ω1γ2 = 0,

γ2
1 + γ2

2 + γ2
3 = 1. (38)

For the polynomials of system (38) we construct a lexicographical basis with
respect to some part of the phase variables, e.g., ω1 > ω2 > ω3 > γ1 > γ2. As
a result, the system is transformed to a form which enables us to decompose it
into 3 subsystems:

1) γ2 = 0, γ2
1 + γ2

3 − 1 = 0, ω2 = 0, ω3γ1 − ω1γ3 = 0; (39)
2) γ2

1 + γ2
2 + γ2

3 − 1 = 0, ω1 = 0, ω2 = 0, ω3 = 0; (40)
3) γ2

1 + γ2
2 + γ2

3 − 1 = 0, (B2 − B3) γ3 − (A1 − A2)ω3 = 0,

(B3 − B2) γ2 + (A1 − A2)ω2 = 0,

(B3 − B2) γ1 + (A1 − A2)ω1 = 0. (41)

It is not difficult to verify by the definition of IM that Eqs. (39)–(41) define IMs
of codimension 4 of differential Eqs. (33).

Generalized Problem of the Motion of a Rigid Body in a Magnetic Field 171

The differential equations on IM (39) are written as ω̇3 = 0, γ̇3 = 0. These
have the following family of solutions:

ω3 = ω0
3 = const, γ3 = γ0

3 = const. (42)

Correspondingly, the differential equations on IMs (40), (41) and their solutions
have the form: γ̇1 = 0, γ̇3 = 0 and

γ1 = γ0
1 = const, γ3 = γ0

3 = const. (43)

Equations (39) together with (42) determine the 2 families of solutions for
the equations of motion (33):

ω1 = ±ω0
3

γ0
3

√
1 − γ02

3 , ω2 = 0, ω3 = ω0
3 , γ1 = ±

√
1 − γ02

3 , γ2 = 0, γ3 = γ0
3 . (44)

Equations (40), (41), and (43) allow us to obtain the other 4 families of solutions:

ω1 = ω2 = ω3 = 0, γ1 = γ0
1 , γ2 = ±χ, γ3 = γ0

3 (45)

and

ω1 =
B2 − B3

A1 − A2
γ0
1 , ω2 = ± (B2 − B3)χ

A1 − A2
, ω3 =

B2 − B3

A1 − A2
γ0
3 , γ1 = γ0

1 ,

γ2 = ±χ, γ3 = γ0
3 . (46)

Here χ =
√

1 − γ02
1 − γ02

3 .
From a mechanical point of view, the elements of the families of solutions (44)

and (46) correspond to permanent rotations of the body, and the elements of
the families of solutions (45) correspond to its equilibria.

One can show that the above solutions belong to the family of IMs (37) (or
its subfamilies). For this purpose, substitute, e.g., expressions (45) into (37).
The latter relations become identities when λ2 = B2

2B
2
3λ3/(2A2

1A
2
2), γ0

3 = ±(1−
2γ02

1)1/2/2. Thus, the subfamilies of the families of solutions (45) corresponding
to γ0

3 = ±(1−2γ02

1)1/2/2 belong to a subfamily which is isolated from the family
of IMs (37) under the above value of λ2. We have the same result in the case of
solutions (46).

It is not difficult to derive the families of integrals assuming a stationary
value on solutions (44)–(46) (the technique is described, e.g., in [8]). A similar
problem can be posed for IMs. The following nonlinear combinations of integrals

2Φ1 = A2
1 V V̂ −1

1 + (V2 − 1)V̂1 − V̄ 2
3 , Φ2 = V + λV 2

2

and

2Φ3 = V − 2(B2 − B3) V̂1

A1(A1 − A2)
+

(B2 − B3)2 V2

(A1 − A2)2
− (B2 − B3)2 V̄ 2

3

A1B3(A2(B1 − 2B3) + A1B3)

have been found for IM (39), IM (40), and IM (41), respectively. Their necessary
extremum conditions are satisfied on the IMs under study.

172 V. Irtegov and T. Titorenko

4.2 On the Stability of Stationary Solutions and Invariant Manifolds

Let us investigate the stability of IM (39), using the integral Φ1 to obtain suf-
ficient conditions. The analysis of stability is done in some maps of an atlas on
this IM. The deviations are introduced:

y1 = ω1 ±
√

1 − γ2
3

ω3

γ3
, y2 = ω2, y3 = γ1 ±

√
1 − γ2

3 , y4 = γ2.

The 2nd variation of Φ1 on the linear manifold

δV = ∓2
√

1 − γ2
3

ω3

γ3
y1 = 0, δV̂1 = ∓A1

√
1 − γ2

3

(
y1 +

ω3

γ3
y3

)
= 0,

δV2 = ∓2
√

1 − γ2
3 y3 = 0, δV̄3 = A2y2 + B3y4 = 0

is written as

2δ2Φ1 =
(
B3

(B2γ3
A2ω3

+ 2
)

+
A1ω3

γ3

)
y2
2 .

The condition of sign-definiteness

B3

(B2γ3
A2ω3

+ 2
)

+
A1ω3

γ3
> 0

of the quadratic form δ2Φ1 is sufficient for the stability of the IM under study.
Since the integral V̂1 on IM (39) takes the form V̂1|0 = A1ω3/γ3 = c̃1, then

the latter inequality is true, in particular, under the following constraints on the
parameters:

(A1 > 0, A2 > 0, B2 > 0, B3 > 0, c̃1 > 0) or(
A1 > 0, A2 > 0, B2 < 0, B2 > 0 and ((−B3 − D < c̃1 < 0)

or D − B3 < c̃1), where D =
√

B3

(
B3 − A1B2

A2

)
.

The investigation of the stability of IMs (40), (41) is done similarly. As to the
families of solutions (44)–(46) belonging to IMs (39)–(41), their instability in
the first approximation was proved.

5 Conclusion

The new additional polynomial integrals and IMs for the differential equations
describing the motion of a rigid body with a fixed point under the influence
of both a magnetic field generated by the Barnett–London effect and potential
forces have been found. These are the integrals of the 2nd–4th degrees for the
dynamically symmetric body, the quadratic integrals as well as IMs defined by
the polynomials of the 2nd and 3rd degrees in the case of the asymmetric body.

Generalized Problem of the Motion of a Rigid Body in a Magnetic Field 173

To find them, a combination of the method of undetermined coefficients with
computer algebra methods such as the reduction of a polynomial with respect to
a list of polynomials, the Gröbner basis method, etc. was applied. The qualita-
tive analysis of the equations in particular cases of the existence of the additional
integrals of the 2nd and 4th degrees was done. The stationary solutions corre-
sponding to the permanent rotations and equilibria of the body as well as the
IMs of various dimensions have been obtained. With the aid of the software
package developed on the base of CAS “Mathematica”, the sufficient conditions
of the Lyapunov stability have been derived for the found solutions. In some
cases, the above conditions were compared with the necessary ones. The pre-
sented results show enough the efficiency of the approaches and computational
tools which were used.

References

1. Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., Titorenko, T.N.: Software Pack-
age for Finding and Stability Analysis of Stationary Sets. Certificate of State Reg-
istration of Software Programs. FGU-FIPS. No. 2011615235 (2011)

2. Barnett, S.J.: Magnetization by rotation. Phys. Rev. 6(4), 239–270 (1915)
3. Egarmin, I.E.: On the magnetic field of a rotating superconducting body. Astro-

physics and Geomagnetic Researches, Moscow. Collected Works, pp. 95–96 (1983)
4. Everitt, C.W.F., et al.: Gravity probe B: final results of a space experiment to test

general relativity. Phys. Rev. Lett. 106, 221101 (2011)
5. Gorr, G.V.: A linear invariant relation in the problem of the motion of a gyrostat

in a magnetic field. J. Appl. Math. Mech. 61(4), 549–552 (1997)
6. Hess, W.: Über die Euler’schen Bewegungsgleichungen und über eine neue par-

tikuläre Lösung des Problems der Bewegung eines starren Körpers um einen festen
Punkt. Math. Ann. 37(2), 153–181 (1890)

7. Irtegov, V.D., Titorenko, T.N.: The invariant manifolds of systems with first inte-
grals. J. Appl. Math. Mech. 73(4), 379–384 (2009)

8. Irtegov, V., Titorenko, T.: On stationary motions of the generalized Kowalewski
Gyrostat and their stability. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov,
E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 210–224. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66320-3 16

9. Irtegov, V., Titorenko, T.: On linear invariant manifolds in the generalized problem
of motion of a top in a magnetic field. In: England, M., Koepf, W., Sadykov, T.M.,
Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 246–261.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2 17

10. Kozlov, V.V.: To the problem of the rotation of a rigid body in a magnetic field.
Izv. Akad. Nauk SSSR. MTT 6, 28–33 (1985)

11. Lyapunov, A.M.: On permanent helical motions of a rigid body in fluid. Collected
Works, no. 1, pp. 276–319. USSR Academy Science, Moscow-Leningrad (1954)

12. Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor & Francis,
London (1992)

13. Samsonov, V.A.: On the rotation of a rigid body in a magnetic field. Izv. Akad.
Nauk SSSR. MTT 4, 32–34 (1984)

14. Urman, Y.M.: Influence of the Barnett-London effect on the motion of a supercon-
ducting rotor in a nonuniform magnetic field. Tech. Phys. 43(8), 885–889 (1998).
https://doi.org/10.1134/1.1259095

https://doi.org/10.1007/978-3-319-66320-3_16
https://doi.org/10.1007/978-3-030-26831-2_17
https://doi.org/10.1134/1.1259095

Automatic Differentiation with Higher
Infinitesimals, or Computational Smooth
Infinitesimal Analysis in Weil Algebra

Hiromi Ishii(B)

DeepFlow, Inc., 3-16-40, Tsuruse Nishi, Fujimi-shi 354-0026, Japan
h-ishii@math.tsukuba.ac.jp

Abstract. We propose an algorithm to compute the C∞-ring struc-
ture of arbitrary Weil algebra. It allows us to do some analysis with
higher infinitesimals numerically and symbolically. To that end, we first
give a brief description of the (Forward-mode) automatic differentiation
(AD) in terms of C∞-rings. The notion of a C∞-ring was introduced
by Lawvere [10] and used as the fundamental building block of smooth
infinitesimal analysis and synthetic differential geometry [11]. We argue
that interpreting AD in terms of C∞-rings gives us a unifying theoreti-
cal framework and modular ways to express multivariate partial deriva-
tives. In particular, we can “package” higher-order Forward-mode AD
as a Weil algebra, and take tensor products to compose them to achieve
multivariate higher-order AD. The algorithms in the present paper can
also be used for a pedagogical purpose in learning and studying smooth
infinitesimal analysis as well.

Keywords: Automatic differentiation · Smooth infinitesimal analysis ·
Weil algebras · Smooth algebras and C∞-rings · Symbolic-numeric
algorithms · Symbolic differentiation · Gröbner basis ·
Zero-dimensional ideals

1 Introduction

Automatic Differentiation (or, AD for short) is a method to calculate derivatives
of (piecewise) smooth functions accurately and efficiently. AD has a long history
of research, and under the recent rise of differentiable programming in machine
learning, AD has been attracting more interests than before recently.

Smooth Infinitesimal Analysis (or, SIA for short), on the other hand, is an
area of mathematics that uses nilpotent infinitesimals to develop the theory of
real analysis. Its central building blocks are Weil algebras, which can be viewed as
the real line augmented with nilpotent infinitesimals. Indeed, SIA is a subarea of
Synthetic Differential Geometry (SDG) initiated by Lawvere [10], which studies

This work was supported by the Research Institute for Mathematical Sciences, an
International Joint Usage/Research Center located in Kyoto University.

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 174–191, 2021.
https://doi.org/10.1007/978-3-030-85165-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_11

Automatic Differentiation with Higher Infinitesimals 175

smooth manifolds topos-theoretically, and higher multivariate infinitesimals play
crucial roles in building theory of, e.g. vector fields, differential forms and tangent
spaces. The key observation of Lawvere is that manifolds can be classified solely
by their smooth function ring C∞(M), and both such function rings and Weil
algebras are special cases of C∞-rings.

It has been pointed out that AD and SIA have some connection; e.g. even
Wikipedia article [14] mentions the connection between first-order Forward-mode
AD with the ring R[X]/X2 of dual numbers. However, a precise theoretical
description of this correspondence is not well-communicated, and further gener-
alisation of AD in terms of SIA hasn’t been discussed in depth.

The present paper aims at filling this gap, giving a unified description of AD in
terms of C∞-rings and Weil algebras. Furthermore, our main contribution is algo-
rithms to compute the C∞-ring structure of a general Weil algebra. This enables
automatic differentiation done in arbitrary Weil algebras other than dual numbers,
and, together with tensor products, lets us compute higher-order multivariate par-
tial derivatives in a modular and composable manner, packed as Weil algebra. Such
algorithms can also be used to learn and study the theory of SIA and SDG.

This paper is organised as follows. In Sect. 2, we review the basic concepts
and facts on C∞-rings and Weil algebras. This section provides basic theoretical
background—but the proofs of proposed algorithms are, however, not directly
dependent on the content of this section. So readers can skip this section first
and go back afterwards when necessary. Subsequently, we discuss the connection
between Forward-mode automatic differentiation and Weil algebras in Sect. 3.
There, we see how the notion of Weil algebra and C∞-ring can be applied to treat
higher-order partial ADs in a unified and general setting. Then, in Sect. 4, we give
algorithms to compute the C∞-ring structure of an arbitrary Weil algebra. These
algorithms enable us to do automatic differentiation with higher infinitesimals,
or computational smooth infinitesimal analysis. We give some small examples
in Sect. 5, using our proof-of-concept implementation [6] in Haskell. Finally, we
discuss related and possible future works and conclude in Sect. 6.

2 Preliminaries

In this section, we briefly review classical definitions and facts on Weil algebras
and C∞-rings without proofs, which will be used in Sect. 4. For theoretical detail,
we refer readers to Moerdijk–Reyes [11, Chapters I and II] or Joyce [8].

We use the following notational convention:

Definition 1 (Notation). Throughout the paper, we use the following nota-
tion:

– g ◦f denotes the composite function from A to C of functions f : A → B and
g : B → C, that is, the function defined by (g ◦ f)(x) = g(f(x)) for all x ∈ A.

– For functions fi : Z → Xi (1 ≤ i ≤ n), 〈f1, . . . , fn〉 denotes the prod-
uct of functions fi given by the universality of the product objects. That
is, 〈f1, . . . , fn〉 is the function of type Z → X1 × · · · × Xn defined by
〈f1, . . . , fn〉(z) = (f1(z), . . . , fn(z)) ∈ X1 × · · · × Xn for all z ∈ Z

176 H. Ishii

Definition 2 (Lawvere [10]). A C∞-ring A is a product-preserving functor
from the category CartSp of finite-dimensional Euclidean spaces and smooth
maps to the category Sets of sets.

We identify A with A(R) and An with A(Rn). For a map f : Rm → R, we
call A(f) : Am → A the C∞-lifting of f to A.

Intuitively, a C∞-ring A is an R-algebra A augmented with m-ary operations
A(f) : Am → A respecting composition, projection and product for all smooth
maps f : Rm → R.

One typical example of a C∞-ring is a formal power series ring:

Theorem 1 (Implicitly in Lawvere [10]; See [11, 1.3 Borel’s Theorem]).
The ring R�X1, . . . , Xn� of formal power series with finitely many variables has
the C∞-ring structure via Taylor expansion at 0. In particular, lifting of a smooth
map f : Rm → R is given by:

R�X�(f)(g1, . . . , gm) =
∑

α∈Nn

Xα

α!
Dα(f ◦ 〈g1, . . . , gm〉)(0),

where α! = α1! . . . αn! is the multi-index factorial and Dα is the partial differen-
tial operator to degree α.

The C∞-rings of central interest in this paper are Weil algebras, and have a
deep connection with R�X�:

Definition 3 (Weil algebra). A Weil algebra W is an associative R-algebra
which can be written as W = R[X1, . . . , Xn]/I for some ideal I ⊆ R[X] such
that 〈X1, . . . , Xn〉k ⊆ I for some k ∈ N.

It follows that a Weil algebra W is finite-dimensional as a R-linear space and
hence I is a zero-dimensional ideal. A Weil algebra W can be regarded as a
real line R augmented with nilpotent infinitesimals di = [Xi]I . In what follows,
we identify an element u ∈ W of a k-dimensional Weil algebra W with a k-
dimensional vector u = (u1, . . . , uk) ∈ R

k of reals.
Although it is unclear from the definition, Weil algebras have the canoni-

cal C∞-structure. First note that, if I is zero-dimensional, we have R[X]/I 	
R�X�/I. Hence, in particular, any Weil algebra W can also be regarded as a quo-
tient ring of the formal power series by zero-dimensional ideal. Thus, together
with Theorem 1, the following lemma shows that any Weil algebra W has the
canonical C∞-ring structure:

Lemma 1 (Implicitly in Lawvere [10]; See [11, 1.2 Proposition]). For any
C∞-ring A and a ring-theoretical ideal I ⊆ A, the quotient ring A/I again has
the canonical C∞-ring structure induced by the canonical quotient mapping:

(A/I)(f)([x1]I , . . . , [xm]I) := [A(f)(x1, . . . , xm)]I ,

where xi ∈ A and f : R
m C∞

−−→ R. In particular, the C∞-structure of Weil
algebra W is induced by the canonical quotient mapping to that of R�X�.

Automatic Differentiation with Higher Infinitesimals 177

3 Connection Between Automatic Differentiation
and Weil Algebras

In this section, based on the basic facts on C∞-rings and Weil algebras reviewed
in Sect. 2, we describe the connection of automatic differentiation (AD) and Weil
algebra.

Forward-mode AD is a technique to compute a value and differential coef-
ficient of given univariate composition of smooth function efficiently. It can be
implemented by ad-hoc polymorphism (or equivalently, function overloading).
For detailed implementation, we refer readers to Elliott [2] and Kmett’s ad pack-
age [9].

Briefly speaking, in Forward-mode AD, one stores both the value and differen-
tial coefficient simultaneously, say in a form f(x)+f ′(x)d for d an indeterminate
variable. Then, when evaluating composite functions, one uses the Chain Rule
for implementation:

d
dx

(g ◦ f)(x) = f ′(x)g′(f(x)).

The following definitions of functions on dual numbers illustrate the idea:

(a1 + b1d) + (a2 + b2d) = (a1 + a2) + (b1 + b2)d,

(a1 + b1d) × (a2 + b2d) = a1a2 + (a1b2 + a2b1)d,

cos(a1 + b1d) = cos(a1) − b1 sin(a1)d.

The last equation for cos expresses the nontrivial part of Forward-mode AD.
As mentioned above, we regard a1 + b1d as a pair (a1, b1) = (f(x), f ′x) of
value and differential coefficient of some smooth function f at some point x.
So if a2 + b2d = cos(a1 + b1d), we must have a2 = cos(f(x)) = cos a1 and
b2 = d

dx cos(f(x)) = −b1 sin(a1) by Chain Rule. The first two equations for
addition and multiplication suggest us to regard operations on Forward-mode
AD as extending the algebraic structure of R[d] = R[X]/X2. Indeed, first-order
Forward-mode AD can be identified with the arithmetic on dual numbers:

Definition 4. The dual number ring is a Weil algebra R[X]/X2. We often write
d = [X]I ∈ R[d] and R[d] := R[X]/X2.

We use an analogous notation for multivariate versions:

R[d1, . . . , dk] := R[X]/〈X2
1 , . . . , X2

k〉.

Since the dual number ring R[d] is a Weil algebra, one can apply Theorem 1

and Lemma 1 to compute its C∞-structure. Letting f : R C∞
−−→ R be a univari-

ate smooth function, then we can derive the C∞-lifting R[d](f) : R[d] → R[d]
as follows:

178 H. Ishii

R�X�(f)(a + bX)

= f(a) +
d
dx

(f(a + bx))(0)X + · · · (by Theorem 1)

= f(a) + bf ′(a)X + · · ·
X �→d−−−→ f(a) + bf ′(a)d,

∴ R[d](f)(a + bd) = f(a) + bf ′(a)d. (by Lemma 1) (∗)

One can notice that the derived C∞-structure in (∗) is exactly the same
as how to implement individual smooth functions for Forward-mode AD.
This describes the connection between Forward-mode AD and dual numbers:
Forward-mode AD is just a (partial) implementation of the C∞-structure of the
dual number ring R[d].

Let us see how this extends to higher-order cases. The most näıve way to
compute higher-order derivatives of smooth function is just to successively dif-
ferentiating it. This intuition can be expressed by duplicating the number of the
basis of dual numbers:

Theorem 2. For any f : R C∞
−−→ R and x ∈ R

n, we have:

R[d1, . . . , dk](f)(x + d1 + · · · + dn) =
∑

0≤i≤n

f (i)(x)σi
n(�d),

where, σi
k(x1, . . . , xk) denotes the k-variate elementary symmetric polynomial of

degree i.

The above can be proven by an easy induction.
However, as one can easily see, terms in R�X�/〈X2

i 〉i can grow exponentially
and include duplicated coefficients. How could we reduce such duplication and
save space consumption? —this is where general Weil algebras beyond (multi-
variate) dual numbers can play a role. We can get derivatives in more succinct
representation with higher infinitesimal beyond dual numbers:

Lemma 2. Let I = 〈Xn+1〉,W = R[X]/I and ε = [X]I for n ∈ N. Given

f : R C∞
−−→ R and a ∈ R, we have:

W (f)(a + ε) =
∑

k≤n

f (k)(a)
k!

εk.

In this representation, we have only (n+1)-terms, and hence it results in succinct
and efficient representation of derivatives.

If we duplicate such higher-order infinitesimals as much as needed, one can
likewise compute multivariate higher-order derivatives all at once, up to some
multidegree β:

Automatic Differentiation with Higher Infinitesimals 179

Lemma 3. Let I =
〈
Xβi+1

i

∣∣∣ i ≤ m
〉
, W = R[X1, . . . , Xm]/I, and εi = [Xi]I

for β = (βi)i≤m ∈ N
m. For f : Rm C∞

−−→ R and a = (ai)i≤m ∈ R
m, we have:

W (f)(a1 + ε1, . . . , am + εm) =
∑

δi≤βi

Dδf

δ!
(a) εδ1

1 · · · εδm
m .

Note that the formal power series ring R�X� can be viewed as the inverse
limit of R[X]/〈Xβ〉’s. In other words, if we take a limit βi → ∞, we can compute
any higher derivative up to any finite orders; this is exactly what Tower-mode
AD aims at, modulo factor 1

β! .
In this way, we can view AD as a technique to compute higher derivatives

simultaneously by partially implementing a certain C∞-ring1. Forward-mode
AD (of first-order) computes the C∞-structure of the dual number ring R[d];
Tower-mode AD computes that of the formal power series ring R�X� (modulo
reciprocal factorial).

So far, we have used a Weil algebra of form R�X�/I. So, do we need to
define new ideals by hand whenever one wants to treat multiple variables? The
answer is no:

Lemma 4 (See [11, 4.19 Corollary]). For ideals I ⊆ R�X� and J ⊆ R�Y �,
we have:

R�X�/I ⊗R R�Y �/J 	 R�X,Y �/(I, J),

where ⊗R is a tensor product of C∞-rings.

Thanks to this lemma, we don’t have to define I by hand every time, but can take
tensor products to compose predefined Weil algebras to compute multivariate
and higher-order derivatives. Examples of such calculations will be presented
in Sect. 5.

4 Algorithms

In this section, we will present the main results of this paper: concrete algorithms
to compute the C∞-structure of arbitrary Weil algebra and their tensor products.
For examples of applications of the algorithm presented here, the reader can skip
to the next Sect. 5 to comprehend the actual use case.

4.1 Computing C∞-Structure of Weil Algebra

Let us start with algorithms to compute the C∞-structure of a general Weil
algebra. Roughly speaking, the algorithm is threefold:

1 Such implementation is inherently a partial approximation: there are 2ℵ0 -many
smooth functions, but there are only countably many computable (floating)
functions.

180 H. Ishii

1. A procedure deciding Weil-ness of an ideal and returning data required to
compute the C∞-structure (WeilTest, Algorithm 1),

2. A procedure to compute the lifting W (f) : Wm → W to a Weil algebra W
from R�X�(f) (LiftWeil, Algorithm 2), and

3. A procedure to lift smooth map f : Rm → R to the n-variate formal power
series ring R�X� (LiftSeries, Algorithm 3).

We start with Weil-ness testing. First, we define the basic data needed to
compute the C∞-structure of Weil algebras:

Definition 5 (Weil settings). The Weil setting of a Weil algebra W consists
of the following data:

1. Monomial basis {b1, . . . , b�} of W ,
2. M , the multiplication table of W in terms of the basis,
3. (k1, . . . , kn) ∈ N

n such that ki is the maximum satisfying Xki
i /∈ I for each i,

and
4. NVW , a table of representations of non-vanishing monomials in W ; i.e.

for any α = (α1, . . . , αn) ∈ N
n, if αi ≤ ki for all i, then NVW (Xα) =

(c1, . . . , cn) ∈ R
k satisfies [Xα]I =

∑
i cibi.

A basis and multiplication table allow us to calculate the ordinary R-algebra
structure of Weil algebra W . The latter two data, �k and NVW , are essential in
computing the C∞-structure of W . In theory, (4) is unnecessary if one stores a
Gröbner basis of I; but since normal form calculation modulo G can take much
time in some case, we don’t store G itself and use the precalculated data NV.
It might be desirable to calculate NVW as lazily as possible. Since it involves
Gröbner basis computation it is more desirable to delay it as much as possible
and do in an on-demand manner.

With this definition, one can decide Weilness and compute their settings:

Algorithm 1 (WeilTest)

Input An ideal I ⊆ R[X1, . . . , Xn]
Output Returns the Weil settings of W = R[X]/I if it is a Weil algebra;

otherwise No.
Procedure WeilTest

1 G ← calcGroebnerBasis(I)
2 I f I is not zero -dimensional
3 Return No
4 {b1, . . . , b�} ← Monomial basis of I
5 M ← the Multiplication table of W
6 For i in 1..n
7 pi ← the monic generator of I ∩ R[Xi]
8 I f pi is not a monomial
9 Return No

10 ki ← deg(pi) − 1

Automatic Differentiation with Higher Infinitesimals 181

11 NVW ← {}
12 For α in {α ∈ N

n|αi ≤ ki ∀i ≤ �}
13 c1b1 + · · · + c�b� ← XαG

14 NVW (Xα) ← (c1, . . . , c�)

15 Return (�b,M,�k,NVW)

Theorem 3. Algorithm 1 terminates and returns expected values.

Proof. Algorithms to decide the zero-dimensionality and calculate their multipli-
cation table is well-known (for details, we refer readers to Cox–Little–O’Shea [1,
Chapter 2]). So the only non-trivial part is nilpotence detection (Lines 6 to
10). But, again, this is just a variation of radical calculation algorithm for zero-
dimensional ideals. Indeed, since each R[Xi] is a PID, we have Xk

i ∈ I ∩ R[Xi]
iff pi | Xk

i , hence pi is a monomial iff Xi is nilpotent in W .

Now that we have the basis and multiplication table at hand, we can calculate
the ordinary algebraic operations just by the standard means.

With upper bounds �k of powers and representations NVW of non-vanishing
monomials, we can now compute the C∞-structure of an arbitrary Weil algebra,
when given a lifting of smooth mapping f to R�X�:

Algorithm 2 (LiftWeil)

Input I ⊆ R[X], an ideal where W = R[X]/I is a Weil algebra, R�X�(f) :
R�X�

m → R�X�, a lifting of a smooth map f : R
m → R to R�X�, and

�u = (u1, . . . ,um) ∈ Wm,.
Output v = W (f)(�u) ∈ W , the value of f at �u given by C∞-structure.
Procedure LiftWeil

1 (�b, M, �k, NVW) ← WeilTest(I)
2 gi ← (b1, . . . , bk) · ui ∈ R[X] for i ≤ m
3 h =

∑
α cαX

α ← R�X�(f)(�g)
4 v ← 0
5 For α with αi ≤ ki ∀i
6 v ← v + cα NVW (Xα)
7 Return v

The termination and validity of Algorithm 2 are clear. One might feel it
problematic that Algorithm 2 requires functions as its input. This can be any
smooth computable functions on the coefficient type. Practically, we expect a
composite function of standard smooth floating-point functions as its argument,
for example, it can be x �→ sin(x), (x, y) �→ esinxy2, and so on. In the modern
programming language – like Haskell, Rust, LISP, Ruby, etc. – one don’t need
to worry about their representation, as we can already freely write higher-order
functions that take functions or closures as their arguments. Even in the low-
level languages such as C/C++, one can use function pointers or whatever to
pass an arbitrary function to another function.

182 H. Ishii

Now that we can compute the R-algebraic and C∞-structure of a Weil algebra
solely from its Weil setting, one can hard-code pre-calculated Weil settings for
known typical Weil algebras, such as the dual number ring or higher infinitesimal
rings of the form R[X]/(Xn+1), to reduce computational overheads.

Computing the C∞-Structure of R�X�. So it remains to compute the C∞-
structure of R�X�. Thanks to Theorem 1, we know the precise definition of
C∞-lifting to R�X�:

R�X�(f)(g1, . . . , gm) =
∑

α∈Nn

Xα

α!
Dα(f ◦ 〈g1, . . . , gn〉)(0).

As noted in Sect. 3, as a C∞-ring, the formal power series ring is isomorphic
to multivariate Tower-mode AD. It can be implemented in various ways, such
as Lazy Multivariate Tower AD [13], or nested Sparse Tower AD [9, module
Numeric.AD.Rank1.Sparse]. For reference, we include a succinct and efficient
variant mixing these two techniques in Appendix A.

Both Tower-mode AD and formal power series can be represented as a formal
power series. The difference is the interpretation of coefficients in a given series.
On one hand, a coefficient of Xα in Tower AD is interpreted as the αth par-
tial differential coefficient Dαf(a), where a = (g1(0), . . . , gm(0)). On the other
hand, in R�X� it is interpreted as Dαf(a)

α! . To avoid the confusion, we adopt the
following convention: Tower-mode AD is represented as a function from mono-
mials Xα to coefficient R in what follows, whilst R�X� as-is. Note that this is
purely for notational and descriptional distinctions, and does not indicate any
essential difference.

With this distinction, we use the following notation and transformation:

Definition 6. Tower = {f |f : Nn → R} denotes the set of all elements of
Tower-mode AD algebra. We denote C∞-lifting of f : R

m → R to Tower by
Tower(f) : Towerm → Tower.

A reciprocal factorial transformation RF : Tower → R�X� is defined as
follows:

RF (f) =
∑

α∈Nn

f(α)
α!

Xα.

Then, the inverse reciprocal factorial transformation is given by:

RF−1

(
∑

α∈Nn

cαX
α

)
= λ(Xα). α! · cα.

Algorithm 3 (LiftSeries)

Input f : Rm C∞
−−→ R, a smooth function which admits Tower AD, g1, . . . , gn ∈

R�X�, formal power series.
Output R�X�(f)(g1, . . . , gm) ∈ R�X�, C∞-lifting to the formal power series

ring.

Automatic Differentiation with Higher Infinitesimals 183

Procedure LiftSeries

1 ĝi ← RF−1(gi)
2 f̂ ← Tower(f)(ĝ1, . . . , ĝm)
3 Return RF(f̂)

4.2 Tensor Product of Weil Algebras

As indicated by Lemma 4, tensor products enable us to compose multiple Weil
algebras into one and use them to compute higher-order multivariate derivatives.
Here, we give a simple procedure to compute Weil settings of the tensor product.

Algorithm 4 (WeilTensor)

Input Weil settings of two Weil algebras W1,W2, with {bi
1, . . . , b

i
�i

} a basis,
(ki

1, . . . , k
i
ni

) an upper bounds and Mi a multiplication table for each Wi.
Output Weil settings of W1 ⊗R W2.
Procedure WeilTensor

1 (b1, . . . , b�1�2) ← Convol(�b
1
,�b

2
)

2 M ← {}

3 For ({b1L, b1R}, (c1, . . . , c�1)) in M1

4 For ({b2L, b2R}, (d1, . . . , d�1)) in M2

5 M({b1Lb
2
L, b1Rb

2
R}) ← Convol(�c, �d)

6 NVW1⊗W2 ← {}
7 For (Xα, (c1, . . . , c�1)) in NVW1

8 For (Y β , (d1, . . . , d�2)) in NVW2

9 NVW1⊗W2(X
αY β) ← Convol(�c, �d)

10 Return (b,M, (�k1,�k2),NVW1⊗W2)

Here, Convol is a convolution of two sequences:

Procedure Convol((c1, . . . , c�1), (d1, . . . , d�2))

1 For i in 1..(�1 × �2)

2 j ← � i
�2

�; k ← i mod �2
3 ai ← cjdk

4 Return (a1, . . . , a�1�2)

The validity proof is routine work.

5 Examples

We have implemented the algorithms introduced in the previous section on top
of two libraries: computational-algebra package [4,5] and ad package [9]. The
code is available on GitHub [6].

184 H. Ishii

5.1 Higher-Order Derivatives via Dual Numbers and Higher
Infinitesimals

As indicated by Theorem 2 and Lemma 2, to compute higher-order derivatives of
univariate functions, we can use tensor products of Dual numbers or higher-order
infinitesimals.

Let us first compute higher-order derivatives of sin(x) up to 3. First, Let us
use a tensor product of dual numbers:

Here, Weil w a represents the type of Weil algebra with its setting given
in w , D1 the dual number ideal I = (X2), and |*| the tensor product
operator. Each di corresponds to ith infinitesimal.

Next, we calculate higher-order differential coefficients at x = π
6 up to the

third order:

>>> (sin (pi/6), cos (pi/6), -sin (pi/6), -cos (pi/6))
(0.49999999999999994, 0.8660254037844387, -0.49999999999999994,

-0.8660254037844387)

>>> sin (pi/6 + d0 + d1 + d2)
-0.8660254037844387 d(0) d(1) d(2) - 0.49999999999999994 d(0) d(1)
- 0.49999999999999994 d(0) d(2) - 0.49999999999999994 d(1) d(2)
+ 0.8660254037844387 d(0) + 0.8660254037844387 d(1)
+ 0.8660254037844387 d(2) + 0.49999999999999994

It is easy to see that terms of degree i have the coefficients sin(i)(π/6). Since
our implementation is polymorphic, if we apply the same function to the type
for symbolic computation, say Symbolic , we can reconstruct symbolic differ-
entiation and check that the result is indeed correct symbolically:

As stated before, the tensor-of-duals approach blows the number of terms
exponentially. Let us see how higher infinitesimal works.

Automatic Differentiation with Higher Infinitesimals 185

Here, DOrder n corresponds to an algebra R[X]/(Xn). Note that, accord-
ing to Lemma 2, to calculate an nth derivative we have to use R[X]/(Xn+1).

>>> (sin (pi/6), cos (pi/6), -sin (pi/6)/2, -cos (pi/6)/6)
(0.49999999999999994, 0.8660254037844387,
-0.24999999999999997, -0.14433756729740646)

>>> sin (pi/6 + eps)
-0.14433756729740646 d(0)ˆ3 - 0.24999999999999997 d(0)ˆ2
+ 0.8660254037844387 d(0) + 0.49999999999999994

>>> normalise <$> sin (x + eps)
((-1.0) * cos x / 6.0) d(0)ˆ3 + ((-(sin x)) / 2.0) d(0)ˆ2

+ (cos x) d(0) + (sin x)

Note that by Lemma 2, each coefficient is not directly a differential coefficient,
but divided by k!, that is f(x + ε) =

∑
k≤3

f(k)(x)
k! εk.

Let us see how tensor products of higher Weil algebras can be used to mul-
tivariate higher-order partial derivatives. Suppose we want to calculate partial
derivatives of f(x, y) = e2x sin y up to (2, 1)th order.

One can see that the coefficient of d(0)id(1)j corresponds exactly to the value
D(i,j)f(x, y)/i!j!. In this way, we can freely compose multiple Weil algebra to
calculate various partial derivatives modularly.

5.2 Computation in General Weil Algebra

All examples so far were about the predefined, specific form of a Weil algebra.
Here, we demonstrate that we can determine whether the given ideal defines

186 H. Ishii

Weil algebras with Algorithm 1, and do some actual calculation in arbitrary
Weil algebra.

First, we see that WeilTest rejects invalid ideals:

Next, we try to calculate in arbitrary chosen Weil algebra, W = R[x, y]/(x2−
y3, y4), whose corresponding meaning in AD is unclear but is a Weil algebra as
a matter of fact.

Let us see what will happen evaluating sin(a + d0 + d1), where d0 = [x]I ,
d1 = [y]I?

>>> withWeil i (sin (pi/4 + di 0 + di 1))
-2.7755575615628914e-17 d(0)ˆ3 - ... + 0.7071067811865476 d(0)
+ 0.7071067811865476 d(1) + 0.7071067811865475

>>> withWeil i (normalise <$> sin (x + di 0 + di 1))
((-1.0) * (-(sin x)) / 6.0 + (-1.0) * cos x / 6.0) d(0)ˆ3

+ ... + (cos x) d(0) + (cos x) d(1) + (sin x)

Carefully analysing each output, one can see that the output coincides with
what is given by Theorem 1 and Lemma 1.

6 Discussions and Conclusions

We have illustrated the connection between automatic differentiation (AD) and
C∞-rings, especially Weil algebras. Methods of AD can be viewed as techniques

Automatic Differentiation with Higher Infinitesimals 187

to calculate partial coefficients simultaneously by partially implementing the
C∞-lifting operator for certain C∞-ring. Especially, Forward-mode AD com-
putes the C∞-structure of the dual number ring R[d] = R[X]/X2 and Tower-
mode computes that of the formal power series ring R�X�.

The dual number ring R[d] is an archetypical example of Weil algebra, which
formalises the real line with nilpotent infinitesimals. We generalised this view to
arbitrary Weil algebras beyond dual numbers, enabling us to compute higher-
order derivatives efficiently and succinctly. We gave general algorithms to com-
pute the C∞-structure of Weil algebras. With tensor products, one can easily
compose (univariate) higher-order AD corresponding to Weil algebras into mul-
tivariate ones.

In this last section, we briefly discuss the possible applications other than
AD, related works and future works.

6.1 Possible Applications and Related Works

Beside the reformulation of AD, we can argue that our methods can be used for
a pedagogical purpose in teaching Smooth Infinitesimal Analysis (SIA) and Syn-
thetic Differential Geometry (SDG). In those fields, arguing in the appropriate
intuitionistic topos, various infinitesimal spaces corresponding to Weil algebra
is used to build a theory, expressed by the following generalised Kock-Lawvere
axiom [11]:

For any Weil algebra W , the following evaluation map gives an isomor-
phism:

ev :W → R
Spec

R
W

a �→ λf.f(a)

This is another way to state the fact that Weil algebras are C∞-rings, viewed
within some topoi. For dual numbers, their meaning is clear: it just couples a
value and their (first-order) differential coefficient. However, solely from Kock-
Lawvere axiom, it is unclear what the result is in general cases. With the algo-
rithms we have proposed, students can use computers to calculate the map given
by the axiom. In SIA and SDG, there are plenty of uses of generalised infinites-
imal spaces such as R[x1, . . . , xn]/〈xixj |i, j ≤ n〉 or R[x]/(xn). Hence, concrete
examples for these Weil algebras can help to understand the theory.

In the context of SDG, applying techniques in computer algebra to Weil
algebras has attained only little interest. One such example is Nishimura–
Osoekawa [12]: they apply zero-dimensional ideal algorithms to compute the
generating relation of limits of Weil algebras. However, their purpose is to use
computer algebra to ease heavy calculations needed to develop the theory of
SDG, and hence they are not interested in computing the C∞-structure of
Weil algebras.

Implementing AD in a functional setting has a long history. See, for example,
Elliott [2] for explanation and ad package by Kmett [9] for actual implementation.

188 H. Ishii

In ad package, so-called Skolem trick, or RankN trick is applied to distinguish
multiple directional derivatives. We argue that our method pursues other direc-
tion of formulations; we treat higher infinitesimals as first-class citizens, enabling
us to treat higher-order AD in a more modular and composable manner.

6.2 Future Works

In SDG, C∞-ring and higher infinitesimals are used as fundamental building
blocks to formulate manifolds, vector fields, differential forms, and so on. Hence,
if one can extend our method to treat a general C∞-ring C∞(M) of real-valued
smooth functions on M , it can open up a new door to formulate differential
geometry on a computer. With such a formulation, we can define differential-
geometric objects in more synthetic manner using nilpotent infinitesimals – for
example, one can define the tangent space TxM at x ∈ M on some manifold M to
be the collection of f : D → M with f(0) = x, where D is the set of nilpotents of
order two. Another virtue of such system is that we can treat infinitesimal spaces
(derived from Weil algebras), manifolds, functions spaces, and vector spaces
uniformly – they are all living in the same category. See Moerdijk–Reyes [11]
for more theoretical details. One major obstacle in this direction is that, even
if C∞(M) is finitely presented as a C∞-ring, it is NOT finitely generated as an
R-algebra, but 2ℵ0-generated, by its very nature. Hence, it seems impossible to
compute C∞(M) in purely symbolic and direct way; we need some workarounds
or distinct formulations to overcome such obstacles.

As for connections with AD, there is also plenty of room for further explo-
ration. There are so many “modes” other than Forward- and Tower-modes in
AD: for examples, Reverse, Mixed, etc. amongst others. From the point of view
of Weil algebras, they are just implementation details. But such details matter
much when one takes the efficiency seriously. It might be desirable to extend
our formulation to handle such differences in implementation method. For such
direction, Elliot [3] proposes the categorical formulation. Exploring how that
approach fits with our algebraic framework could be interesting future work,
and perhaps also shed a light on the way to realise the aforementioned compu-
tational SDG.

Acknowledgments. The author is grateful to Prof. Akira Terui, for encouraging to
write this paper and many helpful feedbacks, and to anonymous reviewers for giving
constructive comments.

A Succinct Multivariate Lazy Tower AD

For completeness, we include the referential implementation of the Tower-mode
AD in Haskell, which can be used in Algorithm 2. The method presented here is a
mixture of Lazy Multivariate Tower [13] and nested Sparse Tower [9]. For details,
we refer readers to the related paper by the author in RIMS Kôkyûroku [7].

Automatic Differentiation with Higher Infinitesimals 189

The idea is simple: we represent each partial derivative as a path in a tree of
finite width and infinite heights. A path goes down if the function is differenti-
ated by the 0th variable. It goes right if there will be no further differentiation
w.r.t. 0th variable, but differentiations w.r.t. remaining variable can take place.
This intuition is depicted by the following illustration of the ternary case:

f(a)

fx(a)

fx2(a)

...
...

...

fxy(a)

...
...

fxz(a)

...

fy(a)

fy2(a)

...
...

fyz(a)

...

fz(a)

fz2(ba)

...

This can be seen as a special kind of infinite trie (or prefix-tree) of alphabets
∂xi

, with available letter eventually decreasing.
This can be implemented by a (co-)inductive type as follows:

A tree can have an infinite height. Since Haskell is a lazy language, this won’t
eat up the memory and only necessary information will be gradually allocated.
Since making everything lazy can introduce a huge space leak, we force each
coefficient a when their corresponding data constructors are reduced to weak
head normal form, as expressed by field strictness annotation !a .

Then a lifting operation for univariate function is given by:

Here, we use type-level constraint c to represent to a subclass of smooth

functions, e.g. c = Floating for elementary functions. Constraint of form
∀xk. c x => c (STower k x) is an example of so-called Quantified Constraints.

190 H. Ishii

This requires c to be implemented for any succinct Tower AD, provided
that their coefficient type, say x , is also an instance of c . This constraint
is used recursively when one implements an actual implementation of instance
c (STower n a) . For example, Floating instance (for elementary floating

point operations) can be written as follows:

In this way, we can implement Tower AD for a class of smooth function closed
under differentiation, just by specifying an original and their first derivatives.

More general n-ary case of lifting operator is obtained in just the same way:

References

1. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Springer, New
York (2005). http://www.cs.amherst.edu/∼dac/uag.html

http://www.cs.amherst.edu/~dac/uag.html

Automatic Differentiation with Higher Infinitesimals 191

2. Elliott, C.: Beautiful differentiation. In: International Conference on Functional
Programming (ICFP) (2009). http://conal.net/papers/beautiful-differentiation

3. Elliott, C.: The simple essence of automatic differentiation. In: Proceedings of the
ACM on Programming Languages, vol. 2. Association for Computing Machinery,
New York, July 2018. https://doi.org/10.1145/3236765

4. Ishii, H.: Computational algebra system in Haskell (2013). https://konn.github.io/
computational-algebra

5. Ishii, H.: A purely functional computer algebra system embedded in Haskell. In:
Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2018. LNCS,
vol. 11077, pp. 288–303. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99639-4 20

6. Ishii, H.: smooth: Computational smooth infinitesimal analysis (2020). https://
github.com/konn/smooth

7. Ishii, H.: A succinct multivariate lazy multivariate tower AD for Weil algebra
computation. In: Fujimura, M. (ed.) Computer Algebra. RIMS Kôkyûroku, vol.
2185, pp. 104–112. Research Institute for Mathematical Sciences, Kyoto University,
Kyoto, Japan (2021)

8. Joyce, D.: Algebraic geometry over C∞-rings (2016)
9. Kmett, E.A.: ad: Automatic differentiation (2010). https://hackage.haskell.org/

package/ad
10. Lawvere, F.W.: Categorical dynamics. Topos Theor. Methods Geom. 30, 1–28

(1979)
11. Moerdijk, I., Reyes, G.E.: Models for Smooth Infinitesimal Analysis. Springer, New

York (1991). https://doi.org/10.1007/978-1-4757-4143-8
12. Nishimura, H., Osoekawa, T.: General Jacobi identity revisited again. Int. J. Theor.

Phys. 46(11), 2843–2862 (2007). https://doi.org/10.1007/s10773-007-9397-z
13. Pearlmutter, B., Siskind, J.: Lazy multivariate higher-order forward-mode AD, vol.

42, pp. 155–160 (2007). https://doi.org/10.1145/1190216.1190242
14. Wikipedia: Automatic differentiation (2021). https://en.wikipedia.org/w/

index.php?title=Automatic differentiation&oldid=995938170#Automatic
differentiation using dual numbers

http://conal.net/papers/beautiful-differentiation
https://doi.org/10.1145/3236765
https://konn.github.io/computational-algebra
https://konn.github.io/computational-algebra
https://doi.org/10.1007/978-3-319-99639-4_20
https://doi.org/10.1007/978-3-319-99639-4_20
https://github.com/konn/smooth
https://github.com/konn/smooth
https://hackage.haskell.org/package/ad
https://hackage.haskell.org/package/ad
https://doi.org/10.1007/978-1-4757-4143-8
https://doi.org/10.1007/s10773-007-9397-z
https://doi.org/10.1145/1190216.1190242
https://en.wikipedia.org/w/index.php?title=Automatic_differentiation&oldid=995938170#Automatic_differentiation_using_dual_numbers
https://en.wikipedia.org/w/index.php?title=Automatic_differentiation&oldid=995938170#Automatic_differentiation_using_dual_numbers
https://en.wikipedia.org/w/index.php?title=Automatic_differentiation&oldid=995938170#Automatic_differentiation_using_dual_numbers

On the Real Stability Radius for Some
Classes of Matrices

Elizaveta Kalinina(B) and Alexei Uteshev

Faculty of Applied Mathematics, St. Petersburg State University,
7–9 Universitetskaya nab., St. Petersburg 199034, Russia

{e.kalinina,a.uteshev}@spbu.ru
http://www.apmath.spbu.ru

Abstract. We continue investigations on the Frobenius norm real stabil-
ity radius computation started in the previous publication by the authors
(LNCS, vol. 12291 (2020)). With the use of the elimination of variables
procedure we reduce the problem to the univariate equation solving. The
structure of the destabilizing perturbation matrix is also discussed as well
as cases of symmetric and orthogonal matrices where the stability radius
can be explicitly expressed via the matrix eigenvalues. Several examples
are presented.

Keywords: Distance to instability · Stability radius · Real
destabilizing perturbation · Frobenius norm

1 Introduction

Matrix A ∈ R
n×n is called stable (Routh – Hurwitz stable) if all its eigen-

values are situated in the open left half plane of the complex plane. For a stable
matrix A, some perturbation E ∈ R

n×n may lead to that eigenvalues of A + E
cross the imaginary axis, i.e., to loss of stability. Given some norm || · || in R

n×n,
the smallest perturbation E that makes A + E unstable is called the destabi-
lizing real perturbation. It is connected with the notion of the distance to
instability (stability radius) under real perturbations that is formally
defined as

βR(A) = min{||E|| ∣∣ η(A + E) ≥ 0, E ∈ R
n×n}. (1)

Here η(·) denotes the spectral abscissa of the matrix, i.e., the maximal real
part of its eigenvalues.

The present paper is devoted to the choice of Frobenius norm in (1), and
thereby it is an extension of the investigation by the authors started in [10,11].
It should be mentioned that while the 2-norm variant of the problem and the
application of pseudospectrum to its solution have been explored intensively
[2,3,7,12] including numerical computations of spectral norm of a matrix [13],
there are just a few studies [1,6,9] on the Frobenius norm counterpart. The
treatment of the latter is considered as far more complex than the former due

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 192–208, 2021.
https://doi.org/10.1007/978-3-030-85165-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_12&domain=pdf
http://orcid.org/0000-0003-0288-3938
http://orcid.org/0000-0002-8344-3266
https://doi.org/10.1007/978-3-030-85165-1_12

On the Real Stability Radius for Some Classes of Matrices 193

to the fundamental difference between the spectral and Frobenius norms. We
refer to the paper [11] for the discussion of the practical applications of the
stated problem and for the related references. The major difficulty in utilization
of numerical procedures for estimation of (1) is that none of them is able to
guarantee the convergence to the global minimum of the distance function. As
an alternative to this approach, we attack the problem with the combination of
symbolical and numerical methods.

It is known that the set of stable matrices in R
n×n is bounded by two man-

ifolds, namely the one consisting of singular matrices and the other containing
the matrices with a pair of eigenvalues of the opposite signs. Both boundaries
are algebraic manifolds. The distance from the matrix A to the manifold of sin-
gular matrices is estimated via the least singular value of A. More difficult is
the treatment of the second alternative that is in the focus of the present paper.
In Sect. 3, the so-called distance equation [11,14] is constructed, i.e., the uni-
variate equation whose zero set contains all the critical values of the squared
distance function. We also detail the structures of the nearest matrix B∗ and
the corresponding matrix of the smallest perturbation E∗ such that B∗ = A+E∗.
The result is presented on the feasibility of simultaneous quasi-triangular Schur
decomposition for the matrices B∗ and E∗.

It is utilized in Sect. 4 and in Sect. 5 for the classes of stable matrices where
the distance to instability βR(A) can be explicitly expressed via the eigenvalues
of A. These happen to be symmetric and orthogonal matrices.

Remark. All the numerical computations were performed in CAS Maple 15.0
(LinearAlgebra package and functions discrim, and resultant). We present
the results of the approximate computations with the 10−6 accuracy.

2 Algebraic Preliminaries

Let M = [mjk]nj,k=1 ∈ R
n×n be an arbitrary matrix and

f(z) = det(zI − M) = zn + a1z
n−1 + . . . + an ∈ R

n (2)

be its characteristic polynomial. Find the real and imaginary part of f(x + iy)
({x, y} ⊂ R):

f(z) = f(x + iy) = Φ(x, y2) + iyΨ(x, y2),

where

Φ(x, Y) = f(x) − 1
2!

f ′′(x)Y +
1
4!

f (4)(x)Y 2 − . . . ,

Ψ(x, Y) = f ′(x) − 1
3!

f (3)(x)Y +
1
5!

f (5)(x)Y 2 −

Compute the resultant of polynomials Φ(0, Y) and Ψ(0, Y) in terms of the coef-
ficients of (2):

194 E. Kalinina and A. Uteshev

K(f) := RY (Φ(0, Y), Ψ(0, Y))
= RY (an − an−2Y + an−4Y

2 + . . . , an−1 − an−3Y + an−5Y
2 + . . .). (3)

Polynomial f(z) possesses a root with the zero real part iff either an = 0 or
K(f) = 0. This results in the following statement [11].

Theorem 1. Equations
det M = 0 (4)

and
K(f) := RY (Φ(0, Y), Ψ(0, Y)) = 0 (5)

define implicit manifolds in R
n2

that compose the boundary for the domain of
stability, i.e., the domain in the matrix space R

n×n

P = {vec (M) ∈ R
n2 |M is stable}. (6)

Here vec(·) stands for the vectorization of the matrix:

vec (M) = [m11,m21, . . . ,mn1,m12, . . . ,mn2, . . . ,m1n, . . . ,mnn]�.

Therefore, the distance to instability from a stable matrix A is computed as
the smallest of the distances to the two algebraic manifolds in R

n2
. The Euclidean

distance to the set of singular matrices equals the minimal singular value σmin(A)
of the matrix A. If βR(A) = σmin(A), then the destabilizing perturbation is given
by the rank-one matrix

E∗ = −AV∗V �
∗ , (7)

where V∗ stands for the normalized right singular-vector of A corresponding
to σmin(A).

More complicated is the problem of distance evaluation from A to the man-
ifold (5) corresponding to the matrices with a pair of eigenvalues of opposite
signs (i.e., either ±λ or ±iβ for {λ, β} ⊂ R \ {0}). First of all, the function (3)
treated w.r.t. the entries of the matrix M , is not convex. Indeed, for n = 3, the
characteristic polynomial of the Hessian of this function is as follows

z9 − 4a1z
8 −

⎛

⎝3
3∑

j,k=1

m2
jk + 7 a2

1

⎞

⎠ z7 + · · · + 4

⎛

⎝

3∑

j,k=1

m2
jk + a2

1 + a2

⎞

⎠ [K(f)]2 z

−8 [K(f)]3 .

It cannot possess all its (real) zeros of the same sign, and thus, the Hessian is
not a sign definite matrix. Therefore, one may expect that any gradient-based
numerical procedure applied for searching the minimum of the distance function
related to the stated problem will meet the traditional trouble of recognizing the
local minima.

The general problem of finding the Euclidean distance in a multidimensional
space from a point to an implicitly defined algebraic manifold can be solved via
the construction of the so-called distance equation [11,14], i.e., the univariate
equation whose zero set contains all the critical values of the squared distance
function. In the next section, we develop an approach for the construction of
this equation for the case of the manifold (5).

On the Real Stability Radius for Some Classes of Matrices 195

3 Distance to the Manifold (5)

The starting point in this construction is the following result [15].

Theorem 2. Distance from a stable matrix A ∈ R
n×n to the manifold (5) equals

√
zmin (8)

where

zmin = min
{X,Y }∈Rn

{||AX||2 + ||AY ||2 − (X�AY)2 − (Y �AX)2
}

(9)

subject to the constraints

||X|| = 1, ||Y || = 1, X�Y = 0, (10)
(X�AY)(Y �AX) ≤ 0.

All vector norms here are 2-norms.

If βR(A) equals the value (8) that is attained at the columns X∗ and Y∗, then
the destabilizing perturbation is computed by the formula

E∗ = (aX∗−AY∗)Y �
∗ +(bY∗−AX∗)X�

∗ where a := X�
∗ AY∗, b := Y �

∗ AX∗. (11)

It is known [5] that the matrix (11) has rank 2.

Theorem 3 [11]. If a �= −b, then the matrix (11) has a unique nonzero eigen-
value

λ∗ = −X�
∗ AX∗ = −Y �

∗ AY∗ (12)

of the multiplicity 2.

In what follows, we will consider the most general case a �= −b.
Constructive computation of (8) is a nontrivial task. Utilization of numerical

optimization procedures results in convergence to several local minima (including
those satisfying inappropriate condition a + b = 0). In [11], the approach was
proposed reducing the problem to that of finding an unconstrained minimum of
an appropriate rational function; unfortunately, the approach is applicable only
for the particular case of the third order matrices.

To treat the general case, we convert the constrained optimization prob-
lem (9)–(10) to a new one with lesser number of variables and constraints. Denote
the objective function in (9) by F (X,Y), and consider the Lagrange function

L(X,Y, τ1, τ2, μ) := F (X,Y) − τ1(X�X − 1) − τ2(Y �Y − 1) − μ(X�Y)

with the Lagrange multipliers τ1, τ2 and μ. Its derivatives with respect to X
and Y yield the system

2A�AX − 2(X�AY)AY − 2(Y �AX)A�Y − 2τ1X − μY = 0, (13)
2A�AY − 2(Y �AX)AX − 2(X�AY)A�X − 2τ2Y − μX = 0. (14)

196 E. Kalinina and A. Uteshev

Together with conditions (10), this algebraic system contains 2n+3 variables in
a nonlinear manner. We will make some manipulations aiming at reducing twice
the number of these variables.

Equation (13) together with two of conditions (10) are those providing the
Lagrange equations for the constrained optimization problem

min
X∈Rn

F (X,Y) s.t. X�X = 1, X�Y = 0.

Since F (X,Y) is a quadratic function w.r.t. X:

F (X,Y) = X�A(Y)X + b(Y),

where

A(Y) := A�A − AY Y �A� − A�Y Y �A, b(Y) := Y �A�AY,

one can apply the traditional method of finding its critical values [4]. First,
resolve (13) w.r.t. X

X =
μ

2
(A − τ1I)−1Y. (15)

Substitute this into X�X = 1:

μ2

4
Y �(A − τ1I)−2Y − 1 = 0 (16)

and into X�Y = 0:
μ

2
Y �(A − τ1I)−1Y = 0. (17)

Next, introduce a new variable z responsible for the critical values of F :

z − F (X,Y) = 0

and substitute here (15). Skipping some intermediate computations, one
arrives at

Φ(Y, τ1, μ, z) := z − μ2

4
Y �(A − τ1I)−1Y − τ1 − b(Y) = 0. (18)

Next step consists of the elimination of the parameters τ1 and μ from (16)–(18).
It can be readily verified that ∂Φ/∂μ coincides, up to a sign, with the left-hand
side of (17). One may expect that ∂Φ/∂τ1 coincides with the left-hand side of
(16). This is not the fact:

∂Φ/∂τ1 + {left-hand side of (16)} ≡ −2. (19)

Introduce the functions

Φ̃(Y, τ1, μ, z) :=
∣
∣
∣
∣

A − τ1I μ/2Y
μ/2Y � z − τ1 − b(Y)

∣
∣
∣
∣
(n+1)×(n+1)

, F(τ1) := det(A − τ1I).

(20)

On the Real Stability Radius for Some Classes of Matrices 197

Due to Schur complement formula, one has

Φ ≡ Φ̃/F(τ1). (21)

Replace Φ by Φ̃. From (18) deduce

Φ̃ = 0. (22)

From (17) one gets that
∂Φ̃/∂μ = 0. (23)

Under condition (22), the following relation is valid

∂Φ

∂τ1
≡ Φ̃′

τ1F − F′
τ1Φ̃

F2
=

Φ̃′
τ1

F
.

In view of (19), replace (16) by

Φ̃′
τ1 + 2F = 0. (24)

Finally, eliminate τ1 and μ from (22), (23) and (24) (elimination of μ is simplified
by the fact that the polynomial Φ̃ is a quadratic one w.r.t. this parameter):

Y �A · A�Y + τ1 − z = 0.

The resulting equation
G(z, Y) = 0 (25)

is an algebraic one w.r.t. its variables.

Conjecture 1. One has

degz G(z, Y) = n − 1, degY G(z, Y) = 2n,

and the coefficient of zn−1 equals Y �Y .

Equation (25) represents z as an implicit function of Y . We need to find the
minimum of this function subject to the constraint Y �Y = 1. This can be done
via direct elimination of either of variables y1, y2, . . . , yn, say y1, from the equa-
tions (25) and Y �Y = 1 and further computation of the (absolute) minimum of
the implicitly defined function of the variables y2, . . . , yn. The elimination pro-
cedure for these variables consists of the successive resultant computations and
results, on expelling some extraneous factors, in the distance equation F(z) = 0.

Conjecture 2. Generically, one has

deg F(z) =
(

n

2

)2

,

while the number of real zeros of F(z) is ≥ (n2
)

.

198 E. Kalinina and A. Uteshev

Real zeros of F(z) = 0 are the critical values of the squared distance function.
In all the examples we have computed, the true distance is provided by the square
root of the least positive zero of this equation1.

Example 1. For the upper triangular matrix

A =

⎡

⎣

−5 3 −4
0 −7 8
0 0 −11

⎤

⎦ ,

the distance equation to the manifold (5) is as follows:

F(z) := 2761712704 z9 − 8117525391152 z8 + 9928661199130545 z7

−6661449509594611833 z6 + 2725873911089976326856 z5

−710084397702478808373248 z4 + 117904392917228522430951424 z3

−11941405917828362824496906240 z2 + 653700309832952667775747751936 z

−13855088524292326555552906739712 = 0

with real zeros

zmin ≈ 49.502398, z2 ≈ 178.803874, z3 ≈ 207.566503.

Distance to (5) equals
√

zmin ≈ 7.035794, and it is provided by the perturbation
matrix

E∗ ≈
⎡

⎣

4.346976 0.523508 −0.557899
0.705685 3.592395 1.164459

−1.972167 3.053693 1.430776

⎤

⎦ .

Spectrum of the matrix B∗ = A + E∗ is ≈ {−13.629850,±1.273346 i}.
The perturbation matrix corresponding to the zero z2 of the distance equa-

tion is

E2 ≈
⎡

⎣

3.435003 −5.117729 −0.980014
−3.957240 6.004731 −0.650159
−0.242289 −0.207877 9.360120

⎤

⎦ .

Spectrum of the matrix B2 = A + E2 is ≈ {−4.200144,±1.517560}.

�
Example 2. For the matrix

A =

⎡

⎢
⎢
⎣

−1 −4 −1 0
2 −3 2 0
4 1 −5 −0.02
0 0 0.1 −1

⎤

⎥
⎥
⎦

,

1 For the general problem of distance to arbitrary algebraic manifold, this is not always
the case.

On the Real Stability Radius for Some Classes of Matrices 199

the distance to the manifold (5) equals
√

zmin where zmin ≈ 10.404067. Vectors
providing this value, as the solution to the constrained optimization problem
(9)–(10), are as follows2:

X∗ ≈

⎡

⎢
⎢
⎣

−0.262202
−0.089560
−0.242204

0.929820

⎤

⎥
⎥
⎦

, Y∗ ≈

⎡

⎢
⎢
⎣

0.719155
0.148735
0.571599
0.366015

⎤

⎥
⎥
⎦

.

The perturbation matrix is determined via (11):

E∗ ≈

⎡

⎢
⎢
⎣

1.550382 0.346249 1.256766 0.018654
−1.735702 −0.386136 −1.405552 −0.066067
−0.125734 −0.027972 −0.101818 −0.004775
−0.061674 −0.048946 −0.083641 1.057733

⎤

⎥
⎥
⎦

.

The only nonzero eigenvalue (12) of this matrix is λ∗ ≈ 1.060080. The spectrum
of the corresponding nearest to A matrix B∗ = A + E∗ is

μ1 ≈ −5.937509, μ2 ≈ −1.942329, μ3,4 = ±0.066088 i.

Just for the sake of curiosity, let us find the real Schur decomposition [8] for the
matrices B∗ and E∗. The orthogonal matrix

P ≈

⎡

⎢
⎢
⎣

0.326926 −0.579063 −0.541040 0.514858
−0.403027 0.627108 −0.529829 0.404454
−0.029186 0.045432 0.652787 0.755614

0.854304 0.518994 −0.020604 0.019594

⎤

⎥
⎥
⎦

furnishes the lower quasi-triangular Schur decomposition for B∗:

P�B∗P ≈

⎡

⎢
⎢
⎣

0 0.159482 0 0
−0.027386 0 0 0
−0.974903 1.383580 μ1 0

2.170730 −3.675229 −2.733014 μ2

⎤

⎥
⎥
⎦

.

Eigenvalues of the upper left-corner block of this matrix
[

0 0.159482
−0.027386 0

]

equal μ3,4.
Surprisingly, it turns out that the matrix P provides also the upper quasi-

triangular Schur decomposition for E∗:

P�E∗P ≈

⎡

⎢
⎢
⎣

λ∗ 0 −0.172898 1.393130
0 λ∗ 0.251668 −2.474365
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

.

�
2 Due to symmetry of the problem w.r.t. the entries of X and Y , the optimal solution
is evaluated up to a sign.

200 E. Kalinina and A. Uteshev

The discovered property is confirmed by the following result.

Theorem 4. Let A ∈ R
n×n be a stable matrix, B∗ and E∗ be the nearest to

A matrix in the manifold (5) and the destabilizing perturbation correspondingly:
B∗ = A+E∗. There exists an orthogonal matrix P ∈ R

n×n such that the matrix
P�E∗P contains only two nonzero rows while the matrix P�B∗P is of the lower
quasi-triangular form.

Proof. Let the orthogonal matrix P furnish the lower quasi-triangular Schur
decomposition for B∗:

P�B∗P =

⎡

⎢
⎣

b̃11 b̃12 0 . . . 0
b̃21 b̃22 0 . . . 0

B̃

⎤

⎥
⎦ ,

where B̃ ∈ R
(n−2)×n is the lower quasi-triangular matrix while the matrix

[

b̃11 b̃12
b̃21 b̃22

]

(26)

has its eigenvalues of the opposite signs, i.e., b̃11 + b̃22 = 0.
It turns out that the matrix P provides also the upper quasi-triangular Schur

decomposition for E∗:

P�E∗P =

⎡

⎣

λ∗ 0 e13 . . . e1n

0 λ∗ e23 . . . e2n

O(n−2)×n

⎤

⎦ , (27)

where λ∗ is defined by (12). Indeed, represent P�E∗P as a stack matrix:

P�E∗P =
[
E1

E2

]

where E1 ∈ R
2×n, E2 ∈ R

(n−2)×n.

Then

P�AP +
[
E1

O

]

= B where B :=

⎡

⎢
⎣

b̃11 b̃12 0 . . . 0
b̃21 b̃22 0 . . . 0

B̃ − E2

⎤

⎥
⎦ (28)

and, consequently,

A + P

[
E1

O

]

P� = PBP�.

Matrix B still lies in the manifold (5); so does the matrix PBP�. If E2 �= O,
then the latter is closer to A than B∗ since

∥
∥
∥
∥
P

[
E1

O

]

P�
∥
∥
∥
∥

= ‖E1‖ <
√

‖E1‖2 + ‖E2‖2 = ‖E∗‖.

On the Real Stability Radius for Some Classes of Matrices 201

This contradicts the assumption. Therefore, the matrix P�E∗P contains only
two nonzero rows, namely those composing the matrix E1.

Furthermore, the matrix E∗ has a single real eigenvalue λ∗ of the multiplic-
ity 2 (Theorem 3). Consider the second order submatrix located in the upper-left
corner of P�E∗P : [

e11 e12
e21 e22

]

. (29)

This submatrix has the double eigenvalue λ∗, and its norm is the minimal pos-
sible. Hence, it should have the following form

[
λ∗ 0
0 λ∗

]

.

Indeed, let us find the minimum of the norm of (29) under the constraints

(e11 − e22)2 + 4e12e21 = 0, e11 + e22 = 2λ∗

by the Lagrange multiplier method. We have the Lagrangian function

F (e11, e22, e12, e21, μ, ν) =
2∑

j,k=1

e2jk+μ((e11−e22)2+4e12e21)+ν(e11+e22−2λ∗),

where μ and ν are the Lagrange multipliers. We obtain the system of equations:

e11 + μ(e11 − e22) + ν = 0,

e22 − μ(e11 − e22) + ν = 0,

e12 + 2μe21 = 0,

e21 + 2μe12 = 0,

(e11 − e22)2 + 4 e12e21 = 0,

e11 + e22 − 2λ∗ = 0

whence it follows that

e12(1 − 4μ2) = 0,
e21(1 − 4μ2) = 0,

e22 = 2λ∗ − e11,

ν = −λ∗,
(e11 − λ∗)(1 + 2μ) = 0,

(e11 − λ∗)2 + e12e21 = 0.

– If μ �= ±1/2, then a12 = e21 = 0 and e11 = e22 = λ∗.
– If μ = 1/2, then e12 = −e21, after that by the fifth equation, e11 = λ∗, by

the third equation e22 = λ∗, and by the last equation, e12 = −e21 = 0.
– If μ = −1/2, then e12 = e21 and by the last equation, e11 = λ∗ and

e12 = 0.
�
We next investigate some classes of matrices where the distance to instability

can be directly expressed via the eigenvalues.

202 E. Kalinina and A. Uteshev

4 Symmetric Matrix

Theorem 5. Let λ1, λ2, . . . , λn be the eigenvalues of a stable symmetric matrix
A arranged in descending order:

λn ≤ λn−1 ≤ . . . ≤ λ2 ≤ λ1 < 0.

The distance from A to the manifold (5) equals

|λ1 + λ2|/
√

2.

Proof. For a symmetric matrix A, the nearest in the manifold (5) matrix B∗
possesses two real eigenvalues of the opposite signs. Indeed, in this case, the
block (26) becomes symmetric: b̃12 = b̃21, and its eigenvalues equal ±α where

α :=
√

b̃211 + b̃212.
Since orthogonal transformations preserve the lengths of vectors and angles

between them, we can consider our problem for diagonal matrix Ad =
diag {λ1, λ2, . . . , λn}. It is evident that the matrix Ed∗ = diag {λ∗, λ∗, 0, . . . , 0}
where λ∗ = −(λ1 + λ2)/2 is such that the matrix Bd∗ = Ad + Ed∗ belongs to
the manifold (5). The distance from Ad to Bd∗ equals |λ1 + λ2|/

√
2. We need

to prove that this matrix Ed∗ gives us the destabilizing perturbation, i.e., its
Frobenius norm is the smallest.

Assume the converse, i.e., there exist matrices Ẽd∗, B̃d∗ and P̃ satisfying
Theorem 4 such that the norm of the matrix Ẽd∗ that coincides with the norm
of the matrix

P̃�Ẽd∗P̃ =

⎡

⎢
⎢
⎣

b̃11 b̃12 0 . . . 0
b̃12 b̃22 0 . . . 0

˜̃B

⎤

⎥
⎥
⎦

− P̃�AdP̃ =

⎡

⎣

λ̃∗ 0 ẽ13 . . . ẽ1n

0 λ̃∗ ẽ23 . . . ẽ2n

O(n−2)×n

⎤

⎦

is smaller than ||Ed∗||. Consider the matrix Ã = P̃�AdP̃ = [ãij]ni,j=1. Since
b̃11 = −b̃22, one gets λ̃∗ = −(ã11 + ã22)/2. Let us estimate this value:

−2λ̃∗ = λ1(p211 + p212) + λ2(p221 + p222) + . . . + λn(p2n1 + p2n2)

= λ1(p211 + p221 + . . . + p2n1) − λ1(p221 + p231 + . . . + p2n1)

+λ2(p212 + p222 + . . . + p2n2) − λ2(p212 + p232 + . . . + p2n2)

+λ1p
2
12 + λ2p

2
21 + λ3(p231 + p232) + . . . + λn(p2n1 + p2n2)

= λ1 + λ2 + (λ2 − λ1)p221 + (λ3 − λ1)p231 + . . . + (λn − λ1)p2n1
+ (λ1 − λ2)p212 + (λ3 − λ2)p232 + . . . + (λn − λ2)p2n2

≤ λ1 + λ2 + (λ2 − λ1)p221 + (λ2 − λ1)p231 + . . . + (λ2 − λ1)p2n1
+ (λ1 − λ2)p212 + (λ3 − λ2)p232 + . . . + (λn − λ2)p2n2

= λ1 + λ2 +
[

(λ2 − λ1) − (λ2 − λ1)p211 − (λ2 − λ1)p212
]

+ (λ3 − λ2)p232 + . . . + (λn − λ2)p2n2 ≤ λ1 + λ2.

On the Real Stability Radius for Some Classes of Matrices 203

Both values are non-positive, therefore

λ̃2
∗ ≥

(
λ1 + λ2

2

)2

.

Finally, we obtain
||Ẽd∗|| ≥ λ̃∗

√
2 ≥ λ∗

√
2 = ||Ed∗||,

and it is clear that Ed∗ = diag {λ∗, λ∗, 0, . . . , 0} provides the destabilizing per-
turbation for Ad.

�
Corollary 1. Destabilizing perturbation providing the distance in Theorem 5 is
given as the rank 2 matrix

E∗ = −1
2
(λ1 + λ2)

(

P[1]P
�
[1] + P[2]P

�
[2]

)

(30)

where P[1] and P[2] are the normalized eigenvectors of A corresponding to the
eigenvalues λ1 and λ2 correspondingly.

Example 3. For the matrix

A =
1
9

⎡

⎣

−121 −14 34
−14 −94 20

34 20 −118

⎤

⎦

with eigenvalues λ1 = −9, λ2 = −10, λ3 = −18, the orthogonal matrix

P =
1
3

⎡

⎣

1 2 2
2 −2 1
2 1 −2

⎤

⎦

reduces it to the diagonal form P�AP = diag {λ1, λ2, λ3}. Distance from A to
the manifold (5) equals

1√
2
|9 + 10| ≈ 13.435028.

The corresponding destabilizing matrix is determined by (30)

E∗ =
1
18

⎡

⎣

95 −38 76
−38 152 38

76 38 95

⎤

⎦ .

It is of interest to watch how the general form of the distance equation transforms
for this example:

F(z) = (z−729/2)(z−361/2)(z−392)(z−545)2(z−1513/2)2(z−1145/2)2 = 0.

�

204 E. Kalinina and A. Uteshev

Conjecture 3. Let {λj}n
j=1 be the spectrum of a symmetric matrix A. Denote

{

Λjk :=
1
2
(λj + λk)2

∣
∣
∣
∣
∣
1 ≤ j < k ≤ n

}

.

Distance equation for A can be represented as
∏

1≤j<k≤n

(z − Λjk) ·
∏

(z − (Λjk + Λ�s))
2 = 0.

The second product is extended to all the possible pairs of indices (j, k) and (
, s)
such that j < k,
 < s and j �=
, k �= s.

Corollary 2. In notation of Theorem 5 and Corollary 1, the distance to instabil-
ity for a stable symmetric matrix A equals |λ1| with the destabilizing perturbation
E∗ = −λ1P[1]P

�
[1].

Though this corollary makes the result of Theorem 5 redundant for solving
the problem of distance to instability evaluation for symmetric matrices, it,
nevertheless, might be useful for establishing the upper bound for this distance
for arbitrary matrices.

Theorem 6. Let A ∈ R
n×n be a stable matrix. Denote by d(·) the distance to

the manifold (5). One has:

d(A) ≤
√
∥
∥
∥
∥

1
2

(A − A�)
∥
∥
∥
∥

2

+ d2
(

1
2

(A + A�)
)

.

Proof follows from the fact that the skew-symmetric matrix A−A� is normal
to the symmetric matrix A + A� with respect to the inner product in R

n×n

introduced by 〈A1, A2〉 := trace(A�
1 A2).

For instance, this theorem yields the estimation d(A) < 5.654250 for the
matrix of Example 2.

5 Orthogonal Matrix

Now we consider how to find the distance to instability for a stable orthogonal
matrix A ∈ R

n×n. We assume that this matrix has at least one pair of non-real
eigenvalues.

Theorem 7. Let cos αj ± i sin αj j ∈ {1, . . . , k} be the non-real eigenvalues of
an orthogonal matrix A arranged in descending order of their real parts:

cos αk ≤ cos αk−1 ≤ . . . ≤ cos α1 < 0.

(All the other eigenvalues of A, if any, equal (−1)). The distance from A to the
manifold (5) equals

√
2| cos α1|.

On the Real Stability Radius for Some Classes of Matrices 205

Proof. First, there exists an orthogonal transformation bringing the matrix A
to the block diagonal form

AJ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 . . .
. . . O

Ak

−1

O
. . .

−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where A� :=
[

cos α� − sin α�

sin α� cos α�

]

,
 ∈ {1, . . . , k}.

It is evident that the matrix

EJ∗ = diag {− cos α1,− cos α1, 0, . . . , 0} (31)

is such that the matrix BJ∗ = AJ +EJ∗ belongs to the manifold (5). The distance
from AJ to BJ∗ equals

√
2| cos α1|. We need to prove that this matrix EJ∗

provides the destabilizing perturbation, i.e., its Frobenius norm is the smallest.
Assume the converse, i.e., there exist matrices ẼJ∗, B̃J∗ and P̃ satisfying

Theorem 4 such that the norm of the matrix ẼJ∗ that coincides with the norm
of the matrix

P̃�ẼJ∗P̃ =

⎡

⎢
⎢
⎣

b̃11 b̃12 0 . . . 0
b̃21 b̃22 0 . . . 0

˜̃B

⎤

⎥
⎥
⎦

− P̃�AJ P̃ =

⎡

⎣

λ̃∗ 0 ẽ13 . . . ẽ1n

0 λ̃∗ ẽ23 . . . ẽ2n

O(n−2)×n

⎤

⎦

is smaller than ||EJ∗||. Consider the matrix Ã = P̃�AJ P̃ = [ãij]ni,j=1. Since
b̃11 = −b̃22, one gets λ̃∗ = −(ã11 + ã22)/2. Let us estimate this value:

−2λ̃∗ = (p211 + p221) cos α1 + (p231 + p241) cos α2 + . . . + (p2n−1,1 + p2n1) cos αk

+ (p212 + p222) cos α1 + (p232 + p242) cos α2 + . . . + (p2n−1,2 + p2n2) cos αk

− p2k+1,1 − . . . − p2n1 − p2k+1,2 − . . . − p2n2.

Add (and subtract) the terms p231 + p241 + . . .+ p2n−1,1 + p2n1 and p232 + p242 + . . .+
p2n−1,2 +p2n2 to the coefficients of cos α1 to obtain the sums of squares of the first
and the second columns of the matrix P̃ :

−2λ̃∗ = 2 cos α1 + (cos α2 − cos α1)(p231 + p241 + p232 + p242) + . . .

+ (cos αk − cos α1)(p2k−1,1 + p2k1 + p2k−1,2 + p2k2)

− cos α1(p2k+1,1 + p2k+1,2 + . . . + p2n1 + p2n2) − p2k+1,1 − p2k+1,2 − . . . − p2n1 − p2n2

= 2 cos α1 + (cos α2 − cos α1)(p231 + p241 + p232 + p242) + . . .

+ (cos αk − cos α1)(p2k−1,1 + p2k1 + p2k−1,2 + p2k2)

+ (−1 − cos α1)(p2k+1,1 + p2k+1,2 + . . . + p2n1 + p2n2).

206 E. Kalinina and A. Uteshev

Since

cos αk − cos α1 ≤ cos αk−1 − cos α1 ≤ . . . ≤ cos α2 − cos α1 ≤ 0,−1 − cos α1 < 0,

the following inequality holds

−2λ̃∗ ≤ 2 cos α1.

Finally, we obtain
||ẼJ∗|| ≥ λ̃∗

√
2 ≥ λ∗

√
2 = ||EJ∗||,

and it is clear that the matrix (31) provides the destabilizing perturbation for AJ .

�
Corollary 3. Destabilizing perturbation providing the distance in Theorem 7 is
given as

E∗ = − cos α1

[�(P[1])�(P[1])� + �(P[1])�(P[1])�] (32)

where �(P[1]) and �(P[1]) are the normalized real and imaginary parts of the
eigenvector of A corresponding to the eigenvalue cos α1 + i sinα1.

Matrix (32) is, evidently, symmetric. In view of Theorem 1, the following
result is valid:

Corollary 4. If η(·) denotes the spectral abscissa of the matrix, then the stability
radius of the orthogonal matrix A can be evaluated by the formula

βR(A) =
{ √

2η(−A) if − 1 �∈ {λ1, . . . , λn},

min{1,
√

2η(−A)} otherwise.

Example 4. For the matrix

A =
1
3

⎡

⎣

−2 −2 1
1 −2 −2

−2 1 −2

⎤

⎦

with the eigenvalues λ1 = −1, λ2,3 = − 1
2 ± i

√
3
2 , the orthogonal matrix

P =
1√
6

⎡

⎣

√
2 2 0√
2 −1 −√

3√
2 −1

√
3

⎤

⎦

reduces it to the form

P�AP =
1
2

⎡

⎣

−2 0 0
0 −1

√
3

0 −√
3 −1

⎤

⎦ .

On the Real Stability Radius for Some Classes of Matrices 207

The distance from A to instability equals 1/
√

2 ≈ 0.707106. The corresponding
destabilizing matrix is determined by (32)

E∗ =
1
6

⎡

⎣

2 −1 −1
−1 2 −1
−1 −1 2

⎤

⎦ .

Distance equation for the matrix A transforms into

F(z) := (z − 1/2)(z − 15/8)2(z2 − 3z + 9)(z − 5)4 = 0.

�
The results of the present section can evidently be extended to the case of

matrices orthogonally equivalent to the block-diagonal matrices with real blocks
of the types

[λ] and r

[
cos α − sin α
sinα cos α

]

; r > 0, cos α < 0, λ < 0.

6 Conclusion

We treat the problem of the Frobenius norm real stability radius evaluation in
the framework of symbolic computations, i.e., we look for the reduction of the
problem to univariate algebraic equation solving. Though the obtained results
clear up some issues of the problem, the latter, in its general statement, remains
still open.

As it is mentioned in Introduction, the main problem of exploiting the numer-
ical procedures for finding the distance to instability estimations is that of relia-
bility of the results. The results of the present paper can supply these procedures
with testing samples of matrix families with trustworthy estimations of the dis-
tance to instability value.

Acknowledgments. The authors are grateful to the anonymous referees for valuable
suggestions that helped to improve the quality of the paper.

References

1. Bobylev, N.A., Bulatov, A.V., Diamond, Ph.: Estimates of the real structured
radius of stability of linear dynamic systems. Autom. Remote Control 62, 505–512
(2001)

2. Embree, M., Trefethen, L.N.: Generalizing eigenvalue theorems to pseudospectra
theorems. SIAM J. Sci. Comput. 23(2), 583–590 (2002)

3. Freitag, M.A., Spence, A.: A Newton-based method for the calculation of the dis-
tance to instability. Linear Algebra Appl. 435, 3189–3205 (2011)

4. Gantmakher, F.R.: The Theory of Matrices, vol. I, II. Chelsea, New York (1959)
5. Guglielmi, N., Lubich, C.: Low-rank dynamics for computing extremal points of

real pseudospectra. SIAM J. Matrix Anal. Appl. 34, 40–66 (2013)

208 E. Kalinina and A. Uteshev

6. Guglielmi, N., Manetta, M.: Approximating real stability radii. IMA J. Numer.
Anal. 35(3), 1401–1425 (2014)

7. Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I: Modelling, State
Space Analysis, Stability and Robustness. Springer, Heidelberg (2005)

8. Horn, R.A., Johnson, Ch.: Matrix Analysis, 2nd edn. Cambridge University Press,
New York (2013)

9. Katewa, V., Pasqualetti, F.: On the real stability radius of sparse systems. Auto-
matica 113, 108685 (2020)

10. Kalinina, E.A., Smol’kin, Yu.A., Uteshev, A.Yu.: Stability and distance to instabil-
ity for polynomial matrix families. Complex perturbations. Linear Multilin. Alge-
bra. https://doi.org/10.1080/03081087.2020.1759500

11. Kalinina, E.A., Smol’kin, Y.A., Uteshev, A.Y.: Routh – Hurwitz stability of
a polynomial matrix family. Real perturbations. In: Boulier, F., England, M.,
Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 316–
334. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6 18

12. Qiu, L., Bernhardsson, B., Rantzer, A., Davison, E.J., Young, P.M., Doyle, J.C.:
A formula for computation of the real stability radius. Automatica 31(6), 879–890
(1995)

13. Rump, S.M.: Verified bounds for singular values, in particular for the spectral norm
of a matrix and its inverse. BIT Numer. Math. 51(2), 367–384 (2011)

14. Uteshev, A.Yu., Goncharova, M.V.: Metric problems for algebraic manifolds: ana-
lytical approach. In: Constructive Nonsmooth Analysis and Related Topics – CNSA
2017 Proceedings 7974027 (2017)

15. Van Loan, C.F.: How near is a stable matrix to an unstable matrix? In: Datta, B.N.,
et al. (eds.) Linear Algebra and Its Role in Systems Theory 1984, Contemporary
Mathematics, vol. 47, pp. 465–478. American Mathematical Society, Providence,
Rhode Island (1985). https://doi.org/10.1090/conm/047

https://doi.org/10.1080/03081087.2020.1759500
https://doi.org/10.1007/978-3-030-60026-6_18
https://doi.org/10.1090/conm/047

Decoupling Multivariate Fractions

François Lemaire(B) and Adrien Poteaux

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
{francois.lemaire,adrien.poteaux}@univ-lille.fr

Abstract. We present a new algorithm for computing compact forms
of multivariate fractions. Given a fraction presented as a quotient of
two polynomials, our algorithm builds a tree where internal nodes are
operators, and leaves are fractions depending on pairwise disjoint sets
of variables. The motivation of this work is to obtain compact forms of
fractions, which are more readable and meaningful for the user or the
modeler, and better suited for interval arithmetic.

Keywords: Multivariate fractions · Decoupling · Compact form

1 Introduction

This article presents a new algorithm decouple for computing compact forms
of multivariate fractions. Informally, given a multivariate fraction given as a
quotient P/Q, Algorithm decouple computes a (usually) more compact repre-
sentative of P/Q in the form of a tree where internal nodes are operators +,
× and ÷, and where leaves are fractions depending on pairwise disjoint sets of
variables. As a consequence, the fraction P/Q is usually written as a sum, prod-
uct or quotient of expressions which may also contain fractions. As an example,
our algorithm rewrites the fraction

a0b1a3 + a0b1b2 + a0a2 + a1a3 + a1b2
b1a3 + b1b2 + a2

as
a0 +

a1

− a2
−a3−b2

+ b1
,

and rewrites the fraction

−x
(
d x2 + dxk1 + dxk2 + dk1k2 + V1x + V2x + V1k2 + V2k1

)

(k1 + x) (k2 + x)

as
−dx − V1x

k1 + x
− V2x

k2 + x
.

Our algorithm also works with polynomials, and in that case the expressions
returned are free of quotients. For example, our algorithm rewrites ab + ax +
bx + cd + cx + dx + 2x2 as (x + b) (x + a) + (x + c) (x + d).
c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 209–231, 2021.
https://doi.org/10.1007/978-3-030-85165-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_13

210 F. Lemaire and A. Poteaux

This work was mainly motivated by the following reasons. A compact expres-
sion is usually easier to read and understand for a user/modeler. Moreover, if the
variables appear in the least places (ideally only once), the interval arithmetic
should yield sharper results.

Computer algebra software are usually focused on polynomials rather than
fractions. Extracting the numerator of a fraction can produce some expression
swell, especially if the fraction is given as a sum of different fractions with differ-
ent denominators. When fractions are reobtained after applying a polynomial-
based method, our algorithm can help to recover different fractions with different
denominators again.

In order to decompose a fraction into several terms, our method uses a decou-
pling technique on the variables. Roughly speaking, as the term decoupling sug-
gests, our method tries to split a fraction into different terms involving disjoint
sets of variables. As a consequence, our method does nothing on a univariate
fraction, even if the fraction can be written in a compact way using nested frac-
tions.

Simplification of multivariate fractions has already been considered. The
Lĕınartas decomposition is presented in [7] (see [8, Theorem 2.1] for an English
presentation). It decomposes a fraction into a sum of fractions, using computa-
tions on the varieties associated to the irreducible factors of the fraction denomi-
nator. Also, [9] presents a partial decomposition for multivariate fractions, based
on successive univariate partial decompositions. In both cases, multivariate frac-
tions are rewritten in a more compact way, as a sum of several fractions (thus
nested fractions are never produced).

Our method does not work the same way, and produces a different output.
Our method can produce nested fractions such as a0 + a1

− a2
−a3−b2

+b1
mentioned

earlier in the introduction. However, our method does no simplification on frac-
tions which cannot be decoupled. For example, our algorithm performs no sim-
plification on the fraction F = x2y+xy2+xy+x+y

xy(xy+1) taken from [8, Example 2.5],
whereas [7,8] computes F = 1

xy+1 + x+y
xy , and [9] computes F = 1

x + 1
xy+1 + 1

y .
It is also worth mentioning [10] which provides “Ten commandments” around

expression simplifications, especially Sects. 3 and 4 which discuss some tech-
niques for partially factoring the numerators and denominators of a fraction.
Also, a method for computing Horner’s schemes for multivariate polynomials is
given in [3]. Finally, [11] presents a choice of nice functionalities a computer alge-
bra software should provide for helping the user with expression manipulations.

We implemented our algorithm decouple in Maple 2020. All examples pre-
sented in the paper run under ten seconds (on a i7-8650U CPU 1.90 GHz running
Linux), and the memory footprint in under 180 Mbytes.

Organization of the Paper. Section 2 defines the decouplings of fractions and
the splittable fractions. Theorem 1 which characterizes the splittable fractions
is presented, and the existence and uniqueness of the so-called finest partition
(of variables) is proven. Section 3 presents our algorithm decouple, with elements

Decoupling Multivariate Fractions 211

of proofs. Section 4 presents some examples. Finally, Sect. 5 presents some com-
plexity results and implementation remarks.

Notations. In this article, K denotes any field of characteristic zero1. Take a frac-
tion F in K(X), where X contains n variables. For brevity, the partial derivatives
∂F
∂x , ∂2F

∂x∂y and ∂j+kF
∂xj∂yk are also written Fx, Fx,y and Fxj ,yk . We denote by Supp(F)

the set {x ∈ X|Fx �= 0}; it is simply the variables on which F really depends.
We denote by Def(F) the domain of definition of F , which is the set of values
of Kn which does not cancel the denominator of F .

For any subset Y ⊆ X of size m, and any Y 0 ∈ K
m, F (Y = Y 0) designates

the partial evaluation of F for the variables Y at Y 0. This partial evaluation
is only defined if the denominator of F does not identically vanish at Y = Y 0.
Partitions of a set X will usually be denoted (Xi)1≤i≤p and (Yi)1≤i≤q, or simply
(Xi) and (Yi).

2 Decoupled and Splittable Fractions

2.1 Definitions

Definition 1 (Expression Tree). An Expression Tree in a1, . . . , ap over a
field K is a finite tree satisfying:

– each internal node is a binary operator: either +, ×, or ÷,
– each leaf is either a variable ai, or an element of K,
– if the tree contains two or more nodes, then any subtree encodes a nonzero

fraction in the variables a1, . . . , ap.

Proposition 1 (Expression Tree and associated fraction). The third item
of Definition 1 ensures that no division by zero can occur. As a consequence, any
Expression Tree encodes a fraction in the ai variables. Moreover, any fraction
can be encoded by an Expression Tree (note the Expression Tree is not unique).
If A is an Expression Tree in a1, . . . , ap, we simply denote its associated fraction
by A(a1, . . . , ap). Please note that zero can still be encoded by the tree with only
one root node equal to zero. Finally, the tree

+
−6 6

is not an Expression Tree since it violates the third item of Definition 1.

Definition 2 (Decoupled Expression Tree (DET)). A Decoupled Expres-
sion Tree in the variables a1, . . . , ap is an Expression Tree where each ai appears
exactly once.

1 Fields of characteristic nonzero have not been considered by the authors, as they
raise some difficulties. Indeed, most results and algorithms presented here rely on
evaluation and differentiation, which are difficult to handle in nonzero characteristic.

212 F. Lemaire and A. Poteaux

+
×

+

3 8

a2

÷
5 a1

is a DET encoding 11a2 + 5/a1.

Proposition 2 (Interval arithmetic). Assume K is Q or R. Consider a
fraction F (a1, . . . , ap) which can be represented as a DET A. If each ai lies in
some interval Ii, and if evaluating the tree A using interval arithmetic never
inverses intervals containing zero, then the evaluation computes F (I1, . . . , Ip).

Proof. We prove it by induction on the number of nodes. The base case with
one node is immediate. If the number of nodes is higher than 2, the induction
hypothesis can be applied on both left and right subtrees, yielding two intervals
I and J . The evaluation of the complete tree consists in evaluating either I + J ,
I × J , or I ÷ J . In all these cases, interval arithmetic gives an exact interval
image (i.e. not overestimated), since both subtrees involve distinct variables (A
is a DET), and because (by assumption) no interval containing zero is inverted.

Remark 1. When inverting an interval containing zero occurs during the evalua-
tion of a DET, difficulties arise, as the following example shows. Take F = x

1+x ,
whose image on the interval I = [0, 1] is F (I) = [0, 1/2]. The fraction F can be
written as the DET 1

1+ 1
x

whose evaluation is delicate because 1
x is not defined

at x = 0. However, if F is written as the DET 1 − 1
1+x , Proposition 2 applies.

In order to generalize Proposition 2 for tackling intervals containing zero,
multi-intervals and handling intervals containing infinity may be required.

Definition 3 (Decoupling of a fraction). Let F a fraction of K(X). We
call decoupling of F a triple (A, (Fi)1≤i≤p, (Xi)1≤i≤p) where:

– A is a DET in the variables a1, . . . , ap over K,
– (Xi)1≤i≤p is a partition of Supp(F),
– each Fi is a fraction of K(Xi) with Supp(Fi) = Xi,
– F = A(F1, . . . , Fp) where A(F1, . . . , Fp) designates the fraction associated to

A evaluated on the Fi.

In that case, we say that the partition (Xi) decouples the fraction F .

Remark 2. Any constant fraction F admits the decoupling (F, ∅, ∅). Any non
constant fraction F ∈ K(X) admits the (trivial) decoupling (a1, (F), (Supp(F))).

Definition 4 (Splittable fraction). A fraction F of K(X) is said splittable
if there exists a partition (Xi)1≤i≤p of Supp(F) with p ≥ 2, such that (Xi)
decouples F . Otherwise, the fraction is said nonsplittable.

Remark 3. Constant and univariate fractions are nonsplittable.

Decoupling Multivariate Fractions 213

2.2 Characterization of Splittable Fractions

Theorem 1 below gives a characterization of splittable fractions. It is central
for the decouple algorithm (Algorithm 1). Indeed the decouple algorithm checks
the four different cases and either calls itself recursively if one case succeeds or
concludes that the fraction is nonsplittable.

Lemma 1. Take a splittable fraction F of K(X). Then for any nonzero con-
stant c, the fractions c + F , c × F , c/F , and F/c are splittable.

Proof. For each fraction c + F , c × F , c/F , and F/c, it suffices to adjust the
tree A of a decoupling (A, (Fi)1≤i≤p, (Xi)1≤i≤p) of F .

Theorem 1 (Splittable characterization). A fraction F of K(X) is split-
table if and only if the fraction F can be written in one of the following forms:

C1 G + H C2 c + GH

C3 c +
1

G + H
C4 c +

d

1 + GH

,

where

– c and d are in K, and d �= 0,
– (Y,Z) is a partition of Supp(F),
– G ∈ K(Y) and H ∈ K(Z), with Supp(G) = Y and Supp(H) = Z.

Proof. The right to left implication is immediate.
Let us prove the left to right implication. Assume F is splittable, and consider

a decoupling (A, (Fi)1≤i≤p, (Xi)1≤i≤p) of F with p ≥ 2. Since the fraction is
splittable, it is necessarily non constant, and the root of the tree A is necessarily
an operator. As a consequence, the tree A has the shape

o

L R .

Substituting the Fi’s in the L and R trees, one gets two fractions FL and FR.
There are two cases:

Case 1. Both fractions FL and FR are nonconstant. They have by construction
some disjoint supports. If the operator o is +, then F can be written as FL +FR

as in the case C1. If the operator is × (resp. ÷), then F can be written as in
the case C2, with c = 0, G = FL, and H = FR (resp. 1/FR).

Case 2. Among the fractions FR and FR, one is constant, and the other one is
nonconstant. The nonconstant fraction is splittable by Lemma 1. We consider
the following scenario by induction: either the splittable fraction satisfies Case 1,
concluding the induction, either we are once again in the Case 2. This process
can only happen a finite number of times (since the tree A is finite). We can
thus assume that the splittable fraction can be written in one of the four cases.

214 F. Lemaire and A. Poteaux

Assume first that FR is constant and that the operator is +. If FL has the
form C1 G + H, then F = G + (H + FR). If FL has form C2, C3 or C4, then
F has the same form as FL (by replacing c by c + FR). By a similar argument,
F has the same form as FL is the operator is × or ÷.

Assume now that FL is constant. It is easy to show that F has the same form
as FR is the operator is + or ×. If the operator is ÷, some more computations
are needed. If FR has form C1, then FL/FR has form C3 (with c = 0). If FR

has form C2 with FR = c + GH, then FL/FR has form C2 if c = 0, and form
C4 otherwise. If FR has form C3 with FR = c + 1

G+H , then FL/FR has form
C1 if c = 0, and form C3 otherwise. If FR has form C4 with FR = c + d

1+GH ,
then FL/FR has form C2 if either c = 0 or c + d = 0, and form C4 otherwise. ��
Remark 4. Anticipating Propositions 8 and 9, the constant c of Theorem 1 is
unique for the cases C2 and C3. Anticipating Proposition 10, the values of c

and d in the case C4 of Theorem 1 are not unique, because a fraction c+
d

1 + GH

can also be written as (c + d) +
−d

1 + 1
G

1
H

, which is also of the form C4.

2.3 Basic Lemmas Around Fractions

This section gives some lemmas around the evaluation of fractions for some
variables. Those lemmas would be quite obvious to prove for polynomials, but
fractions deserve special treatment because of the possible cancellations of the
denominators at some evaluation points.

Lemma 2. Consider a fraction F of K(X). If the fraction F cancels at any
point X0 ∈ Def(F), then the fraction F is the zero fraction.

Proof. Write F as P/Q where P and Q are polynomials of K[X]. Denote X =
{x1, . . . , xn}. Using a Kronecker substitution (see [4, exercise 8.4, page 247] and
references therein), there exists a substitution φ of the form x1 	→ ua1 , . . . ,
xn 	→ uan , where u is a new variable and the ai are positive integers, such that
φ is injective on the sets of monomials occurring in P and Q.

The polynomial φ(Q) is nonzero and univariate, so there exists an integer u0

such that φ(Q)(u) �= 0 for any integer u ≥ u0. As a consequence, the set of
points S = {(ua1 , . . . , uan)|u ∈ N, u ≥ u0} is included in Def(F).

Since F cancels on Def(F) by assumption, P cancels on the set S, implying
that φ(P)(u) cancels for any integer u ≥ u0. Since φ(P) is univariate, φ(P) is
the zero polynomial. Since the transformation φ is injective on the monomials,
P is also the zero polynomial, hence F = 0. ��
Lemma 3. Consider a nonzero fraction F of K(X) and a variable x ∈ X. There
exists a finite subset S of K such that for any x0 ∈ K\S, the partial evaluation
F (x = x0) is well-defined and nonzero, and Supp(F (x = x0)) = Supp(F)\{x}.

Decoupling Multivariate Fractions 215

Proof. The lemma is immediate if x does not belong to the support of F . Now
assume x ∈ Supp(F). Consider the fraction H = F

∏
y∈Supp(F) Fy, which by

construction is nonzero since F is nonzero. The fraction can be seen as a uni-
variate fraction H of K̄(x), where K̄ = K(X\{x}). Consider the set S̄ ⊆ K̄

of elements x̄0 ∈ K̄ either canceling the numerator or the denominator of H.
This set S̄ is finite. Take S = S̄ ∩ K, which is also finite. Then for any element
x0 ∈ K\S, the fraction H(x = x0) is well-defined and nonzero. This ends the
proof since H(x = x0) �= 0 implies F (x = x0) �= 0, and Fy(x = x0) �= 0 for
any y ∈ Supp(X). ��

The following lemma is a generalization of Lemma 3 for evaluating two dif-
ferent fractions simultaneously.

Lemma 4. Consider two nonzero fractions F and G of K(X). For any variable
x ∈ X, there exists a finite subset S of K such that for any x0 ∈ K\S, the
partial evaluations F (x = x0) and G(x = x0) are well-defined and nonzero,
Supp(F (x = x0)) = Supp(F)\{x}, and Supp(G(x = x0)) = Supp(G)\{x}.
Proof. The proof is similar to that of Lemma 3, simply replace the fraction H
by F (

∏
y∈Supp(F) Fy)G(

∏
y∈Supp(G) Gy). ��

Lemma 5. Consider a nonconstant univariate fraction F of K(x). For any
finite set of values S ⊆ K, there exists a value x0 ∈ K such that F (x0) is
well-defined and F (x0) /∈ S.

Proof. Let us assume that the image of the fraction F is included in S. We prove
that this leads to a contradiction. Since F is univariate, there exists an integer u0

such that the denominator Q does not cancel on the set D = {u ∈ N|u ≥ u0}.
Since F is defined on D, and D is infinite, and S is finite, there exists a value v
of S such that F (u) = v for an infinite number of integers u ≥ u0. This implies
that the numerator of F − v cancels on an infinite number of integers, hence
F − v is the zero fraction. Contradiction since F is nonconstant. ��

2.4 Finest Decoupling Partition

We prove in this section that for any fraction F , there exists a unique most
refined partition decoupling F . The following definition is classical.

Definition 5 (Finer partition). A partition (X1, . . . , Xp) of some set X is
finer than a partition (Y1, . . . , Yq) of X if each Xi is included in some Yj. The
finer-than relation is a partial order.

Definition 6 (Partition deprived of one element). Consider a partition
(Xi)1≤i≤p of some set X, and a variable x ∈ X. Up to a renaming of the Xi,
assume that x ∈ Xp.

Build a partition (Yi) of X\{x} in the following way: if Xp is equal to {x},
then take the partition (Yi)1≤i≤p−1 where Yi = Xi for 1 ≤ i ≤ p − 1. Otherwise
take the partition (Yi)1≤i≤p where Yi = Xi for 1 ≤ i ≤ p − 1, and Yp = Xp\{x}.

The partition (Yi) is called the partition (Xi) deprived of x.

216 F. Lemaire and A. Poteaux

The following proposition shows how to specialize a variable in a decoupling.

Proposition 3 (Specialization of a decoupling). Let us consider a decou-
pling (A, (Fi)1≤i≤p, (Xi)1≤i≤p) of some fraction F of K(X) and a variable
x ∈ Supp(F). Denote (Yi) the partition (Xi) deprived of x.

Then there exists an x0 ∈ K such that the partition (Yi) decouples F (x = x0).

Proof. Up to a renaming of the Xi, assume that x ∈ Xp. Assume that the
set Xp equals {x}. Assigning a value a0 to the variable ap in the DET A may
not yield a DET because of the third condition of Definition 1. However, there
only exists a finite set S of “unlucky” values a0 which break the third condition
of Definition 1. By Lemma 5 on the univariate fraction Fp(x) and S, there exists
an x0 such that (A(ap = Fp(x0)), (Fi)1≤i≤p−1, (Xi)1≤i≤p−1) is a decoupling of
F (x = x0).

Now assume that the {x} is strictly included in Xp. By Lemma 3, there
exists a value x0 such that Fp(x = x0) is well-defined, and Supp(Fp(x = x0)) =
Xp\{x}. Thus, replacing Fp by Fp(x = x0) and Xp by Xp\{x} in the decoupling
(A, (Fi)1≤i≤p, (Xi)1≤i≤p) of F yield a decoupling for F (x = x0). ��

The following proposition is a generalization of Proposition 3 for specializing
two different decouplings of the same fraction F .

Proposition 4 (Simultaneous specialization of two decouplings). Con-
sider two decouplings (A, (Gi)1≤i≤p, (Xi)1≤i≤p) and (B, (Hi)1≤i≤q, (Ui)1≤i≤q) of
the same fraction F of K(X), and a variable x ∈ Supp(F). Denote (Yi) the par-
tition (Xi) deprived of x, and (Vi) the partition (Ui) deprived of x.

Then there exists a value x0 ∈ K such that both partitions (Yi) and (Vi)
decouples F (x = x0).

Proof. The proof is similar to that of Proposition 3. The only difficulty is the
choice of an x0 which is suitable for both decouplings. Up to a renaming of the Xi

and Ui, assume that x ∈ Xp and x ∈ Uq. If both Xp and Uq are equal to {x},
then there is a finite number of values for x0 to avoid, hence Lemma 5 concludes.
Assume Xp is the singleton {x} and Uq strictly contains x. By Lemmas 3 and 5,
there is also a finite number of values for x0 to avoid, which ends the proof. By
symmetry, we need not consider the case where Xp strictly contains x and Uq

is the singleton {x}. Finally, if x is strictly included in Xp and in Uq, Lemma 4
concludes. ��
Lemma 6. Consider a fraction F ∈ K(X), and a DET C in one variable a1.
Denote C(F) the fraction obtained by evaluating C on a1 = F . If the fraction
C(F) is splittable, then F is also splittable.

Proof. Consider a DET C in one variable a1. It can be shown by induction that

the fraction C(a1) associated to C is an homography, i.e. C(a1) =
u0 + v0 a1

u1 + v1a1

where the u0, v0, u1 and v1 are in K, and satisfy u0v1 − u1v0 �= 0. Indeed,
the variable a1 is an homography, and adding a constant to an homography,

Decoupling Multivariate Fractions 217

multiplying an homography by a nonzero constant, or taking the inverse of an
homography yield an homography. Since an homography is invertible, and its
inverse is also an homography, C(a1) is invertible and its inverse D(a1) is an
homography, which can easily be encoded by a DET in one variable.

Since C(F) is splittable, adding D to the top of the tree of the decou-
pling of F yields a decoupling of D(C(F)) which is equal to F , hence F is
splittable. ��
Proposition 5 (Finest partition). Consider a fraction F ∈ K(X). There
exists a unique finest partition (Xi) of Supp(F) decoupling F . A decoupling
(A, (Fi), (Xi)) of F is said finest if (Xi) is the finest partition decoupling F .

Proof. The set S of partitions decoupling F is not empty by Remark 2, and is also
finite. Since the finer-than relation is a partial order (Definition 5), the existence
of finest partitions is guaranteed. We now prove that all finest partitions are in
fact equal, which is the difficult part of the proof.

The proposition is immediate for constant fractions. Consider a non constant
fraction F ∈ K(X), and two different finest partitions (Xi)1≤i≤p and (Yi)1≤i≤q

decoupling F , along with some corresponding decouplings (A, (Gi), (Xi)) and
(B, (Hi), (Yi)).

Since the two partitions (Xi) and (Yi) are different, there exists a Xk inter-
secting at least two different sets of the (Yi) partition. Without loss of generality,
let us assume that the set X1 intersects the sets Y1, Y2, . . . , Yr with r ≥ 2, and
does not intersect the remaining sets Yr+1, . . . , Yq. See Fig. 1 for an illustration.
We prove below that the set X1 can be further refined into X1∩Y1, . . . , X1∩Yr,
leading to a contradiction since (Xi) is finest.

Let us apply successively Proposition 4 on all variables of X2 ∪X3 ∪· · ·∪Xp,
thus obtaining some values X0

2 , . . . , X0
p . We obtain two different decouplings

for F̄ = F (X2 = X0
2 ,X3 = X0

3 , . . . , Xp = X0
p). The first one (obtained

from (A, (Gi), (Xi)) is (C, (G1), (X1)) where C is the (univariate) tree A(a2 =
G2(X0

2), . . . , ap = Gp(X0
p)). The second one (obtained from (B, (Hi), (Yi))) is

(D, (Ri)1≤i≤r, (Ui)1≤i≤r) where (Ui) is the partition (X1 ∩ Y1, . . . , X1 ∩ Yr)
of X1. As a consequence, the fraction F̄ is splittable. Since F̄ = C(G1) is split-
table, the fraction G1 is also splittable by Lemma 6. This contradicts the fact
that (Xi) is finest, since G1 could be split in the decoupling (A, (Gi), (Xi))
of F . ��

Fig. 1. Two partitions (Xi) and (Yi) of X. The sets X1, X2 and X3 are the rectangles
in dark gray, gray and light gray. The set X1 intersects the sets Y1 and Y2, but not Y3.

218 F. Lemaire and A. Poteaux

2.5 Decomposition into a Sum and Product

In this section, we give necessary and sufficient conditions for decomposing a
fraction F ∈ K(X) with Supp(F) = X, into a sum G + H or a product GH,
where G ∈ K(Y), H ∈ K(Z), and (Y,Z) is a partition of X.

Over the reals or the complexes, the conditions are immediate to show using
converging Taylor expansions for example. However, we show them in a more gen-
eral context for any field K of characteristic zero, such as for example Q(a, b, c).
We avoid here the use of converging Taylor expansions, which would require us
to equip K with a norm. By the way, the authors of [2] required a normed vector
space, which was in fact not required by using techniques presented here.

Proposition 6 (Decomposition into sum). Let F ∈ K(X) with Supp(F) =
X, and (Y,Z) a partition of X. Then there exist two fractions G ∈ K(Y) and
H ∈ K(Z) such that F = G + H if and only if Fy,z = 0 for any (y, z) ∈ (Y,Z).

Proof. The left to right implication is immediate. To prove the right to left
implication, we assume for simplicity that X only contains two elements y and z.
Consider a point X0 = (y0, z0) ∈ Def(F). Without loss of generality, using a
shift on variables y and z, let us assume that X0 = (0, 0).

Take G = F (z = 0) and H = F (y = 0)−F (0, 0), and take U = F − (G+H).
Then Uy,z = Fy,z is also the zero fraction. Moreover, U cancels on the varieties
y = 0 and z = 0, whenever U is well-defined. We now show that the fraction U
is the zero fraction, which proves that F = G + H as required.

Write U as P/Q with P and Q polynomials. Since P = QU and using a
classical Taylor expansion on P , one gets

P =
∑

j≥0,k≥0

1
j!k!

(QU)yj ,zk(0, 0)yjzk, (1)

where only a finite terms are non zero since P is a polynomial (hence no conver-
gence arguments are needed here).

Since Uy,z is the zero fraction, then all terms with j ≥ 1 and k ≥ 1 in Eq. (1)
are zero. We finish the proof by showing (using the symmetry on y and z) that
any term (QU)yj (0, 0) is zero, which proves that P is the zero polynomial.

By Lemma 2, the fraction U(z = 0) is the zero fraction, hence (QU)(z = 0) is
the zero polynomial. Using the fact that evaluating at z = 0 and differentiating
w.r.t. y commute, (QU)yj (0, 0) = ((QU)(z = 0))yj (y = 0) = 0. ��
Remark 5. Proposition 6 can be interpreted using a graph. Indeed, with nota-
tions of Proposition 6, and writing X = {x1, . . . , xn}, consider the undirected
graph with nodes xi and with edges the (xi, xj) such that Gxi,xj

�= 0. Then the
fraction F can be written as a sum if and only if the graph admits at least two
connected components.

Decoupling Multivariate Fractions 219

The next proposition is the equivalent of Proposition 6 for decomposition
a fraction as a product instead of a sum. From an analytical point of view,
decomposing a fraction F as a product GH corresponds to decomposing ln F as
the sum of ln G and lnH. The differentiation conditions of Proposition 6 applied
on lnF , yield (lnF)y,z =

(
Fy

F

)

z
= 0. This condition, which does not involve a

logarithm, is used in the following Proposition.

Proposition 7 (Decomposition into product). Consider F ∈ K(X) with
Supp(F) = X, and (Y,Z) a partition of X. Then there exist two fractions G ∈
K(Y) and H ∈ K(Z) such that F = GH if and only if

(
Fy

F

)

z
= 0 for any

(y, z) ∈ (Y,Z).

Proof. The left to right implication is immediate. To prove the right to left impli-
cation, we assume for simplicity that X only contains two elements y and z. The
fraction F is not constant since its support X is not empty. By contraposition of
Lemma 2, there exists a point X0 ∈ Def(F) such that F (X0) �= 0. Without loss
of generality, using a shift on variables y and z, let us assume that X0 = (0, 0).

Take G = F (z = 0) and H = F (y = 0)/F (0, 0) and consider U = F/(GH) −
1. We prove below that the fraction U is equal to 0, thus showing that F = GH.

Write U as P
Q with P and Q polynomials. Since U is zero on z = 0, then by

Lemma 2, the fraction U(z = 0) is the zero fraction. Using the commutativity
argument at the end of Proposition 6 proof, Uyj (0, 0) = 0 for any nonnegative
integer j. By symmetry on y and z, Uzk(0, 0) = 0 for any nonnegative integer k.

The condition
(

Fy

F

)

z
= 0 can be rewritten as Fy,z = FyFz

F . This implies

that Uyz = UyUz

U+1 . By an inductive argument on k + l, and using the fact that
Uyj (0, 0) = 0 and Uzk(0, 0) = 0 for any nonnegative integers j and k, one proves
that Uyj ,zk(0, 0) = 0 for any nonnegative integers j and k. Using Eq. (1), the
polynomial P is zero, hence U = 0 which ends the proof. ��

3 Algorithm decouple

Algorithm decouple takes as input a fraction F and a list X, such that F ∈ K(X),
and returns a finest decoupling of F . Unless F is a constant, or a univariate
fraction, the four cases of Theorem 1 are sequentially checked by calling the four
so-called functions checkC1 , . . . , checkC4. If one of them succeeds (returning
some G and H plus other results), Algorithm 1 calls itself on G and H and
builds the final result. Otherwise, if no case succeeds, the fraction is proved to
be nonsplittable (by Theorem 1) and F is returned.

The main difficulty in the process is to prove that the four checkC1 , . . . ,
checkC4 functions are correct, which is done in the four following subsections.

220 F. Lemaire and A. Poteaux

Algorithm 1: decouple(F,X)
Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: A finest decoupling (A, [F1, . . . , Fp], [X1, . . . , Xp]) of F

1 if F is constant then return (F, [], []) ;
2 else if F does not depend on x1 then return decouple(F, [x2, . . . , xn]) ;
3 else if F only depends on x1 then return (a1, [F], [{x1}]) ;
4 else if checkC1(F,X) returns G,Y,H,Z then
5 (AG, Ḡ, Ȳ) := decouple(G,Y) ;
6 (AH , H̄, Z̄) := decouple(H,Z) ;
7 let r be the length of Ḡ
8 shift the variables of AH by r i.e. replace each ai by ai+r in AH

9 return (
+

AG AH , Ḡ + H̄, Ȳ + Z̄)

10 /* where Ḡ + H̄ and Ȳ + Z̄ are list concatenations */

11 else if checkC2(F,X) returns c,G, Y,H,Z then
12 proceed as in Lines 5 to 8 ;

13 return (
+c ×
AG AH , Ḡ + H̄, Ȳ + Z̄)

14 else if checkC3(F,X) returns c,G, Y,H,Z then
15 proceed as in Lines 5 to 8 ;

16 return (

+c ÷
1 +

AG AH , Ḡ + H̄, Ȳ + Z̄)

17 else if checkC4(F,X) returns c, d,G, Y,H,Z then
18 proceed as in Lines 5 to 8 ;

19 return (

+c ÷
d +

1 ×
AG AH , Ḡ + H̄, Ȳ + Z̄)

20 else return (a1, [F], [Supp(F)]) ;

3.1 Algorithm checkC1 (F = G + H)

Following Proposition 6 and Remark 5, Algorithm checkC1 computes (using
Algorithm 3) the connected component Y containing the node x1 of the undi-
rected graph with vertices the xi, and with edges the (xi, xj) such that Fxi,xj

�= 0.
If this component Y is strictly included in the support of F , then one can split
F as a sum of two fractions G + H as in the case C1, using some (random)
evaluation to compute the (non-unique) G and H fractions.

Decoupling Multivariate Fractions 221

Algorithm 2: checkC1(F,X)
Input: A fraction F ∈ K(X) s.t. x1 ∈ Supp(F) and a list X = [x1, . . . , xn]
Output: Succeeds by returning G,Y,H,Z if F can be written as G + H (as in

the case C1), and fails otherwise
1 Y := connectedVariablesSum(F,X) ;
2 Z := Supp(F)\Y ;
3 if Z is empty then FAIL ;
4 else
5 G := F (Z = Z0) where Z0 is a random point such that F (Z = Z0) is

well-defined ;
6 H := F − G ;
7 succeed by returning G,Y,H,Z ;

Algorithm 3: connectedVariablesSum(F,X)
Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Return the connected component containing x1 of the undirected

graph with nodes xi, and with edges the (xi, xj) such that Fxi,xj �= 0.
1 visited := {} ;
2 todo := {x1} ;
3 while todo is not empty do
4 pick and extract some variable v from todo ;
5 visited := visited ∪ {v} ;
6 V := Supp(Fv) ;
7 todo := todo ∪ (V \visited) ;

8 return visited

3.2 Algorithm checkC2 (F = c + GH)

Algorithm checkC2 proceeds similarly to Algorithm checkC1 but it first needs to
compute a constant candidate c such that F − c can be written as a product as
in the case C2.

Proposition 8. Take a fraction F ∈ K(X) of the form C2 (i.e. F = c + GH)
where Supp(G) = Y , Supp(H) = Z and (Y,Z) is a partition of Supp(F). Then
c = F − FyFz

Fy,z
for any (y, z) ∈ (Y,Z).

Moreover, if for some (u, v) ∈ X2, the expression F − FuFv

Fu,v
is well-defined

and constant, then it is equal to the c defined above.

Proof. The first part of the proposition is a simple computation (note that the
formula for c is well-defined because Fy,z = GyHz, which is nonzero).

For the second part of the proposition, there is nothing to prove if (u, v) ∈
(Y,Z), or (u, v) ∈ (Z, Y). Assume (by symmetry) that both u and v lies in Y ,
and that F − FuFv

Fu,v
is well-defined and constant.

222 F. Lemaire and A. Poteaux

Simple computations show that F − FuFv

Fu,v
= c + (G − GuGv

Gu,v
)H. Since this

expression is constant, the term G − GuGv

Gu,v
is necessarily zero (otherwise, the

expression would not be constant since the supports of G and H are distinct),
which ends the proof. ��
Remark 6. The case G − GuGv

Gu,v
= 0 in the previous proof occurs for example if

the fraction G can itself be written as a product of two fractions M and N of
disjoint supports, with u ∈ Supp(M) and v ∈ Supp(N).

Proposition 8 ensures that Algorithm 5 can stop as soon as it finds a constant
candidate c. Indeed, if F has form C2, then the constant candidate c is correct by
Proposition 8. If F has not form C2, and if a constant candidate c is computed
(which can happen by Remark 7), then the call to checkProd(F − c) at Line 2
of Algorithm 4 will detect that F has not form C2.

Remark 7. Fix X = {x, y, z}. The following fraction F = 3 + (x + z)/(y + z)
yields F − FxFy

Fx,y
= 3. However, it can be shown (using Algorithm decouple) that

the fraction F cannot be written as C2. This does not contradict Proposition 8,
since Algorithm 2 will detect that F − 3 cannot be decomposed as a non trivial
product. Finally, note that F is splittable (of the form C2) if we take for example
X = {x, y} and K = Q(z).

Algorithm 4: checkC2(F,X)
Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Succeed by returning G,Y,H,Z if F can be written as c + GH (as in

the case C2), and fails otherwise
1 if findConstantCase2(F,X) returns a constant c then
2 if checkProd(F − c,X) returns G,Y,H,Z then
3 return c,G, Y,H,Z

4 else FAIL ;

5 else FAIL ;

Algorithm 5: findConstantCase2(F,X)
Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Either return some constant candidate c for case C2, or fails.

1 for i from 2 to n do
2 if Fx1,xi �= 0 then

3 c := F − Fx1Fxi

Fx1,xi

;

4 if c ∈ K then return c ;

5 FAIL

Decoupling Multivariate Fractions 223

Algorithm 6: checkProd(F,X)
Input: A fraction F ∈ K(X) with x1 ∈ Supp(F), and a list X = [x1, . . . , xn]
Output: Succeed by returning G,Y,H,Z if F can be written as GH (i.e. as in

the case C2 with c = 0), and fails otherwise
1 Y := connectedVariablesProd(F,X) ;
2 Z := Supp(F)\Y ;
3 if Z is empty then FAIL ;
4 else
5 G := F (Z = Z0) where Z0 is a random point such that F (Z = Z0) is

well-defined and nonzero ;
6 H := F/G ;
7 succeed by returning G,Y,H,Z

Algorithm 7: connectedVariablesProd(F,X)
Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Return the connected component containing x1 of the undirected

graph with nodes xi, and with edges the (xi, xj) s.t.
(

Fxi
F

)
xj

�= 0.

1 Same algorithm as Algorithm 3 except Fv is replaced by
Fv

F
in Line 6

3.3 Algorithm checkC3 (F = c + 1/(G + H))

Algorithm checkC3 proceeds similarly to Algorithm checkC2 but with a different
formula for computing c, G, and H. Once a candidate c is found, Algorithm
checkC3 tries to decompose 1/(F −c) into a sum G+H using Algorithm checkC1.

Proposition 9. Take a fraction F ∈ K(X) of the form C3 (i.e. c+1/(G+H))
where Supp(G) = Y , Supp(H) = Z and (Y,Z) is a partition of Supp(F). Then
c = F − 2FyFz

Fy,z
for any (y, z) ∈ (Y,Z).

Moreover, if for some (u, v) ∈ X2, the expression F − 2FuFv

Fu,v
is well-defined

and constant, then it is equal to c defined above.

Proof. The first part of the proof is once again a simple computation. For the
second part, there is nothing to prove if (u, v) ∈ (Y,Z) or (u, v) ∈ (Z, Y). Assume
(by symmetry) that both u and v lies in Y , and that the expression F − 2FuFv

Fu,v

is well-defined and constant.
Computations yields F − 2FuFv

Fu,v
= c +

Gu,v

Gu,v(G + H) − 2GuGv
. This expres-

sion is equal to c when Gu,v = 0. If Gu,v �= 0, the numerator of the expression
is free of Z, but the support of denominator contains Z, hence a contradiction
since the expression is constant. ��

224 F. Lemaire and A. Poteaux

Algorithm 8: checkC3(F,X)
Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Succeed by returning c,G, Y,H,Z if F can be written as

c + 1/(G + H) (as in the case C3), and fails otherwise
1 if findConstantCase3(F,X) returns a constant c then
2 U := 1/(F − c) ;
3 if checkC1(U,X) returns G,Y,H,Z then return c,G, Y,H,Z ;
4 else FAIL ;

5 else FAIL ;

Algorithm 9: findConstantCase3(F,X)
Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Either return some constant candidate c for case C3, or fails.

1 Same algorithm as Algorithm 5 except Line 3 is replaced by c := F − 2
Fx1Fxi

Fx1,xi

3.4 Algorithm checkC4 (F = c + d/(1 + GH))

Algorithm checkC4 proceeds similarly to Algorithms checkC2 and checkC3. Once
candidates c and d are found, Algorithm checkC4 tries to decompose d/(F −c)−1
into a product GH using Algorithm checkProd.

However the computations for finding the candidates c and d are more dif-
ficult, because c and d are solutions of quadratic equations. As a consequence,
some fractions of K(X) are nonsplittable in K(X), but are splittable in K̄(X)
where K̄ is some extension of K. Here is a quite easy example demonstrating
this fact.

Example 1. The fraction F = xy+a
x+y ∈ K(x, y), where a ∈ K, can be written as

F = −b +
2b

1 −
(
1 − 2

x
b +1

)(
1 − 2

y
b +1

)

if b satisfies b2 = a. As a consequence, the fraction F is splittable in K(x, y) if a
is a square in K, and nonsplittable in K(x, y) otherwise.

Propositions 10 and 11 below explain the process used by Algorithm 11 for
finding the candidates c and d.

Proposition 10. Take a fraction F ∈ K(X) of the form C4 (i.e. c+d/(1+GH))
where Supp(G) = Y , Supp(H) = Z, c and d constants, with d �= 0.

Then, for any (y, z) ∈ (Y,Z), we have

1
F − c

+
1

J − c
=

2
d
, (2)

where J = F −2FyFz

Fy,z
. Moreover, the couple (c, d) is unique up to the (involutive)

transformation (c, d) 	→ (c + d,−d).

Decoupling Multivariate Fractions 225

Proof. Take (y, z) ∈ (Y,Z). Note that J is well-defined since Fyz = 2dGyHz

(1+GH)3 ,
which is nonzero. Computations show that J = c + d

1−GH , and Eq. (2) follows.
Eq. (2) can be rewritten as

− (c + d/2)S + c(c + d) + P = 0, (3)

where S = F + J and P = FJ . One proves that S is nonconstant. Indeed if S
were constant, then 2c + d(1

1+GH + 1
1−GH) would be constant, 1

1+GH + 1
1−GH

would be constant, hence G2H2 would be constant, a contradiction since G and
H are nonconstant with disjoint supports.

Since S is non constant, there exist X0 and X1 such that where S(X0) �=
S(X1). Substituting those values in (3) yield a invertible linear system, hence
unique values for ā = −(c + d/2) and b̄ = c(c + d).

Finally, d is solution of d2 = 4(ā2 − b̄), and c = −ā − d/2. Hence the couple
(c, d) is unique, up to the (involutive) transformation (c, d) 	→ (c + d,−d). ��
Proposition 11. Take the same hypotheses as in Proposition 10. Take (u, v) ∈
X2 and assume Fu,v �= 0. Consider J = F −2FuFv

Fu,v
, and S = F +J and P = FJ .

Assume S is not constant. Consider the (unique) solution (ā, b̄) of aS+b+P = 0,
with ā and b̄ constants, if such a solution exists. Then, if 4(ā2 − b̄) is nonzero
and admits a squareroot d̄ in K, then (c̄, d̄), where c̄ = −ā − d̄/2, is either (c, d)
or (c + d,−d).

Proof. If (u, v) ∈ (Y,Z) or (u, v) ∈ (Z, Y), Proposition 10 concludes. Assume
(by symmetry) that both u and v lies in Y . Computations show that J = c +
d

Gu,v

Gu,v+(GGu,v−2GuGv)H
. If Gu,v = 0, then J = c. It implies that S = F + c,

P = cF . As a consequence, S is not constant, and (ā, b̄) = (−c, c2) is the unique
solution of aS+b+P = 0. In that case, 4(ā2− b̄) = 0, which ends the proof. Now

assume that Gu,v �= 0. The fraction J can then be rewritten as J = c+d
1

1 + ḠH
where Ḡ = G − 2GuGv

Gu,v
.

Let us first consider the case Ḡ = −G (which happens for example if G can
be written as a product, see Remark 6). This implies J = c + d 1

1−GH , and the
proof ends by following the proof of Proposition 10.

Now consider that Ḡ �= −G. By taking the numerator of the equation aS +
b + P = 0, tedious computations2 yield:

GḠ(2ac + c2 + b)H2 + (2ac + c2 + b + (a + c)d)(Ḡ + G)H+

(2ac + c2 + b + 2(a + c)d + d2) = 0. (4)

Since the supports of G and H are disjoint, and H is nonconstant, the previous
equation can only hold if the three coefficients in H are the zero fractions. This
implies that the three constants u2 = 2ac + c2 + b, u1 = 2ac + c2 + b + (a + c)d
and u0 = 2ac + c2 + b + 2(a + c)d + d2 are zero. Expanding u2 − 2u1 + u0 = 0
yields d2 = 0, a contradiction, which ends the proof. ��
2 Use your favorite computer algebra system!.

226 F. Lemaire and A. Poteaux

Algorithm 10: checkC4(F,X)
Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Succeed by returning c, d,G, Y,H,Z if F can be written as

c + d/(1 + GH) (as in the case C4), and fails otherwise
1 if findConstantsCase4(F,X) returns a couple (c, d) then
2 U := d/(F − c) − 1 ;
3 if checkProd(U,X) returns G,Y,H,Z then
4 return c, d,G, Y,H,Z
5 else FAIL ;

6 else FAIL ;

Algorithm 11: findConstantsCase4(F,X)
Input: A fraction F ∈ K(X) and a list X = [x1, . . . , xn]
Output: Either return some couple candidate (c, d) ∈ K

2 for case C4, or fails.
1 for i from 2 to n do
2 if Fx1,xi �= 0 then

3 J := F − 2
Fx1Fxi
Fx1,xi

;

4 S := F + J ;
5 P := F × J ;
6 if S is not constant then
7 find two random points X0 and X1 non canceling the denominators

of F and J , such that S(X0) �= S(X1) ;
8 find the solution (ā, b̄) of the linear system aS(X0) + b+ P (X0) = 0,

aS(X1) + b + P (X1) = 0 ;
9 if (the fraction āS + b̄ + P is the zero fraction, and if 4(ā2 − b̄) is

nonzero and admits a squareroot d̄ ∈ K, then
10 c̄ := −ā − d̄/2 ;
11 succeed by returning (c̄, d̄)

12 FAIL

4 Examples

Example 2. The polynomial p = ab+ax+bx+cd+cx+dx+2x2 can be decoupled
in K(a, b, c, d) with K = Q(x) into (x + b) (x + a) + (x + c) (x + d).

Note that p is not splittable in Q(a, b, c, d, x).

Example 3. We present here a worked out example to illustrate how the decouple
algorithm works. To make the walkthrough readable, we do not fully detail all
values returned by the algorithms. Consider the fraction F = x2+x+4+ y+1

z+ 2
1+tu

taken in Q(x, y, z, t, u), whose expanded form is

tux2z + tuxz + tuy + 4tuz + x2z + tu + 2x2 + xz + 2x + y + 4z + 9
tuz + z + 2

.

Decoupling Multivariate Fractions 227

When calling decouple(F, [x, y, z, t, u]), the call to checkC1 succeeds. Indeed, the
graph considered during the call to connectedVariablesSum is

x
t z

y u
,

which admits two connected components. The connected component containing
the vertex x is simply {x}, so F can be written as the sum Q + R, with Q =
F (y = −2, z = 0, t = 1, u = 1) = x2 + x + 3 ∈ K(x) and R = F − Q =
tuy+tuz+tu+y+z+3

tuz+z+2 ∈ K(y, z, t, u). Please note that the previous evaluation is
chosen randomly in checkC1, we just picked a possible one for the example.

Then the function decouple performs recursive calls on Q and R. The call to
decouple(Q, [x]) simply returns Q itself. When calling decouple(R, [y, z, t, u]), the
call to checkC2 succeeds. Indeed, the constant c = R − RyRz

Ry,z
= 1 is computed

by findConstantCase2. Then checkProd(S, [y, z, t, u]) where S = R − 1 is able
to split S as a product TU , where T = S(z = 0, t = 1, u = 1) = y + 1 ∈
K(y) and U = S/T = tu+1

tuz+z+2 ∈ K(z, t, u). Indeed, the graph considered in
connectedVariablesProd(S, [y, z, t, u]) is

y
t z

u
,

which admits two connected components.
Then the function decouple performs recursive calls on T and U . The call

to decouple(T, [y]) simply returns T . When calling decouple(U, [z, t, u]), the call
to checkC3 succeeds. Indeed, the constant c = U − UzUt

Uz,t
= 0 is computed by

findConstantCase3. Then checkC1(1/U, [z, t, u]) is able to split 1/U as a sum
V +W where V = 1/U(t = 1, u = 0) = z+2 ∈ K(z) and W = 1/U −V = − 2tu

1+tu .
Then the function decouple performs recursive calls on V and W . The call

to decouple(V, [z]) simply returns V . Finally, when calling decouple(W, [t, u]),
checkC4 succeeds. Algorithm findConstantsCase4 computes c = 0 and d = −2
and checkProd(−d/(W − c) − 1, [t, u]) decomposes −d/(W − c) − 1 = 1

tu as a
product 1

t times 1
u .

Putting everything together, decouple(F, [x, y, z, t, u]) returns a tree encoding
the fraction

(x2 + x + 3) + (1 +
y + 1

z + 2 − 2
1+ 1

tu

).

Please note that the output would be different (and slightly more compact)
if Algorithm findConstantsCase4 were returning c = −2 and d = 2, instead of
c = 0 and d = −2 (see Proposition 10).

Example 4. The main point of this example is to show how Eq. (5) below can
be rewritten into Eq. (6). We however quickly explain how to derive Eq. (5)
using [1,6].

228 F. Lemaire and A. Poteaux

Consider the following reactions, which simulate a gene G regulated by the
protein P it produces: G + P

a−⇀↽−
b

H, G
e−→ G + M , M

f−→ M + P , M
Vm,km−−−−→ ∅,

P
Vp,kp−−−→ ∅. The three first reactions follow the classical mass action law, and the

two last are Michaelis-Menten degradations. Assuming the binding/unbinding
of the protein is fast, the following dynamical system can be obtained:

H ′(t) = −G′(t) =
a((fM(t) − Vp)P (t) + fkpM(t))G(t)

(aG(t) + aP (t) + b)(kp + P (t))
, (5)

M ′(t) =
(eG(t) − Vm)M(t) + ekmG(t)

km + M(t)
,

P ′(t) =
((fM(t) − Vp)P (t) + fkpM(t))(aP (t) + b)

(aG(t) + aP (t) + b)(kp + P (t))
·

The right hand sides are quite compact, and one clearly sees some denomina-
tors like kp+P (t) and km+M(t) coming for the Michaelis-Menten degradations,
and aG(t) + aP (t) + b coming from the fast binding/unbinding hypothesis.

Using Algorithm decouple on the right hand sides of Eq. (5) seen as fractions
of K(Vm, km, Vp, kp, a, b, e, f,G,H,M) with K = Q(P), one gets

H ′(t) = −G′(t) =
fM(t) − VpP (t)

kp + P (t)

1 +
b
a + P (t)

G(t)

, (6)

M ′(t) = − Vm

km

M(t)
+ 1

+ eG(t), (7)

P ′(t) =
fM(t) − VpP (t)

kpP (t)

1 +
G(t)

P (t)
(
1 + b

aP (t)

)
·

Eq. (6) might be of interest for a modeler. For example, the expression of
M ′(t) in (6) clearly shows that M ′(t) is the contribution of two reactions (the
degradation of M and the production of M by the gene), whereas it is quite
hidden in (5). Expression of M ′(t) in (6) clearly indicates a contribution fM(t)−
VpP (t)

kp+P (t) (the production of P minus the degradation of P) divided by the special

correction term −
(
1 +

b
a+P (t)

G(t)

)
that comes from the fast binding/unbinding

hypothesis.
Please remark that Eq. (6) are not obtained anymore if one considers P as

a variable instead of putting it in the base field. The reason is that P appears
in too many places, which prevents a “nice” decoupling.

Decoupling Multivariate Fractions 229

Also, note the term Vm
km
M(t)+1

in the expression of M ′(t) in (6). This term is

probably a bit odd for a modeler, who would rather prefer the more classical
form VmM(t)

km+M(t) ·
As a last comment, using the intpakX package [5], here are the intervals

obtained by using either Eq. (5) or (6), on the intervals G = [0.4, 0.7], M =
[10.0, 15.0], P = [50.0, 100.0], Vm = [130.0, 250.0], km = [100.0, 200.0], Vp =
[80.0, 160.0], kp = [100.0, 200.0], a = [10.0, 20.0], b = [5.0, 10.0], e = [3.1, 4.5],
f = [7.8, 11.6]:

Value for H ′(t) G′(t) M ′(t) P ′(t)

Eq. (5) [−0.07, 8.10] [−8.10, 0.07] [−32.79, −2.97] [−10.53, 1163.61]

Eq. (6) [−0.39, 2.21] [−2.21, 0.39] [−31.37, −3.04] [−28.55, 160.04]

Except for the interval for P ′(t), the differences between the intervals using
Eq. (5) or (6) is here rather minor.

Example 5. The following example is a bit artificial but illustrates how compact
fractions can become big when being developed. Consider the fraction

F =
a0 + a1

b1+
a2

b2+a3

c0 + c1
d1+

c2
d2+c3

+
e0 + e1

f1+
e2

f2+e3

g0 + g1
h1+

g2
h2+g3

which is in a completely decoupled form since each variable only appears once.
Developing F as a reduced fraction P/Q yields a polynomial P of degree

10 with 450 monomials, and a polynomial Q of degree 10 with 225 monomials.
Our algorithm decouple recovers from P/Q the fraction F with some minor sign
differences −a0 − a1

− a2
−a3−b2

+b1

−c0 − c1
− c2

−d2−c3
+d1

+
−e0 − e1

f1+
e2

f2+e3

−g0 + g1
g2

−g3−h2
−h1

·

Finally, if each variables is replaced by the interval [1.0, 5.0], the reduced
fraction P/Q yields the interval [0.140×10−5, 0.284×107], whereas the decoupled
form yields [0.237, 16.8].

5 Implementation and Complexity

5.1 Complexity

Algorithm decouple performs O(n2) operations over K(X)3, where n is the num-
ber of variables of X. Indeed, Algorithm decouple performs at most two recursive
calls on a partition of X, plus at most O(n) arithmetic operations: each “check”
algorithm performs a linear number of operations over K(X) (including their
subalgorithms), and there is no other operation in K(X) in Algorithm decouple.
3 We count here only arithmetic operations and differentiations. Note that complexity

is not the main point of this paper, so that we do not go into much details here.

230 F. Lemaire and A. Poteaux

Note that we are not considering the complexity over K, which is much
higher. Indeed, differentiations, additions, are intensively used and may pro-
duce very large fractions. Also, reduced forms of fractions are computed inten-
sively, causing a lot of gcd computations. Some techniques are mentioned in the
next section, in order to limit this problem. Finally, if we consider operations
over K, our algorithm is Las Vegas, as there are some random evaluations in
Algorithms 2 and 11.

5.2 Implementation

Algorithm decouple has been coded in the Maple 2020 computer algebra system.
All examples presented in the paper run under ten seconds (on a i7-8650U CPU
1.90 GHz running Linux), and the memory footprint in under 180 Mbytes.

Our implementation has also been intensively stress-tested in the following
way. It is easy to compute splittable fractions by building a tree representing a
decoupling. Expanding this tree yields a (usually large) fraction which is given
to Algorithm decouple, which then recovers the initial decoupling.

Some heuristics have been used in our code to limit potential costly compu-
tations. For example, when testing that a fraction is zero, some evaluations are
first performed, and the fraction is only developed if all evaluations return zero.

One difficulty in Algorithm 11 is to decide whether the equation d2 = 4(ā2−b̄)
admits solution for d in the field K. For the moment, we simply chose to use an
expression with a radical for d, thus assuming d exists.

Acknowledgments. This work has been supported by the interdisciplinary bilateral
project ANR-17-CE40-0036 and DFG-391322026 SYMBIONT. We also want to thank
the reviewers for their useful comments and suggestions which helped improve this
article.

References

1. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Model reduction of chemical
reaction systems using elimination. Math. Comput. Sci. 5, 289–301 (2011). http://
hal.archives-ouvertes.fr/hal-00184558, Presented at the international conference
MACIS 2007, submitted to Mathematics in Computer Science, Special Issue on
Polynomial System Solving in July 2008

2. Boulier, F., Lemaire, F.: Finding first integrals using normal forms modulo differ-
ential regular chains. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V.
(eds.) CASC 2015. LNCS, vol. 9301, pp. 101–118. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24021-3 8

3. Ceberio, M., Kreinovich, V.: Greedy algorithms for optimizing multivariate Horner
schemes. SIGSAM Bull. 38(1), 8–15 (2004). https://doi.org/10.1145/980175.
980179

4. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge
University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139856065

5. Geulig, I., Krämer, W., Grimmer, M.: The intpakX V1.2 package (2005). http://
www2.math.uni-wuppertal.de/wrswt/software/intpakX/

http://hal.archives-ouvertes.fr/hal-00184558
http://hal.archives-ouvertes.fr/hal-00184558
https://doi.org/10.1007/978-3-319-24021-3_8
https://doi.org/10.1007/978-3-319-24021-3_8
https://doi.org/10.1145/980175.980179
https://doi.org/10.1145/980175.980179
https://doi.org/10.1017/CBO9781139856065
http://www2.math.uni-wuppertal.de/wrswt/software/intpakX/
http://www2.math.uni-wuppertal.de/wrswt/software/intpakX/

Decoupling Multivariate Fractions 231

6. Lemaire, F., Ürgüplü, A.: MABSys: modeling and analysis of biological systems.
In: Horimoto, K., Nakatsui, M., Popov, N. (eds.) ANB 2010. LNCS, vol. 6479, pp.
57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28067-2 4

7. Lĕınartas, E.K.: Factorization of rational functions of several variables into partial
fractions. Soviet Math. (Iz. VUZ) 22(10), 35–38 (1978)

8. Raichev, A.: Lĕınartas’s partial fraction decomposition (2012). arXiv:1206.4740
9. Stoutemyer, D.R.: Multivariate partial fraction expansion. ACM Commun. Com-

put. Algebra 42(4), 206–210 (2009). https://doi.org/10.1145/1504341.1504346
10. Stoutemyer, D.R.: Ten commandments for good default expression simplification.

J. Symb. Comput. 46(7), 859–887 (2011). https://doi.org/10.1016/j.jsc.2010.08.
017, special Issue in Honour of Keith Geddes on his 60th Birthday

11. Stoutemyer, D.R.: A computer algebra user interface manifesto (2013).
arXiv:1305.3215v1

https://doi.org/10.1007/978-3-642-28067-2_4
http://arxiv.org/abs/1206.4740
https://doi.org/10.1145/1504341.1504346
https://doi.org/10.1016/j.jsc.2010.08.017
https://doi.org/10.1016/j.jsc.2010.08.017
http://arxiv.org/abs/1305.3215v1

Towards Extending Fulton’s Algorithm
for Computing Intersection Multiplicities

Beyond the Bivariate Case

Marc Moreno Maza and Ryan Sandford(B)

Department of Computer Science, The University of Western Ontario,
London, Canada

moreno@csd.uwo.ca, rsandfo@uwo.ca

Abstract. We provide a procedure which partially extends Fulton’s
intersection multiplicty algorithm to the general case, using a general-
ization of his seven properties. This procedure leads to a novel, standard
basis free approach for computing intersection multiplicities beyond the
case of two planar curves, which can cover cases the current standard
basis free techniques cannot.

1 Introduction

The study of singularities in algebraic sets is one of the driving application areas
of computer algebra and has motivated the development of numerous algorithms
and software, see the books [2,4] for an overview. One important question in that
area is the computation of intersection multiplicities. The first algorithmic solu-
tion was proposed by Mora, for which a modern presentation is given in [4].
Mora’s approach relies on the computation of standard bases. An alternative
approach has been investigated in the 2012 and 2015 CASC papers [1,6], fol-
lowing an observation made by Fulton in [3, Section 3-3] where he exhibits an
algorithm for computing the intersection multiplicity of two plane curves.

Fulton’s algorithm is based on 7 properties (see Sect. 2.4 of the present paper)
which uniquely define the intersection multiplicity of two plane curves at the
origin, and yield a procedure for computing it, see Algorithm 1. If the input is a
pair (f0, g0) of bivariate polynomials over some algebraically closed field K, then
Fulton’s 7 properties acts as a set of rewrite rules replacing (f0, g0), by a sequence
of pairs (f1, g1), (f2, g2), . . . of bivariate polynomials over K, which preserves the
intersection multiplicity at the origin. This process may split the computation
and terminates in each branch once reaching a pair for which the intersection
multiplicity at the origin can be determined. This is an elegant process, which,
experimentally, outperforms Mora’s algorithm, as reported in [9].

Extending Fulton’s algorithm to a general setting was discussed but not
solved in [1,6]. Given n polynomials f1, . . . , fn ∈ K[x1, . . . , xn] generating a
zero-dimensional ideal, and a point p ∈ V(f1, . . . , fn), the authors of [1,6]
propose an algorithmic criterion for reducing the intersection multiplicity of p

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 232–251, 2021.
https://doi.org/10.1007/978-3-030-85165-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_14

Extending Fulton’s Algorithm 233

in V(f1, . . . , fn), to computing another intersection multiplicity with n−1 poly-
nomials in n − 1 variables. For this criterion to be applicable, a transversality
condition must hold. Unfortunately, this assumption is not generically true.

The present paper makes three contributions towards the goal of extending
Fulton’s algorithm to the general, multivariate case.

1. In Sect. 3, we propose and prove an adaptation of Fulton’s algorithm to handle
polynomials in three variables. For f, g, h ∈ K[x, y, z] which form a regular
sequence in the local ring at p ∈ A

3, the proposed algorithm either returns the
intersection multiplicity of p in V(f, g, h), or returns “Fail”. We show that
this algorithm can cover cases which were out of reach of the algorithmic
criterion [1,6].

2. In Sect. 4, we extend the algorithm proposed in Sect. 3 to the general setting
of n-polynomials in n variables, where n ≥ 2.

3. In Sect. 5, we prove that if n polynomials f1, . . . , fn ∈ K[x1, . . . , xn] form both
a triangular set and a regular sequence in the local ring at p ∈ A

n, then the
intersection multiplicity of p in V(f1, . . . , fn) can be obtained immediately
by evaluating f1, . . . , fn.

The result of Sect. 5 has two important consequences. First, it provides an opti-
mization for Fulton’s algorithm as well as for the algorithms of Sects. 3 and 4:
indeed, when these algorithms are applied to a triangular regular sequence, they
immediately return the intersection multiplicity at p of such input system. Sec-
ond, this result suggests a new direction towards the goal of extending Fulton’s
algorithm: develop an algorithm which would decide whether an arbitrary regular
sequence f1, . . . , fn (in the local ring at p) can be transformed into a triangular
regular sequence.

Lastly, the present paper considers only the theoretical aspects of extending
Fulton’s algorithm. The current implementation, and other interesting topics
such as optimizations, relative performance, and complexity analysis, will be
discussed in a future paper.

2 Preliminaries

2.1 Notation

Let K be an algebraically closed field. Let A
n denote A

n(K), the affine space of
dimension n over K. Assume variables x1, . . . , xn are ordered x1 � . . . � xn. We
define the degree of the zero polynomial to be −∞ with respect to any variable.

If I is an ideal of K[x1, . . . , xn], we denote by V(I) the algebraic set (aka
variety) consisting of the common zeros to all polynomials in I. An algebraic
set V is irreducible, whenever V = V1 ∪ V2 for some algebraic sets V1,V2,
implies V = V1 or V = V2. The ideal of an algebraic set V, denoted by I(V),
is the set of all polynomials which vanish on all points in V. For f1, . . . , fn ∈
K[x1, . . . , xn], we say V(f1) , . . . ,V(fn) have a common component which passes
through p ∈ A

n if when we write V(f1, . . . , fn) as a union of its irreducible

234 M. Moreno Maza and R. Sandford

components, say V1 ∪ . . . ∪ Vm, there is a Vi which contains p. Similarly, we
say f1, . . . , fn have a common component through p when V(f1) , . . . ,V(fn)
have a common component which passes through p. We say an algebraic set is
zero-dimensional if it contains only finitely many points in A

n.

2.2 Local Rings and Intersection Multiplicity

Definition 1. Let V be an irreducible algebraic set with p ∈ V. We define the
local ring of V at p as

OV,p :=
{

f

g
| f, g ∈ K[x1, . . . , xn]/I(V)where g(p) �= 0

}
.

Often, we will refer to the local ring of An at p, in which case we will simply
say the local ring at p and write

OAn,p :=
{

f

g
| f, g ∈ K[x1, . . . , xn] where g(p) �= 0

}
.

Local rings have a unique maximal ideal. In the case of OAn,p all elements
which vanish on p are in the maximal ideal and all of those that do not are units.
Hence, given an element f ∈ K[x1, . . . , xn] we can test whether f is invertible
in OAn,p by testing f(p) �= 0.

Definition 2. Let f1, . . . fn ∈ K[x1, . . . , xn]. We define the intersection multi-
plicity of f1, . . . , fn at p ∈ A

n as the dimension of the local ring at p modulo
the ideal generated by f1, . . . , fn in the local ring at p, as a vector space over K.
That is,

Im(p; f1, . . . , fn) := dimK(OAn,p /〈f1, . . . , fn〉) .

The following observation allows us to write the intersection multiplicity of
a system of polynomials as the intersection multiplicity of a smaller system of
polynomials, in fewer variables, when applicable. It follows from an isomorphism
between the respective residues of local rings in the definition of intersection
multiplicity.

Remark 1. Let f1, . . . fn ∈ K[x1, . . . , xn] and p = (p1, . . . , pn) ∈ A
n. If there are

some fi such that fi = xi − pi, say fm, . . . , fn where 1 < m ≤ n, then

Im(p; f1, . . . , fn) = Im((p1, . . . , pm−1); F1, . . . , Fm−1) ,

where Fj is the image of fj modulo 〈xm − pm, . . . , xn − pn〉.

2.3 Regular Sequences

Regular sequences are one of the primary tools leveraged in our approach to
compute intersection multiplicities. Given a regular sequence, Corollary 1, along

Extending Fulton’s Algorithm 235

side Propositions 3 and 4, describe a set of permissible modifications which
maintain regularity.

Later we will encounter a property of intersection multiplicities which
requires the input polynomials form a regular sequence. Hence, our approach
will be to start with a regular sequence, perform a set of operations on the
input system which are permissible as to maintain being a regular sequence, and
compute the intersection multiplicity.

Proposition 1 can be found in [5, Section 3-1] and Proposition 2 in [7,
Section 6–15]. We believe Propositions 3, 4, and 5 can also be found in the
literature but include proofs for completeness, as we refer to these propositions
frequently in later sections.

Definition 3. Let R be a commutative ring and M an R module. Let r1, . . . , rd
be a sequence of elements in R. Then r1, . . . , rd is an M -regular sequence if
ri is not a zero divisor on M/〈r1, . . . , ri−1〉M for all i = 1, . . . , d and M �=
〈r1, . . . , rd〉M .

When R,M = OAn,p, we will often refer to a M -regular sequence as a regular
sequence in OAn,p or simply as a regular sequence.

Proposition 1. Let r1, . . . , rd form a regular sequence in a Noetherian local
ring R, and suppose all ri are in the maximal ideal, then any permutation of
r1, . . . , rd is a regular sequence in R.

Corollary 1. Let f1, . . . , fn ∈ K[x1, . . . , xn] where f1, . . . , fn vanish on some
p ∈ A

n and form a regular sequence in OAn,p. Then any permutation of f1, . . . , fn
is a regular sequence in OAn,p.

Proof: Since f1, . . . , fn vanish at p they are in the maximal ideal of OAn,p. The
conclusion follows from Proposition 1. ��

With Corollary 1, we can now give a more intuitive explanation of regular
sequences in the local ring at p. Regular sequences in the local ring at p can
be thought of as systems which behave nicely at p. That is, if f1, . . . , fn ∈
K[x1, . . . , xn] is a regular sequence in the local ring at p, no fi is zero, a zero-
divisor, or a unit modulo any subset of the remaining polynomials. Moreover, we
can say there is no pair fi, fj where i �= j, modulo any subset of the remaining
polynomials, which has a common component through p.

Proposition 2. If f1, . . . , fn ∈ K[x1, . . . , xn] is a regular sequence in OAn,p

then the irreducible component of V(f1, . . . , fn) which passes through p is zero-
dimensional.

We may assume V(f1, . . . , fn) is equal to its component which contains p
since the other components do not affect the intersection multiplicity.

236 M. Moreno Maza and R. Sandford

Proposition 3. Let f1, . . . , fn ∈ K[x1, . . . , xn] where f1, . . . , fn vanish on
some p ∈ A

n. Fix some g ∈ {f1, . . . , fn} and choose some subset I ⊆
{i ∈ N | 1 ≤ i ≤ n, fi �= g}. For each i = 1, . . . , n, define

F I
i =

{
fi if i �∈ I

sifi − rig if i ∈ I
,

where si, ri are in K[x1 . . . , xn] and each si is invertible in OAn,p.
Then f1, . . . , fn forms a regular sequence in OAn,p if and only if F I

1 , . . . , F I
n

forms a regular sequence in OAn,p.

Proof: By Corollary 1, f1, . . . , fn is a regular sequence under permutation, thus
we may reorder so that all polynomials with indices in I are at the end of the
sequence. That is, we may assume I = {i ∈ N | N < i ≤ n} for some N ∈ N.
Moreover, we may reorder so that g = fN .

It suffices to show F I
k is regular modulo 〈F I

1 , . . . , F I
k−1〉 for each k such that

N < k ≤ n. First observe,

〈F I
1 , . . . , F I

k 〉 = 〈f1, . . . , fN , sN+1fN+1 − rN+1fN , . . . , skfk − rkfN 〉
= 〈f1, . . . , fN , sN+1fN+1, . . . , skfk〉
= 〈f1, . . . , fk〉.

Hence, we will show F I
k is regular modulo 〈f1, . . . , fk−1〉. Suppose it was not,

thus there are q, a1, . . . , ak−1 in OAn,p where q �∈ 〈f1, . . . , fk−1〉 such that,

qF I
k = a1f1 + . . . + ak−1fk−1

qskfk − qrkfN = a1f1 + . . . + ak−1fk−1

qfk = s−1
k (a1f1 + . . . + (qrk + aN)fN + . . . + ak−1fk−1).

Since q �∈ 〈f1, . . . , fk−1〉, this contradicts the regularity of fk modulo 〈f1, . . . ,
fk−1〉. The converse follows by the same argument. ��
Proposition 4. Let f1, . . . , fn ∈ K[x1, . . . , xn] where f1, . . . , fn vanish on some
p ∈ A

n. Suppose for some i we have fi = q1q2 for some q1, q2 ∈ K[x1, . . . , xn]
which are not units in OAn,p. Then f1, . . . , fn is a regular sequence in OAn,p

if and only if both f1, . . . , q1, . . . , fn and f1, . . . , q2, . . . , fn are regular sequences
in OAn,p.

Proof: Suppose f1, . . . , fn is a regular sequence in OAn,p. By Corollary 1 we may
assume i = n. We may assume neither q1, q2 ∈ 〈f1, . . . , fn−1〉 since otherwise,
the result clearly holds.

Suppose fn is not regular, then qq1q2 = qfn = Q1f1 + . . . + Qn−1fn−1 for
some q,Q1, . . . , Qn−1 ∈ OAn,p where q �∈ 〈f1, . . . , fn−1〉. If qq1 �∈ 〈f1, . . . , fn−1〉
then q2 is a zero divisor since q2 �∈ 〈f1, . . . , fn−1〉. If qq1 ∈ 〈f1, . . . , fn−1〉 then
since q1 �∈ 〈f1, . . . , fn−1〉, q1 is a zero divisor.

Suppose one of q1, q2 was a zero divisor, say q1 and write qq1 = Q1f1 + . . . +
Qn−1fn−1 for some q,Q1, . . . , Qn−1 ∈ OAn,p where q �∈ 〈f1, . . . , fn−1〉. Observe
we have q2Q1f1 + . . . + q2Qn−1fn−1 = qq1q2 = qf . Since q2 �∈ 〈f1, . . . , fn−1〉, f
is a zero divisor. ��

Extending Fulton’s Algorithm 237

Proposition 5. Let f1, . . . , fn be polynomials in K[x1, . . . , xn] which vanish
on p. Suppose f1, . . . , fn form a regular sequence in K[x1, . . . , xn], then f1, . . . , fn
form a regular sequence in OAn,p.

Proof: The case where n = 1 is straight forward, assume n > 1. Suppose
f1, . . . , fn is not a regular sequence in OAn,p. Then there is some i > 1 such
that fi is not regular modulo 〈f1, . . . , fi−1〉. Write,

Q1

q1
f1 + . . . +

Qi−1

qi−1
fi−1 =

Q

q
fi,

for some Q1, . . . , Qi−1, q1, . . . , qi−1, Q, q ∈ K[x1, . . . , xn] where q1, . . . , qi−1 do
not vanish on p and Q �∈ 〈f1, . . . , fi−1〉. Observe we have,

(q̂1 · . . . · qi−1q)Q1f1 + . . . + (q1 · . . . · q̂i−1q)Qi−1fi−1 = (q1 · . . . · qi−1)Qfi,

where q1 · . . . · q̂j · . . . · qi−1 is the product of q1 · . . . · qi−1 with qj omitted.
Since Q �∈ 〈f1, . . . , fi−1〉 and since none of q1, . . . , qi−1 vanish on p and all of
f1, . . . , fi−1 vanish on p, we must have (q1 · . . . · qi−1)Q �∈ 〈f1, . . . , fi−1〉, hence
fi is not regular modulo 〈f1, . . . , fi−1〉 in the polynomial ring. ��

Unlike Corollary 1, and Propositions 3 and 4, Proposition 5 does not give a
permissible modification we can make to a regular sequence. Instead, Proposi-
tion 5 states that to test for a regular sequence in the local ring, it is sufficient
to test for a regular sequence in the polynomial ring.

As mentioned earlier, our approach initially requires the input system to be
a regular sequence. Proposition 5 tells us this is a reasonable requirement which
can be tested using techniques for polynomial ideals.

2.4 Bivariate Intersection Multiplicity

It is shown in [3, Section 3-3] that the following seven properties characterize
intersection multiplicity of bivariate curves. Moreover, these seven properties
lead to a constructive procedure which computes the intersection multiplicity of
bivariate curves, which is given in Algorithm 1.

Proposition 6 (Fulton’s Properties). Let p = (p1, p2) ∈ A
2 and f, g ∈

K[x, y].

– (2-1) Im(p; f, g) is a non-negative integer when V(f) and V(g) have no
common component at p, otherwise Im(p; f, g) = ∞.

– (2-2) Im(p; f, g) = 0 if and only if p �∈ V(f) ∩ V(g).
– (2-3) Im(p; f, g) is invariant under affine changes of coordinates on A

2.
– (2-4) Im(p; f, g) = Im(p; g, f).

238 M. Moreno Maza and R. Sandford

– (2-5) Im(p; f, g) ≥ mfmg where mf and mg are the respective tailing degrees
of f and g expressed in K[x−p1, y−p2]. Moreover, Im(p; f, g) = mfmg when
V(f) and V(g) intersect transversally, i.e. have no tangent lines in common.

– (2-6) Im(p; f, gh) = Im(p; f, g) + Im(p; f, h) for any h ∈ K[x, y].
– (2-7) Im(p; f, g) = Im(p; f, g + hf) for any h ∈ K[x, y].

Algorithm 1: Fulton’s algorithm
1 Function im(p; f, g)

Input: Let: x � y
1. p ∈ A

2 the origin.
2. f, g ∈ K[x, y] such that gcd(f, g)(p) �= 0.

Output: Im(p; f, g)

2 if f(p) �= 0 or g(p) �= 0 then /* Red */

3 return 0

4 r ← degx (f(x, 0))
5 s ← degx (g(x, 0))

6 if r > s then /* Green */

7 return im(p; g, f)

8 if r < 0 then /* Yellow, y | f */

9 write g(x, 0) = xm(am + am+1x+ . . .)
10 return m+ im(p; quo(f, y; y), g)

11 else /* Blue */

12 g′ = lc(f(x, 0)) · g − (x)s−rlc(g(x, 0)) · f
13 return im(p; f, g′)

The following proposition was proved by Fulton in [3, Section 3-3]. It is
included here for the readers convenience, as we will use similar arguments in
later sections.

Proposition 7. Algorithm 1 is correct and terminates.

Proof: By (2-3) we may assume p is the origin. Let f, g be polynomials in K[x, y]
with no common component through the origin. By (2-1), Im(p; f, g) is finite.
We induct on Im(p; f, g) to prove termination. Suppose Im(p; f, g) = 0, then
by (2-2), at least one of f or g does not vanish at the origin and Algorithm 1
correctly returns zero.

Now suppose Im(p; f, g) = n > 0 for some n ∈ N. Let r, s be the respective
degrees of f, g evaluated at (x, 0). By (2-4) we may reorder f, g to ensure r ≤ s.
Notice r, s �= 0 since f, g vanish at the origin.

If r < 0, then f is a univariate polynomial in y which vanishes at the origin,
hence f is divisible by y. By (2-6) we have,

Im(p; f, g) = Im(p; y, g) + Im(p; quo(f, y; y), g) .

Extending Fulton’s Algorithm 239

By definition of intersection multiplicity Im(p; y, g) = Im(p; y, g(x, 0)). Since
g(x, 0) vanishes at the origin and since g has no common component with f
at the origin, g(x, 0) is a non-zero univariate polynomial divisible by x. Write
g(x, 0) = xm(am + am+1x + . . .) for some am, am+1, . . . ∈ K where m is the
largest positive integer such that am �= 0. Applying (2-6), (2-5), and (2-2) yields

Im(p; f, g) = m + Im(p; quo(f, y; y), g) .

Thus, Algorithm 1 returns correctly when r < 0. Moreover, we can compute
Im(p; quo(f, y; y), g) < n by induction.

Now suppose 0 < r < s. By (2-7), replacing g with g′ preserves the inter-
section multiplicity. Notice such a substitution strictly decreases the degree in x
of g(x, 0). After finitely many iterations, we will obtain curves F,G such that
Im(p; f, g) = Im(p; F,G) and the degree in x of F (x, 0) < 0. ��

2.5 A Generalization of Fulton’s Properties

The following theorem gives a generalization of Fulton’s Properties for n poly-
nomials in n variables. This generalization of Fulton’s Properties was first dis-
covered by the authors of [6] and proved in [9].

Theorem 1. Let f1, . . . , fn be polynomials in K[x1, . . . , xn] such that
V(f1, . . . fn) is zero-dimensional. Let p = (p1, . . . , pn) ∈ A

n. The
Im(p; f1, . . . , fn) satisfies (n-1) to (n-7) where:

– (n-1) Im(p; f1, . . . , fn) is a non-negative integer.
– (n-2) Im(p; f1, . . . , fn) = 0 if and only if p �∈ V(f1, . . . , fn).
– (n-3) Im(p; f1, . . . , fn) is invariant under affine changes of coordinates on

A
n.

– (n-4) Im(p; f1, . . . , fn) = Im(p; σ(f1, . . . , fn)) where σ is any permutation.
– (n-5) Im(p; (x1 − p1)m1 , . . . , (xn − pn)mn) = m1 · · · mn for any

m1, . . . , mn ∈ N.
– (n-6) Im(p; f1, . . . , fn−1, gh) = Im(p; f1, . . . , fn−1, g)+Im(p; f1, . . . , fn−1, h)

for any g, h ∈ K[x1, . . . , xn] such that f1, . . . , fn−1, gh is a regular sequence
in OAn,p.

– (n-7) Im(p; f1, . . . , fn) = Im(p; f1, . . . , fn−1, fn + g) for any g ∈
〈f1, . . . , fn−1〉.

3 Trivariate Fulton’s Algorithm

In this section we show how the n-variate generalization of Fulton’s proper-
ties can be used to create a procedure to compute intersection multiplicity in
the trivariate case. Later we will see this approach generalizes to the n-variate
case, although, it is helpful to first understand the algorithms behaviour in the
trivariate case.

240 M. Moreno Maza and R. Sandford

This procedure is not complete since the syzygy computations, analogous to
those used in Algorithm 1, do not necessarily preserve intersection multiplicity
under (n-7). When this is the case, the procedure returns Fail to signal an error.

When the procedure succeeds, we obtain a powerful tool for computing inter-
section multiplicities in the trivariate case. This allows us to compute intersection
multiplicities that previously could not be computed by other, standard basis
free approaches, namely that of [1] and [9].

Throughout this section we assume p ∈ A
3 is the origin.

Definition 4. Let f be in K[x, y, z] where x � y � z. We define the modular
degree of f with respect to a variable v ∈ V as degv (f mod 〈V<v〉), where
V = {x, y, z} is the set of variables and V<v is the set of all variables less than v
in the given ordering. If V<v = ∅, we define the modular degree of f with respect
to v to be the degree of f with respect to v. Write moddeg(f, v) to denote the
modular degree of f with respect to v.

Remark 2. The definition of modular degree can be generalized to a point
p = (p1, p2, p3) ∈ A

3 by replacing V<v with V<v,p = {x − p1, y − p2, z − p3}
in Definition 4.

The modular degree is used to generalize the computation of r, s in Algo-
rithm 1. If we fix some variable v, the modular degree with respect to v is the
degree of a polynomial modulo all variables smaller than v in a given ordering.

Below we formally define cases in terms of the colour they are highlighted with
in Algorithm 2. Although not necessary, using a name to distinguish between
cases rather then a set of conditions makes the proof far more readable, especially
when the set of cases is small, as is the case for trivariate intersection multiplicity.

In the n-variate case, we will see that some of these cases are not distinct and
in fact, instances of the same case. We will describe this in more detail later. For
now, we make this distinction to illustrate the similarities to Algorithm 1 and
to help the reader build intuition for this procedure in a more general setting.

Definition 5 (Colour Cases). Consider f, g, h ∈ K[x, y, z].

1. We say we are in the red case if one of f, g, h does not vanish on p.
2. We say we are in the blue case if:

(a) We are not in the red case.
(b) The modular degrees of f, g, h in x are in ascending order.
(c) At least one of f or g has modular degree in x greater than zero.

3. We say we are in the orange case if:
(a) We are not in the red case.
(b) The modular degrees of f, g, h in x are in ascending order.
(c) Both f and g have modular degrees in x less than zero.

4. We say we are in the yellow case if:
(a) We are in the orange case.
(b) The modular degrees of f, g, h in x and the modular degrees of f, g in y

are in ascending order.

Extending Fulton’s Algorithm 241

(c) The modular degree of f in y is less than zero.
5. We say we are in the pink case if:

(a) We are in the orange case.
(b) The modular degrees of f, g, h in x and the modular degrees of f, g in y

are in ascending order.
(c) The modular degree of f in y is greater than zero.

Remark 3. Note that when we are not in the red case for f, g, h the modular
degrees of f, g, h can never be zero as f, g, h vanish at p.

Algorithm 2 generalizes Fulton’s approach in the trivariate case. The key to
generalizing Fulton’s approach to 3 polynomials in 3 variables is generalizing the
splitting computation. When the yellow case holds, we can split the intersection
multiplicity computation into the sum of smaller intersection multiplicity com-
putations. Thus, the rest of the algorithm is designed to reduce to the yellow
case, or return Fail, in finitely many iterations.

At this time there is no clear way to characterize when Algorithm 2 fails
since it is difficult to determine before runtime which cases will be reached after
rewriting and splitting. Namely, it is difficult to characterize all inputs which will
eventually reach a branch which satisfies the conditions of the pink case. Given
an input that does satisfy the conditions of pink case, it is easy to check whether
Algorithm 2 fails in that iteration, as we will see in the proof of Theorem 2.

Theorem 2. Algorithm 2 correctly computes the intersection multiplicity of a
regular sequence f, g, h ∈ K[x, y, z] or returns Fail.

Proof: Let f, g, h ∈ K[x, y, z] be a regular sequence in OA3,p. By (n-3) we may
assume p is the origin. By Proposition 2, V(f, g, h) is zero-dimensional, hence
by (n-1), Im(p; f, g, h) ∈ N.

To prove termination we induct on Im(p; f, g, h) and show that when Algo-
rithm 2 does not fail, we can either compute Im(p; f, g, h) directly or strictly
decrease Im(p; f, g, h) through splitting.

Suppose Im(p; f, g, h) = 0, then by (n-2), one of f, g, h does not vanish on p,
hence, Algorithm 2 correctly returns zero. Assume that Im(p; f, g, h) = N for
some positive N ∈ N.

By (n-4) and Corollary 1, we may reorder f, g, h so that their modular degrees
with respect to x are in ascending order.

Suppose f, g, h satisfy the conditions of the blue case, that is, at most one
polynomial has modular degree in x less than zero. Depending on how many
polynomials have modular degree in x less than zero, we perform slightly different
syzygy computations, since there is no need to reduce a modular degree in x of
a polynomial that already has modular degree in x less than zero. Notice the
syzygy computations in the blue case preserve intersection multiplicity by (n-
7) and regular sequences by Proposition 3. Since the modular degrees in x of
the resulting polynomials is strictly decreasing, we will reach the orange case in
finitely many iterations.

By (n-4) and Corollary 1, we may reorder f, g so that their modular degrees
with respect to y are in ascending order.

242 M. Moreno Maza and R. Sandford

Suppose f, g, h satisfy the conditions of the pink case. Define,

Lf = lc(f(x, y, 0); y),

Lg = lc(g(x, y, 0); y).

If Lf is not a unit in OAn,p and does not divide Lg, Algorithm 2 returns Fail
since (n-7) cannot be applied to the syzygy computations.

Suppose either Lf (p) �= 0 or Lf | Lg. Then the respective syzygy com-
putations preserve intersection multiplicity by (n-7) and regular sequences
by Proposition 3. Moreover, if g′ is the polynomial resulting from either of
the respective syzygy computations, then moddeg(g′, y) < moddeg(g, y) and
moddeg(g′, x) < 0. The latter statement follows from both f and g having mod-
ular degree in x less than zero as a result of being in the orange case. Since the
modular degree of g′ with respect to y strictly decreases, we will reach the yellow
case or return Fail in finitely many iterations.

Suppose f, g, h satisfy the conditions of the yellow case. Since moddeg(f, x) <
0, moddeg(f, y) < 0, f is non-zero, and f vanishes at the origin, we have z | f .

By Proposition 4, the sequence z, g, h is regular, hence g(x, y, 0) is non-zero
and vanishes at the origin. Since moddeg(g, x) < 0 holds, we have y | g(x, y, 0).

Write f = zqf , g(x, y, 0) = yqg, and mh = max(m ∈ Z
+ | h(x, 0, 0) ≡ 0

mod 〈xm〉). By (n-6) and Proposition 4, it is correct to compute:

Im(p; f, g, h) = Im(p; qf , g, h) + Im(p; z, qg, h) + Im(p; z, y, h)
= Im(p; qf , g, h) + Im(p; z, qg, h) + mh

= Im(p; qf , g, h) + Im(p; qg, h(x, y, 0)) + mh.

Since mh is a positive integer, we have:

Im(p; qf , g, h) , Im(p; qg, h(x, y, 0)) < Im(p; f, g, h) = N.

Thus, when Algorithm 2, called on the input qf , g, h, does not fail, termination
follows from induction. ��

To illustrate the utility of this approach we will work through an example
where the available standard basis free techniques used to compute intersection
multiplicity fail. A full description of these techniques can be found in [1] and
[9], although we give a brief overview below.

Suppose for f1, . . . , fn ∈ K[x1, . . . , xn], we have V(f1, . . . , fn) is a zero-
dimensional, that is, Im(p; f1, . . . , fn) ∈ N, and at least one of f1, . . . , fn, say
fn is non-singular at p. Theorem 1 of [1], states that when the above conditions
hold, and under an additional transversality constraint between V(f1, . . . , fn−1)
and V(fn), an n-variate intersection multiplicity can be reduced to an n − 1-
variate intersection multiplicity computation.

In [9], the above reduction is combined with an additional reduction proce-
dure referred to as cylindrification. The idea behind this second reduction pro-
cedure is to use pseudo-division by a polynomial, say fn, to reduce the degree

Extending Fulton’s Algorithm 243

of f1, . . . , fn−1 with respect to some variable, say xn. The cylindrification pro-
cedure assumes that fn has a term containing xn with a non-zero coefficient
invertible in OAn,p.

The following example contains 3 polynomials which are singular at p, hence
the above reduction cannot be applied. Moreover, one can check that applying
cylindrification does not reduce the input in a way that the first reduction crite-
rion holds. Hence, the current standard basis free techniques fail. Additionally,
this can be verified using the Maple implementation of the techniques in [9].

Example 1. Compute Im
(
p; zy2, y5 − z2, x5 − y2

)
using Algorithm 2.

Notice, zy2, y5−z2, x5−y2 form a regular sequence. We compute the modular
degrees with respect to x: rx < 0, sx < 0, tx = 5, hence, we begin in the orange
case. Since additionally, ry < 0, we are in the yellow case and the computation
reduces to:

Im
(
p; zy2, y5 − z2, x5 − y2

)
=Im

(
p; y2, y5 − z2, x5 − y2

)
+Im

(
p; y4, x5 − y2

)
+5.

Start with Im
(
p; y4, x5 − y2

)
, applying Fulton’s bivariate algorithm we get,

Im
(
p; y4, x5 − y2

)
= Im

(
p; y3, x5 − y2

)
+ 5

= Im
(
p; y2, x5 − y2

)
+ 10

= Im
(
p; y, x5 − y2

)
+ 15

= 20.

Next we compute Im
(
p; y2, y5 − z2, x5 − y2

)
. Here we have modular degrees

in x: rx < 0, sx < 0, tx = 5, thus we are in the orange case. Computing the
modular degrees in y we get: ry = 2, sy = 5, hence we enter the pink case. The
leading coefficient in y of y5 − z2 evaluated at z = 0 is a unit, hence the pink
case computation is valid. Thus, let g′ = (y5 − z2) − y3(y2) = −z2 and compute
Im

(
p; y2,−z2, x5 − y2

)
.

Computing the modular degrees with respect to y we get: ry = 2, sz < 0,
hence we reorder y2 and −z2. Again, we enter the yellow case and the compu-
tation reduces to

Im
(
p; −z2, y2, x5 − y2

)
= Im

(
p; −z, y2, x5 − y2

)
+ Im

(
p; y, x5 − y2

)
+ 5.

Clearly Im
(
p; y, x5 − y2

)
= 5 by Fulton’s bivariate algorithm. The com-

putation Im
(
p; −z, y2, x5 − y2

)
immediately satisfies the yellow case, hence we

may split,

Im
(
p; −z, y2, x5 − y2

)
= Im

(
p; −1, y2, x5 − y2

)
+ Im

(
p; y, x5 − y2

)
+ 5

= 0 + 5 + 5
= 10.

Combining the intermediate computations, we get,

Im
(
p; zy2, y5 − z2, x5 − y2

)
= 45.

244 M. Moreno Maza and R. Sandford

Algorithm 2: Trivariate Fulton’s Algorithm
1 Function im3(p; f, g, h)

Input: Let: x � y � z
1. p ∈ A

3 the origin.
2. f, g, h ∈ K[x, y, z] such that f, g, h form a regular sequence in OA3,p or one

of f, g, h is a unit in OA3,p.

Output: Im(p; f, g, h) or Fail

2 if f(p) �= 0 or g(p) �= 0 or h(p) �= 0 then /* Red */

3 return 0

4 ry ← moddeg(f, y), rx ← moddeg(f, x)
5 sy ← moddeg(g, y), sx ← moddeg(g, x)
6 ty ← moddeg(h, y), tx ← moddeg(h, x)

7 Reorder f, g, h so that rx ≤ sx ≤ tx /* Green */

8 if rx < 0 and sx < 0 then /* Orange */

9 Reorder f, g so that ry ≤ sy /* Green */

10 if ry < 0 then /* Yellow */

11 mh ← max(m ∈ N | h mod 〈y, z〉 = xm(a0 + a1x+ . . .))
12 qf ← quo(f, z; z)
13 qg ← quo(g(x, y, 0), y; y)
14 return im3(p; qf , g, h) + im(p; qg, h(x, y, 0)) +mh

15 else /* Pink */

16 Lf ← lc(f(x, y, 0); y)
17 Lg ← lc(g(x, y, 0); y)
18 if Lf (p) �= 0 then
19 g′ ← Lfg − ysy−ryLgf
20 return im3(p; f, g

′, h)

21 else if Lf | Lg then

22 g′ ← g − ysy−ry Lg

Lf
f

23 return im3(p; f, g
′, h)

24 else
25 return Fail

26 else /* Blue */

27 if rx < 0 then
28 h′ ← lc(g(x, 0, 0);x)h − xtx−sx lc(h(x, 0, 0);x)g
29 return im3(p; f, g, h

′)

30 else
31 g′ ← lc(f(x, 0, 0);x)g − xsx−rx lc(g(x, 0, 0);x)f
32 h′ ← lc(f(x, 0, 0);x)h − xtx−rx lc(h(x, 0, 0);x)f
33 return im3(p; f, g

′, h′)

Extending Fulton’s Algorithm 245

4 Generalized Fulton’s Algorithm

In this section, we give a generalization of Algorithm 1 using properties (n-1)
to (n-7). Unfortunately, the natural generalization using these properties does
not characterize intersection multiplicities as in the bivariate case. There are two
main reasons for this.

First, property (n-6) requires the input polynomials form a regular sequence
in order to split. In the bivariate case, splitting with (2–6) was always possible.
Thus, for our generalization, we must assume our input is a regular sequence
whenever the intersection multiplicity is not zero.

Second, syzygy computations do not necessarily preserve intersection mul-
tiplicity in the n-variate case. In particular, if a leading coefficient used in the
syzygy computation is not invertible in the local ring, (n-7) may not be applica-
ble. In the bivariate case, all leading coefficients considered in such a computa-
tion were units in the local ring. When such a case arises, other techniques must
be used to complete the computation, and hence our generalization will signal
an error.

Throughout this section we assume p ∈ A
n is the origin and n > 1.

Definition 6. Let f be in K[x1, . . . , xn] where x1 � . . . � xn. We define the
modular degree of f with respect to a variable v ∈ V as degv (f mod 〈V<v〉),
where V = {x1, . . . , xn} is the set of variables and V<v is the set of all variables
less than v in the given ordering. If V<v = ∅, we define the modular degree of f
with respect to v to be the degree of f with respect to v. Write moddeg(f, v) to
denote the modular degree of f with respect to v.

Remark 4. The definition of modular degree can be generalized to a point
p = (p1, . . . , pn) ∈ A

n by replacing V<v with V<v,p = {x1 − p1, . . . , xn − pn}
in Definition 6.

Remark 5. When f1, . . . , fn ∈ K[x1, . . . , xn] form a regular sequence in OAn,p,
the modular degrees of f1, . . . , fn can never be zero since f1, . . . , fn vanish at p.

Unlike in the trivariate case, it is no longer practical to partition the algorithm
into coloured cases. Moreover, we will see that this does not accurately reflect
the structure of the procedure. The main reason for this is that several of the
cases we encountered in the past are instances of the same, more general case.

Roughly speaking, Algorithm 3 can be divided into 2 key parts. The first is the
main loop which modifies the input using syzygy computations and reordering
polynomials. The second is the splitting part, which occurs as a result of the
main loop successfully terminating.

The purpose of the main loop, in the j-th iteration, is to create n − j poly-
nomials with modular degrees less than zero in xj and in any variable larger
than xj . When we examine Algorithm 2 in this context, we see the orange and
yellow case were simply conditions necessary to move forward an iteration in the
main loop. Moreover, the syzygy computations in the blue and pink case were
separate instances of the same process, which is used to reduce modular degrees

246 M. Moreno Maza and R. Sandford

for different iterations of the main loop. We highlight line 7 of Algorithm 3
with the colour orange to illustrate the similarities between moving forward an
iteration in the loop and satisfying the orange case in Algorithm 2.

Recall in Algorithm 2 there were several possible syzygy computations that
could be performed in the blue case, the deciding factor being, how many of the
input polynomials had modular degree in x less than zero. Extending this to the
context of the n-variate algorithm, in each iteration of the main loop, we check
how many polynomials already satisfy the condition required to move forward an
iteration. As in the blue case, this determines how many syzygy computations to
perform and which polynomials will be used in said computations. To illustrate
these similarities, we highlight line 11 of Algorithm 3 with the colour blue.

When the main loop terminates, assuming the procedure did not fail, our
input system will have a of triangular shape with respect to modular degrees.
That is, consider R, the n × n matrix of modular degrees, where Ri,j is the
modular degree of fi with respect to xj . Upon successful termination of the
main loop, any entry of R which lies above the anti-diagonal will be negative
infinity. Lemma 1, describes the implications of this triangular shape in terms
of splitting intersection multiplicity computations. To illustrate the similarities
between this splitting procedure, and the procedure used in the yellow case of
Algorithm 2, we highlight line 22 of Algorithm 3 with the colour yellow.

As in the trivariate case, we cannot clearly characterize all cases for which
Algorithm 3 fails before runtime, due to the difficulty in determining how an
input will be rewritten and split. Nonetheless, it is still easy to determine whether
an input will cause Algorithm 3 to fail in a given iteration of the main loop, as
described in the proof of Theorem 3.

Lemma 1. Let f1, . . . , fn be polynomials in K[x1, . . . , xn] which form a regular
sequence in OAn,p where p is the origin. Let V = {x1, . . . , xn} and let V>v =
{xi ∈ V | xi > v}. Define the map J : {1, . . . , n − 1} → {2, . . . , n} such that
J(i) = n − i + 1.

Suppose for all i = 1, . . . , n − 1 we have moddeg(fi, v) < 0 for all v ∈
V>xJ(i) . Then, we have xJ(i) | fi(x1, . . . , xJ(i), 0, . . . , 0). Moreover, if we define
qi = quo(fi(x1, . . . , xJ(i), 0, . . . , 0), xJ(i);xJ(i)) then,

Im(p; f1, . . . , fn) = Im(p; q1, f2, . . . , fn) + Im(p; xn, q2, . . . , fn)
+ . . . + Im

(
p; xn, . . . , xJ(i)+1, qi, fi+1, . . . , fn

)
+ . . .

+ Im(p; xn, xn−1, . . . , qn−1, fn) + mn,

where mn = max(m ∈ Z
+ | fn(x1, 0, . . . , 0) ≡ 0 mod 〈xm

1 〉).
Proof: First we will show that we can write fi(x1, . . . , xJ(i), 0, . . . , 0) = xJ(i)qi
for all i = 1, . . . , n − 1.

Suppose xn, . . . , xJ(i)+1, fi, . . . , fn is a regular sequence for some 1 ≤ i < n.
The hypothesis moddeg(fi, x1), . . . ,moddeg(fi, xJ(i)−1) < 0 and the fact that fi
is regular modulo 〈xJ(i)+1, . . . , xn〉 and vanishes at the origin implies xJ(i)

divides fi(x1, . . . , xJ(i), 0, . . . , 0).

Extending Fulton’s Algorithm 247

Algorithm 3: Generalized Fulton’s Algorithm
1 Function imn(p; f1, . . . , fn)

Input: Let: x1 � . . . � xn, n ≥ 2
1. p ∈ A

n the origin.
2. f1, . . . , fn ∈ K[x1, . . . , xn] such that f1, . . . , fn form a regular sequence in

OAn,p or one such fi is a unit in OAn,p.

Output: Im(p; f1, . . . , fn) or Fail

2 if fi(p) �= 0 for any i=1,. . . ,n then /* Red */

3 return 0

4 for i = 1, . . . , n do
5 for j = 1, . . . , n − 1 do

6 r
(i)
j ← moddeg(fi, xj)

7 for j = 1, . . . , n − 1 do /* Orange */

8 Reorder f1, . . . , fn−j+1 so that r
(1)
j ≤ . . . ≤ r

(n−j+1)
j /* Green */

9 m ← min(i | r(i)j > 0) or m ← ∞ if no such i exists

10 if m ≤ (n − j) then

11 for i = m+ 1, . . . , n − j + 1 do /* Blue */

12 d ← r
(i)
j − r

(m)
j

13 Lm ← lc(fm(x1, . . . , xj , 0, . . . , 0);xj)
14 Li ← lc(fi(x1, . . . , xj , 0, . . . , 0);xj)
15 if Lm(p) �= 0 then

16 f ′
i ← Lmfi − xd

jLifm

17 else if Lm | Li then

18 f ′
i ← fi − xd

j
Li
Lm

fm

19 else
20 return Fail

21 return imn(p; f1, . . . , fm, f ′
m+1, . . . , f

′
n−j+1, . . . , fn)

22 /* Yellow */

23 mn ← max(m ∈ Z
+ | fn(x1, 0, . . . , 0) ≡ 0 mod 〈xm

1 〉)
24 for i = 1, . . . , n − 1 do
25 qi ← quo(fi(x1, . . . , xn−i+1, 0, . . . , 0), xn−i+1;xn−i+1)

26 return
27 imn(p; q1, f2, . . . , fn)
28 + imn−1(p; q2(x1, . . . , xn−1, 0), . . . , fn(x1, . . . , xn−1, 0))
29 +

30
...

31 +im2(p; qn−1(x1, x2, 0, . . . , 0), fn(x1, x2, 0, . . . , 0))
32 +mn

To show xn, . . . , xJ(i)+1, fi, . . . , fn is a regular sequence for all 1 ≤ i < n, it
suffices to show xn, f2, . . . , fn is a regular sequence, since repeated applications
of Proposition 4, and the above implication will yield the desired result.

248 M. Moreno Maza and R. Sandford

Observe moddeg(f1, x1), . . . ,moddeg(f1, xn−1) < 0 and f1 is a non-zero poly-
nomial which vanishes at the origin, and hence, must be divisible by xn. By
applying Proposition 4 we get xn, f2, . . . , fn is a regular sequence.

Since f1, . . . , fn is a regular sequence we may apply (n-6) to get

Im(p; f1, . . . , fn) = Im(p; xn, f2, . . . , fn) + Im(p; q1, f2, . . . , fn) .

By definition of intersection multiplicity,

Im(p; xn, f2, . . . , fn) = Im(p; xn, f2(x1, . . . , xn−1, 0), . . . , fn(x1, . . . , xn−1, 0)) .

Continuing in this way we get,

Im(p; f1, . . . , fn) = Im(p; q1, f2, . . . , fn) + Im(p; xn, q2, . . . , fn) + . . .

+ Im(p; xn, xn−1, . . . , qn−1, fn) + Im(p; xn, . . . , x2, fn) .

By definition of intersection multiplicity,

Im(p; xn, . . . , x2, fn) = max(m ∈ Z
+ | fn(x1, 0, . . . , 0) ≡ 0 mod 〈xm

1 〉),

which completes the proof. ��
Corollary 2. When the conditions of Lemma 1 hold,

Im(p; f1, . . . , fn) = Im(p; q1, f2, . . . , fn)
+ Im(p; q2(x1, . . . , xn−1, 0), . . . , fn(x1, . . . , xn−1, 0)) +
...
+ Im(p; qn−1(x1, x2, 0, . . . , 0), fn(x1, x2, 0, . . . , 0))
+ mn.

Proof: Follows from Lemma 1 and the definition of intersection multiplicity. ��
Theorem 3. Algorithm 3 correctly computes the intersection multiplicity of a
regular sequence f1, . . . , fn ∈ K[x1, . . . , xn] or returns Fail.

Proof: Let f1, . . . , fn ∈ K[x1, . . . , xn] be a regular sequence in OAn,p. By (n-3) we
may assume p is the origin. By Proposition 2, V(f1, . . . , fn) is zero-dimensional,
hence by (n-1) we may assume Im(p; f1, . . . , fn) ∈ N.

To prove termination we induct on Im(p; f1, . . . , fn), and show that when
Algorithm 3 does not return Fail, we can either compute Im(p; f1, . . . , fn)
directly or strictly decrease Im(p; f1, . . . , fn) through splitting.

Suppose Im(p; f1, . . . , fn) = 0, then by (n-2), one of f1, . . . , fn does not
vanish at p, hence Algorithm 3 correctly returns zero. Thus, we may assume
Im(p; f1, . . . , fn) = N for some positive N ∈ N.

Extending Fulton’s Algorithm 249

First, we claim that either Algorithm 3 returns Fail or the input polynomials
can be modified while preserving intersection multiplicity such that they satisfy
the conditions of Lemma 1. Moreover, we claim such modifications can be per-
formed in finitely many iterations. To modify the input such that they satisfy
the conditions of Lemma 1, we proceed iteratively.

Fix some xj where 1 ≤ j ≤ n − 1, and suppose f1, . . . , fn−j+k all have
modular degree in xj−k less than zero for any 1 ≤ k < j whenever j > 1. Notice
f1, . . . , fn−j+1 are the polynomials which have modular degree less than zero
in all variables greater then xj . By (n-4) and Corollary 1 we may rearrange
f1, . . . , fn−j+1 so that their modular degrees with respect to xj are ascending.

To satisfy the conditions of Lemma 1, in the j-th iteration we must have
n − j polynomials in {f1, . . . , fn−j+1} with modular degree in xj less than zero.
Since the modular degrees are in ascending order we may compute,

m =

{
min(i | moddeg(fi, xj) > 0) if such an i exists,
∞ otherwise.

If m > n − j then f1, . . . , fn−j satisfy the conditions of Lemma 1 for the
variable xj and hence we are done.

Suppose m ≤ n − j. We will use fm in a syzygy computation with fi for all
i = m + 1, . . . , n − j + 1 to reduce the modular degree of each fi with respect
to xj . Define,

Lm = lc(fm(x1, . . . , xj , 0, . . . , 0);xj),

Li = lc(fi(x1, . . . , xj , 0, . . . , 0);xj),

and
d = moddeg(fi, xj) − moddeg(fm, xj).

If Lm(p) = 0 and there is an i such that Li � |Lm, then (n-7) will not preserve
intersection multiplicity under the syzygy computation since Lm is not a unit in
the local ring. When this case occurs, we return Fail.

Suppose either Lm(p) �= 0 or for all i we have Lm | Li. In which case, (n-7)
allows us to replace fi with f ′

i = Lmfi−xdLifm or f ′
i = fi−xd Li

Lm
fm respectively.

Moreover, Proposition 3 tells us such a substitution preserves regular sequences.
Notice if j > 1, then moddeg(f ′

i , xj−k) < 0 for all 1 ≤ k < j, since, by
assumption, both fi and fm have modular degree in xj−k less than zero. Thus,
making such a substitution preserves the assumptions of our hypothesis. Lastly,
since moddeg(f ′

i , xj) < moddeg(fi, xj), we will have n − j polynomials with
modular degree in xj less than zero or return Fail, in finitely many iterations.

Thus we may now assume f1, . . . , fn satisfy the conditions of Lemma 1, hence
the algorithm correctly splits computations by Lemma 1 and Corollary 2.

To show termination, we may suppose none of the split computations fail,
since in such a case, termination is immediate. Since mn, as defined in Lemma 1,
is a positive integer, each term has intersection multiplicity strictly less than
Im(p; f1, . . . , fn) = N and hence termination follows by induction. ��

250 M. Moreno Maza and R. Sandford

5 Triangular Regular Sequences

In this section we consider input systems with a triangular shape. We observe
that under a mild constraint, such a system is a regular sequence. Moreover, the
triangular shape combined with being a regular sequence allows us to compute
the intersection multiplicity of such a system using (n-6).

At this time there are no known triangular decomposition techniques that
preserve intersection multiplicity for a polynomial ideal in the local ring;
although, if such a technique were to be discovered, the following observation
could lead to a complete algorithm for computing intersection multiplicity.

Definition 7. The main variable of a polynomial f ∈ K[x1, . . . , xn] where x1 �
. . . � xn is the largest variable xi such that lc(f ;xi) is non-zero.

Theorem 4 (McCoy’s Theorem). Let f be a non-zero polynomial in R[x]
where R is a commutative ring. Then f is a regular element of R[x] if and only
if ever non-zero s ∈ R is such that sf �= 0.

McCoy’s Theorem is a well-known result proven in [8].

Corollary 3. Consider a sequence t1, . . . , tn such that for i = 1, . . . , n, each ti
is a non-zero polynomial in K[xi, . . . , xn] with main variable xi.

If at least one non-zero coefficient of ti−1 is invertible modulo 〈ti, . . . , tn〉 for
all 1 < i ≤ n, then t1, . . . , tn is a regular sequence in K[x1, . . . , xn]. If t1, . . . , tn
also vanish on p ∈ A

n then t1, . . . , tn is a regular sequence in OAn,p.

Proof: The first statement follows from Theorem 4, the second statement follows
from the first statement and Proposition 5. ��
Proposition 8. Consider a sequence t1, . . . , tn such that for i = 1, . . . , n, each ti
is a non-zero polynomial in K[xi, . . . , xn] with main variable xi.

Suppose each t1, . . . , tn vanish at the origin, which we denote by p, and sup-
pose at least one non-zero coefficient of ti−1 is invertible modulo 〈ti, . . . , tn〉 for
1 < i ≤ n.

Then we may write ti(xi, 0, . . . , 0) as xmi
i fi where mi is the least positive

integer such that fi ∈ K[xi] does not vanish at the origin. Moreover,

Im(p; t1, . . . , tn) = m1 · . . . · mn.

Proof: The result is trivial for n = 1, so we may assume n > 1. Since
ti(xi, 0, . . . , 0) is a non-zero univariate polynomial in K[xi] which vanishes at
the origin, we may write ti(xi, 0, . . . , 0) = xmi

i fi for a positive integer mi and fi
a unit in the local ring at p.

Extending Fulton’s Algorithm 251

By Corollary 3, t1, . . . , tn is a regular sequence in OAn,p. Hence, we may apply
(n-6) and Proposition 4 repeatedly and finally (n-5) to get,

Im(p; t1, . . . , tn) = Im(p; t1, . . . , tn−1, x
mn
n fn)

= Im(p; t1, . . . , tn−1, x
mn
n) + Im(p; t1, . . . , fn)

= mnIm(p; t1, . . . , tn−1(xn−1, 0), xn) + 0
= mnIm

(
p; t1, . . . , x

mn−1
n−1 fn−1, xn

)
= mnmn−1Im(p; t1, . . . , xn−1, xn) + 0
...
= m1 · . . . · mnIm(p; x1, . . . , xn)
= m1 · . . . · mn.

��

References

1. Alvandi, P., Maza, M.M., Schost, É., Vrbik, P.: A standard basis free algorithm for
computing the tangent cones of a space curve. In: Gerdt, V.P., Koepf, W., Seiler,
W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 45–60. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24021-3 4

2. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Text in Math-
ematics, vol. 185. Springer, New York (1998). https://doi.org/10.1007/978-1-4757-
6911-1

3. Fulton, W.: Algebraic Curves - An Introduction to Algebraic Geometry (reprint
from 1969). Addison-Wesley, Advanced book classics (1989)

4. Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-73542-7

5. Kaplansky, I.: Commutative Rings, 3rd edn. The University of Chicago Press,
Chicago (1974). Ill.-London, revised edn

6. Marcus, S., Maza, M.M., Vrbik, P.: On Fulton’s algorithm for computing intersection
multiplicities. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2012. LNCS, vol. 7442, pp. 198–211. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32973-9 17

7. Matsumura, H.: Commutative Algebra, Mathematics Lecture Note Series, vol. 56,
2nd edn. Benjamin/Cummings Publishing Co. Inc., Reading (1980)

8. McCoy, N.H.: Remarks on divisors of zero. Amer. Math. Mon. 49, 286–295 (1942).
https://doi.org/10.2307/2303094

9. Vrbik, P.: Computing intersection multiplicity via triangular decomposition. Ph.D.
thesis, The University of Western Ontario (2014)

https://doi.org/10.1007/978-3-319-24021-3_4
https://doi.org/10.1007/978-1-4757-6911-1
https://doi.org/10.1007/978-1-4757-6911-1
https://doi.org/10.1007/978-3-540-73542-7
https://doi.org/10.1007/978-3-642-32973-9_17
https://doi.org/10.1007/978-3-642-32973-9_17
https://doi.org/10.2307/2303094

On the Pseudo-Periodicity of the Integer
Hull of Parametric Convex Polygons

Marc Moreno Maza and Linxiao Wang(B)

University of Western Ontario, London, ON, Canada
{mmorenom,lwang739}@uwo.ca

Abstract. Consider a rational convex polygon given by a system of
linear inequalities A�x ≤ �b, where A is a matrix over Z, with m rows and
2 columns, and �b is an integer vector. The coordinates b1, . . . , bm of �b are
treated as parameters while the coefficients of A have fixed values. We
observe that for every 1 ≤ i ≤ m, there exists a positive integer Ti so
that, when each b1, . . . , bm is large enough, the vertex sets V and V ′ of
the respective integer hulls of P := P (b1, . . . , bi−1, bi, bi+1, . . . , bm) and
P ′ := P (b1, . . . , bi−1, bi + Ti, bi+1, . . . , bm), respectively, are in a “simple”
one-to-one correspondence. We state and prove explicit formulas for the
pseudo-period Ti and that correspondence between V and V ′. This result
and the ingredients of its proof lead us to propose a new algorithm for
computing the integer hull of a rational convex polygon.

Keywords: Parametric convex polygon · Integer hull · Pseudo-
periodic functions

1 Introduction

The integer points of rational polyhedral sets are of great interest in various
areas of scientific computing. Two such areas are combinatorial optimization (in
particular integer linear programming) and compiler optimization (in particu-
lar, the analysis, transformation and scheduling of for-loop nests in computer
programs), where a variety of algorithms solve questions related to the points
with integer coordinates belonging to a given polyhedron. Another area is at the
crossroads of computer algebra and polyhedral geometry, with topics like toric
ideals and Hilbert bases, see for instance [16] by Thomas.

One can ask different questions about the integer points of a polyhedral set,
ranging from “whether or not a given rational polyhedron has integer points”
to “describing all such points”. Answers to that latter question can take various
forms, depending on the targeted application. For plotting purposes, one may
want to enumerate all the integer points of a 2D or 3D polytope. Meanwhile, in
the context of combinatorial optimization or compiler optimization, more concise
descriptions are sufficient and more effective.

For a rational convex polyhedron P ⊆ Q
d, defined either by the set of its

facets or that of its vertices, one such description is the integer hull PI of P , that
c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 252–271, 2021.
https://doi.org/10.1007/978-3-030-85165-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_15

On the Pseudo-Periodicity of the Integer Hull of Convex Polygons 253

is, the convex hull of P ∩ Z
d. The set PI is itself polyhedral and can be described

either by its facets, or its vertices. One important family of algorithms for com-
puting the vertex set of PI relies on the so-called cutting plane method, originally
introduced by Gomory in [7] to solve integer linear programs. Chvátal [3] and
Schrijver [13] developed a procedure to compute PI based on that latter method.
Schrijver gave a full proof and a complexity study of this method in [12]. Another
approach for computing PI uses the branch and bound method, introduced by
Land and Doig in the early 1960s in [8]. This method recursively divides P into
sub-polyhedra, then the vertices of the integer hull of each part of the partition
are computed.

In addition to finding the description of the whole integer hull PI another
problem that is well studied is that of counting the integer points in a ratio-
nal polyhedron. A well-known theory on that latter subject was proposed by
Pick [11]. In particular, the celebrated Pick’s theorem provides a formula for the
area of a simple polygon P with integer vertex coordinates, in terms of the num-
ber of integer points within P and on its boundary. In the 1990s, Barvinok [1]
created an algorithm for counting the integer points inside a polyhedron, which
runs in polynomial time, for a fixed dimension of the ambient space. Later stud-
ies such as [21] gave a simpler approach for lattice point counting, which divides
a polygon into right-angle triangles and calculates the number of lattice points
within each such triangle. In 2004, the software package LattE presented in [9]
for lattice point enumeration, offers the first implementation of Barvinok’s algo-
rithm.

In practice, polyhedral sets are often parametric. Consider for instance the
for-loop nest, written in a programming language (say C) of a dense matrix
multiplication algorithm. At compile time, the upper bound of the value range
of each loop counter is a symbol. To be more precise, the iterations of that
for-loop nest are the integer points of a polyhedral set P given by a system of
linear inequalities A�x ≤ �b where A is a matrix with integer coefficients, �b is a
vector of symbols (actually the parameters of the polyhedral set) and �x is the
vector of the loop counters. At execution time, different values of�b yield different
shapes and numbers of vertices for PI . So what can be done at compile time?
This is the question motivating this paper. But before we present our results,
let us continue our literature review, returning to the problem of counting the
number of integer points in (parametric) polytopes. Verdoolaege, Seghir, Beyls,
Loechner and Bruynooghe present in [17] a novel method for that latter problem,
based on Barvinok’s decomposition for counting the number of integer points in
a non-parametric polytope. In [15], Seghir, Loechner and Meister deal with the
more general problem of counting the number of images by an affine integer
transformation of the lattice points contained in a parametric polytope.

Since the present paper is concerned with the integer hull of a parametric
polyhedron, it is natural to ask for the number of vertices in an integer hull
of a polyhedron. Note that this problem only considers the vertices not all the
lattice points. The earliest study by Cook, Hartmann, Kannan and McDiarmid,
in [4], shows that the number of vertices of PI is related to the size (as defined

254 M. Moreno Maza and L. Wang

in [12]) of the coefficients of the inequalities that describe P . More recent studies
such as [18] and [2] use different approaches to reach similar or slightly improved
estimates.

We turn our attention to the main result of our paper. We consider a rational
convex polygon (that is, a rational polyhedral set of dimension 2) given by a
system of linear inequalities A�x ≤ �b, where A is a matrix over Z, with m rows
and d = 2 columns, and�b is an integer vector. The coordinates b1, . . . , bm of�b are
treated as parameters, while the coefficients of A have fixed values. We observe
that for every 1 ≤ i ≤ m, there exists a positive integer Ti so that, when each
b1, . . . , bm is large enough, the vertex sets V and V ′ of the respectively integer
hulls of

P := P (b1, . . . , bi−1, bi, bi+1, . . . , bm)

and
P ′ := P (b1, . . . , bi−1, bi + Ti, bi+1, . . . , bm),

respectively, are in “simple” one-to-one correspondence. Here, simple, means
that one can construct a partition V1, . . . , Vc of V and a partition V ′

1, . . . , V
′
c

of V ′, together with vectors �u1, . . . , �uc of Z
2 so that every vertex of V ′

i

is the image of a vertex of Vi by the translation of �ui, for all 1 ≤
i ≤ c. Section 5 offers various examples, including animated images, which
illustrate our result. Watching those animations requires to use a mod-
ern document viewer like Okular. The animations are also available at
https://github.com/lxwangruc/parametric integer hull.

While the arguments yielding to our main result are elementary, the proof is
relatively long and technical. The first and main step is a study of the pseudo-
periodicity of a parametric angular section, see Sect. 3. Since a convex polygon is
an intersection of finitely many angular sectors, angular sectors are the building
blocks of our main result, see Sect. 4, where the partitions of V1, . . . , Vc of V ,
V ′

1, . . . , V
′
c of V ′, and the vectors �u1, . . . , �uc are explicitly given. This result and

the ingredients of its proof lead us to propose a new algorithm for computing
the integer hull of a rational convex polygon, see Sect. 6.

We note that in [10] Meister presents a new method for computing the integer
hull of a parameterized rational polyhedron. The author introduces a concept
of periodic polyhedron (with facets given by equalities depending on periodic
numbers). Hence, the word “periodic” means that the polyhedron can be defined
in a periodic manner which is different from our perspective.

Last but not least, we recall the work of Eugème Ehrhart from his articles [6]
and [5]. For each integer n ≥ 1, Ehrhart defined the dilation of the polyhedron P
by n as the polyhedron nP = {nq ∈ Q

d | q ∈ P}. Ehrhart studied the number
of lattice points in nP , that is:

i(P, n) = #(nP ∩ Z
d) = #{q ∈ P | nq ∈ Zd}.

He proved that there exists an integer N > 0 and polynomials f0, f1, . . . , fN−1

such that i(P, n) = fi(n) if n ≡ i mod N. The quantity i(P, n) is called the
Ehrhart quasi-polynomial of P , in the dilation variable n. Ehrhart’s study on

https://en.wikipedia.org/wiki/Okular
https://github.com/lxwangruc/parametric_integer_hull

On the Pseudo-Periodicity of the Integer Hull of Convex Polygons 255

quasi-polynomials is focused on counting the lattice points and can be seen as a
higher-dimensional generalization of Pick’s theorem. Meanwhile our research on
the pseudo-periodicity of a parametric convex polygon studies the number and
coordinates of the vertices of the integer hull.

2 Preliminaries

In this review of polyhedral geometry, we follow the concepts and notations of
Schrijver’s book [12], As usual, we denote by Z, Q and R the ring of integers, the
field of rational numbers and the field of real numbers. Unless specified otherwise,
all matrices and vectors have their coefficients in Z. A subset P ⊆ Q

d is called a
convex polyhedron (or simply a polyhedron) if P = {�x ∈ Q

d | A�x ≤ �b} holds, for a
matrix A ∈ Q

m×d and a vector �b ∈ Q
m, where m and d are positive integers; we

call the linear system {A�x ≤ �b} an H-representation of P . Hence, a polyhedron
is the intersection of finitely many affine half-spaces. Here an affine half-space
is a set of the form {�x ∈ Q

d | �wt�x ≤ δ} for some nonzero vector �w ∈ Z
d and

an integer number δ. When d = 2, as in the rest of this paper, the term convex
polygon is used for convex polyhedron.

A non-empty subset F ⊆ P is a face of P if F = {�x ∈ P |A′�x = �b′} for
some subsystem A′�x ≤ �b′ of A�x ≤ b. A face distinct from P and with maximum
dimension is a facet of P . The lineality space of P is {�x ∈ Q

d | A�x = �0} and
P is said pointed if its lineality space has dimension zero. Note that, in this
paper, we only consider pointed polyhedra. For a pointed polyhedron P , the
inclusion-minimal faces are the vertices of P .

We are interested in computing PI the integer hull of P , that is, the smallest
convex polyhedron containing the integer points of P . In other words, PI is the
intersection of all convex polyhedra containing P ∩ Z

d. If P is pointed, then
P = PI if and only if every vertex of P is integral [14]. Therefore, the convex
hull of all the vertices of PI is PI itself.

In this paper, we also talk about parametric polyhedra. In particular, we use
the notation P (�b) = {�x | A�x ≤ �b} where �b is unknown and P (bi) = {�x | A�x ≤ �b}
where bi is an unknown coordinate of the vector �b.

3 The Integer Hull of an Angular Sector

Lemma 1 is an elementary result which gives a necessary and sufficient condition
for a line in the affine plane to have integer points. With Lemma 2, we show
that every angular sector S without integer points on its facets can be replaced
by a angular sector S′ with integer points on both of its facets and so that S
and S′ have the same integer hull. With Lemma 3, we perform another reduction
step: we show how the computation of the integer hull of an angular sector with
integer points on its facets can be reduced to that of the integer hull of a triangle
with at least two integer vertices.

Theorem 1 is our main result specialized to the case of a parametric angular
sector. In other words, Theorem 1 describes the pseudo-periodical phenomenon

256 M. Moreno Maza and L. Wang

observed when varying one of the “right-hand side” parameters over a sufficiently
large range of consecutive integer values. In fact, Theorem 1 precisely gives a
formula for the period as well as a formula for transforming the integer hull of
the parametric angular sector over a period.

Definition 1. An angular sector in an affine plane is defined by the intersection
of two half-planes whose boundaries intersect in a single point, called the vertex
of that angular sector.

Lemma 1. In the affine plane, with Cartesian coordinates (x, y), consider a line
with equation ax + cy = b where a, b and c are all integers so that there is no
common divisor among them, that is, gcd(a, b, c) = 1. Then, three cases arise:

– Case 1. If a �= 0 and c �= 0 then there are integer points along the line if and
only if a and c are coprime. Moreover, if gcd(a, c) = 1 holds, then a point
(x, y) on the line is integral if and only if we have:

x ≡ b

a
mod c.

– Case 2. If a = 0, then c must equal to 1 for the line to have integer points.
Moreover, if c = 1, then a point (x, y) on the line is integral if and only if x
is an integer.

– Case 3. If c = 0, then a must equal to 1 for the line to have integer points.
Moreover, if a = 1 holds, then a point (x, y) on the line is integral if and only
if y is an integer.

Proof � For Case 1, the y coordinate of a point (x, y) on the line must satisfy:

y =
b − ax

c

For each integer x, the above y is an integer if and only if we have:

b − ax ≡ 0 mod c.

Therefore, every point (x, y) on the line is an integer point if and only if x is an
integer satisfying

b ≡ ax mod c.

If gcd(a, c) = 1 holds, then a is invertible modulo c and every integer x congruent
to b

a mod c is a solution. If a and c are not coprime and if the above equation
has a solution in x then gcd(a, b, c) = 1 cannot hold, which is a contradiction.
Therefore, the line admits integer points if and only if gcd(a, c) = 1 holds.
Moreover, when this holds, those points (x, y) satisfy:

x ≡ b

a
mod c,

For Case 2, with a = 0, the condition becomes gcd(b, c) = 1 and the line now
writes cy = b. Therefore, b

c must be integer in order to have integer points on
the line, which means c must equal to 1. Case 3 is similar to Case 2. �

On the Pseudo-Periodicity of the Integer Hull of Convex Polygons 257

Lemma 2. In the affine plane, with Cartesian coordinates (x, y), let S be a
angular sector defined by {

a1 x + c1 y ≤ b1
a2 x + c2 y ≤ b2

.

Then, one can find another angular sector S′, given by
{

a1 x + c1 y ≤ b′
1

a2 x + c2 y ≤ b2

such that a1
g and c1

g are coprime where g = gcd(a1, c1, b
′
1) ≥ 1 and so that the

integer hull of S′ is the same as that of S.

Fig. 1. The integer hull of sector BAC is the same as that of sector B′AC′

Proof � Let A be the vertex of S. Let B (resp. C) be a point on the facet of S
with equation a1 x + c1 y = b1 (resp. a2 x + c2 y = b2). The general idea is to
construct S′ by sliding A to the vertex A′ of S′ along the line (AC), with the
facets of S′ being given by (A′C) and (A′B′) so that

1. (A′B′) and (AB) are parallel lines with no integer points between them,
meanwhile

2. (A′B′) has integer points.

Details follow, including corner cases. Three cases arise:

– Case 1. If a1 and c1 are non-zero integers and coprime, then, by Lemma 1,
one can choose S′ = S, thus A′ = A and b′

1 = b1.
– Case 2. If a1 and c1 are non-zero but a1 is not coprime to c1, then we have

g := gcd(a1, c1) > 1. Let C have coordinate (xC , yC). Two cases arise.

258 M. Moreno Maza and L. Wang

• Case 2.1. If yC > −a1
c1

xC + b1
c1

(as in Fig. 1), then we can choose b′
1 =

	 b1
g
g. Since b′

1 > b1 and C is above (AB), the line (A′B′) is closer to C

than (AB). We want to prove that there’s no integer point between (A′B′)
and (AB). Assume, by contradiction, there is an integer point X between
(A′B′) and (AB). Then, a line a1 x + c1 y = b′′

1 must pass through X
such that b1 < b′′

1 < b′
1 and b′′

1 mod g ≡ 0 both hold. Since we chose
b′
1 = � b1

g �g, the integer b′′
1 cannot exist. Therefore, there is no integer

point between (A′B′) and (AB). Since all the integer points in S are also
in S′, the integer hull of S′ must be the same as that of S.

• Case 2.2. If yC < −a1
c1

xC + b1
c1

holds, then we can choose b′
1 = � b1

g �g. And
the proof is similar to that of the previous case.

– Case 3. Now we consider the case where either a1 or c1 is zero. Three
cases arise:

• Case 3.1. Assume a1 = 0, if b1
c1

is an integer, then we can choose b′
1 = b1,

that is S′ = S.
• Case 3.2. If a1 = 0 and b1

c1
is not an integer, then we can choose b1 to be

� b1
c1

�×c1 or 	 b1
c1

×c1 depending on the relationship between C and (AB).
Similarly to the discussion above, there is no integer point between (AB)
and (A′B′).

• Case 3.3. Finally, If c1 = 0, we can use the same proof as when a1 = 0,
except we need to see if b1

a1
is an integer or not.

�

Lemma 3. In the affine plane, with Cartesian coordinates (x, y), let S be an
angular sector defined by {

a1 x + c1 y ≤ b1
a2 x + c2 y ≤ b2

,

where gcd(ai, bi, ci) = 1 for i ∈ {1, 2} and ai, bi, ci are all integers (see Fig. 2).
We assume that both facets of S admit integer points. Let SI be the integer hull
of S and let A be the vertex of S. Let B and C be integer points on each facet
of S, with A �= B and A �= C, chosen so that there is no integer point between A
and B (on the facet given by A and B) and no integer point between A and C
(on the facet given by A and C). Then, one of the following properties hold:

1. A is an integer point and S = SI ,
2. A is not an integer point and the vertex set V of SI is equal to the vertex set

V ′ of the integer hull
I of the triangle
ABC.

Proof � We write S =
ABC ∪ T , where T is the convex hull of {B,C} ∪
(S\
ABC). Therefore, we have:

SI =
I ∪ TI , (1)

where TI is the integer hull of T . The convex polygon T has 2 vertices (namely B
and C, which are integer points) and 3 facets (the segment [B,C] and two

On the Pseudo-Periodicity of the Integer Hull of Convex Polygons 259

unbounded facets). From Lemma 1, the two unbounded facets of T have infinitely
many integer points. It follows that TI = T holds. Therefore, with Eq. (1) we
deduce:

SI =
I ∪ T. (2)

We consider two cases for the vertex A.

1. Assume that A is an integer point. Then, all points A,B,C are integer points,
and since
ABC is pointed, we deduce
I =
ABC. Thus, with Eq. (2) we
deduce S = SI , as desired.

2. If A is not an integer point, if suffices to observe from Eq. (2) that all vertices
of T are vertices of
I which yield the conclusion.

Fig. 2. Finding the integer hull of an angular sector

�

Theorem 1. Let us consider a parametric angular sector S(bi) defined by
{

a1 x + c1 y ≤ b1
a2 x + c2 y ≤ b2

,

where gcd(ai, bi, ci) = 1 for i ∈ {1, 2} and ai, bi, ci are all integers, bi ∈ {b1, b2}.
Let SI(bi) be the integer hull of S(bi). Then, there exists an integer T and a
vector �u such that SI(bi + T) is the translation of SI(bi) by �u.

The integer T is given by 1
g2

|a2 c1 − a1 c2| or 1
g1

|a2 c1 − a1 c2| and

�u =
(

c2 T

a2 c1 − a1 c2
,

a2 T

a2 c1 − a1 c2

)

260 M. Moreno Maza and L. Wang

or

�u =
(

c1 T

a1 c2 − a2 c1
,

a1 T

a1 c2 − a2 c1

)

for bi = b1 or bi = b2 respectively, where gi = gcd(ai, ci). Note that a2 c1 −
a1 c2 �= 0 holds.

Proof � Let A be the vertex of S(b). Let B(xB , yB) be a point such that
{

a1 xB + c1 yB = b1
a2 xB + c2 yB ≤ b2

and C(xC , yC) be a point such that
{

a1 xC + c1 yC ≤ b1
a2 xC + c2 yC = b2

with A �= B and A �= C. Without loss of generality, assume bi = b2 and T =
1
g1

|a2 c1 − a1 c2|. Consider the angular sector S′ is given by
{

a1 x + c1 y ≤ b1
a2 x + c2 y ≤ b′

2 = b2 + T
, (3)

where A′ is the vertex of S′ and B′ is on the facet of S′ contained in the line
AB). We distinguish three cases.

– Case 1. Assume that for each i ∈ {1, 2}, the integers ai and ci are non-zero
coprime. With this assumption, the integer T becomes |a2 c1 − a1 c2|. Let D

and E be two integer points where
−−→
AD = t

−→
AC and

−→
AE = k

−−→
AB where t

and k are positive real numbers. Such points exist since ai and ci are coprime
integers for i ∈ {1, 2}. We choose D and E so that there is no other integer
point on the segments [A,D] and [A,E]. The points D′ and E′ are defined in
a similar way on the angular sector S′ (see Fig. 3).

Fig. 3. We want to prove that
−→
AE =

−−−→
A′E′ and

−−→
AD =

−−−→
A′D′

On the Pseudo-Periodicity of the Integer Hull of Convex Polygons 261

We shall prove that the integer hull of
ADE is a translation of the integer hull
of
A′D′E′. This fact will follow from the following two vector equalities:

−→
AE =

−−→
A′E′ and

−−→
AD =

−−−→
A′D′, (4)

which we shall prove now. Let (xA, yA) be the coordinates of A. Since A is the
vertex of S, we have:

xA =
b2c1 − b1c2
a2c1 − a1c2

= x1 + x0,

where x1 = �xA� and x0 = xA − x1. The coordinate of A′, (xA′ , yA′), would
become

xA′ =
b′
2c1 − b1c2

a2c1 − a1c2
=

b2c1 − b1c2
a2c1 − a1c2

+
T c1
T

= xA + c1 = x1 + c1 + x0.

Proof of
−→
AE =

−−→
A′E′. By definition of the point E, its x-coordinate has the

form
xE = xA − x0 + Δx1 = x1 + Δx1, (5)

where Δx1 is a integer number. Since a1 and c1 are non-zero and coprime,
from Lemma 1, we have:

xE ≡ b1
a1

mod c1

Δx1 + x1 ≡ b1
a1

mod c1

Δx1 ≡ b1
a1

− x1 mod c1

Similarly, the x-coordinate xE′ of E′ satisfies xE′ = xA′ − x0 + Δx′
1 = x1 +

c1 + Δx′
1, where Δx′

1 is a integer number. From Lemma 1 we have:

xE′ ≡ b1
a1

mod c1

Δx′
1 + x1 + c1 ≡ b1

a1
mod c1

Δx′
1 ≡ b1

a1
− x1 − c1 mod c1

Δx′
1 ≡ b1

a1
− x1 ≡Δx1 mod c1

Since we choose E (resp. E′) as close as possible to A (resp. A′) we can
assume that Δx′

1 − Δx1 is less than c1. Thus we have

Δx′
1 = Δx1. (6)

262 M. Moreno Maza and L. Wang

Therefore, we have

xE − xA = Δx1 − x0 = xE′ − xA′ . (7)

Since A,A′, E,E′ are all on the line a1x + c1y = b1, we easily deduce:

yE − yA =
−a1 (Δx1 − x0)

c1
= yE′ − yA′ . (8)

With Eqs. 7 and 8 we have proved:

−→
AE =

−−→
A′E′. (9)

Proof of
−−→
AD =

−−−→
A′D′. Let xD = xA − x0 + Δx2 = x1 + Δx2, where Δx2 is a

integer number. From Lemma 1 we know that

xD ≡ b2
a2

mod c2

Δx2 + x1 ≡ b2
a2

mod c2

Δx2 ≡ b2
a2

− x1 mod c2

Similarly, let xD′ = xA′ − x0 + Δx′
2 = x1 + c1 + Δx′

2, where Δx′
2 is a integer

number. From Lemma 1 we know that

xD′ ≡ b′
2

a2
mod c2

Δx′
2 + x1 + c1 ≡ b′

2

a2
mod c2

Δx′
2 ≡ b′

2

a2
− x1 − c1 mod c2

Δx′
2 ≡ b2 + (a2c1 − a1c2)

a2
− x1 − c1 mod c2

Δx′
2 ≡ b2

a2
+

(a2c1 − a1c2)
a2

− x1 − c1 mod c2

Δx′
2 ≡ b2

a2
+ c1 − na1c2

a2
− x1 − c1 mod c2

Δx′
2 ≡ b2

a2
− a1c2

a2
− x1 mod c2

Δx′
2 ≡ b2

a2
− x1 ≡ Δx2 mod c2

Therefore, we have

xD − xA = Δx2 − x0 = xD′ − xA′ . (10)

On the Pseudo-Periodicity of the Integer Hull of Convex Polygons 263

Since A,D are all on the line a2x + c2y = b2, we have

yD − yA =
−a2 (Δx2 − x0)

c2
. (11)

And A′,D′ are all on the line a2x + c2y = b2 + (a2c1 − a1c2), we have

y′
D − y′

A =
−a2 (Δx2 − x0)

c2
= yD − yA. (12)

From Eq. 10 and 12 we know that
−−→
AD =

−−−→
A′D′.

So far we have proved that
−→
AE =

−−→
A′E′ and

−−→
AD =

−−−→
A′D′ both hold, which imply:

−−→
AA′ =

−−→
DD′ =

−−→
EE′. (13)

With the assumption that D,E,D′, E′ are all integer points, we deduce that for
any integer point F in
ADE, there is an integer point F ′ in
A′D′E′ such
that −−→

FF ′ =
−−→
AA′. (14)

Therefore, the integer hulls of
ADE is a translation of that of
A′D′E′.
Finally, with Lemma 3, we conclude hat (in this Case 1) there exists a vector

�u = �AA′ =
(

c1 T

a1 c2 − a2 c1
,

a1 T

a1 c2 − a2 c1

)

and an integer T = |a2 c1 − a1 c2| such that SI(b2 + T) is a translation of SI(b2)
by �u.

– Case 2. Consider the case where a2 and c2 are coprime integers while a1 and c1
are not coprime. From Lemma 2 we know that we can find another line a1x+
c1y = b′

1 such that a1
g and c1

g are coprime, where g = g1 = gcd(a1, c1, b
′
1) ≥ 1.

Then, we can claim that if we re-define (AB) as a1
g1

x + c1
g1

y = b′
1

g1
, we will

not lose any integer point in the new sector comparing to our original sector.
Therefore, we have reduced this second case to the previous one.

– Case 3. Consider the case where a1 and c1 are coprime integers while a2 and c2
are not coprime. Similar to Case 2, we can find another line

a2x + c2y = b′
2 (15)

such that a2
g and c2

g are coprime where g = g2 = gcd(a2, c2, b
′
2) ≥ 1, also

the new line is not further to C than line (AC). Then we can say that if we
re-define (AC) as a2

g2
x + c2

g2
y = b′

2
g2

, we will not lose any integer point in the
new sector comparing to our original sector. Using Case 1 we can prove that
T = |a2c1

g2
− a1c2

g2
| = 1

g2
|a2 c1 − a1 c2| w.r.t b′

2
g2

. Therefore, returning to the
original b2 (which is b′

2 as in Eq. (15) plus some integer constant), we have
T = g2 |a2c1

g2
− a1c2

g2
| = |a2c1 − a1c2|.

�

264 M. Moreno Maza and L. Wang

4 The Integer Hull of a Convex Polygon

4.1 Case of a Triangle

We start by a fundamental case, that of a triangle P , say defined by
⎧⎨
⎩

a1 x + c1 y ≤ b1
a2 x + c2 y ≤ b2
a3 x + c3 y ≤ b3

with gcd(ai, bi, ci) = 1 for i ∈ {1, 2, 3}. We further assume gcd(ai, ci) = 1 for
i ∈ {1, 2, 3}, case to which one can reduce using Lemma 2. Note that P is the
intersection of three angular sectors S1, S2, S3 that are defined by

{
a1 x + c1 y ≤ b1
a2 x + c2 y ≤ b2

,

{
a2 x + c2 y ≤ b2
a3 x + c3 y ≤ b3

,

{
a1 x + c1 y ≤ b1
a3 x + c3 y ≤ b3

,

respectively. Hence, we have P =
⋂3

i=1 Si.

Lemma 4. Let PI and SiI be the integer hulls of P and Si, respectively. Then,
we have PI =

⋂3
i=1 SiI .

Proof � Any integer point A ∈ PI must be in P , that is A ∈ Si for i ∈ {1, 2, 3}.
Since A is an integer point, the fact A ∈ Si holds implies that A ∈ SiI holds as
well. Therefore, the point A must be in the intersection of SiI for i ∈ {1, 2, 3}.
Similarly, any integer point B ∈ ⋂3

i=1 SiI must satisfy B ∈ Si for i ∈ {1, 2, 3}.
Thus we have B ∈ ⋂3

i=1 Si = P . Since B is an integer point in P , we deduce
B ∈ PI . �

Lemma 5. For a line defined by ax + cy = b, with a, b, c non-zero integers, and
gcd(a, c) = 1, and for two points A(xA, yA) and B(xB, yB) on that line, there
are at least two integer points on the segment [A,B] if and only if we have:
|xA − xB | ≥ |c|.

Proof � By Lemma 1, and under the hypotheses of this lemma, a point on the
line ax + cy = b is an integer point if and only its x-coordinate satisfies

x ≡ b

a
mod c.

Therefore, the distance between the x-values of any two consecutive integer
points should be c. The conclusion follows. �

On the Pseudo-Periodicity of the Integer Hull of Convex Polygons 265

Lemma 6. Let V, V1, V2, V3 be the vertex sets of PI , S1I , S2I , S3I , respectively.
Then, we have V = V1 ∪ V2 ∪ V3 and the pairwise intersections of the Vi’s are
all empty, if the following three inequalities all hold:

⎧⎪⎨
⎪⎩

| b2c1−b1c2
a2c1−a1c2

− b1c3−b3c1
a1c3−a3c1

| ≥ |c1|
| b2c1−b1c2
a2c1−a1c2

− b2c3−b3c2
a2c3−a3c2

| ≥ |c2|
| b3c1−b1c3
a3c1−a1c3

− b2c3−b3c2
a2c3−a3c2

| ≥ |c3|
. (16)

Proof � From Lemma 5, there are at least two integer point on each facet of
the triangle, whenever the three inequalities of (16) all hold. To find the vertex
sets Vi, i ∈ {1, 2, 3}, we need to find the closest integer points to each of the
three vertices of P , see Lemma 3. Since there are at least two integer points on
each facet, then the triangles we find for Si according to Lemma 3 do not overlap
with each other. Therefore, V = V1 ∪ V2 ∪ V3 and the pairwise intersections of
the Vi’s are all empty. �

Theorem 2. Let P (bi) be a parametric triangle where bi ∈ {b1, b2, b3}, and
PI(bi) is the integer hull of P (bi). We say that |bi| is large enough whenever the
following three inequalities all hold:

⎧⎪⎨
⎪⎩

| b2c1−b1c2
a2c1−a1c2

− b1c3−b3c1
a1c3−a3c1

| ≥ |c1|
| b2c1−b1c2
a2c1−a1c2

− b2c3−b3c2
a2c3−a3c2

| ≥ |c2|
| b3c1−b1c3
a3c1−a1c3

− b2c3−b3c2
a2c3−a3c2

| ≥ |c3|
.

There exists an integer T and 3 vectors �u,�v and �w, such that for |b| large enough,
the integer hull PI(b + T) can be obtained from PI(b) as follows.

As defined above, denoting S1, S2, S3 the angular sectors of P (b) and by
S1I , S2I , S3I their respective integer hulls, the integer hull of P (T + b) is the
intersection of fu(S1I), fv(S2I), fw(S3I) where fu, fv, fw are the translations of
vectors �u,�v and �w respectively. Specifically, when b = b1 we have

T = lcm
(

1
g2

|a2 c1 − a1 c2|, 1
g3

|a3 c1 − a1 c3|
)

.

Similar results apply to other bi as well.

Proof � Without loss of generality, assume bi = b1. For S1, defined by a1 x +
c1 y ≥ b1, a2 x + c2 y ≥ b2, we know from Theorem 1 that there exists an integer

T1 =
1
g2

|a2 c1 − a1 c2|

and a vector
�h1 =

(
c2 T1

a2 c1 − a1 c2
,

a2 T1

a2 c1 − a1 c2

)

such that S1I(b1 + T1) is the translation of S1I(b1) by �h1.

266 M. Moreno Maza and L. Wang

Similarly, for S3, defined by a1 x + c1 y ≥ b1, a3 x + c3 y ≥ b3, there exists an
integer

T3 =
1
g3

|a3 c1 − a1 c3|

and a vector
�h3 =

(
c3 T3

a3 c1 − a1 c3
,

a3 T3

a3 c1 − a1 c3

)

such that S3I(b1 + T3) is the translation of S3I(b1) by �h3.
As for S2, it is not affected by the change in b1, which means for any integer k,

S2I(b1 + k) is the same as S2I(b1), in other words, S2I(b1 + k) is the translation
of S2I(b1) by the zero vector.

Combining the three sectors, we have proved that for T = lcm(T1, T3),
and the three vectors �u = T

T1
�h1, �v = T

T2
�h3, �w = (0, 0), the sets fu(S1I(b1)),

fv(S2I(b1)), fw(S3I(b1)) are the same as the sets S1I(b1 + T), S2I(b1 + T),
S3I(b1 + T) respectively. Also as we have proved in Lemma 4 that PI =

⋂3
i=1 SiI .

Therefore, PI(T + b1) is the intersection of fu(S1I(b1)), fv(S2I(b1)), fw(S3I(b1))
where fu, fv, fw are the translations of vectors �u,�v, �w respectively.

The proofs for bi = b2 or bi = b3 are similar. �

4.2 Convex Polygon of Arbitrary Shape

With Theorem 2 proved, we can extend it to a convex polygon of any shape.

Theorem 3. Let P (b) be a parametric polygon given by

ai x + ci y ≤ bi,

where i ∈ {1, . . . , n} and the parameter b ∈ {b1, . . . , bn} and PI(b) be the integer
hull of P (b). Specifically, ai x + ci y ≥ bi and ai+1 x + ci+1 y ≥ bi+1 define an
angular sector Si of P , for all 1 ≤ i ≤ n, with the convention i + 1 = 1 if i = n.
Then, there exist an integer T and n vectors �v1, . . . , �vn, such that, for |b| large
enough, PI(b + T) can be obtained from PI(b) as follows. Denoting by SiI the
integer hull of the angular sector Si, for all 1 ≤ i ≤ n, the integer hull PI(b + T)
of P (T + b) is the intersection of fvi

(SiI), where fvi
are the translations of

vectors �vi. Specifically, for 1 ≤ m ≤ n, when b = bm we have

T = lcm
(

1
gm−1

|am−1 cm − am cm−1|, 1
gm+1

|am+1 cm − am cm+1|
)

,

here we have m − 1 = n when m = 1, and m + 1 = 1 when m = n.
The condition |bm| large enough means that all of the following inequalities

hold: ⎧⎪⎨
⎪⎩

| bm+1cm−bmcm+1
am+1cm−amcm+1

− bmcm−1−bm−1cm
amcm−1−am−1cm

| ≥ |cm|
| bm+1cm−bmcm+1
am+1cm−amcm+1

− bm+1cm+2−bm+2cm+1
am+1cm+2−am+2cm+1

| ≥ |cm+1|
| bmcm−1−bm−1cm
amcm−1−am−1cm

− bm−2cm−1−bm−1cm−2
am−2cm−1−am−1cm−2

| ≥ |cm−1|
. (17)

On the Pseudo-Periodicity of the Integer Hull of Convex Polygons 267

Proof � Without lose of generality, let’s assume b = b1. For S1, defined by
a1 x + c1 y ≥ b1, a2 x + c2 y ≥ b2, we know from Theorem 1 that we choose the
integer

T1 =
1
g2

|a2 c1 − a1 c2|

and the vector
�h1 =

(
c2 T1

a2 c1 − a1 c2
,

a2 T1

a2 c1 − a1 c2

)

such that S1I(b1 + T1) is the translation of S1I(b1) by �h1. Similarly, for Sn,
defined by a1 x + c1 y ≥ b1, an x + cn y ≥ bn, we choose the integer

Tn =
1
gn

|an c1 − a1 cn|

and the vector
�hn =

(
cn Tn

an c1 − a1 cn
,

an Tn

an c1 − a1 cn

)

such that SnI(b1 + Tn) is the translation of SnI(b1) by �hn.
As for each j ∈ {2, . . . , n − 1}, the angular sector Sj is not effected by the

change in b1, which means for any integer k, the sets SjI(b1 + k) and SjI(b1)
are the same, in other words, SjI(b1 + k) is the translation of SjI(b1) by the
zero vector.

Combining all n sectors, we have proved that for T = lcm(T1, Tn), and the
n vectors �v1 = T

T1
�h1, �vn = T

Tn

�hn, �vj = (0, 0) for j ∈ {2, . . . , n − 1}, the set
fvi

(SiI(b1)), for i ∈ {1, . . . , n}, is the same as the set SiI(b1 + T).
Also as we have proved in Lemma 4, we have PI =

⋂n
i=1 SiI . Therefore,

PI(T + b1) is the intersection of fvi
(SiI(b1)) where fvi

is the translation of
vector �v1. �

5 Examples

In this section, we give some examples to show the periodic phenomenon that
we proved in the previous sections.

Consider a simple parametric polytope. Figure 4 shows a triangle P (b)
defined by ⎧⎨

⎩
x − 4 y ≤ −4

−2x + y ≤ 0
x + y ≤ b

.

First, we look at the angular sector S(b) given by x − 4 y ≤ −4 and x + y ≤
b (see Fig. 4a1). According to Theorem 1, the integer hull of S(b − 5n) is a
transformation of that of S(b − 5 (n − 1)) by �(4, 1) for any n ≥ 1.

1 Also available at https://github.com/lxwangruc/parametric integer hull.

https://github.com/lxwangruc/parametric_integer_hull

268 M. Moreno Maza and L. Wang

We can extend this observation to the triangle P (b). Using Theorem 2 when
|b| ≥ 11, the integer hull of P (b − 15n) is a translation of P (b − 15(n − 1)) by

�(0, 0), �(12, 3), �(5, 10) for n ≥ 1.
Figure 4b shows the integer hulls of P (b) where −26 ≤ b ≤ −11, the points

in the figure are the vertices of the integer hull. We can see that the integer hull
of P (−26) is a translation of that of P (−11).

Fig. 4. The periodic phenomenon in a simple example. The dots are the vertices of the
integer hull.

Consider a more complicated example. In order to have a clear view, we only
look at one angular sector S(b) given by

{−103x + 43 y ≤ 172
59x + 83 y ≤ b

.

By Theorem 1, we have T = 11086 and the integer hull of S(b + nT) is a
transformation of that of S(b). We pick b = 90 × 83 and n = 83 so that the
integer hull of S(83 × (90 + 11086 + i)) is a transformation of that of S(83 ×
(90 + i)). Figure 5 shows the first 15 iterations of the vertices of the integer hull
of each sector.

On the Pseudo-Periodicity of the Integer Hull of Convex Polygons 269

Fig. 5. A more complicated example. The red dots are the vertices of the integer hull
of the sector. (Color figure online)

6 A New Integer Hull Algorithm

The most natural application of our conclusions from the previous sections is to
use the periodic phenomenon to study the integer hull of a parametric polyhe-
dron. Before discussing that application, we propose an algorithm, based on the
results of Sect. 3, for computing the integer hull of a rational convex polygon P .

We assume that P has at least one integer point and writes P = {�x | A�x ≤ �b},
for a matrix A ∈ Z

m×2 and a vector �b ∈ Z
m, where m is a positive integer. It is

easy to determine:

1. the equations of the facets F1, . . . , Ff of P , each of them having a form
ai x + ci y ≥ bi. Note that if a facet has no integer point, we use Lemma 2
to replace it with a new facet that has integer points, without modifying the
integer hull of P .

2. the coordinates of the vertices V1, . . . , Vf of P , so that [Vi, Vi+1] = Fi, with
the conventions Vf+1 = V1 and F0 = Ff .

To compute the integer hull PI of P , we compute its vertices. We transform V
so that it becomes the vertex set of PI . We visit each vertex Vi of V and do the
following:

1. if the coordinates of Vi are integers, we keep Vi in V ,
2. otherwise:

(a) we compute the vertex set U of the integer hull of the angular sector
defined by Fi−1 and Fi with Vi as its vertex. In the current implementation
of the algorithm, we first find the integer points A,B on Fi and Fi−1 that
are closest to Vi. If no such A or B exists, we pick A = Vi−1 and B = Vi+1.
Then we use the triangle rasterisation algorithm [20] on
ViAB to find
the integer points that are likely to be the vertices of the integer hull of

270 M. Moreno Maza and L. Wang

the angular sector. That is, we find all the integer points that are closest
to the edges [ViA] and [ViB]. Then, we compute the convex hull [19] of
all the possible integer points plus A,B to find the vertex set U .

(b) we replace Vi with U .

If the given P is a parametric convex polygon, where bi is unknown, we
propose the following steps to compute the vertices of PI :

1. determine the smallest |bi| so that the constrains in Theorem 3 hold (See
inequalities 17).

2. compute the period T and the transformation vectors in Theorem 3
3. compute the integer hull of every non-parametric polyhedron in this period.
4. when the values of the parameters are available, using the corresponding

solution from the previous step and the vectors from step 2 to compute the
integer hull of the P with the given parameters.

Note that we can finish the first three steps “off-line”, once the parameters
are given the only computation that needs to be done is the translations which
could be done in linear time. This method is both time and space efficient if the
period T is short.

References

1. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhe-
dra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994). https://
doi.org/10.1287/moor.19.4.769

2. Berndt, S., Jansen, K., Klein, K.: New bounds for the vertices of the integer hull.
In: Le, H.V., King, V. (eds.) 4th Symposium on Simplicity in Algorithms, SOSA
2021, Virtual Conference, January 11–12, 2021, pp. 25–36. SIAM (2021). https://
doi.org/10.1137/1.9781611976496.3

3. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discret.
Math. 4(4), 305–337 (1973). https://doi.org/10.1016/0012-365X(73)90167-2

4. Cook, W.J., Hartmann, M., Kannan, R., McDiarmid, C.: On integer points in poly-
hedra. Combinatorica 12(1), 27–37 (1992). https://doi.org/10.1007/BF01191202

5. Ehrhart, E.: Polynômes arithmétiques et méthode des polyédres en combinatoire.
International Series of Numerical Mathematics, Birkhäuser Verlag, Basel 35 (1977)

6. Erhart, E.: Sur un problème de géométrie diophantienne linéaire. i. J. für die reine
und angewandte Mathematik 226, 1–29 (1967)

7. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs
and an algorithm for the mixed integer problem. In: Jünger, M., et al. (eds.) 50
Years of Integer Programming 1958–2008, pp. 77–103. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-540-68279-0 4

8. Land, A., Doig, A.: An automatic method of solving discrete programming prob-
lems. Econometrica: J. Econom. Soc. 28, 497–520 (1960)

9. Loera, J.A.D., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point count-
ing in rational convex polytopes. J. Symb. Comput. 38(4), 1273–1302 (2004).
https://doi.org/10.1016/j.jsc.2003.04.003

10. Meister, B.: Stating and manipulating periodicity in the polytope model: applica-
tions to program analysis and optimization. Ph.D. thesis, Strasbourg 1 (2004)

https://doi.org/10.1287/moor.19.4.769
https://doi.org/10.1287/moor.19.4.769
https://doi.org/10.1137/1.9781611976496.3
https://doi.org/10.1137/1.9781611976496.3
https://doi.org/10.1016/0012-365X(73)90167-2
https://doi.org/10.1007/BF01191202
https://doi.org/10.1007/978-3-540-68279-0_4
https://doi.org/10.1016/j.jsc.2003.04.003

On the Pseudo-Periodicity of the Integer Hull of Convex Polygons 271

11. Pick, G.: Geometrisches zur zahlenlehre. Sitzenber. Lotos (Prague) 19, 311–319
(1899)

12. Rajan, A.: Theory of linear and integer programming, by Alexander Schrijver,
Wiley, New York, 1986, 471 pp. price $71.95. Networks 20(6), 801 (1990). https://
doi.org/10.1002/net.3230200608

13. Schrijver, A.: On cutting planes. Combinatorics 79, 291–296 (1980)
14. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series

in Discrete Mathematics and Optimization. Wiley, Hoboken (1999)
15. Seghir, R., Loechner, V., Meister, B.: Integer affine transformations of parametric

Z-polytopes and applications to loop nest optimization. ACM Trans. Archit. Code
Optim. 9(2), 8:1–8:27 (2012). https://doi.org/10.1145/2207222.2207224

16. Thomas, R.R.: Integer programming: algebraic methods. In: Floudas, C.A., Parda-
los, P.M. (eds.) Encyclopedia of Optimization, 2nd edn., pp. 1624–1634. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-0-387-74759-0 285

17. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting
integer points in parametric polytopes using Barvinok’s rational functions. Algo-
rithmica 48(1), 37–66 (2007). https://doi.org/10.1007/s00453-006-1231-0

18. Veselov, S., Chirkov, A.Y.: Some estimates for the number of vertices of integer
polyhedra. J. Appl. Ind. Math. 2(4), 591–604 (2008)

19. Wikipedia contributors: Convex hull – Wikipedia, the free encyclopedia (2021).
https://en.wikipedia.org/w/index.php?title=Convex hull&oldid=1024617697.
Accessed 1 July 2021

20. Wikipedia contributors: Rasterisation – Wikipedia, the free encyclopedia (2021).
https://en.wikipedia.org/w/index.php?title=Rasterisation&oldid=1027759975.
Accessed 1 July 2021

21. Yanagisawa, H.: A simple algorithm for lattice point counting in rational polygons
(2005)

https://doi.org/10.1002/net.3230200608
https://doi.org/10.1002/net.3230200608
https://doi.org/10.1145/2207222.2207224
https://doi.org/10.1007/978-0-387-74759-0_285
https://doi.org/10.1007/s00453-006-1231-0
https://en.wikipedia.org/w/index.php?title=Convex_hull&oldid=1024617697
https://en.wikipedia.org/w/index.php?title=Rasterisation&oldid=1027759975

Relaxed NewtonSLRA
for Approximate GCD

Kosaku Nagasaka(B)

Kobe University, 3 -11 Tsurukabuto, Kobe, Nada-ku 657-8501, Japan
nagasaka@main.h.kobe-u.ac.jp

Abstract. We propose a better algorithm for approximate GCD in
terms of robustness and distance, based on the NewtonSLRA algorithm
that is a solver for the structured low rank approximation (SLRA) prob-
lem. Our algorithm mainly enlarges the tangent space in the Newton-
SLRA algorithm and adapts it to a certain weighted Frobenius norm. By
this improvement, we prevent a convergence to a local optimum that is
possibly far from the global optimum. We also propose some modifica-
tion using a sparsity on the NewtonSLRA algorithm for the subresultant
matrix in terms of computing time.

Keywords: Approximate GCD · Structured low rank approximation ·
NewtonSLRA algorithm · Weighted Frobenius norm

1 Introduction

Approximate GCD is one of classical and important problems in symbolic-numeric
algorithms that finds a non-trivial greatest common divisor (GCD) of polynomials
in a certain specified neighborhood of the given polynomials. For example, approx-
imate GCD is used for a nearby non-trivial Smith form of a matrix polynomial
[14], applications in signal processing [20], rational function approximation [1,21]
and so on. This problem was introduced implicitly by Dunaway [10] to extract the
squarefree part of the given (numerical) polynomial, and there were several fun-
damental studies [8,11,12,18,23–26] on the early stage of approximate GCD (e.g.
quasi GCD by Schönhage and QRGCD by Corless et al.).

At present, there are mainly two approaches: simple optimization and struc-
tured matrix. UVGCD [33], Fastgcd [2] and GPGCD [6,29] are some typ-
ical algorithms that solve a certain optimization problem to compute their
approximate GCD and/or cofactors directly (e.g. the Gauss–Newton algorithm
with QR decomposition). The structured total least norm (STLN) based algo-
rithms [16,17,34] and the structured low rank approximation (SLRA) based algo-
rithms [27,30] are some typical ones based on structured matrices that basically
compute a perturbed matrix of the column full rank matrix (e.g. the subresultant
matrix). Moreover, we note that there are also algorithms [4,7,21,28,31,32] using

This work was supported by JSPS KAKENHI Grant Number 19K11827.

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 272–292, 2021.
https://doi.org/10.1007/978-3-030-85165-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_16

Relaxed NewtonSLRA for Approximate GCD 273

other bases (e.g. the Bernstein basis) instead of the monomial basis. For further
information, see [3,13,30] for fundamental references of approximate GCD.

In this paper, we propose a better algorithm in terms of robustness and
distance, based on the NewtonSLRA algorithm by Schost and Spaenlehauer [27]
which is a solver for the SLRA problem. Our algorithm mainly enlarges the
tangent space (i.e., orthogonality is relaxed) in the NewtonSLRA algorithm and
adapts it to a certain column weighted Frobenius norm. By these improvements,
we try to prevent a convergence to a local optimum that is possibly far from
the global optimum. We also propose some modification using a sparsity on the
NewtonSLRA algorithm for the subresultant matrix in terms of computing time
(note that the NewtonSLRA algorithm is not specific to approximate GCD).

After the following preliminary subsections including some terminology and
problem description, we start with the brief review of known NewtonSLRA algo-
rithm in Sect. 2. Our theoretical contribution is given in Sect. 3, and our result
of some performance test is given in Sect. 4.

1.1 Definitions and Notations

We assume that polynomials over the reals, f(x) =
∑m

i=0 fix
i ∈ R[x] and

g(x) =
∑n

i=0 gix
i ∈ R[x] are given with the assumption m ≥ n (this is not

required in nature but for simplicity’s sake). We denote the set of matrices of size
p×q by R

p×q which is endowed with the inner product 〈M1,M2〉 = trace(M1M
T
2)

where MT is the transpose of matrix M , and the set of matrices of rank r ∈ N

by Dr ⊂ R
p×q. For an affine subspace S ⊂ R

p×q, we denote its underlying vector
space by S0, its tangent space at M by TMS, and the orthogonal projection of M
on S by ΠS(M). For vectors and matrices, ‖·‖2 and ‖·‖F denote the Euclidean
norm (2-norm) and the Frobenius norm (deduced from the inner product above),
respectively. By this Frobenius norm, we denote the open and closed balls cen-
tered at M ∈ R

p×q and of radius ρ by Bρ(M),Bρ(M) ⊂ R
p×q, respectively.

M−1 and M† are the inverse and Moore–Penrose pseudo-inverse of matrix M ,
respectively. We define the angle between linear subspaces (cf. [9, Chap. 9]) and
the transversally condition as follows (note that we focus on approximate GCD
hence the notations and assumptions are a little bit different from Schost and
Spaenlehauer [27]).

Definition 1 (Angle Between Subspaces). Let S1,S2 ⊂ R
p×q be two linear

subspaces. We define their angle α(S1,S2)=0 if S1 ⊂ S2 or S2 ⊂ S1. Otherwise,
let α(S1,S2) ∈ [0, π/2] ⊂ R be defined by

α(S1,S2) = arccos
(

max
{

〈x, y〉 :
x ∈ S ∩ S1 ∩ (S1 ∩ S2)⊥,
y ∈ S ∩ S2 ∩ (S1 ∩ S2)⊥

})

where S denotes the unit sphere and S⊥ denotes the orthogonal complement of
a linear subspace S of Rp×q. �

Definition 2 (Transversally Condition). Let S be an affine subspace ofRp×q.
We say that S and Dr intersect transversally at ζ ∈ S ∩Dr if codim(S0 ∩TζD0

r) =
codim(S0) + codim(TζD0

r) where codim denotes the codimension in R
p×q. �

274 K. Nagasaka

The coefficient vector (in the descending term order) of p(x) ∈ R[x] of degree k
is denoted by −→p ∈ R

k+1. We denote the polynomial norm of p(x) by ‖p‖2 that
is defined as ‖p‖2=‖−→p ‖2. For a pair (f, g)∈ R[x] × R[x], we define its norm as
‖(f, g)‖2=

√
‖f ‖22+‖g‖22.

The subresultant matrix of order r of f(x) and g(x) is denoted by Sylr(f, g) ∈
R

(m+n−r)×(m+n−2r) and is defined as follows (n − r columns for
−→
f and m − r

columns for −→g).

Sylr(f, g) =
(

Cn−r−1(f) Cm−r−1(g)
)

(1.1)

where Ck(p) denotes the convolution matrix of kth order of p(x) ∈ R[x] such that
Ck(p)−→q =

−→
h and h(x) = p(x)q(x) for any polynomial q(x) of degree k. We have

the following well-known lemma which is very important for many approximate
GCD algorithms.

Lemma 1. For the largest integer r such that Sylr(f, g) is not column full rank,
let −→v be a non-zero vector in the null space of Sylr(f, g) and g1(x), f1(x) ∈ R[x]
be polynomials whose coefficient vectors are the first n − r elements and the last
m − r elements of −→v , respectively. Then, f(x)/f1(x) and −g(x)/g1(x) are the
polynomial GCD of f(x) and g(x), and their degree is r + 1. �

1.2 Problem Description and SLRA

In the literature, there are so many definitions for approximate GCD. In this
paper, we focus on the following approximate GCD, and note that this and
similar definitions are widely used in the former studies [13,16,17,20–22,27,29,
30,34], and often used in a combination with degree search strategies (cf. [30,
Section 1][22]).

Definition 3 (approximate GCD). For the degree k ∈ N, we compute the
polynomial d(x) ∈ R[x] called “approximate GCD” of degree k, which minimizes
‖(Δf ,Δg)‖2 (called perturbation) and satisfies

f(x) + Δf (x) = f1(x)d(x), g(x) + Δg(x) = g1(x)d(x), deg(d) = k

for some polynomials Δf (x),Δg(x), f1(x), g1(x) ∈ R[x] such that

deg(Δf) ≤ deg(f), deg(Δg) ≤ deg(g). �

Remark 1.1. As also noted in [3,16], the coefficients of approximate GCD are
not uniquely determined. Moreover, one may be interested in approximate GCD
of degree k for polynomials whose exact GCD is of higher degree than k. In this
case, any possible combination of factors gives its approximate GCD. However,
for such polynomials, the given degree k is not appropriate. The degree search
strategy in use must continue searching a more appropriate degree. �

Relaxed NewtonSLRA for Approximate GCD 275

Algorithm 1. Approximate GCD by SLRA
Input: f(x), g(x) ∈ R[x] and k ∈ N

Output: d(x) ∈ R[x], approximate GCD of degree k
1: construct a SLRA problem in Definition 4 with

M = Sylk−1(f, g), S = Sk−1(f, g) and r = m + n − 2k + 1;
2: solve the SLRA problem and let M∗ be the resulting matrix;
3: construct f(x) + Δf (x) and g(x) + Δg(x) back from M∗;
4: compute d(x) from Sylk−1(f + Δf , g + Δg);
5: return d(x);

By Lemma 1, the approximate GCD problem can be considered as the following
constrained optimization.

minΔf ,Δg
‖(Δf ,Δg)‖2

subject to rank(Sylk−1(f + Δf , g + Δg)) < m + n − 2k + 2.

This means that we want to compute a nearby low rank matrix of Sylk−1(f +
Δf , g + Δg) that is structured (as in the definition of subresultant matrix).
Therefore, the approximate GCD problem is reduced to the structured low rank
approximation (SLRA) problem. We note that computing the global optimum
for this problem is not easy since it is non-convex due to the rank constraint
(see also [19] for further references in low rank approximation). Hence most of
algorithms (including ours) will compute a local optimum or some enough small
perturbation. In this paper, following Schost and Spaenlehauer [27], we define
the SLRA problem as follows.

Definition 4 (Structured Low Rank Approximation, SLRA). Let S ⊂
R

p×q be an affine subspace of Rp×q (i.e., this defines the structure of matrices).
For the given M ∈ S and r ∈ N, find a matrix M∗ ∈ S∩Dr such that ‖M−M∗‖F

is “small”. �

For the SLRA problem, one of the first iterative methods (the convergence ratio
is linear) is proposed by Cadzow [5] and is based on alternating projections. The
first quadratic convergent method is the NewtonSLRA algorithm by Schost and
Spaenlehauer [27]. Actually the approximate GCD is one of applications of the
algorithm in their paper. Following them, we use the NewtonSLRA algorithm
for computing approximate GCD.

Let Sk−1(f, g) be the set of subresultant matrices of order k−1 of f(x)+Δf (x)
and g(x) + Δg(x) whose degrees are less than or equal to m and n, respectively.
This set plays the set of structured matrices and is S in Definition 4. As a
consequence of the discussion above we have Algorithm 1. We note that there are
several ways to extract d(x) from the subresultant matrix Sylk−1(f +Δf , g+Δg)
on the line 4. For example, at first we extract cofactors f1(x) and g1(x) by
computing the null space of Sylk−1(f+Δf , g+Δg) by Lemma 1 and approximate
GCD d(x) can be computed by the least squares with the convolution matrices

of f1(x) and g1(x), unknown vector
−→
d and the r.h.s. constant vector (

−→
f

T
,−→g T)T .

276 K. Nagasaka

1.3 Our Contributions

We give some resolutions (improvements) to the following issues of the Newton-
SLRA algorithm [27], to make the algorithm better.
1) Time complexity due to the inner product.
One iteration of the NewtonSLRA algorithm mainly computes the singular value
decomposition and solves a certain underdetermined linear system (least squares)
as in the next section. But additionally, O((m + n)k) times matrix-vector prod-
ucts and inner products are required. Our resolution reduces such matrix-vector
products to element-wise vector products that will be given in Sect. 3.1.
2) Uncontrollable convergence point in some sense.
Schost and Spaenlehauer gave the theorem that the iterations by the Newton-
SLRA algorithm converges to a good local approximation [27, Theorem 2]. How-
ever, even though it behaves to the first order as the optimum, approximate
GCDs computed by the NewtonSLRA algorithm sometimes have O(1) pertur-
bations even if the expected value is 1.0e-2 or so, as in Sect. 4. Our resolution
enlarges the tangent space and tries to prevent a local limit point from being far
from the global optimum, that will be given in Sect. 3.2.
3) Mismatch between the Euclidean and Frobenius norms.
The target functions of approximate GCD and SLRA are ‖ (Δf ,Δg) ‖2 and
‖M − M∗ ‖F , respectively, and they are not the same. The difference is made
by the difference between numbers of columns corresponding to f(x) and g(x)
(i.e., n − k + 1 and m − k + 1, respectively, as in (1.1)). Our resolution makes
the difference smaller that will be given in Sect. 3.3.

2 NewtonSLRA Algorithm

In this section, we briefly review the NewtonSLRA algorithm as Algorithm 2.
We note that there are the NewtonSLRA/1 and NewtonSLRA/2 algorithms
proposed by Schost and Spaenlehauer [27]. However, we treat only the New-
tonSLRA/1 algorithm since they are essentially the same, the only difference is
performance depending on the problem, and the NewtonSLRA/1 algorithm is
better for approximate GCD (see their paper [27, Section 5.1] for detail).

The outline of the NewtonSLRA/1 algorithm is as follows. It basically follows
the alternating projection method (or called the lift and projection method) by
Cadzow [5] that is formed by the following two steps: 1) lifting Mi up to the
desired rank matrix in Dr by the well known Eckart-Young theorem (cf. [15,
Theorem 2.4.8]), 2) projecting it back to the structured matrix in S by the
orthogonal projection on S. The NewtonSLRA/1 algorithm also has the follow-
ing similar two steps: 1) the lifting step is exactly the same as the alternating
projection method (this corresponds to M̃ on the line 2 of Algorithm 2), 2)
projecting it back to the structured matrix in S ∩ TM̃Dr by the orthogonal pro-
jection on S ∩ TM̃Dr (this corresponds to the lines 3-7 of Algorithm 2). This
difference in the projection methods makes the NewtonSLRA algorithm being
with the following local quadratic convergence property.

Relaxed NewtonSLRA for Approximate GCD 277

Algorithm 2. One iteration of NewtonSLRA/1 [27]
Input: M ∈ S ⊂ R

p×q, r ∈ N and {B1, . . . , Bd}: an orthonormal basis of S0

Output: ΠS∩T
M̃

Dr (M) where M̃ = ΠDr (M)

1: UΣV T := the singular value decomposition of M
and let U = (−→u1, . . . ,

−→up) and V = (−→v1 , . . . , −→vq);
2: M̃ := UrΣrV

T
r where Ur, Vr are the first r columns of U, V ,

respectively, and Σr is the top-left r × r sub-matrix of Σ;
3: for i ∈ {1, . . . , p − r}, j ∈ {1, . . . , q − r} do

4: N(i−1)(q−r)+j := −−→ur+i
−−→vr+j

T
;

5: A := (ak,�) ∈ R
(p−r)(q−r)×d, ak,� = 〈Nk, B�〉;

6:
−→
b := (bk) ∈ R

(p−r)(q−r), bk = 〈Nk, M̃ − M〉;
7: return M +

∑d
�=1(A

†−→b)�B�;

Theorem 1 (Convergence Property [27, Theorem 1]). Let ζ be in S ∩ Dr

such that ΠDr
is C2 around ζ and S and Dr intersect transversally at ζ. There

exist ν, γ, γ′ > 0 such that, for all M0 in S ∩ Bν(ζ), the sequence (Mi) given by
Mi+1 = ϕ(Mi) is well defined and converges toward a matrix M∞ ∈ W , and

– ‖Mi+1 − M∞‖F ≤ γ ‖Mi − M∞‖2F for all i ≥ 0,
– ‖ΠW (M0) − M∞‖F ≤ γ′ ‖ΠW (M0) − M0‖2F
where ϕ is Algorithm 2 as a mapping, U is an open neighborhood of Dr at ζ and
W = S ∩ Dr ∩ U . �

As for the time complexity and actual implementation, we do not have to com-
pute N(i−1)(q−r)+j , A and

−→
b as is on the lines 4, 5 and 6 in Algorithm 2. Instead

we compute them as follows (cf. Schost and Spaenlehauer [27, Section 3]).

〈−→u −→v T
,M〉 = −→u T

M−→v for M ∈ R
p×q.

This part can be done in O(pdq(p − r)(q − r)) over reals. Computing M̃ is
done in O(pqr) and computing the Moore–Penrose pseudo-inverse is done in
O(d(p − r)2(q − r)2). Therefore, one iteration of the NewtonSLRA/1 requires
the singular value decomposition and O(pqd(p − r)(q − r) + pqr) arithmetic
operations.

Remark 2.1 (Time Complexity Specific to Approximate GCD). For computing
an approximate GCD of degree k, of f(x) and g(x), all the parameters in the
NewtonSLRA/1 algorithm become p = m + n − k + 1, q = m + n − 2k + 2,
r = m + n − 2k + 1, d = m + n + 2, S = Sk−1(f, g) and M = Sylk−1(f, g).
This means that one iteration of the NewtonSLRA/1 requires the singular value
decomposition and O((m+n−k)(m+n−2k)(m+n)k) arithmetic operations. �

We note that O(m3k) (since m ≥ n) is a little bit larger than other one
of STLN based algorithms [16] computes the QR decomposition for the least
squares, of matrices of sizes (m+n+3)× (m+n+k+3) and (2m+2n−k+2)×
(2m + 2n − 2k + 1), respectively, hence they are O(m3). However, as in the next
section, O(m3k) can be reduced to the same order.

278 K. Nagasaka

3 Improvements

In this section, we show our improvements of the NewtonSLRA/1 algorithm, as
introduced in Sect. 1.3.

3.1 Subresultant Specific Better Complexity

As in Remark 2.1, we consider to compute an approximate GCD of degree k,
of f(x) and g(x), by the NewtonSLRA/1 algorithm. In this case, the given
orthonormal basis of Sk−1(f, g) will be made from

{B̄1, . . . , B̄d} =
{

Sylk−1(f, g)
fm

, . . . , Sylk−1(f, g)
f0

,

Sylk−1(f, g)
gn

, . . . , Sylk−1(f, g)
g0

} (3.1)

where Sylk−1(f, g)
h

denotes Sylk−1(f, g) of symbolic f(x) and g(x) with the
substitution fm = · · · =f0 =gn = · · · =g0=0 but h=1, such that

Sylk−1(f, g) = fmB̄1 + · · · + f0B̄m+1 + gnB̄m+2 + · · · + g0B̄d.

Therefore, its orthonormalized basis is given by

{B1, . . . , Bd} = {η−1
1 B̄1, . . . , η−1

m+1B̄m+1, η−1
m+2B̄m+2, . . . , η−1

d B̄d}

where ηi =
√

n − k + 1 (i ≤ m + 1) and ηi =
√

m − k + 1 (m + 2 ≤ i).

Remark 3.1. We note that removing some of Bis fixes a priori corresponding
coefficients. For example, this can be used to keep polynomials monic. �

In the NewtonSLRA algorithm, we compute the matrix A with the elements
a(i−1)(q−r)+j,� = −→ui

T
B�

−→vj , and the complexity of each element is O(pq) for
−→ui

T
B� and O(q) for (−→ui

T
B�)−→vj . However, since we have Bi = η−1

i B̄i and B̄ is a
sparse matrix (i.e. only n − k + 1 or m − k + 1 non-zero elements), −→ui

T
B� can

be computed in O(m) as
⎧
⎪⎪⎨

⎪⎪⎩

−→ui
T
B� = (ui,�η

−1
� · · · ui,�+n−kη−1

�

m−k+1
︷ ︸︸ ︷
0 · · · 0) (
 ≤ m + 1)

−→ui
T
B� = (0 · · · 0︸ ︷︷ ︸

n−k+1

ui,�−m−1η
−1
� · · · ui,�−k−1η

−1
�) (m + 2 ≤
)

,

where −→ui
T = (ui1 · · · uip).

As a consequence, computing A and
−→
b is done in O(m2k), computing M̃

and updating M are done in O((m + n)(m + n − k)(m + n − 2k)), and com-
puting the Moore–Penrose pseudo-inverse is done in O((m + n)k2). Therefore,
we have the following lemma and this means that this is faster than the orig-
inal NewtonSLRA/1 algorithm though our modification is only applicable for
approximate GCD.

Lemma 2. One iteration of the NewtonSLRA/1 algorithm for computing
approximate GCD requires the singular value decomposition and O(m3) arith-
metic operations. �

Relaxed NewtonSLRA for Approximate GCD 279

3.2 Relaxed NewtonSLRA Algorithm

The quadratic convergence property of the NewtonSLRA algorithm is depending
on the angle between the tangent space and the affine subspace, that is reflected
to the constants in Theorem 1. Hence it may happen that the angle is small and
the algorithm converges to a point that is relatively far from the global optimum,
as in Sect. 4. Therefore, in the followings, we propose the relaxed NewtonSLRA
algorithm that enlarges the tangent space to prevent from the generated sequence
being far from the initial point on the early stage of iterations. In other words,
this modification is intended to decrease the number of constraints of the least
squares on the last line of the NewtonSLRA/1 algorithm.

Assumption 3.1 (Size of Matrix and Deficiency). In this section, we
assume p > q and r = q−1 that mean the case specific to the subresultant matrix
for computing non-linear approximate GCD (especially for shorter proofs). �

Let UΣV T be the singular value decomposition of M , and let U and V be
(−→u1 · · · −→up) and (−→v1 · · · −→vq), respectively. In the NewtonSLRA/1 algorithm, the
tangent space of D0

r at M and its normal space NMD0
r are given as follows.

TMD0
r = Im(M) ⊗ R

q + R
p ⊗ Ker(M)⊥, NMD0

r = Ker(MT) ⊗ Ker(M).

Moreover, we have that {−→u1, . . ., −→ur}, {−→v1, . . ., −→vr}, {−−→ur+1, . . ., −→up} and {−−→vr+1, . . .,
−→vq} (= {−→vq} since r = q − 1 by the assumption) are bases of Im(M), Ker(M)⊥,
Ker(MT) and Ker(M), respectively.

In our algorithm, instead of these tangent and normal spaces, we define the
following relaxed tangent space TO,MD0

r and relaxed normal space NO,MD0
r at

M from O such that M − O is orthogonal to TMD0
r and M
= O.

TO,MD0
r = (NO,MD0

r)⊥, NO,MD0
r = span(M − O).

For O
∈ Dr and M = ΠDr
(O), by Assumption 3.1, we have

TO,MD0
r = span(−→u1, . . . ,

−→ur,
−−→ur+2, . . . ,

−→up) ⊗R
q + R

p⊗Ker(M)⊥,
NO,MD0

r = span(−−→ur+1) ⊗ Ker(M).

As a consequence of these modifications above, we propose the relaxed New-
tonSLRA algorithm as Algorithm 3 and it has the following convergence property
(note that the mapping ϕ is different from Theorem 1).

Theorem 2 (Convergence Property). Let ζ be in S ∩ Dr such that ΠDr
is

C2 around ζ and S and Dr intersect transversally at ζ. There exist ν, γ, γ′ > 0
such that, for all M0 in S ∩ Bν(ζ), the sequence (Mi) given by Mi+1 = ϕ(Mi) is
well defined and converges toward a matrix M∞ ∈ W and

– ‖Mi+1 − M∞‖F ≤ γ ‖Mi − M∞‖2F for all i ≥ 0,
– ‖ΠW (M0) − M∞‖F ≤ γ′ ‖ΠW (M0) − M0‖2F
where ϕ is Algorithm 3 as a mapping, U is an open neighborhood of Dr at ζ
and W = S ∩ Dr ∩ U . �

280 K. Nagasaka

Algorithm 3. One iteration of relaxed NewtonSLRA
Input: M ∈ S ⊂ R

p×q, r ∈ N (s.t. p > q and r = q − 1)
and {B1, . . . , Bd}: an orthonormal basis of S0

Output: ΠS∩T
M,M̃

Dr (M) where M̃ = ΠDr (M)

1: UΣV T := the singular value decomposition of M
and let U = (−→u1, . . . ,

−→up) and V = (−→v1 , . . . , −→vq);
2: M̃ := UrΣrV

T
r as in Algorithm 2;

3: A := (a1,�) ∈ R
1×d, a1,� = 〈−−→ur+1

−→vq
T
, B�〉;

4:
−→
b := (b1) ∈ R

1, b1 = 〈−−→ur+1
−→vq

T
, M̃ − M〉;

5: return M +
∑d

�=1(A
†−→b)�B�;

The proof of Theorem 2 is exactly the same as that for Theorem 1, which is
based on the following Proposition 4 and Proposition 5. However, the proofs of
these propositions are a little bit different from [27] but the difference is not large
since TM,ΠDr (M)D0

r ⊃ TΠDr (M)D0
r and the property of the tangent space used in

the proofs is basically that M −ΠDr
(M) is orthogonal to TΠDr (M)D0

r . Therefore,
in the following, we show only lemmas and propositions that are affected by our
relaxation.

Lemma 3 (cf. [27, Lemma 4.5]).
There exists an open neighborhood U of ζ such that

inf
y∈Dr∩U, x∈	S∩U
y

α(Tx,yD0
r ,S0) > 0

where �S ∩ U�y = {x ∈ S ∩ U | y − x ∈ (TyD0
r)⊥, x
= y}. �

Proof. Suppose that the lemma is not valid hence there exist y ∈ Dr ∩ U, x ∈
�S ∩U�y such that α(Tx,yD0

r ,S0) = 0. This means Tx,yD0
r ⊂ S0 or S0 ⊂ Tx,yD0

r .
By [27, Lemma 4.5], we have infy∈Dr∩U α(TyD0

r ,S0) > 0, and Tx,yD0
r ⊂ S0 is

not satisfied since TyD0
r ⊂ Tx,yD0

r . As for S0 ⊂ Tx,yD0
r , let x′ ∈ �S ∩ U�y and

c ∈ R be such that y − x′ = c(y − x) and c
= 1, we have x′ − x ∈ S0 hence
y − x ∈ S0. This means S0
⊂ Tx,yD0

r since y − x
∈ Tx,yD0
r by the definition.

Therefore, we have α(Tx,yD0
r ,S0)
= 0. �

Let λ, ρ > 0 be such that U = Bρ(ζ) satisfies Lemma 3 and lemmas by Schost
and Spaenlehauer [27, Lemma 2.3,4.5,4.6 and 4.7], and K,K ′ and δ be defined
as follows.

α0 = inf
y∈Dr∩Bρ(ζ), x∈	S∩Bρ(ζ)
y

α(Tx,yD0
r ,S0),

CDr
= sup

v∈Bρ(ζ)
‖D2ΠDr

(v)‖F , K = CDr
/ sin(α0) +

√
2λ,

CW = supz∈Bρ(ζ) ‖DΠW (z)‖F , K ′ = CW K,

δ > 0 such that C2
Dr

δ2 ≤ 1/2 and 2δ + Kδ2 ≤ ρ.

In the rest of this subsection, for simplicity’s sake, we use the following nota-
tions: for x ∈ Bδ(ζ), let y = ΠDr

(x), w = ΠW (x), z = ΠTx,yDr
(w), w′ be the

orthogonal projection of x on the affine space parallel to S ∩TyDr containing w,
and z′ = ΠTx,yDr

(w′).

Relaxed NewtonSLRA for Approximate GCD 281

Proposition 1 (cf. [27, Proposition 4.8]).
For x ∈ Bδ(ζ), we have ‖z − w‖F < CDr

‖x − w‖2F . �

Proof. As in the proof of [27, Proposition 4.8], we have y, w ∈ Bρ(ζ) and ‖
y − w ‖F ≤ 2δ. Since y and w are fixed points of ΠDr

, all the points of the
line segment between y and w are in Bρ(ζ), and Tx,yD0

r ⊃ TyD0
r , by a Taylor

approximation of ΠDr
between y and w, we have

w − y = ΠDr
(w) − ΠDr

(y) = ΠTx,yD0
r
(w − y) + r

with ‖r‖F ≤ CDr
‖w − y‖2F /2. Since y + ΠTx,yD0

r
(w − y) = ΠTx,yDr

(w) = z, we
have ‖z − w ‖F ≤ CDr

‖y − w ‖2F /2 ≤ 2CDr
δ2 hence CDr

‖z − w ‖F ≤ 1. x − y
and w − z are orthogonal to Tx,yD0

r and y − z hence we have

‖y − w‖2F =‖y − z‖2F + ‖z − w‖2F ≤‖x − w‖2F + ‖z − w‖2F .

Therefore, we have

‖z − w‖F ≤ CDr

2 ‖y − w‖2F ≤ CDr

2 (‖x − w‖2F + ‖z − w‖2F)
≤ CDr

2 ‖x − w‖2F + 1
2 ‖z − w‖F .

This means ‖z − w‖F < CDr
‖x − w‖2F . �

Lemma 4. For x ∈ Bδ(ζ), w′ − x is orthogonal to (S ∩ Tx,yDr)0. �

Proof. At first, by Lemma 2.3 [27] with our assumptions, S ∩TyDr is not empty
hence S ∩Tx,yDr is not empty since TyDr ⊂ Tx,yDr. This means (S ∩Tx,yDr)0 =
S0 ∩ Tx,yD0

r . By the construction, w′ − x is parallel to y − x and Tx,yD0
r =

span(y − x)⊥ hence w′ − x is orthogonal to (S ∩ Tx,yDr)0. �

Proposition 2 (cf. [27, Proposition 4.8]).
For x ∈ Bδ(ζ), we have ‖ϕ(x) − w‖F ≤ CDr

sin(α0)
‖x − w‖2F + ‖w′ − w‖F . �

Proof. Let θ be the angle between w′ − ϕ(x) and z′ − ϕ(x) that are in S0 and
Tx,yD0

r , respectively. As in the proof [27, Proposition 4.8], z′ − ϕ(x) is in the
orthogonal complement of (S ∩ Tx,yDr)0 since z′ − ϕ(x) = (z′ − w′) + (w′ −
x) + (x − ϕ(x)) which are orthogonal to (S ∩ Tx,yDr)0 by Lemma 4. As in the
proof of Lemma 4, we have (S ∩ Tx,yDr)0 = S0 ∩ Tx,yD0

r . Therefore, we have
z′ −ϕ(x) ∈ Tx,yD0

r ∩(S0∩Tx,yD0
r)⊥ and w′ −ϕ(x) ∈ S0 hence by Lemma 4.4 [27]

we have

cos(θ)=
〈

z′−ϕ(x)
‖z′−ϕ(x)‖F

, w′−ϕ(x)
‖w′−ϕ(x)‖F

〉
≤cos(α(Tx,yD0

r ,S0))≤cos(α0).

Since w′ − z′ is orthogonal to Tx,yD0
r and ϕ(x)− z′ ∈ Tx,yD0

r hence ‖w′ − z′‖F =
sin(θ) ‖w′ − ϕ(x)‖F , we have

‖ϕ(x) − w′‖F ≤‖z′ − w′‖F / sin(α0).

282 K. Nagasaka

We have ‖z−w‖F =‖z′−w′‖F by the construction hence we have ‖ϕ(x)−w′‖F ≤
CDr

‖x − w‖2F / sin(α0) by Proposition 1. Therefore, we have

‖ϕ(x) − w‖F ≤ CDr

sin(α0)
‖x − w‖2F + ‖w′ − w‖F

by the inequality ‖ϕ(x) − w‖F ≤‖ϕ(x) − w′‖F + ‖w′ − w‖F . �

Proposition 3 (cf. [27, Proposition 4.8]).
For x ∈ Bδ(ζ), we have ‖w − w′‖F ≤

√
2λ ‖x − w‖2F . �

Proof. Let θ′ be the angle between w′ −w and x−w. Since x−w′ is orthogonal
to w′ − w, we have ‖w − w′‖F = cos(θ′) ‖x − w‖F . By Lemma 4.4 [27] we have

cos(θ′) ≤ cos(α(S0 ∩ TyD0
r , (S0 ∩ TyD0

r)⊥))

since w′ −w is in (S ∩TyDr)0 = S0 ∩TyD0
r , and x−w is orthogonal to TwW 0 =

(S ∩ TwDr)0 by the transversality assumption. By Lemma 4.7 [27], there exists
a constant λ such that

‖w − w′‖F ≤ λ ‖y − w‖F ‖x − w‖F .

As in the proof of Proposition 1, we have ‖ z − w ‖F ≤ CDr
δ ‖ y − w ‖F and

‖y −w‖2F ≤‖x−w‖2F + ‖z −w‖2F . Therefore, we have ‖y −w‖F ≤
√

2 ‖x−w‖F

hence ‖w − w′‖F ≤
√

2λ ‖x − w‖2F . �

Proposition 4 (cf. [27, Proposition 4.8]).
For x ∈ Bδ(ζ), ϕ(x) is in Bρ(ζ) and we have

‖ϕ(x) − ΠW (x)‖F ≤ K ‖x − ΠW (x)‖2F ,
‖ΠW (ϕ(x)) − ΠW (x)‖F ≤ K ′ ‖x − ΠW (x)‖2F .

�

Proof. By Propositions 2 and 3, and w = ΠW (x), we have

‖ϕ(x) − w‖F ≤ CDr

sin(α0)
‖x − w‖2F +

√
2λ ‖x − w‖2F = K ‖x − ΠW (x)‖2F .

As in the proof of [27, Proposition 4.8], we have ‖ζ−w‖F < 2δ and ‖x−w‖F < δ.
We have ‖ζ − ϕ(x)‖F < ρ since 2δ + Kδ2 ≤ ρ and

‖ζ − ϕ(x)‖F ≤‖ζ − w‖F + ‖ϕ − w‖F < 2δ + K ‖x − w‖2F < 2δ + Kδ2.

As in the proof of [27, Proposition 4.8], a first-order Taylor expansion of ΠW

along the line segment between ϕ(x) and w gives

‖ΠW (ϕ(x)) − ΠW (x)‖F =‖ΠW (ϕ(x)) − ΠW (w)‖F

≤ CW ‖ϕ(x) − w‖F ≤ CW × K ‖x − w‖2F ≤ K ′ ‖x − w‖2F .

�

Relaxed NewtonSLRA for Approximate GCD 283

With the above proposition, by following exactly the same way (induction) of
Proposition 4.9 [27], we have the following proposition where κ = K + K ′ and
ν > 0 such that κν < 1/2 and 4ν < δ.

Proposition 5 (cf. [27, Proposition 4.9]). Let x0 be in Bν(ζ). One can define
sequences (xi)i≥0 and (wi)i≥0 of elements of R

p×q such that ‖ x0 − w0 ‖F ≤ ν
and, for i ≥ 0, xi ∈ Bδ(ζ), wi = ΠW (xi), xi = ϕ(xi−1) (i ≥ 1), ‖xi − wi ‖F ≤
κ ‖xi−1 − wi−1‖2F (i ≥ 1), and ‖wi − wi−1‖F ≤ κ ‖xi−1 − wi−1‖2F (i ≥ 1). �

3.3 Column Weighted Frobenius Norm

In the both of original and relaxed NewtonSLRA algorithms, let the solution of
least squares on the last line be

−→
h hence

−→
h = A†−→b . Consider that this iteration

is for computing approximate GCD of f(x) and g(x), we have the perturbed
polynomials f(x) + Δf (x) and g(x) + Δg(x) as follows.

(−−−−→
f + Δf−−−−→
g + Δg

)

=
(−→

f
−→g

)

+ diag(η−1
1 , . . . , η−1

d)
−→
h .

Since {B1, . . . , Bd} is an orthonormal basis of S0, each iteration minimizes the
Frobenius norm of the correction matrix

∑d
�=1(A

†−→b)�B� and its value is ‖−→
h ‖2.

Actually each iteration computes the nearest intersection point between two
subspaces in the Frobenius norm. However, as for approximate GCD, we have
‖ (Δf ,Δg) ‖2 = ‖diag(η−1

1 , . . . , η−1
d)

−→
h ‖2 hence this is not minimized (i.e., not

the nearest point) in the polynomial 2-norm if m
= n (i.e., η1
= ηd).
To make this difference smaller, we introduce the following column weighted

inner product 〈M1,M2〉W and norm ‖M ‖W .

〈M1,M2〉W = 〈M1W,M2W 〉 = tr(WT MT
1 M2W),

‖M ‖W =
√

〈M,M〉W =
√

〈MW,MW 〉 =‖MW ‖F

where W is a diagonal invertible matrix and in this paper we use

W = diag(

n−k+1
︷ ︸︸ ︷
η−1
1 , . . . , η−1

1 ,

m−k+1
︷ ︸︸ ︷
η−1

m+2, . . . , η
−1
m+2).

Lemma 5. Let us consider Sk−1(f, g) as an affine subspace of inner product
space endowed with 〈M1,M2〉W . Then, {B̄1, . . . , B̄d} in (3.1) is an orthonormal
basis of Sk−1(f, g). �

Proof. By the construction of {B̄1, . . . , B̄d}, clearly it spans Sk−1(f, g) hence
we only show that it is already orthogonalized and normalized. For any pair
B̄i and B̄j , there exist hi, hj ∈ {fm, . . . , f0, gn, . . . , g0} such that

〈B̄i, B̄j〉W = 〈Sylk−1(f, g)
hi

W,Sylk−1(f, g)
hj

W 〉.

284 K. Nagasaka

We have

〈B̄i, B̄j〉W = 〈Sylk−1(η
−1
1 f, η−1

m+2 g)
hi

,Sylk−1(η
−1
1 f, η−1

m+2 g)
hj

〉.

If i
= j, all the non-zero elements of these two matrices are placed at different
indices hence we have 〈B̄i, B̄j〉W = 0. Otherwise (i = j), we have

〈B̄i, B̄i〉W =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n+k−1
︷ ︸︸ ︷
η−2
1 + · · · + η−2

1 = 1 (i ≤ m + 1)
m+k−1

︷ ︸︸ ︷
η−2

m+2 + · · · + η−2
m+2 = 1 (i ≥ m + 2)

.

�

To make the NewtonSLRA/1 and relaxed NewtonSLRA algorithms being
compatible with the column weighted inner product and its Frobenius norm, we
give the column weighted Frobenius norm version of the Eckart–Young theorem
as follows.

Theorem 3. For M ∈ R
p×q and r ∈ N, let UΣV T be the singular value decom-

position of MW , and let Ur, Vr be the first r columns of U, V , respectively, and
Σr be the top-left r × r sub-matrix of Σ. We have

UrΣrV
T
r W−1 = argminMr∈Dr

‖M − Mr ‖W . �

Proof. Since W is a diagonal matrix and is invertible, the proof just follows from
that for the Frobenius norm version of the Eckart–Young theorem as follows.

‖M − Mr ‖2W = ‖MW − MrW ‖2F =
∑min(p,q)

i=1 σi(MW − MrW)2

≥
∑min(p,q)

i=r+1 σi(MW)2 =‖MW − UrΣrV
T
r ‖2F

= ‖M − UrΣrV
T
r W−1‖2W

where we denote the ith largest singular value of A by σi(A). �

Moreover, since the orthogonality of M in terms of the column weighted
Frobenius norm is just the orthogonality of MW in terms of the Frobenius
norm, and we have Im(MW) = Im(M) and Ker((MW)T) = Ker(WT MT) =
Ker(MT), we have the following.

TMD0
r = Im(M) ⊗R

q +R
p ⊗ KerW (MW)⊥, NMD0

r = Ker(MT) ⊗ KerW (MW)

where KerW (A) = {W−1−→x | −→x ∈ Ker(A)}. The relaxed tangent and relaxed
normal spaces for O
∈ Dr and M = ΠDr

(O) are as follows, where U =
(−→u1 · · · −→up), V = (−→v1 · · · −→vq) and UΣV T is the singular value decomposition of
MW .

TO,MD0
r =span(−→u1, . . . ,

−→ur,
−−→ur+2, . . . ,

−→up) ⊗R
q+R

p⊗KerW (M)⊥,
NO,MD0

r =span(−−→ur+1) ⊗ span(W−1−→vq).

As a consequence, we have the weighted NewtonSLRA algorithm as Algo-
rithm 4. The correctness of this iteration is given by the following lemma.

Relaxed NewtonSLRA for Approximate GCD 285

Algorithm 4. One iteration of weighted NewtonSLRA
Input: M ∈S ⊂ R

p×q, r∈N, W ∈R
q×q and {B̄1, . . . , B̄d}: an orthonormal basis of S0

Output: ΠS∩T
M̃

Dr (M) where M̃ = ΠDr (M) in terms of ‖·‖W

1: UΣV T := the singular value decomposition of MW
and let U = (−→u1, . . . ,

−→up) and V = (−→v1 , . . . , −→vq);
2: M̃ := UrΣrV

T
r W −1 as in Algorithm 2 except for W −1;

3: for i ∈ {1, . . . , p − r}, j ∈ {1, . . . , q − r} do

4: N(i−1)(q−r)+j := −−→ur+i
−−→vr+j

T
W −1;

5: A := (ak,�) ∈ R
(p−r)(q−r)×d, ak,� = 〈Nk, B̄�〉W ;

6:
−→
b := (bk) ∈ R

(p−r)(q−r), bk = 〈Nk, M̃ − M〉W ;

7: return M +
∑d

�=1(A
†−→b)�B̄�;

Lemma 6. Algorithm 4 works correctly under our assumptions. �

Proof. Let ϕ(M) denote M +
∑d

�=1(A
†−→b)�B̄� on the line 7. At first we prove

ϕ(M) ∈ S ∩ TM̃Dr. By the assumption we have M ∈ S and {B̄1, . . . , B̄d} is an
orthonormal basis of S0, we have ϕ(M) ∈ S. As for ϕ(M) ∈ TM̃Dr, we show
ϕ(M) − M̃ ∈ TM̃D0

r and in fact we have

〈Nk, ϕ(M) − M̃〉W = 〈Nk,M +
∑d

�=1(A
†−→b)�B̄� − M̃〉W

= 〈Nk,M − M̃〉W + 〈Nk,
∑d

�=1(A
†−→b)�B̄�〉W = 0.

Next, we prove that ‖ϕ(M) − M ‖W is minimized. Since ϕ(M) ∈ S ∩ TM̃Dr, we
can let ϕ(M) = M +

∑d
�=1 x�B̄� for some unknowns −→x = (x�). By Lemma 5,

we have
‖ϕ(M) − M ‖W =‖

∑d
�=1 x�B̄�‖W =‖−→x ‖2 .

A†−→b on the line 7 is the minimum solution of the least squares (underdetermined
linear system) hence ϕ(M) = ΠS∩TM̃ Dr

(M). �

As for the weighted/relaxed NewtonSLRA algorithm (Algorithm 5) we have the
same lemma whose proof is the same way above.

Lemma 7. Algorithm 5 works correctly under our assumptions. �

Moreover, both of the relaxed and weighted/relaxed NewtonSLRA algo-
rithms have the same convergent property as in Theorem 1 and Theorem 2
though we omit the theorem/proof since they are the same with the exception
of the weighted part.

Remark 3.2. Our algorithms with the weighted Frobenius norm do not guaran-
tee that the resulting perturbation is smaller than the original algorithm since
this modification is just for each iteration and it does not guarantee any better
resulting perturbation in total. �

286 K. Nagasaka

Algorithm 5. One iteration of weighted/relaxed NewtonSLRA
Input: M ∈ S ⊂ R

p×q, r ∈ N (s.t. p > q and r = q − 1), W ∈ R
q×q

and {B1, . . . , Bd}: an orthonormal basis of S0

Output: ΠS∩T
M,M̃

Dr (M) where M̃ = ΠDr (M) in terms of ‖·‖W

1: UΣV T := the singular value decomposition of MW
and let U = (−→u1, . . . ,

−→up) and V = (−→v1 , . . . , −→vq);
2: M̃ := UrΣrV

T
r W −1 as in Algorithm 2 except for W −1;

3: A := (a1,�) ∈ R
1×d, a1,� = 〈−−→ur+1

−→vq
T
W −1, B�〉W ;

4:
−→
b := (b1) ∈ R

1, b1 = 〈−−→ur+1
−→vq

T
W −1, M̃ − M〉W ;

5: return M +
∑d

�=1(A
†−→b)�B�;

Algorithm 6. Approximate GCD by improved NewtonSLRA
Input: f(x), g(x) ∈ R[x] and k ∈ N

(options: εc, εr ∈ R≥0, maxi ∈ N and weighted ∈ {T, F})
Output: d(x) ∈ R[x], approximate GCD of degree k
1: M0 := Sylk−1(f, g) and r := m + n − 2k + 1;
2: for i ∈ {1, 2, . . . , maxi} do
3: compute Mi from Mi−1

- by Algorithm 3 if weighted = F; (switch to Alg. 2 if σr+1(Mi−1) ≤ εr)
- by Algorithm 5 if weighted = T; (switch to Alg. 4 if σr+1(Mi−1W) ≤ εr)

4: if ‖A†−→b ‖2 (computed on the last line) ≤ εc then
5: break the for loop;
6: construct f(x) + Δf (x) and g(x) + Δg(x) back from the result;
7: compute d(x) from Sylk−1(f + Δf , g + Δg);
8: return d(x);

4 Numerical Experiments

We have implemented all the algorithms in this paper (including the Newton-
SLRA/1 algorithm) in the collection of C programs for computing approximate
GCDs introduced by the author1 [22]. Algorithm 6 is the top level function we
implemented. Basically we have compared with the UVGCD algorithm [33] and
the STLN based algorithm [16] since they are the two best algorithms according
to the wide range of numerical experiments by the author [22].

All the experiments in this section have been done by single-threaded pro-
grams compiled with GNU C Compiler 5.4.0 (optimized with -O2 -march=
native), ATLAS 3.11.39 (as BLAS) and reference LAPACK 3.9.0 (through
LAPACKE) on Ubuntu 16.04 LTS (x86 64, kernel 4.4.0) with Intel Xeon E5-
2687W v4 and 256GB of memory. Moreover, for each pair (f(x), g(x)), we com-
puted approximate GCDs of (f(x), g(x)) and (g(x), f(x)), and averaged them
since their matrix factorization computed without column pivoting are usually
different (a little bit in general though) due to numerical errors.

1 All the C programs and data will be available via email upon request or at the
webpage: https://wwwmain.h.kobe-u.ac.jp/∼nagasaka/research/snap/.

https://wwwmain.h.kobe-u.ac.jp/~nagasaka/research/snap/

Relaxed NewtonSLRA for Approximate GCD 287

Table 1. Result of better complexity (noise=1.0e-8)

half(small) ite time (sec.) perturb #f

uvgcd 2.0 7.9860e-3 5.7729e-9 0

stlngcd 2.0 2.5113e-2 5.7729e-9 0

newtonslra/1 2.0 1.4256e-1 5.7729e-9 0

improved(F, ∞) 2.0 1.5260e-2 5.7729e-9 0

We note some implementation remarks. In the tables, “uvgcd” denotes
the UVGCD algorithm [33], however, we use the singular value decomposition
(LAPACK’s dgesdd) for computing singular vectors instead of the method (QR
decomposition and solving triangular linear system iteratively from a random
vector) in [33] since sometimes this randomness makes the computed singular
vectors not appropriate for the iteration. Moreover, the Gauss–Newton method
continues the iteration until the norm of correction vector is less than or equal
to the given threshold (i.e., εc in Algorithm 6) since otherwise the resulting
perturbation could be much larger. “stlngcd” denotes the STLN based algo-
rithm [16], “newtonslra/1” denotes Algorithm 6 with the NewtonSLRA/1 algo-
rithm as is, and “improved(weighted, εr)” denotes Algorithm 6 as is (note that
improved(weighted=F, εr =∞) means just with our modification in Sect. 3.1).
Additionally, as a reference, we denote the algorithm by “improved(weighted, εr)
+uvgcd” that calls uvgcd with the output of improved(weighted, εr) as initial
value. After getting the resulting structured matrix, all the methods for comput-
ing the final approximate GCD are the same (i.e., cofactors from singular value
decomposition and approximate GCD by the least squares). Moreover, we use
LAPACK’s dgesdd for singular value decomposition, and LAPACK’s dgelsy for
QR decomposition.

4.1 Subresultant Specific Better Complexity

As for the performance of the improvement in Sect. 3.1, we have generated the
following set of polynomial pairs (call it half(small)) that is the same set of
polynomials used for the experiments in [22]: For
 = 10, we have generated 100
pairs of polynomials of degree 10
, of unit 2-norm. Each pair has the GCD of
degree 5
 and each factor has integer coefficients randomly chosen from [−99, 99]
before normalization. We added the same degree polynomials whose 2-norm
is 10−8, and made them re-normalized again.

Table 1 shows the result computed with εc=1.0e-8 and maxi = 8192, where
“ite.” and “#f” denote the averages of number of iterations and number of poly-
nomial pairs whose perturbation is not smaller than 10−7, respectively. Accord-
ing to this result, our improvement works well (10 times faster).

288 K. Nagasaka

Table 2. Result of relaxed NewtonSLRA (noise=1.0e-2)

half(large) ite time (sec.) perturb #f

uvgcd 507.3∗ 8.3763e-1 7.4101e-3 0.0

stlngcd 393.8∗ 3.1277e-0 1.2918e-2 3.5

newtonslra/1 5.56 3.6152e-1 2.3861e-2 8.0

improved(F, ∞) 5.56 3.5819e-2 2.3862e-2 8.0

improved(F, 1.0e-3) 10.15 5.4137e-2 2.0162e-2 7.0

improved(F, 1.0e-4) 66.44 2.8067e-1 1.5068e-2 4.0

improved(F, 1.0e-5) 638.8∗ 2.5754e-0 1.1769e-2 2.0

improved(F, 1.0e-6) 1567.5∗ 6.3315e-0 1.1648e-2 2.0

improved(F, 1.0e-4)+uvgcd – 8.4933e-1 6.8757e-3 0.0

Table 3. Result of weighted NewtonSLRA (noise=1.0e-2)

asym(large) ite time (sec.) perturb #f

newtonslra/1 4.68 4.3339e-1 1.8564e-2 3.0

improved(F, ∞) 4.68 6.9391e-2 1.8564e-2 3.0

improved(T, ∞) 31.44 3.9531e-1 1.3588e-2 3.0

improved(T, 1.0e-6) 88.10 1.0521e-0 1.2384e-2 3.0

4.2 Relaxed NewtonSLRA Algorithm

To see the performance of the relaxed NewtonSLRA algorithm, we have gener-
ated a set of polynomial pairs (call it half(large)) similar to half(small) but
we added the same degree polynomials whose 2-norm is 10−2 instead of 10−8.

Table 2 shows the result computed with εc = 1.0e-8 and maxi = 8192,
where “∗” denotes that some of pairs reached the maximum iterations and the
threshold of “#f” is 10−1. According to this result, our relaxed NewtonSLRA
algorithm works well since the average of perturbations and number of failures
are smaller as εr is smaller. However, the resulting perturbations are a little bit
larger than the UVGCD algorithm though our algorithm is in balance with the
computing time and the perturbation.

4.3 Column Weighted Frobenius Norm

To see the performance of the column weighted NewtonSLRA algorithm, we have
generated a set of polynomial pairs (call it asym(large)) similar to half(large)
but each pair has the GCD of degree
 instead of 5
 and degrees of each pair of
polynomials are 2
 and 18
.

Table 3 shows the result computed with εc=1.0e-8 and maxi = 8192 where
the threshold of “#f” is 10−1. According to this result, our column weighted
NewtonSLRA algorithm works well though the convergence speed is slower than
the NewtonSLRA/1 algorithm.

Relaxed NewtonSLRA for Approximate GCD 289

Table 4. Result of ill-conditioned polynomials

with k = 1000 ite time (sec.) perturb #f

uvgcd 656.8∗ 2.2697e+2 3.1529e-2 2.0

uvgcd16 11.4∗ 4.2856e-0 1.2865e+2 5.0

stlngcd 833.4∗ 2.5641e+3 1.6322e-2 0.5

stlngcd16 10.7∗ 3.2587e+1 1.5336e-2 0.0

newtonslra/1 7.85 9.1670e+1 1.9806e-2 0.5

improved(F, ∞) 7.85 4.5850e-0 1.9440e-2 0.5

improved(F, 1.0e-2) 7.85 4.6663e-0 1.9440e-2 0.5

improved(F, 1.0e-3) 8.50 3.8587e-0 1.8723e-2 0.0

improved(F, 1.0e-4) 62.35 4.4467e-0 2.2711e-2 0.0

improved(F, 1.0e-3)+uvgcd – 1.6443e+2 2.4252e-2 2.0

with k = 1002 ite time (sec.) perturb #f

uvgcd 2.25 1.1481e-0 3.1580e-3 0.0

stlngcd 2.25 7.5260e-0 3.1580e-3 0.0

improved(F, 1.0e-3) 3.00 1.4714e-0 3.1580e-3 0.0

4.4 Ill-Conditioned Polynomials

The following 20 pairs of polynomials that were used in [30].

f(x) =
⌈
d(x)

∑3
i=0 xi

⌋
+ εf (x), g(x) =

⌈
d(x)

∑3
i=0(−x)i

⌋
+ εg(x)

where d(x) is a polynomial of degree 1000, whose coefficients are random integers
in [−5, 5], �·� denotes the normalization in terms of 2-norm, and εf (x) and εg(x)
are noise polynomials whose coefficient vectors are Gaussian zero-mean i.i.d. ran-
dom vectors with standard deviation 1.0e-4. We note that this set of polynomial
pairs are similar to polynomials (g(x) =

⌈
d(x)

∑4
i=0(−x)i

⌋
+εg(x)) in [3, Exam-

ple 8.3.1], however, they are quite different. Though the expected maximum
degree of approximate GCD of f(x) and g(x) above is 1002, in this experiment,
we also computed approximate GCDs of degree 1000 as in [30].

Table 4 shows the result computed with εc = 1.0e-8 and maxi = 8192 (but
maxi = 16 for uvgcd16 and stlngcd16), where the threshold of “#f” is 10−1.
According to this result, our algorithm works well though giving the best choice
of the threshold εr is not easy.

4.5 Polynomials with Multiple Roots

To see the performance for polynomials with multiple roots (clusters of roots
after adding noise polynomials), we have generated a set of polynomial pairs
(call it mult(large)) similar to half(large) but each pair has the GCD of

290 K. Nagasaka

Table 5. Result of polynomials with multiple roots

mult(large) ite time (sec.) perturb #f

uvgcd 4598.2∗ 7.4609e-0 7.3866e-4 0.0

uvgcd16 16.0∗ 3.0840e-2 1.5746e-0 12.0

stlngcd 4524.6∗ 3.8227e+1 1.1269e-2 2.5

stlngcd16 16.0∗ 1.4192e-1 2.7403e-2 7.5

newtonslra/1 23.26 1.4035e-0 8.6582e-3 2.0

improved(F, ∞) 23.13 1.2745e-1 4.8640e-3 1.0

improved(F, 1.0e-3) 23.14 1.3183e-1 4.3044e-3 1.0

improved(F, 1.0e-4) 29.76 1.5741e-1 4.5151e-3 1.0

improved(F, 1.0e-5) 522.2∗ 2.0680e-0 2.1616e-3 0.0

improved(F, 1.0e-3)+uvgcd – 7.3543e-0 7.8047e-4 0.0

degree 5
 that is the
th power of a polynomial of degree 5 (i.e., 5 distinct roots
whose multiplicities are
 = 10).

Table 5 shows the result computed with εc = 1.0e-8 and maxi = 8192 (but
maxi = 16 for uvgcd16 and stlngcd16) where the threshold of “#f” is 10−1.
According to this result, our relaxed NewtonSLRA algorithm works well and is
in balance with the computing time and the perturbation.

References

1. Alcázar, J.G., Quintero, E.: Affine equivalences of trigonometric curves. Acta Appl.
Math. 170, 691–708 (2020)

2. Bini, D.A., Boito, P.: Structured matrix-based methods for polynomial ε-GCD:
analysis and comparisons. In: ISSAC 2007, pp. 9–16. ACM, New York (2007)

3. Boito, P.: Structured Matrix Based Methods for Approximate Polynomial GCD,
vol. 15. Edizioni della Normale, Pisa (2011)

4. Bourne, M., Winkler, J.R., Su, Y.: A non-linear structure-preserving matrix
method for the computation of the coefficients of an approximate greatest common
divisor of two Bernstein polynomials. J. Comput. Appl. Math. 320, 221–241 (2017)

5. Cadzow, J.A.: Signal enhancement-a composite property mapping algorithm. IEEE
Trans. Acoust. Speech Signal Process. 36(1), 49–62 (1988)

6. Chi, B., Terui, A.: The GPGCD algorithm with the Bézout matrix. In: Boulier,
F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) Computer Algebra in
Scientific Computing, pp. 170–187. Springer International Publishing, Cham (2020)

7. Corless, R.M., Rafiee Sevyeri, L.: Approximate GCD in a Bernstein basis. In:
Gerhard, J., Kotsireas, I. (eds.) Maple in Mathematics Education and Research,
pp. 77–91. Springer International Publishing, Cham (2020)

8. Corless, R.M., Watt, S.M., Zhi, L.: QR factoring to compute the GCD of univariate
approximate polynomials. IEEE Trans. Signal Process. 52(12), 3394–3402 (2004)

Relaxed NewtonSLRA for Approximate GCD 291

9. Deutsch, F.: Best Approximation in Inner Product Spaces. CMS Books in Mathe-
matics/Ouvrages de Mathématiques de la SMC, vol. 7. Springer-Verlag, New York
(2001)

10. Dunaway, D.K.: Calculation of zeros of a real polynomial through factorization
using Euclid’s algorithm. SIAM J. Numer. Anal. 11, 1087–1104 (1974)

11. Emiris, I.Z., Galligo, A., Lombardi, H.: Numerical univariate polynomial GCD. In:
The mathematics of numerical analysis (Park City, UT, 1995), Lectures in Applied
Mathematics-American Mathematical Society, vol. 32, pp. 323–343, Providence, RI
(1996)

12. Emiris, I.Z., Galligo, A., Lombardi, H.: Certified approximate univariate GCDs. J.
Pure Appl. Algebra 117(118), 229–251 (1997). algorithms for algebra (Eindhoven,
1996)

13. Fazzi, A., Guglielmi, N., Markovsky, I.: An ODE-based method for computing the
approximate greatest common divisor of polynomials. Numer. Algorithms 81(2),
719–740 (2019)

14. Giesbrecht, M., Haraldson, J., Labahn, G.: Computing nearby non-trivial Smith
forms. J. Symbolic Comput. 102, 304–327 (2021)

15. Golub, G.H., Van Loan, C.F.: Matrix computations. Johns Hopkins Studies in the
Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, Fourth
Edition (2013)

16. Kaltofen, E., Yang, Z., Zhi, L.: Approximate greatest common divisors of several
polynomials with linearly constrained coefficients and singular polynomials. In:
ISSAC 2006, pp. 169–176. ACM, New York (2006)

17. Kaltofen, E., Yang, Z., Zhi, L.: Structured low rank approximation of a Sylvester
matrix. In: Symbolic-numeric computation, pp. 69–83. Trends Math., Birkhäuser,
Basel (2007)

18. Karmarkar, N., Lakshman, Y.N.: Approximate polynomial greatest common divi-
sors and nearest singular polynomials. In: ISSAC 1996, pp. 35–39. ACM, New York
(1996)

19. Markovsky, I.: Low-rank approximation: Algorithms, Implementation, Applica-
tions. Communications and Control Engineering Series, 2nd edn. Springer, Cham
(2019)

20. Markovsky, I., Fazzi, A., Guglielmi, N.: Applications of polynomial common factor
computation in signal processing. In: Deville, Y., Gannot, S., Mason, R., Plumbley,
M.D., Ward, D. (eds.) Latent Variable Analysis and Signal Separation, pp. 99–106.
Springer International Publishing, Cham (2018)

21. Nagasaka, K.: Approximate GCD by Bernstein basis, and its applications. In:
ISSAC 2020, pp. 372–379. ACM, New York (2020)

22. Nagasaka, K.: Toward the best algorithm for approximate GCD of univariate poly-
nomials. J. Symbolic Comput. 105, 4–27 (2021)

23. Noda, M.T., Sasaki, T.: Approximate GCD and its application to ill-conditioned
algebraic equations. In: Proceedings of the International Symposium on Compu-
tational Mathematics (Matsuyama, 1990). vol. 38(1–3), pp. 335–351 (1991)

24. Pan, V.Y.: Computation of approximate polynomial GCDs and an extension.
Inform. and Comput. 167(2), 71–85 (2001)

25. Sasaki, T., Noda, M.T.: Approximate square-free decomposition and root-finding
of ill-conditioned algebraic equations. J. Inform. Process. 12(2), 159–168 (1989)

26. Schönhage, A.: Quasi-GCD computations. J. Complexity 1(1), 118–137 (1985)
27. Schost, E., Spaenlehauer, P.J.: A quadratically convergent algorithm for structured

low-rank approximation. Found. Comput. Math. 16(2), 457–492 (2016)

292 K. Nagasaka

28. Sevyeri, L., Corless, R.M.: Approximate GCD in Lagrange bases. In: 2020 22nd
International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting (SYNASC), pp. 40–47. IEEE Computer Society, Los Alamitos, CA, USA
(Sep 2020)

29. Terui, A.: GPGCD: an iterative method for calculating approximate GCD of uni-
variate polynomials. Theoret. Comput. Sci. 479, 127–149 (2013)

30. Usevich, K., Markovsky, I.: Variable projection methods for approximate (greatest)
common divisor computations. Theoret. Comput. Sci. 681, 176–198 (2017)

31. Winkler, J.R., Goldman, R.N.: The Sylvester resultant matrix for Bernstein poly-
nomials. In: Curve and surface design (Saint-Malo, 2002), pp. 407–416. Mod. Meth-
ods Math., Nashboro Press, Brentwood, TN (2003)

32. Winkler, J.R., Yang, N.: Resultant matrices and the computation of the degree of
an approximate greatest common divisor of two inexact Bernstein basis polynomi-
als. Comput. Aided Geom. Design 30(4), 410–429 (2013)

33. Zeng, Z.: The numerical greatest common divisor of univariate polynomials. In:
Randomization, relaxation, and complexity in polynomial equation solving, Con-
temp. Math. Amer. Math. Soc., vol. 556, pp. 187–217, Providence, RI (2011)

34. Zhi, L., Yang, Z.: Computing approximate GCD of univariate polynomials by struc-
ture total least norm. MM Res. Preprints 24, 375–387 (2004)

Simplification of Nested Real Radicals
Revisited

Nikolay N. Osipov(B) and Alexey A. Kytmanov

Siberian Federal University, Svobodny 79, Krasnoyarsk 660041, Russia

Abstract. The problem of simplification of nested radicals over arbi-
trary number fields was studied by many authors. The case of real rad-
icals over real number fields is somewhat easier to study (at least, from
theoretical point of view). In particular, an efficient (i.e., a polynomial-
time) algorithm of simplification of at most doubly nested radicals is
known. However, this algorithm does not guarantee complete simplifica-
tion for the case of radicals with nesting depth more than two. In the
paper, we give a detailed presentation of the theory that provides an algo-
rithm which simplifies triply nested reals radicals over Q. Some examples
of triply nested real radicals that cannot be simplified are also given.

Keywords: Nested radicals · Simplification · Computer algebra
systems

1 Introduction

The problem of simplification plays a significant role in symbolic computations.
For symbolic expressions of special kinds, this problem can be solved more or
less reasonably, so that we can use efficient algorithms for simplification imple-
mented in computer algebra systems (CAS) of a general kind. In our paper, we
discuss a simplification problem for the so-called nested radical expressions (i.e.,
expressions containing the signs of square root, cubic root, etc.). This is the
simplest class of elementary algebraic expressions for which the simplification
problem seems to be quite complicated. Usually, simplifying means decreasing
of the depth of a given nested radical expression. The main difficulties arise due
to the existence of unexpected non-trivial relations between nested radicals.

The trivial identity of the type
√

2 +
√

8 =
√

18 (1)

with “usual” (i.e., non-nested) radicals is clear. Besicovitch [2] proved that the
non-trivial identities with non-nested radicals over the field of rational num-
bers Q do not exist (i.e., after reducing proportional terms in such an equality,
we must obtain 0 = 0). However, there exist more interesting identities which
seem unexpected. For instance,

√
5 + 2

√
6 =

√
2 +

√
3,

√
4 + 3

√
2 = 4

√
2 + 4

√
8. (2)

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 293–313, 2021.
https://doi.org/10.1007/978-3-030-85165-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_17&domain=pdf
http://orcid.org/0000-0002-8894-609X
http://orcid.org/0000-0003-3325-099X
https://doi.org/10.1007/978-3-030-85165-1_17

294 N. N. Osipov and A. A. Kytmanov

We can easily verify these equalities by squaring or using the following elemen-
tary formula

√
A ±

√
B =

√
A +

√
A2 − B

2
±

√
A − √

A2 − B

2
(3)

that can also be used (basically) for denesting the square nested radicals of
arbitrary depth. Some more exotic identities with nested radicals were proposed
by Ramanujan:

3
√

3
√

2 − 1 = 3

√
1
9

− 3

√
2
9

+ 3

√
4
9
,

√
3
√

5 − 3
√

4 =
3
√

2 + 3
√

20 − 3
√

25
3

.

Here, it is not so clear how the left hand side could be reduced to the right-hand
side. Slightly simpler equalities of the type

3
√

10 +
√

108 +
3
√

10 −
√

108 = 2

are provided by Cardano’s formula for solving a cubic equation.
The first algorithm for determining whether a given nested radical can be

denested was introduced by S. Landau [8]. This algorithm works with nested
radicals over an arbitrary algebraic number field (a subfield L of the field of
complex numbers C such that the extension L/Q is finite) and involves complex
roots of unity. The bottleneck of Landau’s algorithm seems to be in necessity
of computing the Galois group for polynomials which is, probably, even a more
difficult problem.

The case of real radicals over real number fields is somewhat easier to study
(a root function is single-valued over real numbers). A polynomial-time algo-
rithm of simplification of at most doubly nested radicals has been known for a
long period of time [4]. However, this algorithm does not guarantee complete
simplification for the case of radicals with nesting depth more than two. An
algorithm which either simplifies (i.e., reduces nesting depth) triply nested rad-
icals over the field Q or proves that such simplification is impossible was firstly
proposed in [11].

The simplest case of nested square real radicals was treated by Borodin
et al. [6]. The corresponding algorithm for simplifying works correctly with
the equalities of the type (2). It was implemented in some CAS (for instance,
Maple [12]).

In this paper, we propose a much more detailed description of the algorithm
from [11] which simplifies triply nested radicals over Q. Also, we generalize the
method for finding all the roots of a given polynomial from Q[x] in the so-
called complete radical extension R(Q) (see Theorem 4). We provide new explicit
examples of triply nested radicals over Q that cannot be simplified (see Example
7). In addition, we propose some impossible equalities with double nested radicals
over Q (see Proposition 3).

The paper is organized as follows.

Simplification of Nested Real Radicals Revisited 295

In Sect. 2, we give some preliminary results about the set of solutions over C
for a special class of polynomial systems (see Proposition 1 and its corollaries).
For solving these systems, we propose using the Gröbner bases technique together
with the well-known Theorem of Finiteness (see [1, Theorem 6.54]).

Sect. 3 contains main definitions and results about non-nested real radicals
over an arbitrary real field (in particular, Theorem 1 which was firstly proved
by Mordell [10]).

In Sect. 4, we explain how a double nested real radical over an arbitrary real
field can be denested if possible.

In Sect. 5 and 6, we propose and discuss some new results about simplifying
triply nested real radicals.

2 Special Polynomial Systems with Zero-Dimensional
Variety of Solutions

Let L, F ⊂ C be two number fields with L ⊂ F . Suppose that the extension
F/L is finite and N = [F : L] is its degree (in particular, this extension is an
algebraic extension). Denote by {ω1, . . . , ωN} a fixed L-basis of the field F (such
a basis can be arbitrary). For a fixed polynomial

f ∈ L[x], deg f = q > 1,

we introduce the polynomials pj ∈ L[x1, . . . , xN] (j = 1, . . . , N) using the rep-
resentation

f(x1ω1 + . . . + xNωN)
= p1(x1, . . . , xN)ω1 + . . . + pN (x1, . . . , xN)ωN .

(4)

Denote by ψj (j = 1, . . . , N) all the isomorphisms of F into C over L (which are
the identity map on L). For each j = 1, . . . , N , we also have

f(x1ψj(ω1) + . . . + xNψj(ωN))
= p1(x1, . . . , xN)ψj(ω1) + . . . + pN (x1, . . . , xN)ψj(ωN), (5)

which are immediate consequences of (4). For any fixed N -tuple (a1, . . . , aN) ∈
C

N , we consider the following system of polynomial equations
⎧⎨
⎩

p1(x1, . . . , xN) = a1,
. . .
pN (x1, . . . , xN) = aN .

(6)

Proposition 1. For any (a1, . . . , aN) ∈ C
N , the system (6) has only a finite

set of solutions (x1, . . . , xN) in C
N .

Proof. Let us introduce the number θ = a1ω1 + . . . + aNωN and its (formal)
conjugates

θ(j) = a1ψj(ω1) + . . . + aNψj(ωN) (j = 1, . . . , N).

296 N. N. Osipov and A. A. Kytmanov

Let (x1, . . . , xN) ∈ C
N be an arbitrary solution of the system (6). From (5), it

follows that (x1, . . . , xN) satisfies a linear system of the form
⎧
⎨
⎩

x1ψ1(ω1) + . . . + xNψ1(ωN) = c1,
. . .
x1ψN (ω1) + . . . + xNψN (ωN) = cN ,

(7)

where the number cj ∈ C (j = 1, . . . , N) is a root of the polynomial

fj = f − θ(j) (j = 1, . . . , N).

Thus, we obtain finitely many (qN at most) linear systems of the form (7). It
remains to observe that the determinant

Δ = det

⎡
⎣

ψ1(ω1) . . . ψ1(ωN)
.
ψN (ω1) . . . ψN (ωN)

⎤
⎦

of the linear system (7) does not vanish for any L-basis {ω1, . . . , ωN} of the
field F . Indeed, Δ2 is equal to the discriminant of given L-basis that is non-zero
because of separability of the extension F/L (this is well known; see, e.g., [5,
Sect. “Algebraic Supplement”]). Therefore, each linear system (7) has a unique
solution (x1, . . . , xN). This completes the proof. ��
Remark 1. Clearly, system (6) has at most q solutions (x1, . . . , xN) in LN . If
(a1, . . . , aN) ∈ LN then θ = a1ω1 + . . . + aNωN ∈ F and finding of all the
solutions (x1, . . . , xN) of (6) in LN is equivalent to finding the roots of the
polynomial f − θ in the field F .

We now give some consequences of Proposition 1 for the important case of
monomial

f = xq. (8)

Corollary 1. Let (a1, . . . , aN) �= (0, . . . , 0). Then, for each j = 1, . . . , N , the
system ⎧⎪⎪⎨

⎪⎪⎩

x0p1(x1, . . . , xN) = a1,
. . .
x0pN (x1, . . . , xN) = aN ,
xj = 1

(9)

has only a finite set of solutions (x0, x1, . . . , xN) in C
N+1.

Proof. In our case, all the polynomials pj(x1, . . . , xN) defined by (4) are homo-
geneous polynomials of degree q. Put x0 = tq where t is a new variable. Then
system (9) reduces to the system

⎧⎪⎪⎨
⎪⎪⎩

p1(tx1, . . . , txN) = a1,
. . .
pN (tx1, . . . , txN) = aN ,
xj = 1.

Simplification of Nested Real Radicals Revisited 297

Since (a1, . . . , aN) �= (0, . . . , 0), we conclude that t �= 0. From Proposition 1, it
follows that

(y1, . . . , yN) = (tx1, . . . , txN) ∈ A

where A ⊂ C
N is a finite set. Consequently, the product txj can take at most

a finite set of different values. At the same time, xj = 1 in (9). Thus, all the
possible values of t form a finite set. Now, the statement of Corollary 1 is clear.

��
Corollary 2. For each j = 1, . . . , N , the system

⎧
⎪⎪⎨
⎪⎪⎩

p2(x1, . . . , xN) = 0,
. . .
pN (x1, . . . , xN) = 0,
xj = 1

(10)

has only a finite set of solutions (x1, . . . , xN) in C
N .

Proof. Consider the system
⎧
⎪⎪⎨
⎪⎪⎩

p1(x1, . . . , xN) = 1,
p2(x1, . . . , xN) = 0,
. . .
pN (x1, . . . , xN) = 0

which possesses a finite set B ⊂ C
N of solutions. Then any solution (x1, . . . , xN)

of the subsystem ⎧⎨
⎩

p2(x1, . . . , xN) = 0,
. . .
pN (x1, . . . , xN) = 0

can be represented as (ty1, . . . , tyN) with some (y1, . . . , yN) ∈ B. Because xj = 1
in (10), we have tyj = 1. Therefore, the variable t can take values only in a finite
set. Corollary 2 is proved. ��
Remark 2. Corollary 2 can also be derived from Corollary 1.

Suppose that, for the field L, we have an algorithm for finding all the roots in
L of any given polynomial in L[x] (for instance, L = Q or some finite extension of
Q are suitable). Then, for the systems (6), (9) and (10) in the case (a1, . . . , aN) ∈
LN , we can find all their solutions over L. This can be deduced from Proposition 1,
Corollary 1 and the following theorem (see, for instance, [1, Theorem 6.54] or [7,
Sect. 3.1.3]).

Theorem of Finiteness. Let G(S) be a Gröbner basis for a system S of poly-
nomial equations in N variables x1, . . . , xN with respect to the pure lexicographic
order. Then the system S has a finite set of solutions in C

N if and only if each
variable xj occurs as an isolated variable in some leading monomial of G(S).

298 N. N. Osipov and A. A. Kytmanov

For an integer q > 1, denote by F q the set of qth powers of all numbers from
the field F , i.e.,

F q = {αq : α ∈ F}.

As usual, L∗ denotes the multiplicative group of the field L.

Definition 1. A non-zero number θ ∈ F is called an almost q-power in F over
L if there exists a number a ∈ L∗ such that θ/a ∈ F q.

Due to the assumptions about the field L (see above), it follows that there
exist the following algorithms.

Algorithm I. An algorithm that determines whether a non-zero number θ ∈ F
belongs to the set F q.

Algorithm II. An algorithm that determines whether a non-zero number θ ∈ F
is an almost q-power in F over L.

Indeed, let θ = a1ω1 + . . . + aNωN be a fixed non-zero number from the
field F . To implement Algorithm I, we need to solve the system (6) for the
case (8) (recall that f and p1, . . . , pN are connected by (4)) which is possible.
Similarly, for implementation of Algorithm II, we need to (and, indeed, are able
to) solve system (9) for all j = 1, . . . , N .

In order to illustrate these algorithms, let us consider an example.

Example 1. Let L = Q and F = Q(3
√

2). Then for L-basis of F we can take

ω1 = 1, ω2 = 3
√

2, ω3 = 3
√

4

(here the values of all radicals are assumed to be real). In particular, N = 3. For
the polynomial f(x) = x2, we obtain

p1(x1, x2, x3) = x2
1 + 4x2x3,

p2(x1, x2, x3) = 2x1x2 + 2x2
3,

p3(x1, x2, x3) = 2x1x3 + x2
2.

For (a1, a2, a3) = (1, 1, 0), consider the system (6) and the systems (9) where
j ∈ {1, 2, 3}. Using the technique of Gröbner bases and any suitable CAS (for
instance, Maple [12] which contains the corresponding module Groebner), it is
easy to verify that all these systems have no solutions over Q. Consequently, we
can conclude that

θ = 1 + 3
√

2 �∈ (Q(3
√

2))2

and, moreover, the number θ is not an almost square in Q(3
√

2) over Q.

Obviously, the simplest case is N = 2 and q = 2. Constructing the algo-
rithms I and II in this case, we can use the following elementary assertion which
is valid for an arbitrary field L of characteristic �= 2.

Simplification of Nested Real Radicals Revisited 299

Proposition 2. Let F = L(ω) where ω �∈ L, but ω2 ∈ L. For the number

θ = a1 + a2ω ∈ F

with some a1, a2 ∈ L and a2 �= 0, the following statements hold.
(i) θ ∈ F 2 if and only if a2

1 − a2
2ω

2 ∈ L2 and exactly one of the numbers

a1 ±
√

a2
1 − a2

2ω
2

2

belongs to L2.
(ii) θ is an almost square in F over L if and only if a2

1 − a2
2ω

2 ∈ L2.

Proof. (i) Suppose that θ = (x + yω)2 for some x, y ∈ L. Then

x2 + y2ω2 = a1, 2xy = a2.

Eliminating y, we get the equation

4x4 − 4a1x
2 + a2

2ω
2 = 0

which can be rewritten as (2x2 − a1)2 = a2
1 − a2

2ω
2. Thus, the number a2

1 − a2
2ω

2

must be a square in L (i.e., belongs to L2). If a2
1 − a2

2ω
2 = d2 with some d ∈ L

then
x2 =

a1 ± d

2
.

This means that one of the numbers (a1 ± d)/2 must be a square in L. Since

a1 − d

2
· a1 + d

2
=

a2
2ω

2

4

and ω �∈ L, exactly one of the numbers (a1 ± d)/2 can be a square in L.
Suppose that a2

1 − a2
2ω

2 = d2 for some d ∈ L and, moreover,

a1 ± d

2
= z2

where z ∈ L and the sign is fixed. Clearly, z must be non-zero. Setting

x = z, y =
a2

2z
,

we obtain the representation θ = (x + yω)2 as desired.
(ii) Suppose that θ = a(x + yω)2 with some x, y ∈ L and 0 �= a ∈ L. Then

x2 + y2ω2 = b1, 2xy = b2

where b1 = a1/a and b2 = a2/a. As above, we conclude that

b21 − b22ω
2 =

a2
1 − a2

2ω
2

a2
= w2

300 N. N. Osipov and A. A. Kytmanov

for some w ∈ L. Thus, a2
1 −a2

2ω
2 = (aw)2. Hence the number a2

1 −a2
2ω

2 must be
a square in L.

If a2
1 − a2

2ω
2 = d2 for some d ∈ L then we can take

x = 1, y =
a2

a1 + d
, a =

a1 + d

2
.

It can easily be verified that the representation θ = a(x + yω)2 is valid. ��

3 Real Radicals over a Real Field

Let P ⊂ R be a real number field. For the field P , we will suppose that there
exist the following algorithms:

Algorithm (a). An algorithm that determines the sign of number a ∈ P .

Algorithm (b). An algorithm that determines whether a non-zero number a ∈
P belongs to the set P q where q is an arbitrary prime number.

For example, the field P = Q satisfies these conditions as well as P = Q(
√

2)
and many other fields of real algebraic numbers.

Definition 2. A number α ∈ R is called a real radical of degree n > 1 over P
if αn ∈ P and αn �∈ P q for any prime q |n.

From now on by “radical” we will mean “real radical”. It is easy to see that
a non-zero number α ∈ R is a radical of degree n over P if and only if αi �∈ P
(1 � i < n), but αn ∈ P . Moreover, if α is a radical of degree n over P then the
corresponding polynomial

fα = xn − αn ∈ P [x]

is irreducible over P (and, consequently, fα is the minimal polynomial for alge-
braic number α). In particular, the system {1, α, . . . , αn−1} is a P -basis of the
field P (α) ⊂ R.

Remark 3. For any field L, there is a criterion of irreducibility for an arbitrary
binomial

xn − a ∈ L[x]

(see, for instance, [9, Ch. VI, Sect. 9]). The irreducibility of fα over P can be
derived using this criterion but can also be established by elementary arguments.

For a given field P , consider an arbitrary number α = m
√

b where 0 < b ∈ P
and m > 1. Using Algorithms (a) and (b), we can determine whether α is a
radical over P or α ∈ P (the fact that αm ∈ P yields impossibility of the other
variants). Moreover, in the first case, we can obtain the canonical representation
α = n

√
a with some 0 < a ∈ P (i.e., in this representation, n is the degree of α).

In the second case, we can find 0 < a ∈ P such that α = a.
For (n1, . . . , ns) ∈ N

s, denote

I(n1,...,ns) = {(i1, . . . , is) ∈ Z
s : 0 � ik < nk for each k = 1, . . . , s}.

Simplification of Nested Real Radicals Revisited 301

Definition 3. The radicals α1, . . . , αs over P of degrees n1, . . . , ns respectively
are called multiplicatively independent if the condition

s∏
k=1

αik
k ∈ P ∗,

where (i1, . . . , is) ∈ I(n1,...,ns) holds only for (i1, . . . , is) = (0, . . . , 0).

For an arbitrary collection of radicals ρ1, . . . , ρt over P , there exists a sys-
tem of multiplicatively independent radicals α1, . . . , αs over P such that both
systems of radicals generate the same subgroup in the multiplicative factor-
group R

∗/P ∗:
〈α1P

∗, . . . , αsP
∗〉 = 〈ρ1P ∗, . . . , ρtP

∗〉.
This result follows from the well-known structure theorem about finite abelian
groups which states that any finite abelian group can be represented as a product
of finite cyclic groups. In particular, we have

P (ρ1, . . . , ρt) = P (α1, . . . , αs). (11)

Furthermore, if ρl-s are represented in the form ρl = ml
√

bl where 0 < bl ∈ P
then the construction of suitable αk-s in the form αk = nk

√
ak where 0 < ak ∈ P

and nk is the degree of αk can be performed via the algorithms (a) and (b).

Theorem 1. If α1, . . . , αs are multiplicatively independent radicals over P of
degrees n1, . . . , ns respectively then

[P (α1, . . . , αs) : P] =
s∏

k=1

nk (12)

and the numbers

α(i1,...,is) =
s∏

k=1

αik
k with (i1, . . . , is) ∈ I(n1,...,ns) (13)

form a P -basis of the field P (α1, . . . , αs).

Proof. See, e.g., [10]. ��
Note that all the numbers α(i1,...,is) with (i1, . . . , is) �= (0, . . . , 0) are radicals

over P (namely, the degree of α(i1,...,is) is equal to the least common multiple of
the integers nk/ gcd (ik, nk), k = 1, . . . , s).

Corollary 3. Let ρ1, . . . , ρt be arbitrary radicals over P . If

ρl

ρl′
�∈ P ∗ for all l �= l′ (14)

then the numbers 1, ρ1, . . . , ρt are linearly independent over P .

302 N. N. Osipov and A. A. Kytmanov

Proof. Indeed, there is a suitable system of multiplicatively independent radicals
α1, . . . , αs over P such that (11) holds and each ρl can be represented in the
form aα(i1,...,is) where a ∈ P ∗ and the numbers α(i1,...,is) are defined by (13).
Due to (14), the correspondence l
→ (i1, . . . , is) must be injective. Hence the
numbers 1, ρ1, . . . , ρt are linearly independent over P because they represent
some part of the P -basis formed by the numbers (13). ��
Corollary 4. If α is a radical over P and α ∈ P (α1, . . . , αs) then

α = aα(i1,...,is)

for some (i1, . . . , is) ∈ I(n1,...,ns) and a ∈ P ∗.

Proof. The proof follows from Corollary 3 if for ρ1, . . . , ρt we consider the
collection of numbers α(i1,...,is) with (i1, . . . , is) �= (0, . . . , 0) additioned by the
radical α. ��
Remark 4. For the cases of P = Q or P = Q(ω) with a real algebraic number ω,
there is an algorithm [3] which provides checking condition (14) in polynomial
time depending on all the parameters that determine the numbers ω and ρl-s.

4 Simplification of Doubly Nested Real Radicals

In this section, we will make some additional assumptions about the given field
P ⊂ R and its extensions. Namely, suppose that there exists

(c) an algorithm that finds all the roots in the field P of a given polynomial
from P [x].

Fix an arbitrary system of multiplicatively independent radicals α1, . . . , αs

over P of degrees n1, . . . , ns respectively. Consider the field

P̃ = P (α1, . . . , αs).

Suppose that there exists
(d) an algorithm that determines the sign of the number θ ∈ P̃ .
For convenience of notation, denote by N the degree of the extension P̃ /P

(i.e., N is equal to (12)) and let ω1, . . . , ωN be the P -basis of the field P̃ formed
by the numbers (13). Based on the results from Sect. 2, for any given number

θ = a1ω1 + . . . + aNωN ∈ P̃

and any prime q, we can determine whether θ belongs to the set P̃ q (in fact, we
need to apply the algorithm I for the fields L = P and F = P̃). Thus, under the
assumptions on the fields P and P̃ , there exists an algorithm that, for a number
β = m

√
θ with 0 < θ ∈ P̃ and m > 1, determines whether β is a radical over P̃ .

Moreover, in the case when β is a radical over P̃ , we can represent β in the form
β = r

√
η where 0 < η ∈ P̃ and r is the degree of β.

Simplification of Nested Real Radicals Revisited 303

Definition 4. Let P be a given real field. The field obtained by adjoining all the
real radicals over P is called a complete radical extension of P and denoted by
R(P).

Remark 5. It is easy to see that P ⊂ P1 implies R(P) ⊂ R(P1).

If a number β is a radical over P̃ then, clearly, β �∈ P̃ . Yet, it is possible that
β ∈ R(P) ⊃ P̃ . Theorem 2 below provides a method to determine it. We need
the following auxiliary result.

Lemma 1. Let ρ1, . . . , ρt be arbitrary radicals over P for which the condi-
tion (14) holds. Then any number

σ = c0 + c1ρ1 + . . . + ctρt

where all cl ∈ P and are non-zero for l = 1, . . . , t is a primitive element of the
extension P (ρ1, . . . , ρt)/P , i.e.,

P (ρ1, . . . , ρt) = P (σ).

Proof. See Theorem 3 in [11]. ��

Theorem 2. Suppose that 0 < η ∈ P̃ and β = r
√

η is a radical over P̃ of
degree r. If β ∈ R(P) then there exists some j ∈ {1, . . . , N} such that the
number η/ωj is an almost r-power in P̃ over P .

Proof. Let β ∈ R(P). Then there are some radicals ρ1, . . . , ρt over P such that

β = c0 + c1ρ1 + . . . + ctρt (15)

where all cl ∈ P and are non-zero for l = 1, . . . , t. Moreover, we can assume
that the radicals ρ1, . . . , ρt satisfy the condition (14). Show that there exist a
radical ρ over P and a non-zero number ζ ∈ P̃ such that

ρ = ζβ. (16)

Indeed, Lemma 1 yields that P (ρ1, . . . , ρt) = P (β). Hence, ρl = fl(β) for
some polynomials fl ∈ P [x] (l = 1, . . . , t). Since βr = η ∈ P̃ , we obtain

ρl ∈ P̃ (β) (l = 1, . . . , t).

Each ρl is either an element of P̃ or a radical over P̃ (because ρl is a radical
over P and P ⊂ P̃). Applying Corollary 4 to the fields P̃ and P̃ (β), we arrive at

ρl = ζlβ
kl , 0 �= ζl ∈ P̃ , 0 � kl < r (l = 1, . . . , t).

Now, (15) can be rewritten as

β = c0 + c1ζ1β
k1 + . . . + ctζtβ

kt .

304 N. N. Osipov and A. A. Kytmanov

Since β is a radical over P̃ of degree r, there is l ∈ {1, . . . , t} for which kl = 1.
Setting ρ = ρl and ζ = ζl, we obtain (16) as desired.

From (16), we deduce

ρr = ζrβr = ζrη ∈ P̃ .

Moreover, the number ρr is either an element of P or a radical over P (we recall
that ρ is a radical over P). By Corollary 4 applied to the field P̃ , we obtain
ρr = aωj for some a ∈ P ∗ and j ∈ {1, . . . , N}. Thus, we have

η

ωj
=

a

ζr
= a

(
1
ζ

)r

.

It means that the number η/ωj is an almost r-power in P̃ over P . This completes
the proof. ��
Remark 6. Theorem 2 was firstly proved in [4] using various techniques. Also,
there was proposed an algorithm that provides verification of the condition β ∈
R(P) in polynomial time for the case P = Q or P = Q(ω) where ω is an algebraic
number. The proof of Theorem 2 proposed above is new.

Corollary 5. Let 0 < θ ∈ P̃ . If q is a prime then θ ∈ (R(P))q if and only if,
for some j ∈ {1, . . . , N}, the number θ/ωj is an almost q-power in P̃ over P .

Proof. Let β = q
√

θ. Since q is a prime, then β ∈ P̃ or β is a radical over P̃
of degree q. Now, the part”only if“follows immediately from Theorem 2. The
part”if“is obvious. ��

Thus, for a given number of the form β = m
√

θ where 0 < θ ∈ P̃ and m > 1,
we can determine whether β is a radical over R(P) or β ∈ R(P). Moreover, if β
is a radical over R(P) then we can represent β as

β = m
√

aωj
r
√

η,

where 0 < η ∈ P̃ and r is the degree of β (also a ∈ P ∗ and j ∈ {1, . . . , N}).
To illustrate this, let us consider two examples.

Example 2. Let P = Q and P̃ = Q(3
√

2). Consider the number

θ = 1 + 3
√

2 ∈ Q(3
√

2).

In Example 1, we showed that θ is not an almost square in Q(3
√

2) over Q. In
particular, β =

√
θ is a square radical over Q(3

√
2). One can show that this is

also valid for the numbers

θ
3
√

2
= 1 +

1
2

3
√

4,
θ
3
√

4
=

1
2

3
√

2 +
1
2

3
√

4.

From Theorem 2, it follows that the number β =
√

1 + 3
√

2 does not belong to
R(Q) and, consequently, is a square radical over R(Q).

Simplification of Nested Real Radicals Revisited 305

Example 3. Let P = Q and P̃ = Q(
√

2). Consider the number

θ = 12 + 9
√

2 ∈ Q(
√

2).

Using Proposition 2, one can show that θ �∈ (Q(
√

2))2, but the number

θ√
2

= 9 + 6
√

2

is an almost square in Q(
√

2) over Q. Namely, we have

9 + 6
√

2 = 3 · (1 +
√

2)2.

Thus, being a square radical over Q(
√

2), the number β =
√

θ =
√

12 + 9
√

2 is
not a square radical over R(Q). In fact, we obtain

β =
√

3
√

2 · (1 +
√

2)2 = 4
√

18 · (1 +
√

2) = 4
√

18 + 4
√

72 ∈ R(Q).

The following example is more complicated and seems unexpected but, the-
oretically, we are dealing with the same phenomenon as in the trivial identities
of the type (1).

Example 4. Consider the equality
√

3 +
√

2 +
√

3 −
√

2 =
√

6 + 2
√

7. (17)

Here all the numbers

β1 =
√

3 +
√

2, β2 =
√

3 −
√

2, β3 =
√

6 + 2
√

7

are square radicals over R(Q). This can be shown similarly to Example 2 (the
proof is technically easier because we can apply Proposition 2). Since βl-s are
linearly dependent, among them there is at least one pair which are proportional
over R(Q) (see Corollary 3 with respect to P = R(Q)). In fact, we have

β2

β1
=

3
7

√
7 − 1

7

√
14,

β3

β1
= 1 +

3
7

√
7 − 1

7

√
14, (18)

i.e., all the radicals βl are pairwise proportional over R(Q). Relations (18) can
be found using Theorem 2 together with Proposition 2 (due to the fact that
all involving radicals are of degree two). Simplifying β2/β1, we can also use the
elementary identity (3) (and this would be simpler).

We proceed with some further observations on the identity (17). In the left-
hand side of (17), there are numbers of the form

√
a + b

√
2 (a, b ∈ Q), (19)

306 N. N. Osipov and A. A. Kytmanov

the sum of which is a number of the form
√

c + d
√

7 (c, d ∈ Q). (20)

To be short, we will call the numbers (19) and (20) white and black, respectively.
The identity (17) means that a black number can be represented as a sum of
several white numbers. There are various identities of this kind, for instance,

√
5 + 3

√
2 +

√
27 + 9

√
2 +

√
26 − 14

√
2 =

√
54 + 18

√
7.

We call a white number (19) interesting if both coefficients a and b are positive.
One can observe that in the previous identity (as well as in (17)), not all the
white numbers are interesting. Below (see Proposition 3), we prove that it is not
a simple coincidence. For convenience purposes, we reformulate Theorem 2 for
square nested radicals.

Let P ⊂ R be a number field and ω ∈ R be a square radical over P . Consider
the numbers

ρ =
√

a + bω (21)

with a, b ∈ P and a + bω > 0. The following assertion answers how complicated
the simplifying expressions for a double radical (21) could be, if exists.

Lemma 2. Suppose ρ =
√

a + bω ∈ R(P). Then there exist x, y, and z > 0 in
P , such that either (i) a + bω = z(x + yω)2, or (ii) a + bω = zω(x + yω)2.

Proof. This is a particular case of Theorem 2 where P̃ = P (ω). ��
Proposition 3. No black number (20) can be equal to a sum of interesting white
numbers (19).

Proof. Let ∑
k

rk = r,

where rk =
√

ak + bk

√
2 are interesting white numbers, r =

√
c + d

√
7 is a black

number. Then ∑
k

r2k +
∑
k �=l

ρk,l = r2, (22)

where ρk,l = 2rkrl =
√

Ak,l + Bk,l

√
2 with Ak,l > 0 and Bk,l > 0. Note that

ρk,l ∈ R(Q) for any k �= l. Indeed, if some ρk,l �∈ R(Q) then the number in the
left-hand side of (22) could not belong to R(Q). The latter is due to the fact that
after combining like terms in the left-hand side of (22), the radicals over R(Q)
would still remain. Lemma 2 yields

Ak,l + Bk,l

√
2 = zk,l(xk,l + yk,l

√
2)2ω,

Simplification of Nested Real Radicals Revisited 307

where either ω = 1, or ω =
√

2, and xk,l, yk,l, zk,l are rationals with zk,l > 0.
Since 2zk,lxk,lyk,l = Bk,l when ω = 1, and 4zk,lxk,lyk,l = Ak,l when ω =

√
2,

xk,lyk,l > 0, we can assume that xk,l > 0 and yk,l > 0 so that

ρk,l = (xk,l + yk,l

√
2)

√
zk,l

√
ω.

But (22) is contradictory in this case. Indeed, after combining like terms in the
left-hand side there will remain

√
2 with positive rational coefficient (since it

must contain the terms r2k = ak + bk

√
2 with bk > 0), and the right-hand side

does not contain
√

2. This completes the proof. ��
In the last part of this section, we briefly discuss the question about simpli-

fication of sums containing nested radicals. The following theorem reduces the
problem of denesting a sum of several nested radicals to the (formally, simpler)
problem of simplification of each radical in this sum.

Theorem 3. Suppose ρ1, . . . , ρt are radicals over P̃ satisfying
ρl

ρl′
�∈ P̃ ∗ for all l �= l′.

If all ζl ∈ P̃ are non-zero then

σ = ζ1ρ1 + . . . + ζtρt ∈ R(P)

if and only if ρl ∈ R(P) for each l.

Proof. Let σ ∈ R(P). From Lemma 1 applied to the field P̃ , it follows that

P̃ (ρ1, . . . , ρt) = P̃ (σ).

Therefore, ρl = gl(σ) for a polynomial gl ∈ P̃ [x] (l = 1, . . . , t). Thus, ρl ∈ R(P)
for each l. The converse assertion is obvious. This completes the proof. ��

5 Examples of Triply Nested Real Radicals over Q that
Cannot Be Simplified

Radicals with nesting depth more than two can also be denested according to
the scheme described in the previous section.

For instance, the radical
√

2 +
√

6 +
√

4 + 4
√

6

triply nested over Q can be denested. For this purpose, we treat it as a doubly
nested radical over the field P = Q(

√
6) which yields

√
2 +

√
6 +

√
4 + 4

√
6 = 1 +

√
1 +

√
6.

The following example shows that such a trick does not work in general.

308 N. N. Osipov and A. A. Kytmanov

Example 5. The radical

γ =

√
1 + 2

√
6 +

√
20 + 2

√
6

(which is similar to the previous one) cannot be denested as a doubly nested
radical over P = Q(

√
6). Indeed, the number ω =

√
20 + 2

√
6 is a square radical

over P since the equality

20 + 2
√

6 = (u + v
√

6)2

is impossible for any rationals u and v because the necessary condition from
Proposition 2 (which requires that 202 − 6 · 22 must be a square of a rational
number) does not hold. Now, putting a = 1 + 2

√
6 and b = 1, we can apply

Lemma 2 together with Proposition 2. Finally, we need to check that both num-
bers

a2 − b2ω2 = 5 + 2
√

6,
a2 − b2ω2

−ω2
= −38 + 15

√
6

188

are not squares in P which is actually true. Thus, γ �∈ R(P), i.e., γ cannot be
simplified as a doubly nested radical over P . On the other hand, we observe that
γ2 ∈ R(P). This means that γ is a square radical over R(P).

At the same time, we have

γ =

√
1 +

√
2 +

√
3 + 2

√
6

2
+

√
1 − √

2 − √
3 + 2

√
6

2
= ρ1 + ρ2.

This equality can be established if we start with a wider field P ′. Indeed, in the
field P ′ = Q(

√
2,

√
3) ⊃ P we have the equality

5 + 2
√

6 = (
√

2 +
√

3)2

that provides the desired simplification.

Remark 7. In fact, ρ1 and ρ2 are square radicals over R(P) as well as γ. Since (by
Corollary 3) we have no nontrivial identities with non-nested radicals, the equal-
ity γ = ρ1 + ρ2 implies that ρ1, ρ2, and γ are pairwise proportional over R(P)
(cf. (17)). This is actually true because ρ1ρ2 = ω ∈ R(P).

Certainly, taking P = R(Q), we can guarantee complete simplification (and,
particularly, the impossibility of denesting over Q). In the following examples,
we give some triply nested radicals over Q that cannot be simplified.

Example 6. Let P = R(Q). Show that the number

γ =

√
1 +

√
1 + 3

√
2

Simplification of Nested Real Radicals Revisited 309

is a square radical over R(P) = R(R(Q)). In Example 2, we have shown that

β =
√

1 + 3
√

2

is a square radical over R(Q). Denote θ = 1 + β. We need to show that

θ �∈ (R(R(Q)))2. (23)

For this purpose, we have to show that both numbers θ and

θ

β
= 1 +

β

1 + 3
√

2

are not almost squares in R(Q)(β) over R(Q). Using Proposition 2, it suffices to
show that

1 − β2 = − 3
√

2 �∈ (R(Q))2, 1 − 1
β2

=
2
3

+
1
3

3
√

2 − 1
3

3
√

4 �∈ (R(Q))2.

The first is obvious (all the numbers are real), the second can be obtained as in
Example 2. Thus, γ =

√
θ =

√
1 + β is a radical over R(R(Q)). Consequently,

its nesting depth is three. So, it is the minimum depth possible for the nested
radical γ (in the case of real radicals over Q).

The following example is similar to the previous one. At the same time, it
requires a lot more computations to arrive at the expected result.

Example 7. Show that the number

γ =

√
1 +

3
√

1 +
√

2 (24)

is a square radical over R(R(Q)). We start by noticing that

β =
3
√

1 +
√

2

is a cubic radical over R(Q) which can be verified by checking 1+
√

2 �∈ (R(Q))3.
For θ = 1 + β, we need to show (23) again, but this time we must prove that
the numbers θ and

θ

β
= 1 +

β2

1 +
√

2
,

θ

β2
=

β

1 +
√

2
+

β2

1 +
√

2

are not almost squares in R(Q)(β) over R(Q). However, we cannot use Proposi-
tion 2 as in Example 6 because β is not a square radical.

Below, we prove that θ is not an almost square in R(Q)(β) over R(Q) (we
can proceed similarly for θ/β and θ/β2 and get the same result).

I. Suppose that
1 + β = x0(x1 + x2β + x3β

2)2

310 N. N. Osipov and A. A. Kytmanov

where all xj ∈ R(Q) (see Definition 1). We need to apply Corollary 1 for the
field L = R(Q). In our case, the system (9) is the following:

⎧⎪⎪⎨
⎪⎪⎩

x0(x2
1 + (2 + 2

√
2)x2x3) = 1,

x0(2x1x2 + (1 +
√

2)x2
3) = 1,

x0(2x1x3 + x2
2) = 0,

xj = 1,

(25)

where j ∈ {1, 2, 3}. For instance, take j = 2. One can compute a Gröbner basis
of (25) that contains a univariate polynomial of the form

h = 4x4 − 8x3 + (4 − 4
√

2)x + 1 −
√

2 (26)

with respect to x = x3. Using a modified version of the corresponding algorithm
from [11] (see Theorem 4 below), we aim at proving that the polynomial h ∈
Q(

√
2)[x] has no roots in R(Q).

II. Assume σ ∈ R(Q) is a root of h. Then there exist multiplicatively inde-
pendent radicals α1, . . . , αs over P1 = Q(

√
2) of degrees n1, . . . , ns respectively

such that
P1(σ) = P1(α1, . . . , αs).

In particular, we have
s∏

k=1

nk = [P1(σ) : P1] = 4

because h is irreducible over P1. Therefore, there are only two cases: (i) s = 2,
n1 = n2 = 2, and (ii) s = 1, n1 = 4.

Let α be one of the unknown radicals αk (k = 1, . . . , s). Then

α = y1 + y2σ + y3σ
2 + y4σ

3,

where all yj ∈ P1 and there is j ∈ {2, 3, 4} such that yj �= 0 (without of loss of
generality, we can assume yj = 1).

Let us consider the case (i). In this case, we obtain α2 ∈ P1, so that we can
use Corollary 2. Let j = 2 (and, consequently, y2 = 1). Then the corresponding
system (10) can be rewritten as

⎧
⎨
⎩

−(1 − √
2)y2

3 − 9
2 (1 − √

2)y2
4 − 9

2 (1 − √
2)y3y4 + 2y1 − 2(1 − √

2)y4 = 0,

− 9
4 (1 − √

2)y2
4 + 2y1y3 − 2(1 − √

2)y3y4 + 1 = 0,
2y2

3 + (7 +
√

2)y2
4 + 2y1y4 + 8y3y4 + 2y3 + 4y4 = 0.

A Gröbner basis (which can be computed, for instance, using Maple Groebner
package) of this system contains a univariate polynomial

g = 711y7
4 − (3500 + 1372

√
2)y6

4 + . . . ∈ P1[y4] (27)

of degree 7 having no roots in P1. The same result can be obtained for the cases
j = 3 and j = 4. Thus, the case (i) is impossible.

Simplification of Nested Real Radicals Revisited 311

In the case (ii), we can proceed in the same way. In this case, the com-
plexity of computing Gröbner basis for corresponding systems of the form (10)
increases significantly. In particular, an analog of polynomial (27) is of degree 49
and its coefficients are of the form a + b

√
2 with integers a, b ≈ 1060. Omitting

computations, we conclude that the case (ii) is also impossible. Therefore, poly-
nomial (26) has no roots in the field R(Q) (in fact, we have proved that it has
no roots in the field R(Q(

√
2)) that includes R(Q), see Remark 5). Hence, for

j = 2, system (25) has no solutions (x0, x1, x2, x3) over R(Q). The remaining
cases of j ∈ {1, 3} can be considered in a similar way. Finally, we conclude that
the number (24) is a square radical over R(R(Q)).

The final part of Example 7 suggests a generalization of the corresponding
result from [11]. Let P1 ⊂ R be a real field for which there is an algorithm for
factoring any polynomial in P1[x] (in particular, we can find all the roots in P1

of a given polynomial in P1[x]). For instance, for P1 one may take Q(ω) where
ω is a real algebraic number.

Theorem 4. There is an algorithm that finds all the roots of a given polynomial
h ∈ P1[x] in R(P1).

Proof. Without loss of generality, assume that h is irreducible over P1. Let σ ∈
R(P1) be a root of h. By Lemma 1 with P = P1, there exist multiplicatively
independent radicals α1, . . . , αs (with degrees n1, . . . , ns, respectively) over P1

such that

P1(σ) = P1(α1, . . . , αs), [P1(σ) : P1] =
s∏

k=1

nk = N,

where N = deg h is a fixed positive integer. In particular, there exists at most
a finite set of such s-tuples (n1, . . . , ns). Fix one of them and fix k ∈ {1, . . . , s}.
Then, for the unknown radical αk of degree nk, we have

αk = y1 + y2σ + . . . + yNσN−1,

where all yj ∈ P1 and there exists j0 > 1 such that yj0 �= 0 (in fact, such yj0 can
be assumed to be equal to 1). Using Corollary 2 and Gröbner bases technique,
we can solve the system

⎧⎪⎪⎨
⎪⎪⎩

p
(k)
2 (y1, . . . , yN) = 0,

. . .

p
(k)
N (y1, . . . , yN) = 0,

yj0 = 1

(28)

over the field P1 for all j0 ∈ {2, . . . , N} (in (28), the polynomials p
(k)
1 , . . . , p

(k)
N

are defined by (4) with ωj = σj−1 and f = xnk). Let (y1, . . . , yN) ∈ PN
1 be an

arbitrary solution of system (28). Then

bk = αnk

k = p
(k)
1 (y1, . . . , yN) ∈ P1.

312 N. N. Osipov and A. A. Kytmanov

Thus, we find all possible values of the radical αk of the fixed degree nk.
Finally, whenever h has a root in R(P1), then it must belong to one of the

fields
P̃1 = P1(

n1
√

b1, . . . ,
ns
√

bs), (29)

where all the possible (n1, . . . , ns) ∈ N
s and the corresponding (b1, . . . , bs) ∈ P s

1

can be computed. Thus, for finding all the roots h in R(P1), it suffices to find
all the roots h in each field P̃1 of the form (29). This can be done by means of
Proposition 1 (furthermore, for the frequently used case P1 = Q(ω), there exist
easier methods implemented in some CASs). ��

6 Concluding Remarks

Theorem 4 provides some improvements of the algorithm for solving polynomial
equations over R(Q) proposed in [11]. Indeed, in the previous version of the
algorithm, we had to operate on the auxiliary polynomial

H = hh = 16x8 − 64x7 + . . . ∈ Q[x]

instead of the given polynomial (26). Here

h = 4x4 − 8x3 + (4 + 4
√

2)x + 1 +
√

2

is a polynomial having conjugate (with respect to Q(
√

2)/Q) coefficients. It is
clear that the further computations would be very difficult to implement (due
to impossibility of computing a Gröbner basis of the corresponding polynomial
system in a reasonable time).

The complexity of the algorithm that provides denesting of a given triply
nested radical strongly depends on complexity of the algorithm that solves poly-
nomial systems of a special class (see Proposition 1 and its Corollaries 1 and 2).
At the moment, we can only use the Gröbner basis technique which is, obviously,
not the best option.

We finish with the following example which is, apparently, impossible to
handle via the methods presented here. Consider the equation

x4 − x − 1 = 0. (30)

Both real roots of (30) are nested radicals of depth four over Q. Namely, they
can be written in the form

x =

((
1
2 +

(
283
108

)1/2)1/3
+

(
1
2 −

(
283
108

)1/2)1/3
)1/2

2

±

⎛
⎝−

(
1
2 +

(
283
108

)1/2)1/3
−

(
1
2 −

(
283
108

)1/2)1/3
+ 2

((
1
2 +

(
283
108

)1/2)1/3
+

(
1
2 −

(
283
108

)1/2)1/3
)−1/2

⎞
⎠1/2

2

that is provided by Ferrari’s method. It is very likely that this expression cannot
be denested (using only the real radicals), but how can we prove it?

Simplification of Nested Real Radicals Revisited 313

Acknowledgments. This work is supported by the Krasnoyarsk Mathematical Cen-
ter and financed by the Ministry of Science and Higher Education of the Russian
Federation in the framework of the establishment and development of regional Centers
for Mathematics Research and Education (Agreement No. 075-02-2020-1534/1).

References

1. Becker, T., Weispfenning, V.: A Computational Approach to Commutative Alge-
bra. Graduate Texts in Mathematics, vol. 141. Springer-Verlag, New York (1993).
https://doi.org/10.1007/978-1-4612-0913-3

2. Besicovitch, A.S.: On the linear independence of fractional powers of integers. J.
London Math. Soc. 15, 3–6 (1940)

3. Blömer, J.: Computing sums of radicals in polynomial time. In: Proceedings of the
32nd Annual Symposium on Foundations of Computer Science, pp. 670–677 (1991)

4. Blömer, J.: How to denest Ramanujan’s nested radicals. In: Proceedings of the 33nd
Annual Symposium on Foundations of Computer Science, pp. 447–456 (1992)

5. Borevich, Z.I., Shafarevich, I.R.: Number Theory. Academic Press, London (1966)
6. Borodin, A., et al.: Decreasing the nesting depth of expressions involving square

roots. J. Symb. Comput. 1, 169–188 (1985)
7. Davenport, J., Siret, Y., Tournier, E.: Calcul formel: Systèmes et algorithmes de

manipulations algébriques. Masson, Paris (1987)
8. Landau, S.: Simplification of nested radicals. SIAM J. Comput. 21, 85–109 (1992)
9. Lang, S.: Algebra. Springer, New York (2002). https://doi.org/10.1007/978-1-

4613-0041-0
10. Mordell, L.J.: On the linear independence of algebraic numbers. Pacific J. Math.

3, 625–630 (1953)
11. Osipov, N.N.: On the simplification of nested real radicals. Program. Comput.

Softw. 23(3), 142–146 (1997)
12. Maplesoft. https://www.maplesoft.com

https://doi.org/10.1007/978-1-4612-0913-3
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/978-1-4613-0041-0
https://www.maplesoft.com

Parametric Toricity of Steady State
Varieties of Reaction Networks

Hamid Rahkooy2 and Thomas Sturm1,2,3(B)

1 CNRS, Inria, and the University of Loraine, Nancy, France
thomas.sturm@loria.fr

2 MPI Informatics, Saarland Informatics Campus, Saarbrücken, Germany
hamid.rahkooy@mpi-inf.mpg.de

3 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Abstract. We study real steady state varieties of the dynamics of chem-
ical reaction networks. The dynamics are derived using mass action kinet-
ics with parametric reaction rates. The models studied are not inherently
parametric in nature. Rather, our interest in parameters is motivated by
parameter uncertainty, as reaction rates are typically either measured
with limited precision or estimated. We aim at detecting toricity and
shifted toricity, using a framework that has been recently introduced and
studied for the non-parametric case over both the real and the complex
numbers. While toricity requires that the variety specifies a subgroup
of the direct power of the multiplicative group of the underlying field,
shifted toricity requires only a coset. In the non-parametric case these
requirements establish real decision problems. In the presence of param-
eters we must go further and derive necessary and sufficient conditions
in the parameters for toricity or shifted toricity to hold. Technically, we
use real quantifier elimination methods. Our computations on biological
networks here once more confirm shifted toricity as a relevant concept,
while toricity holds only for degenerate parameter choices.

Keywords: Chemical reaction networks · Logic computation · Mass
action kinetics · Parameter uncertainty · Real computation · Scientific
computation · Symbolic computation · Toric varieties

1 Introduction

We study the kinetics of reaction networks in the sense of Chemical Reaction
Network Theory [22]. This covers also biological networks that are not reaction
networks in a strict sense, e.g., epidemic models and signaling networks. The
kinetics of reaction networks is given by ordinary differential equations (ODE)
ẋ = f with polynomial vector field f ∈ Z[k,x], where k are positive scalar
reaction rates and x are concentrations of species over time. Such ODE are

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-85165-1 18) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 314–333, 2021.
https://doi.org/10.1007/978-3-030-85165-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_18&domain=pdf
http://orcid.org/0000-0001-5789-2976
http://orcid.org/0000-0002-8088-340X
https://doi.org/10.1007/978-3-030-85165-1_18
https://doi.org/10.1007/978-3-030-85165-1_18
https://doi.org/10.1007/978-3-030-85165-1_18

Parametric Toricity of Steady State Varieties 315

typically derived using mass action kinetics [22, Sect. 2.1.2]. For fixed choices
k∗ ∈ R

s
>0, the real variety Vk∗(f) = {x∗ ∈ R

n | f(k∗,x∗) = 0 } describes the set
of steady states of the system.

One famous example is the Michaelis–Menten network [39], which describes
an enzymatic reaction as follows:

S + E
kon

−−⇀↽−−
koff

ES
kcat

−−→ P + E. (1)

Here one has reaction rates k = (kon, koff, kcat) and species concentrations x =
(x1, . . . , x4) for the substrate S, the enzyme E, the enzyme-substrate complex
ES, and the product P, respectively. The vector field of the ODE is given by
f = (f1, . . . , f4) as follows, where f2 = −f3:

f1 = −konx1x2 + koffx3

f2 = −konx1x2 + (koff + kcat)x3

f3 = konx1x2 − (koff + kcat)x3

f4 = kcatx3. (2)

For an intuition about mass action kinetics consider the reaction S + E
kon

−−→ ES
in (1). The summand −konx1x2 in the differential equation ẋ1 = f1 =
−konx1x2 + koffx3 describes a decrease of the concentration x1 of S that is
proportional to the product x1x2 of concentrations of S and E with a positive
proportionality factor kon. The product x1x2 of concentrations models the prob-
ability that one molecule of S and one molecule of E encounter each other in a
perfectly stirred reactor.

For steady state of the Michaelis–Menten kinetics, f4 in (2) imposes x3 = 0.
Biologically speaking, steady state requires that the concentration of the enzyme-
substrate complex become zero. Next, f1, . . . , f3 impose that either x1 = 0 and x2

can be freely chosen, or vice versa. That is, the concentration of either substrate
or enzyme must become zero. The concentration x4 of the product can always be
freely chosen. It turns out that Vk(f) �= ∅, and Vk(f) does not depend on k at all.

Let us look at 1-site phosphorylation [43,53], which gives a slightly more
complex network as follows:

S0 + E
kon

−−⇀↽−−
koff

ES0

kcat

−−→ S1 + E S1 + F
�on−−⇀↽−−
�off

FS1

�cat−−→ S0 + F. (3)

Here we have k = (kon, . . . , �cat), x = (x1, . . . , x6) for concentrations of species
S0, S1, ES0, FS1, E, F, respectively. The vector field of the ODE is given by
f = (f1, . . . , f6) with

f1 = −konx1x5 + koffx3 + �catx4

f3 = konx1x5 − (kcat + koff)x3

f4 = �onx2x6 − (�cat + �off)x4. (4)

316 H. Rahkooy and T. Sturm

Similarly to f2 in (2), f2, f5, f6 here are linear combinations of f ′ = (f1, f3, f4)
and thus Vk(f) = Vk(f ′). In contrast to the Michaelis–Menten kinetics we now
find steady states where all species concentrations are non-zero. One such steady
state is

x∗ =
(

1, 1, 1,
kcat

�cat
,
kcat + koff

kon
,
kcat�cat + kcat�off

�cat�on

)T

. (5)

Notice that this particular steady state exists uniformly in k and that denomi-
nators cannot vanish, due to our requirement that k > 0.

For the non-parametric case, i.e., for fixed k∗ ∈ R
s
>0, comprehensive compu-

tational experiments on reaction networks in [28] have identified shifted toricity
as a structural property that occurs frequently but not generally. Assuming that
Vk∗(f) is irreducible, the set Vk∗(f)∗ = Vk∗(f) ∩ R

∗n is shifted toric if it forms
a multiplicative coset of R

∗n [29]. Here R
∗ is the multiplicative group of the

field of real numbers, and R
∗n is its direct power. For the sake of this clear and

simple algebraic setting, we do not take into consideration the positivity of x
here. Instead, shifted tori can be algorithmically intersected with the positive
first orthant later on.

The notion of shifted toricity historically originates from the consideration
of additive groups. In our setting, the “shift” is geometrically not a translation
but a scaling of the torus. For the natural sciences, structural properties like
shifted toricity provide qualitative insights into nature, as opposed to quanti-
tative information like numeric values of coordinates of some fixed points. For
symbolic computation, our hope is that structural properties can be exploited
for the development of more efficient algorithms.

Our program for this article is the generalization of the concept of shifted
toricity to the parametric case, along with the development of suitable compu-
tational methods, accompanied by computational experiments. For instance, for
our 1-site phosphorylation we will automatically derive in Sect. 4.4 that

(i) Vk(f)∗ forms a coset for all admissible choices of k, and
(ii) Vk(f)∗ forms a group if and only if kon − koff = �on − �off = kcat = �cat.

Chemical reaction network theory [22] generally studies specific structural
properties of networks like (1) and (3), such as our shifted toricity. There is a
consensus in chemical reaction network theory that meaningful structural prop-
erties of networks would not refer to specific values of the rate constants k, as
Feinberg explicitly states in his excellent textbook: The network itself will be
our object of study, not the network endowed with a particular set of rate con-
stants [22, p.19]. In reality, exact rate constants are hardly ever known. They are
either measured in experiments with a certain finite precision, or they are esti-
mated, often only in terms of orders of magnitude. Furthermore, even if we had
perfect positive real values for the rate constants k, recall that according to mass
action kinetics their co-factors are products of certain species concentrations
x, which only approximate probabilities as they would hold under hypothetical
ideal conditions. Hence, we are looking primarily for results like (i) above. Result
(ii) might seem appealing from a mathematical viewpoint, but it has hardly any

Parametric Toricity of Steady State Varieties 317

relevance in nature. Bluntly speaking, a metabolism whose functioning depends
on any of the equations in (ii) could not be evolutionarily successful.

What is the motivation for looking at admissible parameter values at all?
Why not just derive yes/no decisions under suitable existential or universal quan-
tification of the parameters? First, just as the equations in (ii) hardly ever hold
in reality, the same arguments support the hypothesis that derived inequalities,
in the sense of logically negated equations, in k would hardly ever fail and may
thus be acceptable. Second, we are working in real algebra here. Even if there
are no order inequalities in the input, they will in general be introduced by the
computation. For instance, when asking whether there exists x1 ∈ R such that
x2

1 = k1−106k2, an equivalent condition is given by k1 ≥ 106k2. Such a condition
that one reaction rate be larger than another by several orders of magnitude is
meaningful and might provide useful insights into a model. It should be clear at
this point that our parametric considerations are not aimed at uniform treat-
ment of families of similar problems. Rather, we are concerned with a formally
clean treatment of parameter uncertainty.

Let us summarize the main characteristics of our approach taken here:

1. Our domain of computation are the real numbers in contrast to the complex
numbers. This is the natural choice for reaction networks. It allows us to
consequently use the information k > 0 throughout the computation. There
is a perspective to discover further polynomial ordering inequalities in k with
the derivation of equivalent conditions for shifted toricity, even though the
input is purely equational.

2. We take a logic approach, using polynomial constraints, arbitrary Boolean
combinations of these constraints, and first-order quantification. In this way,
the logical connection between the occurring constraints is shifted from meta-
mathematical reasoning to object mathematics. This ensures that human
intuition is not mixed up with automatically derived results. The long-term
goal is to develop robust fully automatic methods and to make corresponding
implementations in software accessible to natural scientists. Technically, we
employ real quantifier elimination methods, normal form computations, and
various simplification techniques.

3. Our approach aims at the geometric shape of the real variety in contrast to
the syntactic shape of generators of the polynomial ideal. On the one hand,
there is a strong relation between toricity of the variety and binomiality of the
ideal [18], and Gröbner bases are mature symbolic computation tool in this
regard. The relation between toricity and binomiality has even been general-
ized to shifted toricity [28,29]. On the other hand, real quantifier elimination
methods are an equally mature tool, and they allow to operate directly on
the real steady state variety, which is the object of interest from the point
of view of natural sciences. Particularly with parameters, order inequalities
enter the stage. They should not be ignored, and their derivation from the
ideal would not be straightforward.

Our definitions of toricity and shifted toricity are inspired by Grigoriev and
Milman’s work on binomial varieties [29]. In joint work with Grigoriev and oth-

318 H. Rahkooy and T. Sturm

ers, we have systematically applied them to both complex and real steady state
varieties of reaction networks [28]. We have furthermore studied the connec-
tion between complex and real shifted toricity [45]. Toric dynamical systems
have been studied by Feinberg [20] and by Horn and Jackson [32]. Craciun
et al. [12] showed that toric dynamical systems correspond to complex balanc-
ing [22]. There are further definitions in the literature, where the use of the
term “toric” is well motivated. Gatermann et al. considered deformed toricity
for steady state ideals [23]. The exact relation between the principle of complex
balancing and various definitions of toricity has obtained considerable atten-
tion in the last years [24,40,43]. Complex balancing itself generalizes detailed
balancing, which has widely been used in the context of chemical reaction net-
works [21,22,32]. Gorban et al. [25,26] related reversibility of chemical reactions
in detailed balance to binomiality of the corresponding varieties. Historically,
the principle of detailed balancing has attracted considerable attention in the
sciences. It was used by Boltzmann in 1872 in order to prove his H-theorem [2],
by Einstein in 1916 for his quantum theory of emission and absorption of radi-
ation [17], and by Wegscheider [55] and Onsager [41] in the context of chemical
kinetics, which led to Onsager’s Nobel prize in Chemistry in 1968. Pérez–Millán
et al. [43] consider steady state ideals with binomial generators. They present
a sufficient linear algebra condition on the stoichiometry matrix of a reaction
network in order to test whether the steady state ideal has binomial generators.
Conradi and Kahle proposed a corresponding heuristic algorithm. They further-
more showed that the sufficient condition is even equivalent when the ideal is
homogenous [11,33,34]. Based on the above-mentioned linear algebra condition,
MESSI systems have been introduced in [42]. Another linear algebra approach
to binomiality has been studied in [44]. Recently, binomiality of steady state
ideals was used to infer network structure of chemical reaction networks out of
measurement data [54].

Bradford et al. [5,6] and England et al. [19] have worked on multistationarity
of reaction networks with parametric rate constants. Pérez–Millán et al., in their
above-mentioned work [43], have also discussed the parametric case, remarkably,
already in 2012. We have taken various of our examples in the present article
from [43], which allows the reader to directly compare our results obtained here
over the real numbers with the existing ones over the complex numbers.

In Sect. 2, we make precise our notions of toricity and shifted toricity. We
choose a strictly formal approach leading to characterizing first-order logic for-
mulas over the reals. This prepares the application of real quantifier elimination
methods. In Sect. 3, we summarize basic concepts from real quantifier elimi-
nation theory and related simplification techniques to the extent necessary to
understand our computational approach. In Sect. 4, we present systematic com-
putations on biological networks taken from the literature and from established
biological databases for such models [8]. In Sect. 5, we summarize our findings
and draw conclusions.

Parametric Toricity of Steady State Varieties 319

2 Tori Are Groups, and Shifted Tori Are Cosets

We start with some notational conventions. For a vector v = (v1, . . . , vn) equa-
tions v = 0 have to be read as v1 = 0 ∧ . . . ∧ vn = 0, which is equivalent to
v = (0, . . . , 0). Inequalities v �= 0 have to be read as v1 �= 0 ∧ . . . ∧ vn �= 0,
which is not equivalent to v �= (0, . . . , 0). Similarly, inequalities v > 0 serve as
shorthand notations for v1 > 0 ∧ . . . ∧ vn > 0. Other ordering relations will
not occur with vectors. All arithmetic on vectors is component-wise. Logic for-
mulas as above are mathematical objects that can contain equations. For better
readability we use “=̇” to express equality between formulas.

Consider polynomials f ∈ Z[k,x]m with parameters k = (k1, . . . , ks) and
variables x = (x1, . . . , xn). For fixed choices k∗ ∈ R

s
>0 of k, the corresponding

real variety of f is given by

Vk∗(f) = {x∗ ∈ R
n | f(k∗,x∗) = 0 }. (6)

We consider the multiplicative group R
∗ = R\{0}, note that the direct prod-

uct R
∗n establishes again a group, and define

Vk∗(f)∗ = Vk∗(f) ∩ R
∗n ⊆ R

∗n. (7)

This set Vk∗(f)∗ is a torus if it forms an irreducible subgroup of R∗n. For this
purpose, we allow ourselves to call Vk∗(f)∗ irreducible if Vk∗(f) is irreducible,
equivalently, if 〈f(k∗,x)〉 is a prime ideal over R. More generally, Vk∗(f)∗ is a
shifted torus if it forms an irreducible coset of R∗n [28,29].

In this article, we focus on the discovery of coset and group structures. This
is only a very mild limitation, as a closer look at the geometric relevance of the
irreducibility requirement shows: If we discover a coset but irreducibility does not
hold, then we are, from a strictly geometrical point of view, faced with finitely
many shifted tori instead of a single one. If we disprove the coset property and
irreducibility does not hold, then some but not all of the irreducible components
might be shifted tori, and they could be discovered via decomposition of the
variety. The same holds for groups vs. tori.

It should be noted that the primality of 〈f(k∗,x)〉 over R in contrast to Q is
a computationally delicate problem already in the non-parametric case. Starting
with integer coefficients, prime decomposition would require the construction of
suitable real extension fields during computation. Our parametric setting would
require in addition the introduction of suitable finite case distinctions on the
vanishing of coefficient polynomials in k.

The definition typically used for a set C ⊆ R
∗n to form a coset of R∗n goes

as follows: There exists g ∈ R
∗n such that g−1C forms a subgroup of R∗n. We

are going to use a slightly different but equivalent characterization: g−1C forms
a subgroup of R∗n for all g ∈ C. A proof for the equivalence can be found in [28,
Proposition 21]. We now present four first-order logic formulas ϕ1, . . . , ϕ4. They
state, uniformly in k, certain properties that can be combined to express that
Vk(f)∗ forms a coset or a group:

320 H. Rahkooy and T. Sturm

1. Non-emptiness
There exists x ∈ R

∗n such that x ∈ Vk(f):

ϕ1 =̇ ∃x(x �= 0 ∧ f = 0). (8)

2. Shifted completeness under inverses
For all g, x ∈ R

∗n, if g, gx ∈ Vk(f), then gx−1 ∈ Vk(f):

ϕ2 =̇ ∀g∀x(g �= 0 ∧ x �= 0 ∧ f [x ← g] = 0 ∧ f [x ← g · x] = 0

−→ f [x ← g · x−1] = 0). (9)

Here [x ← t] denotes substitution of terms t for variables x. In the equation
f [x ← g ·x−1] = 0 we tacitly drop the principal denominator of the left hand
side to obtain a polynomial. This is admissible due to the premise that x �= 0.

3. Shifted completeness under multiplication
For all g, x, y ∈ R

∗n, if g, gx, gy ∈ Vk(f), then gxy ∈ Vk(f):

ϕ3 =̇ ∀g∀x∀y(g �= 0 ∧ x �= 0 ∧ y �= 0 ∧ f [x ← g] = 0 ∧
f [x ← g · x] = 0 ∧ f [x ← g · y] = 0 −→ f [x ← g · x · y] = 0). (10)

4. Neutral element
(1, . . . , 1) ∈ Vk(f):

ϕ4 =̇ f [x ← (1, . . . , 1)] = 0. (11)

In these terms we can define formulas σ and τ , which state the Vk(f)∗ is a
coset or group, respectively:

σ =̇ ϕ1 ∧ ϕ2 ∧ ϕ3, τ =̇ ϕ2 ∧ ϕ3 ∧ ϕ4. (12)

For the non-parametric case, these formulas have been derived and discussed
in [28, Sect. 3.2]. In the absence of parameters they were logic sentences, which
are either true or false over the real numbers. Real decision produces were used
to automatically derive either “true” or “false.” In our parametric setting here,
they contain k as free variables and thus establish exact formal conditions in k,
which become either “true” or “false” after making choices of real values for k.

3 Real Quantifier Elimination and Simplification

In the presence of parameters, the natural generalization of a decision procedure
is an effective quantifier elimination procedure for the real numbers [15,48,49]. In
fact, most real decision procedures are actually quantifier elimination procedures
themselves, which apply quantifier elimination to their parameter-free input and
subsequently evaluate the variable-free quantifier elimination result to either
“true” or “false.” Plenty of approaches have been proposed for real quantifier
elimination, e.g. [1,10,27,35,38,50,56,57], but only few of them have led to pub-
licly available implementations with a long-term support strategy [7,9,13,47,51].

Parametric Toricity of Steady State Varieties 321

Given a first-order formula ϕ built from polynomial constraints with integer
coefficients, quantifier elimination computes a formula ϕ′ that is equivalent to ϕ
over the reals, formally R |= ϕ ←→ ϕ′, but does not contain any quantifiers. We
allow ourselves to call ϕ′ the result of the quantifier elimination, although it is
not uniquely determined by ϕ.

The following example, which is discussed in more detail in [48, Sect. 2.1],
gives a first idea: On input of

ϕ =̇ ∀x1∃x2(x2
1 + x1x2 + k2 > 0 ∧ x1 + k1x

2
2 + k2 ≤ 0), (13)

quantifier elimination computes the result ϕ′ =̇ k1 < 0 ∧ k2 > 0, which provides
a necessary and sufficient condition in k for ϕ to hold. Another application of
quantifier elimination has been used already in the introduction of this article:
Consider f = (f1, f3, f4) with f1, f3, f4 as in (4). Then compute ϕ2, . . . , ϕ4 as
in (9)–(11) and τ as in (12). On input of τ , quantifier elimination delivers the
result τ ′ =̇ kon − koff = �on − �off = kcat = �cat. This is a necessary and sufficient
condition in k for Vk(f)∗ to form a group, which has already been presented
in (ii) on p.322.

For an existential formula like ϕ1 in (8), quantifier elimination computes a
result ϕ′

1 that provides necessary and sufficient conditions in k for the exis-
tence of choices for x that satisfy the constraints in ϕ1. By definition, quantifier
elimination does not derive any information on possible choices of x. In other
words, quantifier elimination talks about solvability, not about solutions. How-
ever, quantifier elimination via virtual substitution [35,38,49,56], which we use
here primarily, can optionally provide sample solutions for x. This is known as
extended quantifier elimination [36]. We have used extended quantifier elimina-
tion to compute the uniform steady state x∗ in (5) in the introduction, besides
the actual quantifier elimination result “true.”

Successful practical application of quantifier elimination by virtual substi-
tution goes hand in hand with strong and efficient automatic simplification of
intermediate and finite results. We use essentially a collection of techniques spec-
ified in [14, Sect. 5.2] as the “standard simplifier.” In particular, we exploit the
concept of an external theory introduced in [14] with k > 0 as our theory. This
means that all simplifications are performed modulo the assumption k > 0 with-
out explicitly adding this information to the input formula ϕ. As a consequence,
the quantifier elimination result ϕ′ is equivalent only modulo k > 0, formally
R |= k > 0 −→ (ϕ ←→ ϕ′).1

Note that, in contrast to k > 0 for the rate constants, we never require
x > 0 for the species concentrations although chemical reaction network theory
assumes both to be positive. The reason is that the concepts of toricity used here
have been defined in terms of varieties and multiplicative groups without any
reference to order. It might be interesting to review these concepts with respect

1 Alternatively, one could temporarily introduce constants k and state equivalence in
an extended theory of real closed fields: Th(R) ∪ {k > 0} |= ϕ ←→ ϕ′. This point
of view is common in algebraic model theory and has been taken in [14].

322 H. Rahkooy and T. Sturm

to the particular situation encountered here. However, this is beyond the scope
of this article and should be settled in a non-parametric context first.

We convert our final results to disjunctive normal form [14, Sect. 7] and apply
simplification methods based on Gröbner bases [14, Sect. 4.3]. A disjunctive nor-
mal form is a finite case distinction over systems of constraints. It has been our
experience that users prefer such a presentation of the computed information in
comparison to arbitrary boolean combinations, even at the price of larger output.
In general, this normal form computation can get quite expensive in time and
space, because quantifier elimination by virtual substitution on universal for-
mulas like ϕ2, . . . , ϕ4 in (9)–(11) tends to produce conjunctions of disjunctions
rather than vice versa. Luckily, our results are rather small.

Having said this, we have devised quantifier elimination-based simplification
as another heuristic simplification step for our results ψ here. It checks via quan-
tifier elimination for every single constraint γ in ψ whether

R |= ∀k(k > 0 −→ γ) ←→ true or R |= ∃k(k > 0 ∧ γ) ←→ false . (14)

When such constraints γ are found, they are replaced in ψ with the respec-
tive truth value, and then the standard simplifier in applied to ψ once more.
Quantifier elimination-based simplification preserves disjunctive normal forms.

As an example consider k = (k12, k13, k21, k23, k31, k32)T and ψ =̇ γ1 ∨ γ2,
where

γ1 =̇ k31 − k32 = 0

γ2 =̇ 16k12k21 + 8k12k23 + 8k13k21 + 4k13k23 + k2
31 − 2k31k32 + k2

32 ≤ 0. (15)

If one recognizes that k2
31 − 2k31k32 + k2

32 = (k31 − k32)2 and furthermore takes
into consideration that k > 0, it becomes clear that γ2 is not satisfiable. The
argument can be seen as a generalization of sum-of-squares decomposition, which
is not supported within our simplification framework [14]. Quantifier elimination-
based simplification recognizes that the condition on the right hand side of (14)
holds for γ2. It replaces γ2 with “false” in ψ, which yields γ1 ∨ false. Finally, the
standard simplifier is applied, and γ1 is returned.

4 Computational Experiments

All our computations have been conducted on an AMD EPYC 7702 64-Core
Processor. On the software side, we have used SVN revision 5797 of the com-
puter algebra system Reduce with its computer logic package Redlog [13,30,31].
Reduce is open source and freely available on SourceForge.2 On these grounds,
we have implemented systematic Reduce scripts, which essentially give algo-
rithms and could be turned into functions as a next step. In few places, global
Redlog options have been adjusted manually in order to optimize the efficiency
of quantifier elimination for a particular example. The scripts and the log files
of the computations are available as supplementary material with this article.
2 https://sourceforge.net/projects/reduce-algebra/.

https://sourceforge.net/projects/reduce-algebra/

Parametric Toricity of Steady State Varieties 323

4.1 An Artificial Triangle Network

We start with an artificial network introduced by Pérez–Millán et al. [43, p.1033,
Ex. 2.3]:

2 A
k12−−⇀↽−−
k21

2 B
k23−−⇀↽−−
k32

A + B
k31−−⇀↽−−
k13

2 A. (16)

There are reaction rates k = (k12, k13, k21, k23, k31, k32)T and species concen-
trations x = (x1, x2)T for abstract species A and B, respectively. Its kinetics
is described by an ODE ẋ = f with a polynomial vector field f = (f1, f2)T as
follows:

f1 = f2 = (−2k12 − k13)x2
1 + (2k21 + k23)x2

2 + (k31 − k32)x1x2. (17)

We form ϕ1 according to (8), and extended quantifier elimination yields
ϕ′

1 =̇ true along with a uniform witness

x∗ =
(

1,−
√

16k12k21+8k12k23+8k13k21+4k13k23+k2
31−2k31k32+k2

32−k31+k32

4k21+2k23

)T

. (18)

Notice that k > 0 ensures that the denominator cannot vanish.
Next, we consider ϕ2 and obtain ϕ′

2 =̇ k31 − k32 = 0 with the help of quan-
tifier elimination-based simplification. In fact, this is the example for quantifier
elimination-based simplification discussed in the previous section. From ϕ3 we
also obtain ϕ′

3 =̇ k31 − k32 = 0.
Hence, Vk(f)∗ forms a coset of R∗2 if and only if R |= σ′, where

σ′ = k31 − k32 = 0. (19)

The same condition has been derived with a different method in [43]. For Vk(f)∗

to form even a subgroup of R∗2 we must add to σ′ the condition ϕ4 =̇ f [x ←
(1, 1)] = 0. This yields

τ ′ =̇ k31 − k32 = 0 ∧ 2k12 + k13 − 2k21 − k23 = 0. (20)

The overall CPU time for the computations in this section was 0.867 s. Details
on input problem sizes can be found in Table 1.

Table 1. Problem sizes and computation times for Sect. 4.1–Sect. 4.3

Section network |k| |x| |f | # quantifiers time

ϕ1 ϕ2 ϕ3

4.1 Triangle 6 2 2 2 4 6 0.845 s

4.2 EnvZ-OmpR 14 9 9 9 18 27 2.172 s

4.3 TGF-β 8 6 6 6 12 18 26.477 s

324 H. Rahkooy and T. Sturm

4.2 Escherichia Coli Osmoregulation System

Our next example is a model of the escherichia coli osmoregulation system
(EnvZ-OmpR). It has been introduced by Shinar and Feinberg [46, (S60) in
the supporting online material] and also discussed in [43, p.1043, Example 3.15]:

XD
k12−−⇀↽−−
k21

X
k23−−⇀↽−−
k32

XT k34−−→ XP XT + YP

k89−−⇀↽−−
k98

XTYP

k9,10−−−→ XT + Y

XP + Y
k56−−⇀↽−−
k65

XPY k67−−→ X + YP XD + YP

k11,12−−−−⇀↽−−−−
k12,11

XDYP

k12,13−−−−→ XD + Y.

(21)

There are 14 reaction rates k and species concentrations x = (x1, . . . , x9)T for
XD, X, XT, XP, Y, XPY, YP, XTYP, XDYP, respectively. Its kinetics is described
by an ODE ẋ = f with a polynomial vector field f = (f1, . . . , f9)T as follows:

f1 = −k12x1 + k21x2 − k11,12x1x7 + (k12,11 + k12,13)x9

f2 = k12x1 + (−k21 − k23)x2 + k32x3 + k67x6

f3 = k23x2 + (−k32 − k34)x3 − k89x3x7 + (k98 + k9,10)x8

f4 = k34x3 − k56x4x5 + k65x6

f5 = −k56x4x5 + k65x6 + k9,10x8 + k12,13x9

f6 = k56x4x5 + (−k65 − k67)x6

f7 = k67x6 − k89x3x7 + k98x8 − k11,12x1x7 + k12,11x9

f8 = k89x3x7 + (−k98 − k9,10)x8

f9 = k11,12x1x7 + (−k12,11 − k12,13)x9. (22)

We compute ϕ′
1 =̇ ϕ′

2 =̇ ϕ′
3 =̇ σ =̇ true, which means that Vk(f)∗ forms a

coset for all admissible choices of reaction rates k. Again, extended quantifier
elimination delivers, in addition to ϕ′

1, a uniform parametric witness x∗ for the
non-emptiness of Vk(f)∗. We obtain the following equivalent condition in k for
Vk(f)∗ to form even a group:

ϕ′
4 =̇ τ =̇ k89 − k9,10 − k98 = 0 ∧ k12,13 − k67 + k89 − k98 = 0

∧ k12,13 − k56 + k65 + k89 − k98 = 0 ∧ k12,13 − k34 + k89 − k98 = 0
∧ k12,13 − k23 + k32 + k89 − k98 = 0 ∧ k12 − k21 = 0
∧ k11,12 − k12,11 − k12,13 = 0. (23)

The overall CPU time for the computations in this section was 0.651 s. Details
on input problem sizes can be found in Table 1.

4.3 TGF-β Pathway

The TGF-β signaling pathway plays a central role in tissue homeostasis and
morphogenesis, as well as in numerous diseases such as fibrosis and cancer [52].

Parametric Toricity of Steady State Varieties 325

It is featured as model no. 101 in the BioModels repository [8].3 We consider
here a variant, which ignores a discrete event changing ligand concentration at
time t = 2500. A non-parametric instance of this variant has been studied in [28]
with respect to toricity and in [37] with respect to multiple time scale reduction.

RII + RI
ka ·ligand−−−−−−→ lRIRII RI endo kr−−→ RI

lRIRII kcd−−→ ∅ lRIRII endo kr−−→ RI + RII

lRIRII klid−−→ ∅ ∅ pRII−−−→ RII

lRIRII ki−−→ lRIRII endo RII kcd−−→ ∅
∅ pRI−−→ RI RII ki−−→ RII endo

RI kcd−−→ ∅ RII endo kr−−→ RII.

RI ki−−→ RI endo
(24)

There are 8 parameters k and species concentrations x = (x1, . . . , x6)T corre-
sponding to RI, RII, lRIRII, lRIRII endo, RI endo, RII endo, respectively. The
dynamics of the network is described by an ODE ẋ = f with a polynomial vector
field f = (f1, . . . , f6)T as follows:

f1 = −ka · ligand · x1x2 − kcd · x1 − ki · x1 + kr · x4 + kr · x5 + pri
f2 = −ka · ligand · x1x2 − kcd · x2 − kix2 + kr · x4 + kr · x6 + prii
f3 = ka · ligand · x1x2 − kcd · x3 − ki · x3 − klid · x3

f4 = ki · x3 − kr · x4

f5 = ki · x1 − kr · x5

f6 = ki · x2 − kr · x6. (25)

For fixed choices k∗ of parameters as specified in the BioModels repository
we had shown in [28] that Vk∗(f)∗ is not a coset. Our parametric approach
here allows to investigate to what extent this negative result depends on the
specific choices k∗. We compute ϕ′

1 =̇ true along with a witness for Vk(f)∗ �= ∅
for all admissible choices of k. Next, we obtain ϕ′

2 =̇ ϕ′
3 =̇ false, i.e., shifted

completeness under inverses and multiplication fails for all admissible choices
of k. It follows that σ =̇ τ =̇ false, i.e., Vk(f)∗ is generally not a coset and
not a group.

The synthesis and degradation reactions4 in (24) cause absolute summands
in f1 and f2 in the dynamics (25). Although there is a connection between
cosets and the existence of binomial generators of the ideal, those summands are
not an immediate reason to exclude cosets. Consider, e.g., the abstract example

3 https://www.ebi.ac.uk/biomodels/BIOMD0000000101.
4 i.e., the ones with “∅” on their left hand side or right hand side, respectively.

https://www.ebi.ac.uk/biomodels/BIOMD0000000101

326 H. Rahkooy and T. Sturm

g = (−x1 − x2 + k1, x2 + x3 + k2), where Vk(g)∗ is a coset for all admissible
choices of k1, k2. On the other hand, we have mentioned in the introduction that
toricity is related to complex balance. TGF-β cannot not have complex balance,
because there is a nonzero flux through the system: receptors are produced, they
cycle, and are degraded. One cannot transfer information without dissipation.
This observation generally applies to signaling models.

The overall CPU time for the computations in this section was 26.477 s.
Details on input problem sizes can be found in Table 1.

4.4 N-Site Phosphorylation-Dephosphorylation Cycle

The n-site phosphorylation network in the form discussed here has been taken
from Wang and Sontag [53]. Pérez–Millán et al. have discussed n-site phospho-
rylation for generic n [43, Sect. 4.1]; the cases n = 1 and n = 2 are discussed
explicitly as Ex. 2.1 and Ex. 3.13, respectively. We have used the case n = 1 in
the introduction.

For a fixed positive integer n, the n-site phosphorylation reaction network is
given by

S0 + E
kon
0−−−−

koff
0

ES0
kcat
0−−→ S1 + E S1 + F

on
0−−−−
off
0

FS1

cat
0−−→ S0 + F

...
...

Sn−1 + E
kon
n−1−−−−−−

koff
n−1

ESn−1
kcat
n−1−−−→ Sn + E Sn + F

on
n−1−−−−−−
off
n−1

FSn

cat
n−1−−−→ Sn−1 + F.

(26)
Its dynamics is described by the following ODE with 6n parameters kn =

(kon
0 , . . . , �catn−1) and 3n + 3 variables

xn = (s0, . . . , sn, c0, . . . , cn−1, d1, . . . , dn, e, f) (27)

for concentrations of species S0, . . . , Sn, ES0, . . . , ESn-1, FS1, . . . , FSn, E, F,
respectively:

ṡ0 = −kon
0 s0e + koff

0 c0 + �cat0 d1

ṡi = −kon
i sie + koff

i ci + kcat
i−1ci−1 − �oni−1sif + �offi−1di + �cati di+1

ċj = kon
j sje − (koff

j + kcat
j)cj

ḋk = �onk−1skf − (�offk−1 + �catk−1)dk,

i = 1, . . . , n − 1, j = 0, . . . , n − 1, k = 1, . . . , n. (28)

Let fn = (f1, . . . , f3n−1) denote the vector field of (28). We may ignore here the
equations for ṡn, ė, and ḟ , whose right hand sides are linear combinations of fn.

For n ∈ {1, . . . , 5} we obtain the following computational results:

(i) Vk(f)∗ �= ∅ for all admissible choices of k; we also obtain a uniform witness
in terms of k;

Parametric Toricity of Steady State Varieties 327

(ii) Vk(f)∗ forms a coset for all admissible choices of k;
(iii) Vk(f)∗ forms a group if and only if

n−1∧
i=0

kon
i − koff

i = �oni − �offi = kcat
i = �cati . (29)

Wang and Sontag, in their article [53], were interested in quantitative infor-
mation on the numbers of steady states of the dynamics (28). Our results here
provide qualitative information on the structure of the set of steady states. We
could automatically deduce that there is always at least one steady state, for
which we find a uniform witness in k. In fact, extended quantifier elimination
could even enumerate steady states, because one can exclude in the input for-
mula the ones already found, and rerun. More important, we know that the set
S ⊆ R

∗n of all steady states forms a coset. That is, for all choices of k and
all g ∈ S, the set G = g−1S is complete under component-wise multiplication
and inverses. The set S itself has this completeness property only for choices of
parameters satisfying the equations (29) exactly, which one cannot expect from
a practical point of view.

As one possible application of our results, assume that experiments have
delivered three steady states x1, . . . , x3. Then, e.g., the following are steady
states, too:

x1(x−1
1 x2 · x−1

1 x3) = x−1
1 x2x3, x1(x−1

1 x2)−1 = x2
1x2. (30)

Here we use multiplication with x−1
1 for switching from S to G, exploit there

completeness under multiplication and inverses, respectively, and finally use mul-
tiplication with x1 for switching back to S.

The computation times are collected in Table 2. The formula ϕ3 for n = 5
is the formally largest quantifier elimination problem considered in this article.
We have eliminated here 54 real quantifiers in an 84-dimensional space, which
took 1 h 6 min. For n ≥ 6, the computations did not finish within 6 h.

Table 2. Problem sizes and computation times for n-site phosphorylation in Sect. 4.4

n |k| |x| |f | # quantifiers time

ϕ1 ϕ2 ϕ3

1 6 6 2 6 12 18 0.500 s

2 12 9 5 9 18 27 1.131 s

3 18 12 8 12 24 36 5.911 s

4 24 15 11 15 30 45 33.790 s

5 30 18 14 18 36 54 3963.204 s

≥ 6 6n 3(n + 1) 3n − 1 3(n + 1) 6(n + 1) 9(n + 1) > 6 h

328 H. Rahkooy and T. Sturm

4.5 Excitatory Post-Synaptic Potential Acetylcholine Event

The excitatory post-synaptic potential acetylcholine event model (EPSP-ACh)
has been introduced by Edelstein et al. [16]. It also appears as model no. 1 in
the BioModels repository [8]:5

Basal
kf
0−−⇀↽−−

kr
0

BasalACh
kf
1−−⇀↽−−

kr
1

BasalACh2

Active
kf
3−−⇀↽−−

kr
3

ActiveACh
kf
4−−⇀↽−−

kr
4

ActiveACh2

Intermediate
kf
7−−⇀↽−−

kr
7

IntermediateACh
kf
8−−⇀↽−−

kr
8

IntermediateACh2

Desensitized
kf
12−−⇀↽−−

kr
12

DesensitizedACh
kf
13−−⇀↽−−

kr
13

DesensitizedACh2

Basal
kf
5−−⇀↽−−

kr
5

Active
kf
9−−⇀↽−−

kr
9

Intermediate
kf
14−−⇀↽−−

kr
14

Desensitized

BasalACh
kf
6−−⇀↽−−

kr
6

ActiveACh
kf
10−−⇀↽−−

kr
10

IntermediateACh
kf
15−−⇀↽−−

kr
15

DesensitizedACh

BasalACh2

kf
2−−⇀↽−−

kr
2

ActiveACh2

kf
11−−⇀↽−−

kr
11

IntermediateACh2

kf
16−−⇀↽−−

kr
16

DesensitizedACh2.

(31)

There are 34 reaction rates k and species concentrations x = (x1, . . . , x12)T

for BasalACh2, IntermediateACh, ActiveACh, Active, BasalACh, Basal, Desen-
sitizedACh2, Desensitized, IntermediateACh2, DesensitizedACh, Intermediate,
ActiveACh2, respectively. The kinetics is described by an ODE ẋ = f with a poly-
nomial vector field f = (f1, . . . , f12)T as follows:

f1 = kf
1x5 − kr

1x1 − kf
2x1 + kr

2x12

f2 = kf
7x11 − kr

7x2 − kf
8x2 + kr

8x9 + kf
10x3 − kr

10x2 − kf
15x2 + kr

15x10

f3 = kr
4x12 + kf

6x5 − kr
6x3 − kf

10x3 + kr
10x2 + kf

3x4 − kr
3x3 − kf

4x3

f4 = kf
5x6 − kr

5x4 − kf
9x4 + kr

9x11 − kf
3x4 + kr

3x3

f5 = kf
0x6 − kf

6x5 + kr
6x3 − kr

0x5 − kf
1x5 + kr

1x1

f6 = −kf
0x6 − kf

5x6 + kr
5x4 + kr

0x5

f7 = kf
13x10 − kr

13x7 + kf
16x9 − kr

16x7

f8 = −kf
12x8 + kr

12x10 + kf
14x11 − kr

14x8

f9 = kf
8x2 − kr

8x9 + kf
11x12 − kr

11x9 − kf
16x9 + kr

16x7

f10 = kf
12x8 − kr

12x10 − kf
13x10 + kr

13x7 + kf
15x2 − kr

15x10

5 https://www.ebi.ac.uk/biomodels/BIOMD0000000001.

https://www.ebi.ac.uk/biomodels/BIOMD0000000001

Parametric Toricity of Steady State Varieties 329

f11 = −kf
7x11 + kr

7x2 + kf
9x4 − kr

9x11 − kf
14x11 + kr

14x8

f12 = −kr
4x12 − kf

11x12 + kr
11x9 + kf

2x1 − kr
2x12 + kf

4x3. (32)

In the presentation of the model in the BioModels repository, occurrences of
reaction rates k are generally multiplied with the volume of a compartment
comp1. This amounts in (32) to a corresponding factor for all f , which would
not affect our computations here and can be equivalently dropped. It is notewor-
thy that our framework would allow to handle occurrences of various different
compartment volumes as extra parameters in k.

Our computations for this model did not finish within 24 h, even when fixing
all forward reaction rates kf

i to their values specified in the BioModels repository.
This is a bit surprising, because with regard to |k|, |x|, and |f |, the problem is
smaller than 5-site phosphorylation, which we successfully computed in the pre-
vious section. Furthermore, f = 0 is a system of parametric linear equations. It
seems that there is an immense combinatorial explosion in the size of paramet-
ric coefficient polynomials caused by iterated solving for certain variables and
plugging in.

5 Conclusions

Geometric definitions of shifted toricity and toricity of a real steady state vari-
ety V require that V ∩R

∗n forms a multiplicative coset or group, respectively. We
have proposed a formal framework, based on first-order logic and real quantifier
elimination, to test this in the presence of parameters. Computational experi-
ments succeeded on dynamics of reaction networks with up to 54 species and 30
parameters.

With all our computations on real-world networks here, we have found that
the coset property is independent of the choice of parameters. This result is
desirable from the viewpoint of chemical reaction theory, which postulates that
relevant properties of networks do not depend on reaction rates. Given the
coset property, the stronger group property holds only for degenerate choices
of parameters in the sense that they satisfy algebraic equations. In the context
of our framework, this is not too surprising. The equivalent conditions in the
parameters for the group property are obtained by plugging in 1 for all species
concentrations in the defining equations of V . Our conclusion is that the coset
property without algebraic conditions on the parameters is the relevant concept.

We have used above a strict notion of algebraic, which excludes order inequal-
ities. Recall that we had advertised in the introduction that our approach is capa-
ble of producing semi-algebraic conditions on the parameters, which can include
inequalities. Such inequalities come into existence during quantifier elimination
as sign conditions on discriminants of non-linear polynomials. With the Trian-
gle network in Sect. 4.1 they almost made their way into the output but were
removed in the last moment by quantifier elimination-based simplification. One
of them has been presented in (15). Beyond that, our computations did not
produce any order constraints on the parameters. It is an interesting question,

330 H. Rahkooy and T. Sturm

maybe also for the natural sciences, whether there is a systematic reason for
their absence. A positive answer would also support alternative purely algebraic
approaches to toricity, e.g., based on binomial ideals.

Acknowledgments. This work has been supported by the interdisciplinary bilateral
project ANR-17-CE40-0036/DFG-391322026 SYMBIONT [3,4]. We are grateful to our
project partner Ovidiu Radulescu for helping us understand part of the biological
background.

References

1. Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity of
quantifier elimination. J. ACM 43(6), 1002–1045 (1996). https://doi.org/10.1145/
235809.235813

2. Boltzmann, L.: Lectures on Gas Theory. University of California Press, Berkeley
and Los Angeles (1964)

3. Boulier, F., et al.: The SYMBIONT project: symbolic methods for biological net-
works. ACM Commun. Comput. Algebra 52(3), 67–70 (2018). https://doi.org/10.
1145/3313880.3313885

4. Boulier, F., et al.: The SYMBIONT project: symbolic methods for biological
networks. F1000Research 7(1341) (2018). https://doi.org/10.7490/f1000research.
1115995.1

5. Bradford, R., et al.: A case study on the parametric occurrence of multiple steady
states. In: Proceedings of the ISSAC 2017, pp. 45–52. ACM (2017). https://doi.
org/10.1145/3087604.3087622

6. Bradford, R., et al.: Identifying the parametric occurrence of multiple steady states
for some biological networks. J. Symb. Comput. 98, 84–119 (2020). https://doi.
org/10.1016/j.jsc.2019.07.008

7. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets
using CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003). https://doi.org/10.1145/
968708.968710

8. Chelliah, V., et al.: BioModels: ten-year anniversary. Nucl. Acids Res. 43(D1),
D542–D548 (2015). https://doi.org/10.1093/nar/gku1181

9. Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic decom-
position based on regular chains. J. Symb. Comput. 75, 74–93 (2016). https://doi.
org/10.1016/j.jsc.2015.11.008

10. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3), 299–328 (1991). https://doi.org/10.1016/
S0747-7171(08)80152-6

11. Conradi, C., Kahle, T.: Detecting binomiality. Adv. Appl. Math. 71, 52–67 (2015).
https://doi.org/10.1016/j.aam.2015.08.004

12. Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J.
Symb. Comput. 44(11), 1551–1565 (2009). https://doi.org/10.1016/j.jsc.2008.08.
006

13. Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic. ACM
SIGSAM Bull. 31(2), 2–9 (1997). https://doi.org/10.1145/261320.261324

14. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered
fields. J. Symb. Comput. 24(2), 209–231 (1997). https://doi.org/10.1006/jsco.1997.
0123

https://doi.org/10.1145/235809.235813
https://doi.org/10.1145/235809.235813
https://doi.org/10.1145/3313880.3313885
https://doi.org/10.1145/3313880.3313885
https://doi.org/10.7490/f1000research.1115995.1
https://doi.org/10.7490/f1000research.1115995.1
https://doi.org/10.1145/3087604.3087622
https://doi.org/10.1145/3087604.3087622
https://doi.org/10.1016/j.jsc.2019.07.008
https://doi.org/10.1016/j.jsc.2019.07.008
https://doi.org/10.1145/968708.968710
https://doi.org/10.1145/968708.968710
https://doi.org/10.1093/nar/gku1181
https://doi.org/10.1016/j.jsc.2015.11.008
https://doi.org/10.1016/j.jsc.2015.11.008
https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.1016/j.aam.2015.08.004
https://doi.org/10.1016/j.jsc.2008.08.006
https://doi.org/10.1016/j.jsc.2008.08.006
https://doi.org/10.1145/261320.261324
https://doi.org/10.1006/jsco.1997.0123
https://doi.org/10.1006/jsco.1997.0123

Parametric Toricity of Steady State Varieties 331

15. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice.
In: Matzat, B.H., Greuel, G.M., Hiss, G. (eds.) Algorithmic Algebra and Number
Theory, pp. 221–247. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-
642-59932-3 11

16. Edelstein, S.J., Schaad, O., Henry, E., Bertrand, D., Changeux, J.P.: A
kinetic mechanism for nicotinic acetylcholine receptors based on multiple
allosteric transitions. Biol. Cybern. 75(5), 361–379 (1996). https://doi.org/10.
1007/s004220050302

17. Einstein, A.: Strahlungs-emission und -absorption nach der Quantentheorie. Verh.
Dtsch. Phys. Ges. 18, 318–323 (1916)

18. Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Math. J. 84(1), 1–45 (1996).
https://doi.org/10.1215/S0012-7094-96-08401-X

19. England, M., Errami, H., Grigoriev, D., Radulescu, O., Sturm, T., Weber, A.:
Symbolic versus numerical computation and visualization of parameter regions for
multistationarity of biological networks. In: Gerdt, V.P., Koepf, W., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 93–108. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66320-3 8

20. Feinberg, M.: Complex balancing in general kinetic systems. Arch. Rational Mech.
Anal. 49(3), 187–194 (1972). https://doi.org/10.1007/BF00255665

21. Feinberg, M.: Stability of complex isothermal reactors–I. The deficiency zero and
deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987). https://doi.
org/10.1016/0009-2509(87)80099-4

22. Feinberg, M.: Foundations of Chemical Reaction Network Theory. AMS, vol. 202.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03858-8

23. Gatermann, K.: Counting stable solutions of sparse polynomial systems in chem-
istry. In: Symbolic Computation: Solving Equations in Algebra, Geometry, and
Engineering, Contemporary Mathematics, vol. 286, pp. 53–69. AMS, Providence
(2001). https://doi.org/10.1090/conm/286/04754

24. Gatermann, K., Wolfrum, M.: Bernstein’s second theorem and Viro’s method for
sparse polynomial systems in chemistry. Adv. Appl. Math. 34(2), 252–294 (2005).
https://doi.org/10.1016/j.aam.2004.04.003

25. Gorban, A.N., Mirkes, E.M., Yablonski, G.S.: Thermodynamics in the limit of
irreversible reactions. Physica A 392(6), 1318–1335 (2013). https://doi.org/10.
1016/j.physa.2012.10.009

26. Gorban, A.N., Yablonski, G.S.: Extended detailed balance for systems with irre-
versible reactions. Chem. Eng. Sci. 66(21), 5388–5399 (2011). https://doi.org/10.
1016/j.ces.2011.07.054

27. Grigoriev, D.: Complexity of deciding Tarski algebra. J. Symb. Comput. 5(1–2),
65–108 (1988). https://doi.org/10.1016/S0747-7171(88)80006-3

28. Grigoriev, D., Iosif, A., Rahkooy, H., Sturm, T., Weber, A.: Efficiently and effec-
tively recognizing toricity of steady state varieties. Math. Comput. Sci. 15(2),
199–232 (2021). https://doi.org/10.1007/s11786-020-00479-9

29. Grigoriev, D., Milman, P.D.: Nash resolution for binomial varieties as Euclidean
division. A priori termination bound, polynomial complexity in essential dimension
2. Adv. Math. 231(6), 3389–3428 (2012). https://doi.org/10.1016/j.aim.2012.08.
009

30. Hearn, A.C.: Reduce: a user-oriented interactive system for algebraic simplification.
In: Proceedings of the Symposium on Interactive Systems for Experimental Applied
Mathematics. ACM (1967). https://doi.org/10.1145/2402536.2402544

31. Hearn, A.C.: Reduce: the first forty years. In: Algorithmic Algebra and Logic:
Proceedings of the A3L 2005, pp. 19–24. BOD, Norderstedt (2005)

https://doi.org/10.1007/978-3-642-59932-3_11
https://doi.org/10.1007/978-3-642-59932-3_11
https://doi.org/10.1007/s004220050302
https://doi.org/10.1007/s004220050302
https://doi.org/10.1215/S0012-7094-96-08401-X
https://doi.org/10.1007/978-3-319-66320-3_8
https://doi.org/10.1007/BF00255665
https://doi.org/10.1016/0009-2509(87)80099-4
https://doi.org/10.1016/0009-2509(87)80099-4
https://doi.org/10.1007/978-3-030-03858-8
https://doi.org/10.1090/conm/286/04754
https://doi.org/10.1016/j.aam.2004.04.003
https://doi.org/10.1016/j.physa.2012.10.009
https://doi.org/10.1016/j.physa.2012.10.009
https://doi.org/10.1016/j.ces.2011.07.054
https://doi.org/10.1016/j.ces.2011.07.054
https://doi.org/10.1016/S0747-7171(88)80006-3
https://doi.org/10.1007/s11786-020-00479-9
https://doi.org/10.1016/j.aim.2012.08.009
https://doi.org/10.1016/j.aim.2012.08.009
https://doi.org/10.1145/2402536.2402544

332 H. Rahkooy and T. Sturm

32. Horn, F., Jackson, R.: General mass action kinetics. Arch. Rational Mech. Anal.
47(2), 81–116 (1972). https://doi.org/10.1007/BF00251225

33. Kahle, T.: Decompositions of binomial ideals. Ann. Inst. Stat. Math. 62(4), 727–
745 (2010). https://doi.org/10.1007/s10463-010-0290-9

34. Kahle, T.: Decompositions of binomial ideals. J. Softw. Algebra Geom. 4(1), 1–5
(2012). https://doi.org/10.2140/jsag.2012.4.1

35. Košta, M.: New concepts for real quantifier elimination by virtual substitution.
Doctoral dissertation, Saarland University, Germany (2016). https://doi.org/10.
22028/D291-26679

36. Košta, M., Sturm, T., Dolzmann, A.: Better answers to real questions. J. Symb.
Comput. 74, 255–275 (2016). https://doi.org/10.1016/j.jsc.2015.07.002

37. Kruff, N., Lüders, C., Radulescu, O., Sturm, T., Walcher, S.: Algorithmic reduction
of biological networks with multiple time scales. Math. Comput. Sci. 15(3), 499–
534 (2021). https://doi.org/10.1007/s11786-021-00515-2

38. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J.
36(5), 450–462 (1993). https://doi.org/10.1093/comjnl/36.5.450

39. Michaelis, L., Menten, M.L.: Die Kinetik der Invertinwirkung. Biochemische
Zeitschrift 49, 333–369 (1913)

40. Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A.:
Sign conditions for injectivity of generalized polynomial maps with applications to
chemical reaction networks and real algebraic geometry. Found. Comput. Math.
16(1), 69–97 (2016). https://doi.org/10.1007/s10208-014-9239-3

41. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405
(1931). https://doi.org/10.1103/PhysRev.37.405

42. Pérez Millán, M., Dickenstein, A.: The structure of MESSI biological systems.
SIAM J. Appl. Dyn. Syst. 17(2), 1650–1682 (2018). https://doi.org/10.1137/
17M1113722

43. Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems
with toric steady states. Bull. Math. Biol. 74(5), 1027–1065 (2012). https://doi.
org/10.1007/s11538-011-9685-x

44. Rahkooy, H., Radulescu, O., Sturm, T.: A linear algebra approach for detect-
ing binomiality of steady state ideals of reversible chemical reaction networks. In:
Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020.
LNCS, vol. 12291, pp. 492–509. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60026-6 29

45. Rahkooy, H., Sturm, T.: First-order tests for Toricity. In: Boulier, F., England,
M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp.
510–527. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6 30

46. Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction
networks. Science 327(5971), 1389–1391 (2010). https://doi.org/10.1126/science.
1183372

47. Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics.
J. Symb. Comput. 41(9), 1021–1038 (2006). https://doi.org/10.1016/j.jsc.2006.06.
004

48. Sturm, T.: A survey of some methods for real quantifier elimination, decision, and
satisfiability and their applications. Math. Comput. Sci. 11(3–4), 483–502 (2017).
https://doi.org/10.1007/s11786-017-0319-z

49. Sturm, T.: Thirty years of virtual substitution: foundations, techniques, applica-
tions. In: Proceedings of the ISSAC 2018, pp. 11–16. ACM (2018). https://doi.
org/10.1145/3208976.3209030

https://doi.org/10.1007/BF00251225
https://doi.org/10.1007/s10463-010-0290-9
https://doi.org/10.2140/jsag.2012.4.1
https://doi.org/10.22028/D291-26679
https://doi.org/10.22028/D291-26679
https://doi.org/10.1016/j.jsc.2015.07.002
https://doi.org/10.1007/s11786-021-00515-2
https://doi.org/10.1093/comjnl/36.5.450
https://doi.org/10.1007/s10208-014-9239-3
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1137/17M1113722
https://doi.org/10.1137/17M1113722
https://doi.org/10.1007/s11538-011-9685-x
https://doi.org/10.1007/s11538-011-9685-x
https://doi.org/10.1007/978-3-030-60026-6_29
https://doi.org/10.1007/978-3-030-60026-6_29
https://doi.org/10.1007/978-3-030-60026-6_30
https://doi.org/10.1126/science.1183372
https://doi.org/10.1126/science.1183372
https://doi.org/10.1016/j.jsc.2006.06.004
https://doi.org/10.1016/j.jsc.2006.06.004
https://doi.org/10.1007/s11786-017-0319-z
https://doi.org/10.1145/3208976.3209030
https://doi.org/10.1145/3208976.3209030

Parametric Toricity of Steady State Varieties 333

50. Tarski, A.: A decision method for elementary algebra and geometry. Prepared for
publication by J.C.C. McKinsey. RAND Report R109, 1 August 1948, Revised
May 1951, Second Edition, RAND, Santa Monica, CA (1957)

51. Tonks, Z.: A poly-algorithmic quantifier elimination package in maple. In: Gerhard,
J., Kotsireas, I. (eds.) MC 2019. CCIS, vol. 1125, pp. 171–186. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-41258-6 13

52. Vilar, J.M.G., Jansen, R., Sander, C.: Signal processing in the TGF-β superfamily
ligand-receptor network. PLoS Comput. Biol. 2(1), e3 (2006). https://doi.org/10.
1371/journal.pcbi.0020003

53. Wang, L., Sontag, E.D.: On the number of steady states in a multiple futile cycle.
J. Math. Biol. 57(1), 29–52 (2008). https://doi.org/10.1007/s00285-007-0145-z

54. Wang, S., Lin, J.R., Sontag, E.D., Sorger, P.K.: Inferring reaction network structure
from single-cell, multiplex data, using toric systems theory. PLoS Comput. Biol.
15(12), e1007311 (2019). https://doi.org/10.1371/journal.pcbi.1007311

55. Wegscheider, R.: Über simultane Gleichgewichte und die Beziehungen zwischen
Thermodynamik und Reactionskinetik homogener Systeme. Monatsh. Chem. Verw.
Tl. 22(8), 849–906 (1901). https://doi.org/10.1007/BF01517498

56. Weispfenning, V.: Quantifier elimination for real algebra–the quadratic case and
beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997). https://doi.
org/10.1007/s002000050055

57. Weispfenning, V.: A new approach to quantifier elimination for real algebra. In:
Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Alge-
braic Decomposition. Texts and Monographs in Symbolic Computation (A Series
of the Research Institute for Symbolic Computation, Johannes-Kepler-University,
Linz, Austria), pp. 376–392. Springer, Vienna (1998). https://doi.org/10.1007/978-
3-7091-9459-1 20

https://doi.org/10.1007/978-3-030-41258-6_13
https://doi.org/10.1371/journal.pcbi.0020003
https://doi.org/10.1371/journal.pcbi.0020003
https://doi.org/10.1007/s00285-007-0145-z
https://doi.org/10.1371/journal.pcbi.1007311
https://doi.org/10.1007/BF01517498
https://doi.org/10.1007/s002000050055
https://doi.org/10.1007/s002000050055
https://doi.org/10.1007/978-3-7091-9459-1_20
https://doi.org/10.1007/978-3-7091-9459-1_20

Testing Binomiality of Chemical Reaction
Networks Using Comprehensive Gröbner

Systems

Hamid Rahkooy2(B) and Thomas Sturm1,2,3

1 CNRS, Inria, and the University of Lorraine, Nancy, France
thomas.sturm@loria.fr

2 MPI Informatics, Saarland Informatics Campus, Saarbrücken, Germany
hamid.rahkooy@mpi-inf.mpg.de

3 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Abstract. We consider the problem of binomiality of the steady state
ideals of biochemical reaction networks. We are interested in finding poly-
nomial conditions on the parameters such that the steady state ideal of a
chemical reaction network is binomial under every specialisation of the
parameters if the conditions on the parameters hold. We approach the
binomiality problem using Comprehensive Gröbner systems. Considering
rate constants as parameters, we compute comprehensive Gröbner sys-
tems for various reactions. In particular, we make automatic computations
on n-site phosphorylations and biomodels from the Biomodels repository
using the grobcov library of the computer algebra system Singular.

Keywords: Binomial ideals · Toric varieties · Chemical reaction
networks · Mass action kinetics · Scientific computation · Symbolic
computation · Gröbner bases · Comprehensive Gröbner bases

1 Introduction

A chemical reaction is a transformation between two sets of chemical objects
called chemical complexes. The objects that form a chemical complex are chem-
ical species. In fact, complexes are formal sums of chemical species representing
the left and the right hand sides of chemical reactions. A chemical reaction net-
work is a set of chemical reactions. For example,

E + S
k1−−−⇀↽−−−

k−1

ES k2−→ E + P (1)

is a chemical reaction network with one reversible reaction and one non-reversible
reaction. This reaction network is a well-known network, called the Michaelis–
Menton reaction network.

A kinetics of a chemical reaction network is an assignment of a rate function
to each reaction in the network. The rate function depends on the concentrations
c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 334–352, 2021.
https://doi.org/10.1007/978-3-030-85165-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_19&domain=pdf
http://orcid.org/0000-0001-5789-2976
http://orcid.org/0000-0002-8088-340X
https://doi.org/10.1007/978-3-030-85165-1_19

Parametric Binomiality of Steady State Ideals 335

of the species. A kinetics for a chemical reaction network is called mass-action if
for each reaction in the network, the rate function is a monomial in terms of the
concentrations of the species, such that the exponents are given by the numbers
of molecules of the species consumed in the reaction, multiplied by a constant
called rate constant. In the Michaelis–Menton reaction, k1, k−1, k2 are the rate
constants. In this article, we assume mass-action kinetics.

A system of autonomous ordinary differential equations can be used to
describe the change in the concentration of each species over time in a reac-
tion. For example, in the Michaelis–Menton reaction, let the variables s, p, c, e
represent the concentrations of the species S, P,ES,E respectively. The ordi-
nary differential equations (ODEs) describing change of the concentrations of
the species for this reaction network are the following:

ṡ = fs = −k1se + k−1c, (2)
ṗ = fp = k2c, (3)
ċ = fc = k1se − (k−1 + k2)c, (4)
ė = −fc. (5)

Solutions of the polynomials fs, fp, fc and −fc give us the concentrations
of the species in which the system is in equilibrium. In fact, the solutions of
fs, fp, fc and −fc are called the steady states of the chemical reaction network.
Accordingly, the ideal generated by fs, fp, fc and −fc, i.e., I = 〈fs, fp, fc,−fc〉 ⊆
K[k1, k−1, k2][s, p, c, e], where K is a field, is called the steady state ideal of the
Michaelis–Menton network. For a thorough introduction on chemical reaction
network theory, refer to Feinberg’s Book [22] and his lecture notes [21]. We
follow the notation of Feinberg’s book in this article.

A binomial ideal is an ideal that is generated by a set of binomials. In this
article, we consider the problem of binomiality of steady state ideals when the
rate constants are specialised over a field extension of K, that is, when the rate
constants have been assigned values from an extension of K, typically the clo-
sure of K. More precisely, we are interested in conditions over the rate constants
(typically given by polynomial equations on rate constants), such that for every
values of the rate constants in the extension field, the steady state ideal is bino-
mial under those conditions. In this article, we often use parameters instead of
rate constants, an indication that they can be specialised. Therefore, we consider
the parametric binomiality problem.

Let us consider the steady state ideal of the Michaelis–Menton reaction:

I = I = 〈fs, fp, fc〉 ⊆ K[k1, k−1, k2][s, p, c, e], (6)

given by Eqs. (2)–(4). One can observe that fc = −fs + fp. Hence, I = 〈fs, fp〉.
Having fixed the term ordering induced by c > s > e, one may consider further
reducing fs by fp, i.e., fs − fp = (k−1 − k1)c − k1se. As the rate constants in a
chemical reaction take values, k−1 − k1 may vanish. In this case, if the leading
term of fs − fp vanishes, then it will be a monomial, and therefore, the reduced
Gröbner basis of I will be the monomial ideal generated by {k2c,−k1se}, given

336 H. Rahkooy and T. Sturm

that k2 �= 0 and k−1 �= 0. This example shows that the Gröbner basis of the
steady state ideal (and the steady states of the reaction) can change depending
on the values of the rate constants. Therefore, we must consider distinct cases
for the parameters when analysing a reaction network. Thinking purely in terms
of computer algebra, this example illustrates the idea behind Comprehensive
Gröbner bases. In this article, we investigate the conditions on the parameters of
a steady state ideal (or equivalently on the rate constants of a reaction) such that
the steady state ideal is binomial when those conditions on the parameters hold.

In the literature, a slightly different notions of binomiality has been consid-
ered. Eisenbud and Sturmfels in [16] call an ideal binomial if it is generated by
polynomials with at most two terms. Some authors, e.g., Pérez-Milán et al. [40],
have studied the binomiality of steady state ideals according to the definition
in [16]. However, in this article, our definition does not include those ideals that
include monomials. This difference in the definition, obviously, affects the steady
state variety of binomial chemical reaction networks in practice.

Binomial ideals and toric varieties have rich history in chemical reaction
networks theory. Binomiality corresponds to detailed balance, which is a very
important concept in thermodynamics. Detailed balance means that at ther-
modynamic equilibrium, the forward and backward rates should be equal for all
reactions. Detailed balance has been historically used by Einstein [15], Wegschei-
der [48] and by Onsager [38]. Some of the subsystems of molecular devices can
satisfy binomiality conditions. Another interesting point to study binomiality is
because the analysis of properties such as multi-stationarity and stability are
easier to establish for binomial systems. Toricity, also known as complex, or
cyclic, or semi-detailed balance is also known since Boltzmann that has used it
as a sufficient condition for deriving his famous H-theorem [2]. Toricity implies
binomiality, but the converse is not true. A toric variety is indeed irreducible,
however a binomial steady state ideal may have an irreducible variety, which
would not be toric. However, every variety of a binomial ideal includes a toric
variety as its irreducible component. A toric system must obey constraints on
the rates constants, such as the well known Weigscheider—Kolmogorov condi-
tion, which implies the equality of the products of forward and backward rates
constants in cycles of reversible reactions.

Mathematicians have considered binomiality and toricity and investigated
their properties thoroughly. Among the existing literature are the work by Ful-
ton [23], Sturmfels [45] and Eisenbud et al. [16]. Binomiality implies detailed
balancing of reversible chemical reactions, which has been studied by Gorban
et al. [24,25] and Grigoriev and Weber [28]. Toric dynamical systems have been
studied by Feinberg [20] and Horn and Jackson [30]. Over the real numbers
Craciun et al. have studied the toricity problem in [9]. In the latter work, it
hs been shown that complex balanced systems are the same as toric dynamical
systems, although toric steady states are different from that. Binomiality implies
much simpler criteria for multistationarity [14,44].

Pérez-Milán, et al. presented sufficient linear algebra conditions with inequal-
ities for binomiality of the steady state ideals [40]. The idea in the latter has

Parametric Binomiality of Steady State Ideals 337

been developed in [39], where MESSI reactions have been introduced. Conradi
and Kahle have proved in [8] that for homogenous ideals the latter sufficient
condition is necessary as well, and introduced an algorithm for that case. Their
algorithm has been implemented in Maple and Macaulay II in [31,32]. A geo-
metric view towards toricity of chemical reaction networks has been given by
Grigoriev et al. in [27], where shifted toricity has been introduced, algorithms
presented for testing shifted toricity and complexity bounds and experimental
results are discussed. In [27], the two main tools from computer algebra, quan-
tifier elimination [12,26,49] and Gröbner bases [5,6,18,19] are used in order to
test shifted toricity of chemical reaction networks. Also recently, the authors
introduced a first order logic test for toricity [43]. An efficient linear algebra
method for testing unconditional binomiality has been presented in [42] and a
graph-theoretical equivalent of the method is given in [41].

Testing binomiality of an ideal is a difficult problem, both from a theoret-
ical and a practical point of view. A typical method to test binomiality is via
computing a Gröbner basis. It has been shown that computing a Göbner basis is
EXPSPACE-complete [36], which shows the difficulty of the binomiality problem
from the computational point of view. The approach proposed for testing bino-
miality of steady state ideals in [8,40] relies on linear algebra. In this approach
the computations are done without considering the values of the parameters.
Also large matrices are constructed in this approach.

Existing work on binomiality of chemical reaction networks typically ignores
specialisation of the parameters, often treating them as variables and carrying
on the computations. For instance, fixing an ordering in which the parameters
are smaller than the variables, e.g., lexicographic ordering, one may consider
computing a Gröbner basis of the steady state ideal and then eliminating the
variables. Then the elimination ideal will be in the ring of parameters and may
result in conditions on the parameters such that the original ideal is binomial.
However, this approach does not consider the fact that in the process of compu-
tations, some terms can be vanished, if parameters are specialised.

In contrast, our approach is to use comprehensive Gröbner bases, which con-
siders specialisations of the parameters. A comprehensive Gröbner basis of an
ideal is a finite set of polynomials on the parameters and the variables, such that
it is a Gröbner basis under every value assignment in the parameters. Therefore,
a steady state ideal is binomial if its comprehensive Gröbner basis is binomial.
This observation reduces testing binomiality of a steady state ideal under special-
isation into testing binomiality of a comprehensive Gröbner basis. Computing
a comprehensive Gröbner basis results in a partitioning of the ambient space
into certain varieties and computations of certain set of polynomials associated
to each of those varieties, such that if the parameters are specialised from the
variety, the associated polynomial set is a Gröbner basis. Such a partition with
its associated polynomial sets is called a Gröbner system. Computing compre-
hensive Gröbner bases is at least as difficult as computing Gröbner bases. Hence,
testing binomiality via comprehensive Gröbner bases is a hard problem.

338 H. Rahkooy and T. Sturm

The concept of comprehensive Gröbner bases has been introduced by Weisp-
fenning in his seminal work [50]. He later introduced canonical comprehensive
Gröbner bases in [51]. A source of introduction to comprehensive Gröbner basis
is Becker and Weispfenning’s book [1]. Weispfenning also worked on the rela-
tion between comprehensive Gröbner bases and regular rings [52]. Later, sev-
eral authors worked on the topic and introduced more efficient algorithms and
polished the theory of comprehensive Gröbner bases. Suzuki-Sati’s approach to
Gröbner bases is presented in [46]. Montes has worked extensively on compre-
hensive Gröbner bases, introduced several algorithms and developed the the-
ory [11,37]. In particular, Montes’ book, the Gröbner Cover [35] is a great source
for computations, among other interesting aspects, that can be used as a guide
to the Singular library grobcov.lib [13] for computing comprehensive Gröbner
bases. Among the most efficient algorithms for computing comprehensive Gröbner
bases are the algorithms given by Kapur et al. [33,34]. Dehghani and Hashemi
studied Gröbner walk and FGLM for comprehensive Gröbner bases [10,29] and
implemented several algorithms for computing comprehensive Gröbner bases and
related topics in Maple [29].1

To the best of our knowledge, to this date, comprehensive Gröbner bases
have not been used in chemical reaction networks theory. Previous studies on
binomiality of steady state ideals have considered Gröbner bases, linear alge-
bra on stoichiometric matrices, etc., however, never have considered the change
in the polynomials during computations when the values are assigned to the
parameters. For instance, it is known that detailed balancing holds under some
polynomial conditions on the parameters.

However, the fact that specialisation of the rate constants may affect the
computations has not beed considered. The authors’ previous work on toric-
ity [27,43] considers the toricity problem when the parameters have already
been assigned real positive values. Other articles of the authors have consid-
ered unconditional binomiality, that is, when the rate constants are considered
variables [41,42]. The present article is the original work that consideres special-
isation of the parameters and uses comprehensive Gröbner bases to study the
binomiality under specialisations.

The plan of the article is as follows. Section 1 gives an introduction to
the necessary concepts of chemical reaction network theory, reviews the liter-
ature and presents the idea of the present article. Section 2 explains the pre-
liminaries required on comprehensive Gröbner systems, explains the main con-
cepts and sketches the idea behind computing comprehensive Gröbner bases.
Section 3 includes the main computations, where we show our computations on
n-phosphorylations and biochemical reactions and present the benchmarks. We
furthermore compare our computations using comprehensive Gröbner bases with
some earlier work on the binomiality problem that does not take into account
the specialisation of the rate constants. In Sect. 4 we summarise our results and
draw some conclusions.

1 https://amirhashemi.iut.ac.ir/sites/amirhashemi.iut.ac.ir/files//file basepage/
pggw 0.txt.

https://amirhashemi.iut.ac.ir/sites/amirhashemi.iut.ac.ir/files//file_basepage/pggw_0.txt
https://amirhashemi.iut.ac.ir/sites/amirhashemi.iut.ac.ir/files//file_basepage/pggw_0.txt

Parametric Binomiality of Steady State Ideals 339

2 Preliminaries on Comprehensive Gröbner Systems

We review the required definitions, theorems and an algorithm on comprehensive
Gröbner systems, mainly from the original work of Weispfenning [50] and Kapur,
et al.’s work [34].

Let K be a field, R = K[U] = K[u1, . . . , um] be the ring of poly-
nomials over K in the indeterminates u1, . . . , um and let S = K[U][X] =
K[u1, . . . , um][x1, . . . , xn] be the ring of polynomials over K[U] with the inde-
terminates x1, . . . , xn. Assume that X ∩ U = ∅. We call u1, . . . , um the param-
eters of the ring S and x1, . . . , xn the variables of S. In fact, the coefficients
of every polynomial in S are themselves polynomials in parameters. For every
α = (α1, . . . , αn) ∈ N

n, by Xα we denote xα1
1 . . . xαn

n and by Uα we denote
uα1

1 . . . uαn
n . In this paper, K is either R or C. By the variety of an ideal I (or a

set of polynomials F), we mean the set of solutions of the ideal I (or the set of
polynomials F) and we denote it by V (I) (or V (F)).

Let <1 and <2 be term orders on K[U] and K[X], respectively. We define a
block order < produced by the latter on K[U][X]. Firstly, define ui < xj for all
1 ≤ i ≤ m, 1 ≤ j ≤ n. Secondly, define Xα1Uβ1 < Xα2Uβ2 if either Xα1 < Xα2

or (Xα1 = Xα2 ∧ Uα1 < Uα2). A polynomial of the form cαp(U)Xα, where
α ∈ N

n, cα ∈ K and p(U) ∈ R, is called a term in K[U][X]. A monomial is a
term of the form Xα. Leading monomial, leading term and leading coefficient of
the polynomials in K[U][X] are defined with respect to the block ordering <.

A specialisation of S is a ring-homomorphism from the ring of parameters
R = K[U] into some field L, i.e., σ : R → L. Obviously K is embedded in L.
We consider L to be an algebraically closed field in this paper. Every special-
isation is uniquely determined by its restriction to K and its images on the
parameters u1, . . . , um and vice versa. A specialisation σ : R → L has a canon-
ical extension to a ring-homomorphism σ̄ : S → L[x1, . . . , xn], i.e., for every
f =

∑
i∈I ai(U)Xαi , σ̄(f) =

∑
i∈I σ(ai(U))Xαi , where ai(U) ∈ R and Xαi is a

monomial in K[X]. Following Weispfenning’s notation, we denote σ̄ by σ as well.
Specialisation of a set of polynomials F by σ, denoted by σ(F), is defined to be
the set of specialisations of the polynomials in F . Accordingly, a specialisation
of an ideal I by σ is defined, and is denoted by σ(I). Following Kapur, et al. [34],
in this paper we only consider specialisations induced by the elements a ∈ L

m,
that is, σa : f → f(a), where f ∈ R.

Below we mention the definition of comprehensive Gröbner system and com-
prehensive Gröbner basis, which are due to Weispfenning. We follow Kapur et
al.’s notation in [34].

Definition 1 (Comprehensive Gröbner System). Let I be an ideal in S gen-
erated by a finite set F ⊆ S and L be a an algebraically closed field containing K.
Assume that V1,W1, . . . , Vr,Wr are varieties in L

n, and G1, . . . , Gr are finite sets
of polynomials in S. A set of tripiles G ={(V1,W1, G1), . . . , (Vr,Wr, Gr)} is called
a comprehensive Gröbner system of I on V =

⋃
i=1r Vi\Wi, if for every a ∈ V and

every specialisation σa of S, σa(Gi) is a Gröbner basis of σa(I) in L[X] when a is
in V (Vi)\V (Wi), for i = 1, . . . , r. If V = L

m, we simply call G a comprehensive

340 H. Rahkooy and T. Sturm

Gröbner system of I. Each (Vi,Wi, Gi) is called a branch of G. A comprehensive
Gröbner system G of I is called faithful, if every element of Gi is in I.

Definition 2 (Comprehensive Gröbner Basis). Let I be an ideal in S
and L be an algebraically closed field containing K. Assume that V is a subset
of Lm. A finite subset G of Iis called a comprehensive Gröbner basis of I on
V , if for all specialisations σa : R → L of S, where a ∈ V , the set σa(G) is a
Gröbner basis of the ideal generated by σa(I) in L[X]. If V = L

m, we simply
call G a comprehensive Gröbner basis of I. A comprehensive Gröbner basis G
of I is called faithful, if every element of G is in I.

Having defined comprehensive Gröbner bases, Weispfenning proved the exis-
tence of a comprehensive Gröbner basis for every ideal in S [50]. In the latter
reference, he gave a non-constructive proof first, and an algorithm later.

Following the first algorithm proposed by Weispfenning, algorithms for com-
puting a comprehensive Gröbner basis essentially construct a faithful compre-
hensive Gröbner system G = {(V1,W1, G1), . . . , (Vr,Wr, Gr)}. Then the union
G = ∪r

i=1Gi will be a comprehensive Gröbner basis. Roughly speaking, the vari-
eties Vi and Wi are typically obtained by considering the monomials that are van-
ished by specialisations, and simultaneously, using a Gröbner basis computation
algorithm, a Gröbner basis under the conditions imposed by the specialisations
is computed. Below we present a modified version of Kapur, et al.’s algorithm
by Dehghani and Hashemi from [29]. “Other cases” in line 16 of the algorithm
refers to those cases that the Gröbner basis is 1. Dehghani and Hashemi group
all those cases together with the aim of speeding the computations up. In line 13,
MDBasis computes a minimal Dickson basis for a given set of polynomials in S.
For more details, refer to [29].

3 Testing Binomiality of Chemical Reaction Networks
Using Comprehensive Gröbner Systems

In this section we present computations on biochemical networks, using compre-
hensive Gröbner bases, in order to test binomiality of the corresponding steady
state ideals.

In [9,16,39], the authors call an ideal binomial if there exists a basis for
the ideal whose polynomials have at most two terms. In particular, as it is
discussed in the latter references, one can see that an ideal is binomial if and
only if its reduced Gröbner bases with respect to every term order is binomial.
Our definition of binomiality is as in [41,42], which is slightly different from [9,
16,39]. We call an ideal binomial if there exists a basis for the ideal whose
polynomials have exactly two terms. That is, we do not consider monomials in
the basis. Similar to the definition of binomiality in [9,16,39], one can easily
observe that, for the case of our definition, an ideal is binomial if and only if its
reduced Gröbner bases with respect to every term order is binomial. In terms
of parametric polynomial rings, i.e., K[U][X], we discuss the binomiality using

Parametric Binomiality of Steady State Ideals 341

Algorithm 1. PGBMAIN
Input: 1. N,W ⊆ K[U] finite; 2. F ⊆ K[U][X] finite

Output: PGB a Gröbner system of F on V (N) \ V (W)

1: PGB := ∅
2: if V (N) \ V (W) = ∅ then
3: return ∅
4: end if
5: G := ReducedGroebnerBasis(F ∪ N,<)
6: if 1 ∈ G then
7: return {(N,W, {1})}
8: end if
9: Gr := G ∩ K[U]

10: if V (Gr) \ V (W) = ∅ then
11: return PGB
12: else
13: Gm := MDBasis(G \ Gr)

h = lcm(h1, . . . , hk) with hi = LC<1(gi) for each gi ∈ Gm

14: if V (Gr) \ V (W × {h}) �= ∅ then
15: PGB := PGB ∪ {Gr,W × {h}, Gm}
16: end if
17: return PGB ∪ ⋃

hi∈{h1,...,hk} PGBMAIN(Gr ∪ {hi},W × {h1h2 . . . hi−1}, G \
Gr) ∪ {(Other Cases, {1})}

18: end if

a comprehensive Gröbner system. That is in particular the case for the steady
state ideals of chemical reaction networks.

As computing a comprehensive Gröbner basis is done via computing the
branches of a comprehensive Gröbner system, we basically compute the latter
and check the binomiality of the Gröbner basis at each branch. Then a compre-
hensive Gröbner basis of a steady state ideal will be binomial if and only if the
Gröbner basis at each branch of a comprehensive system is binomial. One can
consider the generic comprehensive Gröbner bases, introduced in [50], however
as it is mentioned in the latter reference, computing a generic comprehensive
Gröbner basis is not feasible in practice.

In this paper, for our computations on the steady state ideals of the chemical
reaction networks, we consider L = K̄, the algebraic closure of K. In practice, for
the computation purpose, the coefficient field is considered to be Q, extended
by the parameters, i.e., Q(k1, . . . , km); hence the comprehensive Gröbner system
computations are carried out over Q(k1, . . . , km)[x1, . . . , xn].

Our computations are carried out via version 4.2.0 of the computer algebra
system Singular [13]2, the grobcov package (whose latest version is available at A.
Montes’ website)3. For instructions on the grobcov package we refer the reader
to the book [35] and examples by A. Montes. We have done fully automated

2 http://www.singular.uni-kl.de.
3 https://mat.upc.edu/en/people/antonio.montes.

http://www.singular.uni-kl.de
https://mat.upc.edu/en/people/antonio.montes

342 H. Rahkooy and T. Sturm

computations on sets of examples, in particular on biochemical models from the
BioModels’ repository [7]4. Our computations have been done on a 2.48 MHz
AMD EPYC 7702 64-Core Processor in a Debian GNU/Linux 10 machine with
211 GB memory.

3.1 n-Site Phosphorylation

Multisite phosphorylation–dephosphorylation cycles or n-site phosphorylations
(for n ∈ N) are studied by Wang and Sontag in [47] in terms of multi-stationarity.
Pérez-Milán et al. in [40] have shown that for every n ∈ N, n-site phosphoryla-
tion has a binomial steady state. As mentioned earlier, in the latter reference,
the authors did not take into account the specialisations of the constant rates.
In this subsection, we first do some reductions on a basis of the steady state
ideal of n-phosphorylations and prove its binomiality. This essentially gives us
the unconditional binomiality of n-phosphorylation, defined and investigated in
[41,42]. Our algebraic maniplations below are simple and avoid the criterion
presented by Pérez-Milán et al. in [40].

Using Wang and Sontag’s notation in [47] for the variables and parameters,
for a fixed positive integer n, the n-site phosphorylation reaction network is the
following:

S0 + E
kon0−−−⇀↽−−−
koff0

ES0

kcat0−−−→ S1 + E

...

Sn−1 + E
konn−1−−−−−⇀↽−−−−−
koffn−1

ESn−1

kcatn−1−−−−−→ Sn + E

S1 + F
lon0−−−⇀↽−−−
loff0

FS1

lcat0−−−→ S0 + F

...

Sn + F
lonn−1−−−−−⇀↽−−−−−
loffn−1

FSn

lcatn−1−−−−−→ Sn−1 + F

The parameters of the reaction network are kon0 , . . . , konn−1 , koff0 , . . . , koffn−1 ,
kcat0 , . . . , kcatn−1 , lon0 , . . . , lonn−1 , loff0 , . . . , loffn−1 , lcat0 , . . . , lcatn−1 . Let the vari-
ables s0, . . . , sn, c0, . . . , cn−1, d1, . . . , dn, e, f represent the concentrations of the
species S0, . . . ,Sn,ES0, . . . ,ESn−1,FS1, . . . ,FSn,E,F respectively. The ODEs
describing change of the concentrations of the species for this reaction network
are the following:

ṡ0 = P0 = − kon0s0e + koff0c0 + lcat0d1,

ṡi = Pi = − koni
sie + koffi

ci + kcati−1ci−1 − loni−1sif + loffi−1di + lcatidi+1,

i = 1, . . . , n − 1,

4 https://www.ebi.ac.uk/biomodels.

https://www.ebi.ac.uk/biomodels

Parametric Binomiality of Steady State Ideals 343

ċj = Qj = konjsje − (koffj + kcatj)cj , j = 0, ..., n − 1,

ḋk = Rk = lonk−1skf − (loffk−1 + lcatk−1)dk, k = 1, ..., n.

The ODEs for sn, e and f are linear combinations of the above ODEs, hence
they are redundant and we skip them in this article.

In order to show unconditional binomiality of the steady state ideal of n-
phosphorylation, we perform reductions on the generators of the steady state
ideal so that a binomial basis is obtained. First of all, note that polynomials Qj

and Rk are already binomial. Reducing P0 with respect to Q0, we obtain

P ′
0 =P0 + Q0

= − kon0s0e + koff0c0 + lcat0d1

+ kon0s0e − (koff0 + kcat0)c0

= lcat0d1 + kcat0c0,

which is a binomial.
Now we reduce Pi with respect to P ′

0, Qj and Rk as follows. First we reduce Pi

with respect to RI :

Pi + Ri =
− koni

sie + koffi
ci + kcati−1ci−1 − loni−1sif + loffi−1di + lcatidi+1

+ loni−1sif − (loffi−1 + lcati−1)di

= − koni
sie + koffi

ci + kcati−1ci−1 + lcatidi+1 − lcati−1di.

Then we reduce the result with respect to Qi:

Pi + Ri + Qi =
− koni

sie + koffi
ci + kcati−1ci−1 + lcatidi+1 − lcati−1di

+ konisie − (koffi + kcati)ci

= kcati−1ci−1 + lcatidi+1 − lcati−1di + kcatici.

For i = 1, the above can be reduced with respect to P ′
0:

P ′
1 = P1 + R1 + Q1 − P ′

0 = kcat0c0 + lcat1d1 − lcat0d1 + kcat1c1

− (lcat0d1 + kcat0c0)
= lcat1d1 + kcat1c1,

which is a binomial.
Similarly, for i = 2, . . . , n, Pi can be reduced to a binomial with respect to

Ri, QI and P ′
i−1. Therefore, a binomial basis can be obtained this way for the

steady state ideal.
As the algebraic manipulations above do not take into account the special-

isations of the parameters, we computed comprehensive Gröbner system of the
steady state ideals for the cases n = 1, 2 to test the binomiality under special-
isations. 1-site phosphorylation and 2-site phosphorylations have been studied
in [40] using the criteria presented in that article as well.

344 H. Rahkooy and T. Sturm

Example 1 (1-site phosphorylation, [40] Example 2.1).

S0 + E
kon0−−−⇀↽−−−
koff0

ES0

kcat0−−−→ S1 + E

S1 + F
lon0−−−⇀↽−−−
loff0

FS1

lcat0−−−→ S0 + F.

Let the variables representing the change of the concentrations of the species
S0, S1, ES0, FS1, E, F be s0, s1, c0, d1, e, f respectively, and let the parameters
be kon0 , koff0 , kcat0 , lon0 , loff0 , lcat0 .

The steady state ideal for 1-site phosphorylation reaction is generated by

ṡ0 = − kon0s0e + koff0c0 + lcat0d1,

ṡ1 = − kon1s1e + koff1c1 + kcat0c0 − lon0s1f + loff0d1,

ċ0 = kon0s0e − (koff0 + kcat0)c0,

ḋ1 = lon0s1f − (loff0 + lcat0)d1.

We skip the ODEs for e and f as they are linear combination of the other ODEs.
Renaming the variables as

s0 = x1, s1 = x2, c0 = x3, d1 = x4, e = x5, f = x6,

we computed the comprehensive Gröbner system for the steady state ideal using
Singular. It contains 25 branches, out of which 6 are binomial. We recall that in
this article, a binomial ideal is an ideal that is generated by a set of binomials
(not including monomials). For the last branch, V25 and W25 are the zero sets of
the following sets of polynomials in Q[kon0 , koff0 , kcat0 , lon0 , loff0 , lcat0][x1, . . . , x6]
respectively:

{lcat0 , kon0},

{koff0kcat0 lon0 + k2
cat0 lon0}.

The corresponding Gröbner basis is

{f1 = kcat0x3,

f2 = lon0x2x6 − loff0x4},

which obviously is not binomial.
An example of a branch with binomial Gröbner basis is branch 24, for which

V24 and W24 are the zero sets of the following sets, respectively:

{koff0 + kcat0 , kon0},

{lon0kcat0}.

The corresponding Gröbner basis is

{f1 = kcat0x3 + lcat0x4,

f2 = lon0x2x6 + (−loff0 − lcat0)x4}.

Parametric Binomiality of Steady State Ideals 345

Example 2 (2-site phosphorylation, [40] Example 3.13). The steady state ideal
for the 2-site phosphorylation reaction is generated by

ṡ0 = P0 = − kon0s0e + koff0c0 + lcat0d1,

ṡ1 = P1 = − kon1s1e + koff1c1 + kcat0c0 − lon0s1f + loff0d1 + lcat1d2,

ċ0 = Q0 = kon0s0e − (koff0 + kcat0)c0,

ċ0 = Q1 = kon1s1e − (koff1 + kcat1)c1,

ḋ1 = R1 = lon0s1f − (loff0 + lcat0)d1,

ḋ2 = R2 = lon1s2f − (loff1 + lcat1)d2,

where the variables are

s0, s1, s2, c0, c1, d1, d2, e, f

and the parameters are

kon0 , kon1 , koff0 , koff1 , kcat0 , kcat1 , lon0 , lon1 , loff0 , loff1 , lcat0 , lcat1 .

We have computed a comprehensive Gröbner system for this system using Sin-
gular. It has 1187 branches, out of which 36 are binomial. The last branch of the
comprehensive Gröbner system is as follows. V1187 is the zero set of loff1 + lcat1
and W1187 is the zero set of the following polynomial:

kon0kon1koff0koff1kcat0kcat1 lon0 lon1 loff0 lcat0 lcat1

+ kon0kon1koff0koff1kcat0kcat1 lon0 lon1 l
2
cat0 lcat1

+ kon0kon1koff0kcat0k
2
cat1 lon0 lon1 loff0 lcat0 lcat1

+ kon0kon1koff0kcat0k
2
cat1 lon0 lon1 l

2
cat0 lcat1

+ kon0kon1koff1k
2
cat0kcat1 lon0 lon1 loff0 lcat0 lcat1

+ kon0kon1koff1k
2
cat0kcat1 lon0 lon1 l

2
cat0 lcat1

+ kon0kon1k
2
cat0k

2
cat1 lon0 lon1 loff0 lcat0 lcat1

+ kon0kon1k
2
cat0k

2
cat1 lon0 lon1 l

2
cat0 lcat1 .

Renaming the variables as

s0 = x1, s1 = x2, s2 = x3, c0 = x4, c1 = x5, d1 = x6, d2 = x7, e = x8, f = x9,

the Gröbner basis for every specialisation of the parameters in V1187\W1187 is
the following:

f1 = kcat1x5 − lcat1x7,

f2 = kcat0x4 − lcat0x6,

f3 = lon1x3x9,

f4 = lon0x2x9 + (−loff0 − lcat0)x6,

346 H. Rahkooy and T. Sturm

f5 = (kon1 loff0 + kon1 lcat0)x6x8 + (−koff1 lon0)x5x9 + (−lon0 lcat1)x7x9,

f6 = (kon1)x2x8 + (−koff1)x5 + (−lcat1)x7,

f7 = (kon0)x1x8 + (−koff0)x4 + (−lcat0)x6,

f8 = (lon1 loff0 + lon1 lcat0)x3x6,

f9 = (kon1koff0kcat1 lcat0 + kon1kcat0kcat1 lcat0)x2x6

+ (−kon0koff1kcat0 lcat1 − kon0kcat0kcat1 lcat1)x1x7,

f10 = (kon0koff1 lon0 lcat1 + kon0kcat1 lon0 lcat1)x1x7x9

+ (−kon1koff0kcat1 loff0 − kon1koff0kcat1 lcat0)x4x6

+ (−kon1kcat1 loff0 lcat0 − kon1kcat1 l
2
cat0)x

2
6,

f11 = (kon0koff1kcat0 lon1 loff0 lcat1 + kon0koff1kcat0 lon1 lcat0 lcat1
+ kon0kcat0kcat1 lon1 loff0 lcat1 + kon0kcat0kcat1 lon1 lcat0 lcat1)x1x3x7.

One can observe that the above branch of the comprehensive Gröbner system
is not binomial.

We carried on the computations for comprehensive Gröbner system of the
steady state ideal of n-phosphorylation for n = 2, 3, 4, 5 in Singular with the time
limit of six hours. The results of the computations are summarised in Table 1.
In this table, DNF refers to did not finish.

Table 1. Comprehensive Gröbner system of n-Phosphorylations

#branches #binomial branches % of binomial branches Time(s)

2−phosph. 1187 36 3.03 24

3−phosph. 57857 216 0.37 2231

4−phosph. – – – DNF

5−phosph. – – – DNF

As the number of variables and parameters grow drastically when n increases,
comprehensive Gröbner system computations did not finish in a reasonable time
period for n ≥ 4.

We also computed a comprehensige Groöbner system of 2-phosphorylation
in Maple, using Dehghani and Hashemi’s PWWG package5, which uses a modi-
fication of Kapur et al.’s algorithm so that the branches with Gröbner basis {1}
are ignored [29]. According to the authors’ experiments in [29], this modification
results in speed-up of the computations. However, even for 2-phosphorylation
the computations did not finish in six hours in Maple.

As we see from the computations in this subsection, there are several branches
of teh n-phosphorylations that are not binomial. This means that for certain
5 https://amirhashemi.iut.ac.ir/sites/amirhashemi.iut.ac.ir/files//file basepage/

pggw 0.txt.

https://amirhashemi.iut.ac.ir/sites/amirhashemi.iut.ac.ir/files//file_basepage/pggw_0.txt
https://amirhashemi.iut.ac.ir/sites/amirhashemi.iut.ac.ir/files//file_basepage/pggw_0.txt

Parametric Binomiality of Steady State Ideals 347

values of the rate constants, n-phosphorylation is not binomial, while the com-
putations without taking into account the specialisations of the rate constants
leads to the binomiality.

3.2 BioModels

Our main benchmark for computing comprehensive Gröbner system of steady
state ideals, are the biochemical models from the BioModels repository [7],
which is typically used for such computations. As a first example, we present
biomodel 629 and the corresponding computations in the following example.

Example 3 (BIOMD0000000629, [7]). The corresponding ODEs for biomodel
629 are the following:

ẋ1 = −k2x1x3 + k3x2,

ẋ2 = k2x1x3 − k3x2 − k4x2x4 + k5x5,

ẋ3 = −k2x1x3 + k3x2,

ẋ4 = −k4x2x4 + k5x5,

ẋ5 = k4x2x4 − k5x5,

where k1, . . . , k5 are the parameters and x1, . . . , x5 are the variables. Compre-
hensive Göbner system computation over the ring Q[k1, . . . , k5][x1, . . . , x5] in
Singular results in 10 branches with the following conditions and Gröbner bases
(Table 2).

Table 2. Comprehensive Gröbner system of BIOMD0000000629

Branch V W GB

1 0 k2k4 k4x2x4 − k5x5, k2x1x3 − k3x2

2 k4 k2k5 k5x5, k2x1x3 − k3x2

3 k5, k2 k2 k2x1x3 − k3x2

4 k5, k4, k2 k3 k3x2

5 k5, k4, k3, k2 1 0

6 k4, k2 k3k5 k5x5, k3x2

7 k4, k3, k2 k5 k5x5

8 k2 k5, k4, k3 k3k5x5, k3x2

9 k3, k2 k4 k4x2x4 − k5x5

10 k5, k2 k3k4 k3x2

There are three branches with binomial Gröbner basis for biomodel 629. All
the branches have either monomial or binomial Gröbner basis.

348 H. Rahkooy and T. Sturm

In Table 3, we present the results of our computations for some biomodels
from the Biomodels repository [7]. As computing comprehensive Gröbner system
of systems with large number of variables is very expensive, we have considered
those biomodels that have relatively small number of species (correspondingly,
relatively small number of variables), so that the computations took less than
ten minutes for those biomodels. In Table 3, one can find the number of branches
of the corresponding comprehensive Gröbner systems, the number of branches
that are binomial, and their percentage. Except for biomodels 271 and 519 that
have no binomial branch, all other biomodels have at least one binomial branch.
For two biomodels (283 and 486), at least half of their branches are binomial.

The largest biomodel we have considered is model 26. We note that this
model is a MAPK reaction network. It has been studied in [17], where the
authors associated a graph to the CRN and used a trick based on vertex cover
in order to reduce the number of the polynomials in the steady state ideal into
2 polynomials.

Table 3. Branches of comprehensive Gröbner systems of biomodels

Model #branches #binomial branches % of binomial branches

26 46870 164 0.35

40 35 6 17.00

92 10 4 40.00

101 81 11 13.40

104 4 1 25.00

156 25 5 20.00

159 36 6 16.66

178 24 2 8.33

194 19 5 26.31

233 18 5 27.78

267 12 2 16.67

271 92 0 0.00

272 44 7 15.91

282 18 4 22.22

283 2 1 50.00

289 351 43 12.25

321 26 5 19.23

363 15 2 13.33

459 40 9 22.50

486 3 2 66.67

519 128 0 0.00

546 15 1 6.67

629 10 4 40.00

Parametric Binomiality of Steady State Ideals 349

4 Conclusion

We address the problem of binomiality of the steady state ideal of a chemical
reaction network. The binomiality problem has been widely considered in the
literature of mathematics and chemical reaction network theory and is still an
active research area. Finding binomiality and toricity is a hard problem from
both a theoretical and a practical point of view. The computational methods
typically rely on Gröbner bases.

The authors have recently investigated binomiality and toricity in several
papers. We have given efficient algorithms for testing toricity in [27]. We also
have considered the binomiality from a first-order logic point of view and gave
efficient computational results and studied biomodels systematically via quan-
tifier elimination [27,43]. Other than those, we have considered the concept of
unconditional binomiality, which considers rate constants as variables, and gave
polynomial time linear algebra and graph theoretical approaches for detecting
binomiality [41,42].

The existing work on binomiality of steady state ideals do not take into
account the effect of assigning values to the rate constats during the compu-
tations. In the present work, we consider the problem of binomiality when the
parameters can be specialised. Our approach to this parametric binomiality prob-
lem is naturally based on comprehensive Gröbner bases. We make systematic
computations on n-phosphorylations and biomodels and detect the branches of
the Gröbner systems that are binomial. Our computations via comprehensive
Gröbner systems show that in several cases, the comprehensive Gröbner bases
for steady state ideals are not binomial, while using other methods, e.g., consid-
ering rate constants as variables or doing computations without considering the
effect of specialisation, one may consider those steady state ideal as binomial
ideals.

As in this paper the concept of comprehensive Gröbner bases is used for the
first time on chemical reaction network theory, we propose using this approach
for studying further properties of chemical reaction networks.

Acknowledgments. This work has been supported by the interdisciplinary bilat-
eral project ANR-17-CE40-0036/DFG-391322026 SYMBIONT [3,4]. We would like to
thank A. Hashemi and M. Dehghani for the discussions on comprehensive Gröbner
bases and providing us with their Maple package.

References

1. Becker, T., Weispfenning, V., Kredel, H.: Gröbner Bases - A Computational App-
roach to Commutative Algebra. Graduate Texts in Mathematics, vol. 141. Springer,
Heidelberg (1993). https://doi.org/10.1007/978-1-4612-0913-3

2. Boltzmann, L.: Lectures on Gas Theory. University of California Press, Berkeley
and Los Angeles (1964)

3. Boulier, F., et al.: The SYMBIONT project: symbolic methods for biological net-
works. ACM Commun. Comput. Algebra 52(3), 67–70 (2018). https://doi.org/10.
1145/3313880.3313885

https://doi.org/10.1007/978-1-4612-0913-3
https://doi.org/10.1145/3313880.3313885
https://doi.org/10.1145/3313880.3313885

350 H. Rahkooy and T. Sturm

4. Boulier, F., et al.: The SYMBIONT project: symbolic methods for biological
networks. F1000Research 7(1341) (2018). https://doi.org/10.7490/f1000research.
1115995.1

5. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Doctoral dissertation,
Mathematical Institute, University of Innsbruck, Austria (1965)

6. Buchberger, B.: Ein Algorithmisches Kriterium für die Lösbarkeit eines algebrais-
chen Gleichungssystems. Aequationes Mathematicae 3, 374–383 (1970)

7. Chelliah, V., et al.: BioModels: ten-year anniversary. Nucl. Acids Res. 43, D542–
D548 (2015). https://doi.org/10.1093/nar/gku1181

8. Conradi, C., Kahle, T.: Detecting binomiality. Adv. Appl. Math. 71, 52–67 (2015).
https://doi.org/10.1016/j.aam.2015.08.004

9. Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J.
Symb. Comput. 44(11), 1551–1565 (2009). https://doi.org/10.1016/j.jsc.2008.08.
006

10. Darmian, M.D., Hashemi, A.: Parametric FGLM algorithm. J. Symb. Comput. 82,
38–56 (2017). https://doi.org/10.1016/j.jsc.2016.12.006

11. Darmian, M.D., Hashemi, A., Montes, A.: Erratum to “a new algorithm for dis-
cussing Gröbner bases with parameters”. [J. Symbolic Comput. 33(1–2) (2002)
183–208]. J. Symb. Comput. 46(10), 1187–1188 (2011). https://doi.org/10.1016/j.
jsc.2011.05.002

12. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponen-
tial. J. Symb. Comput. 5(1–2), 29–35 (1988). https://doi.org/10.1016/S0747-
7171(88)80004-X

13. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-2-0 – a computer
algebra system for polynomial computations (2020). http://www.singular.uni-kl.
de

14. Dickenstein, A., Pérez Millán, M., Anne, S., Tang, X.: Multistatonarity in struc-
tured reaction networks. Bull. Math. Biol. 81, 1527–1581 (2019). https://doi.org/
10.1007/s11538-019-00572-6

15. Einstein, A.: Strahlungs-emission und -absorption nach der Quantentheorie. Verh.
Dtsch. Phys. Ges. 18, 318–323 (1916)

16. Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Math. J. 84(1), 1–45 (1996).
https://doi.org/10.1215/S0012-7094-96-08401-X

17. England, M., Errami, H., Grigoriev, D., Radulescu, O., Sturm, T., Weber, A.:
Symbolic versus numerical computation and visualization of parameter regions for
multistationarity of biological networks. In: Gerdt, V.P., Koepf, W., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 93–108. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66320-3 8

18. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999). https://doi.org/10.1145/780506.780516

19. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Mora, T. (ed.) ISSAC 2002, pp. 75–83. ACM (2002).
https://doi.org/10.1145/780506.780516

20. Feinberg, M.: Complex balancing in general kinetic systems. Arch. Ration. Mech.
Anal. 49(3), 187–194 (1972). https://doi.org/10.1007/BF00255665

21. Feinberg, M.: Lectures on chemical reaction networks (1979)
22. Feinberg, M.: Foundations of Chemical Reaction Network Theory. AMS, vol. 202.

Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03858-8
23. Fulton, W.: Introduction to Toric Varieties, Annals of Mathematics Studies, vol.

131. Princeton University Press (1993)

https://doi.org/10.7490/f1000research.1115995.1
https://doi.org/10.7490/f1000research.1115995.1
https://doi.org/10.1093/nar/gku1181
https://doi.org/10.1016/j.aam.2015.08.004
https://doi.org/10.1016/j.jsc.2008.08.006
https://doi.org/10.1016/j.jsc.2008.08.006
https://doi.org/10.1016/j.jsc.2016.12.006
https://doi.org/10.1016/j.jsc.2011.05.002
https://doi.org/10.1016/j.jsc.2011.05.002
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1016/S0747-7171(88)80004-X
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
https://doi.org/10.1007/s11538-019-00572-6
https://doi.org/10.1007/s11538-019-00572-6
https://doi.org/10.1215/S0012-7094-96-08401-X
https://doi.org/10.1007/978-3-319-66320-3_8
https://doi.org/10.1145/780506.780516
https://doi.org/10.1145/780506.780516
https://doi.org/10.1007/BF00255665
https://doi.org/10.1007/978-3-030-03858-8

Parametric Binomiality of Steady State Ideals 351

24. Gorban, A.N., Kolokoltsov, V.N.: Generalized mass action law and thermodynam-
ics of nonlinear Markov processes. Math. Model. Nat. Phenom. 10(5), 16–46 (2015).
https://doi.org/10.1051/mmnp/201510503

25. Gorban, A.N., Yablonsky, G.S.: Three waves of chemical dynamics. Math. Model.
Nat. Phenom. 10(5), 1–5 (2015). https://doi.org/10.1051/mmnp/201510501

26. Grigorev, D.: Complexity of deciding Tarski algebra. J. Symb. Comput. 5(1–2),
65–108 (1988). https://doi.org/10.1016/S0747-7171(88)80006-3

27. Grigoriev, D., Iosif, A., Rahkooy, H., Sturm, T., Weber, A.: Efficiently and effec-
tively recognizing toricity of steady state varieties. Math. Comput. Sci. 15, 199–232
(2020). https://doi.org/10.1007/s11786-020-00479-9

28. Grigoriev, D., Weber, A.: Complexity of solving systems with few independent
monomials and applications to mass-action kinetics. In: Gerdt, V.P., Koepf, W.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 143–154.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32973-9 12

29. Hashemi, A., Darmian, M.D., Barkhordar, M.: Gröbner systems conversion. Math.
Comput. Sci. 11(1), 61–77 (2017). https://doi.org/10.1007/s11786-017-0295-3

30. Horn, F., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal.
47(2), 81–116 (1972). https://doi.org/10.1007/BF00251225

31. Iosif, A., Rahkooy, H.: Analysis of the Conradi-Kahle algorithm for detecting bino-
miality on biological models. arXiv preprint arXiv:1912.06896 (2019)

32. Iosif, A., Rahkooy, H.: MapleBinomials, a Maple package for testing binomiality of
ideals (2019). https://doi.org/10.5281/zenodo.3564428

33. Kapur, D.: Comprehensive Gröbner basis theory for a parametric polynomial ideal
and the associated completion algorithm. J. Syst. Sci. Complex. 30(1), 196–233
(2017). https://doi.org/10.1007/s11424-017-6337-8

34. Kapur, D., Sun, Y., Wang, D.: An efficient method for computing comprehensive
Gröbner bases. J. Symb. Comput. 52, 124–142 (2013). https://doi.org/10.1016/j.
jsc.2012.05.015

35. Montes, A.: The Gröbner Cover. ACM, vol. 27. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03904-2

36. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative
semigroups and polynomial ideals. Adv. Math. 46(3), 305–329 (1982). https://doi.
org/10.1016/0001-8708(82)90048-2

37. Montes, A.: A new algorithm for discussing Gröbner bases with parameters. J.
Symb. Comput. 33(2), 183–208 (2002). https://doi.org/10.1006/jsco.2001.0504

38. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405
(1931). https://doi.org/10.1103/PhysRev.37.405

39. Pérez Millán, M., Dickenstein, A.: The structure of MESSI biological systems.
SIAM J. Appl. Dyn. Syst. 17(2), 1650–1682 (2018). https://doi.org/10.1137/
17M1113722

40. Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems
with toric steady states. Bull. Math. Biol. 74(5), 1027–1065 (2012). https://doi.
org/10.1007/s11538-011-9685-x

41. Rahkooy, H., Montero, C.V.: A graph theoretical approach for testing binomial-
ity of reversible chemical reaction networks. In: 22nd International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2020,
Timisoara, Romania, September 1–4, 2020, pp. 101–108. IEEE (2020). https://
doi.org/10.1109/SYNASC51798.2020.00027

https://doi.org/10.1051/mmnp/201510503
https://doi.org/10.1051/mmnp/201510501
https://doi.org/10.1016/S0747-7171(88)80006-3
https://doi.org/10.1007/s11786-020-00479-9
https://doi.org/10.1007/978-3-642-32973-9_12
https://doi.org/10.1007/s11786-017-0295-3
https://doi.org/10.1007/BF00251225
http://arxiv.org/abs/1912.06896
https://doi.org/10.5281/zenodo.3564428
https://doi.org/10.1007/s11424-017-6337-8
https://doi.org/10.1016/j.jsc.2012.05.015
https://doi.org/10.1016/j.jsc.2012.05.015
https://doi.org/10.1007/978-3-030-03904-2
https://doi.org/10.1007/978-3-030-03904-2
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1006/jsco.2001.0504
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1137/17M1113722
https://doi.org/10.1137/17M1113722
https://doi.org/10.1007/s11538-011-9685-x
https://doi.org/10.1007/s11538-011-9685-x
https://doi.org/10.1109/SYNASC51798.2020.00027
https://doi.org/10.1109/SYNASC51798.2020.00027

352 H. Rahkooy and T. Sturm

42. Rahkooy, H., Radulescu, O., Sturm, T.: A linear algebra approach for detect-
ing binomiality of steady state ideals of reversible chemical reaction networks. In:
Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020.
LNCS, vol. 12291, pp. 492–509. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60026-6 29

43. Rahkooy, H., Sturm, T.: First-order tests for toricity. In: Boulier, F., England,
M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp.
510–527. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6 30

44. Sadeghimanesh, A., Feliu, E.: The multistationarity structure of networks with
intermediates and a binomial core network. Bull. Math. Biol. 81, 2428–2462 (2019).
https://doi.org/10.1007/s11538-019-00612-1

45. Sturmfels, B.: Gröbner Bases and Convex Polytopes, University Lecture Series,
vol. 8. AMS, Providence, RI (1996). https://doi.org/10.1112/S0024609396272376

46. Suzuki, A., Sato, Y.: An alternative approach to comprehensive Gröbner bases.
J. Symb. Comput. 36(3–4), 649–667 (2003). https://doi.org/10.1016/S0747-
7171(03)00098-1

47. Wang, L., Sontag, E.D.: On the number of steady states in a multiple futile cycle.
J. Math. Biol. 57(1), 29–52 (2008). https://doi.org/10.1007/s00285-007-0145-z

48. Wegscheider, R.: Über simultane Gleichgewichte und die Beziehungen zwis-
chen Thermodynamik und Reactionskinetik homogener Systeme. Monatsh. Chem.
Verw. Tl. 22(8), 849–906 (1901). https://doi.org/10.1007/BF01517498

49. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput.
5(1–2), 3–27 (1988). https://doi.org/10.1016/S0747-7171(88)80003-8

50. Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comput. 14(1), 1–30
(1992). https://doi.org/10.1016/0747-7171(92)90023-W

51. Weispfenning, V.: Canonical comprehensive Gröbner bases. J. Symb. Comput.
36(3–4), 669–683 (2003). https://doi.org/10.1016/S0747-7171(03)00099-3

52. Weispfenning, V.: Comprehensive Gröbner bases and regular rings. J. Symb. Com-
put. 41(3–4), 285–296 (2006). https://doi.org/10.1016/j.jsc.2003.05.003

https://doi.org/10.1007/978-3-030-60026-6_29
https://doi.org/10.1007/978-3-030-60026-6_29
https://doi.org/10.1007/978-3-030-60026-6_30
https://doi.org/10.1007/s11538-019-00612-1
https://doi.org/10.1112/S0024609396272376
https://doi.org/10.1016/S0747-7171(03)00098-1
https://doi.org/10.1016/S0747-7171(03)00098-1
https://doi.org/10.1007/s00285-007-0145-z
https://doi.org/10.1007/BF01517498
https://doi.org/10.1016/S0747-7171(88)80003-8
https://doi.org/10.1016/0747-7171(92)90023-W
https://doi.org/10.1016/S0747-7171(03)00099-3
https://doi.org/10.1016/j.jsc.2003.05.003

Primitive Recursive Ordered Fields
and Some Applications

Victor Selivanov1(B) and Svetlana Selivanova2

1 A. P. Ershov Institute of Informatics Systems, and S. L. Sobolev Institute
of Mathematics, Novosibirsk, Russia

vseliv@iis.nsk.su
2 KAIST, School of Computing, Daejeon, Republic of Korea

Abstract. We establish primitive recursive versions of some known facts
about computable ordered fields of reals and computable reals and apply
them to several problems of algebra and analysis. In particular, we find
a primitive recursive analogue of Ershov-Madison’s theorem about the
computable real closure, relate primitive recursive fields of reals to the
field of primitive recursive reals, give sufficient conditions for primitive
recursive root-finding and for computing solution operators of symmetric
hyperbolic systems of partial differential equations.

Keywords: Ordered field · Real closure · Primitive recursion ·
Polynomial · Splitting · Root-finding · Solution operators of PDEs

1 Introduction

In [23], computable ordered fields of reals were related to the field of computable
reals and used to prove computability of some problems in algebra and analysis
(notably, spectral problems for symmetric matrices and computing solutions of
symmetric hyperbolic systems of partial differential equations (PDEs) uniformly
on matrix coefficients) in the rigorous sense of computable analysis [27]. The
proposed sufficient conditions for computability are very broad but do not yield
any complexity upper bounds because they use algorithms based on unbounded
search through countable sets. We note that the situation here is rather sub-
tle, e.g. the spectral decomposition of a symmetric 2 × 2-matrix is not com-
putable [28] but it becomes computable (even for n × n-matrices uniformly on
n) if matrix coefficients range over any fixed computable ordered field of reals.

V. Selivanov—The work is supported by Mathematical Center in Akademgorodok
under agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Edu-
cation of the Russian Federation.
S. Selivanova—The work is partially supported by RFBR-JSPS Grant 20-51-50001, by
the National Research Foundation of Korea (grant 2017R1E1A1A03071032), by the
International Research & Development Program of the Korean Ministry of Science
and ICT (grant 2016K1A3A7A03950702), and by the NRF Brain Pool program (grant
2019H1D3A2A02102240).

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 353–369, 2021.
https://doi.org/10.1007/978-3-030-85165-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_20

354 V. Selivanov and S. Selivanova

In [24], the PTIME-presentability of the ordered field Ralg of algebraic reals
and PTIME-computability of some problems on algebraic numbers established
in [1] were applied to find non-trivial upper complexity bounds for the aforemen-
tioned problems in algebra and analysis. A weak point here is that this approach
applies only to problems with coefficients in Ralg because Ralg is currently the
only known PTIME-presentable real closed ordered field.

Another weak point is that complexity classes like PTIME or PSPACE are
often not closed under important constructions. E.g. the spectral decomposition
of an algebraic symmetric n × n-matrix is PTIME-computable for any fixed n,
but not uniformly on n. The same holds for the problem of root-finding for
polynomials in Ralg[x] [1]. For differential equations, PTIME is in many cases
preserved for analytic/polynomial initial data: [3,12] for ordinary differential
equations (ODEs), [15] for PDEs. However, for more general functional classes
the situation is different: solving ODEs with a Lipshitz continuous PTIME com-
putable right-hand part is PSPACE-complete [11]. Computing the solutions of
the Dirichlet problem for the Poisson equation [13] and periodic boundary value
problem for the heat equation [14], is #P1-complete; according to [14,15], for
a large class of linear evolutionary PDEs, the difference scheme method is in
general in PSPACE, for some particular cases in #P, when applied to fixed real
PTIME computable initial data.

Thus, it seems reasonable to investigate properties of the aforemen-
tioned problems for natural complexity classes in between PTIME and COM-
PUTABLE, to obtain better closure properties and efficient solutions of wider
classes of problems. An obvious candidate here is the class PR of primitively
recursive functions having a prominent role in computability theory and proof
theory.

Recently, there was a renewed interest in primitively recursive (PR) struc-
tures (see e.g. [2] and references therein) which are recognized as a principal
model for an emerging new paradigm of computability—the so called online com-
putability (see e.g. [4]). PR-solvability of a problem yields a solution algorithm
which does not use an exhaustive search through a structure (usually written
as unbounded WHILE. . . DO, REPEAT. . . UNTIL, or μ operator); thus, it becomes
possible to count working time of the algorithm. Although the upper complexity
bounds for a PR-algorithm may be awfully large, this is a principal improvement
compared with the general computability. As stressed in [2], PR-presentability
of a structure may often be improved even to PTIME-presentability.

Thus, PR-presentability of structures (and PR-computability in general)
seems important for the following reasons: it is in some respect close to fea-
sible computability, is technically easier than, say PTIME-computability, and
has much better closure properties. In this paper we investigate PR-versions of
some results in [23,24]. The PR versions have their own flavour and complement
the results in [23,24].

In particular, we find a PR-version (for Ahchimedean case) of the Ershov-
Madison theorem on the computable real closure [7,17], relate PR ordered fields
of reals to the field of PR reals, propose (apparently, new) notions of PR-

Primitive Recursive Ordered Fields and Some Applications 355

computability in analysis and apply them to obtain new results on computability
of PDE-solutions. Our notion of PR Archimedean field of reals uses the idea of
PR Skolem functions which was earlier used by R. L. Goodstein in [10] in his
development of a version of constructive analysis.1 Our approach to PR com-
putability in analysis sketched below is also related to the approach by W. Gomaa
(see [9], comments after Remark 1) to PR computability on the reals.2

More specifically, we identify a class of PRAS-fields (PR Archimedean fields
of reals with PR-splitting) such that the above-mentioned problems over any
such field are PR-computable. These results complement and contrast the results
in [23,24], as well as some results in [1]. E.g., the class of PRAS-fields is shown to
be richer than the class of PTIME-presentable fields but the union of this class
is a proper subset of the set of PR reals (in contrast with the corresponding fact
in [23]). In the applications section, we show how this applies to spectral prob-
lems and (PR) solving of symmetric hyperbolic systems of PDEs. For the latter
example the solution is computed numerically (via difference schemes) while
the algebraic part is performed symbolically; this part also requires introducing
definitions of PR real functions and operators.

In programming terms, we identify an important class of number fields and
related algorithmic problems of algebra and analysis which may be programmed
without using the above-mentioned unbounded cycle operators.

After some preliminaries in the next section, we prove in Sect. 3 the PR
Ershov-Madison theorem and some of its corollaries; in particular, we give a
sufficient condition for the existence of PR root-finding algorithms in the PR real
and algebraic closure of a PRAS-field. In Sect. 4 we examine the PR-versions of
results in [23] on the relations of computable ordered fields of reals to the field
of computable reals. In Sect. 5 we describe the above-mentioned applications to
linear algebra and analysis.

2 PR Ordered Fields

We start with recalling some basic notions related to computable structures (see
e.g. [6,19,25] for additional details).

A numbering is any function with domain N. A numbering of a set B is
a surjection β from N onto B; sometimes we write βn or βn instead of the
“canonical” β(n). For numberings β and γ, β is reducible to γ (in symbols β ≤ γ)
iff β = γ ◦ f for some computable function f on N, and β is equivalent to γ (in
symbols β ≡ γ) iff β ≤ γ and γ ≤ β. Let ν : N → B be a numbering. A
relation P ⊆ Bn on B is ν-computable if the relation P (ν(k1), . . . , ν(kn)) on N

is computable. A function f : Bn → B is ν-computable if f(ν(k1), . . . , ν(kn)) =
νg(k1, . . . , kn) for some computable function g : N

n → N. More generally, given
another numbering μ : N → C, a function f : Bn → C is (ν, μ)-computable if
f(ν(k1), . . . , ν(kn)) = μg(k1, . . . , kn) for some computable function g : N

n → N.

1 We are grateful to Vasco Brattka for the hint to Goodstein’s monography.
2 We are grateful to an anonymous reviewer for the hint to the survey by W. Gomaa.

356 V. Selivanov and S. Selivanova

Definition 1. A structure B = (B;σ) of a finite signature σ is called construc-
tivizable iff there is a numbering β of B such that all signature predicates and
functions, and the equality predicate, are β-computable. Such β is called a con-
structivization of B, and the pair (B, β) is called a constructive structure.

PR-versions of the notions above are obtained by changing “computable”
to “PR”. They were introduced in [19]. In particular, for numberings β and γ,
β is PR-reducible to γ (in symbols β ≤PR γ) iff β = γ ◦ f for some PR func-
tion f on N, and β is PR-equivalent to γ (in symbols β ≡PR γ) iff β ≤PR γ
and γ ≤PR β. For ν : N → B, a relation P ⊆ Bn on B is ν-PR if the
relation P (ν(k1), . . . , ν(kn)) on N is PR. A function f : Bn → B is ν-PR if
f(ν(k1), . . . , ν(kn)) = νg(k1, . . . , kn) for some PR function g : N

n → N. A struc-
ture B = (B;σ) is PR-constructivizable iff there is a numbering β of B such
that all signature predicates and functions, and the equality predicate, are β-
PR. Such β is called a PR-constructivization of B, and the pair (B, β) is called
a PR structure. Definition and basic properties of PR functions may be found
e.g. in [20].

A structure B is fully PR-presentable (FPR-presentable, or punctual) if it is
isomorphic to a PR structure with universe N. Let us characterise this class of
structures (discussed in [2] as important for capturing the online structures) in
our terms. We call a numbering ν PR-infinite if there is a PR function f such
that ν(f(i)) �= ν(f(j)) whenever i �= j.

Proposition 2. A structure B is FPR-presentable iff it has a PR-constructivi-
zation β which is PR-infinite.

Proof. We consider the less obvious direction. Let β be a PR-constructivization
which is PR-infinite via f . Let h(n) = max{f(0), . . . , f(n)} and let g(0) = 0 and
g(n+1) = μx.∀i ≤ n(β(x) �= β(g(i))). Since B is infinite, g is total and injective.
Then h is PR and g(n + 1) = μx ≤ h(n).∀i ≤ n(β(x) �= β(g(i))), hence g is also
PR. The numbering γ = β ◦ g is PR-reducible to β and injective. Conversely,
β ≤PR γ via the PR function u(n) = μx ≤ n.β(n) = β(x). Thus, γ is a bijective
numbering of B PR-equivalent to β, so it is a bijective PR-constructivization of
B. Copying interpretations of signature symbols from B to N via γ−1 we obtain
a PR-copy of B with universe N. 	

Note that any PR-constructivization β of an associative commutative ring
with 1 of characteristic 0 is PR infinite. Since in the sequel we consider only
rings and fields of characteristic 0, most PR-constructivizable structures below
are FPR-presentable.

Importantly, all usual encodings and decodings of constructive objects (like
pairs, triples, finite strings, terms, formulas and so on) used in computability
theory and its applications may be done using PR functions [20]. For instance,
there is a PR bijection 〈n1, n2〉 between N × N and N. With some abuse we
use similar notation 〈n1, n2, n3〉 to encode triples and finite strings of natural
numbers. We fix bijective PR-constructivizations ζ, κ of the ring Z of integers
and of the ordered field Q of rationals, resp.

Primitive Recursive Ordered Fields and Some Applications 357

We freely use basic notions and facts about (ordered) rings and fields (see
e.g. [26]). We consider fields and ordered fields in signatures {+, ·,−,−1 , 0, 1}
and {+, ·,−,−1 ≤, 0, 1} resp.; for (ordered) rings the symbol −1 is of course
removed. Theory of computable rings and fields is very rich (see e.g. [6,25])
but the PR analogue of this theory does not seem to be considered seriously
so far. Many PR analogues of results in [6,25,26] are straightforward, in the
proofs below we just mention this, sometimes with references. We mention
some examples of such results. With any numbering β of a ring B we asso-
ciate the numbering β∗ of the ring B[x] of polynomials over B with variable x
as follows: β∗(〈i0, . . . , in〉) = β(i0)x0 + · · · + β(in)xn where 〈i0, . . . , in〉 is a PR
coding of the finite non-empty strings of natural numbers. Iterating this con-
struction, we obtain for each n the numbering β[n] of B[x0, . . . , xn] (identifying
B[x0, . . . , xn+1] with B[x0, . . . , xn][xn+1]): β[0] = β∗, β[n+1] = (β[n])∗. Clearly,
if β is a PR-constructivization then so is every β[0], and the evaluation func-
tion evn : B[x0, . . . , xn] × B

n → B is PR w.r.t. the corresponding numberings. If
(B, β) is a PR field then (B∗, β∗) is a PR integral domain and the usual functions
and relations of polynomial arithmetic (like the functions deg(p) returning the
degree of p ∈ B[x], the functions p/q, rest(p, q), gcd(p, q), res(p, q), p′ returning
resp. the quotient, remainder, greatest common divisor, resultant and derivative,
and the relations “p divides q”, “p1, p2 are relatively prime”, “p is square-free”,
are β∗-PR.

3 PR Real Closure

By a classical theorem of Artin and Schreier, for any ordered field A there exists
an algebraic ordered extension ̂A ⊇ A which is real closed. Yu. L. Ershov [7] and
independently E. W. Madison [17] proved a computable version of the Artin-
Schreier theorem: if A is constructivizable then so is also ̂A. We search for a
PR analogue of the Ershov-Madison theorem. Though we have not found a
complete analogue, we describe one for Archimedean ordered fields. Every such
field embeds in R, so we always assume that A ⊆ R. In fact, we can also assume
that ̂A ⊆ R since ̂A is isomorphic to the ordered field of real roots of non-zero
polynomials from A[x]. So, from now on we always assume that A and ̂A are
ordered subfields of R, i.e. α, α̂ : N → R, and ̂A is the set of real roots of non-zero
polynomials over A.

Note that if α : N → R is a constructivization of A then (A, α) is computably
Archimedean, i.e. α(n) ≤ f(n) for some computable function f . The PR-version
of the last fact, probably, does not hold in general. Our proof below works only
for PR-Archimedean fields which we define as the PR ordered subfields (A, α)
of R such that α(n) ≤ f(n), for some PR function f .

Given α, we define α̂ by essentially the same construction as in [17]. Let
P (i, k) mean that either α∗

i is the zero polynomial (i.e., all coefficients of α∗
i are

zero) or α∗
i has at most k real roots. Then α̂(〈i, k〉) is defined as follows: if P (i, k)

then α̂(〈i, k〉) = 0, otherwise α̂(〈i, k〉) is the (k+1)-st (w.r.t. <) real root b of α∗
i

(i.e., α∗
i (b) = 0 and there are precisely k real roots of α∗

i strictly below b). We
are ready to prove the PR Ershov-Madison theorem.

358 V. Selivanov and S. Selivanova

Theorem 3. If (A, α) is a PR-Archimedean subfield of R then so is also (̂A, α̂).

Theorem follows from facts 1—7 below. Most of them just show that some
standard algebraic functions are PR. The proofs are close to the corresponding
proofs in [1,16] which show that Ralg is PTIME-presentable.

1. There is a PR function f such that all real roots of any non-zero polynomial
α∗

i ∈ A[x] are in the interval (−f(i), f(i)). In particular, α̂(〈i, k〉) < f(i) for
all i, k (so (̂A, α̂) is PR-Archimedean provided that it is a PR ordered field).

Proof. By the notation in Sect. 2, α∗
i = α(i0)x0 + . . . + α(in)xn. Since α∗

i is
non-zero, we have α(im) �= 0 where m is the degree of α∗

i . As is well known,
all real roots of α∗

i are in (−Mi;Mi) where Mi = 1 + a|α(im)−1| ∈ A and
a = max{|α(ij)| : j < m}. Since (A, α) is PR-Archimedean, there is a PR-
function f with Mi ≤ f(i). The second assertion follows from the definition
of α̂(〈i, k〉). 	

2. Given a polynomial p ∈ A[x] of degree > 1, one can primitive recursively find

the Sturm sequence of polynomials sseq(p) = (p0, p1, . . . , pm) in A[x] with
the following property: the number of real roots of p in any interval (a, b]
equals v(a)− v(b) where v(c), for c ∈ R, is the sign alternation number in the
sequence (p0(c), p1(c), . . . , pm(c)).

Proof. By the definition of sseq, p0 = p, p1 = p′ is the derivative of p, and for
j > 1, pj is the negative remainder after dividing pj−1 by pj−2 (thus, sseq(p) is
a small variation of the sequence from the Euclidean algorithm for p, p′). By the
remarks in Sect. 2, sseq(p) can be found primitive recursively. 	

3. Given a non-zero polynomial p ∈ A[x] and a, b ∈ Q, one can primitive recur-

sively find the number of real roots of p in the interval (a, b], as well as the
number of all real roots of p.

Proof. Follows from facts 1 and 2. 	

4. Given a non-zero polynomial p ∈ A[x] with at least two distinct (complex)

roots, one can primitive recursively find a positive rational number δp < Δp

where Δp is the smallest distance between distinct roots of p.

Proof. Without loss of generality we can think that p has no multiple roots
(otherwise, we can take p/ gcd(p, p′) instead of p). By Mahler’s theorem (see
corollary of Theorem 2 in [18]),

Δp >
√

3m−m+2
2 |D(p)| 1

2 L(p)−(m−1)

> m−(m+2)|D(p)| 1
2 L(p)−(m−1)

where D(p) is the discriminant of p, and L(p) = |α(i0)| + . . . + |α(im)|. Since
D(p) ∈ A and p has no multiple roots, D(p) �= 0. Since (A, α) is PR-Archimedean,
we can find a positive rational δp below m−(m+2)|D(p)| 1

2 |L(p)−(m−1). 	

Primitive Recursive Ordered Fields and Some Applications 359

5. Given a non-zero polynomial p ∈ A[x] and a positive rational ε, one can
primitive recursively find a sequence I1 < · · · < Il (where l ≥ 0 is the number
of real roots of p) of pairwise disjoint rational intervals of length ≤ ε which
separate the real roots of p, i.e. every Ij contains precisely one real root of p.

Proof. Follows from the previous facts using the bisection method. 	

6. Operations +, ·,−,−1 on ̂A are α̂-PR.

Proof. All operations are considered similarly, so we give details only for +; we
describe a PR function f : N × N → N with α̂(m) + α̂(m′) = α̂(f(m,m′)). Let
m = 〈i, k〉 and m′ = 〈i′, k′〉. By the definition of P (i, k), this relation is PR.
If P (i, k) then we set f(m,m′) = m′. If ¬P (i, k) and P (i′, k′) then we set
f(m,m′) = m. Finally, let both P (i, k) and P (i′, k′) be false, i.e. α̂(m) = c
is the (k + 1)-st real root of p = α∗

i and α̂(m′) = d is the (k′ + 1)-st real root of
q = α∗

i′ . It suffices to primitive recursively find s, t ∈ N such that ¬P (s, t) and
c+d is the (t+1)-st real root of r = α∗

s ∈ A[x] (then we can set f(m,m′) = 〈s, t〉).
By (the proof of) Theorem 6 in [16], one can primitive recursively find a (resul-

tant) polynomial r which has c + d as a root, so we can find s with r = α∗
s . For

any rational intervals (a, b) � c and (a′, b′) � d, the interval I = (a + a′, b + b′)
contains c + d, and its length may be made arbitrarily small. Using fact 5, we can
primitive recursively find a sequence I1 < · · · < Il of rational intervals which sep-
arate all real roots of r such that I intersects precisely one interval It, t ≤ l, of this
sequence. Then c + d ∈ It, hence it remains to set f(m,m′) = 〈s, t〉. 	

7. The relation ≤ on ̂A is α̂-PR.

Proof. By fact 6, it suffices to show that the relation 0 ≤ α̂(m) is PR. Let again
m = 〈i, k〉. By the definition of α̂(m) we have: 0 ≤ α̂(m) iff either P (i, k) or
(¬P (i, k) and the (k + 1)-st real root of α∗

i is non-negative).
Consider the case when P (i, k) is false. By fact 5, we can primitive recursively

find a sequence I1 < · · · < Il (where l > k is the number of real roots of α∗
i)

of pairwise disjoint rational intervals of length ≤ ε such that every Ij contains
precisely one real root of α∗

i . Then α̂(m) ∈ Ik+1. Assume first that α∗
i (0) = 0

(i.e., α(i0) = 0). Then 0 ∈ Ij for a unique j ≤ l, hence 0 ≤ α̂(m) iff j ≤ k + 1.
In the case α∗

i (0) �= 0, we consider the polynomial q = xα∗
i ∈ A[x] which

satisfies q(0) = 0. Computing the sequence I1 < · · · < Il for polynomial q
in place of α∗

i and applying the argument of the previous paragraph we see
that 0 ≤ α̂(m) iff j < k + 1. Altogether, these arguments and the primitive
recursiveness of relation P (i, k) complete the proof. 	

By a classical theorem of Steinitz, for any field A there exists its algebraic
closure A ⊇ A. M. Rabin [22] proved a computable version of the Steinitz the-
orem: if A is constructivizable then so is also A. Though we do not yet know
a complete PR-analogue of Rabin’s theorem, we can deduce a partial one from
Theorem 3. Recall (see e.g. Chapters 10, 11 of [26]) that a real closed field B is

360 V. Selivanov and S. Selivanova

never algebraically closed but its algebraic closure B is constructed very easily,
by adjoining a root of x2 + 1. Thus, B is isomorphic to B × B where the arith-
metic on pairs is similar to that of the field C of complex numbers. If (A, α)
is a constructive ordered subfield of R, let ᾱ be the induced numbering of A

(considered as a subfield of C), i.e. ᾱ〈n1, n2〉 = (α̂(n1), α̂(n2)). The following is
an immediate corollary of Theorem 3.

Corollary 4. If (A, α) is a PR-Archimedean ordered subfield of R then (A, α)
is a PR subfield of C.

We say that a computable field (B, β) has computable root-finding (cf. [8]) if,
given a polynomial p ∈ B[x] of degree > 1, one can compute a (possibly, empty)
list of all roots of p in B, and also the length of the list (i.e., the number pf
roots). Theorem 4.43 in [8] implies that if B is of characteristic 0 then (B, β) has
computable root-finding iff it has computable splitting (i.e., given p ∈ B[x], one
can compute a decomposition of p to polynomials irreducible in B[x]). As usual,
the notion of PR root-finding is obtained by changing “computable” to “PR” in
the definition above. The proof of Theorem 4.43 in [8] works for the PR-version,
so we have the following.

Proposition 5. Let (B, β) be a PR field of characteristic 0. Then (B, β) has PR
root-finding iff it has PR splitting.

Every computable algebraically closed field has computable root-finding, but
the proof makes use of the unbounded search. The next theorem shows that the
PR-version of this holds at least for some fields considered above. To shorten
formulations, we denote by pra(R) (resp. pras(R)) the set of all α : N → R

such that (A, α), A = rng(α), is a PR-Archimedean ordered subfield of R (resp.,
a PR-Archimedean ordered subfield with PR splitting). We always denote by
A, ̂A, A the (ordered) fields associated with α, α̂, α, resp.

Theorem 6. If α ∈ pras(R) then both (̂A, α̂) and (A, α) have PR root-finding.

Under the assumption α ∈ pras(R) we first establish some auxiliary facts.

1. Given a polynomial p ∈ A[x0, . . . , xk] and irreducible p0, . . . , pk ∈ A[x] of
positive degrees, one can primitive recursively find q ∈ A[x] of positive degree
such that, for all complex roots bi of pi, i ≤ k, p(b0, . . . , bk) is a root of q.

Proof Sketch. Let r+, r· be binary operators on A[x] such that all sums (resp.
products) of complex roots of p, q are among the roots of r+(p, q) (resp. r·(p, q)).
By the proof of Theorem 6 in [16], operators r+, r· are given by explicit formu-
las (based on resultants) which show they are α∗-PR. We associate with any
term t = t(x0, . . . , xk) of signature {+, ·, c0, c1, . . .} the polynomial qt ∈ A[x]
as follows: qcn = x − α(n), qxi

= pi, qt1+t2 = r+(qt1 , qt2), qt1·t2 = r·(qt1 , qt2).
By induction on t one easily checks that, for all complex roots bi of pi, i ≤ k,
tA(b0, . . . , bk) is a root of qt. Then, given p ∈ A[x0, . . . , xk] one can primitive
recursively find a σ-term t = t(x0, . . . , xk) such that p(b0, . . . , bk) = tA(b0, . . . , bk)
for all b0, . . . , bk ∈ A. Thus, we can take q = qt. 	

Primitive Recursive Ordered Fields and Some Applications 361

2. Given a non-zero polynomial r ∈ A[x], one can primitive recursively find
q1, q2 ∈ A[x] such that, for any complex root b = (b1, b2) of r, the real part
b1 is a root of q1 and the imaginary part b2 is a root of q2.

Proof. Let q1 = q be the polynomial obtained from the algorithm of fact 1 for
p(x0, x1) = 1

2 (x0 + x1) and p0 = p1 = r. For any complex root b = (b1, b2)
of r we then have: p(b, b̄) = b1, b is a root of p0, and b̄ is a root of p1 where
b̄ = (b1,−b2) = b1 − ib2 is the complex conjugate of b and i is the imaginary
unit. Thus, q1 has the desired property.

Let now q = a0 + a1x + a2x
2 + · · · be the polynomial obtained from the

algorithm of fact 1 for p(x0, x1) = 1
2 (x0 − x1) and p0 = p1 = r. For any complex

root b = (b1, b2) of r we then have: p(b, b̄) = ib2, b is a root of p0, and b̄ is a
root of p1. Thus, q(ib2) = 0, hence also q(−ib2) = 0. Summing up the last two
equalities we see that q2(b2) = 0 where q2 = a0 + a2x

2 + · · · . Thus, q2 has the
desired property. 	

3. Given polynomials p = b0x

0 + · · · + bnxn ∈ A[x] and q0, . . . , qn ∈ A[x] such
that qi(bi) = 0 for each i ≤ n, one can primitive recursively find r ∈ A[x]
such that all complex roots of p are among the roots of r.

Proof. The proof is essentially the same as in the Algorithm 3 of [16], hence
we give only a sketch. Since (A, α) has PR splitting, we may without loss of
generality think that q0, . . . , qn are irreducible. By the PR-version of the prim-
itive element theorem ([26], Sect. 46), we may primitive recursively find b ∈ A

and irreducible t, p0, . . . , pn ∈ A[y] such that A(b) = A(b0, . . . , bn) t(b) = 0,
and pi(b) = bi for all i ≤ n. Let s = gcd(t, pn). Without loss of generality,
deg(s) = 0 (otherwise, replace t by t/s). Then the resultant r = res(t, q), where
q = p0x

0 + · · · + pnxn ∈ A[y][x], has the desired properties. 	

Proof of Theorem 6. Given p ∈ A[x], we have to primitive recursively find all
complex roots of p. By fact 3 we can find r ∈ A[x] such that all complex roots of p
are among the roots of r. By fact 2, we can find q1, q2 ∈ A[x] such that, for any
complex root b = (b1, b2) of r, the real part b1 is a root of q1 and the imaginary
part b2 is a root of q2. By the definition of α, we can find the lists b1,0 < · · · < b1,m

and b2,0 < · · · < b2,n of all real roots of q1 and q2, respectively. Then all complex
roots of p are among (b1,i, b2,j) where i ≤ m, j ≤ n. Substituting these numbers
one by one in p, we primitive recursively find all complex roots of p.

It remains to show that (̂A, α̂) has PR root-finding. Let p ∈ ̂A[x]; we have
to find a list of all real roots of p. Since α̂ ≤PR α, we have α̂∗ ≤PR α∗. By the
previous paragraph, we can compute the list of all complex roots of p. Choosing
the real numbers from this list, we obtain a list of all real roots of p. 	

4 PR-Archimedean Fields vs. PR Reals

Here we search for a PR-analogue of the following fact from [23]: for any finite set
F ⊆ Rc there is a computable real closed ordered subfield (B, β) of Rc such that

362 V. Selivanov and S. Selivanova

F ⊆ B (see also a more general Theorem 4.1 in [21] obtained independently).
This implies that Rc =

⋃{A | α ∈, (R)} =
⋃{A | α ∈ cs(R)} where Rc is

the set of computable reals, and , (R), cs(R) are the computable analogues of
pra(R),pras(R). The PR-analogue of Rc is the ordered field Rp of PR reals (see
e.g. Section 4 of [5] and references therein, we sometimes use slightly different
notation; also recall that equality in Rc is not computable [27]). Recall that a real
number a is PR if a = limn qn for a PR sequence {qn} of rational numbers which
is fast Cauchy, i.e. |qn − qn+1| < 2−n for all n. There is a natural numbering
π of Rp which is a computable sequence of computable reals such that +, ·,−
are π-PR.

For any α ∈ pra(R), let Rp(α) be the set of PR reals b such that the sign
of polynomials in A[x] at b is checked primitive recursively. Formally, for any
real b, let sign(b) be 0, 1, 2 depending on whether b is zero, positive, or negative.
Then Rp(α) is the set of all b ∈ Rp such that the function i �→ sign(α∗

i (b)) is PR.
More generally, for any n ≥ 0, let R

[n]
p (α) be the set of strings b̄ = (b0, . . . , bn)

of PR reals such that the function i �→ sign(α[n]
i (b0, . . . , bn)) is PR where α[n] is

the numbering of A[x0, . . . , xn] from Sect. 2. Note that Rp(α) = R
[0]
p (α).

Proposition 7. 1. If α, β ∈ pra(R) and α ≤PR β then Rp(β)[n] ⊆ Rp(α)[n].
2. For all α ∈ pra(R) and n we have: Rp(α)[n] ⊆ Rp(κ)[n].
3. For any α ∈ pra(R) we have α ≤PR π, hence rng(α) ⊆ Rp(α).

Proof. 1. Let b̄ ∈ Rp(β), so i �→ sign(β∗
i (b̄)) is PR. Since α ≤PR β, we have

α[n] ≤PR β[n], so α
[n]
i = β

[n]
f(i) for some PR function f . Then sign(α[n]

i (b̄)) =

sign(β[n]
f(i)(b̄)), hence i �→ sign(α[n]

i (b̄)) is PR.

2. The assertion follows from item 1 because, clearly, κ ≤PR α.
3. Since (A, α) is PR-Archimedean, −f(n) < α(n) < f(n) for some PR function

f . Using bisection method, we construct a uniformly PR sequence {gn} of PR
functions gn : N → Q such that {gn(i)}i is a fast Cauchy sequence converging
to α(n). By the definition of π, α ≤PR π and rng(α) ⊆ Rp(α). 	

By items 2 and 3 above, α ∈ pra(R) implies rng(α) ⊆ Rp(κ), hence all PR
ordered fields of reals are contained in Rp(κ). The next proposition shows which
elements of Rp(κ) can be included into some PR ordered field of reals.

Proposition 8. Let α ∈ pras(R) and b̄ ∈ R
n
p . Then b̄ ∈ R

[n]
p (α) iff there exists

β ∈ pras(R) such that α ≤PR β and b0, . . . , bn ∈ B.

Proof. If β ∈ pras(R), α ≤PR β, and b0, . . . , bn ∈ B = rng(β), then
i �→ sign(α[n]

i (b̄)) is PR, hence b̄ ∈ R
[n]
p (α). Conversely, let b̄ ∈ R

[n]
p (α). First

we consider the case when b0, . . . , bn are algebraically independent over A,
hence sign(α[n]

i (b̄)) ∈ {1, 2} for every i with α
[n]
i �= 0. Then A(b0, . . . , bn) with

the induced numbering γ is a PR field because it is isomorphic to the field
A(x0, . . . , xn) of rational functions. The elements of A(b0, . . . , bn) have the form
p(b̄)/q(b̄) for some p, q ∈ A[x0, . . . , xn], q �= 0. Since p(b̄)/q(b̄) > 0 iff both

Primitive Recursive Ordered Fields and Some Applications 363

p(b̄), q(b̄) are positive or both p(b̄), q(b̄) are negative, γ is a PR constructiviza-
tion of A(b0, . . . , bn). Then γ ∈ pras(R), hence we can take β = γ.

Now let b̄ ∈ R
n
p be arbitrary. Without loss of generality (after suitable renum-

bering of b0, . . . , bn if necessary), let j ≤ n be the unique number such that
b0, . . . , bj−1 are algebraically independent over A while bj , . . . , bn are algebraic
over A(b0, . . . , bj−1). Let γ be defined as in the previous paragraph for j > 0
(with n replaced by j − 1) and γ = α for j = 0. By the previous paragraph, we
can take β = γ̂. 	

How rich are the collections pra(R) and pras(R)? By the PR-version of a
well-known fact, κ ∈ pras(R). The class pras(R) is closed under α �→ α̂, hence
κ̂ ∈ pras(R), in particular Ralg ⊆ Rp(κ). Proposition 8 provides conditions
under which finite sets of reals may be included into some PR ordered subfield
of R. We show that many transcendental reals satisfy these conditions.

Theorem 9. 1. For any α ∈ pras(R) and any non-empty rational interval I
there exists b ∈ I ∩ Rp(α) which is transcendental over A.

2. For any α ∈ pras(R) there exists a uniformly PR infinite sequence b0, b1, . . .

of reals which are algebraically independent over A and satisfy b̄ ∈ R
[n]
p (α) for

every n.

Proof. 1. We define by induction PR sequences {qj} of rational numbers and
{Ij} of rational open intervals such that q0 ∈ I0 = I and, for every j, Ij ⊇ [Ij+1]
where [Ij+1] is the closure of Ij+1, and qj+1 ∈ Ij+1 ⊆ (qj − 2−j , qj + 2−j).
Then we set b = limj qj which automatically guarantees that {qj} is fast Cauchy
and hence b ∈ Rp. The remaining properties of b are obtained by taking some
additional care.

Let I0 = I and q0 be any rational number in I0. Assume by induction that
we already have defined qj , Ij for j ≤ n which satisfy the properties above
for j < n. Then we define qn+1, In+1 as follows. If the polynomial α∗

n is zero
or has no real roots, choose qn+1, In+1 arbitrarily such that In ⊇ [In+1] and
qn+1 ∈ In+1 ⊆ (qn − 2−n, qn + 2−n). Otherwise, use fact 5 in the proof of
Theorem 3 to primitive recursively find a non-empty rational open interval J
such that [J] ⊆ In and [J] contains no real root of α∗

n; then α∗
n is either positive

on [J] or negative on [J], and this alternative is checked primitive recursively.
Now choose qn+1, In+1 as above but with the additional property In+1 ⊆ J .
Then the sequences {qj}, {Ij} are PR and satisfy the properties specified in the
previous paragraph.

Note that b ∈ In for all n, and if α∗
n is non-zero then it is either positive or

negative on In+1 � b, hence α∗
n(b) �= 0; therefore, b is transcendental over A. If α∗

n

is zero then sign(α∗
n(b)) = 0, otherwise sign(α∗

n(b)) = 1, 2 depending on whether
α∗

n is positive on [J] or is negative on [J]. Therefore, the function n �→ sign(α∗
n(b))

is PR and hence b ∈ Rp(α).
2. Note that the construction α �→ b in item 1 is PR in the sense that,

given an index for α ∈ pras(R) (i.e., a code of tuple of indices for PR functions
representing the equality and the signature symbols, and also of the splitting
function), one can primitive recursively find a π-index for b and a PR-index of
the function n �→ sign(α∗

n(b)).

364 V. Selivanov and S. Selivanova

Let b0 = b. Since the construction in Proposition 8 is PR, we can primi-
tive recursively find an index of β ∈ pras(R) with rng(β) = A(b). Since the
construction in Theorem 3 is PR, we can primitive recursively find an index of
̂β ∈ pras(R) with rng(̂β) = ̂A(b).

Taking ̂β in place of α, we primitive recursively find an index of some b1

transcendental over Â(b0). It is easy to check that b0, b1 are algebraically inde-
pendent over A and (b0, b1) ∈ R

[2]
p (̂β)). Iterating this process indefinitely, we

obtain a desired sequence b0, b1, 	

The previous proposition implies that the algebraic closures of Q(x0, . . . , xn)

and of Q(x0, x1, . . .) are PR-constructivizable. It also shows that the collection
pras(R) is rather rich. In particular, for n = 0 it together with Proposition 8
implies the following.

Corollary 10. We have Rp(κ) =
⋃{A | α ∈ pra(R)} =

⋃{A | α ∈ pras(R)}.
This corollary is a partial PR-analogue of some facts mentioned in the begin-

ning of this section. The full analogue does not hold because Rp(κ) is contained
in the set R4 of reals with PR continuous fraction representation, and the inclu-
sion R4 ⊆ Rp is strict [5]. We guess that the inclusion Rp(κ) ⊆ R4 is also strict.
Thus, in contrast with the general computability, it is harder to determine which
PR reals may be included into PR ordered fields of reals.

An important problem is to determine, given concrete PR reals b̄ ∈ R
n
p ,

whether the function i �→ sign(α[n]
i (b̄)) is PR. In general the problem looks

very difficult and related to the theory of transcendental numbers. For some
concrete numbers it might be shown that they are in Rp(κ). For instance, this
is the case for the Euler number e and for the circle number π. Indeed, in the
appendix to [10] it is proved that both e and π are PR-transcendental. From
the definition of PR-transcendental number in [10] it follows that every such
number is in Rp(κ). By Proposition 8, both Q(e) and Q(π) are PRAS-fields. By
Theorem 3, so are also Q̂(e) and Q̂(π).

5 Applications to Spectral Problems and PDEs

Here we propose definitions of PR functions on the reals and some functional
spaces which are used to investigate PR-versions of results in [23,24] on com-
putabilty and complexity of solution operators for some PDEs. Since this is
related to linear algebra, we start with PR-versions of some results in this field.

As is well known, the eigenvalues of symmetric real matrices are real. Spectral
decomposition of such a matrix A ∈ Mn(R) is a pair ((λ1, . . . , λn), (v1, . . . ,vn))
where λ1 ≤ · · · ≤ λn is the non-decreasing sequence of eigenvalues of A and
v1, . . . ,vn is a corresponding orthonormal basis of eigenvectors, i.e. Avi = λivi

for i = 1, . . . , n. A matrix pencil is a pair (A,B) of real non-degenerate symmetric
matrices such that A is positive definite. Spectral decomposition of such a pencil
is a tuple

((λ1, . . . , λn), (v1, . . . ,vn), (μ1, . . . , μn), (w1, . . . ,wn))

Primitive Recursive Ordered Fields and Some Applications 365

such that ((λ1, . . . , λn), (v1, . . . ,vn)) and ((μ1, . . . , μn), (w1, . . . ,wn)) are spec-
tral decompositions of the symmetric matrices A and D∗L∗BLD respectively,
where L is the matrix formed by vectors v1, . . . ,vn written as columns, L∗ is
the transposition of L, and D = diag{ 1√

λ1
, 1√

λ2
, . . . , 1√

λn
}. The next proposi-

tion follows easily from Theorem 6 and corresponding results in [23,24]. In all
formulations of this section α is a fixed element of pras(R) and ̂A is the real
closure of A.

Proposition 11. Given n, a symmetric matrix A ∈ Mn(̂A), and a matrix pencil
(A,B) with A,B ∈ Mn(̂A), one can primitive recursively find spectral decompo-
sitions of A and (A,B) uniformly in n.

A central notion of computable analysis [27] is that of a computable function
over the reals going back to A. Turing; we sketch a PR-version.

First we recall a nice characterization of unary PR functions due to R. Robin-
son (see e.g. Section 3.5 in [20]). Consider the structure (N ; +, ◦, J, s,q) where
N = N

N is the set of unary functions on N, + and ◦ are binary operations on N
defined by (p+ q)(n) = p(n)+ q(n) and (p ◦ q)(n) = p(q(n)), J is a unary opera-
tion on N defined by J(p)(n) = pn(0) where p0 = idN and pn+1 = p◦pn, s and q
are distinguished elements defined by s(n) = n+1 and q(n) = n− [

√
n]2 where,

for x ∈ R, [x] is the unique integer m with m ≤ x < m + 1. For any n ≥ 0, any
term t = t(v1, . . . , vn) of signature τ with variables among a fixed list v1, . . . , vn

of pairwise distinct variables determines the n-ary operator t on N by setting
t(g1, . . . , gn) to be the value of t for vi = gi.

The Gödel numbering {t
(n)
e } of all such terms t(v1, . . . , vn) induces the num-

bering {t(n)e } of n-ary PR operators on N . Similar to the ideas of [27], we can
use a suitable surjection γ : N → R to transfer primitive recursiveness on N
to that on R (and, may be, to more complicated spaces). Namely, we define
γ(q) = limn κ(q̃(n)) and call this γ the Cauchy representation of R. Now, a func-
tion f : R

n+1 → R is called PR if f(γ(p0), . . . , γ(pn)) = γ(g(p0, . . . , pn)) for some
PR function g : N n+1 → N . This definition is adapted to partial functions f in
the obvious way. Clearly, the PR functions on the reals are computable, and in
fact they form a very restricted subclass of the computable functions. Neverthe-
less, many practically important functions are PR, in particular the functions
+, ·,− on R and C are PR.

Using the notions above, we can define PR metric spaces and PR-
computability of functions between such spaces using standard Cauchy repre-
sentations (the only difference with the classical definition in [27] is that now
the distance between points in the specified dense set is uniformly PR). Below
we use functional spaces which are subsets of the set C(Rm, Rn) � C(Rm, R)n

of integrable continuous functions ϕ : R
m → R

n equipped with the L2-norm.
In particular, we deal with the space C(Q, Rn) � C(Q, R)n (resp. Ck(Q, Rn))
of continuous (resp. k-time continuously differentiable) functions ϕ : Q → R

n

equipped with the L2-norm. We also use the sup-norm and the sL2-norm on
C(Q× [0, T], Rn) where T > 0. Whenever we want to emphasize the norm we use
notation like CL2(Q, Rn), Cs(Q, Rn) or CsL2(Q× [0, T], Rn). Discrete versions of

366 V. Selivanov and S. Selivanova

these norms are used on grid functions. All the corresponding computable metric
spaces are PR. Multilinear interpolations of rational grid functions will play the
role of approximations to the solutions of Cauchy problem. We refer to [23,24]
for additional information on the Godunov difference scheme mentioned below.

We apply the introduced notions to investigate when the solution operators
for symmetric hyperbolic systems of PDEs are PR. For simplicity we discuss
here only the Cauchy initial value problem (the boundary value problems are
considered similarly) stated as follows:

⎧

⎨

⎩

A∂u
∂t +

m
∑

i=1

Bi
∂u
∂xi

= f(t, x1, . . . , xm), t ≥ 0,

u|t=0 = ϕ(x1, . . . , xm),
(1)

where A = A∗ > 0 and Bi = B∗
i are non-degenerate symmetric n × n-matrices,

t ≥ 0, x = (x1, . . . , xm) ∈ Q = [0, 1]m, ϕ : Q → R
n, f : [0,+∞) × Q ⇀ R

n and
u : [0,+∞) × Q ⇀ R

n is a partial function acting on the domain H of existence
and uniqueness of the Cauchy problem (1). The set H is known to be (see e.g.
[24] for references and additional information) the intersection of semi-spaces

t ≥ 0, xi − μ(i)
maxt ≥ 0, xi − 1 − μ

(i)
mint ≤ 0

(i = 1, . . . ,m)

where μ
(i)
min, μ

(i)
max are the minimum and maximum of the eigenvalues of A−1Bi.

The next immediate corollary of Proposition 11 shows that we can primitive
recursively compute H. Our algorithms for solving the Cauchy problem are for
technical reasons presented only for the case when H satisfies the condition
μ
(i)
min < 0 < μ

(i)
max for all i = 1, . . . , m (which implies that H is compact); this

condition often holds for natural physical systems.

Proposition 12. Given m,n ≥ 1 and A,B1 . . . , Bm ∈ Mn(̂A) as in (1), one can
primitive recursively (uniformly in m,n) compute μ

(1)
max, . . . , μ

(m)
max, μ

(1)
min, . . . , μ

(m)
min

and check the condition μ
(i)
min < 0 < μ

(i)
max for all i = 1, . . . , m. Thus, the

algorithm finds the domain H satisfying the condition above, or reports on the
absence of such a domain.

We also need another immediate corollary of Proposition 11. First we com-
pute the spectral decomposition ((λ1, . . . , λn), (v1, . . . ,vn)) of A ∈ Mn(̂A). Let
λmax, λmin be respectively the maximum and minimum of λ1, . . . , λn. Let L
be the orthonormal matrix formed by vectors v1, . . . ,vn written in columns, so
L∗AL = Λ = diag{λ1, λ2, . . . , λn}, and let D = Λ− 1

2 . For each i = 1, . . . , m, let
((μ(i)

1 , . . . , μ
(i)
n), (wi

1, . . . ,w
i
n)) be the spectral decomposition of the symmetric

matrix D∗L∗BiLD. Let μ
(i)
max, μ

(i)
min be respectively the maximum and minimum

of μ
(i)
1 , . . . , μ

(i)
n . Let Mi = diag{μ

(i)
1 , . . . , μ

(i)
n)} and Ki be the orthonormal matrix

formed by vectors wi
1, . . . ,w

i
n written in columns, so K∗

i D∗L∗BiLDKi = Mi.
Let Ti = LDKi for each i = 1, . . . ,m.

Primitive Recursive Ordered Fields and Some Applications 367

Proposition 13. Given m,n ≥ 1 and A,B1 . . . , Bm ∈ Mn(̂A) as in (1), one
can primitive recursively (uniformly in m,n) compute A−1, Ti, T−1

i , λmax, λmin,
μ
(i)
max, μ

(i)
min, μ

(i)
k (i = 1, . . . ,m, k = 1, . . . , n) specified above.

Now we can formulate our results about PR-computability of the solution
operator for (1). The proof of the next result is a simplified version of the proof
of Theorem 5.1 in [23] (formulated for f = 0). We start with computations in
Propositions 12 and 13 and then compute with the Godunov scheme as in [23]; all
computations are precise computations within ̂A, and all estimates in [23] apply.

Theorem 14. Let M,p ≥ 2 be integers. Then the operator (A,B1, . . . , Bm,
ϕ) �→ u for (1) is a PR-computable function from the space S+ × Sm ×
Cp+1

s (Q, Rn) to Cp
sL2

(H, Rn) where S and S+ are respectively the sets of all
symmetric and symmetric positively definite matrices from Mn(̂A), || ∂ϕ

∂xi
||s ≤ M ,

and || ∂2ϕ
∂xi∂xj

||s ≤ M for i, j = 1, 2, . . . , m.

Proof Sketch. We first make precise computations as in Propositions 12 and
13 and then compute with the Godunov scheme as in [24]; all computations are
precise within the field ̂A and all the estimates in the proof of Theorem 5.2
apply. 	

For fixed A,B1 . . . , Bm ∈ Mn(̂A), Theorem 14 of course implies PR-computa-
bility of the solution operator ϕ �→ u for (1). The next result (which is a
PR-version of Theorem 5.1 in [23]) shows that the assumption A,B1 . . . , Bm ∈
Mn(̂A) may be weakened to A,B1 . . . , Bm ∈ Rp.

Theorem 15. Let M,p ≥ 2 be integers and A,B1, . . . , Bm ∈ Mn(Rp) be fixed
matrices satisfying the conditions in (1). Then the solution operator ϕ �→ u
for (1) is a PR-computable function (uniformly in m,n) from Cp+1

s (Q, Rn) to
Cp

sL2
(H, Rn), || ∂ϕ

∂xi
||s ≤ M , and || ∂2ϕ

∂xi∂xj
||s ≤ M for i, j = 1, 2, . . . ,m.

Proof Sketch. All data from Propositions 12 and 13 will have fixed coefficients
in Rp because this field is real closed (Peter Hertling, private communication with
permission to mention it here). With these data at hand, all computations in
the Godunov scheme are made within Rp using only the operations +, ·,−. It is
not hard to see that these computations are PR. 	

We conclude with the following PR-version of results in [24]. The formulation
is broader than in [24] because now the algorithm is uniform on m,n, a and works
not only with algebraic numbers. The proof is almost the same as in [24], using
Propositions 12 and 13 as stronger versions of the corresponding facts in [24].
This time all computations are precise and performed within ̂A.

Theorem 16. Given integers m,n, a ≥ 1, matrices A,B1 . . . , Bm ∈ Mn(̂A),
and rational functions ϕ1 . . . , ϕn ∈ ̂A(x1 . . . , xm), f1 . . . , fn ∈ ̂A(t, x1 . . . , xm)
as in (1), one can primitive recursively compute a rational T > 0 with H ⊆
[0, T]×Q, a spatial rational grid step h dividing 1, a time grid step τ dividing T

and an h, τ -grid function v : Gτ
N → ̂A such that ||u − ˜υ |H ||sL2 < a−1.

368 V. Selivanov and S. Selivanova

6 Conclusion

We hope that the present paper demonstrates that PR computations is a natural
next step in the investigation of the interaction between symbolic and numeric
computations because it provides a natural borderline between problems in alge-
bra and analysis computable in principle and more feasible problems. Although
PR functions were thoroughly investigated in computability theory and proof
theory, their study in computable structure theory and computable analysis
seems still in the very beginning. A natural next step to filling the huge gap
between PTIME and PR (in the context of this paper) would be development
of a similar theory for the Grzegorczyk classes.

Practical realization of algorithms considered in this paper requires of course
establishing of much better upper complexity bounds. In particular, it would be
interesting to establish PTIME-presentability of real closures of the fields Q(e)
and Q(π) (or prove that these real closures are not PTIME-presentable).

Acknowledgments. The authors thank Pavel Alaev, Sergey Goncharov, Valentina
Harizanov, Peter Hertling, Iskander Kalimullin, Julia Knight, Russell Miller and
Andrey Morozov for useful discussions. The first author is grateful to Arcadia Uni-
versity and Xizhong Zheng for the hospitality, support, and useful discussions.

References

1. Alaev, P., Selivanov, V.: Polynomial-time presentations of algebraic number fields.
In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp.
20–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94418-0 2

2. Bazhenov, N., Downey, R., Kalimullin, I., Melnikov, A.: Foundations of online
structure theory. Bull. Symb. Logic 25(2), 141–181 (2019)

3. Bournez, O., Graça, D.S., Pouly, A.: Solving analytic differential equations in poly-
nomial time over unbounded domains. In: Murlak, F., Sankowski, P. (eds.) MFCS
2011. LNCS, vol. 6907, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22993-0 18

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

5. Chen, Q., Su, K., Zheng, X.: Primitive recursive real numbers. Math. Logic Q.
53(4/5), 365–380 (2007)

6. Ershov, Yu.L., Goncharov, S.S.: Constructive models. Novosibirsk, Scientific Book
(1999). (in Russian, there is an English Translation)

7. Ershov, Yu.L.: Numbered fields. In: Proceedings of 3rd International Congress for
Logic, Methodology and Philosophy of Science, 1967, Amsterdam, pp. 31–35 (1968)

8. Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theories. Philos.
Trans. Lond. R. Soc. 248(950), 407–432 (1956)

9. Gomaa, W.: Algebraic characterizations of computable analysis real functions. Int.
J. Unconv. Comput. 7(4), 245–272 (2011)

10. Goodstein, R.L.: Recursive Analysis. Amsterdam, North Holland (1961)
11. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-

space complete. Comput. Complex. 19(2), 305–332 (2010)

https://doi.org/10.1007/978-3-319-94418-0_2
https://doi.org/10.1007/978-3-642-22993-0_18
https://doi.org/10.1007/978-3-642-22993-0_18

Primitive Recursive Ordered Fields and Some Applications 369

12. Kawamura, A., Steinberg, F., Thies, H.: Parameterized complexity for uniform
operators on multidimensional analytic functions and ODE solving. In: Proceed-
ings of 25th International Workshop on Logic, Language, Information, and Com-
putation (WOLLIC), pp. 223–236 (2018)

13. Kawamura, A., Steinberg, F., Ziegler, M.: On the computational complexity of
the Dirichlet problem for Poisson’s equation. Math. Struct. Comput. Sci. 27(8),
1437–1465 (2017)

14. Koswara, I., Pogudin, G., Selivanova, S., Ziegler, M.: Bit-complexity of solving
systems of linear evolutionary partial differential equations. In: Santhanam, R.,
Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 223–241. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79416-3 13

15. Koswara, I., Selivanova, S., Ziegler, M.: Computational complexity of real powering
and improved solving linear differential equations. In: van Bevern, R., Kucherov, G.
(eds.) CSR 2019. LNCS, vol. 11532, pp. 215–227. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-19955-5 19

16. Loos, R.: Computing in algebraic extensions. In: Buchberger, B., Collins, G.E.,
Loos, R. (eds.) Computer Algebra. Computing Supplementum, vol. 4. Springer,
Vienna (1982). https://doi.org/10.1007/978-3-7091-3406-1 12

17. Madison, E.W.: A note on computable real fields. J. Symb. Logic 35(2), 239–241
(1970)

18. Mahler, K.: An inequality for the discriminant of a polynomial. Michigan Math. J.
11, 257–262 (1964)

19. Mal’cev, A.I.: The Metamathematics of Algebraic Systems, North Holand, Ams-
terdam, pp. 148–214 (1971)

20. Mal’cev, A.I.: Algorithms and Recursive Functions. Fizmatgiz, Moscow (1964).
(Russian, English translation: Wolters-Noordhoff, 1970)

21. Miller, R., Ocasio, G.V.: Degree spectra of real closed fields. Arch. Math. Logic
58, 387–411 (2019)

22. Rabin, M.O.: Computable algebra, general theory and theory of computable fields.
Trans. Am. Math. Soc. 95(2), 341–360 (1960)

23. Selivanova, S., Selivanov, V.: Computing solution operators of boundary-value
problems for some linear hyperbolic systems of PDEs. Log. Methods Comput.
Sci. 13(4:13), 1–31 (2017)

24. Selivanova, S.V., Selivanov, V.L.: Bit complexity of computing solutions for sym-
metric hyperbolic systems of PDEs with guaranteed precision. Computability
10(2), 123–140 (2021). https://doi.org/10.3233/COM-180215

25. Stoltenberg-Hansen, V., Tucker, J.V.: Computable rings and fields. In: Griffor, E.
(ed.) Handbook of Computability Theory, pp. 363–447. Elsevier (1999)

26. van der Waerden, B.L.: Algebra. Springer, Berlin (1967). https://doi.org/10.1007/
978-3-662-22183-9

27. Weihrauch, K.: Computable Analysis. TTCSAES. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-642-56999-9

28. Ziegler, M., Brattka, V.: A computable spectral theorem. In: Blanck, J., Brat-
tka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 378–388. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0 23

https://doi.org/10.1007/978-3-030-79416-3_13
https://doi.org/10.1007/978-3-030-19955-5_19
https://doi.org/10.1007/978-3-030-19955-5_19
https://doi.org/10.1007/978-3-7091-3406-1_12
https://doi.org/10.3233/COM-180215
https://doi.org/10.1007/978-3-662-22183-9
https://doi.org/10.1007/978-3-662-22183-9
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/3-540-45335-0_23

Exact Real Computation of Solution
Operators for Linear Analytic Systems

of Partial Differential Equations

Svetlana Selivanova1, Florian Steinberg2, Holger Thies3(B),
and Martin Ziegler1

1 School of Computing, KAIST, Daejeon, Republic of Korea
2 Inria, Saclay, France

3 Kyoto University, Kyoto, Japan
thies.holger.5c@kyoto-u.ac.jp

Abstract. We devise and analyze the bit-cost of solvers for linear evo-
lutionary systems of Partial Differential Equations (PDEs) with given
analytic initial conditions. Our algorithms are rigorous in that they pro-
duce approximations to the solution up to guaranteed absolute error 1/2n

for any desired number n of output bits. Previous work has shown that
smooth (i.e. infinitely differentiable but non-analytic) initial data does
not yield polynomial-time computable solutions unless it holds P=NP
(or stronger complexity hypotheses). We first resume earlier complexity
investigations of the Cauchy-Kovalevskaya Theorem about linear PDEs
with analytic matrix coefficients: from qualitative polynomial-time solu-
tions for any fixed polynomial-time computable analytic initial condi-
tions, to quantitative parameterized bit-cost analyses for any given ana-
lytic initial data, as well as turn devised algorithms into computational
practice. We secondly devise a parameterized polynomial-time solver for
the Heat and the Schrödinger equation with given analytic initial data:
PDEs not covered by Cauchy-Kovalevskaya. Reliable implementations
and empirical performance evaluation (including testing on the Elas-
ticity and Acoustic systems examples) in the Exact Real Computation
(ERC) paradigm confirm the theoretical predictions and practical appli-
cability of our algorithms. These involve new continuous abstract data
types operating on power and Fourier series without rounding error.

Keywords: Computable analysis · Exact real computation · Partial
differential equations · Power series · Fourier series · Parametrized
complexity · Polynomial-time algorithms

1 Introduction and Summary of Contributions

We turn the rigorous theoretical approach to computing with continuous data
(see [2,22]) into numerical practice for computing solutions of Partial Differen-
tial Equations (PDEs) with guaranteed arbitrary output precision. We adapt
classical analytic series techniques for solving initial-value problems (IVP) for
Cauchy-Kovalevskaya type systems by means of the Exact Real Computation
(ERC) approach [19].
c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 370–390, 2021.
https://doi.org/10.1007/978-3-030-85165-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_21

Exact Real Computation for Solution Operators of Analytic PDEs 371

This approach allows to conveniently implement imperative algorithms
involving real numbers, converging sequences, and smooth functions: equivalent,
but without appealing, to Turing machines as in the underlying Computable
Analysis approach. ERC differs from traditional Reliable Numerics in consid-
ering real numbers as exact entities (as opposed to intervals [20]) while guar-
anteeing output approximations up to error 1/2n (as opposed to intermediate
precision propagation), where n ∈ N is a given error parameter, representing the
(arbitrary given) number of bits of the output. See [1,3,4,14] for rigorous com-
plexity analysis and implementation in ERC packagers of ordinary differential
equations (ODEs).

In this paper we develop a turnkey solver in agreement with complexity
predictions [16]. We consider Cauchy-Kovalevskaya type systems of linear partial
differential equations (PDEs) with variable coefficients and given initial values:

∂tu(x, t) = f1(x)∂1u + · · · + fd(x)∂du u(x, 0) ≡ v(x) . (1)

In particular, such equations of mathematical physics, as the Acoustics,
Elasticity and Maxwell systems are examples of (1). Also, many higher-order
equations can be reduced to first-order systems (1) by introducing additional
unknown functions [5, P.228], e.g. the Wave Equation utt = Δu is equivalent to
the Acoustics system.

In [15,16] we have proved that the finite difference approach, adapted to
the ERC paradigm, is in the complexity class PSPACE, w.r.t. n, with fixed
polynomial time computable initial functions and matrix coefficients. It can be
improved at best to #P (believed to be strictly between P and PSPACE) in
the constant periodic case even for analytic polynomial time computable initial
functions, since so are the exponential-size matrix powering and inner product.
See Remark 7 below why difference schemes are not suitable for uniform com-
putation of operators.

The power series approach on the other hand does yield [16] a polynomial
time algorithm w.r.t. n for fixed polynomial time computable analytic functions:

Fact 1 (Polynomial-Time Cauchy – Kovalevskaya, [16]). Let f1, . . . , fd :
[−1; 1]d → C

d′×d′
and v : [−1; 1]d → C

d′
denote matrix/vector functions, ana-

lytic on some open neighborhood of [−1; 1]d and consider the system of linear
partial differential equations (1).

If f1, . . . fd and v1, . . . , vd are computable in polynomial time, then the unique
analytic local solution u : [−ε; +ε]d+1 � (x, t) �→ u(x, t) ∈ C

d′
to Eq. (1)

(here [−ε, ε] is within the domain of existence and uniqueness determined by
the Cauchy-Kovalevskaya theorem) is again computable in polynomial time.

In this work we improve this nonuniform result to a uniform algorithm, where
the right-hand side functions f1, . . . , fd and the initial value v are not fixed but
given as input to the algorithm, together with certain parameters that quanti-
tatively capture their convergence behaviour:

Definition 2. Fix d ∈ N.

372 S. Selivanova et al.

a) Consider a multi-index α ∈ N
d and x ∈ R

d. Abbreviate xα := xα1
1 · · · xαd

d

and ∂α := ∂α1
1 · · · ∂αd

d and α! = α1! · · · αd! and |α| = α1 + · · · + αd.
b) Consider a complex multi-sequence (aα) : N

d → C. A pair (M,L) with M,L ∈
N is called a coefficient bound for (aα) if it satisfies

|aα | ≤ M · L|α | for all α ∈ N
d. (2)

c) Consider a complex function f analytic in some neighborhood of [−1; 1]d.
A pair (M,L) with M,L ∈ N is called a coefficient bound for f if it is a
coefficient bound for the multi-sequence ∂αf(x)/α! for every x ∈ [−1; 1]d.
Same for a complex function f analytic on the hyper-torus

Ω =
(
[0; 1) mod 1

)d
.

The latter means that, for some L and for every x ∈ Ω,
(− 1/L,+1/L

)d � y �→ f(x + y mod 1) =
∑

α
fαyα

is a converging power series, with complex Taylor coefficient sequence
(
fα

)

depending on x. Here 1/L is a radius of convergence of f .

See Sect. 3 for explanation and intuition behind these notions. Using the notions,
we can turn Fact 1 into a uniform algorithm where the inputs are (encodings
of) the right-hand side and initial condition functions and provide worst-case
complexity bounds polynomial in the output precision and the parameters of
the functions:

Theorem 3. Fix d ∈ N and consider the solution operator that maps any
analytic right-hand sides f1, . . . , fd : [−1; 1]d → C

d′×d′
and initial condition

v : [−1; 1]d → C
d′

and “small” enough t ∈ C to the solution u = u(t, ·) of (1).
This operator is computable in time polynomial in n + L + log M where n

is the output precision, L,M ∈ N are as in Definition 2 and v, f1, . . . , fd are
given via their (componentwise) Taylor expansions around 0 as well as (M,L)
as coefficient bounds to v, f1, . . . , fd componentwise.

The Heat and Schrödinger’s equations, on the other hand, are not covered by
the Cauchy-Kovalevskaya Theorem. Nevertheless, we provide a polynomial time
algorithm for the case where the initial value function is analytic.

Theorem 4. The proofs of these statements can be found in Sect. 4.1 and
Sect. 4.2, respectively.

Fix d ∈ N and consider the following linear partial differential equations on
the d-dimensional hypercube with periodic boundary conditions

Ω =
(
[0; 1) mod 1

)d
,

that is, analytic initial data v : [0; 1]d → C satisfying

∂α v(x1, . . . , xj−1, 0, xj+1, . . . , xd) = ∂α v(x1, . . . , xj−1, 1, xj+1, . . . , xd) (3)

Exact Real Computation for Solution Operators of Analytic PDEs 373

for all α ∈ N
d, all j = 1, 2 . . . , d and all x ∈ Ω; similarly for the solution

u(t, ·) : [0; 1]d → C for all t > 0. Recall that Δ = ∂2
1 + ∂2

2 + · · · + ∂2
d denotes the

Laplace operator.

a) Consider the Heat equation

ut = Δu, u(0, ·) = v. (4)

b) Consider the Schrödinger equation of a free particle

ut = iΔu, u(0, ·) = v. (5)

For any t > 0 and for any initial data v given by coefficient bounds (M,L) and v’s
power series expansion at each x = (2�+1)/(2L) ∈ Ω, � ∈ {0, 1, . . . , L−1}d, the
unique analytic solution u(t, ·) : Ω → C to each of the above PDEs is computable
in parameterized time polynomial in n + log t + L + log M .

Complexity theory becomes subtle when real numbers are involved, and even
more so for functional inputs, and the computational cost, in general, cannot
be bounded in the output precision parameter n only. While there is a generic
and powerful framework of type-2 complexity [7,8] for our work we can use a
simpler, parameterized approach depending on the parameters M and L. Here,
M,L ∈ N are parameters bounding the asymptotic behaviour of the given coeffi-
cient sequence that affect the radius of convergence (namely ≥ 1/L) and compu-
tational cost. Adding such parameters as enrichment is known to be necessary
already for uniform computability of the solution.

The main motivation behind our work is to apply and extend ideas from [16]
to an efficient implementation of a solver for analytic partial differential equa-
tions (linear systems as a first important step). This makes it necessary to extend
Fact 1 to a uniform algorithm that takes a description of the input functions and
returns a description of the output functions. We briefly introduce the necessary
theoretical concepts from computable analysis in Sect. 2. All our algorithms are
based on (partially symbolic) computations with power series. The real or com-
plex valued power series are encoded as exact objects without approximation
errors and can be manipulated symbolically.

In Sect. 3 we explain how power series can be used as the basis of an encoding
of real analytic functions and how basic mathematical operations can be applied
on them. We then use this encoding in Sect. 4 to formalize a uniform version of
Fact 1 and prove its correctness. Our algorithm can approximate the solution of
the PDEs (1) on some sufficiently small time interval around 0.

To this end we recall, refine and re-analyze the algorithmic idea from [16]:
now in dependence of the parameters (M,L). We further show that the size of the
time interval where our algorithm provides a solution and the time complexity
of the algorithm depend on some natural parameters of the input functions.
We also formulate a variation of the algorithm for the simpler case where the
coefficients in Eq. (1) are real constants instead of real analytic functions which
allows to evaluate on a slightly larger time interval and performs more efficiently
in practice.

374 S. Selivanova et al.

Subsection 4.2 considers the Heat equation as an example for a PDE that is
not covered by the Cauchy-Kovalevskaya Theorem since its solutions are well-
known not analytic in time. Here we turn the classical Fourier series approach
into a rigorous algorithm. The key is to avoid Riemann integration in the Fourier
transformation, since this is well-known infeasible in polynomial time [13, §5.4]
unless it holds P = NP (or stronger complexity hypotheses).

Finally, we implement the proposed algorithm in C++ on top of the iRRAM
framework for exact real computation [18] and evaluate its performance on the
examples of linear Acoustics and Elasticity systems (Sect. 5). To this end, we
also add several other new functions to iRRAM such as a simple implementation
of automatic differentiation and classes for differential operators. We therefore
also consider the implementation itself an important contribution of this work.

2 Recap on Real Bit-Complexity Theory

We follow the computable analysis approach to model exact computation with
real numbers. The basic idea is to encode real numbers by functions that give
arbitrarily exact finite approximations. More precisely, we use the following def-
initions.

Definition 5. a) Computing a real number x ∈ R means to compute a total
integer function ϕ : N → Z such that |x − 2−n · ϕ(n)| ≤ 2−n holds for all
n ∈ N. Computing x in polynomial time means to compute N � n �→ ϕ(n) ∈ Z

within a number of steps polynomial in n (rather than in the binary length
of n).

b) Computing a real sequence x̄ = (xm)m∈N : N → R means to compute a total
integer function ψ : N × N → Z (called a realizer) such that
|xm − 2−n · ψ(m,n)| ≤ 2−n holds for all m,n ∈ N. Computing x̄ in poly-
nomial time means to compute N × N � (n,m) �→ ψ(m,n) ∈ Z in time
polynomial in n + m.

c) Computing a (partial) function f :⊆ R → R means to compute a partial
integer functional F :⊆ Z

N → Z
N (called a realizer) such that:

(i) For every x ∈ dom(f) and every ϕ ∈ Z
N satisfying (a), it holds ϕ ∈

dom(F); and (ii) in this case F (ϕ) =: ϕ′ ∈ Z
N satisfies (a) for x′ := f(x).

Computing f in polynomial time means to compute (ϕ, n′) �→ F
(
ϕ
)
(n′) ∈ Z

in a number of steps bounded polynomially in n′ but independently of ϕ.
d) Computing a (partial) function g :⊆ (RN) → (RN) means to compute a partial

integer functional G :⊆ Z
N×N → Z

N×N (called a realizer) such that:
(i) For every x̄ ∈ dom(g) and every ψ ∈ Z

N×N satisfying (b), it holds
ψ ∈ dom(G); and (ii) in this case G(ψ) =: ψ′ ∈ Z

N×N satisfies (b) for
x̄′ := g(x̄). Computing g in polynomial time means to compute (ψ, n′,m′) �→
G

(
ψ

)
(m′, n′) ∈ Z in a number of steps bounded polynomially in n′ + m′ but

independently of ψ.
Here, argument ϕ is provided as oracle n �→ bin

(
ϕ(n)

)
; similarly for ψ.

Complex data is identified with tuples of reals.

Exact Real Computation for Solution Operators of Analytic PDEs 375

Requiring running time bounded only in terms of the output precision parame-
ter n′, but independently of continuous-type arguments like x or x̄, is common in
Real Complexity [13, Def.2.26]. Such a (not necessarily polynomial) bound exists
for any computable function f or g with compact domain. Slightly generalized,
sigma-compact domains allow for a parameterized notion of complexity [12]:

Definition 6 ([12]). A function f : D ⊆ R → R is called C-polynomial-time
for a function C : N → N w.r.t. to some fixed covering D =

⋃
k∈N

Dk of its
domain if f has a computable realizer F in the sense of Definition 5c) and there
is a polynomial p : N → N such that whenever x ∈ Dk, the computation of F
terminates after at most p(n′ + C(k)) steps.

The above definitions extend to mixed partial functions with co/domains Carte-
sian products comprised of integer/vectors, real vectors and real matrices, and
(multi-)sequences of real vectors/matrices.

2.1 Uniform Computation of Operators and Functionals

In this work we are mostly interested in computability and complexity results of
operators and functionals, i.e. higher-type mappings that take real-valued func-
tions as argument and return a real-valued function or a real number as value.
There are several ways on how to formalize such results. The statement of Fact 1
is non-uniform in the sense that it fixes a certain polynomial-time computable
PDE and initial condition (=function) and asserts the solution (=function) to
be polynomial-time computable. Non-uniform results are most powerful when
used negatively, such as stating—for a certain fixed initial condition—the non-
computability or hardness of the solution in the sense of computational complex-
ity: This asserts that the problem cannot be solved (efficiently), irregardless of
how the argument is encoded or input. Positive results on the other hand—such
as polynomial-time computability—are more significant in a uniform setting,
where the function argument encoding and means of input is (and has to be)
specified. Such an encoding can be made explicit using the framework of repre-
sentations over infinite bit sequences [17] or oracles [8].

Remark 7. Variable-precision numerics suggests encoding a single real number x
as a sequence of approximations up to error 1/2n. Similarly, sequences of reals x̄
are encoded as double sequences of approximations: see Definition 5. The latter
applies in particular to the coefficient sequences of analytic functions’ power
series expansion.

Mathematically, an analytic function can be locally identified with the coeffi-
cient sequence of its power series expansion. This identification is in general not
computable [22, Exercise 6.5.2]; yet evaluation (as one direction of the identi-
fication) does become parameterized polynomial-time computable when provid-
ing, in addition to the coefficient sequence, a coefficient bound in the sense of
Definition 2: see Fact 9.

Encoding a smooth (but not necessarily analytic) real function f : [0; 1] → R

on the other hand up to absolute error 1/2n requires recording approximations

376 S. Selivanova et al.

to exponentially many samples f(a/2εn) for a = 0, 1, . . . , 2εn − 1 for some ε >
0. Formally speaking, a non-trivial compact subset of a metric function space
usually has superpolynomial entropy [11,23]. And a non-local functional (like
Riemann integration) depending on most of them thus requires exponential time
to even read f up to error 1/2n. This obstacle applies to the initial condition
in difference scheme approaches to solving PDEs; and to the converse of the
aforementioned identification between analytic functions and their power series
expansion.

We therefore consider and operate on all analytic function arguments and
solution functions in terms of their local power series expansion as multi-
sequences of reals; see Sect. 3.

2.2 Exact Real Computation: Reliable Numerics, Conveniency

A computational problem involving continuous data may be well-posed, ill-
posed, or intermediate. Algorithms processing continuous data similarly roughly
classified as stable, unstable, or intermediate. Ill-posed problems cannot be
solved by stable or intermediate algorithms; whereas well-posed problems could
potentially be solved by stable, intermediate, or even by unstable algorithms:
possibly permitting to trade between working precision and number of oper-
ations, such as e.g. Runge-Kutta methods of varying order [21]. Focusing on
double as data type means restricting to stable algorithms only.

To avoid this blind spot, the present work makes use of the Exact Real
Computation paradigm. Here some object-oriented software library provides an
abstract data type for real numbers, vectors, and sequences to operate on exactly,
namely without rounding errors: Like Java’s BigInteger, the finite internal
approximation is chosen automatically and adaptively such as to appear to the
user program as indistinguishable from the ideal mathematical data type.

More formally, an exact real computation framework is an implementation
of the computable reals and basic operations on it. In general, the framework
provides an abstract data-type for real numbers and implementations of some
basic operations such as addition, subtraction, multiplication and division and it
is possible to output arbitrarily exact approximations of real numbers. We also
assume that there is an implementation of a limit operation lim: ⊆ R

ω → R

that takes an efficiently converging sequence (xn)n∈N and maps it to its limit.
That is, whenever there is some x ∈ R such that |xn − x| ≤ 2−n for all n ∈ N

then lim((xn)n∈N) = x.
Many such frameworks already exist for most modern programming lan-

guages and there are different ways of how to concretely implement the data-
types and operations. In this work, we use the C++ framework iRRAM. iRRAM
is one of the most efficient exact real computation frameworks and has been
shown to be reliable in a large number of applications. iRRAM extends C++ by a
class Real for error free computations with real numbers. For the user, an object
of type Real behaves like a real number that can be manipulated without any
rounding errors. The framework takes care of all details necessary for the internal

Exact Real Computation for Solution Operators of Analytic PDEs 377

finite representation of real numbers. In most cases this internal representation
is invisible for the user.

Internally, a real number in iRRAM is represented as an infinite sequence
of better and better approximations. More precisely, a real number x ∈ R is
encoded by a sequence of pairs (di, ei) such that x ∈ [di − ei, di + ei] and ei → 0.

An iRRAM program runs several times. Each run is called an iteration. In each
iteration objects of type Real are replaced by a single member of the sequence,
i.e., by a multiple precision number for d and two integers p, z such that e = z ·2p.
At some point in the program a certain precision might be needed to make a
decision (branch) or the program is supposed to output an approximation. If the
precision at this point does not suffice, the whole computation is restarted from
the beginning with higher precision.

3 Computing with Power Series

A PDE solver is usually understood to take some description of the right-hand
side functions and produce a solution. Previous work (Fact 1) on the other hand
supposes the right-hand side to be fixed: a deficiency mended by the present
contribution. To this end, we first discuss encoding functional inputs such that
they can at least be read in polynomial time.

Functions f : R
d → C that are analytic on some connected D ⊆ R

d are
uniquely identified by their d-variate power series around some point in the
domain. For simplicity assume 0 ∈ D. Then there is a closed polydisc Ωr =
{x ∈ R

d | ‖x‖∞ ≤ 1/L} and a power series (aα) such that

f(x) =
∑

α∈Nd

aαxα , for all x ∈ Ωr (6)

and f is uniquely determined by the sequence (aα)α∈Nd . We therefore aim to
encode f by its power series coefficient sequence around 0. However, any algo-
rithm can only read a finite number of coefficients from the series and thus
implementing basic operations like function evaluation requires to estimate the
approximation error that occurs when only a finite initial segment of the series is
used. Definition 2 captures and formalizes such information: It is well-known [22,
Chapter 6.5] that it in general cannot be computed from the coefficient series
alone and has to be provided externally.

If f : D → C is analytic and Eq. (6) holds, then there exists a coefficient
bound (M,L) for the Taylor series of f at any point of its domain. Such a bound
can be used to derive an exponentially fast decaying explicit tail estimate

∑

αi≥N,
i=1,...,d

aα (x)α ≤ M
(L ‖x‖∞)dN

(1 − L ‖x‖∞)d
. (7)

Definition 8. Fix d ∈ N.

378 S. Selivanova et al.

a) Denote by Cω[−1; 1]d the space of d-variate real functions f analytic in a
neighborhood of [−1; 1]d. Abbreviate

P̃[−1; 1]d =
{(

M,L, aα

)
: aα = ∂αf(x)/α!

∣
∣
x=0

Taylor coefficient of f ∈ Cω[−1; 1]d at origin satisfying (2)
}

b) Denote by Cω[0; 1)d mod 1 the space of d-variate real functions f analytic at
each point of the hyper-torus [0; 1)d mod 1 (Fig. 1). Abbreviate

P̃[0; 1)d mod 1 =
{(

M, L, ∂αf(x)/α!
∣
∣
x=(2�+1)/(2L)

: � ∈ {0, 1, . . . , L − 1}d
)

: Taylor

coefficients of f ∈ Cω[0; 1)d mod 1 satisfy (2) at each x ∈ [0; 1)d mod 1
}

Fig. 1. Functions satisfying periodic boundary conditions for all derivatives on the unit
(hyper)cube can equivalently be regarded as “living” on the (hyper)torus as a space
with no boundary

The connection between the space of analytic functions and the above encod-
ing of power series can be made formal using the framework of representations
and can also be used for a parameterized complexity analysis [9,10]). As men-
tioned in Remark 7, non-local operators on real functions generally cannot avoid
incurring exponential bit-cost for information-theoretic reasons. We therefore
restrict to the (sigma-)compact subspaces of analytic functions parameterized
by (M,L), and operate on their local power series expansions—and evaluate the
solution only in the final phase.

Fact 9 Fix d ∈ N.

a) Consider the following partial function

Eval : P̃[−1; 1]d × R
d → R, (M,L, aα ,x) �→

∑

α
aαxα ∈ R

that evaluates a power series with coefficient sequence aα and coefficient bound
M,L on arguments x ∈ R

d with ‖x‖∞ ≤ 1/(2L). It can be computed in
the sense of Definition 5 (namely evaluated approximately up to guaranteed
absolute error 1/2n) in time polynomial in n + L + log M .

Exact Real Computation for Solution Operators of Analytic PDEs 379

b) Similarly, pointwise addition +: P̃[−1; 1]d × P̃[−1; 1]d → P̃[−1; 1]d,
(
(M,L, aα), (N,K, bβ)

) �→ (
M + N, max{L,K}, aα + bα

)

is well-defined and computable in parameterized time polynomial in n + L +
K + log M + log N .

c) Pointwise multiplication · : P̃[−1; 1]d × P̃[−1; 1]d → P̃[−1; 1]d,
(
(M,L, aα), (N,K, bβ)

) �→ (
(M + N) · max{K,L},max{K,L}2, cα

)

is well-defined and computable in parameterized time polynomial in n+K+L+
log M + log N for the convolution cα =

∑
β≤α aβ · bα−β as Taylor coefficient

multisequence of the series product.
d) Iterated partial derivatives Derive : P̃[−1; 1]d × N

d → P̃[−1; 1]d,

(M,L, aα ,β) �→
(

(α + β)!
α!

aα+β , (3 |β| L)|β |M,

⌈
4
3
L

⌉)

is well-defined and computable in parameterized time polynomial in n + L +
log M + |β|.

The proof can e.g. be found in [10]; see also [9, Theorem 16]. Note that the
bound “‖x‖∞ ≤ 1/(2L)” in (a) could be replaced by ‖x‖∞ ≤ O(1/L), as in
this case the r.h.s. of (2) goes to 0 as the number of power series coefficients N
approaches ∞.

For Aα ∈ Pm×m′
d a matrix-valued multi-sequence and x ∈ R

d, let us intro-
duce the short-hand notion

∑
α∈Nd Aαxα for componentwise evaluation of the

power series in Aα .

4 Computing Solutions for PDEs

Let us now come back to our original problem of solving partial differential equa-
tions. First, we consider the very general problem of analytic PDEs of the form

∂tu(x, t) = D(x)u u(x, 0) ≡ v(x) (8)

where u : R
d+1 → R

d′
, v : R

d → R
d′

and D is a differential operator with
coefficients being d′×d′ matrices of d-variate analytic functions using only spatial
derivative operators (i.e. no derivatives in t).

In this general case the solution does not need to be analytic again (or even
unique). However, if there is an analytic solution u it is not hard to see that the
power series is given by

u(x, t) =
∞∑

k=0

tk

k!
(Dkv)(x). (9)

We now consider some special cases of (8) where the solution is indeed analytic.

380 S. Selivanova et al.

4.1 Cauchy-Kovalevskaya Type Linear PDEs

Let us first consider linear PDEs with variable coefficients of the form (1).
By the Cauchy-Kovalevskaya theorem the PDE has a unique analytic solution
around (x, 0). We will show the following theorem.

Theorem 10. The operator

solve : (Pm×m
d)d × Pm×1

d × R
d → Pm×1

1

that maps (A(1)
α ,M1, L1), . . . , (A

(d)
α ,Md, Ld), (bα ,Md+1, Ld+1) and x ∈ R

d with
‖x‖∞ ≤ 1

2L to a vector of (univariate) power series (ck,Mc, Lc) ∈ Pm×1
1 ;

Lc = �4ed(d + 1)d′ML
, Mc = Mv where M = max Mi and L = max Li and
u(x, t) =

∑∞
k=0 cktk is the solution of the PDE (1) (where fi, v are given by the

functions defined by the power series in Ai, b) is well-defined and computable in
time polynomial in log M + L + n for all

|t| ≤ 1
4ed(d + 1)d′ML

. (10)

To prove the theorem we use the following lemma from complex analysis:

Lemma 11. Let f1, . . . , fd : C
d → C

m×m and v : C
d → C

m be complex analytic.
Assume there are constants r,Mf ,Mv ∈ R and j ∈ N such that

‖fi(ξr)‖∞ ≤ Mf (1 − ‖ξ‖∞)−j and ‖v(ξr)‖∞ ≤ Mv(1 − ‖ξ‖∞)−j

for all ξ ∈ C
d, ‖ξ‖∞ ≤ 1 and i = 1, . . . , d. Then

∥
∥
∥(f1∂1 + · · · + fd∂d)

k
v(ξr)

∥
∥
∥

∞
≤ k!Mv(ed(j + 1)mMfr−1)k(1 − ‖ξ‖∞)−(k+1)j−k

for all ξ ∈ C
d, ‖ξ‖∞ ≤ 1.

We will use the following fact:

Fact 12 [6, Lemma 9.4.4] Let v : C
d → C

m be complex analytic and assume
there are constants M, r ∈ R and j ∈ N such that

‖v(ξr)‖∞ ≤ M (1 − ‖ξ‖∞)−j for all ξ ∈ C
d, ‖ξ‖∞ < 1.

Then
‖∂iv(ξr)‖∞ ≤ Me(j + 1)r−1(1 − ‖ξ‖∞)−(j+1)

for all i = 1, . . . , d, ξ ∈ C
d, ‖ξ‖∞ < 1.

Proof (Lemma 11). Let v[k] = (f1∂1 + · · · + fd∂d)kv. We need to show that
∥
∥
∥v[k](ξr)

∥
∥
∥

∞
≤ k!Mv(ed(j + 1)mMfr−1)k(1 − ‖ξ‖∞)−(k+1)j−k. (11)

Exact Real Computation for Solution Operators of Analytic PDEs 381

The proof is by induction on k. For k = 0,
∥
∥
∥v[0](ξr)

∥
∥
∥

∞
= ‖v(ξr)‖∞ ≤ Mv(1 − ‖ξ‖∞)−j

by the assumption on v. Assume (11) holds. By Fact 12 for i = 1, . . . , d,
∥
∥
∥∂iv

[k](ξr)
∥
∥
∥

∞
≤ k!Mv(ed(j + 1)mMfr−1)ke ((k + 1)j + k + 1) r−1(1 − ‖ξ‖∞)−(k+1)j−k−1

= (k + 1)!Mv(dmMf)k(e(j + 1)r−1)k+1(1 − ‖ξ‖∞)−(k+1)j−(k+1)

Thus
∥
∥
∥
∥
∥

d∑

i=1

fi∂iv
[k](ξr)

∥
∥
∥
∥
∥

∞
≤

d∑

i=1

∥
∥
∥fi∂iv

[k](ξr)
∥
∥
∥

∞
≤

d∑

i=1

m ‖fi‖∞
∥
∥
∥∂iv

[k](ξr)
∥
∥
∥

∞

≤ dmMf (k + 1)!Mv(dmMf)k(e(j + 1)r−1)k+1(1 − ‖ξ‖∞)−(k+2)j−(k+1)

= (k + 1)!Mv(ed(j + 1)mMfr−1)k+1(1 − ‖ξ‖∞)−(k+2)j−(k+1).

Proof (Theorem 10). We compute the series ck = 1
k! (f1∂1 + · · · + fd∂d)

k (v)(x).
By (9) this is the power series of the solution of the PDEs (1). The series can
be computed in the given time bound by applying the operations in Fact 9
(see also [16, Theorem 8]). It remains to show that (Mv, �2ed(d + 1)mL
) is a
coefficient bound for ck.

Let r := 1
L and define complex analytic functions f̃i : Cd → Cm×m by

f̃i(z) =
∑

α∈Nd A
(i)
α zα . Then

∥
∥
∥f̃

(j,k)
i (ξr)

∥
∥
∥

∞
≤ ∑

α∈Nd Mr−|α|(‖ξ‖∞ r)|α| =

M(1 − ‖ξ‖∞)−d for all ξ ∈ C
d, ‖ξ‖∞ ≤ 1. Thus the claim follows by Lemma 11.

It remains to show Theorem 3.

Proof (Theorem 3). For any analytic f : [−1; 1]d → R there are M,L ∈ N such
that |Dαf | ≤ α!ML|α | for all x ∈ [−1; 1]d. In particular, (M,L) is a coefficient
bound for the power series of f around any point x ∈ [−1; 1]d. We can then
encode a function f ∈ Cω[−1; 1]d by a finite sequence of (4l)d power series
centered at equally spaced points in [−1; 1]d. For any x ∈ [−1; 1]d a power series
centered at xi such that ‖x − xi‖∞ ≤ 1

2L can be located in time polynomial
in n + l and used to apply Theorem 10 and the resulting power series can in
turn be used for evaluation of the solution function. Thus Theorem 3 follows by
choosing the covering f ∈ Cω

M,L([−1; 1]) if the above inequality holds.

4.2 Polynomial-Time Solution of Analytic Heat Equation

The Heat Equation ut = uxx is well-known to not be analytic in physical time
at t = 0. This happens essentially because a smooth initial condition can blow up
within finite negative time (see e.g. [5, P. 235]). Nevertheless we present an algo-
rithm for solving the Heat Equation within a number of steps polynomial in the
output precision parameter n (and logarithmic in the physical time parameter t).

382 S. Selivanova et al.

As usual for complexity considerations, we have to restrict to compact spatial
domains: In this case for simplicity the one-dimensional unit interval Ω = [0; 1].
PDEs generally require both initial and boundary conditions for the solution to
be unique (in space x at a given time t > 0). An analytic solution u = u(t, x) on
the other hand is uniquely determined at t > 0 by its values on an arbitrarily
small open spatial subset U � x; and locality demands that this restriction
u(t, ·)|U in turn depends only on u(t − τ, ·)|U ′ for sufficiently small τ > 0 and a
slightly larger U ′: hence boundary values cannot be prescribed independently.

This unusual combination of conditions can be accommodated by considering
a compact domain with periodic boundary conditions. In our case this means
u(t, 0) = u(t, 1) and uxj (t, 0) = uxj (t, 1) for all t ≥ 0 and all d = 1, 2, . . . It
amounts to considering PDEs on a circle in 1D, or on a torus in 2D.

Definition 13. Consider spatial domain Ω :=
(
[0; 1) mod 1

)d = [0; 1)d mod 1.
Recall from Definition 2c) that a function f : Ω → C is analytic if, for some
L ∈ N and for every x ∈ Ω,

(−1/L; +1/L)d � y �→ f(x + y mod 1) =
∑

α
fα · yα

is a converging power series, with (complex) local Taylor coefficient sequence
fα (x).

a) For k ∈ Z
d, call (t,x) �→ exp(2πi〈k, x〉 − 4π2|k|2t) the k-th fundamental

solution of the Heat Equation.
b) For k ∈ Z

d, call (t,x) �→ exp(2πi〈k,x〉 − 4π2i|k|2t) the k-th fundamental
solution of the Schrödinger Equation.

c) To each sequence (f̂k) of Fourier coefficients associate the formal Fourier
Series

f : Ω → C, f(x) =
∑

k
f̂k · exp(2πi〈k,x〉) .

Here 〈k,x〉 denotes the inner product k1x1 + · · · + kdxd, and |k|2 = 〈k,k〉.
Since Ω is compact, any analytic function f : Ω → C has a positive radius
of convergence r ≥ 1/L > 0, L ∈ N. Let f

(0)
j , f

(1)
j , . . . , f

(L−1)
j ∈ C denote the

Taylor coefficient sequences of f at x0 = 1/(2L), x1 = 3/(2L), x2 = 5/(2L),
. . . and xL−1 = (2L−1)/(2L). Note that convergence is uniform on the intervals[
x� − 1/(2L);x� + 1/(2L)

)
partitioning [0; 1).

We record that every square summable Fourier coefficient sequence (fk) has a
square integrable Fourier series, and vice versa via f̂k =

∫ 1

0
f(x) · exp(2πikx) dx.

Moreover this correspondence is isometric. Let us record some relations between
Fourier coefficients and Taylor coefficients of analytic functions:

Lemma 14. Consider domain Ω := [0; 1) mod 1 and analytic f : Ω → C, with
radius of convergence ≥ 1/L (L ∈ N) and Fourier expansion f(x) =

∑
k f̂k ·

exp(2πikx),
[− 1/(2L);+1/(2L)

) � y �→ f
(
(2� + 1)/(2L) + y

)
=

∑

j
f
(�)
j yj .

Exact Real Computation for Solution Operators of Analytic PDEs 383

For � = 0, 1, . . . , L − 1 call

X̂j
� k

=
∫ (�+1)/L

�/L

(
x − (2� + 1)/(2L)

)j · exp(−2πikx) dx

= exp
(− 2πik(2� + 1)/(2L)

) ·
∫ +1/(2L)

−1/(2L)

yj · exp(−2πiky) dy

the �-th local monomial coefficients, j ∈ N, k ∈ Z. Then

a)
(∑L−1

�=0 X̂j
� k

)
k

is the Fourier coefficient sequence to the Sawtooth power func-

tion
[
�/L; (�+1)/L

) � x �→ (
x− (2�+1)/(2L)

)j on [0; 1); see Fig. 2. Triangle
inequality implies

∣
∣X̂j

� k

∣
∣ ≤

∫ +1/(2L)

−1/(2L)

|y|j dy = 2−j · L−j−1/(j + 1) .

Moreover, integration by parts yields the recurrence

̂Xj+1
� k

= −(2L)−j−1 · exp
(− 2πik(� + 1)/L

)
/(2πik)

+(−2L)−j−1 · exp
(− 2πik�/L

)
/(2πik) +

j + 1
2πik

· X̂j
� k

.

Thus (k, j, �) �→ X̂j
� k

is computable in time polynomial in |k| + j + L + n.

b) The k-Fourier coefficient of the j-th derivative is f̂ (j)
k = (2πik)j · f̂k. There-

fore f
(�)
j = dj

dyj f
(
(2� + 1)/(2L) + y

)|y=0/j!

= dj

dyj

∑∞
k=−∞ f̂k · exp

(
2πik(2� + 1)/(2L) + 2πiky

)∣∣
y=0

/j!

=
∑∞

k=−∞ f̂k · (2πik)j · exp
(
2πik(2� + 1)/(2L)

)
/j!.

c) For x ∈ [
�/L; (� + 1)/L

]
, the d-th derivative satisfies

∣
∣f (d)(x)

∣
∣ =

∣
∣
∑

j
f
(�)
j+d · (j + 1) · · · (j + d) · (

x − (2� + 1)/(2L)
)j∣∣

≤
∑

j
M · Lj+d · (j + 1) · · · (j + d) · (2L)−j

∣
∣

= M · ∂d
y

∑

j
Ljyj

∣
∣
y=1/2L

= M · ∂d
y

1
1−Ly

∣
∣
y=1/2L

= M · Ld · 2d+1 · d!

and by Parseval/Rayleigh
∑∞

k=−∞
∣
∣f̂ (d)

k

∣
∣2 =

∫ 1

0

∣
∣f (d)(x)

∣
∣2 dx ≤ M2 · L2d ·

4d+1 · d!2. Moreover f̂ (d+j)
k = (2πik)d · f̂ (j)

k implies

∣
∣f̂ (j)

K

∣
∣2 ≤

∑

|k|≥K

∣
∣f̂ (j)

k

∣
∣2 =

∑

|k|≥K

∣
∣f̂ (d+j)

k

∣
∣2/(4π2k2)d

≤ (4π2K2)−d · M2 · L2(d+j) · 4d+j+1 · (d + j)!2

≤ 4j+1M2 L2j(d + j)2j · ((d+j)L
πK

)2d

384 S. Selivanova et al.

for every d ∈ N, and hence
∑

|k|>K

∣
∣f̂ (j)

k

∣
∣ ≤

∑

|k|>K
2j+1MLj(d + j)j · ((d+j)L

πk

)d

≤ 2j+2KMLj(d + j)j · ((d+j)L
πK

)d (∗)
≤ 2−n

with (*) for K := L · (d + j) and d ≥ n + 2j · (log j + log L) + log M since∑
k>K k−d ≤ ∫ ∞

K
y−d dy = y−d+1/(1 − d)

∣
∣y=∞
y=K

= K1−d/(d − 1) ≤ K/Kd.

d) f̂k =
∑L−1

�=0

∫ (�+1)/L

�/L

∑
j≥0 f

(�)
j · (

x − (2� + 1)/(2L)
)j · exp(2πikx) dx ==

∑L−1
�=0

∑
j≥0 f

(�)
j · X̂j

� k
.

Recall that a smooth function’s Fourier Series may be differentiated term-wise.

Fig. 2. Sawtooth Power Functions from Lemma 14

Item (b) expresses Taylor coefficients in terms of Fourier coefficients. Con-
versely, Items (c)+(a) allow to avoid costly Riemann integration when com-
puting the Fourier coefficients of an analytic function [13, §5.4]. Lemma 14 is
conveniently stated for d = 1 but immediately generalizes to higher dimensions,
adding only notational noise.

Proof (Theorem 4). It suffices to present the main idea in the case d = 1. Given
the spatial Taylor expansion aj of the initial condition v with parameters M,L,
Lemma 14(a)+(c) allow to compute in polynomial time the first polynomially
many Fourier coefficients v̂k of v =

∑
k v̂k · exp(2πikx).

a) By linearity of the Heat equation and with its Fundamental solution, it follows
u(t, x) =

∑
k û(t, ·)k · exp(2πikx) for û(t, ·)k := v̂k · exp(−4π2k2t). Since these

decay over time t > 0, u(t, ·) has even larger radius of convergence and thus
better computational parameters (M,L) than the initial condition v. And

Exact Real Computation for Solution Operators of Analytic PDEs 385

again, the first polynomially many of these coefficients can be computed in
polynomial time; and yield the first polynomially many Taylor coefficients of
u(t, ·) according to Lemma 14(b).

b) Similarly, u(t, x) =
∑

k û(t, ·)k · exp(2πikx) for û(t, ·)k := v̂k · exp(−4π2

ik2t). ��

5 Implementation

We give a prototypical implementation of the PDE solver in C++1. The implemen-
tation is based on the iRRAM framework. Our implementation extends iRRAM by
classes for analytic functions and power series and solvers for PDEs using these
classes. The implementation follows the theoretical part of the paper quite lit-
erally. That is, we implemented the operator from Theorem 10 that maps the
power series of the right-hand side functions and of the initial value function to
the power series of the PDE solution. These power series can be defined explicitly
as in the proof of Theorem 3.

However, requiring to define multiple power series around several points in the
domain is quite work-intensive and unnecessary in the case where we only deal
with combinations of simple standard functions of which we know the derivatives.
We therefore follow a more user-friendly approach by also implementing some
helper functions that provide efficient ways to compute the power series for some
combinations of standard functions based on automatic differentiation.

5.1 Overview of Continuous Data-Types

Let us first give an overview over the most important new continuous data-types
that we added to iRRAM. Most of the data-types are implemented in form of C++
class templates with template parameters an integer d for the dimension and a
class T for the base type. For the base type we mostly used iRRAM’s REAL class
for the type but other classes such as COMPLEX should also be possible without
any major adaptions.

In the following presentation for conciseness we mostly omit the template
parameters. We added the following class templates to iRRAM.

1. Powerseries: A class template for d-variate power series closely following
the description in Section 3, i.e. encoding an infinite sequence of power series
coefficients together with a coefficient bound. The series itself is encoded as
a function mapping a vector of integers to an object of the coefficient type.
For efficiency reasons, the coefficients are cached when they are read the first
time and read from the cache whenever they are required again instead of
reevaluating the coefficient function.

1 The source code for the implementation can be found on https://github.com/
holgerthies/irram-pde.

https://github.com/holgerthies/irram-pde
https://github.com/holgerthies/irram-pde

386 S. Selivanova et al.

2. Analytic: A class template for analytic functions f : [0, 1]d → R encoded by
coverings of the unit cube by overlapping power series with some fixed radius
of convergence.

3. Cinfinity: A class template for multivariate smooth functions. It is mostly
used as a helper class to quickly generate power series for functions built by
combinations of simple standard functions (c.f. 5.2).

4. Polynomial: Class for multivariate polynomials (i.e. finite power series) with
more efficient evaluation.

These functional classes support standard operations such as arithmetic, function
evaluation and computing partial derivatives.

We further implemented some useful class templates for matrices, vectors
and multi-indices with some of their standard operations. We denote them by
standard mathematical notation instead of their actual name in the source code
(e.g. T d instead of vector<T,d> and N

d instead of Multiindex<d>). We use
these classes e.g. to define matrix-valued versions of the functional types. We
also implemented a class template DiffOp for differential operators as in (9)
where the coefficients are matrix-valued analytic functions.

5.2 Power Series and Automatic Differentiation

As described in the previous sections, the basic idea behind the PDE solver
is to compute the power series of the solution and to provide some additional
information that allows to evaluate the series at any point in its domain up to any
desired accuracy. In theory, we can work directly with the power series and the
coefficients bounds as described in Sect. 3. However, for concrete functions there
are often much better algorithms available than just summing up the power
series. Also, as we often need power series of some specific functions around
different points, inputting the series directly is rather inconvenient.

The idea behind the Cinfinity class is that it can be used as a helper class
for functions where we have a simple symbolic description of the derivatives
(such as polynomials and trigonometric functions) and algebraic manipulations
on them and can provide the power series around each point in their domain.
Its implementation is similar to (forward mode) automatic differentiation but
with a variable order of the power series. That is, an object f : Cinfinity
allows to get any power series coefficient 1

α!D
αf(x) for any point x and multi-

index α. Concretely, Cinfinity provides the methods set center(c : T d) that
updates the center to a new point and get derivative(α : N

d) that returns
the derivative (divided by α!) around the center.

The choice of always having a dedicated center is made to prevent unneces-
sary recomputation of derivatives by caching the coefficients when they are com-
puted the first time, and only resetting the cache when the center is changed.
To define a new Cinfinity object it suffices to provide a function that for any
point x and multiindex α returns the derivative Dαf(x).

Operations on Cinfinity objects are implemented as pointer trees: Any k-
ary saves pointers to the k input functions and is itself of type Cinfinity, i.e. it

Exact Real Computation for Solution Operators of Analytic PDEs 387

has to provide operations to set the center and compute derivatives of the result
of the operation by using these operations on the input functions.

We implemented arithmetic operations (addition, subtraction, multiplica-
tion, division) and their scalar variants as well as composition and partial deriva-
tives. We also implemented some standard functions such as multivariate poly-
nomials and trigonometric functions. A vast amount of functions can therefore
already be defined simply by composing these functions. Note that currently
most operations are only implemented using straight-forward algorithms but
many more sophisticated algorithms exist and could be used for better efficiency
in the future.

We also implement a matrix-valued variant of Cinfinity that represents
functions f : T d → Tm×n. Basically, the class is just a wrapper around a matrix
of Cinfinity objects. All functions are expected to have the same center and the
class also provides a method set center that sets the center for each function
and get derivative that returns an m × n matrix with elements of type T
corresponding to the derivatives of each function.

To work with power series we further implemented a class Powerseries that
contains the infinite d-variate coefficient series together with a coefficient bound
M, r and supports evaluation, arithmetic operations and computing derivatives.
It is possible to construct a power series from a Cinfinity object by additionally
providing a center and valid coefficient bounds. On the other hand, as power
series support the evaluation of derivatives in their domain, it is also possible to
make a Cinfinity object from a Powerseries.

5.3 PDE Solving

As in the theoretical section, we consider both the case of Cauchy-Kovalevskaya
type linear PDEs and the Heat equation (Schrödinger equation is treated in a
similar manner).

1. For the Cauchy-Kovalevskaya type, we followed the theoretical
Sect. 4.1 and separated the PDE solving algorithm into two parts. The first
part is the computation of the coefficient sequence for the solution of the PDE
(8). For this we implemented two different versions of differential operators, one
where the coefficients are matrices of Cinfinity objects, i.e. variable and one
where the coefficients are real matrices, i.e. constant. For the constant version
we also implemented multiplication of two differential operators giving a new
differential operator in the obvious way.

The algorithm to compute the solution series takes as input a differential
operator D, a Cinfinity object v for the initial value function and a vector x
and returns the coefficient of the power series for u(x, t) around t = 0. It starts
by centering v around x.

In case that D is a differential operator with variable coefficients, the compu-
tation is done from right to left, i.e., we start with v[0] := v and then iteratively
compute v[k+1] = 1

k+1D(v[k]). The k-th coefficient of the power series is then
given by v[k](0). In case that D is a differential operator with constant coef-
ficients, the computation can also be done from left to right, i.e., start with

388 S. Selivanova et al.

D[0] = D and then iteratively compute D[k+1] = 1
k+1DD[k]. The k-th coefficient

of the power series is then given by D[k](v)(0).

Remark 15. For the case when fj(x) = Aj are constant matrices, the time
bounds of Theorem 10 can be improved and the computations can be accel-
erated. Indeed, the coefficient Dkv from Eq. (9) has the form

Dkv =

(
d∑

i=1

Ai∂i

)k

v =
∑

|α |=k

(
N

α

)
d∏

i=1

Aαi
i

((
d∏

i=1

∂αi
i

)
v

)
.

Thus, computing the power series of the PDE solution is reduced to matrix pow-
ering and computing partial derivatives of v. Now assume Mv, r are coefficient
bounds for v and there is a constant MA such that ‖Ai‖∞ ≤ MA for i = 1, . . . , d,
where ‖A‖∞ = sup‖x‖∞=1 ‖Ax‖∞ is the operator norm. Then

∥∥∥Dkv(0)
∥∥∥

∞
≤

∑
|α |=k

(
N

α

)
d∏

i=1

‖Aαi
i ‖∞

(∥∥∥∥∥
(

d∏
i=1

∂αi
i

)
v(0)

∥∥∥∥∥
∞

)

≤
∑

|α |=k

(
N

α

)
Mk

AMvr−k = Mv

(
r

dMA

)−k

.

It follows that the pair (Mv, r
dMA

) is a coefficient bound for the solution.

In both (variable and constant) cases if we are given coefficient bounds for
the Cinfinity objects in the input, we can then construct a power series object
from the series by using the parameters from Sect. 4 as coefficient bounds. To
demonstrate that our implementation is feasible we did experiments with such
well-known partial differential equations as the Acoustics and Elasticity systems
for up to 3 dimensions.2 For Cauchy-Kovalevskya type PDEs our algorithm could
be used to approximate the solutions inside the small time interval (guaranteeing
existence) for precisions up to 300 bits.

2. For the Heat equation we implemented the transformation from power
series coefficients to Fourier coefficients, computed the Fourier series of the solu-
tion and then used Lemma 14 to transform the Fourier series to a power series
again. The implementation quite literally follows the theoretical description and
we therefore omit the details; we obtain approximations to the solution for
any t > 0 and x ∈ [0, 1] for arbitrarily high precisions.

Example 1. As initial value function we used a highly oscillating one: v(x) =
2m sin(2m+1πx) for different values of m. The function v is given by a covering
of the unit interval by 2m power series and we evaluated the running time and
error propagation for various values of m. The running time grows quite quickly
with m, and the computation already becomes quite slow for around m = 7.
On the other hand, this is also where rounding errors become more notable, and
where reliability justifies longer running times. For example, for m = 7 and small
2 For space reasons, we omit a detailed analysis of our experiments but some more

information can be found at the github repository of our implementation.

Exact Real Computation for Solution Operators of Analytic PDEs 389

enough physical time, doing the same calculations using double precision is only
accurate up to the first 4 decimal digits, and the error is likely to increase for
higher values of m.

6 Conclusion

We have developed a guaranteed precision solver of Cauchy problems for Linear
Evolutionary systems of PDEs in the case of real analytic initial data (func-
tions at t = 0 and matrix coefficients) and bounds on their radii of convergence
and upper bounds given as inputs. This solver is based on the rigorous theory of
Computable Analysis [22] which allows to treat reals “exactly”. We used our the-
oretical results to implement a solver for analytic linear partial differential equa-
tions in the C++ framework iRRAM. Our solver allows to approximate the solution
up to any desired output precision. To our best knowledge, our solver is the first
implementation of this kind. To this end, we also extended the iRRAM framework
by user-friendly classes for continuously differentiable functions, power series,
polynomials and matrices of these types.

Acknowledgments. This work was supported by the National Research Foundation
of Korea (grant 2017R1E1A1A03071032), by the International Research & Devel-
opment Program of the Korean Ministry of Science and ICT (grant 2016K1A3A
7A03950702), by the NRF Brain Pool program (grant 2019H1D3A2A02102240) and
by JSPS KAKENHI Grant Number JP20K19744.

We thank Filippo Morabito for his lectures about PDEs on manifolds and Pieter
Collins and Norbert Müller for helpful discussions on possibilities of implementing
differential equations in ERC packages.

References

1. Bournez, O., Graça, D.S., Pouly, A.: Solving analytic differential equations in poly-
nomial time over unbounded domains. In: Murlak, F., Sankowski, P. (eds.) MFCS
2011. LNCS, vol. 6907, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22993-0 18

2. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In:
Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms. Springer,
New York (2008). https://doi.org/10.1007/978-0-387-68546-5 18

3. Brauße, F., Korovina, M., Müller, N.T.: Towards using exact real arithmetic for
initial value problems. In: Mazzara, M., Voronkov, A. (eds.) PSI 2015. LNCS,
vol. 9609, pp. 61–74. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41579-6 6

4. Collins, P., Graça, D.: Effective computability of solutions of ordinary differential
equations the thousand monkeys approach. Electron. Notes Theoret. Comput. Sci.
221, 103–114 (2008)

5. Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics, vol.
19. American Mathematical Society, Providence (1998)

6. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-642-61497-2

https://doi.org/10.1007/978-3-642-22993-0_18
https://doi.org/10.1007/978-3-642-22993-0_18
https://doi.org/10.1007/978-0-387-68546-5_18
https://doi.org/10.1007/978-3-319-41579-6_6
https://doi.org/10.1007/978-3-319-41579-6_6
https://doi.org/10.1007/978-3-642-61497-2

390 S. Selivanova et al.

7. Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J.
Comput. 25(1), 117–132 (1996)

8. Kawamura, A., Cook, S.: Complexity theory for operators in analysis. In: Pro-
ceedings of the 42nd ACM Symposium on Theory of Computing. STOC 2010, pp.
495–502. ACM, New York (2010)

9. Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of
smoothness: parameterized bit-complexity of numerical operators on analytic func-
tions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015). https://doi.org/
10.1016/j.jco.2015.05.001

10. Kawamura, A., Steinberg, F., Thies, H.: Parameterized complexity for uniform
operators on multidimensional analytic functions and ODE solving. In: Moss, L.S.,
de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944, pp. 223–236.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4 13

11. Kawamura, A., Steinberg, F., Ziegler, M.: Complexity theory of (functions on)
compact metric spaces. In: Proceedings of the 31st Annual Symposium on Logic
in Computer Science, LICS, pp. 837–846. ACM (2016)

12. Kawamura, A., Thies, H., Ziegler, M.: Average-case polynomial-time computabil-
ity of Hamiltonian dynamics. In: 43rd International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2018)

13. Ko, K.I.: Complexity Theory of Real Functions. Progress in Theoretical Computer
Science. Birkhäuser, Boston (1991)

14. Konečný, M., Duracz, J., Farjudian, A., Taha, W.: Picard method for enclosing
odes with uncertain initial values. In: Proceedings of the 11th International Con-
ference on Computability and Complexity in Analysis, 21–24 July 2014, pp. 41–42
(2014)

15. Koswara, I., Pogudin, G., Selivanova, S., Ziegler, M.: Bit-complexity of solving
systems of linear evolutionary partial differential equations. In: Santhanam, R.,
Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 223–241. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79416-3 13

16. Koswara, I., Selivanova, S., Ziegler, M.: Computational complexity of real powering
and improved solving linear differential equations. In: van Bevern, R., Kucherov, G.
(eds.) CSR 2019. LNCS, vol. 11532, pp. 215–227. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-19955-5 19

17. Kreitz, C., Weihrauch, K.: Theory of representations. Theoret. Comput. Sci. 38,
35–53 (1985)

18. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V.,
Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45335-0 14

19. Park, S., et al.: Foundation of computer (algebra) analysis systems: semantics,
logic, programming, verification. https://arxiv.org/abs/1608.05787 (2020)

20. Plum, M.: Computer-assisted proofs for semilinear elliptic boundary value prob-
lems. Japan J. Indust. Appl. Math. 26(2–3), 419–442 (2009). https://doi.org/10.
1007/BF03186542

21. Thies, H.: Complexity theory and practice of integrating lipschitz-continuous func-
tions in exact real arithmetic. Master’s thesis, TU Darmstadt, September 2011

22. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.
1007/978-3-642-56999-9

23. Weihrauch, K.: Computational complexity on computable metric spaces. Math.
Logic Q. 49(1), 3–21 (2003)

https://doi.org/10.1016/j.jco.2015.05.001
https://doi.org/10.1016/j.jco.2015.05.001
https://doi.org/10.1007/978-3-662-57669-4_13
https://doi.org/10.1007/978-3-030-79416-3_13
https://doi.org/10.1007/978-3-030-19955-5_19
https://doi.org/10.1007/978-3-030-19955-5_19
https://doi.org/10.1007/3-540-45335-0_14
https://arxiv.org/abs/1608.05787
https://doi.org/10.1007/BF03186542
https://doi.org/10.1007/BF03186542
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9

A New Deterministic Method for
Computing Milnor Number of an ICIS

Shinichi Tajima1 and Katsusuke Nabeshima2(B)

1 Graduate School of Science and Technology, Niigata University,
Ikarashi 2-no-cho, 8050 Nishi-ku Niigata, Japan

tajima@emeritus.niigata-u.ac.jp
2 Department of Applied Mathematics, Tokyo University of Science,

1-3, Kagurazaka, Tokyo, Japan
nabeshima@rs.tus.ac.jp

Abstract. The Milnor number of an isolated complete intersection sin-
gularity (ICIS) is considered in the context of symbolic computation.
Based on the classical Lê-Greuel formula, a new method for computing
Milnor numbers is introduced. Key ideas of our approach are the use
of auxiliary indeterminates and the concept of local cohomology with
coefficients in the field of rational functions of auxiliary indeterminates.
The resulting algorithm is described and some examples are given for
illustration.

Keywords: Milnor number · Lê-Greuel formula · Local cohomology ·
Isolated complete intersection singularity

1 Introduction

In 1971, H. Hamm [16] studied local topology of an isolated complete intersection
singularity (an ICIS) and showed in particular that the Milnor fiber is a non-
singular analytic manifold which is homotopically equivalent to a bouquet of
real spheres of middle dimension. The number of spheres is called, as in the
case of hypersurfaces [22], the Milnor number of an ICIS. The Milnor number
of an ICIS is the most fundamental invariant and it plays important roles in
singularity theory.

In 1974, Lê Dũng Tráng published a paper [19], written in Russian in mem-
ory of G. N. Tjurina, and gave a formula relevant to Milnor numbers of ICIS’s.
In 1973, G.-M. Greuel [11] independently derived the same formula in a com-
pletely different manner in his study of Gauss-Manin connections. Their formula
is called Lê-Greuel formula. Based on this formula, they proposed a method for
computing Milnor number of an ICIS which has been considered as the standard
method for computation.

This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (C)
(18K03320 and 18K03214).

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 391–408, 2021.
https://doi.org/10.1007/978-3-030-85165-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_22

392 S. Tajima and K. Nabeshima

Note that, in 1978, G.-M. Greuel and H. A. Hamm [12] gave a formula for
computing the Milnor number of quasi homogeneous complete intersections and
in 1983 B. Martin and G. Pfister [21], and in 1990 M. Oka [30] gave formulas
for computing Newton non-degenerate complete intersections. These closed for-
mulas were generalized in 2007 by C. Bivia-Ausina [3] by utilizing the concept
of Buchsbaum-Rim multiplicities, joint reductions and mixed Newton numbers.
We refer to [28] for more recent results. Thanks to these investigations, many
nice closed formulas are known. We also refer to [5–10] for results relevant to
Lê-Greuel formula and ICIS germs.

For Newton degenerate cases for instance, the existence of a closed formula
that express the Milnor number of ICIS germs can not be expected. In contrast,
the method proposed by K. Saito and Lê-Greuel can be applied to compute the
Milnor number even for Newton degenerate cases. Because of this, the method
has been considered as the standard method for computation. However, in order
to apply the standard method, the given set of defining functions of an ICIS
should satisfy certain conditions. In the case, if the given set of defining func-
tions does not satisfy this requirement, one has to find or construct another
set of defining functions of an ICIS. In this regard, the standard method is not
deterministic.

We consider in the present paper the Milnor number of an ICIS in the context
of symbolic computation. We provide a new deterministic method for computing
Milnor numbers of an ICIS, in order to complement the standard method. Basic
idea of our approach is the use of auxiliary indeterminates for handling generic
hyperplanes. We show that local cohomology with auxiliary indeterminates allow
us to realize the proposed method as an effective algorithm for computing the
Milnor number of an ICIS.

In Sect. 2, we recall the classical Lê-Greuel formula and the standard method
of computing Milnor number of an ICIS. In Sect. 3, we recall some basics on
local cohomology. In Sect. 4, we recall a result of B. Teissier and present our
main tool. In Sect. 5, we present an algorithm for computing Milnor number of
an ICIS and give an example for illustration.

All algorithms in this paper have been implemented in the computer algebra
system Risa/Asir [29].

2 Lê-Greuel Formula

In this section, we recall Lê-Greuel formula and the standard method for com-
puting Milnor number of an ICIS and we fix some notation. We refer the reader
to [20] for some basics on isolated complete intersection singularities

Let X be an open neighbourhood of the origin O in C
n with a local coor-

dinates system x = (x1, x2, · · · , xn). Let OX be the sheaf on X of holomorphic
functions, OX,O the stalk at O of the sheaf OX , i.e. the ring of germs at O of
holomorphic functions. Let Vq = {x ∈ X | f1(x) = f2(x) = · · · = fq(x) = 0} be
a germ of complete intersection with an isolated singularity at the origin O, an
ICIS, where q ≤ n and f1, f2, · · · , fq are holomorphic functions defined on X.
Notice that the subscript q stands for the codimension of Vq in X.

Milnor Number of an ICIS 393

Let Vq−1 denote the variety defined to be Vq−1 = {x ∈ X | f1(x) =
f2(x) = · · · = fq−1(x) = 0}. Let J(f1, f2, · · · , fq) denote the ideal in OX,O

generated by the maximal minors of the Jacobian matrix ∂(f1,f2,··· ,fq)
∂(x1,x2,··· ,xn) . Let

(f1, f2, · · · , fq−1) be the ideal generated by f1, f2, · · · , fq−1 and let Iq denote
the ideal (f1, f2, · · · , fq−1) + J(f1, f2, · · · , fq) in OX,O:

Iq = (f1, f2, · · · , fq−1) + J(f1, f2, · · · , fq).

Lê Dũng Tráng [19] and G.-M. Greuel [11] independently obtained the fol-
lowing result.

Theorem 1. Let Vq = {x ∈ X | f1(x) = f2(x) = · · · = fq(x) = 0} be an ICIS,
with q ≥ 2. Suppose that Vq−1 is also an ICIS. Then

μ(Vq) + μ(Vq−1) = dimC

(OX,O

Iq

)
,

where, μ(Vq) and μ(Vq−1) are the Milnor number of Vq and of Vq−1 respectively.

Note that for the case q = n, that is the case where the variety Vn is zero-
dimensional, the Milnor number μ(Vn) can be determined by using a formula due
to G.-M. Greuel [11, p. 261] as μ(Vn) = δ − 1, where δ = dimC

(OX,O

(f1,f2,··· ,fn)

)
.

Let us also recall the following classical result due to V. Palamodov [31].

Theorem 2. Let V1 = {x ∈ X | f1(x) = 0} be a hypersurface with an isolated
singularity at the origin O, where f1 is a holomorphic function defined on X.
Let J(f1) be the ideal in OX,O generated by ∂f1

∂x1
, ∂f1

∂x2
, · · · , ∂f1

∂xn
. Let μ(V1) be the

Milnor number of the hypersurface V1. Then

μ(V1) = dimC

(OX,O

J(f1)

)
.

Notice that the above formula can be regarded as a special case of Lê-Greuel
formula given in Theorem 1.

Now, for each integer p with 1 ≤ p ≤ q, let Vp = {x ∈ X | f1(x) = f2(x) =
· · · = fp(x) = 0} and let Ip = (f1, f2, · · · , fp−1) + J(f1, f2, · · · , fp), the ideal
in OX,O generated by f1, f2, · · · , fp−1 and the maximal minors of the Jacobi
matrix ∂(f1,f2,··· ,fp)

∂(x1,x2,··· ,xn) . Note that for the case p = 1 we have I1 = J(f1).
We are ready to present the standard method for computing the Milnor

number of an ICIS. Note that it is K. Saito who first gave the formula below as
a conjecture [4]. Later, two different proofs were given by Lê Dũng Tráng [19] and
G.-M. Greuel [11] under the assumption that all Vp, p = 1, 2, · · · , q are ICIS. In
1984, E. J. N. Looijenger [20] added the refinement and gave the following result.

394 S. Tajima and K. Nabeshima

Theorem 3. Let Vq = {x ∈ X | f1(x) = f2(x) = · · · = fq(x) = 0} be an ICIS,
with q ≥ 2. Suppose that, all the ideal Ip, p = 1, 2, · · · , q have finite colength in
OX,O. Then the following holds.

μ(Vq) =
q∑

p=1

(−1)(q−p) dimC

(OX,O

Ip

)
.

For the validity of the above result, we refer the reader to [20, page 77].

The standard method given by K. Saito [32] and Lê-Greuel is nice and useful.
However it works provided that all the colengths of the ideal Ip, p = 1, 2, · · · , q
are finite. If this requirement is not satisfied, in order to apply the standard
method, it is necessary to find another set of defining equations of the given
variety Vq. This requires expertise, or some trial and error and it is in general
difficult to execute. In this sense, the method is not deterministic.

3 Local Cohomology

In this section, we recall some basics on local cohomology and the fact that
colength of an ideal in the local ring can be computed by using local cohomology.
We refer the reader to [2,14,15,17] for details.

Let Ωn
X be the sheaf on X of holomorphic n-forms. where, as in the previous

section, X is an open neighbourhood of the origin O in C
n. Let Hn

{O}(Ω
n
X) denote

the top local cohomology of Ωn
X supported at O.

Let I be a m primary ideal in OX,O, where m is the maximal ideal of OX,O.
We define WI as

WI = {ω ∈ Hn
{O}(Ω

n
X) | h(x)ω = 0,∀h(x) ∈ I}.

Then, the complex analytic version of the Grothendieck local duality [13,14,17]
says that the pairing

OX,O/I × WI −→ C

induced from the local residue pairing

OX,O × Hn
{O}(Ω

n
X) −→ C

is also non-degenerate. Since WI is dual to OX,O/I as a vector space, the colength
of the ideal I in the local ring OX,O is equal to the dimension, as a vector space,
of WF . Accordingly, the colength of I can be computed by using WF .

Let Hn
[O](OX) denote the algebraic local cohomology supported at O defined

to be
Hn

[O](OX) = lim
k→∞

Extn
OX

(OX/mk,OX).

We define HI as

HI = {ψ ∈ Hn
[O](OX) | h(x)ψ = 0,∀h ∈ I}.

Milnor Number of an ICIS 395

Then, since I is assumed to be m primary, WI = {ψdx | ψ ∈ HI} holds.
Now let g1, g2, · · · , gm be m polynomials in K[x] = K[x1, x2, · · · , xn], where

K = Q. Let I = (g1, g2, · · · , gm) be the ideal in the local ring OX,O generated by
g1, g2, · · · , gm. Assume that the ideal I is an m primary ideal. Then an algorithm
given in [23,34] can be used to compute a basis of the vector space HI .

In this paper, we represent an algebraic local cohomology class as a finite

sum of the form
∑

cλ

[
1
xλ

]
where [] is the Grothendieck symbol and cλ ∈ K,

λ ∈ Z
n
≥1.

Let fix a term ordering � on Z
n
≥1. For a given algebraic local cohomology

class of the form

ψ = cλ

[
1
xλ

]
+

∑
λ�λ′

cλ′

[
1

xλ′

]
,

we call
[

1
xλ

]
the head term, cλ the head coefficient, cλ

[
1
xλ

]
the head monomial

and
[

1
xλ′

]
the lower terms. We denote the head term by ht(ψ), the head coef-

ficient by hc(ψ) and the head monomial by hm(ψ). Furthermore, we denote the
set of terms of ψ as

Term(ψ) =

⎧⎨
⎩

[
1
xκ

] ∣∣∣∣∣∣ ψ =
∑

κ∈Zn
≥1

cκ

[
1
xκ

]
, cκ �= 0

⎫⎬
⎭

and the set of lower terms of ψ as

LL(ψ) =
{[

1
xκ

]
∈ Term(ψ)

∣∣∣∣
[

1
xκ

]
�= ht(ψ)

}
.

For a finite subset Ψ ⊂ Hn
[O](OX), ht(Ψ) = {ht(ψ)|ψ ∈ Ψ} and LL(Ψ) =⋃

ψ∈Ψ

LL(ψ).

The multiplication by xβ is defined as

xβ

[
1
xλ

]
=

⎧⎨
⎩

[
1

xλ−β

]
λi > βi, i = 1, 2, · · · , n,

0 otherwise,

where β = (β1, · · · , βn) ∈ Z
n
≥0, λ = (λ1, · · · , λn) ∈ Z

n
≥1. The details for comput-

ing algebraic local cohomology classes are in [23,34].

We give examples to explain our basic idea for computing the Milnor number
of an ICIS. The following ICIS is taken from a paper of M. Giusti [10].

396 S. Tajima and K. Nabeshima

Example 1 (W9 singularity). Let X = C
3 with coordinates (x, y, z). W9 defined

as
W9 = {(x, y, z) | x2 + yz2 = y2 + xz = 0}

is an ICIS. Let f1(x, y, z) = x2 + yz2, f2(x, y, z) = y2 + xz and l(x, y, z) = z.
Set

V2 = W9, V3 = {(x, y, z) | f1(x, y, z) = f2(x, y, z) = l(x, y, z) = 0}.

Then J(f1, f2, l) is generated by 4xy − z3, the determinant of the Jacobi matrix

∂(f1, f2, l)
∂(x, y, z)

=

⎛
⎜⎝

∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂l
∂x

∂l
∂y

∂l
∂z

⎞
⎟⎠ =

⎛
⎝2x z2 2yz

z 2y x
0 0 1

⎞
⎠ .

Let I denote the ideal in OX,O generated by f1, f2 and 4xy − z3, and let HI

be the set of local cohomology classes annihilated by I:

HI = {ψ ∈ H3
[O](OX) | h(x)ψ = 0,∀h ∈ I}.

The algorithm mentioned above outputs the following 12 local cohomology
classes as a basis of the vector space HI[

1
xyz

]
,

[
1

xyz2

]
,

[
1

xy2z

]
,

[
1

x2yz

]
,

[
1

xyz3

]
,

[
1

xy2z2

]
,

[
1

x2yz2

]
−

[
1

xy3z

]
,

[
1

xyz4

]
+

1
4

[
1

x2y2z

]
,

[
1

xy2z3

]
−

[
1

x3yz

]
,

[
1

x2yz3

]
−

[
1

xy3z2

]
,

[
1

xyz5

]
+

1
4

[
1

x2y2z2

]
− 1

4

[
1

xy4z

]
,

[
1

xyz6

]
+

1
4

[
1

x2y2z3

]
− 1

4

[
1

xy4z2

]
− 1

4

[
1

x4yz

]
.

Since dimC(HI) = 12, it follows from Lê-Greuel formula and the refinement
due to E. J. N. Looijenger that

μ(V2) + μ(V3) = 12.

Let D be the ideal in OX,O generated by f1, f2 and l. Let HD be the set of
local cohomology classes annihilated by D:

HD = {ψ ∈ H3
[O](OX) | h(x)ψ = 0,∀h ∈ D}.

Then, the algorithm outputs the following 4 local cohomology classes as a basis
of HD: [

1
xyz

]
,

[
1

xy2z

]
,

[
1

x2yz

]
,

[
1

x2y2z

]
.

Therefore δ = dimC

(OX,O

D

)
is equal to 4. In fact, it is easy to see that the

ideal D is equal to the ideal (x2, y2, z) whose colength is equal to 4. Greuel
formula presented in the previous section implies μ(V3) = δ−1 = 3. Accordingly
we have μ(V2) = 12 − 3 = 9.

Milnor Number of an ICIS 397

Notice that, in the computation above, if we choose l′ = x instead of l = z,
we fail, because the ideal I ′ generated by f1, f2, J(f1, f2, l′) is not m primary. In
fact it is easy to see that the common locus V (I ′) of the ideal I ′ contains a line
{(x, y, z) | x = y = 0} passing through the origin.

In order to design deterministic algorithms for computing the Milnor number
of an ICIS, one has to avoid such possibilities.

We give another example, which will be examined again in the next section.
The next example is also taken from [10].

Example 2 (T7 singularity). Let X = C
3 with coordinates (x, y, z). T7 defined

as
T7 = {(x, y, z) | x2 + y3 + z3 = yz = 0}

is an ICIS. Let f1(x, y, z) = x2 + y3 + z3, f2(x, y, z) = yz and l(x, y, z) = x.
Set

V2 = T7, V3 = {(x, y, z) | f1(x, y, z) = f2(x, y, z) = l(x, y, z) = 0}.

Since
∣∣∣∣∂(f1, f2, l)

∂(x, y, z)

∣∣∣∣ =

∣∣∣∣∣∣
2x 3y2 3z2

0 z y
1 0 0

∣∣∣∣∣∣ = 3y3 − 3z3, the ideal I defined to be

I = (f1, f2) + J(f1, f2, l) is given by

I = (x2 + y3 + z3, yz, y3 − z3).

The algorithm mentioned above outputs the following 12 local cohomology
classes as a basis of the vector space HI[

1
xyz

]
,

[
1

xyz2

]
,

[
1

xy2z

]
,

[
1

x2yz

]
,

[
1

xyz3

]
,

[
1

xy2z2

]
,

[
1

xy3z

]
,

[
1

xy2z3

]
,

[
1

xy3z2

]
,

[
1

xy3z3

]
,

[
1

xyz4

]
+

[
1

xy4z

]
− 2

[
1

x3yz

]
.

We have μ(V2) + μ(V3) = 12.
Let D = (x2 + y3 + z3, yz, x). Then the algorithm outputs the following 6

local cohomology classes as a basis of the vector space HD[
1

xyz

]
,

[
1

xyz2

]
,

[
1

xy2z

]
,

[
1

xyz3

]
,

[
1

xy3z

]
,

[
1

xyz4

]
−

[
1

xy4z

]
.

From δ = dimC(HD) = 6, we have μ(V3) = 6 − 1 = 5. Therefore, we have
μ(T7) = 12 − 5 = 7.

4 Genericity

We recall in this section a result of B. Teissier on generic hyperplanes [36,38]
and give our main tool.

Let V = {x ∈ X | g1(x) = g2(x) = · · · = gr(x) = 0} be a germ of complete
intersection with an isolated singularity at the origin O with r < n.

398 S. Tajima and K. Nabeshima

4.1 Hyperplane Sections

For ξ = (ξ1, ξ2, · · · , ξn) ∈ C
n\(0, 0, · · · , 0), let lξ(x) = ξ1x1 + ξ2x2 + · · · + ξnxn

and let Lξ denote the hyperplane Lξ = {x ∈ C
n | lξ(x) = 0}.

Let Wξ denote the hyperplane section of V defined to be Wξ = V ∩Lξ. Let Iξ

be the ideal in the local ring OX,O defined to be

Iξ = (g1, g2, · · · , gr) + J(g1, g2, · · · , gr, lξ),

where J(g1, g2, · · · , gr, lξ) is the ideal generated by the maximal minors of the
Jacobi matrix ∂(g1,g2,··· ,gr,lξ)

∂(x1,x2,··· ,xn) . Notice that ξ = (ξ1, ξ2, · · · , ξn) are regarded as
parameters.

Define a number γ as

γ = min
[ξ]∈Pn−1

(
dimC

(OX,O

Iξ

))
,

where [ξ] stands for the class in the projective space Pn−1 of ξ = (ξ1, ξ2, · · · , ξn) ∈
C

n\(0, 0, · · · , 0).
Let

U =
{

[ξ] ∈ P
n−1

∣∣∣∣ dimC

(OX,O

Iξ

)
= γ

}
.

Then, the result in [36–38] of B. Teissier on polar varieties implies that U is a
Zariski open dense subset of Pn−1.

Definition 1. Let ξ = (ξ1, ξ2, · · · , ξn) ∈ C
n\(0, 0, · · · , 0).

(i) The hyperplane Lξ satisfies the condition F if dimC

(OX,O

Iξ

)
< ∞.

(ii) The hyperplane Lξ satisfies the condition G if dimC

(OX,O

Iξ

)
= γ.

Since Wξ = {x ∈ X | g1(x) = g2(x) = · · · = gr(x) = lξ(x) = 0}, Lê-Greuel
formula implies that if Lξ satisfies the condition F, we have

μ(V) + μ(Wξ) = dimC

(OX,O

Iξ

)
.

We say that the hyperplane Lξ is generic with respect to the variety V , if
Lξ satisfies the condition G, and the hyperplane section V ∩ Lξ is also called a
generic hyperplane section of V.

Remark 1: Let V be a hypersurface V = {x ∈ X | f(x) = 0} with an isolated
singularity at the origin. Let l = x1 and let L = {x ∈ X | x1 = 0}. Assume
that the hyperplane L is generic. The ideal I defined to be I = (f) + J(f, x1) is
equal to (f, ∂f

∂x2
, ∂f

∂x3
, · · · , ∂f

∂xn
). Therefore, for the case r = 1, the formula above

coincides with the result of Lê Dũng Tráng given in [18] and that of B. Teissier
given in [36,37].

Milnor Number of an ICIS 399

Remark 2: In [27], the authors of the present paper constructed an algorithm
to test whether given family of ideals are zero-dimensional or not. Therefore,
the set {[ξ] ∈ P

n−1 | Lξ satisfies the condition F} is computable. Furthermore,
by combining this algorithm with the algorithm given in [23] for computing
parametric local cohomology systems, a method for decomposing the projective
space P

n−1 according to the dimension of dimC

(OX,O

Iξ

)
can be realized as an

algorithm. In particular, the set {[ξ] ∈ P
n−1 | Lξ satisfies the condition G} is

also computable. See [24] for related results on limiting tangent spaces.

4.2 Auxiliary Indeterminates and Local Cohomology

In [26], in order to address problems that involves generic properties [33,37], the
authors of the present paper proposed an approach and implemented an algo-
rithm for computing local cohomology with coefficients in the field of rational
functions of auxiliary indeterminates. The method of computing local cohomol-
ogy classes are completely same as the previous one given in [23,34]. Difference
lies in only the coefficient fields of local cohomology classes. The algorithm has
been successfully utilized in [25,26,35]. Here we adopt the same approach and
use the algorithm mentioned above.

Let u = {u1, u2, · · · , un} be auxiliary indeterminates and let K(u) be the
field of rational functions in u. Let Hn

[O](K(u){x}) denote the local cohomology
defined to be

Hn
[O](K(u){x}) = lim

k→∞
Extn

K(u){x}(K(u){x}/mk,K(u){x}).

Let �u(x) = u1x1 + u2x2 + · · · + unxn. Let Ju denote an ideal in K(u){x}
generated by the maximal minor of the Jacobi matrix ∂(g1,g2,··· ,gr,	u)

∂(x1,x2,··· ,xn) , and let

Iu = (g1, g2, · · · , gr) + Ju.

Here, Iu is regarded as an ideal in the local ring K(u){x}. Now we consider the
set HIu

of local cohomology classes defined to be

HIu
= {ψ ∈ Hn

[O](K(u){x}) | h(x)ψ = 0, ∀h ∈ Iu}.

We have the following.

Lemma 1. Let dimK(u)(HIu
) be the dimension as a vector space over the fields

of rational functions of the space HIu
. Then, the following holds.

dimK(u)(HIu
) = min

[ξ]∈Pn−1

(
dimC

(OX,O

Iξ

))
.

Proof. Let � be a term ordering on Z
n
≥1. (Note that coefficients K(u) does

not affect the term ordering.) Let Ψu be a basis of the vector space HIu
such

that, for all ψ ∈ Ψu, hc(ψ) = 1, ht(ψ) /∈ ht(Ψu\{ψ}) and ht(ψ) /∈ LL(Ψu)

400 S. Tajima and K. Nabeshima

w.r.t. �. For α ∈ Kn, let σα(Ψu) denote the set of local cohomology classes in
Hn

[O](K{x}) defined as σα(Ψu) = {σα(ψu) | ψu ∈ Ψu}, where σα is the map
that substitutes u by α. Let Φα be a basis of the vector space, over K, of HIα

such that, for all ϕ ∈ Φα, hc(ϕ) = 1, ht(ϕ) /∈ ht(Φα\{ϕ}) and ht(ϕ) /∈ LL(Φα)
w.r.t. �. Recall that the basis Ψu is computed over the fields K(u) of rational
functions. Accordingly, for generic values of α ∈ Kn, σα(Ψu) = Φα. Since the set
U =

{
[ξ] ∈ P

n−1 | dimC

(OX,O

Iξ

)
= γ

}
is Zariski open and dense, the statement

above holds. �

Remark 3: In the algorithm of computing a basis Ψu of HIu

, everything is
computed over the field of rational functions. This means, calculation such as
u2
u2

= 1 is allowed. Therefore, there is a possibility that, σα(Ψu) is not a basis of
the vector space HIα

, for some α ∈ Kn.
We thus arrive at the following criterion.

Theorem 4. Let α = (α1, α2, · · · , αn) ∈ Kn, and let Lα be the hyperplane
defined by Lα = {x ∈ C

n | lα(x) = 0}, where lα(x) = α1x1 + α2x2 + · · · + αnxn.
Let Iα denote the ideal in the local ring K{x} defined to be Iα = (g1, g2, · · · , gr)+
J(g1, g2, · · · , gr, lα). Then, the hyperplane Lα is generic with respect to the vari-
ety V, if and only if the following holds

dimK(HIα
) = dimK(u)(HIu

).

Proof. Since dimK(u)(HIu
) = γ holds by Lemma 1, the hyperplane Lα satisfies

the condition G if and only if dimK(HIα
) = dimK(u)(HIu

). �

The following example is taken from a list given in [10]

Example 3 (T7 singularity). Let X = C
3 with coordinates (x, y, z). T7 defined

as
T7 = {(x, y, z) | x2 + y3 + z3 = yz = 0}

is an ICIS. Let f1(x, y, z) = x2 + y3 + z3, f2(x, y, z) = yz and �u(x, y, z) =
x + u2y + u3z, where u2, u3 are auxiliary indeterminates.

Since
∣∣∣∂(f1,f2,	u)

∂(x,y,z)

∣∣∣ = 3y3 − 3z3 − 2u2xy + 2u3xz, the ideal Iu defined to be
Iu = (f1, f2) + Ju is given by

Iu = (x2 + y3 + z3, yz, 3y3 − 3z3 − 2u2xy + 2u3xz) ⊂ K(u2, u3){x, y, z}.

The algorithm mentioned above outputs the following 10 local cohomology
classes as a basis Ψu, over the field K(u2, u3) of the vector space HIu[

1
xyz

]
,

[
1

xyz2

]
,

[
1

xy2z

]
,

[
1

x2yz

]
,

[
1

xyz3

]
,

[
1

xy3z

]
,

u2

[
1

xy2z2

]
+ u3

[
1

x2y2z

]
, u3

[
1

xyz4

]
+

3
2

[
1

x2yz2

]
− u3

[
1

x3yz

]
,

u3

[
1

xy4z

]
+

3
2

[
1

x2yz2

]
− u3

[
1

x3yz

]
,

Milnor Number of an ICIS 401

u2
2u3

[
1

xyz5

]
+ u2u

2
3

[
1

xy5z

]
+

3
2
u2
2

[
1

x2yz3

]
+

3
2
u2
3

[
1

x2y3z

]

−u2
2u3

[
1

x3yz2

]
− u2u

2
3

[
1

x3y2z

]
.

Since dimK(u2,u3)(HIu
) = 10, we have γ = 10. This means, for any generic

hyperplane section W of T7, we have μ(T7) + μ(W) = 10.
Let Du = (x2 + y3 + z3, yz, x + u2y + u3z). Then the algorithm outputs the

following 4 local cohomology classes as a basis of the vector space HDu
.[

1
xyz

]
,

[
1

xyz2

]
− u3

[
1

x2yz

]
,

[
1

xy2z

]
− u2

[
1

x2yz

]
,

u2
2

[
1

xyz3

]
− u2

3

[
1

xy3z

]
− u2

2u3

[
1

x2yz2

]
+ u2u

2
3

[
1

x2y2z

]
.

Therefore, we have μ(T7) = 10 − (4 − 1) = 7.
We see that the Milnor number is determined only by the computation of

local cohomology with coefficient in the field of rational functions of auxiliary
indeterminates. Notice that in this computation, no generic hyperplane is used.
It is easy to see, for the case q = n − 1 in general, it is not necessary to find
generic hyperplane nor generic hyperplane section explicitly to compute the Mil-
nor number μ(Vn−1) of Vn−1.

Let us compare the computation above with that described in Example 2 in
the previous section.

In Example 2, the hyperplane x = 0 is chosen. The dimension of HI for the
ideal I = (x2 + y3 + z3, yz, y3 − z3) is equal to 12, which is bigger than 10. This
means that the hyperplane x = 0 that satisfies the condition F is not generic.
The dimension of HD for the ideal D = (x2 + y3 + z3, yz, x) is equal to 6, which
is also bigger than 4.

We see that, if a generic hyperplane is not selected, this affects the efficiency
of the subsequent computations. In other words, it is better to choose in each
step, generic hyperplanes to save the cost of computations.

Let us consider a method for finding a generic hyperplane. Let us look at
the basis Ψu given in Example 3. If we substitute (1, 0) into (u2, u3), we obtain
10 local cohomology classes. It seems natural to expect naively that the hyper-
plane x + y = 0 that corresponds to (1, 0) is generic. However, the algorithm
described in [34] outputs the following 11 local cohomology classes as a basis
of HI for the ideal I = (x2 + y3 + z3, yz, 3y3 − 3z3 − 2xy) ⊂ K{x, y, z}

[
1

xyz

]
,

[
1

xyz2

]
,

[
1

xy2z

]
,

[
1

x2yz

]
,

[
1

xyz3

]
,

[
1

xy3z

]
,

[
1

x2yz2

]
,

[
1

x2yz3

]
,

[
1

xyz4

]
− 3

2

[
1

x2y2z

]
−

[
1

x3yz

]
,

[
1

xy4z

]
+

3
2

[
1

x2y2z

]
−

[
1

x3yz

]
,

[
1

x2yz4

]
+

3
2

[
1

xy5z

]
+

9
4

[
1

x2y3z

]
− 3

2

[
1

x3y2z

]
−

[
1

x4yz

]
.

402 S. Tajima and K. Nabeshima

Such a naive guess does not work. Note that if one chooses for instance
the hyperplane x + y + z = 0, then it turns out by direct computation that
the chosen hyperplane is generic. We also have dimK(HD) = 4, for the ideal
D = (f1, f2, x + y + z).

5 Algorithm

Here we give an algorithm for computing a Milnor number of an ICIS and an
example.

Let Vq = {x ∈ X|f1(x) = f2(x) = · · · = fq(x) = 0} be a germ of complete
intersection with an isolated singularity at the origin O with q < n. Let

�1 = u1x1 + u2x2 + · · · + unxn, u = {u1, u2, · · · , un},

J1 be the set of all minors of the Jacobian matrix ∂(f1,··· ,fq,	1)
∂(x1,··· ,xn) , and I1 =

{f1, · · · , fq} ∪ J1, where u1, u2, · · · , un are auxiliary indeterminates. Set

HI1 = {ψ ∈ Hn
[O](K(u){x})|hψ = 0,∀h ∈ I1}.

Assume that we have already computed γ1 = dimK(u)(HI1). Then, by the
definition, lα = α1x1+α2x2+· · ·+αnxn is generic if and only if dimK(HIα

) = γ1
where Jα is the set of all minors of the Jacobian matrix ∂(f1,··· ,fq,lα)

∂(x1,··· ,xn) and Iα =
{f1, · · · , fq} ∪ Jα. Hence, we can easily obtain a generic hyperplane by utilizing
random numbers.

Our strategy for getting a generic hyperplane, is the following.
“Take a point [α] ∈ P

n−1, randomly. If dimK(HIα
) = γ1, then return lα, if

not, repeat the same procedure until we get a generic hyperplane.”
Recall that, according to Theorem 4, U = {[α] ∈ P

n−1 |dimK(HIα
) = γ1}

is a Zariski open dense subset of Pn−1. Therefore, if a hyperplane is randomly
taken, the probability of its genericity is very high. Hence, the strategy will work
efficiently. After getting a generic hyperplane lα in Kn, we can utilize the generic
hyperplane in the next step.

Note that as [α] ∈ U , �1 can be written as

�1 = x1 + u2x2 + · · · + unxn,

namely, we do not need the symbol u1.
In the next step, we set again �2 = x2 + u3x3 + · · · + u3x3 and update

u = {u3, · · · , un}. Let J2 be the set of all minors of the Jacobian matrix
∂(f1,··· ,fq,lα,	2)

∂(x1,··· ,xn) and I2 = {f1, · · · , fq, lα} ∪ J2. Likewise, we can obtain a generic
hyperplane of Vq+1 = {x ∈ X|f1(x) = f2(x) = · · · = fq(x) = lα = 0} by utiliz-
ing our strategy. (Remark that μ(Vq)+μ(Vq+1) = γ1.) We repeat this procedure
n − q times.

Algorithm 1 represents our strategy that computes a generic hyperplane by
utilizing random numbers, and is utilized in Algorithm 2.

Milnor Number of an ICIS 403

Algorithm 1
Specification: GENERICITY(Ij , γj , u)

Input : Ij ⊂ K(u)[x], γj ∈ N, u = {uj+1, · · · , un}: auxiliary indeterminates
(j ≤ n − 1). (γj means the dimension of the vector space HIj

.)
Output: α = (αj+1, · · · , αn) ∈ Kn−j : for α, dimK(Hσα(I)) = γ where

σα(I) = {g(α, x)|g(u, x) ∈ I} (i.e. xj + αj+1xj+1 + · · · + αnxn = 0 is a
generic hyperplane w.r.t. Vq+j .)

begin
flag ← 1;
while flag �= 0 do

α = (αj+1, · · · , αn) ← take random numbers αj+1, · · · , αn from K;
if dimK(Hσα(I)) = γj then /*σα(I) = {g(α, x)|g(u, x) ∈ I} */

return α;
end-if

end-while
end

Note that when dimK(Hσα(I)) > γ, it is possible to determine whether
dimK(Hσα(I)) = γ or not, without computing a basis of Hσα(I), completely. That
is to say, if γ + 1 algebraic local cohomology classes are obtained in the process
of computation, then we can instantly output the fact “dimK(Hσα(I)) �= γ”.
We refer to papers [23,34] that give algorithms for computing algebraic local
cohomology classes.

The following is the main algorithm for computing the Milnor number of
an ICIS.

Algorithm 2

Input : f1, f2, · · · , fq ∈ K[x] defines a germ of an ICIS Vq at O in C
n where

q ≥ 2 and q ≤ n.
Output: μ : μ(Vq).

begin
μ ← 0; L ← ∅;
for each j = 1 to n − q do

�j ← xj +
n∑

i=j+1

uixi;

u ← {uj+1, · · · , un};
Jj ← all maximal minors of the Jacobian matrix ∂(f1,··· ,fq,l1,··· ,lj−1,	j)

∂(x1,··· ,xn)

(if j = 1, then ∂(f1,··· ,fq,	1)
∂(x1,··· ,xn));

Ij ← {f1, · · · , fq} ∪ L ∪ Jj ;
γj ← dimK(u)(HIj

);
(αj+1, · · · , αn) ← GENERICITY(Ij , γj , u);

404 S. Tajima and K. Nabeshima

lj ← substitute (αj+1, · · · , αn) into u of �j ;
L ← L ∪ {lj};
μ ← μ + (−1)j+1γj ;

end-for
D ← {f1, · · · , fq} ∪ L; (∗1)
δ ← dimK(HD);
μ ← μ + (−1)j+1(δ − 1);
return μ;
end

Remark 4: See (∗1). Let D = {f1, · · · , fq} ∪ L = {f1, · · · , fq, l1, · · · , ln−q} and
Du = {f1, · · · , f1, l1, . . . , ln−q−1, �n−q}. Then, δ = dimK(HD) = dimK(u)(HDu

).
Therefore, we do not need to execute GENERICITY(In−q, γn−q, u). However,
in order to keep simple style, we adopt the above. Note that Ij is a set of
generators of the ideal (Ij).

Theorem 5. Algorithm 2 outputs μ(Vq), correctly.

Proof. For each i, let Ji be the set of all maximal minors of the Jacobian matrix
∂(f1,··· ,fq,l1,··· ,li−1,	i)

∂(x1,··· ,xn) , Ij = {f1, · · · , fq}∪{l1, . . . , lj}∪Jj , γj = dimK(u)(HIj
) and

Vq+j = {x ∈ X|f1(x) = f2(x) = · · · = fq(x) = l1(x) = · · · = li(x) = 0}. Then,
by Theorem 1 and Greuel formula, γj = μ(Vq+j−1)+μ(Vq+j) and μ(Vq+(n−q)) =
μ(Vn) = δ − 1. Thus, we have the following simultaneous linear equations

γ1 = μ(Vq) + μ(Vq+1),
γ2 = μ(Vq+1) + μ(Vq+2),
γ3 = μ(Vq+2) + μ(Vq+3),

...
γn−q = μ(Vq+(n−q−1)) + μ(Vq+(n−q)) = μ(Vn−1) + μ(Vn) = μ(Vn−1) + (δ − 1).

Hence,

μ(Vq) =
n−q∑
i=1

(−1)i+1γi + (−1)n−q+2(δ − 1).

Therefore, Algorithm 2 outputs μ(Vq), correctly. �

We present an example for illustration. The example is taken from a list given

in the paper [39] of C. T. C. Wall. See also [1].

Example 4 (J ′
9 singularity). Let X = C

4 with coordinates (x, y, z, w).
Let f1(x, y, z, w) = xy + z2, f2(x, y, z, w) = xz + y3 + w2 and

V2 = {(x, y, z, w) ∈ X | f1(x, y, z, w) = f2(x, y, z, w) = 0}.

V2 is an ICIS, known as J ′
9 singularity.

Milnor Number of an ICIS 405

1: Let us compute the case i = 1. Let �1 = x+u2y +u3z +u4w, u = {u2, u3, u4}
where u2, u3, u4 are auxiliary indeterminates. Now,

∂(f1, f2, �1)
∂(x, y, z, w)

=

⎛
⎜⎝

∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂w

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂w

∂	1
∂x

∂	1
∂y

∂	1
∂z

∂	1
∂w

⎞
⎟⎠ =

⎛
⎝y x 2z 0

z 3y2 x 2w
1 u2 u3 u4

⎞
⎠ .

Let J1 be the set of all maximal minors of the matrix
∂(f1, f2, �1)
∂(x, y, z, w)

, i.e.

J1 =

⎧⎨
⎩

∣∣∣∣∣∣
y x 2z
z 3y2 x
1 u2 u3

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
y x 0
z 3y2 2w
1 u2 u4

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
y 2z 0
z x 2w
1 u3 u4

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
x 2z 0

3y2 x 2w
u2 u3 u4

∣∣∣∣∣∣

⎫⎬
⎭

= {x2 − u2xy − u3xz + 3u3y
3 − 6y2x + 2u2z

2,

−u4xz + 2xw + 3u4y
3 − 2u2yw, u4xy − 2u3yw − 2u4z

2 + 4zw,

u4x
2 − 2u3xw − 6u4y

2z + 4u2zw}.

Set I1 = {f1, f2} ∪ J1. Then, γ1 = dimK(u)(HI1) = 14.
First, take (0, 0, 0) for (u2, u3, u4). Then, Algorithm 1 detects that the hyper-
plane x = 0 is not generic. In fact, the ideal generated by

{g(0, 0, 0, x, y, z, w)|g(u2, u3, u4, x, z, y, z) ∈ I1}

is not m primary. Second, take (1, 0, 0) for (u2, u3, u4). Then, we find that the
hyperplane x + y = 0 is generic.
We set l1 = x + y, L = {l1} and

V3 = {(x, y, z, w) ∈ X | f1(x, y, z, w) = f2(x, y, z, w) = x + y = 0}.

2: Let us compute the case i = 2. Renew u as {u3, u4} and

∂(f1, f2, l1, �2)
∂(x, y, z, w)

=

⎛
⎜⎜⎜⎝

∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂w

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂w

∂l1
∂x

∂l1
∂y

∂l1
∂z

∂l1
∂w

∂	2
∂x

∂	2
∂y

∂	2
∂z

∂	2
∂w

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

y x 2z 0
z 3y2 x 2w
1 1 0 0
0 1 u3 u4

⎞
⎟⎟⎠ .

Let �2 = y + u3z + u4w and

J2 =
{∣∣∣∣∂(f1, f2, l1, �2)

∂(x, y, z, w)

∣∣∣∣
}

= {u4x
2 + −u4xy − 2u3xw − 6u4y

2x + 2u3yw + 2u4z
2 + 4zw}.

Set I2 = {f1, f2} ∪ L ∪ J2. Then, γ2 = dimK(u)(HI2) = 8.

406 S. Tajima and K. Nabeshima

Let D = {f1, f2, l1, �2}. Then, we have the following as a basis of HD.

u3

[
1

xyzw2

]
− u4

[
1

xyz2w

]
,

[
1

xyzw2

]
− u4

[
1

xy2zw

]
+ u4

[
1

x2yzw

]
,

(2u3u4 − u3
4)

[
1

xyz3w

]
+ u2

3u4

[
1

xy2z2w

]
,

−(u4 + u2
3u4)

[
1

xyzw3

]
+ (1 − u2

3)
[

1
xyz2w2

]
+ (−u3 + u3

3 + u2
4)

[
1

xy2zw2

]

+(u3 − u3
3 − u2

4)
[

1
x2yzw2

]
+ u4

[
1

x2yz2w2

]
+ (2u3u4 − u3

4)
[

1
xy3zw

]

+(−2u3u4 + u3
4)

[
1

x2y2zw

]
+ (2u3u4 − u2

4

[
1

x3yzw

]
+ u2

3u4

[
1

x2yzw

]
.

Since δ = 4, we arrive at μ(V2) = 14 − 8 + 3 = 9.

Note that if we take (0, 1) for (u3, u4), then Algorithm 1 detects that the
hyperplane y +w = 0 is not generic. In fact the dimension of the relevant vector
space is equal to 9. Next we take (1, 1) for (u3, u4). Then, we find that the
hyperplane y + z + w = 0 is generic. We set l2 = y + z + w, L = {l1, l2} and

V4 = {(x, y, z, w) ∈ X | f1(x, y, z, w) = f2(x, y, z, w) = x + y = y + z + w = 0}.

Now, we define D as D = {f1, f2} ∪ L = {f1, f2, l1, l2} and compute the
dimension of the vector space HD. We find δ = dimK(HD) = 4. Since μ(V2) =
γ1 − γ2 + (δ − 1), we also have μ(V2) = 9.

References

1. Afzal, D., Afzal, F., Mulback, M., Pfister, G., Yaqub, A.: Unimodal ICIS, a clas-
sifier. Studia Scientiarum Math. Hungarica 54, 374–403 (2017)

2. Altman, A., Kleiman, S.: Introduction to Grothendieck Duality Theory. LNM, vol.
146. Springer, Heidelberg (1970). https://doi.org/10.1007/BFb0060932

3. Bivià-Ausina, C.: Mixed Newton numbers and isolated complete intersection sin-
gularities. Proc. London Math. Soc. 94, 749–771 (2007)

4. Brieskorn, E.: Vue d’ensembre sur les problèmes de monodromie. Astérisque 7(8),
393–413 (1973)

5. Callejas-Brdregal, R., Morgado, M.F.Z., Saia, M., Seade, J.: The Lê-Greuel formula
for functions on analytic spaces. Tohoku Math. J. 68, 439–456 (2016)

6. Carvalho, R.S., Oréfice-Okamoto, B., Tomazzela, J.N.: µ-constant deformations of
functions on an ICIS. J. Singul. 19, 163–176 (2019)

7. Damon, J.N.: Topological invariants of µ-constant deformations of complete inter-
section. Quart. J. Math. Oxford 40, 139–159 (1989)

8. Gaffney, T.: Polar multiplicities and equisingularity of map germs. Topology 32,
185–223 (1993)

9. Gaffney, T.: Multiplicities and equisingularity of ICIS germs. Invent. Math. 123,
209–220 (1996)

https://doi.org/10.1007/BFb0060932

Milnor Number of an ICIS 407

10. Giusti, M.: Classification des singularités isolées simples d’intersections complètes.
In: Singularities Part I, Proceedings of Symposia in Pure Mathematics, vol. 40, pp.
457–494. AMS (1983)

11. Greuel, G.-M.: Der Gauss-Manin-Zusammenhang isolierter Singularitäten von
vollständigen Durchschnitten. Math. Ann. 214, 235–266 (1973)

12. Greuel, G.-M., Hamm, H.A.: Invarianten quasihomogener vollständiger Durch-
schnitte. Invent. Math. 49, 67–86 (1978)

13. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, Hoboken (1976)
14. Grothendieck, A.: Théorèmes de dualité pour les faisceaux algébriques cohérents.

Séminaire Bourbaki 149, 169–193 (1957)
15. Hartshorne, R.: Local Cohomology. LNM, vol. 41. Springer, Heidelberg (1967).

https://doi.org/10.1007/BFb0073971
16. Hamm, H.: Lokale topologische Eigenschaften komplexer Räume. Math. Ann. 191,

235–252 (1971)
17. Kunz, E.: Residues and Duality for Projective Algebraic Varieties. American Math-

ematical Society, Providence (2009)
18. Lê D.T.: Calcule du nobmre de cycles évanouissants d’une hypersurface complexe.

Ann. Inst. Fourier 23, 261–270 (1973)
19. Lê D.T.: Calculation of Milnor number of isolated singularity of complete intersec-

tion (in Russian). Funktsional. Analiz i ego Prilozhen. 8, 45–49 (1974)
20. Looijenga, E.J.N.: Isolated Singular Points on Complete Intersections. London

Mathematical Society Lecture Note Series, Cambridge, vol. 77 (1984)
21. Martin, B., Pfister, G.: Milnor number of complete intersections and Newton poly-

gons. Math. Nachr. 110, 159–177 (1983)
22. Milnor, J.: Singular points of complex hypersurfaces. Ann. Math. Stud. 61, 591–648

(1968)
23. Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and para-

metric standard bases for zero-dimensional ideals. J. Symb. Comput. 82, 91–122
(2017)

24. Nabeshima, K., Tajima, S.: A new method for computing limiting tangent spaces
of isolated hypersurface singularity via algebraic local sohomology. In: Advanced
Studies in Pure Mathematics, vol. 78, pp. 331–344 (2018)

25. Nabeshima, K., Tajima, S.: Computing logarithmic vector fields and Bruce-Roberts
Milnor numbers via local cohomology classes. Rev. Roumaine Math. Pures Appl.
64, 521–538 (2019)

26. Nabeshima, K., Tajima, S.: Alternative algorithms for computing generic µ∗-
sequences and local Euler obstructions of isolated hypersurface singularities. J.
Algebra Appl. 18(8) (2019). 1959156 (13pages)

27. Nabeshima, K., Tajima, S.: Testing zero-dimensionality of varieties at a point.
Math. Comput. Sci. 15, 317–331 (2021)

28. Nguyen, T.T.: Uniform stable radius and Milnor number for non-degenerate iso-
lated complete intersection singularities. arXiv:1912.10655v2 (2019)

29. Noro, M., Takeshima, T.: Risa/Asir- a computer algebra system. In: Proceedings of
International Symposium on Symbolic and Algebraic Computation (ISSAC), pp.
387–396. ACM (1992)

30. Oka, M.: Principal zeta-function of non-degenerate complete intersection singular-
ity. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37, 11–32 (1990)

31. Palamodov, V.P.: Multiplicity of holomorphic mappings. Funktsional. Analiz i ego
Prilozhen. 1, 54–65 (1967)

32. Saito, K.: Calcule algébrique de la monodromie. Astérisque 7(8), 195–211 (1973)

https://doi.org/10.1007/BFb0073971
http://arxiv.org/abs/1912.10655v2

408 S. Tajima and K. Nabeshima

33. Tajima, S.: On polar varieties, logarithmic vector fields and holonomic D-modules.
RIMS Kôkyûroku Bessatsu 40, 41–51 (2013)

34. Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local coho-
mology for zero dimensional ideals. In: Advanced Studies in Pure Mathematics, vol.
56, pp. 341–361 (2009)

35. Tajima, S., Shibuta, T., Nabeshima, K.: Computing logarithmic vector fields along
an ICIS germ via Matlis duality. In: Boulier, F., England, M., Sadykov, T.M.,
Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 543–562. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-60026-6 32

36. Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney, Singu-
larités, à Cargèse. Astérisque 7(8), 285–362 (1973)

37. Teissier, B.: Variétés polaires. I. Inventiones Mathematicae, vol. 40, pp. 267–292
(1977)

38. Teissier, B.: Varietes polaires II Multiplicites polaires, sections planes, et conditions
de whitney. In: Aroca, J.M., Buchweitz, R., Giusti, M., Merle, M. (eds.) Algebraic
Geometry. LNM, vol. 961, pp. 314–491. Springer, Heidelberg (1982). https://doi.
org/10.1007/BFb0071291

39. Wall, C.T.C.: Classification of unimodal isolated singularities complete intersec-
tions. In: Proceedings of Symposia in Pure Mathematics, vol. 40, Part II, pp.
625–640 (1983)

https://doi.org/10.1007/978-3-030-60026-6_32
https://doi.org/10.1007/BFb0071291
https://doi.org/10.1007/BFb0071291

New Parallelisms of PG(3, 5) with
Automorphisms of Order 8

Svetlana Topalova and Stela Zhelezova(B)

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
Sofia, Bulgaria

{svetlana,stela}@math.bas.bg

Abstract. Let PG(n, q) be the n-dimensional projective space over the
finite field Fq. A spread in PG(n, q) is a set of lines which partition the
point set. A partition of the lines of the projective space by spreads
is called a parallelism. The study of parallelisms is motivated by their
numerous relations and applications. We construct 8958 new nonisomor-
phic parallelisms of PG(3, 5). They are invariant under cyclic automor-
phism groups of order 8. Some of their interesting properties are dis-
cussed. We use the system for computational discrete algebra GAP as
well as our own MPI-based software written in C++.

Keywords: Finite projective space · Parallelism · System for
computational discrete algebra GAP

1 Introduction

Let PG(n, q) be the n-dimensional projective space over the finite field Fq. A
spread is a set of lines such that each point is in exactly one of these lines. Two
spreads are isomorphic if an automorphism of PG(n, q) maps one to the other. A
parallelism is a partition of the set of all lines of the projective space to spreads.
Two parallelisms are isomorphic if there is an automorphism of PG(n, q) which
maps the spreads of one parallelism to spreads of the other. An automorphism
of a parallelisms is an automorphism of PG(n, q) which maps each of its spreads
to a spread of the same parallelism.

Background material on projective spaces, spreads, and parallelisms can be
found, for instance, in [15] or [24]. Parallelisms are related to translation planes
and 2-designs [24], network coding [9], error-correcting codes [13], and cryptog-
raphy [22].

The authors acknowledge the provided access to the e-infrastructure of the NCHDC
– part of the Bulgarian National Roadmap on RIs, with the financial support by the
Grant No D01-221/03.12.2018.

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 409–419, 2021.
https://doi.org/10.1007/978-3-030-85165-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_23&domain=pdf
http://orcid.org/0000-0003-3821-4672
http://orcid.org/0000-0002-9669-6916
https://doi.org/10.1007/978-3-030-85165-1_23

410 S. Topalova and S. Zhelezova

General constructions of parallelisms are known for PG(2n − 1, q) [6], for
PG(n, 2) [1,30], and for PG(3, q) [8,10,14,17]. All parallelisms of PG(3, 2) and
PG(3, 3) are known [3,15]. The classification problem is still open for larger
projective spaces. Since solving it in the general case is currently infeasible, many
authors have performed restricted searches for parallelisms satisfying certain
assumptions. An important approach is based on assuming a non-trivial group
of automorphisms. It makes the search more feasible, but excludes objects with
trivial or very small automorphism groups. Examples of this approach can be
found, for instance, in [4,18,19,21,23]. The present paper also follows this line
of research by assuming a cyclic group of order 8. All possibilities for such a
group are explored, but besides the automorphism group, additional restrictions
on the type of the parallelisms are also assumed.

A spread of PG(3, q) contains q2+1 lines and a parallelism consists of q2+q+1
spreads. A set R of q + 1 mutually skew lines of PG(3, q) is called a regulus if
any line which intersects three lines of R intersects all lines of R. Three mutually
skew lines determine exactly one regulus. A spread S of PG(3, q) is called regular
if it contains all the lines of the regulus determined by any triple of lines from S.
If all the spreads of a parallelism are regular, the parallelism is regular too. If
all the spreads of a parallelism are isomorphic to each other, the parallelism
is uniform.

The number of the points and the planes of PG(3, q) is the same. The dual
space of PG(3, q) can be obtained by considering the planes as points and the
points as planes. It is defined by the plane-line incidence and is a PG(3, q) too.
Each parallelism corresponds to a parallelism of the dual space and is self-dual
if it is isomorphic to it (details can be found, for instance, in [4]).

Computer-aided classifications of parallelisms with assumed automorphism
groups have been done in projective spaces with relatively small parameters. In
PG(3, 4) (the smallest space in which the classification problem is open), all par-
allelisms invariant under automorphism groups of odd prime orders and some of
the parallelisms with automorphisms of order 2 have been classified [5]. The con-
struction of the rest is infeasible by our methods. PG(3, 5) admits parallelisms
with automorphisms of prime orders 31, 13, 5, 3 and 2. There are classifications of
cyclic parallelisms [19] (with automorphisms of order 31), of parallelisms invari-
ant under groups of orders 13 [26] and 25 [29], and of regular parallelisms with
automorphisms of order 3 [25]. In the present paper, we consider the biggest
cyclic automorphism groups (they are of order 8) with which parallelisms are
possible, but have not been classified.

There are a great number of parallelisms with a cyclic automorphism group
of order 8. A small part of them (899) was constructed in [28] to show that all
the 21 spreads of PG(3, 5) take part in parallelisms. In the present paper, we
use a powerful parallel computer to obtain new parallelisms of PG(3, 5) which
are invariant under a cyclic automorphism group of order 8 and for which defi-
nite restrictions (different from those in [28]) hold. The construction method is
described in Sect. 2, the obtained results are discussed in Sect. 3, and concluding
remarks can be found in Sect. 4.

New Parallelisms of PG(3, 5) with Automorphisms of Order 8 411

2 Construction Method

2.1 The Projective Space

The projective space PG(3, 5) has 156 points and 806 lines. Each spread of
PG(3, 5) contains 26 lines which partition the point set and each parallelism has
31 spreads.

We obtain the points of PG(3, 5) as the 156 vectors (v1, v2, v3, v4) over GF (5)
whose rightmost nonzero element is 1. A lexicographic order is imposed on them
and a number is assigned such that (1, 0, 0, 0) is number 1, and (4, 4, 4, 1)
number 156. We next find the lines and the hyperplanes.

An invertible matrix (ai,j)4×4 over GF (5) defines an automorphism of the
projective space transforming the coefficient vectors of the projective points by
the map v′

i =
∑

j

ai,jvj . The matrices M1 and M2 are generators of the sub-

groups G82 and G86 which we further talk about in the next subsection.

M1 =

⎛

⎜⎜⎝

1 1 2 1
1 3 3 1
0 0 3 0
0 1 0 3

⎞

⎟⎟⎠ M2 =

⎛

⎜⎜⎝

1 3 0 4
1 4 0 1
0 4 3 2
0 3 2 1

⎞

⎟⎟⎠

We denote by G the full automorphism group of the projective space, where
G ∼= PΓL(4, 5) (the projective semilinear group [2]). The number of its elements
is |G| = 29 · 32 · 56 · 13 · 31. Let H be a subgroup of G. The normalizer N(H)
of H in G is defined as N(H) = {g ∈ G | gHg−1 = H}.

2.2 Possible Automorphism Groups

We use GAP [12] to obtain the Sylow 2-subgroup of G. It has 29 = 512 elements.
We denote this subgroup by G29 . Its elements are of orders 2, 4 and 8. We find
by GAP that they are in 12 conjugacy classes under G. Table 1 presents some
properties of the cyclic group generated by a representative of each of these
classes, namely the number of points and lines which it fixes, the order of its
normalizer (found by GAP), and the number and length of the line orbits under
this group. There are two conjugacy classes of elements of order 8. We denote
the corresponding groups by G82 and G86 (the indexes 2 and 6 come from the
number of fixed points), and we write only G8 if properties that are the same for
the two groups are considered. Each of the cyclic groups of order 8 comprises one
collineation of order 2, two of order 4 and four of order 8. In both groups, the
element of order 2 is from the first conjugacy class (Table 1) and the elements of
order 4 are from the 9th one.

2.3 Spread Orbits Under G8

There are fixed (of type F1), short (of type S2), and long (of type L8) spread
orbits under G8, where the index is the orbit length.

412 S. Topalova and S. Zhelezova

Table 1. Cyclic groups generated by representatives of the conjugacy classes of ele-
ments of order 2, 4, and 8 under G

Conjugacy
class

Element
order

Fixed
points

Fixed
lines

Nontrivial line orbits Normalizer
order

Length 2 Length 4 Length 8

1 2 12 38 384 115200

2 2 0 26 390 187200

3 2 32 62 372 1488000

4 4 4 6 16 192 512

5 4 0 0 13 195 624

6 4 0 2 18 192 1152

7 4 8 14 24 186 1920

8 4 8 14 12 192 3840

9 4 12 38 192 115200

10 4 32 62 186 1488000

11 8 2 2 18 96 384

12 8 6 2 18 96 5760

Spread Orbits of Type F1. Since G8 fixes some lines, the parallelisms must
contain fixed spreads containing the fixed lines. In addition to the fixed lines,
a fixed spread contains several whole line orbits under G8. All line orbits of
length 2 under G8 contain points of the fixed lines, so they cannot be involved in
a fixed spread together with the fixed lines. Therefore, the fixed spread comprises
the two fixed lines l1 and l2 and three orbits of length 8 with mutually disjoint
lines, namely {ci1, ci2, . . . , ci8}, i = 1, 2, 3.

F1 : l1 l2 c11 c12 c13 c14 c15 c16 c17 c18 c21 c22 c23 c24 c25 c26 c27 c28 c31 c32 c33 c34 c35 c36 c37 c38

Spread Orbits of Type S2. The 18 line orbits of length 2 (short orbits) can be
involved in spreads with orbits of length 2. At most six lines from different short
orbits do not intersect and can be in one spread. Therefore, a spread with orbit
of type S2 contains six lines from different short orbits ({bi1, bi2}, i = 1, 2, . . . , 6)
and 5 whole orbits under the subgroup of order 4 that belong to different line
orbits under G82 . This is illustrated below, where {ci1, ci2, . . . , ci8}, i = 1, . . . , 5
are five line orbits of length 8, such that {ci1, ci2, ci3, ci4} and {ci5, ci6, ci7, ci8} are
line orbits under the subgroup of order 4 and the lines included in each orbit of
length 4 are mutually skew.

S2 :
b11 b21 b31 b41 b51 b61 c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33 c34 c41 c42 c43 c44 c51 c52 c53 c54
b12 b22 b32 b42 b52 b62 c15 c16 c17 c18 c25 c26 c27 c28 c35 c36 c37 c38 c45 c46 c47 c48 c55 c56 c57 c58

Spread Orbits of Type L8. Spreads with spread orbits of length 8 consist
of 26 lines from 26 different line orbits of length 8 under G8. An L8 orbit is
presented below, where {ci1, ci2, . . . , ci8}, i = 1, . . . , 26 are the orbits of length 8.

New Parallelisms of PG(3, 5) with Automorphisms of Order 8 413

L8 :

c11 c21 . . . c261
c12 c22 . . . c262

. . .
c18 c28 . . . c268

Table 2 presents the number of possible spreads with orbits of these types.

Table 2. Possible spreads

Orbit type G82 G86

F1 16 80

S2 2832 4080

L8 14227090 14227090

Parallelisms. Each point has to be covered in each spread. Each fixed point
under G8 participates in a fixed line, in 3 line orbits of length 2 and in 3 line
orbits of length 8. Therefore, a parallelism invariant under G8 consists of one
spread of type F1, three spread orbits of type S2, and three of type L8.

P : F1 S2 S2 S2 L8 L8 L8

We first construct all nonisomorphic partial parallelisms made of a fixed
spread and three spread orbits of type S2, and determine their automorphism
groups that belong to the normalizer N(G82). The results are presented in
Table 3.

Table 3. Partial parallelisms with a spread of type F1 and 3 spread orbits of type S2

Normalizer automorphisms 8 16 24 32 48 96

Partial parallelisms with G82 10279 683 11 9 7 1

Partial parallelisms with G86 34235 1118 50 7 35 3

These partial solutions lead to a great number of parallelisms invariant
under G82 or G86 . Finding all of them in our way is infeasible. That is why
we extend only some of the partial solutions.

The nineteen partial parallelisms with G82 and normalizer automorphism
groups of orders 24, 48, and 96 were considered in [28]. In the present work, we
extend the 9 partial solutions with G82 which possess an automorphism group of
order 32 and the 95 partial solutions with G86 which possess an automorphism
group of order at least 24.

2.4 Computer Search

Construction of the Parallelisms. We use our own software written for
this purpose in C++. Our construction algorithm implies backtrack search. The

414 S. Topalova and S. Zhelezova

basic types of backtrack search algorithms for classification of combinatorial
structures are described by Kaski and Österg̊ard in [16]. Our approach is based
on the algorithm known as orderly generation [16] proposed by Faradžev [11] and
Read [20]. Orderly generation, however, requires rejection of all the equivalent
partial solutions, while we apply a minimality test for isomorphism only to some
of the partial solutions and to all complete parallelisms that are obtained. This
test checks if there exists an element of the normalizer of the predefined group
that maps the current partial solution to a lexicographically smaller one. If such
an element exists, the partial solution is not extended.

We construct one spread from each orbit (spread orbit leader). Thus we find
7 orbit leaders instead of all the 31 spreads. In order to partially check the
correctness of the results, all the parallelisms are constructed independently by
both authors who apply different software implementations and slightly different
algorithms. For finding the partial parallelisms from Table 3 the first author uses
backtrack search on the lines of the projective space, and the second on all the
possible spread orbit leaders that have been constructed in advance (Table 2).
The addition of the next three orbits of length 8 is done by both of us by a
search on the lines because of the very big number of possible spreads in this
particular case.

The extention of one F1S2S2S2 partial solution (Table 3) would have taken
several days on a 3 GHz PC. That is why the computer search was carried out on
the high-performance computing system Avitohol of the Bulgarian Academy of
Sciences (see the Acknowledgements). We used a communication-free MPI based
parallel implementation of the backtrack search for parallelisms which proved to
be very suitable in this case. It looks like that:

We denote by prnum the number of processes, and by mynum the number of
this process. And let aa be a global variable that counts the number of partial
solutions of a definite size. Splitting the work among the processes can be done
by allowing each process to extend only those partial solutions of the definite
size whose number modulo prnum equals mynum.

It is of major importance to choose a suitable size of the partial solutions
after which the job is split into the different processes. On the one hand, we
want that the time to obtain these partial solutions will be relatively short, so
that the time when all processes do the same job will be as small as possible.
On the other hand, we want the number of the partial solutions of the chosen
size to be relatively big, so that each process will extend many of them, because
in that case, the differences between the running times of the processes will be
negligible. We established that it is most efficient to split the job after a partial
solution containing a spread of type F1, four spreads of type S2 and the first two
lines of a spread of type L8.

We calculate the combinatorial invariants described in [27] for the points,
lines, and spreads of each of the newly constructed parallelisms. They com-
prise an invariant of the whole parallelism. Our software uses them to find the
automorphism group of the parallelisms and to test for isomorphism between
parallelisms with the same invariants.

New Parallelisms of PG(3, 5) with Automorphisms of Order 8 415

3 Properties of the Obtained Parallelisms

All the parallelisms constructed in this paper are available online. They can
be downloaded from http://www.moi.math.bas.bg/moiuser/∼stela. Since the
present work does not aim to find only parallelisms suitable for a definite appli-
cation, we cannot say which of their properties are most important, and present
a summary of those of them which are usually concerned.

Table 4 presents the order of the full automorphism group of the parallelisms
invariant under a cyclic group of order 8 that have been constructed in the
present work and in [28].

Table 4. Parallelisms invariant under a cyclic automorthism group of order 8

Automorphisms 8 16 24 32 48 96 1200 2400 All

Parallelisms all 8143 952 610 56 90 6 4 2 9863

known 630 154 85 16 14 – 4 2 905

new 7513 798 525 40 76 6 – – 8958

Selfdual 361 – 24 – – – – – 385

The parallelisms obtained in [28] are marked as known. The six parallelisms
with automorphism groups of orders 1200 and 2400 have not been obtained
in [28], but are known from [29].

Besides the automorphism group, we also study the types of spreads the
parallelisms consist of. Some of them have special names. A spread is called

– Hall spread if it can be obtained from a regular spread by a replacement of
one regulus by its opposite;

– conical flock spread if it has q reguli which have exactly one common line;
– derived conical flock spread if it can be obtained from a conical flock spread

by a replacement of one regulus by its opposite.

There are 21 nonisomorphic spreads in PG(3, 5) [7]. To distinguish them we
use invariants based on their relation to the reguli of the projective space. The
21 spreads are partitioned to 20 classes by an invariant made of two numbers
- the number of whole reguli in the spread and the number of reguli which
share exactly 4 lines (out of all 6 lines) with the spread. For the regular spread
of PG(3, 5), these invariants are (130, 0), for the Hall spread (31, 105), for the
conical flock spread (5, 200), and for the derived conical flock spread (1, 210).
The class containing two nonisomorphic spreads has invariants (0, 104).

The order of the automorphism group, the types of the spreads, and selfdu-
ality (or not) partition the constructed parallelisms to 1251 classes. We present
here the invariants only of some of them. The rest, however, are available online.

A deficiency one parallelism is a partial parallelism with one spread less than
the corresponding parallelism. It is uniquely extendable to a parallelism. Uniform
deficiency one parallelisms are of particular interest. Fifty uniform deficiency one
parallelisms are constructed in [28] and 4435 in [29]. The latter are made of Hall

http://www.moi.math.bas.bg/moiuser/{~}stela

416 S. Topalova and S. Zhelezova

spreads and there are 12 transitive deficiency one parallelisms among them. We
add now 114 new uniform deficiency one parallelisms (Table 5). Part of them
are made of (16, 246) spreads which by now were not known to make uniform
deficiency one parallelisms.

Table 5. Invariants of parallelisms which yield uniform deficiency one parallelisms

Spreads Order of the automorphism group All Known New

1 30 8 16 24 32 48 96 1200 2400

10,192 3,237 8 40 6 8 62 50 [28] 12

10,192 16,246 4 4 4

10,192 31,105 4 6 10 10

130,0 3,237 2 2 2

130,0 16,246 4 4 4

130,0 31,105 16 28 8 8 16 6 4 2 88 6 [29] 82

all 28 68 30 8 24 6 4 2 170

known 40 2 8 4 2 56

new 28 28 28 8 16 6 114

The uniform deficiency one parallelisms which admit the richest automor-
phism groups consist of Hall spreads.

The properties of selfdual parallelisms are of particular interest too. Among
the constructed parallelisms with automorphisms of order 8, there are 361 self-
dual parallelisms with an automorphism group of order 8, and 24 with an auto-
morphism group of order 24. Their spread types are presented in Table 6.

Table 6. Invariants of selfdual parallelisms with an automorphism group of order 24

F1 3 × S2 3 × L8 All Known New

130,0 31, 105 0,72 2 2

130,0 31, 105 0,114 4 4

130,0 31, 105 0,180 2 2

130,0 31, 105 4,102 1 1

130,0 31, 105 130,0 4 4

10,192 31, 105 0,72 2 2

10,192 3, 237 0,114 2 2

10,192 3, 237 1,82 2 2

10,192 3, 237 4,102 1 1 [28]

10,192 3, 237 130,0 4 2 [28] 2

All 24 3 21

New Parallelisms of PG(3, 5) with Automorphisms of Order 8 417

Among the parallelisms constructed in the present work, there are 4888 with
exactly one regular spread and 60 with more than one regular spread. The latter
are described in Table 7. All of them have an automorphism group of order 8
except the eight ones in bold in Table 7 which have an automorphism group of
order 24. The star(*) denotes parallelisms obtained in [28].

Table 7. Invariants of parallelisms with more than one regular spread

130,0 31,105 16,246 10,192 7,150 3,237 1,210 1,82 0,310 0,180 0,104 0,72 num sd

8 1 6 16 1

8 1 6 16 4* 2

8 1 6 16 2

8 1 6 8 8 2

8 1 6 16 2

8 4 1 2 16 6

9 4 16 8 2

9 2 4 16 1

9 2 4 8 8 2

9 2 4 16 2

9 2 4 16 2

9 6 8 8 4

9 6 4 6

9 6 16 2

24 1 6 4*

24 4 1 2 4

25 2 4 4

25 6 4

It is not known if a parallelism of PG(3, 5) can admit any number (at most 31)
of regular spreads. Up to now parallelisms with 0, 1, 8, 9, 24 and 31 regular
spreads have been constructed. The present work shows that there are paral-
lelisms with 25 regular spreads too.

4 Conclusion

The usage of the system for computational discrete algebra GAP [12], the parallel
implementation of the search algorithm and the access to the powerful high-
performance computing system Avitohol of the Bulgarian Academy of Sciences
made it possible to obtain new parallelisms of PG(3, 5). Among them there
are parallelisms with properties that had not been observed before, namely,
uniform deficiency one parallelisms of a new spread type, and parallelisms with
25 regular spreads. We believe that the present investigation will help future
theoretical considerations. The availability of the parallelisms online makes it

418 S. Topalova and S. Zhelezova

possible for anyone to use them in relevant applications. The full classification
of parallelisms of PG(3, 5) which are invariant under a cyclic group of order 8
remains a challenging open problem.

Acknowledgments. The authors are grateful to the anonymous referees for the very
careful reading of the paper, and for their adequate remarks and suggestions on the
presentation of the material.

References

1. Baker, R.D.: Partitioning the planes of AG2m(2) into 2-designs. Discrete Math. 15,
205–211 (1976) doi: 10.1016/0012-365X(76)90025-X

2. Beth, T.H., Jungnickel, D., Lenz, H.: Design Theory. Cambridge University Press,
New York (1993)

3. Betten, A.: The packings of PG(3, 3). Des. Codes Cryptogr. 79 (3), 583–595 (2016).
doi: 10.1007/s10623-015-0074-6

4. Betten, A., Topalova, S., Zhelezova, S.: Parallelisms of PG(3, 4) invariant under
cyclic groups of order 4. In: Algebraic Informatics. CAI 2019. Lecture Notes in
Computer Science, vol. 11545, Ciric M., Droste M., Pin J.-E. (eds), pp. 88–99,
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21363-3 8

5. Betten, A., Topalova, S., Zhelezova, S.: New uniform subregular parallelisms of
PG(3, 4) invariant under an automorphism of order 2. Cybern. Inf. Technol. 20(6),
18–27 (2020). doi: 10.2478/cait-2020-0057

6. Beutelspacher, A.: On parallelisms in finite projective spaces. Geom. Dedicata 3
(1), 35–40 (1974) doi: 10.1007/BF00181359

7. Czerwinski, T., Oakden, D.: The translation planes of order twenty-five, J. Combin.
Theory Ser. A 59 (2), 193–217 (1992). doi: 10.1007/BF00182289

8. Denniston, R.H.F.: Some packings of projective spaces. Atti Accad. Naz. Lincei
Rend. Cl. Sci. Fis. Mat. Natur. 52 (8), 36–40 (1972)

9. Etzion, T., Silberstein, N.: Codes and designs related to lifted MRD codes. IEEE
Trans. Inform. Theory 59 (2), 1004–1017 (2013). doi: 10.1109/ISIT.2011.6033969

10. Fuji-Hara, R.: Mutually 2-orthogonal resolutions of finite projective space. Ars
Combin. 21, 163–166 (1986)

11. Faradžev, I. A.: Constructive enumeration of combinatorial objects. In: Problèmes
Combinatoires et Théorie des Graphes, (Université d’Orsay, 9–13 July 1977). Col-
loq. Internat. du C.N.R.S., vol. 260, pp. 131–135. CNRS, Paris (1978)

12. GAP - Groups, Algorithms, Programming - A System for Computational Discrete
Algebra. http://www.gap-system.org/

13. Gruner, A., Huber, M.: New combinatorial construction techniques for low-density
parity-check codes and systematic repeat-accumulate codes. IEEE Trans. Com-
mun. 60 (9), 2387–2395 (2012). doi: 10.1109/TCOMM.2012.070912.110164

14. Johnson, N.L.: Some new classes of finite parallelisms, Note Mat. 20(2), 77–88
(2000). doi: 10.1285/i15900932v20n2p77

15. Johnson, N.L.: Combinatorics of Spreads and Parallelisms. Chapman & Hall Pure
and Applied Mathematics. CRC Press, Series (2010)

16. Kaski, P., Österg̊ard, P.: Classification algorithms for codes and designs. Springer,
Berlin (2006)

17. Penttila, T., Williams, B.: Regular packings of PG(3, q). European J. Combin. 19
(6), 713–720 (1998)

https://doi.org/10.1007/978-3-030-21363-3_8
http://www.gap-system.org/

New Parallelisms of PG(3, 5) with Automorphisms of Order 8 419

18. Prince, A.R.: Parallelisms of PG(3, 3) invariant under a collineation of order 5. In:
Johnson, N.L. (ed.) Mostly Finite Geometries. Lecture Notes in Pure and Applied
Mathematics, vol. 190, pp. 383–390. Marcel Dekker, New York (1997)

19. Prince, A.R.: The cyclic parallelisms of PG(3, 5). European J. Combin. 19 (5),
613–616 (1998)

20. Read, R.C.: Every one a winner; or, How to avoid isomorphism search when cata-
loguing combinatorial configurations. Ann. Discrete Math. 2, 107–120 (1978) doi:
10.1016/S0167-5060(08)70325-X

21. Sarmiento, J.: Resolutions of PG(5, 2) with point-cyclicautomorphism group. J.
Combin. Des. 8 (1), 2–14 (2000). https://doi.org/10.1002/(SICI)1520-6610(2000)8:
1〈2::AID-JCD2〉3.0.CO;2-H

22. Stinson, D.R.: Combinatorial Designs: Constructions and Analysis. Springer-
Verlag, New York (2004)

23. Stinson, D. R., Vanstone, S. A.: Orthogonal packings in PG(5, 2), Aequationes
Math. 31 (1), 159–168 (1986) doi: 10.1007/BF02188184

24. Storme, L.: Finite Geometry. In: Colbourn, C., Dinitz, J. (eds.) Handbook of Com-
binatorial Designs. 2nd edn. Rosen, K. (eds.) Discrete mathematics and Its Appli-
cations, pp. 702–729. CRC Press, Boca Raton (2007)

25. Topalova, S., Zhelezova, S.: New regular parallelisms of PG(3, 5). J. Combin.
Designs 24, 473–482 (2016) doi: 10.1002/jcd.21526

26. Topalova, S., Zhelezova, S.: Types of spreads and duality of the parallelisms of
PG(3, 5) with automorphisms of order 13. Des. Codes Cryptogr. 87 (2–3), 495–507
(2019) doi: 10.1007/s10623-018-0558-2

27. Topalova, S., Zhelezova, S.: Isomorphism and Invariants of Parallelisms of Projec-
tive Spaces. In: Bigatti, A., Carette, J., Davenport, J., Joswig, M., De Wolff, T.
(eds.), Mathematical Software – ICMS 2020, Lecture Notes in Computer Science,
vol. 12097, pp. 162–172, Cham: Springer (2020). https://doi.org/10.1007/978-3-
030-52200-1 16

28. Topalova, S., Zhelezova, S.: Some parallelisms of PG(3, 5) involving a definite type
of spread. 2020 Algebraic and Combinatorial Coding Theory (ACCT), pp. 135–139
(2020). https://doi.org/10.1109/ACCT51235.2020.9383404

29. Topalova, S., Zhelezova, S.: Parallelisms of PG(3, 5) with an automorphism group
of order 25, Research Perspectives CRM Barcelona. In: Romero i Sanchez, D. (Ed.)
Series: Trends in Mathematics, EUROCOMB (2021, to appear)

30. Zaicev, G., Zinoviev, V., Semakov, N.: Interrelation of preparata and hamming
codes and extension of hamming codes to new double-error-correcting codes. In:
Proceedings International Symposium on Information Theory, (Armenia, USSR,
1971), pp. 257–263. Budapest, Academiai Kiado (1973)

https://doi.org/10.1002/(SICI)1520-6610(2000)8:1<2::AID-JCD2>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1520-6610(2000)8:1<2::AID-JCD2>3.0.CO;2-H
https://doi.org/10.1007/978-3-030-52200-1_16
https://doi.org/10.1007/978-3-030-52200-1_16
https://doi.org/10.1109/ACCT51235.2020.9383404

Optimal Four-Stage Symplectic
Integrators for Molecular Dynamics

Problems

Evgenii V. Vorozhtsov1(B) and Sergey P. Kiselev1,2

1 Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian
Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia

{vorozh,kiselev}@itam.nsc.ru
2 Novosibirsk State Technical University, Novosibirsk 630092, Russia

Abstract. The Runge–Kutta–Nyström (RKN) explicit symplectic four-
stage schemes for the numerical solution of molecular dynamics problems
described by the systems with separable Hamiltonians have been consid-
ered. In the case of the zero Vandermonde determinant, 20 schemes are
obtained using the Gröbnerbasis technique. Four invertible (symmet-
ric) schemes are also obtained in analytical form. Two of these schemes
depend on a parameter whose optimal value is found from the minimum
requirement of the leading term of the approximation error. In the gen-
eral case of nonsymmetric schemes, four new schemes are found using the
Nelder–Mead numerical optimization method. Verification of the schemes
is carried out on a problem that has an exact solution. It is shown that
symplectic four-stage RKN schemes provide more accurate conservation
of the total energy balance of the particle system than the schemes of
lower orders of accuracy. All studies of the accuracy and stability of the
schemes are carried out in an analytical form using the computer algebra
system Mathematica.

Keywords: Molecular dynamics · Hamilton equations · Symplectic
four-stage schemes · Gröbner bases · Stability

1 Introduction

The equations of molecular dynamics (MD) are the ordinary Hamilton differen-
tial equations that describe the interaction of material particles. MD equations
have an exact analytical solution in a very limited number of cases [9]. There-
fore, in the general case, these equations are solved numerically using difference
schemes, in which the differential operator is replaced by the difference operator.

When solving Hamilton’s equations, it is natural to use difference schemes
that preserve the symplectic properties of these equations. Violation of this con-
dition leads to non-conservation of Poincaré invariants and the appearance of
non-physical instability in numerical calculations [2,10]. It follows that the dif-
ference operator of a numerical scheme must have the properties of a canonical
transformation.
c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 420–441, 2021.
https://doi.org/10.1007/978-3-030-85165-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-85165-1_24

Optimal Four-Stage Symplectic Integrators 421

As is known, explicit difference schemes impose a restriction on the integra-
tion step [19,22]. The advantage of these schemes is the simplicity of their soft-
ware implementation. In addition, the increased performance of desktop comput-
ers allows one to solve many important application tasks using explicit schemes
in an acceptable time. Therefore, explicit symplectic integrators are widely used
in solving various applied problems in such areas of natural sciences as plasma
physics [10], celestial mechanics [5], and solid state mechanics [6].

According to the theory of Hamilton’s equations, the law of conservation
of the total energy of the particle system [9] must be fulfilled. It is natural
to require that the difference scheme also ensures the conservation of the total
energy. However, as the practice of calculations shows, the imbalance of the total
energy of the system turns out to be more significant for explicit symplectic
difference schemes of Runge–Kutta–Nyström (RKN) of low orders of accuracy
(second and third). At the same time, it was shown in [19,22] that the three-stage
RKN scheme of the fourth order of accuracy provides a smaller error in energy
imbalance than the 2nd and 3rd order schemes. This leads to the conclusion
that it is advisable to develop explicit symplectic RKN schemes of higher orders
of accuracy.

As a rule, with an increase in the number of stages of the RKN scheme, it
becomes possible to obtain an increasing number of real schemes with the same
number of stages and with the same order of accuracy. Then there is the question
of choosing from this set of schemes such a scheme that would have the highest
accuracy while maintaining an acceptable stability robustness. In the theory
of ordinary (non-symplectic) Runge–Kutta schemes, such optimal schemes are
found from the requirement of the minimum leading term of the approximation
error of the scheme [7,8]. The same approach to the search of optimal RKN
schemes was applied for the case of the separable Hamiltonian in [17], and for
the more general case of the non-separable Hamiltonian—in [23].

The symplectic integrator of the fourth order of accuracy was first proposed
in [3], where a single real RKN scheme was obtained. The same scheme was soon
independently found by Neri [13]. The first journal article describing the inte-
grator under consideration is [4], in which two real fourth-order RKN schemes
were found in an analytical form without the use of Gröbnerbases. One of these
schemes matches the one found earlier in [3,13]. In [4], a three-stage fourth-order
symplectic integrator was also obtained for the first time. All the necessary sym-
bolic calculations were made in [4] using the computer algebra system (CAS)
REDUCE. Yoshida’s work [24] was published in the same year as [4]. Propaga-
tors and commutators were used to obtain approximate solutions to the system
of Hamilton equations in [24]. In the special case of the fourth-order accuracy
method, one real solution was obtained, which coincided with the solution found
earlier in [3,13].

In [22], explicit symplectic Runge–Kutta–Nyström difference schemes with
a number of stages from 1 to 5 were considered using the CAS Mathematica.
With the use of Gröbnerbases, the schemes with the numbers of stages 2, 3, and
4, were compared in terms of accuracy and stability. For each specific number

422 E. V. Vorozhtsov and S. P. Kiselev

of stages, the schemes that are the best in terms of accuracy and stability were
identified. However, in the case of a four-stage RKN scheme in [22], only one
of the six cases of vanishing of the Vandermonde determinant corresponding to
this scheme was considered. The present work fills this gap.

The Hamilton equations have the property of reversibility in time. It is desir-
able that the difference methods of approximate integration of these equations
also possess this property. Symmetric four-stage RKN schemes have this prop-
erty, but they were not handled in [22]. This gap is filled in this paper.

The purpose of this paper is a sufficiently detailed study of four-stage sym-
metric and nonsymmetric real fourth-order RKN schemes in order to find the
optimal real scheme in the considered classes of schemes.

2 Governing Equations

In the method of molecular dynamics, the computation of the motion of N
particles is carried out with the aid of the Hamilton equations

dxiα

dt = ∂H
∂piα

, dpiα

dt = − ∂H
∂xiα

,H(xiα, piα) = K(piα) + V (xiα),

K(piα) =
N∑

i=1

3∑

α=1

p2
iα

2mi
,

(1)

where i is the particle number, α is the number of the coordinate xiα and of
the momentum piα, mi is the particle mass, K(piα) is the kinetic energy, V (xiα)
is the potential energy of the interaction of particles, H(xiα, piα) is the Hamil-
tonian of the system of particles. The solution of system (1) under the given
initial conditions xiα(t = 0) = x0

iα, piα(t = 0) = p0iα represents a canonical
transformation from the initial state to the final state

xiα = xiα(x0
iα, p0iα, t), piα = piα(x0

iα, p0iα, t). (2)

Solution (2) of Hamilton equations (1) preserves the phase volume (the Liouville
theorem [9]). The condition of the phase volume conservation is [6]

GT JG = J, G =
∂(xiα, piα)
∂(x0

iα, p0iα)
, J =

∣
∣
∣
∣

∣
∣
∣
∣

0 IN

−IN 0

∣
∣
∣
∣

∣
∣
∣
∣ , (3)

where G is the Jacobi matrix, J is the symplectic matrix, IN is the N × N
identity matrix. From (3), it follows the equality to unity of the transformation
Jacobian |G| = 1. For the following, we rewrite Hamilton equations (1) for the
one-dimensional case in the form

dxi/dt = pi(t)/m, dpi/dt = fi(xi), (4)

where fi(xi) is the force acting on the ith particle, fi(xi) = −∂V (xi)/∂xi, i =
1, 2, . . . , N . In the following, we will omit the subscript i at the discussion of
difference schemes for solving the system of ordinary differential equations (4).

Optimal Four-Stage Symplectic Integrators 423

3 Four-Stage Symplectic Integrators

The conventional (non-symplectic) explicit difference schemes with a structure
similar to Runge–Kutta schemes were proposed for the first time by Nyström
in [14]. The K-stage Runge–Kutta–Nyström (RKN) scheme for Hamilton equa-
tions (4) has the following form:

x(i) = xn + hαi
pn

m + h2

m

K∑

j=1

aijf(x(j)), i = 1, . . . , K,

xn+1 = xn + hpn

m + h2

m

K∑

j=1

βjf(x(j)), pn+1 = pn + h
K∑

j=1

γjf(x(j)),
(5)

where h is the time step, n is the time layer number, n = 0, 1, 2, . . .; αi, βi, γi,
i = 1, . . . , K are constant parameters, K ≥ 1.

It is required that the RKN scheme (5) performs a canonical transformation
(xn, pn) → (xn+1, pn+1) at a passage from the time layer n to the layer n + 1.
To this end, one must impose in accordance with (3) the following condition on
the Jacobi matrix Gn+1 [9]:

Gn+1,T JGn+1 = J, Gn+1 = ∂(xn+1,pn+1)
∂(xn,pn) , J =

(−0 −1
−1 −0

)

, (6)

where the superscript T denotes the transposition operation, J is the symplectic
matrix. Condition (6) gives rise to a class of explicit two-parameter RKN(α, γ)
schemes for which βi, aij in (5) satisfy the conditions [15,20]

βi = γi(1 − αi), aij =
{

0, 1 ≤ i ≤ j ≤ K
γj(αi − αj), 1 ≤ j < i ≤ K

. (7)

It was noted in [20] that there exist no explicit Runge–Kutta schemes preserving
the canonicity of transformation (6).

We now describe a simple technique for determining the accuracy order
of any RKN scheme by the example of the RKN scheme for computing the
momentum pn+1 at the moment of time tn+1 = tn + h. Let the value pn

be known. The solution in the next node tn+1 is calculated by the formula
pn+1 = pn + Δph,n. The formula for Δph,n depends on the number of stages K
of the RKN method (5) and on 3K constants αi, βi, γi, i = 1, . . . , K. On the
other hand, one can easily derive the “exact” formula for the increment Δp by
using the expansion of the quantity pn into the truncated Taylor series:

Δpn = p(tn + h) − p(tn) ≈
NT∑

j=1

hj

j!
djp(tn)

dtj
,

where NT is a given natural number, NT ≥ K + 1. If the difference δpn =
Δpn − Δph,n satisfies the relation δpn/h = O(hq), where q > 0, then the RKN
scheme has the order of accuracy O(hq). The maximization of the degree q is
done by choosing the parameters αi, βi, γi (i = 1, . . . , K) for a specific K.

424 E. V. Vorozhtsov and S. P. Kiselev

It is to be noted that the lengths of intermediate expressions in the derivation
of formulas for both ordinary (non-symplectic) and symplectic Runge–Kutta
methods increase nonlinearly with the increase in the number of stages of the
method. Therefore, it is not surprising that soon after the advent of general-
purpose computer algebra systems, the idea of using these systems to derive
formulas for multi-stage explicit and implicit Runge–Kutta methods arose. In
particular, Sophronius [18] developed a symbolic package in the language of
the Mathematica system for the derivation and investigation of ordinary (non-
symplectic) Runge–Kutta methods using the representations of these methods
in the form of Butcher graphs.

It was proposed in [21] to construct generalized explicit Runge–Kutta schem-
es by decomposing the solution u(t) of the ordinary differential equation du/dt =
f(t, u(t)) by the Lagrange–Burmann formula. The function f(t, u) was decom-
posed into a series of powers of two functions of two variables t, u according
to the Poincaré formula, which is a generalization of the Lagrange–Burmann
formula for the case of a function of two variables. All the necessary symbolic
calculations were performed in [21] in CAS Mathematica.

McAndrew [11] proposed using the CAS Sage to derive nonlinear algebraic
equations which must be satisfied by the parameters of the conventional (non-
symplectic) Runge–Kutta methods of various orders of accuracy. Fragments of
programs in CAS Sage language are given.

Setting K = 4 in (5) and performing symbolic computations according to
the algorithm [8], we obtain the expression for δpn in the form

δpn = hP1f(x) + (h2/2)P2u(t)f ′(x) + h3[P31f(x)f ′(x)/m + P32u
2f ′′(x)]/6

+ (h4u)/(24m){P41 · [f ′(x)]2 + 3P42f(x)f ′′(x) + P43mu2f (3)(x)}
− [h5/(120m2)](3P51f

2(x)f ′′(x) + f(x)(P52 · [f ′(x)]2 − 6P53mu2f (3)(x)
− mu2(5P54f

′(x)f ′′(x) + P55mu2f (4)(x))), (8)

where u(t) is the particle velocity and

P1 = 1 −
K∑

j=1

γj , P2 = 1 − 2
K∑

j=1

αjγj , P31 = 1 − 6
K∑

i=1

K∑

j=i+1

γiγj(αi − αj),

P32 = 1 − 3
K∑

j=1

α2
jγj , P41 = 1 − 24

K∑

i=1

K∑

j=i+1

γiγjαj(αi − αj),

P42 = 1 − 8
K∑

i=1

K∑

j=i+1

γiγjαi(αi − αj), P43 = 1 − 4
K∑

j=1

α3
jγj ,

P51 = 20
K∑

i=1

K∑

j=i+1

K∑

l=j+1

γiγjγl(αi − αj)(αi − αl) − 1, (9)

P52 = 120
K∑

i=1

K∑

j=i+1

K∑

l=j+1

γiγjγl(αi − αj)(αj − αl) − 1,

P53 = 1 − 10
K∑

i=1

K∑

j=i+1

γiγjα
2
i (αi − αj), P55 = 1 − 5

K∑

j=1

α4
jγj ,

Optimal Four-Stage Symplectic Integrators 425

P54 = 12
K∑

i=1

K∑

j=i+1

γiγjα
2
j (αi + αj) − 24

K∑

i=1

K∑

j=i+1

γiγjαiα
2
j + 1.

The call GroebnerBasis[{P1,P2,P31,P32,P41,P42,P43, P51, P52, P53,
P54, P55},{a1,a2,a3,a4, g1,g2,g3,g4}] outputs the following result: {1}.
By Hilbert’s Nullstellensatz [1], if the ideal is {1}, then 12 polynomials P1, . . .,
P55 have no common zero. This involves the conclusion about the absence of the
four-stage fifth-order schemes.

3.1 Zero Vandermonde Determinant

The system of equations P1 = 0, P2 = 0, P32 = 0, P43 = 0 is linear in γi,
i = 1, . . . , 4. Its matrix is the Vandermonde 4 × 4 matrix V and

DetV = (α1 − α2)(α1 − α3)(α1 − α4)(α2 − α3)(α2 − α4)(α3 − α4). (10)

Below we present the results of consideration of all six special cases of vanishing
of this determinant using the technique of Gröbnerbases. In all these cases,
the lexicographic ordering of the monomials was used in the calculation of the
Gröbnerbasis corresponding to each particular case. It turned out that in each
particular case, there is at least one reducible polynomial in the Gröbnerbasis.
This allows us to easily find all the free parameters αj , γj , j = 1, . . . , 4, which
are the solution of the polynomial system

P1 = 0, P2 = 0, P31 = 0, P32 = 0, P41 = 0, P42 = 0, P43 = 0. (11)

If there is a real solution to this system, then, according to (8), the four-stage
RKN scheme under study has the fourth order of accuracy. It turned out that
in six special cases of the vanishing determinant (10), there are 20 real solutions
(see below). The problem arises of determining the best fourth-order accuracy
method. A well-known method for finding a RKN scheme with the optimal
accuracy is a search for the scheme with the smallest value of the leading error
term [16,23] in the selected norm. In the case of a four-stage scheme, the leading
error term is the term of the order O(h5), it is available in (8) and depends on
five polynomials P51, P52, P53, P54, and P55. Knowing the parameters αj , γj , j =
1, . . . , 4, it is not difficult to find the root-mean-square value of the polynomials
P5k, k = 1, . . . , 5 and identify the most accurate scheme in the set of real four-
stage RKN schemes found.

Let us consider in detail the case when α2 = α1. Substitute in the polynomials
P2, P31, P32, P41, P42, and P43 the relation α2 = α1 and denote the obtained
polynomials by P20, P310, P320, P410, P420, and P430. The call GroebnerBasis[{P1,
P20, P310, P320, P410, P420, P430},{a1, a3, a4, g1, g2, g3, g4}] has allowed us
to obtain a Gröbnerbasis consisting of the following six polynomials:

G1 = 1728γ7
4− 5184γ6

4+ 5868γ5
4− 3510γ4

4+ 1218γ3
4 − 228γ2

4 + 15γ4 + 1, (12)
G2 = 537408γ6

4 − 1405440γ5
4 + 1276020γ4

4 − 578046γ3
4

426 E. V. Vorozhtsov and S. P. Kiselev

+ 138720γ2
4 − 11224γ4 + 2398γ3 − 1877, (13)

G3 = −537408γ6
4 + 1405440γ5

4 − 1276020γ4
4 + 578046γ3

4

− 138720γ2
4 + 13622γ4 + 2398γ1 + 2398γ2 − 521, (14)

G4 = 7194α4 + 331776γ6
4 − 965376γ5

4 + 1058688γ4
4 − 626304γ3

4

+ 218880γ2
4 − 39603γ4 − 3418, (15)

G5 = 4796α3 − 537408γ6
4 + 1405440γ5

4 − 1276020γ4
4 + 578046γ3

4

− 138720γ2
4 + 16020γ4 − 2919, (16)

G6 = 14388α1 + 489024γ6
4 − 976896γ5

4 + 574884γ4
4 − 237318γ3

4

+ 49248γ2
4 − 2526γ4 − 3227. (17)

The command Factor[G1] has enabled us to find that the polynomial G1 is
reducible: G1 = (1 − 3γ4 + 6γ2

4)(−1 − 24γ4 + 48γ2
4)(−1 + 6γ4 − 12γ2

4 + 6γ3
4).

Seven different roots of the equation G1 = 0 determine seven solutions of the
original system. The roots of the equation 1 − 3γ4 + 6γ2

4 = 0 are complex:
γ4 = (1/12)(3± i

√
15). The roots of the equation −1− 24γ4 + 48γ2

4 = 0 are real:
γ4 = (1/12)(3 ± 2

√
3). We find from Eqs. (13)–(17) the values of the remaining

parameters of the RKN scheme under study (z =
√

3):

α1 = 1
6 (3 ± z), α2 = 1

6 (3 ± z), α3 = 1
6 (3 ∓ z), α4 = 1

6 (3 ± z),
γ2 = 1

12 (3 ∓ 2z − 12γ1), γ3 = 1
2 , γ4 = 1

12 (3 ± 2z).
(18)

One can see from (18) that one parameter, γ1, remains indefinite. This may be
due to the fact that the number of the polynomials in the Gröbnerbasis (12)–(17)
is less than the number of parameters α1, α2 = α1, α3, α4, γj , j = 1, . . . , 4.

Consider in more detail a scheme, which is obtained at the use of lower
symbols “+” or “−” in (18). We call this scheme the RKN4-1 scheme. Let
us calculate the weighted root-mean-square value of five polynomials P5j , j =
1, . . . , 5:

P
(1)
5,rms =

[
1
5

5∑

j=1

(σjP5j)2
]1/2

=
{

1
5

[(
σ1

7
72

)2 +
(
σ2

7
12

)2 +
(

σ3
36

)2 +
(

σ4
6

)2 +
(

σ5
36

)2]}1/2 ≈ 0.47924.

Here σ1, . . . , σ5 are problem-independent factors affecting the polynomials P5j

in (8), σ1 = −3, σ2 = −1, σ3 = 6, σ4 = 5, σ5 = 1.
Now consider a scheme obtained at the use of the upper symbols “+” or “−”

in (18). Let us call this scheme the RKN4-2 scheme. We obtain for it the same
weighted root-mean-square value of five polynomials P5j , j = 1, . . . , 5, as in the
case of scheme RKN4-1: P

(2)
5,rms ≈ 0.47924.

Equation 6γ3
4 − 12γ2

4 + 6γ4 − 1 = 0 has one real root γ4 = (1/3)(2 + z2

2 + z)
and two complex conjugate roots, where z = 21/3. We find from Eqs. (12) the
values of remaining parameters of the RKN scheme under study (we call it the
RKN4-3 scheme):

α1 = 1
12 (4 + 2ζ + ζ2), α2 = α1, α3 = 1

2 , α4 = 1
12 (8 − 2ζ − ζ2),

γ2 = 1
6 (4 + 2ζ + ζ2 − 6γ1), γ3 = − 1

3 (1 + ζ)2, γ4 = 1
6 (4 + 2ζ + ζ2).

(19)

Optimal Four-Stage Symplectic Integrators 427

One can see from (19) that one parameter, γ1, remains indefinite. In the case
under consideration,

P
(3)
5,rms =

[
1
5

5∑

j=1

(σjP5j)2
] 1

2
=

{
1
5

[
(8.1092σ1)2 + (2.3780σ2)2+

+ (2.0962σ3)2 + (10.3143σ4)2 + (0.6386σ5)2
]} 1

2 ≈ 26.13695.

(20)

Note that the numerical values of the functionals P
(k)
5,rms, k = 1, 2, 3, do not

depend on the undefined parameter γ1. The reason for this is that all expressions
containing γ1 in the polynomials P5j , j = 1, . . . , 5, are cancelled out. The value
of P

(3)
5,rms = 26.13695 is 54.54 times greater than the value of P

(1)
5,rms. Therefore,

for calculations using the three considered four-stage schemes, the RKN4-1 and
RKN4-2 schemes are preferable.

The remaining five particular cases were also investigated in detail in order
to find real four-stage RKN schemes. For the sake of brevity, we do not give the
expressions for the polynomials of Gröbnerbases corresponding to the RKN-l
schemes (l = 4, . . . , 20). These bases are not difficult to obtain using the CAS
Mathematica. Before giving the analytical formulas for αj , γj , j = 1, . . . , 4, we
introduce a number of notations:
z =

√
3, ζ = 21/3, ϕ±

1 = 1
6 (3 ± z), ϕ±

2 = 1
12 (3 ± 2z), ϕ3 = 1

12 (4 + 2ζ + ζ2),
ϕ4 = − 1

3 (1 + ζ)2, κ∗
cr = 2

√
2 + ζ − ζ2 ≈ 2.586518894520.

1.◦ Particular case α1 = α2.

Scheme RKN4-1 α1 = α2 = ϕ−
1 , α3 = ϕ+

1 , α4 = ϕ−
1 , κcr = κ∗

cr

γ1, γ2 = ϕ+
2 − γ1, γ3 = 1

2
, γ4 = ϕ−

2 , P
(1)
5,rms = 0.4792

Scheme RKN4-2 α1 = α2 = ϕ+
1 , α3 = ϕ−

1 , α4 = ϕ+
1 , κcr = 2.514918799464,

γ1, γ2 = ϕ−
2 − γ1, γ3 = 1

2
, γ4 = ϕ+

2 , P
(2)
5,rms = 0.4792

Scheme RKN4-3 α1 = α2 = ϕ3, α3 = 1
2
, α4 = 1− ϕ3, κcr = 1.854382524682,

γ1, γ2 = 2ϕ3 − γ1, γ3 = ϕ4, γ4 = 2ϕ3, P
(3)
5,rms = 26.1370

2.◦ Particular case α1 = α3.

Scheme RKN4-4 α1 = ϕ+
1 , α2 = ϕ−

1 , α3 = ϕ+
1 , α4 = ϕ+

1 , κcr = κ∗
cr,

γ1 = ϕ−
2 , γ2 = 1

2
, γ3, γ4 = ϕ+

2 − γ3, P
(4)
5,rms = 0.6013

Scheme RKN4-5 α1 = ϕ+
1 , α2 = ϕ−

1 , α3 = ϕ+
1 , α4 = ϕ−

1 , κcr = 2.335025000052,

γ1 = 1
2
− γ3, γ2 =

ϕ+
2

2γ3
, γ3, γ4 = 1

2
− ϕ+

2
2γ3

, (21)

Scheme RKN4-6 α1 = ϕ−
1 , α2 = ϕ+

1 , α3 = ϕ−
1 , α4 = ϕ−

1 , κcr = κ∗
cr,

γ1 = ϕ+
2 , γ2 = 1

2
, γ3 = ϕ−

2 − γ4, γ4, P
(6)
5,rms = 0.6013

Scheme RKN4-7 α1 = ϕ−
1 , α2 = ϕ+

1 , α3 = ϕ−
1 , α4 = ϕ+

1 , κcr = 2.3658618327942,

γ1 =
ϕ+
2 −γ4

1−2γ4
, γ2 = 1

2
− γ4, γ3 =

ϕ−
2

1−2γ4
, γ4, (22)

Scheme RKN4-8 α1 = ϕ+
1 , α2 = ϕ−

1 , α3 = ϕ+
1 , α4 = 1, κcr = κ∗

cr,

γ1 = ϕ−
2 , γ2 = 1

2
, γ3 = ϕ+

2 , γ4 = 0, P
(8)
5,rms = 0.6013

428 E. V. Vorozhtsov and S. P. Kiselev

3.◦ Particular case α1 = α4.

Scheme RKN4-9 α1 = ϕ+
1 , α2 = ϕ−

1 , α3 = ϕ+
1 , α4 = ϕ+

1 , κcr = κ∗
cr,

γ1 = ϕ−
2 , γ2 = 1

2
, γ3 = ϕ+

2 − γ4, γ4, P
(9)
5,rms = 0.6013

Scheme RKN4-10 α1 = ϕ+
1 , α2 = ϕ−

1 , α3 = ϕ−
1 , α4 = ϕ+

1 , κcr = κ∗
cr,

γ1 = ϕ−
2 , γ2, γ3 = 1

2
− γ2, γ4 = ϕ+

2 , P
(10)
5,rms = 0.4792

Scheme RKN4-11 α1 = ϕ−
1 , α2 = ϕ+

1 , α3 = ϕ+
1 , α4 = ϕ−

1 , κcr = κ∗
cr,

γ1 = ϕ+
2 , γ2, γ3 = 1

2
− γ2, γ4 = ϕ−

2 , P
(11)
5,rms = 0.4792

Scheme RKN4-12 α1 = ϕ−
1 , α2 = ϕ+

1 , α3 = ϕ−
1 , α4 = ϕ−

1 , κcr = κ∗
cr,

γ1 = ϕ+
2 , γ2 = 1

2
, γ3, γ4 = ϕ−

2 − γ3, P
(12)
5,rms = 0.6013

4.◦ Particular case α2 = α3.

Scheme RKN4-13 α1 = ϕ−
1 , α2 = ϕ+

1 , α3 = ϕ+
1 , α4 = ϕ−

1 , κcr = κ∗
cr,

γ1 = ϕ+
2 , γ2, γ3 = 1

2
− γ2, γ4 = ϕ−

2 , P
(13)
5,rms = 0.4792

Scheme RKN4-14 α1 = ϕ+
1 , α2 = ϕ−

1 , α3 = ϕ−
1 , α4 = ϕ+

1 , κcr = κ∗
cr,

γ1 = ϕ−
2 , γ2, γ3 = 1

2
− γ2, γ4 = ϕ+

2 , P
(14)
5,rms = 0.4792

Scheme RKN4-15 α1 = ϕ3, α2 = 1
2
, α3 = 1

2
, α4 = 1− ϕ3, κcr = 1.573401947435,

γ1 = 2ϕ3, γ2, γ3 = ϕ4 − γ2, γ4 = 2ϕ3, P
(15)
5,rms = 6.3431

5.◦ Particular case α2 = α4.

Scheme RKN4-16 α1 = ϕ−
1 , α2 = ϕ+

1 , α3 = ϕ−
1 , α4 = ϕ+

1 , κcr = κ∗
cr,

γ1 = 0, γ2 = ϕ−
2 , γ3 = 1

2
, γ4 = ϕ+

2 , P
(16)
5,rms = 0.4792

Scheme RKN4-17 α1 = ϕ+
1 , α2 = ϕ−

1 , α3 = ϕ+
1 , α4 = ϕ−

1 , κcr = κ∗
cr,

γ1 = 0, γ2 = ϕ+
2 , γ3 = 1

2
, γ4 = ϕ−

2 , P
(17)
5,rms = 0.4792

6.◦ Particular case α3 = α4.

Scheme RKN4-18 α1 = ϕ+
1 , α2 = ϕ−

1 , α3 = ϕ+
1 , α4 = ϕ+

1 , κcr = κ∗
cr,

γ1 = ϕ−
2 , γ2 = 1

2
, γ3, γ4 = ϕ+

2 − γ3, P
(18)
5,rms = 0.6013

Scheme RKN4-19 α1 = ϕ−
1 , α2 = ϕ+

1 , α3 = ϕ−
1 , α4 = ϕ−

1 , κcr = 1.560857700727,

γ1 = ϕ+
2 , γ2 = 1

2
, γ3, γ4 = ϕ−

2 − γ3, P
(19)
5,rms = 0.6013

Scheme RKN4-20 α1 = ϕ3, α2 = 1
2
, α3 = 1− ϕ3, α4 = 1− ϕ3, κcr = 1.804401576416,

γ1 = 2ϕ3, γ2 = ϕ4, γ3, γ4 = 2ϕ3 − γ3, P
(20)
5,rms = 11.1448

Thus, the total number of real schemes is 20. The correctness of each solution
was checked by substituting it into the corresponding polynomial system.

In the case of the RKN4-5 scheme, the function P
(5)
5,rms depends on γ3:

P
(5)
5,rms = 1

144γ3
√
5

{
14992γ2

3 + 36[(84 + 40z)γ3 − ϕ4]2

+ 9[ϕ5 + 8γ3(5(3 + 2z)γ3 − 2(9 + 5z)]2
} 1

2 ,
(21)

Optimal Four-Stage Symplectic Integrators 429

where ϕ5 = 5(7 + 4z). The γ3 parameter is undefined (free). Using this, it
can be set from the minimum requirement of function (21). This minimum was
found analytically by solving an algebraic fourth-degree equation, which is easy
to obtain from the equation d(P (5)

5,rms)/dγ3 = 0; this solution γ∗
3 is not given

here due to its cumbersomeness. The solution in the form of a floating-point
machine number is as follows: γ∗

3 = 0.452266707470307331. The same solution
is obtained, if one uses the Mathematica function NMinimize[...] for minimizing
(21); the response is γ∗

3 = 0.452266707470307172, at which P
(5)
5,rms ≈ 0.3956.

In the case of the RKN4-7 scheme, the function P
(7)
5,rms depends on γ4:

P
(7)
5,rms =

{1

5

[937

1296
+

(3 + 5(3 − 2z)γ4

3

)2

+
(7 − 8γ4(3 + 5(3 − 2z)γ4

24(1 − 2γ4)

)2]} 1
2
. (22)

The minimum of this function is reached at γ∗
4 = 1.195384712832130214, at

which P
(7)
5,rms ≈ 0.3872.

The value of the functional P
(ν)
5,rms, ν = 1, . . . , 20 is presented for all 20

schemes in order to choose a scheme which is the best from the viewpoint of
accuracy. It is found that the scheme RKN4-7 with γ4 = γ∗

4 is the best.
In the above description of the 20 schemes, κcr is the Courant number which

is maximally allowed for preserving the stability of the RKN method; in the
case of the above symplectic methods, the stability condition has the form
0 < |κ| ≤ κcr. The algorithm for calculating κcr in the analytic form is pre-
sented in [22]. The value of κcr is a function of the parameter γ3 or γ4 for
schemes, respectively, RKN4-5 and RKN4-7. The corresponding functions P

(5)
5,rms

and P
(7)
5,rms also depend on these parameters. We used the optimal parameters

γ∗
3 and γ∗

4 at the computation of κcr for the methods RKN4-5 and RKN4-7. It
has turned out that the stability of methods RKN4-19 and RKN4-20 depends
on the parameter γ3; at the same time, the corresponding functions P

(19)
5,rms and

P
(20)
5,rms are independent of any parameter. The values of κcr are presented above

for methods RKN4-19 and RKN4-20 for the case when γ3 = 1
2 . This value was

chosen arbitrarily to show that the stability regions for these two methods are
also non-empty.

From the above results, one can see that in the solutions for 16 RKN schemes,
one of the four parameters γ1, γ2, γ3, and γ4 is undefined (free). Thus, these 16
schemes are one-parameter families of RKN4 schemes, but the values of the func-
tionals P

(l)
5,rms do not depend on the free parameter. One can set free parameters

in these cases in one of two ways: (i) from the condition for ensuring the max-
imum size of the stability domain of such schemes; (ii) from the condition for
minimizing the functional constructed over polynomials included in the term of
order of smallness O(h6), which is next in order of smallness to the leading error
term of order of smallness O(h5), which is available in formula (8) for δpn.

430 E. V. Vorozhtsov and S. P. Kiselev

3.2 Nonzero Vandermonde Determinant

Symplectic Invertible Schemes. A symplectic method y1 = Φh(y0) is called
invertible (symmetric), if it is invariant under the permutations y0 ⇔ y1 and
h ⇔ −h [7]. It is well known that only the RKN schemes of the even order of
approximation can be symmetric [7]. The symmetry requirement imposes the
following conditions on the four-stage RKN scheme:

α1 = 1 − α4, α2 = 1 − α3, γ1 = γ4, γ2 = γ3. (23)

Under these conditions, the polynomials P1, P2, P31, P32, P41, P42, and P43 sim-
plify significantly:

P1 = P2 = 1 − 2 γ3 − 2 γ4,
P31 = 1 + (6 − 12α3) γ3

2 + 12 (1 − 2α4) γ3 γ4 + (6 − 12α4) γ4
2,

P32 = 1 +
(−3 + 6α3 − 6α3

2
)

γ3 +
(−3 + 6α4 − 6α4

2
)

γ4,
P41 = 1 + 24(1 − 3α3 + 2α3

2)γ32 + 48(−α3 + α3
2

+ (−1 + α4)
2
γ3γ4 + 24(1 − 3α4 + 2α4

2)γ42,
P42 = 1 + 8α4 γ4

2 − 16α3
2 γ3 (γ3 + γ4) − 16α4

2 γ4 (γ3 + γ4)
+ 8α3 γ3 (γ3 + 2 γ4) ,

P43 = 1 − 4
(
1 − 3α3 + 3α3

2
)

γ3 − 4
(
1 − 3α4 + 3α4

2
)

γ4.

(24)

The symmetry conditions (23) allow us to reduce the number of required
parameters by half. This enables the obtaining of analytical expressions for them.
Using the Mathematica function Solve[...] four real solutions of system (24) were
obtained, two of which do not contain any free parameters, and the remaining two
solutions depend on the parameter γ3. Below are the analytical expressions for
the parameters αj , γj , j = 1, . . . , 4, corresponding to all four symmetric schemes
found. We present also the expressions for the Vandermonde determinant (10)
as well as the expressions for the weighted root-mean-square leading term of the
approximation error

P
(l)
5,sym,rms =

[1
5

5∑

j=1

(σjP5j)2
]1/2

, l = 1, . . . , 4.

Symmetric symplectic scheme No. 1.
α1 = 11+

√
5

48 , α3 = 39−√
5

48 , α2 = 1 − α3, α4 = 1 − α1,
γ1 = γ4 = 1−√

5
4 , γ2 = γ3 = 1+

√
5

4 , DetV1 = 11030−2807
√
5

47775744 = 0.0000994931,

P
(1)
5,sym,rms =

√
4118671904057

5 −142849321176
√
5

331776 ≈ 2.14045, κcr = 2.846896365356.

Symmetric symplectic scheme No. 2.
α1 = 11−√

5
48 , α3 = 39+

√
5

48 , α2 = 1 − α3, α4 = 1 − α1,
γ1 = γ4 = 1+

√
5

4 , γ2 = γ3 = 1−√
5

4 , DetV2 = 11030+2807
√
5

47775744 = 0.000362247,

P
(2)
5,sym,rms =

√
4118671904057

5 +142849321176
√
5

331776 ≈ 3.2226, κcr = 2.979831906188.

Symmetric symplectic scheme No. 3.

Optimal Four-Stage Symplectic Integrators 431

α1 = 1+2
√
2ξ−16γ2

3+24γ3
3

6−48γ2
3+48γ3

3
, α3 =

√
2ξ+2

√
2ξγ3+6γ2

3+20γ3
3−24γ4

3
12γ2

3(1+2γ3−4γ2
3)

,

α2 = 1 − α3, α4 = 1 − α1, γ1 = γ4 = 1
2 − γ3, γ2 = γ3, κcr = 2.315290546733.

Symmetric symplectic scheme No. 4.
α1 = 1−2

√
2 ξ−16 γ3

2+24 γ3
3

6−48 γ32+48 γ33 , α3 =
√
2 ξ+2

√
2 ξ γ3−6 γ3

2−20 γ3
3+24 γ3

4

12 γ32 (−1−2 γ3+4 γ32) ,
α2 = 1 − α3, α4 = 1 − α1, γ1 = γ4 = 1

2 − γ3, γ2 = γ3, κcr = 2.553018251497.
In the cases of the above symmetric schemes, the stability condition has the

form 0 < |κ| ≤ κcr. In solutions Nos. 3 and 4, ξ = [γ3
3(2γ3 − 1)(12γ2

3 − 6γ3 +
1)]1/2. Values DetV3, DetV4 and P

(3)
5,sym,rms, P

(4)
5,sym,rms are very cumbersome

functions of the parameter γ3 and, therefore, are not given.

Fig. 1. Graphs of the functions P
(3)
5,sym,rms (a) and P

(4)
5,sym,rms (b)

Note that in schemes Nos. 3 and 4, the formulas for α1 and α4 contain a
polynomial in the denominator: 6−48γ2

3 +48γ3
3 = 6(2γ3−1)[γ3− 1

4 (1−√
5)][γ3−

1
4 (1+

√
5)]. Further, in schemes Nos. 3 and 4, the formulas for α2 and α3 contain

a polynomial in the denominator: ±12γ2
3(4γ2

3 − 2γ3 − 1) = ±12γ2
3 [γ3 − 1

4 (1 −√
5)][γ3 − 1

4 (1 +
√

5)]. The continuous parameter γ3 that distinguishes schemes
can take any value other than 0, 1

2 , and 1±√
5

4 . Graphs of the values DetV3 and
DetV4 were plotted as the functions of the γ3 parameter. It was found that
DetV3 	= 0, DetV4 	= 0 out of points γ3 = 1

4 (1 − √
5), 0, 1

4 (1 +
√

5). When the
parameter γ3 tends to the specified points DetV3 → +∞, DetV4 → +∞.

Figure 1 shows the graphs of the quantities P
(3)
5,sym,rms and P

(4)
5,sym,rms. The

points of the minima of these quantities were found with the aid of the Math-
ematica function FindMinimum[...]; let us denote them by (γ(j)

3 , P
(j)
5,sym,rms),

respectively, for methods Nos. 3 and 4. Here γ
(3)
3 = 0.50472752527437358,

P
(3)
5,sym,rms = 3.1792, γ

(4)
3 = 0.50454167581559217, P

(4)
5,sym,rms = 0.4924. From

these data, it follows that scheme No. 4 is the best among the obtained four
symmetric RKN schemes in terms of the smallness of the leading term of the
approximation error. A comparison of the four obtained symmetric schemes with
the 20 schemes given in the previous section shows that the symmetric schemes
have a slightly lower accuracy than the best non-symmetric schemes in terms of
the smallness of the leading term of the approximation error. On the other hand,
it turned out that none of the mentioned 20 schemes satisfies the invertibility
conditions (23).

432 E. V. Vorozhtsov and S. P. Kiselev

Table 1. The values of the parameters of schemes RKN4-la, l = 1, . . . , 4, at DetV �= 0

Method αj γj P
(l)
5,rms κcr

1a −0.163552401143382292 0.048726380769174189

0.315379254000269726 0.604671155309221442 0.1450 2.601107169201

0.849651865097469039 0.377059806193216329

0.101814165555907346 −0.030457342271611940

2a −0.132366908603509081 0.050382034698121490

0.554050453573154522 −0.106956632411513153 0.1659 2.853927732257

0.337015545852672127 0.632484935164970730

0.831831238456345323 0.424089662548420954

3a 0.168126182298635241 0.419065819011724183

0.636979619359235749 0.421942016918863572 0.1676 2.855254281741

0.922878504633673047 0.176843502495841326

0.136094487172141509 −0.017851338426429109

4a 0.073135959738290263 0.179911393946207976

0.757772082233232225 −0.041533676753871755 0.1763 2.8424607874720

0.377483410023031707 0.436525266982659255

0.831654913466108980 0.425097015825004532

Symplectic Nonsymmetric Schemes. To check the availability of the scheme
of the order of accuracy O(h4) at a nonzero Vandermonde determinant we have
used the command

GroebnerBasis[{P1,P2,P31,P32,P41,P42,P43}, {a1, a2, a3, a4, g1, g2, g3, g4}], (25)

where the lexicographic ordering of monomials was used. However, this function
did not give the desired result even after six hours of operation of a desktop
computer with a variable clock frequency in the range from 3.6 to 4.1 GHz.

One can also use in the function GroebnerBasis[...] the ordering of monomials,
which is inverse to the lexicographic one. To this end, one must insert into the
call (25) the option MonomialOrder→DegreeReverseLexicographic. As a result,
the Gröbnerbasis was obtained, which contained 90 polynomials. However, it has
no polynomial that depends on a single variable. In addition, all 90 polynomials
turned out to be irreducible over the field of integers. These two circumstances
make it impossible to obtain a solution of the considered polynomial system in
an analytical form using the obtained basis.

Applied problems of molecular dynamics are nonlinear, so they have to be
solved using numerical methods, in particular, RKN methods. To implement
these methods programmatically, it is sufficient to set the parameters αj , γj

(j = 1, . . . , K) as machine floating-point numbers. The problem of solving a
polynomial system that satisfies the specified parameters can be formulated as
the problem of numerical minimization of the objective function, which is the
sum of the squares of the left-hand sides of the polynomial system to be solved:

Optimal Four-Stage Symplectic Integrators 433

P (X) = P 2
1 + P 2

2 + P 2
31 + P 2

32 + P 2
41 + P 2

42 + P 2
43, (26)

where X = (α1, α2, α3, α4, γ1, γ2, γ3, γ4). Let Ω8d be a hypercube with the
rib length 2r > 0 in the eight-dimensional Euclidean space of X-points,
Ω8d = {(α1, α2, α3, α4, γ1, γ2, γ3, γ4)

∣
∣−r ≤ αj ≤ r,−r ≤ γj ≤ r, j = 1, . . . , 4}.

We are looking for a solution to the following numerical minimization prob-
lem: find minX∈Ω8d

P (X). We call X∗ the approximate solution to the problem
of minimizing function (26) in the hypercube Ω8d, if |P (X∗)| < 10−30. Then
the root-mean-square value of the functions P1, . . . , P43 satisfies the inequality:
(P 2

1 +···P 2
43

7)0.5 < 10−15√
7

≈ 0.378 · 10−15, that is, it has an error at the level of
machine rounding errors. Thus, the accuracy of determining the components of
the vector X∗ is provided, which is quite sufficient for the numerical solution of
molecular dynamics problems using RKN schemes.

The minimization problem under consideration was solved numerically using
the Mathematica function NMinimize[...], which implements the Nelder–Mead
method [12]. In order to get several solutions to the minimization problem for
the function (26) in a single run of the Mathematica program, we used to set
several initial X points in the Ω7d domain. The number of these points was set by
the program user. The coordinates of the points were set using a pseudo-random
number generator available in the Mathematica package.

Fig. 2. Initial velocity vectors of parti-
cles and the location of the mass center
at m2 > m1

Fig. 3. Circular orbits of particles in the
interval 0 < t ≤ 35.7: ()— particle
1, (· · ·)—particle 2

When placing 1000 starting points randomly in Ω8d, 164 numerical solutions
of the considered polynomial system were obtained. From them, we selected
those solutions in which the value of P5,rms is less than the smallest of the values
obtained when considering all particular cases of vanishing of the Vandermonde
determinant. The number of such solutions is 21. Of these, we give in Table 1
four solutions in ascending order of the corresponding values of the value P

(l)
5,rms.

One can see that in the general case, it is possible to obtain schemes that have
more than twice smaller values of P

(l)
5,rms than in cases where DetV = 0.

434 E. V. Vorozhtsov and S. P. Kiselev

4 Verification of New Symplectic Integrators

The problem of the motion of a system consisting of two interacting particles (the
two-body problem, the Kepler problem) admits a complete analytical solution
in the general form [9]. For this reason, it was used in [22] to verify the RKN
schemes of different orders of accuracy. The potential energy is given as U(|r1 −
r2|) = −Gm1m2/|r1 − r2|, where m1 and m2 are the masses of particles and
G is the gravitational constant, we set G = 1. Introduce the notation pj =
(pjx, pjy) = (mjuj ,mjvj), j = 1, 2, where uj and vj are the projections of
the particle velocity onto the x- and y-axes. Then the solution of the problem
under consideration is reduced to the solution of the following system of ordinary
differential equations:

dp1x

dt = −α (x1−x2)
r3 , dx1

dt = p1x

m1
,

dp1y

dt = −α (y1−y2)
r3 , dy1

dt = p1y

m1
,

dp2x

dt = α (x1−x2)
r3 , dx2

dt = p2x

m2
,

dp2y

dt = α (y1−y2)
r3 , dy2

dt = p2y

m2
.

(27)

Here r is the distance between the both particles, r = |r1 − r2| =
[
(x1 − x2)2 +

(y1 − y2)2
]1/2, α = Gm1m2 and it is assumed that x1, y1, x2, y2, p1x, p1y, p2x, p2y

are the functions depending on time t.
The system (27) is solved under the following initial conditions specified

at t = 0:

x1(0) = l1, y1(0) = 0, x2(0) = −l2, y2(0) = 0,
p1x(0) = 0, p1y(0) = m1v10, p2x(0) = 0, p2y(0) = −m2v20,

(28)

see also Fig. 2. Here lj is the distance from the coordinate origin to the jth
particle, j = 1, 2, vj0 is the absolute value of the initial velocity of the jth
particle in the direction of the y axis, j = 1, 2; the value v10 > 0 is the user-
specified quantity. Let rmc be the radius vector of the mass center. Following [1]
let us place the coordinate origin in the mass center. Then we obtain the equality:
rmc = (r1m1+r2m2)/(m1+m2) = 0. It follows from here that m1l1−m2l2 = 0,
which implies the relation l2 = l1m1/m2. This means that if the quantities
m1,m2, l1 are given, then the value of l2 is uniquely determined. To ensure that
the center of masses remains at rest at t > 0 we also impose the condition
m1v1 + m2v2 = 0, which implies the relation m1v10 − m2v20 = 0. From this it
follows that v20 = (m1/m2)v10.

Accounting for (28) we obtain:

|E| = |H| =
∣
∣
∣
∣
m1v

2
10 + m2v

2
20

2
− α

l1 + l2

∣
∣
∣
∣ . (29)

To ensure the finiteness the constants v10, v20 and l1, l2 must satisfy the inequal-
ity m1v2

10+m2v2
20

2 − α
l1+l2

< 0. In this case, the motion of each particle at t > 0
occurs along its own ellipse. Introduce the vector of the mutual distance between
the both points r = r2−r1 and place the coordinate origin at the inertia center.
This leads to the equality m1r1+m2r2 = 0. We find from the last two equalities:

r1 = − m2

m1 + m2
r, r2 =

m1

m1 + m2
r.

Optimal Four-Stage Symplectic Integrators 435

Table 2. The errors δEmean, |δE|mean, and δrm,max at e = 0 for different RKN
methods

K RKN scheme Scheme error δEmean |δE|mean δr1,max

1 Verlet O(h2) −1.783e − 14 1.783e − 14 1.953e − 7

2 Optimal [22] O(h2) −7.879e − 15 7.889e − 15 9.605e − 8

3 RKN34A [22] O(h4) −3.918e − 15 4.048e − 15 5.684e − 14

4 RKN4-2 O(h4) −3.685e − 15 3.805e − 15 5.662e − 14

Table 3. The errors δEmean, |δE|mean, and δr1,max at e = 0 for the fourth-order
methods from Table 1

RKN4 scheme δEmean |δE|mean δr1,max

1a 1.703e − 15 3.663e − 15 6.706e − 14

2a −3.378e − 15 3.462e − 15 2.243e − 14

3a −4.781e − 15 5.126e − 15 3.331e − 14

4a −2.504e − 15 2.609e − 15 1.954e − 14

Table 4. Comparison of the accuracy of symplectic symmetric schemes at e = 0

Scheme δEmean |δE|mean δr1,max

1 −4.398e − 15 4.453e − 15 1.488e − 14

2 −3.188e − 15 3.267e − 15 1.621e − 14

3 −2.247e − 15 2.341e − 15 6.624e − 13

4 −5.491e − 15 6.046e − 15 2.567e − 13

Let r = (x(t), y(t)). Then x = a(cos ξ − e), y = a
√

1 − e2 sin ξ. Here a is the
ellipse large semiaxis, e is the elliptic orbit eccentricity, a = α/(2|E|), e =

[
1 +

2EM2/(mα2)
]1/2, where M is the magnitude of the moment vector, which is

directed along a normal to the (x, y) plane; M = (r1 × m1v1) + (r2 × m2v2).
The law of the moment conservation takes place [9]: M = const ∀t ≥ 0. We
obtain from the initial conditions (28): M = m1l1v10 + m2l2v20.

In order to verify the developed Fortran program, we performed calculations
of the two-body problem using all the four-stage RKN schemes discussed in
the previous sections. The results presented in Figs. 3, 4 and in Tables 2–7 were
obtained at m1 = m2 = 1. Numerical solution for the coordinates of both par-
ticles obtained at e = 0 after performing 7140 time steps with a constant step
of h = 0.005, is shown in Fig. 3. The coordinates of the particles were stored
every 80 steps of t. One can see that both particles move in the same circular
orbit. Using formula (15, 8) from [9], it is not difficult to find the time period T
required for a particle to complete a complete revolution in a circular orbit in
the case of zero eccentricity: T = π

√
l1, where l1 is the radius of the circle along

436 E. V. Vorozhtsov and S. P. Kiselev

which each particle moves; in our case, l1 = 2. Hence, it is easy to find that
during the time t = 35.7, each of the two particles made 8 complete revolutions
in a circle.

Table 2 presents the computational results for the problem of the motion
of two particles along a circular orbit, which were obtained by using the RKN
methods with the number of stages from 1 to 4. The quantities δEmean and
|δE|mean were computed as the arithmetic means of the quantities δEn and

|δEn|, where δEn = (En − E0)/E0, En = (pn
1x)

2+(pn
1y)

2

2m1
+ (pn

2x)
2+(pn

2y)
2

2m2
− α

rn ,

E0 = m1v2
10+m2v2

20
2 − α

l1+l2
according to (29), rn = [(xn

1 − xn
2)2 + (yn

1 − yn
2)2]1/2.

Besides, δrm,max is the maximum relative deviation of the magnitude of the
radius vector rn of the mth particle (m = 1, 2) from the exact radius a = 2 of

the circular orbit that is δrm,max = max
j

∣
∣
√

x2
mj + y2

mj − a
∣
∣/a. It has turned out

that at least the first 14 digits of the decimal mantissa of the numbers δr1,max

and δr2,max coincide. Therefore, Table 2 presents only the quantity δr1,max. From
the viewpoint of practical applications, the accuracy of the computation of the
coordinates of points (xn

m, yn
m) is the most important. One can see in Tables 2 and

3 that the best accuracy of the computation of these coordinates is achieved at
the use of the four-stage RKN scheme. It also follows from Tables 2 and 3 that
the new scheme RKN4-4a ensures smaller errors in energy δEmean, |δE|mean

than the method RKN4-2.

Table 5. Comparison of the accuracy of symmetric and non-symmetric schemes at
e = 0

Scheme δEmean |δE|mean δr1,max

RKN4-2 −3.685e − 15 3.805e − 15 5.662e − 14

RKN4-1a 1.703e − 15 3.663e − 15 6.706e − 14

RKNsym No. 4 −8.156e − 15 8.158e − 15 2.571e − 13

Table 4 presents the results of calculating the motion of both particles in a
circular orbit using the four symmetric schemes found. One can see from the
comparison with Table 3 that the accuracy of these schemes is somewhat worse
than in the case of the methods from Table 1. Table 5 compares the accuracy
of symmetric scheme No. 4 with the accuracy of some non-symmetric schemes.
The much higher accuracy of the RKN4-1a scheme is consistent with the fact
that for it, the weighted norm of the leading error term is about 3.4 times less
than in the case of the symmetric scheme No. 4.

To consider the case of the motion of each particle along its elliptic orbit
let us set in (28) v10 = 0.2 and l1 = 2. The inequality 4l1v2

10 < 1 is then
satisfied, therefore, the eccentricity e 	= 0 and E < 0. Each particle performs
one complete revolution along its elliptic orbit during the period of time [9]

Optimal Four-Stage Symplectic Integrators 437

Fig. 4. Elliptic orbits of particle 1 (the right ellipse) and particle 2 (the left ellipse)
in the interval 0 < t ≤ 164. Solid lines are the exact ellipses, dotted lines show the
numerical solution by the RKN4-2 method

Table 6. Errors δEmean, |δE|mean, and δy1,mean at v10 = 0.2 for different RKN
methods

K Method δEmean |δE|mean δy1,mean

1 Verlet 2.749e − 7 2.749e − 7 −3.384e − 5

2 Optimal [22] 8.754e − 8 8.838e − 8 −1.067e − 5

3 RKN34A [22] 5.438e − 13 6.230e − 13 −2.762e − 7

4 RKN4-2 6.047e − 13 5.753e − 13 −2.762e − 7

Fig. 5. The error δy1,j as a function of t. The RKN4-1a method

Table 7. Errors δEmean, |δE|mean, and δy1,mean at v10 = 0.15 for different RKN
methods

K Method δEmean |δE|mean δy1,mean

1 Verlet 8.361e − 6 8.361e − 6 −5.053e − 3

2 Optimal [22] 2.954e − 6 3.174e − 6 −1.581e − 3

3 RKN34A [22] 9.686e − 10 9.686e − 10 −1.630e − 7

4 RKN4-1a 1.232e − 9 1.232e − 9 −1.630e − 7

Table 8. Errors δEmean, |δE|mean, and δy1,mean at m1 = 1, m2 = 5 and e = 0

Method δEmean |δE|mean δr1,max

RKN4-2 2.392e − 15 3.150e − 15 9.813 e − 12

RKN4-1a −5.102e − 15 5.443e − 15 1.278 e − 11

RKNsym No. 4 −1.234e − 15 1.589e − 15 4.670 e − 11

438 E. V. Vorozhtsov and S. P. Kiselev

T = πα
√

m/(2|E|3). Substituting here the values α = 1, m = 1/2, and E = v2
10−

1/(2l1), we obtain T = 16.3227. By the physical time t = 164, each particle makes
10 complete revolutions along its elliptic orbit. Figure 4 shows the numerical
solution for the coordinates of both particles, which was obtained by the method
RKN4-2 and by all other considered RKN4 methods at the moment of time
t = 164 after the execution of 82000 time steps with the step h = 0.002. One can
see that each particle moves along its elliptic orbit and the locations of particles
agree very well with the exact elliptic orbits.

Table 6 presents the values of the relative errors δEmean and |δE|mean

obtained by numerically solving the problem of the motion of two particles in
elliptical orbits according to RKN schemes with the numbers of stages 1, 2, 3, 4.

The value δy1,mean was calculated as the arithmetic mean of the values δy1j =
y1j −y1,ex. Here y1,ex is the exact value of the coordinate y at the intersection of
the line x = x1j with the ellipse of the first particle (see the right ellipse in Fig. 4).
Given the value x from the exact equation for the coordinate x = −0.5l1(cos ξ−e)
of the ellipse of the first particle the argument ξj = arccos[e−(2x1j/l1)] is found.
After that, the exact value of the y coordinate of the point lying on the ellipse
is found by the formula: y1,ex = − m2

m1+m2
b · sign(y1j) sin ξj , where b = a

√
1 − e2.

The value of δy2,mean is calculated similarly using exact formulas for the ellipse
of the second particle. It has turned out that the first ten digits of the mantissa
of the machine numbers δy1,mean and δy2,mean coincide, but the signs of these
numbers are opposite.

Fig. 6. Circular orbits of particles in
the interval 0 < t ≤ 35.7 (h = 0.005).
The exact orbits: ()— particle 1,
(− − −)— particle 2

Fig. 7. Elliptic orbits of particle 1 (the right
ellipse) and particle 2 (the left ellipse) in the
interval 0 < t ≤ 8 (h = 10−3). The exact
orbits: ()— particle 1, (− − −)— par-
ticle 2. Dotted lines show the numerical solu-
tion by the RKN4-2 method

From the condition of zero eccentricity v10 = 0.5/
√

l1, it follows that the
eccentricity e = |4l1v

2
10 − 1| increases with decreasing v10. Table 7 shows the

relative error values δEmean and |δE|mean obtained when v10 = 0.15, h = 0.005.
The calculations were carried out up to the time T = 500; 105 steps were made
in time. During this time, each of the two particles made more than 34 complete
revolutions in an elliptical orbit. Comparing Table 6 and Table 7 one can see that

Optimal Four-Stage Symplectic Integrators 439

the relative errors in the implementation of the law of conservation of energy
have increased by two to three decimal orders of magnitude compared to the
case when v10 = 0.2. One can specify the following reasons for the decrease
in accuracy: first, the calculations were performed until the moment of time
T = 500, which is three times greater than the time moment T = 164. Secondly,
the step h = 0.005 was used, which is 2.5 times larger than the step with which
the calculations were made for Table 6. Third, for v10 = 0.15, the small semi-
axes of the ellipses are smaller than for v10 = 0.2. This led to an increase in the
curvature of the ellipses in the vicinity of the x axis. Figure 5 shows the local
error δy1j as a function of time. There is a significant outburst in this quantity
at t ≈ 300. At other time moments, δy1j is much smaller so that the mean value
of this quantity is equal only to −1.630e − 7 according to Table 7.

Figure 6 shows by dotted lines the numerical results obtained by the RKN4-
1a method in the case when m1 = 1,m2 = 5 and the eccentricity e = 0. One can
see that the both particles rotate around the same center. The computations
were done also for other ratios m1/m2. As m2 → m1, the inner orbit approaches
the orbit produced by particle 1. Figure 7 shows by dotted lines the numerical
results obtained by the RKN4-2 method in the case when m1 = 1,m2 = 3 and
the eccentricity e = 0.9526. Table 8 presents the values of errors δEmean and
|δE|mean obtained in the case of different particle masses.

5 Conclusions

We have obtained 20 symplectic four-stage Runge-Kutta-Nyström schemes using
Gröbnerbases for all particular cases of vanishing of the Vandermonde deter-
minant. Four invertible (symmetric) four-stage RKN schemes have also been
obtained analytically using the CAS Mathematica and it is shown that the corre-
sponding Vandermonde determinants are nonzero. Two of these schemes depend
on the parameter. Its optimal value is found from the requirement of the mini-
mum of the leading term of the approximation error.

In the general case of non-symmetric four-stage schemes, four new schemes
are found using the numerical optimization method. It has turned out that the
leading error term of these schemes is less than that of the schemes found in the
cases of the zero Vandermonde determinant.

Verification of the schemes has been carried out on the example of a numerical
solution of the Kepler problem, which has an exact solution. It is shown that
the four-stage schemes provide a higher accuracy of the law of conservation of
particle energy than the schemes of lower orders of accuracy. The considered
RKN schemes are explicit, which makes it particularly convenient to parallelize
the computation by these schemes.

440 E. V. Vorozhtsov and S. P. Kiselev

References

1. Adams, A.L., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies
in Mathematics, vol. 3. American Mathematical Society, Providence (1996)

2. Feng, K., Qin, M.: Symplectic Geometric Algorithms for Hamiltonian Systems.
Hangzhou; Springer-Verlag, Berlin, Heidelberg, Zhejiang Publishing United Group,
Zhejiang Science and Technology Publishing House (2010)

3. Forest, E.: Canonical integrators as tracking codes, SSC Central Design Group
Technical Report SSC-138 (1987)

4. Forest, E., Ruth, R.D.: Fourth-order symplectic integration. Physica D. 43, 105–
117 (1990)

5. Gladman, B., Duncan, M.: Symplectic integrators for long-term integrations in
celestial mechanics. Celest. Mech Dyn. Astron. 52, 221–240 (1991)

6. Godunov, S.K., Kiselev, S.P., Kulikov, I.M., Mali, V.I.: Modeling of Shockwave
Processes in Elastic-plastic Materials at Different (Atomic, Meso and Thermody-
namic) Structural Levels. Institute of Computer Research, Moscow-Izhevsk (2014)
[in Russian]

7. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I.
Nonstiff Problems. Second Edition. Springer-Verlag, Berlin (1993)

8. Krylov, V.I., Bobkov, V.V., Monastyrnyi, P.I.: Computational Methods. Vol. II.
Nauka, Moscow (1977) [in Russian]

9. Landau, L.D., Lifshitz, E.M.: Mechanics, third edition. Course of Theoretical
Physics. Vol. 1. Elsevier, Amsterdam (1976)

10. Lewis, H., Barnes, D., Melendes, K.: The liouville theorem and accurate plasma
simulation. J. Comput. Phys. 69(2), 267–282 (1987)

11. McAndrew, A.: Developing explicit Runge-Kutta formulas using open-source soft-
ware. arXiv:1402.3883v1 [math.NA], 17 February 2014

12. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer
J. 7(4), 308–313 (1965)

13. Neri, F.: Lie algebras and canonical integration. Department of Physics, University
of Maryland (1988, preprint)

14. Nyström, E.J.: Ueber die numerische Integration von Differentialgleichungen. Acta
Soc. Sci. Fenn. 50 (13), 1–54 (1925)

15. Okunbor, D.I., Skeel, R.D.: Canonical Runge-Kutta-Nyström methods of orders
five and six. J. Comput. Appl. Math. 51, 375–382 (1994)

16. Omelyan, I.P., Mryglod, I.M., Folk, R.: Optimized Forest-Ruth- and
Suzuki-like algorithms for integration of motion in many-body systems.
arXiv: cond-mat/011058v1 [cond-mat.stat-mech], 29 October 2001

17. Omelyan, I.P., Mryglod, I.M., Folk, R.: Optimized Verlet-like algorithms for molec-
ular dynamics simulations. Phys. Rev. E. 65, 056706 (2002)

18. Sofroniou, M.: Symbolic derivation of Runge-Kutta methods. J. Symb. Comput.
18 (3), 265–296 (1994)

19. Sofronov, V.N., Shemarulin, V.E.: Classification of explicit three-stage symplectic
difference schemes for the numerical solution of natural Hamiltonian systems: A
comparative study of the accuracy of high-order schemes on molecular dynamics
Problems. Comp. Math. Math. Phys. 56(4), 541–560 (2016)

20. Surius, Y.B.: On the canonicity of maps generated by Runge-Kutta type methods
in the integration of systems ẍ = −∂U/∂x. Zh. Vychisl. Mat. Mat. Fiz. 29(2),
202–211 (1989). [in Russian]

http://arxiv.org/abs/1402.3883v1
http://arxiv.org/abs/cond-mat/011058v1

Optimal Four-Stage Symplectic Integrators 441

21. Vorozhtsov, E.V.: Derivation of explicit difference schemes for ordinary differential
equations with the aid of Lagrange-Burmann expansions. In: Computer Algebra in
Scientific Computing. CASC 2010. Lecture Notes in Computer Science, vol 6244,
p. 250–266. Springer, Berlin, 2010 Gerdt V.P., Koepf W., Mayr E.W., Vorozhtsov
E.V. (eds)

22. Vorozhtsov, E.V., Kiselev, S.P.: Comparative study of the accuracy of higher-order
difference schemes for molecular dynamics problems using the computer algebra
means. In: Computer Algebra in Scientific Computing. CASC 2020. LNCS, vol
12291, p. 600–620. Springer, Cham, 2020 Boulier F., England M., Sadykov T.M.,
Vorozhtsov E.V. (eds). https://doi.org/10.1007/978-3-030-60026-6 35

23. Wu, Y.-L., Wu, X.: An optimized Forest-Ruth-like algorithm in extended phase
space. Int. J. Modern Phys. C 29(1) (2018). id. 1850006. https://doi.org/10.1142/
S0129183118500067

24. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 43
(5–7), 262–268 (1990)

https://doi.org/10.1007/978-3-030-60026-6_35
https://doi.org/10.1142/S0129183118500067
https://doi.org/10.1142/S0129183118500067

On Geometric Property of
Fermat–Torricelli Points on Sphere

Zhenbing Zeng(B) , Yu Chen, Xiang Sun, and Yuzheng Wang

Department of Mathematics, Shanghai University, Shanghai 200444, China
zbzeng@shu.edu.cn

Abstract. Given three points on sphere S2, a point on sphere that
maximizes or minimizes the sum of its Euclidean distances to the given
points is called Fermat–Torricelli point. It was proved that for A, B, C ∈
S2 and their Fermat–Torricelli point P , the distance sum L = PA +
PB + PC and the edges a = BC, b = CA, c = AB satisfy a polynomial
equation f(L, a, b, c) = 0 of degree 12. But little is known about the
geometric property of Fermat–Torricelli points, even when A, B, C are
on very special positions on sphere. In this paper, we will show that
for three points A, B, C on a greater circle on sphere, their Fermat–
Torricelli points are either on the same greater circle or on one of four
special positions (called Zeng Points) determined by A, B, C.

Keywords: Spherical triangle · Fermat–Torricelli points · Euclidean
distance · Polynomial equations · Zeng points

1 Introduction

It is well known that given any three points A,B,C in the Euclidean plane, there
is a unique point P (called “Fermat–Torricelli Point”) so that PA + PB + PC,
the sum of the distances from P to the given points, is minimal, and if none of
the three angles of the triangle ABC are greater than 2π/3, then the optimal
point is the isogonal point of ABC, i.e.,

∠APB = ∠BPC = ∠CPA = 2π/3,

otherwise, P coincides with the obtuse vertex of ABC. Let

a = BC, b = CA, c = AB, L = min{PA + PB + PC|P ∈ R
2}.

Then it is easy to use computer algebra software like Maple to derive a polyno-
mial that connects L, a, b, c as follows

(L − b − c)(L − c − a)(L − a − b)(L8 + k1L
6 + k2L

4 + k3L
2 + k4) = 0,

Supported by National Natural Science Foundation of China Grant Nos. 61772203 and
12071282.

c© Springer Nature Switzerland AG 2021
F. Boulier et al. (Eds.): CASC 2021, LNCS 12865, pp. 442–462, 2021.
https://doi.org/10.1007/978-3-030-85165-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85165-1_25&domain=pdf
http://orcid.org/0000-0002-9728-1114
https://doi.org/10.1007/978-3-030-85165-1_25

On Geometric Property of Fermat-Torricelli Points on Sphere 443

where

k1 = −8(a + b + c)2 + 12(ab + bc + ca),
k2 = 16(a + b + c)4 − 48(a + b + c)2(ab + bc + ca)

+ 30(ab + bc + ca)2,
k3 = 64(a + b + c)3abc − 40(a + b + c)2(ab + bc + ca)2

+ 28(ab + bc + ca)3,
k4 = 9(ab + bc + ca)4.

In [3], Ghalieh and Hajja studied the Fermat point of spherical triangle. They
proved that for any three points A,B,C on the unit sphere S2, the point P ∈ S2

that minimizes d(P,A)+d(P,B)+d(P,C) either lies at a vertex of ABC or else
satisfies

cos �APB = cos �BPC = cos �CPA = −1/2,

where the distance d(X,Y) between two points X,Y is defined to be the length of
smaller arc on the greater circle passing through the two points, and the spherical
angle �APB is defined to be the ordinary angle ∠XPY where XP , Y P are the
tangents to the arcs AP,BP (respectively). In [4], Guo et al. investigated the
Fermat–Torricelli problem of triangles on the sphere under Euclidean metric,
namely, to find the optimal point P on the sphere S2 for three given points
A,B,C ∈ S2, so that the sum of the Euclidean distances PA + PB + PC from
that point P to the three vertices is minimal (or maximal). The results can be
stated as follows. Let A,B,C ∈ S2, a = BC, b = CA, c = AB, and L be the
minimal or maximal of PA + PB + PC over points P ∈ S2. Then

(L − b − c)(L − c − a)(L − a − b)
·(L12 + K1L

10 + K2L
8 + K3L

6 + K4L
4 + K5L

2 + K6) = 0,

where K1,K2, . . . ,K6 are polynomials of a, b, c. Little is known about geometric
properties of Fermat–Torricelli points due to the complexity of symbolic compu-
tation involved in this problem, except the following two facts:

– The Fermat–Torricelli point D such that DA + DB + DC is minimal lies in
the smaller one of the two spherical caps intersected by S2 and the plane
passing through A,B,C, including the circle determined by A,B,C, and the
Fermat–Torricelli point E such that EA + EB + EC is maximal lies in the
larger spherical cap, including the circle determined by A,B,C.

– If one of the three angles ∠CAB,∠ABC,∠BCA is larger than or equal to
2π/3, then the minimal Fermat–Torricelli point of ABC coincides with one
of vertices of ABC.

Curiously to see more geometric properties of the minimal and maximal
Fermat–Torricelli points (denoted by D,E hereafter), say, are D,E uniquely
determined by A,B,C? when do D,E lie at the circle determined by A,B,C?
and what is special about D,E, we have done the following numerical experi-
ments:

444 Z. Zeng et al.

(1): Construct Small Squares and Small Cubes to Cover Sphere. Con-
struct a set S1 that contains small squares of edge length 1/64 in form

[0, 0] ×
[
−1 +

m

64
,−1 +

m + 1
64

]
×

[
−1 +

n

64
,−1 +

n + 1
64

]

(0 ≤ m ≤ 63, 0 ≤ n ≤ 127)

to cover the prime meridian {(x, y, z)|x = 0, y2+z2 = 1, 0 ≤ y ≤ 1,−1 ≤ z ≤ 1};
construct a set S2 of squares in form[

−1 +
k

64
,−1 +

k + 1
64

]
×

[
−1 +

m

64
,−1 +

m + 1
64

]
× [0, 0]

(0 ≤ k,m ≤ 127)

to cover the whole equator {(x, y, z)|x2 + z2 = 1, z = 0}; construct a set S3 that
contains small cubes of edge length 1/64 in form

[
k

64
,
k + 1
64

]
×

[
−1 +

m

64
,−1 +

m + 1
64

]
×

[
−1 +

n

64
,−1 +

n + 1
64

]
,

(0 ≤ k ≤ 63, 0 ≤ m,n ≤ 127)

to cover the eastern part of the unit sphere

{(x, y, z)|x2 + y2 + z2 = 1, 0 ≤ x, z ≤ 1},

and construct a set S4 of such small cubes that cover the whole sphere. It is
verified that S1 and S2 contain 254 and 508 small squares, respectively, and
S3 and S4 contain 38, 548 and 77, 096 small cubes, respectively. It is clear that
the intersection of each small square with the unit sphere is an arc (of a greater
circle), and the intersection of each cube with the sphere is a curved quadrilateral.
Under the stereographic projection, they are mapped to straight line sections (or
circular arcs) and curved quadrilaterals on the Euclidean plane. Since rational
points are dense in R

2, we are able to take as many as required (here, we take
N = 100) random rational points in each small line-segment (or circular arc)
and curved quadrilateral in the plane. We mapped the selected rational points
in R

2 to the squares in S1, S2 and cubes in S3, S4. Then we have obtained
254 × N = 25, 400 and 508 × N = 50, 800 rational points on the prime meridian
and the equator, respectively, and 3, 854, 800 and 7, 709, 600 rational points on
the eastern sphere and the whole sphere. Let r(Si) denote the set of all obtained
rational points in Si (i = 1, 2, 3, 4), and r(X) denote the set of rational points
in a small square or cube X ∈ Si (i = 1, 2, 3, 4).

(2): Generate Big Data. Taking A = (0, 0, 1), North Pole of the unit sphere,
and for each combination (U, V) where U ∈ S1, V ∈ S3, taking randomly a
rational point B ∈ r(U) and a rational point C ∈ r(V). Then searching rational
points D,E from the previously constructed for cubes in S4, so that

D = arg min{XA + XB + XC,X ∈ r(S4)},

On Geometric Property of Fermat-Torricelli Points on Sphere 445

and
E = arg min{Y A + Y B + Y C, Y ∈ r(S4)}.

Doing this computation for all U ∈ S1, V ∈ S3 we get a big data set DataSet5 of
5-tuples (A,B,C,D,E), which satisfy that for spherical triangle A,B,C ∈ S2,
D,E, there are the “approximate” minimal and maximal Fermat–Torricelli point
ABC. It is clear that this data set has 254 × 38, 548 = 9, 791, 192 records, and
we can generate a new data set by repeating the above computation.

Another big data set DataSet4 can be generated as follows. Taking A =
(−1, 0, 0) ∈ S2, U, V (U �= V) are chosen arbitrarily from set S2 and ratio-
nal points B,C randomly from r(U), r(V). Let P be the rational point selected
from r(S4) so that PA + PB + PC is maximal. Doing this computation for all
combination U, V ∈ S2, we obtain a data set of (A,B,C, P) such that for any
4-tuple (A,B,C, P), P is the maximal Fermat–Torricelli point of ABC approx-
imately. It is clear that DataSet4 has 128, 271 records, and the data set can be
generated again if required.

(3): Discover Hidden Knowledge Using Statistical Methods. With each
item (A,B,C,D,E) in DataSet5, we associate an 11-tuple of rational numbers
as follows:

φ : (A,B,C,D,E) �→ (a2, b2, c2, d2, r2, u2, v2, w2, x2, y2, z2),

where a = BC, b = CA, c = AB, d = DE, r is the circumradius of ABC, and

u = DA, v = DB,w = DC, x = EA, y = EB, z = EC.

This transformation maps the DataSet5 into a point set in space R
11. Then

we apply regression and other statistical methods to find possible connections
between the 11 variables. Since our purpose in this paper is mainly to discuss
the symbolic algebra computation approach, we will not explain the detail of the
statistical methods here. The two things we discovered by analyzing φ(DataSet5)
that it can be described as follows:

Empirical Formula 1. Let A,B,C ∈ S2 and D,E be the minimal and maximal
Fermat–Torricelli points of ABC, respectively. If ∠CAB, ∠ABC, and ∠BCA are
not larger than 2π/3, then DE ≈ 2.

Empirical Formula 2. Let A,B,C ∈ S2 and D,E be the minimal and maximal
Fermat–Torricelli points of ABC, respectively. Then

DA : DB : DC ≈ EA : EB : EC.

The empirical formulae are obtained by regression on the data set φ(DataSet5a),
where DataSet5a is the set of (A,B,C,D,E) in DataSet5 that satisfies ∠CAB,
∠ABC, ∠BCA are not larger than 2π/3. For DataSet4, we used the numerical
results to find what is the condition for the maximal Fermat–Torricelli point
of three points on the equator to lie also at the equator. Recall that an item
(A,B,C, P) ∈ DataSet4 records a triangle ABC where A = (0,−1, 0), B,C are

446 Z. Zeng et al.

on the equator, and P is their maximal Fermat–Torricelli point. Construct a
map

γ : DataSet4 → [0, 2] × [0, 2] × {dark blue, light red}
by

(A,B,C, P) �→ (AB,AC, t), t =
{

dark blue if P lies at the equator,
light red otherwise.

The obtained new data set γ(DataSet4) is visualized in Fig. 1.

Fig. 1. A visualization of data set γ(DataSet4). Each point in [0, 2] × [0, 2] represents
a triangle on the unit sphere, where A = (0, −1, 0) and B, C lie at the equator, with B
in the eastern hemisphere and C in the western hemisphere. If the maximal Fermat–
Torricelli point P of ABC lies at the equator, the point is marked by dark blue,
otherwise it is marked by light red. The horizontal coordinate is b = AC and the
vertical coordinate is c = AB. (Color figure online)

Inspired by the above numerical computation, we applied the metric equa-
tion, the Lagrange multipliers methods, and symbolic algebra computation to
derive exact formula f(a, b, c, d) = 0 by constructing a system of polynomials

fi(a, b, c, d, u, v, w, x, y, z) = 0 (i = 1, 2, · · · , 7),

that reflect the facts that A,B,C,D,E are on the same unit sphere, DA+DB+
DC is minimal, and EA+EB+EC are minimal (we will show this in this paper
later), and eliminating u, v, w, x, y, z from f1, f2, · · · , f7. But the elimination was
not completed due to the complexity of symbolic computation. For the problem
corresponding to DataSet4, by symbolic algebraic computation we proved the
following result:

On Geometric Property of Fermat-Torricelli Points on Sphere 447

Theorem 1. Assume that S1 ⊂ S2 is the equator of the unit sphere S2, and
A,B,C ∈ S1 , P ∈ S2 is the point such that PA + PB + PC is maximal. Then
either P is on the equator S1, or P lies in the interior of S2 \ S1 and satisfies

PA2 : PB2 : PC2 =
1

a2(4 − a2)
:

1
b2(4 − b2)

:
1

c2(4 − c2)
, (1)

where a = BC, b = CA, c = AB.

The problem of finding a polynomial discriminant G(a, b, c) to determine when
the maximal Fermat–Torricelli point P of a given equatorial triangle ABC with
a = BC, b = CA, c = AB lies at the equator leads to a quantifier elimination
problem as follows

(L2 ≥ L1) L2 = x + y + z ∧ L1 = x′ + y′ + z′

∧g1(x, a, b, c) = 0 ∧ g2(y, a, b, c) = 0 ∧ g3(z, a, b, z) = 0
∧h1(x′, a, b, c) = 0 ∧ h2(y′, a, b, c) = 0 ∧ h3(z′, a, b, z) = 0,

here gi, hi are polynomials of degree 4. Again the symbolic computation involved
for elimination in this problem is too complicated so we were not able to get the
discriminant polynomial.

In this paper, we will present a proof to Theorem 1. The paper is organized as
follows: in Sect. 2 we apply metric equations and the Lagrange multiplier method
to derive the algebraic representation of the Fermat–Torricelli point, in Sect. 3,
we use the Sylvester resultant to do elimination and prove Theorem 1, in Sect. 4,
we very briefly discuss the case of maximal-Torricelli point in the equator and
present a conjecture related to the condition for the maximal Fermat–Torricelli
points of an equatorial triangle lying on the equator.

2 Algebraic Equations Derived for the Fermat–Torricelli
Points

Let A,B,C, P be four arbitrary points on the unit sphere. Let a = BC, b =
CA, c = AB and x = PA, y = PB, z = PC. Then a, b, c, x, y, z satisfy the
following polynomial equation written in determinant form:

f−1 :=

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 c2 b2 x2 1
1 c2 0 a2 y2 1
1 b2 a2 0 z2 1
1 x2 y2 z2 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2)

This equation actually reflects the fact that the points A,B,C, P together with
the center of the unit sphere O, form a simplex in R

4 of volume 0, as they
are embedded in R

3 indeed. The expanded form of f−1 has 28 monomials and

448 Z. Zeng et al.

needs 5 lines to print, so we just show its matrix form by (2). According to
Blumenthal’s [1] (Lemma 42. 1) and the compactness of the sphere, it is known
that if three real numbers x, y, z satisfy equation (2), then there exists a point P
on the unit sphere such that PA = x, PB = y, PC = z (Fig. 2).

Fig. 2. Points A, B, C lie at the equator of the unit sphere and point P on the hemi-
sphere

Similarly, the assumption that A,B,C are on the equator S1 can also be
written into a polynomial as follows:

f0 :=

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 c2 b2 1
1 c2 0 a2 1
1 b2 a2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
= −2 a2b2c2 − 2 a4 + 4 b2a2 + 4 c2a2 − 2 b4 + 4 b2c2 − 2 c4 = 0. (3)

Computing resultant(f−1, f0, a) we get a polynomial of b, c, x, y, z as follows:

f1a = b4c2x2y2 − b2c4x2z2 − 2 b4c2x2 − 2 b4c2y2 + b4x4 − 2 b4x2y2

+ b4y4 + 2 b2c4x2 + 2 b2c4z2 − 4 b2c2x2y2 + 4 b2c2x2z2 − c4x4

+ 2 c4z2x2 − c4z4 + 4 b4c2 − 4 b2c4 + 8 b2c2y2 − 8 b2c2z2

− 4 b2x4 + 8 b2x2y2 − 4 b2y4 + 4 c2x4 − 8 c2x2z2 + 4 c2z4 = 0. (4)

Therefore, the geometric optimal problem we are discussing, namely, to find a
point P ∈ S2 so that PA + PB + PC is maximal, can be written as

max L = x + y + z, (5)
s.t. f1a(b, c, x, y, z) = 0, P ∈ S2

≥0.

Here S2
≥0 denotes the northern hemisphere, i.e., the section of the unit sphere

that is north of the equator. According to Lagrange multiplier method, if the

On Geometric Property of Fermat-Torricelli Points on Sphere 449

optimal point of this problem lies at the interior of the hemisphere, then x, y, z
satisfy also the following polynomial equations:

f2a :=
∂

∂x
(x + y + z + k · f1a(b, c, x, y, z)) = 1 + k

∂f1a
∂x

= 0,

f3a :=
∂

∂y
(x + y + z + k · f1a(b, c, x, y, z)) = 1 + k

∂f1a
∂y

= 0,

f4a :=
∂

∂x
(x + y + z + k · f1a(b, c, x, y, z)) = 1 + k

∂f1a
∂z

= 0.

Let

f5a := primpart

(
∂f1a
∂x

− ∂f1a
∂z

)
, f6a := primpart

(
∂f1a
∂y

− ∂f1a
∂z

)
. (6)

Then

f5a = b4c2xy2 + b2c4x2z − b2c4xz2 − 2 b4c2x + 2 b4x3 − 2 b4xy2

+ 2 b2c4x − 2 b2c4z − 4 b2c2x2z − 4 b2c2xy2 + 4 b2c2xz2

− 2 c4x3 − 2 c4x2z + 2 c4xz2 + 2 c4z3 + 8 b2c2z − 8 b2x3

+ 8 y2xb2 + 8 c2x3 + 8 c2x2z − 8 c2z2x − 8 c2z3, (7)

f6a = b4c2x2y + b2c4x2z − 2 b4c2y − 2 b4x2y + 2 b4y3 − 2 b2c4z

− 4 b2c2x2y − 4 b2c2x2z − 2 c4x2z + 2 c4z3 + 8 b2c2y

+ 8 b2c2z + 8 b2x2y − 8 b2y3 + 8 c2x2z − 8 c2z3. (8)

Therefore, if the optimal solution point P of problem (5) lies at the interior of
the hemisphere S2

≥0, then x, y, z satisfy polynomial equations (4), (7), and (8).
We can also eliminate b from polynomial equations f−1(a, b, c, x, y, z) = 0,
f0(a, b, c) = 0 defined in (2), (3), then construct a polynomial equation system

f1b(c, a, x, y, z) = 0, f5b(c, a, x, y, z) = 0, f6b(c, a, x, y, z) = 0, (9)

or eliminate c from (2), (3) and construct polynomial equations

f1c(c, a, x, y, z) = 0, f5c(c, a, x, y, z) = 0, f6c(c, a, x, y, z) = 0. (10)

Clearly, we have the following proposition:

Proposition 1. Let A,B,C ∈ S2 be three distinct points lying at the equator
of the unit sphere with a = BC, b = CA, c = AB, and P ∈ S2

≥0 be the point
such that PA + PB + PC is maximal. If P does not lie at the equator, then
x = PA, y = PB, z = PC satisfy simultaneously the equations

f1a = 0, f5a = 0, f6a = 0, f1b = 0, f5b = 0, f6b = 0, f1c = 0, f5c = 0, f6c = 0

defined by (6), (9), and (10).

450 Z. Zeng et al.

Using the Sylvester resultant we can eliminate the variable z (or y, or x)
from f1a, f5a, f6a as follows:

f7az := factor(resultant(f1a, f5a, z))
= H7az(b, c) · (Gaz(c, x, y))4 · F7az(b, c, x, y), (11)

f8az := factor(resultant(f1a, f6a, z))
= H8az(b, c) · (Gaz(c, x, y))4 · F8az(b, c, x, y), (12)

here

H7az(b, c) = −b6c6 (c − 2)3 (c + 2)3 (b − 2)2 (b + 2)2 , (b2 − c2)

H8az(b, c) = −b4c6 (c − 2)3 (c + 2)3 (b − 2)2 (b + 2)2 (b2 − c2),
Gaz(c, x, y) = c2x2 − 2 c2 − 2x2 + 2 y2,

F7az and F8az are irreducible polynomials with 42 and 22 terms, respectively,
and

degree(F7az, x, y) = 4, degree(F7az, x, y) = 4.

Eliminating y from f1a, f5a, f6a, we have

f7ay := factor(resultant(f1a, f5a, y)
= H7ay · G4

ay · F7ay(b, c, x, z) (13)
f8ay := factor(resultant(f1a, f5a, y)

= H8ay · G4
ay · F8ay(b, c, x, z), (14)

here

H7ay = b4c4 (c − 2)2 (c + 2)2 (b − 2)2 (b + 2)2 ,

H8ay = −b6c4 (c − 2)2 (c + 2)2 (b − 2)3 (b + 2)3 (b2 − c2),
Gay = b2x2 − 2 b2 − 2x2 + 2 z2,

F7ay =
(
b2c4xz + b4x2 − 4 b2c2xz − c4x2 − 2 c4zx

−c4z2 − 4 b2x2 + 4 c2x2 + 8 c2zx + 4 c2z2
)2

and F8ay are irreducible polynomials of degree 4 (taking x, z as variables), with
22 monomials. Eliminating x from f1a, f5a, f6a, we obtain

f7ax := factor(resultant(f1a, f5a, y)
= H7ax · G4

ax · F7ax(b, c, y, z), (15)
f8ax := factor(resultant(f1a, f5a, y)

= H8ax · G4
ax · F8ax(b, c, y, z), (16)

here

H7ax = −b6c4 (c − 2)2 (c + 2)2 (b − 2)2

· (b + 2)2
(
b2 + c2 − 4

)
(b − c) (b + c) ,

H8ax = b4c4 (c − 2)2 (c + 2)2 (b − 2)2 (b + 2)2 ,

Gax = b2y2 − c2z2 − 2 b2 + 2 c2 − 2 y2 + 2 z2,

On Geometric Property of Fermat-Torricelli Points on Sphere 451

F7ax is an irreducible polynomial of degree 4, with 42 monomials, and

F8ax =
(
b4y2 − c4z2 − 4 b2y2 + 4 c2z2

)2
Doing the above resultant elimination for systems (f1b, f5b, f6b), we get the

following results:

f7bz := factor(resultant(f1b, f5b, z)) = H7bzG
4
bzF7bz, (17)

f8bz := factor(resultant(f1b, f6b, z)) = H8bzG
4
bzF8bz, (18)

f7by := factor(resultant(f1b, f5b, y)) = H7byG
4
byF7by, (19)

f8by := factor(resultant(f1b, f6b, y)) = H8byG
4
byF8by, (20)

f7bx := factor(resultant(f1b, f5b, x)) = H7bxG4
bxF7bx, (21)

f8bx := factor(resultant(f1b, f6b, x)) = H8bxG4
bxF8bx, (22)

where H7bz, · · · ,H8bx are polynomials of c, a, F7bz, · · · , F8bx are trivariate poly-
nomials in x, y, z of degree 4, with coefficients in Z(a, c), and

Gbz = c2y2 − 2 c2 + 2x2 − 2 y2,

Gby = a2x2 − c2z2 − 2 a2 + 2 c2 − 2x2 + 2 z2,

Gbx = a2y2 − 2 a2 − 2 y2 + 2 z2.

Doing this for equation system (f1c, f5c, f6c) we have the following results:

f7cz := factor(resultant(f1c, f5c, z)) = H7czG
4
czF7cz, (23)

f8cz := factor(resultant(f1c, f6c, z)) = H8czG
4
czF8cz, (24)

f7cy := factor(resultant(f1c, f5c, y)) = H7cyG
4
cyF7cy, (25)

f8cy := factor(resultant(f1c, f6c, y)) = H8cyG
4
cyF8cy, (26)

f7cx := factor(resultant(f1c, f5c, x)) = H7cxG4
cxF7cx, (27)

f8cx := factor(resultant(f1c, f6c, x)) = H8cxG4
cxF8cx, (28)

where H7cz, · · · ,H8cx are the polynomials of a, b, F7cz, · · · , F8cx are trivariate
polynomials of x, y, z of degree 4, with coefficients in Z(a, b), and

Gcz = a2x2 − b2y2 − 2 a2 + 2 b2 − 2x2 + 2 y2,

Gcy = b2z2 − 2 b2 + 2x2 − 2 z2,

Gcx = a2z2 − 2 a2 + 2 y2 − 2 z2.

For saving space we did not print polynomials Hindex, Findex in this paper, as
they are well defined by (11) to (28). Let

H1(a, b, c) := (a − 2)(b − 2)(c − 2)(a − b)(b − c)(c − a)
·(a2 + b2 − 4)(b2 + c2 − 4)(c2 + a2 − 4). (29)

Then one can easily observe that

H1(a, b, c) �= 0 =⇒ Hijk �= 0

452 Z. Zeng et al.

for all i = 7, 8; j ∈ {a, b, c}, and k ∈ {x, y, z} when A,B,C are distinct points on
the equator of the unit sphere. This immediately leads to the following proposi-
tion:

Proposition 2. Let A,B,C be three points on the equator and P the point on
the interior of the hemisphere S2

≥0 such that PA + PB + PC is maximal. Let
a = BC, b = CA, c = AB, x = PA, y = PB, z = PC, and H1(a, b, c) be defined
by (29). Assume that H1(a, b, c) �= 0. Then a, b, c, x, y, z satisfy the following
equations simultaneously:

GazF7az = 0, GazF8az = 0,

GayF7ay = 0, GayF8ay = 0,

GaxF7ax = 0, GaxF8ax = 0,

GbzF7bz = 0, GbzF8bz = 0,

GbyF7by = 0, GbyF8by = 0,

GbxF7bx = 0, GbxF8ax = 0,

GczF7cz = 0, GczF8cz = 0,

GcyF7cy = 0, GcyF8cy = 0,

GcxF7cx = 0, GcxF8cx = 0.

3 Solving Polynomial Equations with Parametric
Coefficients Under Non-degenerate Conditions

In this section, we find solutions of the equation system formed by the 9 poly-
nomials listed in Proposition 1 and the 18 polynomials listed in Proposition 2.
For this we first analyze the sub-system

GS :=

⎧⎪⎨
⎪⎩

Gaz = 0, Gay = 0, Gax = 0,

Gbz = 0, Gby = 0, Gbx = 0,

Gcz = 0, Gcy = 0, Gcx = 0

⎫⎪⎬
⎪⎭ .

Recall that

Gaz = c2x2 − 2 c2 − 2x2 + 2 y2,

Gay = b2x2 − 2 b2 − 2x2 + 2 z2,

Gaz = b2y2 − c2z2 − 2 b2 + 2 c2 − 2 y2 + 2 z2,

it is clear that we can regard GSa := {Gaz, Gay, Gaz} as a linear equation system
of variables x2, y2, z2 with parametric coefficients:

⎡
⎣ c2 − 2 2 0

b2 − 2 0 2
0 b2 − 2 −c2 + 2

⎤
⎦

⎡
⎣x2

y2

z2

⎤
⎦ =

⎡
⎣ −2 c2

−2 b2

−2 b2 + 2 c2

⎤
⎦ . (30)

On Geometric Property of Fermat-Torricelli Points on Sphere 453

Observing that the determinant of the coefficient matrix of (30) is 0, we checked
the linear dependence of Gaz, Gay, Gax and found that

(b2 − 2)Gaz − (c2 − 2)Gay − 2Gax = 0,

and similarly,

(a2 − 2)Gbz − 2Gby − (c2 − 2)Gbx = 0,

−2Gcz + (a2 − 2)Gcy − (b2 − 2)Gcx = 0.

Therefore, if x, y, z satisfy any two equations in GSa, then they also satisfy the
third equation in that system, and this statement is also true for equation system
GSb := {Gbz, Gby, Gbz}:

⎡
⎣ 2 c2 − 2 0

a2 − 2 0 −c2 + 2
0 a2 − 2 2

⎤
⎦

⎡
⎣x2

y2

z2

⎤
⎦ =

⎡
⎣ −2 c2

−2 a2 + 2 c2

−2 a2

⎤
⎦ , (31)

and GSc := {Gcz, Gcy, Gcz}:
⎡
⎣a2 − 2 −b2 + 2 0

2 0 b2 − 2
0 2 a2 − 2

⎤
⎦

⎡
⎣x2

y2

z2

⎤
⎦ =

⎡
⎣−2 a2 + 2 b2

−2 b2

−2 a2

⎤
⎦ . (32)

Furthermore, assume that x, y, z satisfy (30), then

y2 = −1
2

c2x2 + c2 + x2, z2 = −1
2

b2x2 + b2 + x2. (33)

Substituting them into (31), (32), we obtained

Gbz = −1
2
c2

(
x2 − 2

)
(c − 2) (c + 2) ,

Gby =
1
2

(
x2 − 2

) (
b2c2 + 2 a2 − 2 b2 − 2 c2

)
,

Gbx = −1
2

(
x2 − 2

) (
c2a2 − 2 a2 + 2 b2 − 2 c2

)
,

and

Gcz =
(
x2 − 2

) (
b2c2 + 2 a2 − 2 b2 − 2 c2

)
,

Gcy = −b2
(
x2 − 2

)
(b − 2) (b + 2) ,

Gcx = − (
x2 − 2

) (
b2a2 − 2 a2 − 2 b2 + 2 c2

)
,

respectively. Notice that x2 = 2 and (33) imply that y2 = 2, z2 = 2. Therefore,
if a, b, c satisfy

(b − 2)(c − 2)
(
b2c2 + 2 a2 − 2 b2 − 2 c2

)
· (b2a2 − 2 a2 − 2 b2 + 2 c2

) (
c2a2 − 2 a2 + 2 b2 − 2 c2

) �= 0,

454 Z. Zeng et al.

and x, y, z satisfy GSa and (x, y, z) �= (
√

2,
√

2,
√

2), then all polynomials in GSb

and GSc are not zero. A similar result is valid for x, y, z that satisfy GSb and
GSc, since under the following permutation:

a → b → c → a, x → y → z → x,

we have
GSa −→ GSb −→ GSb −→ GSa.

Note also that if a, b, c are the lengths of edges of an equatorial triangle ABC,
then f0 = 0, where f0 is defined in (3), then

2f0 − ((−b2 + 2
)
a2 + 2 b2 − 2 c2

) (
b2a2 − 2 a2 − 2 b2 + 2 c2

)
= b2a2 (b − 2) (b + 2) (a − 2) (a + 2) ,

which means that

f0 = 0 ∧ (
b2a2 − 2 a2 − 2 b2 + 2 c2 = 0

)
=⇒ (a − 2)(b − 2) = 0.

The above discussion on the solutions of GSa, GSb and GSc can be summarized
to the following lemma.

Lemma 1. Let N(S) be the number of nonzero numbers of a finite set of real
numbers. Then, for a, b, c, x, y, z that satisfy (a − 2)(b − 2)(c − 2) �= 0 and
(x, y, z) �= (

√
2,

√
2,

√
3), at least two of GSa(x, y, z), GSb(x, y, z), GSc(x, y, z)

satisfy N(S) ≥ 2. �

In the next lemma, we prove that if N(GSj(x, y, z)) = 2, that is exactly
two of Gjz(x, y, z), Gjy(x, y, z), Gjx(x, y, z) are nonzero, then a, b, c must satisfy
some extra condition. Here we use j to represent any member of {a, b, c}.

Lemma 2. Assume that j ∈ {a, b, c} and x, y, z satisfy the equations listed in
Proposition 2, one of Gjz(x, y, z), Gjy(x, y, z), Gjx(x, y, z) equals zero and the
other two are nonzero, then a, b, c satisfy

H1(a, b, c) = (a − 2)(b − 2)(c − 2)(a − b)(b − c)(c − a)= 0.
·(b2 + c2 − 4)(c2 + a2 − 4)(a2 + b2 − 4) = 0. (34)

Proof. According to the symmetry we may assume that j = a. We need to
consider the following three cases:

1. Gaz(x, y, z) = 0, Gay(x, y, z) �= 0, Gax(x, y, z) �= 0;
2. Gaz(x, y, z) �= 0, Gay(x, y, z) = 0, Gax(x, y, z) �= 0;
3. Gaz(x, y, z) �= 0, Gay(x, y, z) �= 0, Gax(x, y, z) = 0.

In Case 1, we consider the following equation system

Gaz = 0, F7ay = 0, F8ay = 0, F7ax = 0, F8ax = 0.

On Geometric Property of Fermat-Torricelli Points on Sphere 455

Notice that

Gaz = c2x2 − 2 c2 − 2x2 + 2 y2, F8ax =
(
b4y2 − c4z2 − 4 b2y2 + 4 c2z2

)2
,

we use F8ax to eliminate variable z from F7ay, F8ay, F7ax, and then use Gaz to
eliminate y from the obtained polynomials as follows:

p1 := factor(resultant(F7ay, F8ax, z),
p2 := factor(resultant(F8ay, F8ax, x),
p2 := factor(resultant(F7ax, F8ax, x),
q1 := factor(resultant(p1, Gaz, y),
q2 := factor(resultant(F2, Gaz, y),
q3 := factor(resultant(F3, Gaz, y),
r1 := factor(resultant(p1, p2, x),
r2 := factor(resultant(p2, p3, x),
res := primpart(gcd(r1, r2)).

The result of the above computation is

res = c2560b1024(c2 − 4)768(b2 − 4)256(b2 − c2)256,

which implies that (b− 2)(c− 2)(b− c) = 0 in Case 1. A similar computation for
Case 2 and Case 3 leads to (b − 2)(c − 2)(b2 + c2 − 4) = 0, and the extra factors
in (34) are derived by applying the same procedure to j = b, j = c. This proves
Lemma 2.
�

Lemma 1 and Lemma 2 immediately imply the following result.

Corollary 1. If A,B,C are three points on the equator of the unit sphere, a =
BC, b = CA, c = AB satisfy H1(a, b, c) �= 0, where H1 is defined by (29), and P
is a point in the interior of S2

≥0 such that PA + PB + PC is maximal, then at
least two of GSa(x, y, z), GSb(x, y, z), GSc(x, y, z) satisfy N(S) = 3.

Now we solve the equation system under the assumption that a, b, c satisfy
H1(a, b, c) �= 0. We have the following result.

Lemma 3. If a, b, c, x, y, z satisfy equations in Proposition 2 and a, b, c satisfies

H1(a, b, c) · Q(b, c) · Q(c, a) · Q(a, b) �= 0,

where

Q(u, v) := −u6v4 − u4v6 + u8 + 4u6v2 + 9u4v4 + 4u2v6 + v8

−8u6 − 20u4v2 − 20u2v4 − 8 v6 + 16u4 + 16u2v2 + 16 v4 (35)

then
a
√

4 − a2x = b
√

4 − b2y = c
√

4 − c2z.

456 Z. Zeng et al.

Proof. According to Corollary 1, without loss of generality we may assume that

Gaz �= 0, Gay �= 0, Gax �= 0, (36)

Gbz �= 0, Gby �= 0, Gbx �= 0. (37)

Firstly, from (36) we get

F7az = 0, F8az = 0, F7ay = 0, F8ay = 0, F7ax = 0, F8ax = 0.

Computing the following resultants

p1(x) := factor1(resultant(F7az, F8az, y)),
p2(y) := factor1(resultant(F7az, F8az, x)),
p3(x) := factor1(resultant(F7bz, F8bz, z)),
p4(z) := factor1(resultant(F7bz, F8bz, x)),
p5(y) := factor1(resultant(F7cz, F8cz, z)),
p6(z) := factor1(resultant(F7cz, F8cz, y)),

here by factor1 we denote the computation that factorizes a polynomial and
keeps simple factors and takes one factor for each duplicated factor, for example:

factor1(a4b4 − 4 a4b2 − 4 a2b4 + 16 b2a2)
= factor1(a2b2(a − 2)(a + 2)(b − 2)(b + 2))
= ab(a − 2)(a + 2)(b − 2)(b + 2).

Then computing the following three greatest common divisors,

r1(x) = gcd(p1(x), p3(x)), r2(y) = gcd(p2(y), p5(y)), r3(z) = gcd(p4(z), p6(z)),

we obtain three polynomials that can be used to solve x, y, z from a, b, c as
follows:

r1(x) = 2b8c6x2 − b8c4x4 + 2b6c8x2 − 2b6c6x4 − b4c8x4 + b10x4 − 10b8c4x2

+ 5b8c2x4 − 26b6c6x2 + 17b6c4x4 − 10b4c8x2 + 17b4c6x4 + 5b2c8x4

+ c10x4 + 8b8c2x2 − 12b8x4 − 4b6c6 + 88b6c4x2 − 44b6c2x4

+ 88b4c6x2 − 76b4c4x4 + 8b2c8x2 − 44b2c6x4 − 12c8x4 + 16b6c4

− 64b6c2x2 + 48b6x4 + 16b4c6 − 224b4c4x2 + 112b4c2x4 − 64b2c6x2

+ 112b2c4x4 + 48c6x4 − 64b4c4 + 128b4c2x2 − 64b4x4 + 128b2c4x2

− 64b2c2x4 − 64b4x4,

On Geometric Property of Fermat-Torricelli Points on Sphere 457

r2(y) = −b8c4y4 + 2b6c8y2 − b6c6y4 + b10y4 − 2b8c4y2 + 4b8c2y4 − 12b6c6y2

+13b6c4y4 − 12b4c8y2 + 8b4c6y4 − 2b2c10y2 + b2c8y4 + 8b8c2y2

−12b8y4 − 4b6c6 + 32b6c4y2 − 36b6c2y4 + 4b4c8 + 64b4c6y2

−56b4c4y4 + 4b2c10 + 32b2c8y2 − 24b2c6y4 − 4c12 + 8c10y2 − 4c8y4

+16b6c4 − 64b6c2y2 + 48b6y4 − 96b4c4y2 + 96b4c2y4 − 48b2c8

−96b2c6y2 + 96b2c4y4 + 32c10 − 64c8y2 + 32c6y4 − 64b4c4

+128b4c2y2 − 64b4y4 + 128b2c6 − 64b2c2y4 − 64c8 + 128c6y2 − 64c4y4,

r3(z) = −2b8c6z2 + b6c6z4 + b4c8z4 + 2b10c2z2 + 12b8c4z2 − b8c2z4 + 12b6c6z2

−8b6c4z4 + 2b4c8z2 − 13b4c6z4 − 4b2c8z4 − c10z4 + 4b12 − 4b10c2

−8b10z2 − 4b8c4 − 32b8c2z2 + 4b8z4 + 4b6c6 − 64b6c4z2 + 24b6c2z4

−32b4c6z2 + 56b4c4z4 − 8b2c8z2 + 36b2c6z4 + 12c8z4 − 32b10 + 48b8c2

+64b8z2 + 96b6c2z2 − 32b6z4 − 16b4c6 + 96b4c4z2 − 96b4c2z4

+64b2c6z2 − 96b2c4z4 − 48c6z4 + 64b8 − 128b6c2 − 128b6z2

+64b4c4 + 64b4z4 − 128b2c4z2 + 64b2c2z4 + 64c4z4.

Note that

deg(r1(x), x) = 4, deg(r2(y), y) = 4, deg(r3(z), z) = 4

and
r1(−x) = r1(x), r2(−y) = r2(y), r3(−z) = r3(z).

Therefore, we may write r1(x), r2(y), r3(z) in the following forms:

r1(x) = gcd(p1(x), p3(x)) = L2x
4 + L1x

2 + L0, (38)
r2(y) = gcd(p2(y), p5(y)) = M2y

4 + M1y
2 + M0, (39)

r3(z) = gcd(p4(z), p6(z)) = N2z
4 + N1z

2 + N0, (40)

where Lj ,Mj , Nj (j = 0, 1, 2) are polynomials of a, b, c. Doing the following
computation:

M2:=factor(coeff(primpart(r2,y),y 4));
M1:=factor(coeff(primpart(r2,y),y,2));
M0:=factor(coeff(primpart(r2,y),y,0));
N2:=factor(coeff(primpart(r3,z),z 4));
N1:=factor(coeff(primpart(r3,z),z,2));
N0:=factor(coeff(primpart(r3,z),z,0));

we immediately see that M2 = coeff(r2, y, 4) and N2 = coeff(r3, z, 4) have a
large common divisor, meanwhile, M1 = coeff(r2, y, 2) and N1 = coeff(r3, z, 2)
have also a large common divisor, and the constant terms M0, N0 have also a
large common divisor. Namely, we have

458 Z. Zeng et al.

M2 = (b 2)(b+ 2) b6c4 b4c6 + b8 + 4b6c2 + 9b4c4 + 4b2c6 + c8

8b6 20b4c2 20b2c4 8c6 + 16b4 + 16b2c2 + 16c4 ,

M1 = 2c2(c 2)(c+ 2)(b 2)(b+ 2)
· b4c4 + b6 + 2b4c2 + 2b2c4 + c6 4b4 4c4

)
,

M0 = 4c4(c 2)(c+ 2)(b2 + c2 4)(b c)2(b+ c)2,

and
N2 = −(c− 2)(c+ 2) −b6c4 − b4c6 + b8 + 4b6c2 + 9b4c4 + 4b2c6 + c8

−8b6 − 20b4c2 − 20b2c4 − 8c6 + 16b4 + 16b2c2 + 16c4
)
,

N1 = 2b2(c− 2)(c+ 2)(b− 2)(b+ 2)
· −b4c4 + b6 + 2b4c2 + 2b2c4 + c6 − 4b4 − 4c4

)
,

N0 = 4b4(b 2)(b+ 2)(b2 + c2 4)(b c)2(b+ c)2.

So we may simplify r2(y), r2(z) by variable substitution. Taking the following
variable substitution:

y =
ac√

4 − b2
y1, z =

ab√
4 − c2

z1, (41)

we observe that

b4(b − 2)(b + 2)r2 + c4(c − 2)(c + 2)r3 = 0

can be decomposed to

(y2
1 − z21)

(
y2
1 + z21 +

P1(a, b, c)
Q1(a, b, c)

)
= 0, (42)

where P1(a, b, c), Q1(a, b, c) are polynomials as follows:

P1 = (c2 − 4)(b2 − 4)(−b4c4 + b6 + 2b4c2 + 2b2c4 + c6 − 4b4 − 4c4),

Q1 = a2Q(b, c) = a2 (−b6c4 − b4c6 + b8 + 4b6c2 + 9b4c4 + 4b2c6 + c8

−8b6 − 20b4c2 − 20b2c4 − 8c6 + 16b4 + 16b2c2 + 16c4
)
.

Secondly, doing the above computation for Gbz, Gby, Gbx �= 0 and Fibk = 0
(i = 7, 8, k = x, y, z) in the parallel procedure, we obtain the following decom-
position

(z21 − x2
1)

(
z21 + x2

1 +
P2(a, b, c)
Q2(a, b, c)

)
= 0, (43)

where
z =

ab√
4 − c2

z1, x =
bc√

4 − a2
x1, (44)

and
P2(a, b, c) = P1(b, c, a), Q2(a, b, c) = Q1(b, c, a).

On Geometric Property of Fermat-Torricelli Points on Sphere 459

Finally, from (42) and (43), the original system of equations changed to the
following four systems:

(Eq1) :y2
1 − z21 = 0, z21 − x2

1 = 0,

(Eq2) :y2
1 − z21 = 0, z21 + x2

1 + P2/Q2 = 0,

(Eq3) :y2
1 + z21 + P1/Q1 = 0 = 0, z21 − x2

1 = 0,

(Eq4) :y2
1 + z21 + P1/Q1 = 0 = 0, z21 + x2

1 + P2/Q2 = 0,

here

x1 =
√

4 − a2

bc
x, y1 =

√
4 − b2

ca
y, z1 =

√
4 − c2

ab
z,

as defined by (41) and (44). Now we check that the equation system Eqi(i =
2, 3, 4) has no real solution under assumption H2(a, b, c) �= 0, while Eq1 has two
real solutions in general. This is done as follows. For i = 2, 3, 4, we get a solution
in the following form:

y2 = T (a2, b2, c2)x2 + U(a2, b2, c2),
z2 = V (a2, b2, c2)x2 + W (a2, b2, c2),

where T,U, V,W are fractions of polynomials. Substituting these two results into
f−1(a, b, c, x, y, z) = 0 defined in (2), we get a polynomial

Ri(x, a, b, c) = 0

for each i = 2, 3, 4, which is also a necessary condition for P ∈ S2
≥0 to be an

interior maximal Fermat–Torricelli point. It is easy to check that unless

H1(a, b, c) · Q(a, b) · Q(b, c) · Q(c, a) = 0,

where Q(· , ·) is defined by (35), the system

Ri(x, a, b, c) = 0, f0(a, b, c) = 0, r1(x, b, c) = 0

has no positive solution. Therefore, in general case, the interior maximal Fermat–
Torricelli point of equatorial triangle ABC satisfies Eq1 = 0, i.e.,

a
√

4 − a2x = b
√

4 − b2y = c
√

4 − c2z. (45)

On the other hand, unlike the cases of Eqj (j = 2, 3, 4), substituting

y =
a
√

4 − a2

b
√

4 − b2
x, z =

a
√

4 − a2

c
√

4 − c2
, x,

into f−1(a, b, c, x, y, z) = 0 and eliminating a from the result by resultant with
f0(a, b, c) = 0, we obtain a polynomial that has r1(x) = r1(x, b, c) (viz, the
expression (38)) as its divisor. This indicates that in general case, namely, when
a, b, c satisfy

H1(a, b, c)Q(a, b)Q(b, c)Q(c, a) �= 0,

460 Z. Zeng et al.

the system Eq1 will produce a point P (x, y, z) on the hemisphere S2
≥0 so that

PA+PB+PC is possibly local-maximal. This completes the proof of Lemma 3.

�

It is obvious that Corollary 1 and Lemma 3 are sufficient to prove our main
result Theorem 1. It is easy to verify that

– in general, the point on the sphere that satisfies (45) does not lie at the
equator, and

– when H1(a, b, c) �= 0, there exist two points P on the hemisphere (hence, four
such points on the whole unit sphere) satisfying x = PA, y = PB, z = PC
and (45).

To our knowledge, points associated with spherical triangles by condition (45)
have not been discussed in literature. Considering their importance in Theorem 1
and the experiment formula in Empirical formula 2, we shall call them Zeng
Points of ABC for convenience. More generally, for three distinct point A,B,C
on the unit sphere (not limited on the equator) with a = BC, b = CA, c = AB,
we call the point P ∈ S2 with x = PA, y = PB, z = PC a Zeng Point , if

a
√

4r2 − a2 x = b
√

4r2 − b2 y = c
√

4r2 − c2 z,

where r is the circum-radius of ABC. It is easy to prove that for three points
A,B,C that are not lying at a greater circle, there are exactly two Zeng points
on the unit sphere.

4 Maximal Fermat–Torricelli Point on the Equator

In this short section, we briefly discuss the computation of the maximal Fermat–
Torricelli point on the equator of the unit sphere. Assume A,B,C are points on
the equator with a = BC, b = CA, c = AB and P is also a point on the equator
with x = PA, y = PB, z = PC as shown in Fig. 3. Then we have f0(a, b, c) = 0
as defined in (3). And in view of Ptolemy Theorem (cf. [2]), P lies at the circle
determined by A,B,C and can be represented by

g0 := (ax + by − cz) · (ax − by + cz) · (−ax − by − cz) = 0. (46)

Therefore, if x + y + z is maximal over P ∈ S1, then we have

∂

∂x
(x+y+z+k g0) = 0,

∂

∂y
(x+y+z+k g0) = 0,

∂

∂z
(x+y+z+k g0) = 0. (47)

On Geometric Property of Fermat-Torricelli Points on Sphere 461

Fig. 3. A, B, C, P are points on the equator of a unit sphere

It is easy to prove that if x + y + z is maximal, then xyz �= 0. So the
polynomial equation system formed by (46) and (47) can be decomposed into
following equations:

Eq5 : 1/2 · ax = by = cz, Eq6 : ax = 1/2 · by = cz, Eq7 : ax = by = 1/2 · cz.

Since the circum-radius of PAB is 1, we have the following polynomial equation:

g1 = −2 c2x2y2 − 2 c4 + 4 c2x2 + 4 c2y2 − 2x4 + 4x2y2 − 2 y4 = 0,

Therefore, each of Eq5, Eq6, Eq6 leads to a solution in the following form

(Rj) : resj(x) = 0, y = ρj · a/b · x, z = ρ′
j · a/c · x,

where resj(x) is a polynomial of degree 4, and ρj , ρ
′
j ∈ {1/2, 1} for j = 5, 6, 7.

It is clear that if P (x, y, z) is a maximal Fermat–Torricelli point on the equator,
then x, y, z satisfy one of (R5), (R6), (R7).

We conjecture that the equation of the curve that divides blue and red regions
in Fig. 1 is one factor of resultant(r1(x), res(x), x), where r1(x) is defined
by (38), and

res(x) = res5(x) · res6(x) · res7(x).

References

1. Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University
Press, Oxford (1953)

2. Coxeter, H.S.M., Greitzer, S.L.: Geometry Revisited. Mathematical Association of
America, Washington, DC, pp. 42–43 (1967)

462 Z. Zeng et al.

3. Ghalieh, K., Hajja, M.: The Fermat point of a spherical triangle. Math. Gaz.
80(489), 561–564 (1996)

4. Guo, X., Leng, T., Zeng, Z.: The Fermat-Torricelli problem of triangles on the sphere
with Euclidean metric: a symbolic solution with maple. In: Gerhard, J., Kotsireas,
I. (eds.) MC 2019. CCIS, vol. 1125, pp. 263–278. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-41258-6 20

https://doi.org/10.1007/978-3-030-41258-6_20
https://doi.org/10.1007/978-3-030-41258-6_20

Author Index

Asadi, Mohammadali 21

Barkatou, Moulay A. 42
Bartzos, Evangelos 6
Boulier, François 62
Brandt, Alexander 21, 78
Burdik, Čestmir 100

Chen, Yu 442
Cluzeau, Thomas 42

Deveikis, Algirdas 100
Dickenstein, Alicia 1

El Hajj, Ali 42
Emiris, Ioannis Z. 6

Falkensteiner, Sebastian 62

Góźdź, Andrzej 100
Gusev, Alexander 100

Hashimoto, Yuji 121

Imbach, Rémi 136
Irtegov, Valentin 157
Ishii, Hiromi 174

Kalinina, Elizaveta 192
Kiselev, Sergey P. 420
Kytmanov, Alexey A. 293

Lemaire, François 209

Moreno Maza, Marc 21, 78, 232, 252

Nabeshima, Katsusuke 391
Nagasaka, Kosaku 272

Noordman, Marc Paul 62
Nuida, Koji 121

Osipov, Nikolay N. 293

Pan, Victor Y. 136
Pȩdrak, Aleksandra 100
Pogosyan, George 100
Poteaux, Adrien 209

Rahkooy, Hamid 314, 334

Sánchez, Omar León 62
Sandford, Ryan 232
Selivanov, Victor 353
Selivanova, Svetlana 353, 370
Steinberg, Florian 370
Sturm, Thomas 314, 334
Sun, Xiang 442

Tajima, Shinichi 391
Thies, Holger 370
Titorenko, Tatiana 157
Topalova, Svetlana 409
Tzamos, Charalambos 6

Uteshev, Alexei 192

Vinitsky, Sergue 100
Vorozhtsov, Evgenii V. 420

Wang, Linxiao 252
Wang, Yuzheng 442

Zeng, Zhenbing 442
Zhelezova, Stela 409
Ziegler, Martin 370

	 Preface
	 Organization
	 Contents
	Families of Polynomials in the Study of Biochemical Reaction Networks
	1 Introduction
	2 The ERK Pathway
	3 Degenerations and Open Regions of Multistationarity
	4 Other Computational Approaches
	References

	The m-Bézout Bound and Distance Geometry
	1 Introduction
	2 Bounds on the Embedding Number
	3 Algebraic Systems Modeled by Simple Graphs
	4 Conclusion
	References

	Computational Schemes for Subresultant Chains
	1 Introduction
	2 Review of Subresultant Theory
	3 Computing Subresultant Chains Speculatively
	4 Optimized Ducos' Subresultant Chain
	5 Implementation and Experimentation
	5.1 Routines over Zp[y]
	5.2 Subresultants over Z[y] and Z[x,y]

	A Maple code for Polynomial Systems
	References

	On Rational Solutions of Pseudo-linear Systems
	1 Introduction
	2 Pseudo-linear Systems
	3 Universal Denominators of Rational Solutions of a Single Pseudo-linear System
	3.1 Existing Methods for Pure Difference and q-Difference Systems
	3.2 A Unified and Efficient Approach for Pseudo-linear Systems
	3.3 Computing the Dispersion Set and the Non -Fixed Part

	4 Rational Solutions of Partial Pseudo-linear Systems
	4.1 A Recursive Approach
	4.2 Necessary Conditions for Denominators
	4.3 Implementation and Comparison of Different Strategies

	References

	On the Relationship Between Differential Algebra and Tropical Differential Algebraic Geometry
	1 Introduction
	2 Formal Power Series Solutions of ODE
	3 The Fundamental Theorem of Tropical Differential Algebraic Geometry
	4 Fields of Definition and Countability
	5 The Approximation Theorem
	5.1 Proof of Step 1 by Ultraproducts
	5.2 Proof of Step 1 by a Model Theoretic Argument
	5.3 Proof of Step 1 by Lang's Infinite Nullstellensatz
	5.4 Proof of Step 2

	6 The New Version of the Fundamental Theorem
	7 The Partial Differential Case
	A Basic Notions on Ultraproducts
	References

	On the Complexity and Parallel Implementation of Hensel's Lemma and Weierstrass Preparation
	1 Introduction
	2 Background
	2.1 Power Series and Univariate Polynomials over Power Series
	2.2 Weierstrass Preparation Theorem and Hensel Factorization
	2.3 Parallel Patterns

	3 Lazy Power Series
	4 Algorithms and Complexity
	4.1 Weierstrass Preparation
	4.2 Hensel Factorization

	5 Parallel Algorithms
	5.1 Parallel Algorithms for Weierstrass Preparation
	5.2 Parallel Algorithms for Hensel Factorization

	6 Experimentation and Discussion
	References

	Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) Group for Orbital Angular Momentum
	1 Introduction
	2 Algorithm of Calculating X(3)-Orthonormal G-T Basis
	3 Algorithm and Calculations in Orthonormal B-M Basis
	3.1 Calculations in the B-M Basis
	3.2 Calculations of X(3) with Summation in the B-M Basis

	4 Algorithm of Construction and Calculations of the E Basis
	4.1 Calculations of X(3) in Non-orthogonal E Basis
	4.2 Calculations of X(3) in Orthogonal E Basis

	5 Results and Conclusions
	References

	Improved Supersingularity Testing of Elliptic Curves Using Legendre Form
	1 Introduction
	1.1 Supersingularity Testing Algorithms Based on Isogeny Graphs
	1.2 Contributions
	1.3 Related Work

	2 Preliminaries
	2.1 Weierstrass Curves
	2.2 Legendre Form
	2.3 Isogenies

	3 Isogeny Volcano Graphs of Ordinary Curves
	4 Composition of Fundamental Legendre Maps
	5 -switching Theorem
	6 Sutherland's Supersingularity Testing Algorithm
	7 Our Proposed Algorithm
	8 Comparison
	9 Experimental Results
	9.1 Computational Time in Square Root and Fourth Root
	9.2 Computational Time in Supersingularity Testing Algorithm

	References

	Root Radii and Subdivision for Polynomial Root-Finding
	1 Introduction
	1.1 Definitions
	1.2 Subdivision Approach to Root-Finding

	2 Root Radii Computation
	2.1 Solving the RRC* Problem
	2.2 Proof of Proposition 6
	2.3 Solving the RRC Problem
	2.4 Implementation Details

	3 Real Root Isolation
	3.1 Annuli Cover and Exclusion Test
	3.2 Annuli Cover and Root Counter
	3.3 Annuli Cover and the RRI Problem
	3.4 Experimental Results

	4 Complex Root Clustering
	4.1 Annuli Cover and Exclusion Test
	4.2 Annuli Cover and the CRC Problem
	4.3 Experimental Results

	References

	On First Integrals and Invariant Manifolds in the Generalized Problem of the Motion of a Rigid Body in a Magnetic Field
	1 Introduction
	2 Obtaining Integrals and Invariant Manifolds
	2.1 Quadratic Integrals and Invariant Manifolds
	2.2 Integrals and IMs of 3rd and 4th Degrees

	3 The Equations of Motion with an Additional Quadratic Integral
	3.1 Seeking Stationary Solutions and Invariant Manifolds
	3.2 On the Stability of Stationary Solutions and Invariant Manifolds

	4 The Equations of Motion with the Additional Integral of the 4th Degree
	4.1 Seeking Stationary Solutions and Invariant Manifolds
	4.2 On the Stability of Stationary Solutions and Invariant Manifolds

	5 Conclusion
	References

	Automatic Differentiation with Higher Infinitesimals, or Computational Smooth Infinitesimal Analysis in Weil Algebra
	1 Introduction
	2 Preliminaries
	3 Connection Between Automatic Differentiation and Weil Algebras
	4 Algorithms
	4.1 Computing C-Structure of Weil Algebra
	4.2 Tensor Product of Weil Algebras

	5 Examples
	5.1 Higher-Order Derivatives via Dual Numbers and Higher Infinitesimals
	5.2 Computation in General Weil Algebra

	6 Discussions and Conclusions
	6.1 Possible Applications and Related Works
	6.2 Future Works

	A Succinct Multivariate Lazy Tower AD
	References

	On the Real Stability Radius for Some Classes of Matrices
	1 Introduction
	2 Algebraic Preliminaries
	3 Distance to the Manifold (5)
	4 Symmetric Matrix
	5 Orthogonal Matrix
	6 Conclusion
	References

	Decoupling Multivariate Fractions
	1 Introduction
	2 Decoupled and Splittable Fractions
	2.1 Definitions
	2.2 Characterization of Splittable Fractions
	2.3 Basic Lemmas Around Fractions
	2.4 Finest Decoupling Partition
	2.5 Decomposition into a Sum and Product

	3 Algorithm decouple
	3.1 Algorithm checkC1 (F=G+H)
	3.2 Algorithm checkC2 (F=c+GH)
	3.3 Algorithm checkC3 (F=c+1/(G+H))
	3.4 Algorithm checkC4 (F=c+d/(1+GH))

	4 Examples
	5 Implementation and Complexity
	5.1 Complexity
	5.2 Implementation

	References

	Towards Extending Fulton's Algorithm for Computing Intersection Multiplicities Beyond the Bivariate Case
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Local Rings and Intersection Multiplicity
	2.3 Regular Sequences
	2.4 Bivariate Intersection Multiplicity
	2.5 A Generalization of Fulton's Properties

	3 Trivariate Fulton's Algorithm
	4 Generalized Fulton's Algorithm
	5 Triangular Regular Sequences
	References

	On the Pseudo-Periodicity of the Integer Hull of Parametric Convex Polygons
	1 Introduction
	2 Preliminaries
	3 The Integer Hull of an Angular Sector
	4 The Integer Hull of a Convex Polygon
	4.1 Case of a Triangle
	4.2 Convex Polygon of Arbitrary Shape

	5 Examples
	6 A New Integer Hull Algorithm
	References

	Relaxed NewtonSLRA for Approximate GCD
	1 Introduction
	1.1 Definitions and Notations
	1.2 Problem Description and SLRA
	1.3 Our Contributions

	2 NewtonSLRA Algorithm
	3 Improvements
	3.1 Subresultant Specific Better Complexity
	3.2 Relaxed NewtonSLRA Algorithm
	3.3 Column Weighted Frobenius Norm

	4 Numerical Experiments
	4.1 Subresultant Specific Better Complexity
	4.2 Relaxed NewtonSLRA Algorithm
	4.3 Column Weighted Frobenius Norm
	4.4 Ill-Conditioned Polynomials
	4.5 Polynomials with Multiple Roots

	References

	Simplification of Nested Real Radicals Revisited
	1 Introduction
	2 Special Polynomial Systems with Zero-Dimensional Variety of Solutions
	3 Real Radicals over a Real Field
	4 Simplification of Doubly Nested Real Radicals
	5 Examples of Triply Nested Real Radicals over Q that Cannot Be Simplified
	6 Concluding Remarks
	References

	Parametric Toricity of Steady State Varieties of Reaction Networks
	1 Introduction
	2 Tori Are Groups, and Shifted Tori Are Cosets
	3 Real Quantifier Elimination and Simplification
	4 Computational Experiments
	4.1 An Artificial Triangle Network
	4.2 Escherichia Coli Osmoregulation System
	4.3 TGF- Pathway
	4.4 N-Site Phosphorylation-Dephosphorylation Cycle
	4.5 Excitatory Post-Synaptic Potential Acetylcholine Event

	5 Conclusions
	References

	Testing Binomiality of Chemical Reaction Networks Using Comprehensive Gröbner Systems
	1 Introduction
	2 Preliminaries on Comprehensive Gröbner Systems
	3 Testing Binomiality of Chemical Reaction Networks Using Comprehensive Gröbner Systems
	3.1 n-Site Phosphorylation
	3.2 BioModels

	4 Conclusion
	References

	Primitive Recursive Ordered Fields and Some Applications
	1 Introduction
	2 PR Ordered Fields
	3 PR Real Closure
	4 PR-Archimedean Fields vs. PR Reals
	5 Applications to Spectral Problems and PDEs
	6 Conclusion
	References

	Exact Real Computation of Solution Operators for Linear Analytic Systems of Partial Differential Equations
	1 Introduction and Summary of Contributions
	2 Recap on Real Bit-Complexity Theory
	2.1 Uniform Computation of Operators and Functionals
	2.2 Exact Real Computation: Reliable Numerics, Conveniency

	3 Computing with Power Series
	4 Computing Solutions for PDEs
	4.1 Cauchy-Kovalevskaya Type Linear PDEs
	4.2 Polynomial-Time Solution of Analytic Heat Equation

	5 Implementation
	5.1 Overview of Continuous Data-Types
	5.2 Power Series and Automatic Differentiation
	5.3 PDE Solving

	6 Conclusion
	References

	A New Deterministic Method for Computing Milnor Number of an ICIS
	1 Introduction
	2 Lê-Greuel Formula
	3 Local Cohomology
	4 Genericity
	4.1 Hyperplane Sections
	4.2 Auxiliary Indeterminates and Local Cohomology

	5 Algorithm
	References

	New Parallelisms of PG(3,5) with Automorphisms of Order 8
	1 Introduction
	2 Construction Method
	2.1 The Projective Space
	2.2 Possible Automorphism Groups
	2.3 Spread Orbits Under G8
	2.4 Computer Search

	3 Properties of the Obtained Parallelisms
	4 Conclusion
	References

	Optimal Four-Stage Symplectic Integrators for Molecular Dynamics Problems
	1 Introduction
	2 Governing Equations
	3 Four-Stage Symplectic Integrators
	3.1 Zero Vandermonde Determinant
	3.2 Nonzero Vandermonde Determinant

	4 Verification of New Symplectic Integrators
	5 Conclusions
	References

	On Geometric Property of Fermat–Torricelli Points on Sphere
	1 Introduction
	2 Algebraic Equations Derived for the Fermat–Torricelli Points
	3 Solving Polynomial Equations with Parametric Coefficients Under Non-degenerate Conditions
	4 Maximal Fermat–Torricelli Point on the Equator
	References

	Author Index

