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Transposed Vandermonde System of Equations

Let F be a field. Let a = ap + aix + -+ + a,_1x"~! € F[x] where all a;s are
unknown. Given uy, up,...,u, € F, let b = a(y;) for 1 < i < n.

Let u; = o/~! for some o € F where o/ # o for all i # j. Then

n—1 n—1
_ o1y — (gNi—1 o Ni—1 .
b; = a(u;) = E aj(a'7My = g aj(ed) ™ = aj(ujp1)' " for 1 <i<n.
j=0 =0 =0
Problem: Interpolate a with uy, us, ..., u, and by, bo, ..., by.
1 1 1 s 1 ao b1
uy 7)) uz Uy a by
2 2 2 2
O U3 uz ot U a | = |bs
-1 -1 -1 -
uy uy ug e b,
U a b
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Transposed Vandermonde System of Equations (continued)

We call Ua = b a transposed Vandermonde system of equations.

Methods

# opsin F space

Gaussian Elimination Oo(n3) 0(n?)

Zippel's method [6] 0o(n?) O(n)
Kaltofen & Yagati's method [4] | O(M(n)logn) | O(nlog n)

M(n) is the number of field operations for polynomial multiplication with two

polynomials at most n in F[x].

Goal: an algorithm to solve transposed Vandermonde system which does

O(nlog? n) field operations in F.
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Fast multiplication

The in-place recursive FFT from Law and Monagan [5] which does exactly
%n log, n multiplications.

@ An array W of size n of the powers of w needed for all recursive calls
@ The two bit-reversal permutations cancellation.
The three primes method: Let f, g € Z,[x]. To compute f x g € Zp[x]

@ Choose three Fourier primes p1, pa, p3 such that
Hp, )2 min(1 + deg(f), 1 + deg(g)).

@ Use the FFT to multiply f x g mod p; for i = 1,2, 3.

@ Recover the integer coefficients in f x g before reduction mod p by Chinese
remaindering.

Fast multiplication does M(n) = 27nlog, n+ O(n) field operations in Z,[x] [5].
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Product Tree

Kaltofen and Yagati's method utilized Borodin and Munro's product tree [1] for
polynomial multipoint evaluation algorithm with distinct evaluation points
U, U, ..., Uy € F where n = 2% for some k € N.

| % | i

{ (x — m)(x — w) { (x — u3)(x — ua) ] { (x — up—3)(x — up—2) ] { (x = tUp—1)(x — up)

NN NN

[xful X — Uy [x7U3 ] X7U4]-»-[X*Ur,fa][X*UH,QJ[Xfunflj[Xfu,,]

Too To1 To2 Tos Ton-a To,n-3 Ton—2 To,n-1
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Newton Inversion

Let f, g € Zp[x] such that deg(f) = m < 2n and deg(g) = n to compute r, g
satisfying f = g - g + r where deg(r) < deg(g) or r =0

Newton inversion finds the inverse of the divisor polynomial to an order m — n+1
approximation, i.e. g~! mod x™~"*1,

Theorem (Theorem 9.2 [2])

Assume h=Y""_  hix' € Zy[x] and ho # 0. Let

Yo=hyt ‘
Yi=2yi1—h-y?, modx® Vi>1

Then, for all i > 0,

h-y; mod X2 =1.

Newton inversion does at most 3M(n) 4+ O(n) field operations in Z,[x] when
m=2n-—1.
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Newton Inversion with the Middle Product

In 2004, Hanrot, Quercia, and Zimmerman introduced an alternative formula for
Newton inversion [3].

2 " o
yk:2}/’“1_/7'}/;(71:)’kfl‘f‘)/kfl'(l—h-yk,l mod x ) mod x
Assuming n =25 h-y,_1 mod xz = 1. Then
h-y_g mod x" =14 mox2 +---+m

_ 30 _
2 1x" 1+aox"+--~+ag_2x2 2 mod x"

n —a.xn
—mp-x2 a-x

=1+mp-x?
The polynomial mp is called the middle product. Thus,
Yk = Yk-1+ (Vi1 - (—mp)) - x2 mod x".

Using the FFT of size n, Newton inversion costs at most 2M(n) + O(n).

Computing the FFT on y,_1 once reduces the cost to 2M(n) + O(n).

Hyukho Kwon, Michael Monagan (Department of Malmplementing Kaltofen and Yagati's fast transposed V: July 23, 2024 8/21



Let f € Zp[x] be a polynomial such that f = fo + fix + -+ + fy_1x971 + fyx?
with fy # 0. The reciprocal polynomial of f is

F(x) = x9f (;) = fox"+ AxIT 4 X+ fy.

or deg(r) < deg(g). Then,

Let Z, be a field. Suppose f,g € Zy[x] are polynomials such that deg(f) = m

and deg(g) = n, where m > n. Let r,q € Zy[x] satisfy f =g -q+r wherer =0

G=7-(8)"' mod x" "1
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Fast Division Algorithm

Input: Polynomials 7, g € F[x] where g # 0.

Output: The remainder and quotient r, g € F[x] satisfying f = g - g+ r where r =0 or

deg(r) < deg(g)

1: m < deg(f)

2: n <+ deg(g)

3: if m < n then return 7,0 end if

4 s< m—n+1//deg(q) =m—n

5: ¢ + NIwithMP(g mod x°,s) // c=(8)™" mod x* ........ I(n) < 2M(n) + O(n)
6: e < (f mod x°) - ¢ using Fast multiplication ............................... M(n)
7. G<e modx®//g=3""q'x

8 g ity AmoniX'

9: M < g - q using Fast multiplication .............. ... ... .. ... .. ... . M(n)
10: r<f—M
11: return r, q

This algorithm does at most 4 M(n) 4+ O(n) arithmetic operations in F when
deg(f) =2n—1.
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Building the Product Tree

Let f € F[x] such that deg(f) = n—1 < n. Assume we have n distinct evaluation
points ug, U1, ..., Up_1.

Borodin and Munro presented the product tree

[ -9 -Dx-5(-3) |
Tao

To, To Top Tos
Figure: The product tree with evaluation points 9,7,5, and 3 in Zo7[x]
Building the product tree (BuPT) does M(n)log, n+ O(nlog n) field operations
in Zp.

Optimizing the FFT, the cost reduces to 3 M(n)log, n+ O(nlog n) field
operations in Z,.
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Dividing Down the Product Tree

Let f =1+ 2x + 3x% + 4x3 € Zg7[x] to be evaluated.
[ -9 -T(x-5)(x-3) |

mod T1,1 =n= 28x + 58

(x =5)(x —3)

n mod Tg,g =74 ) mod TO,I =79 n mod TO,Z =4 n mod To,?, =45

Figure: Dividing down the product tree to evaluate f = 1 4 2x + 3x* + 4x* € Zg7[x]

£(9) = 74, £(7) = 79, £(5) = 4, and f(3) = 45.

Dividing down the product tree (DDPT) does X M(n)log, n+ O(nlog n) field
operations in Z,.
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Fast Multipoint Evaluation Algorithm

Input: n = 2* for some k € N, f € F[x] of degree less than n, and uo, tn, ..., us—1 € F.
Output: f(uw), f(u),...,f(un—1) € F

1: T < BUPT(n, wo, u1, ce D) e B(n) < 1 M(n)log, n+ O(nlog n)
2: f(uo), f(u1),. (u,7 1) <~ DDPT(n,f,T) ...... C(n) < ¥M(n)log, n+ O(nlogn)
3: return f(u), f(ul) -y F(un-1)

This algorithm does at most 2> M(n) log, n+ O(nlog n) field operations in Z,.

Remark: We can observe that DDPT is 2 times as expensive as BUPT.
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Zippel's Transposed Vandermonde Solver

Recall the following n x n transposed Vandermonde system of equations

1 1 e 1 ao by
n uz ce Un ai by
n—1 n—1 -1
Uy U uy an_1 n
U a

S11 S12 -t Sin
y-1 21 S22 - S22
Sn,1 Sn2 Sn,n

Let pi(x) = si1 + Siox + - + 5 ox" L.
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Zippel's Transposed Vandermonde Solver (continued)

Since UXU =1/ and l isthe n x n identity matrix,

1
uj 1 if I':_/.
Si1 Si2 *+ Sin . = pi\yj) = ;
[ aSi2 } : pi(u;) {0 otherwise
n—1
u"

y
Define M =[], (x — ;) and gi(x) = M/(x — u;).
Set pi(x) = qi(u;)~! - gi(x) to recover i-th row entries of U~1.

Compute the dot product of i-th row of U~! and b to solve the transposed
Vandermonde system.

This method does O(n?) field operations in Z, and uses space for O(n) elements
of Zp.
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Kaltofen & Yagati's Fast Transposed Vandermonde Solver

Since pi(x) = gi(ui) " - qi(x), M = qi(u;) - (x = u;) - pi(x).
Define D = byx + by_1x® + -+ bix". Let H=M-D = Y27 " hx+1,
H/(x = ui) = qi(u;) - pi(x) - D.
The coefficient of x" in H/(x — u;) is
gi(ui) - (six-br+sia-bo+---+sin-bn)=qi(u;)-ai_1.
In H/(x — z), the coefficient of x”" is
v(z) = hp+ hpp1z + -+ hyp1 2"
Then v(u;) = gi(u;) - aj—1. Also,
M'(x) = (x = ui) - gi(x) + qi(x)

SO M/(U,‘) = q,-(u,-). Thus, aji—1 = V(U,')/M/(U,').
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Fast Transposed Vandermonde Solver Algorithm

Input: n=2* for some k €N, u1, tn,...,u, € Zp, which compose the transposed
Vandermonde matrix U and b = [by, by, ..., by] € Zj

Output: a = [ao, a1, ...,ar,—1] € Z, satisfying Ua=b

T+ BUPT(n, ui,tp,...;Un) oo, B(n) < M(n)log, n+ O(nlog n)

M <+ Tyo from T

D 4 byx + bp_1x> 4 -+ + byx"

H + M- D using fast multiplication ~// H = 32" hix™* ... M(n)

Q <« X0t hoyiz' // Q = the coefficient of x" in H/(x — z)

q1, G2, -, qn < DDPT(n,Q,T) // qi = Q(ui) ..C(n) < ¥ M(n)log, n+ O(nlog n)

Differentiate M

r,r, ... .t DDPT(n,M',T) // ri=M'(u;) . C(n) < 4 M(n)log,n+ O(nlogn)

for i from 1 to n do

t <« r,-_1

aj—1<t-qj

: end for

. return [ag, a1, ..., an—1]

©OoNIO RN

el el

This algorithm does 22 M(n)log, n+ O(nlog n) € O(M(n)log n) field operations
in Zp.
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Casel: p=116-2%+1

" BuPT [ InvTree EaDS;TT\iS DDPT2 [ Total | Z1PPEITVS | speedup | Maple | speedup
25 10046 |- 0.046 0.039 0.195 | 0.1389 0.71 3.4 17.4
27 1008 |- 0.107 0.098 0.380 | 0.4879 1.28 8.6 22.6
28 10150 |- 0.254 0.238 0.808 | 1.9039 2.35 20.8 25.7
2° 10363 |- 0.693 0.674 2.065 | 7.4640 3.61 63.0 30.5
210 1 0.875 | 0.600 1.890 1.877 5.811 30.826 5.30 1132 | 195
211 | 2,020 | 2.417 5.070 5.008 15.775 | 116.84 7.40 270.0 | 17.1
212 | 4755 | 7.529 12.307 | 12.268 | 39.444 | 469.64 11.90 608.0 | 15.4
213 | 11.146 | 20.556 | 29.566 | 29.270 | 95.765 | 1,868 19.50 1,321 | 13.8
214 | 25001 | 53.099 | 71.091 | 70.580 | 231.55 | 7,456 32.19 3,025 | 13.1
215 | 60.151 | 131.30 | 166.15 | 166.46 | 546.52 | 29,986 54.86 7,190 | 13.2
216 | 131.23 | 314.56 | 380.02 | 376.77 | 1,249.3 | 120,292 96.28 16,455 | 13.2
217 | 339.80 | 746.70 | 867.30 | 863.48 | 2,914.9 | 478,912 164.3 69,705 | 23.9
218 | 663.01 | 1,747.1 | 1,961.8 | 1,955.2 | 6,529.8 | 1,929,776 | 295.5 97,667 | 15.0

Table: CPU timings in ms for solving n X n transposed Vandermonde systems over the
prime field Z, with p = 116-2% 4+ 1
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Case 2: p = 144115188075855859

FastTVS .

" I"BuPT [[ Inviree | DDPT1 | DDPT2 | total ZippelTVS | speed up
2% 1 0.043 - 0.042 0.040 0.247 0.1509 0.61
27 | 0.059 - 0.145 0.144 0.545 0.4869 0.89
2% | 0.276 - 0.343 0.340 1.355 1.9060 1.40
2° | 0.899 - 0.857 0.843 3.463 7.4809 2.16
210 | 2,615 - 2.388 2.398 9.195 29.702 3.23
211 | 6.685 - 7.510 7.374 25.353 | 116.44 4.59
212 | 16.044 || - 25.265 | 25.139 | 73.946 | 470.04 6.35
213 | 38.754 || 80.014 | 76.846 | 76.688 | 288.00 | 1865.1 6.47
21 | 03.628 || 212.80 | 213.94 | 214.83 | 768.44 | 7478.1 9.73
215 | 21423 || 510.61 | 541.49 | 540.96 | 1,875.7 | 29,763 15.86
216 | 497.72 1,237.4 | 1,343.2 | 1,354.4 | 4,576.6 | 119,478 26.10
217 11,1119 || 2,890.1 | 3,199.1 | 3,210.3 | 10,716 | 488,369 4557
21 | 24942 || 6,632.9 | 7,480.6 | 7,470.6 | 24,725 | 1,953,252 | 78.99

Table: CPU timings in ms for solving n x n transposed Vandermonde system over Z,
with p = 144115188075855859 < 2°7
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