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Motivation: sparse polynomial interpolation.

Let f =31 aiMi(x1, ..., xn) € Z[x1, ..., X

Problem: Interpolate f modulo a prime p from values of f.
Approach: Use Ben-Or/Tiwari [1] with a smooth prime p = 02 4 1.

1 Pick o € F} at random.
Let m; = Mi() and P(z) = [["_,(z — mi).

i=1

2 Evaluate f(of,al, ..., al) for 0 < j < 2t.

3 Compute P(z) =z'+ ... usingthe EA ...................... O(M(t)log t).
4 Compute the roots m; of P(z) using CZ .............. O(M(t)log(pt) log t).
5 Using Pohlig-Helman to compute M;(xy,...,x,) from m;.

6 Solve a Vandermonde system for a; ......................... O(M(t) log t).

In 2015 Grenet, van der Hoeven, Lecerf, [3] Tangent Graeffe Root Finding.
Factor P(z) in O(M(t)(log(p/s) + log t)) ops in F, where s € [4t, 8t).

Is Tangent Graeffe faster than Cantor-Zassenhaus in practice?
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@ The Graeffe transform

@ The tangent-Graeffe (TG) algorithm

@ Improving the constant by a factor of 2

@ Comparison of new C implementation with Magma's CZ implementation
o Parallelization of TG

@ Current work



The Graeffe transform of P(z) € F,[z] is

G(P) = P(2)P(=2)l.-z) € Fp[2]

If P(z) = T2, (z — a;) then G(P) = [[L1(z — 0?).

Main idea: Let p = 02X + 1. Pick r = 2V such that s = (p — 1)/r € [4d,8d).
Compute P = GM(P). Then P =[], (z — o).

Let 8; = al. Observe (p—1)/r=s= 3§ =1.
Pick w with order s in F,, and compute {w’ : P(w') =0 < i < s} = {5}



How do we obtain a; from 8; = af where r =2N ?
Let P(z) = P(z+¢) mod ¢ € Fy[e, z]/().

1 P(z) = P(2) + P'(2)c
2 G(P(2)) = P(2)P(=2) + (P(2)P'(=2) + P(~2)P'(2))e
3 GM(P(z)) = A(z) + B(z)e where A(z) = GM(P)

If A(B) = 0 and A'(B) # 0 then oo = %)@ is a root of P(z).

Compute GM(P(z + €)) = A(z) + B(2)e.
Compute A(w'), A'(w'), B(w') for 0 < i < s.



How many roots of GY(P) remain single ?

Let p =41 and a = [7, 10, 20, 21,30, 35] so d = 6..

N s GM(a) e9/s
1 20 [8, 18, 31, 31, 39, 36] 0.741
2 10 [23,37, 18, 18, 4,25] 0.549
3 5 [37,16, 37,37, 16, 10] 0.301

s €[2d,4d) = s € [12,24) = s = 20.

But if = [1,-1,2,-2,3,—3] we get G(a) =[1,1,4,4,9,9].
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The Tangent Graeffe Algorithm

Input: P € F,[z] of degree d with d distinct roots in F, and p = 02% 4+ 1 with 2¥ > 4d.
Output: the set {a1,...,aq} of roots of P.

1.

oW

~

9.
10.

If d =0 then return ¢.
Let s € [4d,8d) such that s|(p — 1) and set r := (p — 1)/s = 2".

Pick 7 € F, at random and compute P* := P(z+7) € Fp[z] ........... o(M(d)).
Compute P := P*(z) + P*(2)'e. /| = P*(z+¢€) mod €2.
Fori=1,...,Nset P:=G(P)(z) mode® .......................... O(NM(d)).

Let w have order s in F,. Let P(z) = A(z) + B(2)e.
Evaluate A(w'), A'(w') and B(w') for 0 < i < s using Bluestein ....3M(s) + O(s).
If P(7) =0 then set S := {7} else set S := ¢.
For € {l,w,...,w 1}

if A(B)=0and A'(B) #0set S:=SU{rBA(B8)/B(B)+T}.
Compute @ :==[[,cs(z—)andset R=P/Q .................. O(M(d) logd).
Recursively determine the set of roots S’ of R and return SU S'.

For s € [4d,8d), on average, we get at least e~ /* = 78% of the roots.
Total cost O(NM(d) + M(d)logd + M(s)) = O(M(d)log(p/s) + M(d) log d).
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Improving the constant in G(P) and G(N)(P)

G(P) = P(2)P(=2)|,_ys and d =degP

Proposition (1+2)

We can compute G(P) in F(2d) + F(d) = 1/2M(d).
We can compute GN)(P) in (2N + 1)F(d) = (1/3N + 1/6)M(d).

This compares with 2/3M(d) and 2/3NM(d) in [GHL 2015].

In the FFT, if w” = 1 and n = 2% then w2t = —u' so
FFT(P(z)) = [P(1),P(w),P(w2),...,P(—l),P(—w),P(—wZ),...]
FFT(P(=2)) = [P(-1),P(~w),P(w?),...,P(1), P(w), f(w?),..]

Also FFT(H := P(z)P(-z)) is
[H(1), H(w), H(w?),..., H(1), H(w), H(w?),...]

We can compute the inverse FFT with an FFT of size d.
Cost of G(P) : F(2d)+ 0+ F~1(d) < 1.5F(2d) < 1/2M(d).
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Benchmark 1: Tangent-Graeffe v. Cantor-Zassenhaus

We implemented TG in C using the FFT for G(P) and for arithmetic in F,[z].

Table: Sequential timings in CPU seconds for p = 3 -29-2°¢ + 1 and using s € [2d, 4d).
Intel Xeon E5 2660 CPU, 8 cores, 2.2 GHz base, 3.0 GHz turbo, 64 gigabytes RAM

Our sequential TG implementation in C Magma CZ timings

d total | first %roots GU) step6 step9 | V2.25-3 V2.25-5
22 _110.11s | 0.07s 69.8% 0.04s 0.02s 0.01ls 23.22s 8.43
213 1| 0.22s | 0.14s 69.8% 0.09s 0.03s 0.01ls 56.58s 18.94
2 _1|048s | 0.31s 68.8% 0.18 0.07s 0.02s 140.76s 44.07
2% _1 | 1.00s | 0.64s 69.2% 0.38s 0.16s 0.04s 372.22s 103.5
216 _1 | 2.11s | 1.36s 68.9% 0.78s 0.35s 0.10s 1494.0s 234.2
217 _1 | 4.40s | 2.85s 69.2% 1.62s 0.74s 0.23s 6108.8s 534.5
2 _ 1| 09.16s | 5.91s 69.2% 3.33s 1.53s 0.51s NA 1219.
219 _ 1] 19.2s | 12.4s 69.2% 6.86s 3.25s 1.13s NA 28009.
220 _1 | 39.7s | 25.7s 69.2% 14.1s 6.77s 2.46s NA 6428.

Conclusion: TG is a lot
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Benchmark 2: Parallelizing Tangent-Graeffe in Cilk C

Using Cilk C, we parallelized the underlying FFT, and GV in step 5 and the

product @ = [[,cs(z — ) in step 9.

Table: Real times in seconds for 1 core (8 cores) and p = 3-29-2% 4 1.

d total first G stepb step9
2% 11 18.30s 11.98s | 6.64s 3.13s 1.09s
8 cores | 9.616s 1.9x | 2.938s | 1.56s 4.3x | 0.49s 6.4x | 0.29s 3.8x
229 _1 | 38.69s 25.02s | 13.7s 6.62s 2.40s
8 cores | 12.40s 3.1x | 5.638s | 3.03s 4.5x | 1.04s 6.4x | 0.36s 6.7x
221 _1 | 79.63s 52.00s | 28.1s 13.9s 5.32s
8 cores | 20.16s 3.9x | 11.52s | 5.99s 4.7x | 2.15s 6.5x | 0.85s  6.3x
222 _1 | 166.9s 107.8s | 57.6s 28.9s 11.7s
8 cores | 41.62s 4.0x | 23.25s | 11.8s 4.9x | 457s 6.3x | 1.71s  6.8x
223 _1 | 346.0s 223.4s | 117.s 60.3s 25.65
8 cores | 76.64s 4.5x | 46.94s | 23.2s 5.0x | 9.45s 6.4x | 3.54s 7.2x
2% _1 | 712.7s 450.8s | 238.s 125s 55.8s
8 cores | 155.0s 4.6x | 95.93s | 46.7s 5.1x | 19.17 6.5x | 7.88s 7.1x
225 _1 | 1465 945.0s | 481.s 259.s 121.s
8 cores | 307.7s 4.8x | 1946s | 929s 5.2x | 39.2s 6.6x | 16.9s 7.2x
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Current work

Can we factor P(z) = Z19° 4 in F,[z] for p=5-2% 417
Note: we need 8 gigabytes for the input and 8 gigabytes for the output.

Yes! time = 4000s, space = 121 GB
Used an Intel E5 2680 CPU with 10 cores and 128 GB RAM.

To evaluate A(w'), A'(w'), B(w') for 0 < i < s = 5230
Space: 3s + 3n = 504GB with n = 2% > 2s for M(s) using Bluestein.
Use s € [2d,4d) instead of s € [4d, 8d).

For s =5-229 a DFT(5 - 2%%) can be done using 5F(22°) + 22°F(5) + O(s).

Space: 3s + 1.2s = 84GB.
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Current work cont.

We are trying to determine the constants in the complexities assuming the FFT
model in order to determine how much faster CZ is than TG.

Tangent-Graeffe cost for s € [Ad, 2Ad).

GM(P) Q= [[-o
a€S
< e/ M(d)log, & +... | < sM(d)log,d + ...

Cantor-Zassenhaus cost

(z+ oz)("’l)/2 mod P(z) ‘ g = gcd(h(z) —1,P(2))
<

h =
< IM(d)log 2 logy d + ... 2 M(d)logsd + ...

For HalfGed, MCA Th. 11.10 gives the bound 10M(d)log3 d + O(M(d)) for
Algorithm 11.6 Half ged [2].
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