
Implementing the tangent Graeffe root finding method

Joris van der Hoeven1 and Michael Monagan2

1CRNS, LIX, École polytechnique, France

2Dept. of Mathematics, Simon Fraser University, British Columbia

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 1 / 13

Motivation: sparse polynomial interpolation.

Let f =
∑t

i=1 aiMi (x1, . . . , xn) ∈ Z[x1, . . . , xn]

Problem: Interpolate f modulo a prime p from values of f .
Approach: Use Ben-Or/Tiwari [1] with a smooth prime p = σ2k + 1.

1 Pick α ∈ Fn
p at random.

Let mi = Mi (α) and P(z) =
∏t

i=1(z −mi).

2 Evaluate f (αj
1, α

j
2, . . . , α

j
n) for 0 ≤ j < 2t.

3 Compute P(z) = z t + ... using the EA .O(M(t) log t).
4 Compute the roots mi of P(z) using CZO(M(t)log(pt) log t).
5 Using Pohlig-Helman to compute Mi (x1, . . . , xn) from mi .
6 Solve a Vandermonde system for ai .O(M(t) log t).

In 2015 Grenet, van der Hoeven, Lecerf, [3] Tangent Graeffe Root Finding.
Factor P(z) in O(M(t)(log(p/s) + log t)) ops in Fp where s ∈ [4t, 8t).

Is Tangent Graeffe faster than Cantor-Zassenhaus in practice?

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 2 / 13

Talk Outline

The Graeffe transform
The tangent-Graeffe (TG) algorithm
Improving the constant by a factor of 2
Comparison of new C implementation with Magma’s CZ implementation
Parallelization of TG
Current work

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 3 / 13

The Graeffe Transform

Definition (1)
The Graeffe transform of P(z) ∈ Fp[z] is

G(P) = P(z)P(−z)|z=√z) ∈ Fp[z]

Lemma
If P(z) =

∏d
i=1(z − αi) then G(P) =

∏d
i=1(z − α2

i).

Main idea: Let p = σ2k + 1. Pick r = 2N such that s = (p − 1)/r ∈ [4d , 8d).
Compute P̃ = G(N)(P). Then P̃ =

∏d
i=1(z − αr

i).

Let βi = αr
i . Observe (p − 1)/r = s ⇒ βs

i = 1.
Pick ω with order s in Fp and compute {ωi : P̃(ωi) = 0 ≤ i < s} = {βi}.

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 4 / 13

The tangent Graeffe transform.

How do we obtain αi from βi = αr
i where r = 2N ?

Let P̃(z) = P(z + ε) mod ε2 ∈ Fp[ε, z]/(ε
2).

1 P̃(z) = P(z) + P ′(z)ε

2 G(P̃(z)) = P(z)P(−z) + (P(z)P ′(−z) + P(−z)P ′(z))ε
3 G(N)(P̃(z)) = A(z) + B(z)ε where A(z) = G(N)(P)

Lemma

If A(β) = 0 and A′(β) 6= 0 then α = rβA′(β)
B(β) is a root of P(z).

Compute G(N)(P(z + ε)) = A(z) + B(z)ε.
Compute A(ωi),A′(ωi),B(ωi) for 0 ≤ i < s.

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 5 / 13

How many roots of GN(P) remain single ?

Example
Let p = 41 and α = [7, 10, 20, 21, 30, 35] so d = 6..

N s G (N)(α) e−d/s

1 20 [8, 18, 31, 31, 39, 36] 0.741
2 10 [23, 37, 18, 18, 4, 25] 0.549
3 5 [37, 16, 37, 37, 16, 10] 0.301

s ∈ [2d , 4d)⇒ s ∈ [12, 24)⇒ s = 20.

But if α = [1,−1, 2,−2, 3,−3] we get G (α) = [1, 1, 4, 4, 9, 9].

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 6 / 13

The Tangent Graeffe Algorithm

Input: P ∈ Fp[z] of degree d with d distinct roots in Fp and p = σ2k + 1 with 2k > 4d .
Output: the set {α1, . . . , αd} of roots of P.

1. If d = 0 then return φ.
2. Let s ∈ [4d , 8d) such that s|(p − 1) and set r := (p − 1)/s = 2N .
3. Pick τ ∈ Fp at random and compute P∗ := P(z + τ) ∈ Fp[z]O(M(d)).

4. Compute P̃ := P∗(z) + P∗(z)′ε. // = P∗(z + ε) mod ε2.
5. For i = 1, . . . ,N set P̃ := G(P̃)(z) mod ε2 .O(NM(d)).

6. Let ω have order s in Fp. Let P̃(z) = A(z) + B(z)ε.
Evaluate A(ωi),A′(ωi) and B(ωi) for 0 ≤ i < s using Bluestein 3M(s) + O(s).

7. If P(τ) = 0 then set S := {τ} else set S := φ.
8. For β ∈ {1, ω, . . . , ω(s−1)}

if A(β) = 0 and A′(β) 6= 0 set S := S ∪ {rβA′(β)/B(β) + τ}.
9. Compute Q :=

∏
α∈S(z − α) and set R = P/Q O(M(d) log d).

10. Recursively determine the set of roots S ′ of R and return S ∪ S ′.

For s ∈ [4d , 8d), on average, we get at least e−1/4 = 78% of the roots.
Total cost O(NM(d) +M(d) log d +M(s)) = O(M(d) log(p/s) +M(d) log d).

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 7 / 13

Improving the constant in G(P) and G(N)(P)

G(P) = P(z)P(−z)|z=√z and d = degP

Proposition (1+2)
We can compute G(P) in F (2d) + F (d) = 1/2M(d).
We can compute G(N)(P) in (2N + 1)F (d) = (1/3N + 1/6)M(d).

This compares with 2/3M(d) and 2/3NM(d) in [GHL 2015].

In the FFT, if ωn = 1 and n = 2k then ωn/2+i = −ωi so

FFT (P(z)) = [P(1),P(ω),P(ω2), . . .,P(−1),P(−ω),P(−ω2), . . .]

FFT (P(−z)) = [P(−1),P(−ω),P(ω2), . . .,P(1),P(ω), f (ω2), . . .]

Also FFT (H := P(z)P(−z)) is

[H(1),H(ω),H(ω2), . . . ,H(1),H(ω),H(ω2), . . .]

We can compute the inverse FFT with an FFT of size d .
Cost of G(P) : F (2d) + 0+ F−1(d) < 1.5F (2d) < 1/2M(d).
J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 8 / 13

Benchmark 1: Tangent-Graeffe v. Cantor-Zassenhaus

We implemented TG in C using the FFT for G(P) and for arithmetic in Fp[z].

Table: Sequential timings in CPU seconds for p = 3 · 29 · 256 + 1 and using s ∈ [2d , 4d).
Intel Xeon E5 2660 CPU, 8 cores, 2.2 GHz base, 3.0 GHz turbo, 64 gigabytes RAM

Our sequential TG implementation in C Magma CZ timings
d total first %roots G(N) step6 step9 V2.25-3 V2.25-5

212 − 1 0.11s 0.07s 69.8% 0.04s 0.02s 0.01s 23.22s 8.43
213 − 1 0.22s 0.14s 69.8% 0.09s 0.03s 0.01s 56.58s 18.94
214 − 1 0.48s 0.31s 68.8% 0.18s 0.07s 0.02s 140.76s 44.07
215 − 1 1.00s 0.64s 69.2% 0.38s 0.16s 0.04s 372.22s 103.5
216 − 1 2.11s 1.36s 68.9% 0.78s 0.35s 0.10s 1494.0s 234.2
217 − 1 4.40s 2.85s 69.2% 1.62s 0.74s 0.23s 6108.8s 534.5
218 − 1 9.16s 5.91s 69.2% 3.33s 1.53s 0.51s NA 1219.
219 − 1 19.2s 12.4s 69.2% 6.86s 3.25s 1.13s NA 2809.
220 − 1 39.7s 25.7s 69.2% 14.1s 6.77s 2.46s NA 6428.

Conclusion: TG is a lot (100 times) faster than CZ.

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 9 / 13

Benchmark 2: Parallelizing Tangent-Graeffe in Cilk C

Using Cilk C, we parallelized the underlying FFT, and G(N) in step 5 and the
product Q =

∏
α∈S(z − α) in step 9.

Table: Real times in seconds for 1 core (8 cores) and p = 3 · 29 · 256 + 1.

d total first G(N) step5 step9
219 − 1 18.30s 11.98s 6.64s 3.13s 1.09s
8 cores 9.616s 1.9x 2.938s 1.56s 4.3x 0.49s 6.4x 0.29s 3.8x
220 − 1 38.69s 25.02s 13.7s 6.62s 2.40s
8 cores 12.40s 3.1x 5.638s 3.03s 4.5x 1.04s 6.4x 0.36s 6.7x
221 − 1 79.63s 52.00s 28.1s 13.9s 5.32s
8 cores 20.16s 3.9x 11.52s 5.99s 4.7x 2.15s 6.5x 0.85s 6.3x
222 − 1 166.9s 107.8s 57.6s 28.9s 11.7s
8 cores 41.62s 4.0x 23.25s 11.8s 4.9x 4.57s 6.3x 1.71s 6.8x
223 − 1 346.0s 223.4s 117.s 60.3s 25.6s
8 cores 76.64s 4.5x 46.94s 23.2s 5.0x 9.45s 6.4x 3.54s 7.2x
224 − 1 712.7s 459.8s 238.s 125.s 55.8s
8 cores 155.0s 4.6x 95.93s 46.7s 5.1x 19.17 6.5x 7.88s 7.1x
225 − 1 1465.s 945.0s 481.s 259.s 121.s
8 cores 307.7s 4.8x 194.6s 92.9s 5.2x 39.2s 6.6x 16.9s 7.2x

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 10 / 13

Current work

Can we factor P(z) = z109
+ . . . in Fp[z] for p = 5 · 255 + 1 ?

Note: we need 8 gigabytes for the input and 8 gigabytes for the output.

Yes! time = 4000s, space = 121 GB
Used an Intel E5 2680 CPU with 10 cores and 128 GB RAM.

To evaluate A(ωi),A′(ωi),B(ωi) for 0 ≤ i < s = 5230

Space: 3s + 3n = 504GB with n = 2k > 2s for M(s) using Bluestein.
Use s ∈ [2d , 4d) instead of s ∈ [4d , 8d).
For s = 5 · 229, a DFT(5 · 229) can be done using 5F (229) + 229F (5) + O(s).
Space: 3s + 1.2s = 84GB.

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 11 / 13

Current work cont.

We are trying to determine the constants in the complexities assuming the FFT
model in order to determine how much faster CZ is than TG.

Tangent-Graeffe cost for s ∈ [λd , 2λd).

G(N)(P) Q :=
∏
α∈S

(z − α)

< 1
3e

1/λM(d) log2
p
λd + . . . < 1

4M(d) log2 d + . . .

Cantor-Zassenhaus cost

h := (z + α)(p−1)/2 mod P(z) g := gcd(h(z)− 1,P(z))
< 7

6M(d) log p
2d log2 d + . . . < 5

12M(d) log2
2 d + . . .

For HalfGcd, MCA Th. 11.10 gives the bound 10M(d) log2
2 d + O(M(d)) for

Algorithm 11.6 Half gcd [2].

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 12 / 13

References

M. Ben-Or and P. Tiwari.
A deterministic algorithm for sparse multivariate polynomial interpolation.
In Proceedings of STOC ’88, ACM Press, pp. 301–309, 1988.

J. von zur Gathen and J. Gerhard.
Modern Computer Algebra.
3rd ed., Cambridge University Press, 2013.

Bruno Grenet, Joris van der Hoeven and Gregoire Lecerf.
Randomized Root Finding over Finite FFT-fields using Tangent Graeffe Transforms.
In Proceedings of ISSAC 2015, pp. 197–204, ACM, 2015.

Joris van der Hoven and Michael Monagan.
Implementing the tangent Graeffe root finding algorithm.
To appear in Proceedings of ICMS 2020, LNCS 12097, 2020.
Preprint available on the HAL achive.

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 13 / 13

