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Motivation: sparse polynomial interpolation.

Let f =
∑t

i=1 aiMi (x1, . . . , xn) ∈ Z[x1, . . . , xn]

Problem: Interpolate f modulo a prime p from values of f .
Approach: Use Ben-Or/Tiwari [1] with a smooth prime p = σ2k + 1.

1 Pick α ∈ Fn
p at random.

Let mi = Mi (α) and P(z) =
∏t

i=1(z −mi ).

2 Evaluate f (αj
1, α

j
2, . . . , α

j
n) for 0 ≤ j < 2t.

3 Compute P(z) = z t + ... using the EA . . . . . . . . . . . . . . . . . . . . . .O(M(t) log t).
4 Compute the roots mi of P(z) using CZ . . . . . . . . . . . . . .O(M(t)log(pt) log t).
5 Using Pohlig-Helman to compute Mi (x1, . . . , xn) from mi .
6 Solve a Vandermonde system for ai . . . . . . . . . . . . . . . . . . . . . . . . .O(M(t) log t).

In 2015 Grenet, van der Hoeven, Lecerf, [3] Tangent Graeffe Root Finding.
Factor P(z) in O(M(t)(log(p/s) + log t)) ops in Fp where s ∈ [4t, 8t).

Is Tangent Graeffe faster than Cantor-Zassenhaus in practice?

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 2 / 13



Talk Outline

The Graeffe transform
The tangent-Graeffe (TG) algorithm
Improving the constant by a factor of 2
Comparison of new C implementation with Magma’s CZ implementation
Parallelization of TG
Current work
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The Graeffe Transform

Definition (1)
The Graeffe transform of P(z) ∈ Fp[z ] is

G(P) = P(z)P(−z)|z=√z) ∈ Fp[z ]

Lemma
If P(z) =

∏d
i=1(z − αi ) then G(P) =

∏d
i=1(z − α2

i ).

Main idea: Let p = σ2k + 1. Pick r = 2N such that s = (p − 1)/r ∈ [4d , 8d).
Compute P̃ = G(N)(P). Then P̃ =

∏d
i=1(z − αr

i ).

Let βi = αr
i . Observe (p − 1)/r = s ⇒ βs

i = 1.
Pick ω with order s in Fp and compute {ωi : P̃(ωi ) = 0 ≤ i < s} = {βi}.
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The tangent Graeffe transform.

How do we obtain αi from βi = αr
i where r = 2N ?

Let P̃(z) = P(z + ε) mod ε2 ∈ Fp[ε, z ]/(ε
2).

1 P̃(z) = P(z) + P ′(z)ε

2 G(P̃(z)) = P(z)P(−z) + (P(z)P ′(−z) + P(−z)P ′(z))ε
3 G(N)(P̃(z)) = A(z) + B(z)ε where A(z) = G(N)(P)

Lemma

If A(β) = 0 and A′(β) 6= 0 then α = rβA′(β)
B(β) is a root of P(z).

Compute G(N)(P(z + ε)) = A(z) + B(z)ε.
Compute A(ωi ),A′(ωi ),B(ωi ) for 0 ≤ i < s.

J. van der Hoeven and M. Monagan ICMS 2020, Online, July 13-17, 2020 5 / 13



How many roots of GN(P) remain single ?

Example
Let p = 41 and α = [7, 10, 20, 21, 30, 35] so d = 6..

N s G (N)(α) e−d/s

1 20 [8, 18, 31, 31, 39, 36] 0.741
2 10 [23, 37, 18, 18, 4, 25] 0.549
3 5 [37, 16, 37, 37, 16, 10] 0.301

s ∈ [2d , 4d)⇒ s ∈ [12, 24)⇒ s = 20.

But if α = [1,−1, 2,−2, 3,−3] we get G (α) = [1, 1, 4, 4, 9, 9].
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The Tangent Graeffe Algorithm

Input: P ∈ Fp[z] of degree d with d distinct roots in Fp and p = σ2k + 1 with 2k > 4d .
Output: the set {α1, . . . , αd} of roots of P.

1. If d = 0 then return φ.
2. Let s ∈ [4d , 8d) such that s|(p − 1) and set r := (p − 1)/s = 2N .
3. Pick τ ∈ Fp at random and compute P∗ := P(z + τ) ∈ Fp[z] . . . . . . . . . . .O(M(d)).

4. Compute P̃ := P∗(z) + P∗(z)′ε. // = P∗(z + ε) mod ε2.
5. For i = 1, . . . ,N set P̃ := G(P̃)(z) mod ε2 . . . . . . . . . . . . . . . . . . . . . . . . . .O(NM(d)).

6. Let ω have order s in Fp. Let P̃(z) = A(z) + B(z)ε.
Evaluate A(ωi ),A′(ωi ) and B(ωi ) for 0 ≤ i < s using Bluestein . . . . 3M(s) + O(s).

7. If P(τ) = 0 then set S := {τ} else set S := φ.
8. For β ∈ {1, ω, . . . , ω(s−1)}

if A(β) = 0 and A′(β) 6= 0 set S := S ∪ {rβA′(β)/B(β) + τ}.
9. Compute Q :=

∏
α∈S(z − α) and set R = P/Q . . . . . . . . . . . . . . . . . . O(M(d) log d).

10. Recursively determine the set of roots S ′ of R and return S ∪ S ′.

For s ∈ [4d , 8d), on average, we get at least e−1/4 = 78% of the roots.
Total cost O(NM(d) +M(d) log d +M(s)) = O(M(d) log(p/s) +M(d) log d).
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Improving the constant in G(P) and G(N)(P)

G(P) = P(z)P(−z)|z=√z and d = degP

Proposition (1+2)
We can compute G(P) in F (2d) + F (d) = 1/2M(d).
We can compute G(N)(P) in (2N + 1)F (d) = (1/3N + 1/6)M(d).

This compares with 2/3M(d) and 2/3NM(d) in [GHL 2015].

In the FFT, if ωn = 1 and n = 2k then ωn/2+i = −ωi so

FFT (P(z)) = [P(1),P(ω),P(ω2), . . .,P(−1),P(−ω),P(−ω2), . . .]

FFT (P(−z)) = [P(−1),P(−ω),P(ω2), . . .,P(1),P(ω), f (ω2), . . .]

Also FFT (H := P(z)P(−z)) is

[H(1),H(ω),H(ω2), . . . ,H(1),H(ω),H(ω2), . . . ]

We can compute the inverse FFT with an FFT of size d .
Cost of G(P) : F (2d) + 0+ F−1(d) < 1.5F (2d) < 1/2M(d).
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Benchmark 1: Tangent-Graeffe v. Cantor-Zassenhaus

We implemented TG in C using the FFT for G(P) and for arithmetic in Fp[z ].

Table: Sequential timings in CPU seconds for p = 3 · 29 · 256 + 1 and using s ∈ [2d , 4d).
Intel Xeon E5 2660 CPU, 8 cores, 2.2 GHz base, 3.0 GHz turbo, 64 gigabytes RAM

Our sequential TG implementation in C Magma CZ timings
d total first %roots G(N) step6 step9 V2.25-3 V2.25-5

212 − 1 0.11s 0.07s 69.8% 0.04s 0.02s 0.01s 23.22s 8.43
213 − 1 0.22s 0.14s 69.8% 0.09s 0.03s 0.01s 56.58s 18.94
214 − 1 0.48s 0.31s 68.8% 0.18s 0.07s 0.02s 140.76s 44.07
215 − 1 1.00s 0.64s 69.2% 0.38s 0.16s 0.04s 372.22s 103.5
216 − 1 2.11s 1.36s 68.9% 0.78s 0.35s 0.10s 1494.0s 234.2
217 − 1 4.40s 2.85s 69.2% 1.62s 0.74s 0.23s 6108.8s 534.5
218 − 1 9.16s 5.91s 69.2% 3.33s 1.53s 0.51s NA 1219.
219 − 1 19.2s 12.4s 69.2% 6.86s 3.25s 1.13s NA 2809.
220 − 1 39.7s 25.7s 69.2% 14.1s 6.77s 2.46s NA 6428.

Conclusion: TG is a lot (100 times) faster than CZ.
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Benchmark 2: Parallelizing Tangent-Graeffe in Cilk C

Using Cilk C, we parallelized the underlying FFT, and G(N) in step 5 and the
product Q =

∏
α∈S(z − α) in step 9.

Table: Real times in seconds for 1 core (8 cores) and p = 3 · 29 · 256 + 1.

d total first G(N) step5 step9
219 − 1 18.30s 11.98s 6.64s 3.13s 1.09s
8 cores 9.616s 1.9x 2.938s 1.56s 4.3x 0.49s 6.4x 0.29s 3.8x
220 − 1 38.69s 25.02s 13.7s 6.62s 2.40s
8 cores 12.40s 3.1x 5.638s 3.03s 4.5x 1.04s 6.4x 0.36s 6.7x
221 − 1 79.63s 52.00s 28.1s 13.9s 5.32s
8 cores 20.16s 3.9x 11.52s 5.99s 4.7x 2.15s 6.5x 0.85s 6.3x
222 − 1 166.9s 107.8s 57.6s 28.9s 11.7s
8 cores 41.62s 4.0x 23.25s 11.8s 4.9x 4.57s 6.3x 1.71s 6.8x
223 − 1 346.0s 223.4s 117.s 60.3s 25.6s
8 cores 76.64s 4.5x 46.94s 23.2s 5.0x 9.45s 6.4x 3.54s 7.2x
224 − 1 712.7s 459.8s 238.s 125.s 55.8s
8 cores 155.0s 4.6x 95.93s 46.7s 5.1x 19.17 6.5x 7.88s 7.1x
225 − 1 1465.s 945.0s 481.s 259.s 121.s
8 cores 307.7s 4.8x 194.6s 92.9s 5.2x 39.2s 6.6x 16.9s 7.2x
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Current work

Can we factor P(z) = z109
+ . . . in Fp[z ] for p = 5 · 255 + 1 ?

Note: we need 8 gigabytes for the input and 8 gigabytes for the output.

Yes! time = 4000s, space = 121 GB
Used an Intel E5 2680 CPU with 10 cores and 128 GB RAM.

To evaluate A(ωi ),A′(ωi ),B(ωi ) for 0 ≤ i < s = 5230

Space: 3s + 3n = 504GB with n = 2k > 2s for M(s) using Bluestein.
Use s ∈ [2d , 4d) instead of s ∈ [4d , 8d).
For s = 5 · 229, a DFT(5 · 229) can be done using 5F (229) + 229F (5) + O(s).
Space: 3s + 1.2s = 84GB.
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Current work cont.

We are trying to determine the constants in the complexities assuming the FFT
model in order to determine how much faster CZ is than TG.

Tangent-Graeffe cost for s ∈ [λd , 2λd).

G(N)(P) Q :=
∏
α∈S

(z − α)

< 1
3e

1/λM(d) log2
p
λd + . . . < 1

4M(d) log2 d + . . .

Cantor-Zassenhaus cost

h := (z + α)(p−1)/2 mod P(z) g := gcd(h(z)− 1,P(z))
< 7

6M(d) log p
2d log2 d + . . . < 5

12M(d) log2
2 d + . . .

For HalfGcd, MCA Th. 11.10 gives the bound 10M(d) log2
2 d + O(M(d)) for

Algorithm 11.6 Half gcd [2].
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