
A Maple implementation of FFT-based algorithms for
polynomial multipoint evaluation, interpolation, and

solving transposed Vandermonde systems

Kimberly Connolly

Dept. of Mathematics, Simon Fraser University, British Columbia

K. Connolly MSc Project Presentation, August 14, 2020 1 / 19

Three Main Problems

Let f (x) = a0 + a1x + ...+ an−2x
n−2an−1x

n−1 ∈ F [x].

Multipoint evaluation: Given n arbitrary points, u0, u1, ..., un−1, compute
f (ui) = vi for 0 ≤ i < n.

Interpolation: Given f (ui) = vi for 0 ≤ i < n, reconstruct the polynomial f .

Transposed Vandermonde systems: Let V be a Vandermonde matrix of order
n, solve V Tb = v for b.

Classically, algorithms for the above three problems have an O(n2) running time.
How can we improve this to O(n log2 n)?

Approach: All three fast algorithms assume fast multiplication and fast division in
F [x] and make use of a suproduct tree.

For fast multiplication in Fp[x], we use the FFT.
For fast division in Fp[x], we use Newton iteration.

K. Connolly MSc Project Presentation, August 14, 2020 2 / 19

Talk Outline

1 The Fast Fourier Transform (FFT)

2 Fast polynomial multiplication in Fp[x] using the FFT

3 Table of complexities

4 The subproduct tree

5 Fast multipoint evaluation

6 Fast interpolation

7 Fast transposed Vandermonde systems

8 Summary and future work

K. Connolly MSc Project Presentation, August 14, 2020 3 / 19

The Fast Fourier Transform (FFT)

De�nition

Let w ∈ F be a primitive nth root of unity, then the Discrete Fourier Transform
(DFT) calculates [f (1), f (w), f (w2), ..., f (wn−1)] ∈ F n. The FFT is an algorithm
that computes the DFT in O(n log n) arithmetic operations in F .

Input: n = 2k , a = [a0, a1, ..., an−1] ∈ Fn
p, p is prime, w ∈ Fp of order n, and

W = [1,w ,w2, ...,wn/2−1] ∈ Fn/2
p .

Output: A = [f (1), f (w), f (w2), ..., f (wn−1)] ∈ Fn
p, where f (x) =

n−1∑
i=0

aix
i .

Let Fn be the number of arithmetic operations in F required to compute an FFT
of size n. Then, recurrence relation for the FFT is

Fn = 2Fn/2 + 3(n/2).

Theorem (1)

Fn =
3

2
(n log n)

K. Connolly MSc Project Presentation, August 14, 2020 4 / 19

Fast multiplication in Fp[x] using the FFT

Let f (x) =
∑d

i=0
aix

i , g(x) =
∑d

i=0
bix

i , and h(x) = f (x)× g(x) ∈ Fp[x].

Input: n = 2k ,A = [a0, a1, ..., ad , 0, ..., 0] ∈ Fn
p,B = [b0, b1, ..., bd , 0, ..., 0] ∈ Fn

p,
and w ∈ Fp of order n, where p is a prime.
Output: c = [c0, c1, ..., c2d , 0, ..., 0] ∈ Fn

p.

0 Compute W = [1,w , ...,w
n
2−1] and W ′ = [1,w−1, ...,w1− n

2]. n + 1.

1 a← FFT(n,A,w ,W , p). Fn.

2 b ← FFT(n,B,w ,W , p). Fn.

3 C ← [a0 · b0, a1 · b1, ..., an−1 · bn−1] .n.
4 c ← FFT(n,C ,w−1,W ′, p) . Fn.

5 c ← n−1 · [c0, c1, ..., cn−1] . n + 1.

Theorem (2)

Let M(n) be the number of arithmetic operations in F required for a fast
mutliplication of two polynomials of degree less than or equal to n. Then,

M(n) = 3Fn + 3n + 2 =
9

2
(n log n) + O(n) ∈ O(n log n).

K. Connolly MSc Project Presentation, August 14, 2020 5 / 19

Table of complexities

M(n) is the cost of multiplying two polynomials of degree at most n.

Problem Classic Fast Method with M(n) Fast Method with FFT

Division O(n2) 4M(n) + O(n) O(n log n)

Evaluation O(n2) O(M(n) log n) O(n log2 n)

Interpolation O(n2) O(M(n) log n) O(n log2 n)

Vandermonde O(n2) O(M(n) log n) O(n log2 n)

Table: Comparing the complexities for fast division, fast mutlipoint evaluation, fast
interpolation, and fast solving transposed Vandermonde systems

K. Connolly MSc Project Presentation, August 14, 2020 6 / 19

Let the evaluation points be: u0 = 4, u1 = 3, u2 = 2, and u3 = 1. Then,

(x − 4)(x − 3)(x − 2)(x − 1)

M2,0���
���

�

XXX
XXX

X

(x − 4)(x − 3) (x − 2)(x − 1)

M1,0 M1,1

�
�
��

@
@
@@

�
�
��

@
@

@@

(x − 4) (x − 3) (x − 2) (x − 1)

M0,0 M0,1 M0,2 M0,3

Figure: Example of Subproduct Tree when n = 4

The subproduct tree has height k = log2n.
The n leaves are the linear polynomials M0,j = x − ui for 0 ≤ i < n.

The root is de�ned by the largest polynomial Mk,0 =
∏n−1

i=0
(x − ui).

Mi,j = Mi−1,2j ×Mi−1,2j+1.
K. Connolly MSc Project Presentation, August 14, 2020 7 / 19

Lemma for Complexity Analysis

Lemma (1)

Let n = 2k and a, b, d be natural numbers with b > 0 and let c be a positive real
number. Let S and T be functions where S(n/2) = c · (n log2 n), and

T (1) = a, T (n) ≤ 2T (n/2) + bS(n/2) + dn

Then, we have:

T (n) < b · 1
4
S(n)log n + b · 1

4
S(n) + d(n log n) + na

K. Connolly MSc Project Presentation, August 14, 2020 8 / 19

Complexity of Subproduct Tree Algorithm (BUST)

Let B(n) be the number of arithmetic operations in F needed to compute the
subproduct tree. Then,

B(n) = 2B(n/2) + 1M(n/2) + 0 · n

For n = 1, we must return x − u0 and so B(1) = 1. Let M(n/2) = c · (n log2 n),
so we can use Lemma 1. In this case, a = 1, b = 1, and d = 0 and we �nd that:

B(n) < 1 ·
1

4
M(n)log n + 1 ·

1

4
M(n) + 0 · (n log n) + n · 1

=
1

4
M(n)log n +

1

4
M(n) + O(n)

The complexity analysis of the subtree algorithm is summarized in Theorem 3.

Theorem (3)

B(n) <
1

4
M(n)log n +

1

4
M(n) + O(n) ∈ O(n log2 n).

K. Connolly MSc Project Presentation, August 14, 2020 9 / 19

Dividing Down the Subproduct Tree (DDST)

Recall f (ui) = f rem (x − ui) for all 0 ≤ i < n . Now, to �nd f (ui) = vi for
0 ≤ i < n, we will recurse down the subtree. Let mi = (x − ui), we de�ne:

r0 = f rem
∏n/2−1

i=0 mi = f rem Mk−1,0 and r1 = f rem
∏n−1

i=n/2 mi = f rem Mk−1,1.

1 If n = 1 then return f .

2 Compute r0 = f rem Mk−1,0 using the fast division algorithm.D(n/2).

3 Compute r1 = f rem Mk−1,1 using the fast division algorithm.D(n/2).

4 Call the algorithm recursively at the subtree rooted at Mk−1,0 to compute
r0(u0), ..., r0(un/2−1).

5 Call the algorithm recursively at the subtree rooted at Mk−1,1 to compute
r1(un/2), ..., r1(un−1).

6 return r0(u0), ..., r0(un/2−1), r1(un/2), ..., r1(un−1) = f (u0), ..., f (un−1)

K. Connolly MSc Project Presentation, August 14, 2020 10 / 19

Complexity of DDST and Fast Multipoint Evaluation

Let C (n) be the number of arithmetic operations in F that DDST does. Then,

C (n) = 2C (n/2) + 2D(n/2) + 0 · n

We have C (1) = 0. Using Lemma 1 with a = 0, b = 2, and d = 0.

Theorem (4)

C (n) <
1

2
D(n)log n +

1

2
D(n) ∈ O(n log2 n).

The fast multipoint evaluation algorithm simply calls BUST and DDST.

Let E (n) be number of arithmetic operations in F needed to evaluate a degree
n − 1 polynomial f at n arbitrary points, u0, ..., un−1, using the fast method.

E(n) = B(n) + C(n) <
1

4
M(n)log n +

1

4
M(n) + O(n) +

1

2
D(n)log n +

1

2
D(n)

Theorem (5)

E (n) < 11(n log2 n) + O(n log n) + O(n) ∈ O(n log2 n).

K. Connolly MSc Project Presentation, August 14, 2020 11 / 19

Fast Multipoint Evaluation (FastEval) Timings

We implemented FastEval in Maple in Fp[x], with p = 7 · 226 + 1. For the
quadratic timings, we used the eval command in Maple n times. The timings
were run on an Intel Xeon E5 2660 CPU with 64 gigabytes of RAM.

n Quadratic Growth Factor BUST FastEval Growth Factor

28 112 ms N/A 7 ms 79 ms N/A

29 430 ms 3.84 15 ms 141 ms 1.78

210 1.87 s 4.35 34 ms 296 ms 2.10

211 7.61 s 4.07 58 ms 607 ms 2.05

212 31.93 s 4.20 120 ms 1.32 s 2.18

213 2.01 min 3.78 227 ms 2.89 s 2.19

214 8.17 min 4.06 432 ms 6.14 s 2.12

215 33.51 min 4.10 917 ms 13.48 s 2.20

216 2.33 hr 4.17 1.92 s 29.26 s 2.17

217 9.83 hr 4.22 4.15 s 1.01 min 2.07

218 39.61 hr 4.03 8.42 s 2.07 min 2.06

Table: The timings of FastEval in Maple

K. Connolly MSc Project Presentation, August 14, 2020 12 / 19

Fast Interpolation (FastInterp)

The Lagrange interpolant

Li (x) =
n−1∏
j=0
j 6=i

x − uj
ui − uj

has the property Li (uj) =

{
0, if i 6= j

1, if i = j
.

In Lagrange interpolation, the interpolating polynomial f (x) takes the form

f (x) =
n−1∑
i=0

viLi (x) =
n−1∑
i=0

vi

n−1∏
j=0
j 6=i

x − uj
ui − uj

(1)

=
n−1∑
i=0

vi
tiM(x)

x − ui
where M(x) =

n−1∏
j=0

x − uj l and l ti =
∏
j 6=i

1

ui − uj
.

We will take M ′(x) =
∑

0≤j<n M(x)/(x − ui), which is the formal derivative of M(x),
and note that M(x)/(x − ui) vanishes at all points uj with i 6= j . Thus,

1

ti
= M ′(ui) =

M

x − ui

∣∣∣
x=ui

By Theorem 5, we can compute the ti 's in O(n log2 n) arithmetic operations in F .
K. Connolly MSc Project Presentation, August 14, 2020 13 / 19

FastInterp Cont.

Let n = 2k and ci = vi ti for 0 ≤ i < n. Then, given the polynomials Mi,j from the
subtree, we can use a divide and conquer algorithm, called InterpWork, to
recursively �nd:

r0 =

n/2−1∑
i=0

ci
Mk−1,0

x − ui
ll and ll r1 =

n−1∑
i=n/2

ci
Mk−1,1

x − ui

Next, we obtain f using f = Mk−1,1r0 +Mk−1,0r1 and then we return f . Thus, we
can implement fast interpolation with two algorithms. The �rst is InterpWork

which is the core of fast interpolation and outputs

f =
n−1∑
i=0

ci
M(x)

x − ui
∈ Fp[x] where M(x) = Mk,0.

The second, called FastInterp, pulls everything together by providing the input
for InterpWork.

K. Connolly MSc Project Presentation, August 14, 2020 14 / 19

Complexity of FastInterp

Let T (n) be the number of arithmetic operations in F done by InterpWork. Then,

T (n) ≤ 2T (n/2) + 2M(n/2) + 1 · n

If n = 1, we simply return c0, and so T (1) = 0. Let M(n/2) = c · (n log2 n), so
we can use Lemma 1 with a = 0, b = 2, and d = 1.

T (n) < 1

2
M(n)log n + 1

2
M(n) + O(n log n) ∈ O(n log2 n)

Let I (n) be number of arithmetic operations in F needed to interpolate a
polynomial of degree n − 1, using the fast method. Then,

I (n) = B(n) + C (n) + T (n) + O(n).

Theorem (6)

I (n) < 13(n log2 n) + O(n log n) + O(n) ∈ O(n log2 n).

K. Connolly MSc Project Presentation, August 14, 2020 15 / 19

FastInterp Timings

We implemented FastInterp in Maple in Fp[x], with p = 7 · 226 + 1. For the
quadratic algorithm, the Interp(...) mod p command in Maple was used,
which employs Newton interpolation. The timings were run on an Intel Xeon E5
2660 CPU with 64 gigabytes of RAM.

n Quadratic Growth BUST InterpWork FastInterp Growth

28 2 ms N/A 6 ms 5 ms 85 ms N/A

29 6 ms 3.00 11 ms 11 ms 131 ms 1.54

210 21 ms 3.50 21 ms 23 ms 255 ms 1.95

211 73 ms 3.48 43 ms 45 ms 658 ms 2.58

212 277 ms 3.79 78 ms 81 ms 1.21 s 1.84

213 1.09 s 3.94 154 ms 190 ms 2.44 s 2.02

214 4.32 s 3.96 332 ms 400 ms 5.07 s 2.07

215 17.50 s 4.05 754 ms 856 ms 11.04 s 2.17

216 1.19 min 4.08 1.51 s 1.83 s 23.01 s 2.08

217 4.79 min 4.03 3.49 s 3.92 s 50.76 s 2.21

218 19.24 min 4.02 7.61 s 8.39 s 1.74 min 2.06

Table: Timings of FastInterp in Maple

K. Connolly MSc Project Presentation, August 14, 2020 16 / 19

Complexity of FastVandermonde and Timings

Theorem (7)

Let V (n) be number of arithmetic operations in F required to solve a transposed
Vandermonde system, using the fast method. Then,

V (n) = B(n)+2C(n)+M(n)+O(n) < 20(n log2 n)+O(n log n)+O(n) ∈ O(n log2 n).

We implemented FastVandermonde in Maple in Fp[x], with p = 7 · 226 + 1. For the

quadratic timings, we coded Zippel's algorithm from 1990.

n Quadratic Growth Factor BUST FastVandermonde Growth Factor

211 1.14 s 4.13 92 ms 1.38 s 1.99

212 4.78 s 4.19 182 ms 3.01 s 2.18

213 18.17 s 3.80 376 ms 6.09 s 2.02

214 1.32 min 4.34 841 ms 13.34 s 2.19

215 5.16 min 3.92 1.69 s 26.47 s 1.98

216 20.40 min 3.95 3.58 s 1.07 min 2.41

217 1.36 hr 4.01 7.45 s 1.96 min 1.83

218 5.55 hr 4.08 14.97 s 4.42 min 2.26

Table: Timings of FastVandermonde in Maple

K. Connolly MSc Project Presentation, August 14, 2020 17 / 19

Summary and Future Work

Classical Methods: O(n2)

FastEval:

E (n) < 11(n log2 n) + O(n log n) + O(n) ∈ O(n log2 n).

FastInterp:

I (n) < 13(n log2 n) + O(n log n) + O(n) ∈ O(n log2 n).

Fast Vandermonde:

V (n) < 20(n log2 n) + O(n log n) + O(n) ∈ O(n log2 n).

Future Work:

Code these algorithms in C and compare the timings to Maple.

Implement a fast Chinese remaindering algorithm that uses the subproduct
tree, but also requires a fast Euclidean algorithm.

K. Connolly MSc Project Presentation, August 14, 2020 18 / 19

References

A. Borodin and R. Moenck.

Fast Modular Transforms.

Journal of Computer and System Sciences 8, 366�386, 1974.

C. Fiduccia.

Polynomial evaluation via the division algorithm: The fast Fourier transform revisited.

In Proc. 4th Symp. on Theory of Computing, ACM Press, 88�93, 1972.

E. Horowitz.

A fast method for interpolation of polynomials using preconditioning.

Information Processing Letters 1, 157�163, 1972.

J. Lipson.

Chinese remainder and interpolation algorithms.

In Proc. of the 2nd Syrup. on Symbolic and Algebraic Manipulation, ACM Press,

372�391,1971.

R. Moenck and A. Borodin.

Fast modular transforms via division.

In Proc. of the 13th Annual Syrup. on Switching and Automata Theory, Oct. 1972.

E. Kaltofen and L. Yagati.

Improved Sparse Multivariate Polynomial Interpolation Algorithms.

International Symposium on Symbolic and Algebraic Computation, 467�474, 1988.

K. Connolly MSc Project Presentation, August 14, 2020 19 / 19

