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Motivation for Thesis

Let a, b € Z[x1, ..., xn] be represented by the black-boxes B, and By,
How can we calculate g = ged(a, b)? Using B, and Bp?

History:
o Kalotfen and Trager (1990): Created the first black-box gcd algorithm

e Kaltofen and Diaz (1995): Created an algorithm which constructs a
black-box representation of g, namely B, from B, and B,,.

e This algorithm has been implemented in Maple.

o Lecerf and Van Der Hoeven (2023): Created a new black-box gcd
algorithm for sparse polynomials using projective coordinates.
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Sparse Polynomial and Modular Black-box definitions

We are interested in calculating the gcd of sparse polynomials. Let
a—Zaj (X1, ey X, Zaj xllf 2 X

where the coefﬁaents aj # 0 are mtegers and (e1j, €, ...,enj) € N”

A modular black-box representation of a € Z[xi, ..., xp] is a computer

program B, that takes as input a point o € Z" and a prime p and outputs
a(a) mod p.

X1 =01

X2 = 2

X3 =« a(ai, ...,ap) mod p
R B a(x1, .., Xn) € Z[x1, ..., Xn] o
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N
Outline

Our thesis is broken down into 4 projects:
@ A bivariate Hensel lifting algorithm (BHL)
@ An optimized fast Euclidean algorithm (OFEA)
© MHLBBPGCD a BB gcd algorithm using multivariate Hensel lifting
@ SEPPGCD a BB gcd algorithm using rational function interpolation

The MHLBBPGCD and SEPPGCD algorithms compute pp(g).

Example:
g =6x>— 4y’ pp(g) = 3x° — 2y

The BHL and OFEA algorithms aid in calculating pp(g).
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The Bivariate Hensel Lifting Algorithm

Let’s assume we have A = []7_; hi(x,y) € Zp[x,y] and fi(o) = hi(x,a) for
some o € Zp. « is selected such that gcd(fi(o), fj(o)) =1fori#j.

The goal of Hensel lifting is to lift the initial factors h;(x, ) — hi(x,y) to
recover the factorization of A in Zy[x, y].

Hensel lifting in Z,[x, y] - r factor case
Input: A€ Z,[x,y], fl(o), fz(o), o f,(o) € Zp[x], o € Zp, and m € N s t.
(i) Alx,y) =11, fi(o) mod (y — «), and
(ii) ged(F0, £0) = 1 for i #
Output: hy, ..., h, € Zp[x, y] satisfying
(i) A=TI;_; hi(x,y) mod (y — )™ and
(i) hi(x,y) = FQ mod (y — @) for 1< i< r

Note: In Hensel lifting we want to stop lifting if A—[]_; h; = 0.
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-
The Bivariate Hensel Lifting Algorithm: Main Result

Let A=T]]/_; hi in Zp[x,y] and a € Z,. Let dy = deg(A, x) and
d, = deg(A,y).

In [MP19] we created the bivariate Hensel lifting algorithm for lifting r > 2
polynomials. It required that A be monic in x and used O(d? d, + d dy2)
arithmetic operations in Z,.

Improvements:

@ Our bivariate Hensel lifting algorithm now works for non-monic A
with the same arithmetic cost.

@ We have reduced the space complexity from O(r dy d,) to
O(logy r dy dy).
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Benchmarks

For A= []_; hi for r = 4 factors in Z,[x, y] where p = 231 — 1 and
d = deg(fi, x) = deg(fi,y) for 1 < i < 4.

We compare
e Bernardin's O(r d? df) algorithm in C
e Our O(d2d, + d.d?) algorithm in C
@ Quadratic Hensel lifting O(log, r M(d d,)) in Magma
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For A= []_, hi for r = 4 factors in Z,[x, y] where p =231 — 1 and
d = deg(h;, x) = deg(hj,y) for 1 <i < 4. We set dy = dy, = 4d.

LHL (Bernardin) | LHL (Our cubic result)

de/dy | d | o(d2a2) O(d2d, + dyd?) QHL

Timing 1 | Timing 2
8 2 0.10ms 0.06ms 1.16ms 3.44ms
16 4 0.22ms 0.18ms 7.48ms 17.82ms
32 8 0.84ms 0.54ms 30.30ms | 65.61ms
64 16 4.82ms 2.12ms 125.22ms | 247.44ms
128 32 48.25ms 10.28ms 619.90ms | 1,225.6ms
256 64 505.64ms 61.18ms 3.16s 6.33s
512 128 | 6.002s 401.14ms 17.58s 35.21s
1024 | 256 | 76.70s 3.41s (0.12gb) 97.46s 204.27s
2048 | 512 | 1,074s 25.17s (0.46gb) 553.85s 1,137.71s
4096 | 1024 | 15,878s 190.13s (1.83gb) 2,975s 5,599.3s
8192 | 2048 | NA 1,462s (7.32gb) 15,583s >32gb
16384 | 4096 | NA 12,614.7s (29.3gb) NA NA
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|
Optimizing the Fast Euclidean Algorithm in Z,[x]

| have implemented an optimized version of the Fast Euclidean Algorithm
in C using the Half Ged algorithm from [GJ13] to calculate the gecd of two
polynomials over Z,[x] for a Fourier prime p.

Complexity
Euclidean algorithm 0(d?)
Fast Euclidean algorithm | O(M(d) log d)

The work is motivated by Huang and Monagan in [HM24] who reduce the
calculation of the sparse ged of two polynomials in Z[xy, ..., x,] to many
ged calculations in Zp[x1] of high degree.

Optimizations:
@ minimizing the total number of uses of the FFT algorithm.

@ Using the extended Euclidean algorithm for low degree recursive calls
to the Half Ged algorithm.
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Minimizing the total number of the FFT calls

Let f € F[x] where deg(f) < n = 2% and let w € F be a primitive nth root
of unity. We define the Discrete Fourier Transform as:

D, : f = (F(1), F(w), F(w?), ..., F(w"™T))
Let A, B, C € F[x]**? stt.
A— [311 312] B |:b11 b12:| and C = {Cll 612] .

a1 a» b1 b2 01 2

We want to calculate C = A x B using FFT multiplication. For simplicity,

let’s assume the degree of every polynomial in A, B and C is less than
n =2k,
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-
Minimizing the total number of the FFT calls

We use the calculation of polynomial c¢11 to illustrate the optimization

[Cn C12} _ [311 312] |:b11 b12]
= X

o1 2 a1 ax» b1 bxo

Inefficient Method:

a1 = 1D, (Du(a11) - Duo(b11)) + 2D5 1 (Do (a12) - Deo(b21))

Each polynomial in C requires 6 FFT calls (24 total)
Efficient Method:

Precompute D,, of each polynomial in A and B once ( )
Since

Dw(f + g) = Dw(f) + Dw(g)
= %Dll(Du(an) Dy (b11) + Dw(a12) - Duw(b21))

This reduces the the uses of D;* by 4 ( )
Thus, we compute C using FFT calls
Garrett Paluck (GP) July 26, 2024 11/25



|
Benchmarks 1 (32 pit prime)

We calculated ged(a, b) for two randomly generated polynomials
a,b € Zp|x] for p=2%8 4221 1.

deg a/deg b Our algorithm | Maple Gedex | Maple GCD | Euc. Alg. in C | Magma
26 —1/26 -2 10.0002 0.0001 0.0001 0.0002 0.0002
27 —1/2" -2 | 0.0004 0.0003 0.0001 0.0004 0.0003
28 —1/28 -2 | 0.0009 0.0010 0.0004 0.0009 0.0003
29 -1/2° -2 | 0.0022 0.0038 0.0016 0.0024 0.0012
210 _1/210 2 | 0.0051 0.0140 0.0061 0.0071 0.0032
211 —1/211 —2 | 0.0122 0.0544 0.0240 0.0243 0.0079
212 _1/212 2| 0.029 0.245 0.092 0.081 0.0195
213 —1/213 -2 | 0.068 0.965 0.365 0.326 0.049
214 — 17214 — 2| 0.156 3.834 1.454 1.365 0.120
215 —1/215 2 | 0.349 15.176 5.823 5.237 0.320
216 _1/216 1 0.787 60.165 23.289 21.149 0.800
27 —1/217 1| 1.764 239.876 93.172 82.512 1.960
218 _1/218 1| 3.967 956.839 373.092 329.318 4.700
219 1/219 18838 - - - 11.100
220 _1/220 1| 19.403 - - - 26.100

Table: Ged(a, b) timings for Z,[x] for p =228 4221 41
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Benchmarks 2 (64 pit prime)

We calculated ged(a, b) for two randomly generated polynomials
a,b € Zp|x] for p=200 423 4 1.

deg a/deg b Our algorithm | Maple Gedex | Maple GCD | Euc. Alg. in C | Magma
26— 1/25 -2 10.0002 0.0010 0.0004 0.0003 0.0008
27 —1/2" -2 | 0.0005 0.0030 0.0015 0.0005 0.0013
28 —1/28 —2 | 0.0012 0.0111 0.0056 0.0010 0.0049
29 -1/2° -2 | 0.0027 0.0426 0.0220 0.0025 0.0175
210 _1/210 2 1 0.0066 0.1666 0.0868 0.0079 0.0467
211 —1/211 _2 | 0.0154 0.6538 0.3443 0.0263 0.1150
212 _1/212 2| 0.0355 2.5894 1.371 0.0945 0.2714
213 —1/213 — 2| 0.082 10.295 5.475 0.367 0.630
214 _1/214 2 0.185 40.229 21.874 1.441 1.480
215 17215 2| 0.416 163.967 87.424 5.572 3.190
216 _1/216 1 0.934 654.904 348.915 22.153 7.230
217 —1/217 —1 | 2.082 2632.626 1406.817 87.748 16.320
218 _1/218 _ 1| 4.656 10545.097 5619.839 349.733 36.900
219 1/219 1| 9.744 - - - 83.290
220 _1/220 1| 21.478 - - - 197.530

Table: Ged(a, b) timings for Z,[x] for p =250 4233 41
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The MHLBBPGCD and BBMGCD algorithms

Let a, b € Z[x1, ..., xn] be represented by the black-boxes B, and By, and
g = pp(gcd(a, b)). Our first method to calculate g € Z[xy, ..., xn| uses the
MHLBBPGCD and BBMGCD algorithms.

The MHLBBPGCD algorithm calculates g mod p € Zy[xy, ..., X, for a
prechosen prime p using the CMBBSHL algorithm [Che24] for multivariate
Hensel lifting.

The BBMGCD algorithm calls the MHLBBPGCD to calculate g
mod p € Zp[x1, ..., Xa] for various primes p. It then uses Chinese
remaindering and rational number reconstruction to compute g.
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MHLBBPGCD Algorithm Qutline |

The MHLBBPGCD algorithm calculates the square-free factorization of g.
Consider the following square-free factorization of g over Z[xa, ..., x5][x1]

g=n]I*
i=1
where
(i) deg(fi,x1) >0,
(ii) f; is primitive and square-free in Z[xa, . .., xp|[x1],
(iii) h € Z[xo,...,xn] (his the content of g) and
(iv) ged(fi, f;) =1 for i # j.
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MHLBBPGCD Algorithm Qutline Il

Step 1 Pick a = (ap, ..., ) from [0, p)™~1 at random.

Step 2 Interpolate a; = a(x1, a2, ..., ) and by = b(xi, @z, ..., p) in Zp[x1]
by probing the modular black-boxes B, and By,

Step 3 Compute h; = gcd(ai, by) over Zp[x1] and then compute the
square-free factorization hy = []7_; g,’ For most choices of o and p
we will have r = s and g; ~ fi(x1, @) in Zp[x1] for 1 < i <r.

Step 4 Use a modified CMBBSHL algorithm to lift the square-free part of
h1, sqf(h1) = [];_; &, to construct sqf(pp(g)) = [[;_; fi in
Zp[x1, ..., Xn]. Using the multiplicities from Step 3, we obtain
pp(g) = [T;-, - _

Step 5 If n > 1 then let f = [[7_, f/. Construct a new modular black-boxes
Bc,By : (Z"1, p) = Zp such that for 3 € Zj and v € Z77 1,

B (7. p) computes a(8,7)/f(8,7) and

Ba(7, p) computes b(8,7)/f(8,7).
Now compute h € Zp|[xi, ...., x| recursively using B. and By.
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BBMGCD Algorithm Outline

The BBMGCD algorithm computes g using the MHLBBPGCD algorithm.
Step 1 Set i =1.
Step 2 Pick a new random large prime p;.

Step 3 Compute gp, = g mod p; using the MHLBBPGCD algorithm and
make it monic in lex order with x; > xo > ... > Xx,.

Step 4 Find g* € Zpm[x1, ..., xn] using Chinese remaindering where
M = Hji':1 pi such that g* = g, mod p; for 1 < j < i.

Step 5 Use rational number reconstruction to find a monic g€ Q[xi, ..., Xs]
s.t. §=g" mod M or g = FAIL.

Step 6 Increment /i and repeat Steps 2-4. Stop when g # FAIL and you got
the same g for two consecutive primes.

Step 7 Clear the fractions of g so that g € Z[x1, ..., Xp].
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The SEPPGCD algorithm

Let a, b € Z[x1, ..., xn] be represented by the black-boxes B, and By, and
g = pp(gcd(a, b)). Our second method to calculate g € Z[xq, ..., xn] uses
the SEPPGCD and BBMGCD algorithms.

The SEPPGCD algorithm calculates g mod p € Zp|[xy, ..., X, for a
prechosen prime p using a multivariate rational function seperation
algorithm [KYO07] and Ben-Or/Tiwari sparse interpolation [BOT88|.

The BBMGCD algorithm can be modified to calculate g mod p using the

SEPPGCD algorithm instead of the MHLBBPGCD algorithm. The rest of
the algorithm remains unchanged.
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SEPPGCD Algorithm Outline |

Consider the factorizations

a=gaand b=gb

where 3, b € Z[xy, ..., x] are relatively prime.

Dividing a by b results in
a_ ga
b gb
Let a € Zj be a point. We represent the rational function R = 5/1_) by a
black-box Bg : (Zp, p) — Z, which computes

Br(a, p) = Ba(a, p)/Bp(c, p).

oIl Wi
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SEPPGCD Algorithm Outline I

Let 8 = (B2, ..., 0n) € Z[’;*l be a random point and o = (01, ...,0,) € Z]
be a point. We use rational function interpolation to obtain

T(x) = 20 Palx =) + 02, Pulx = 1) +0n)/A
b(X,,Bz(X — 01) + 02, ;/Bn(x - Ul) + Un)/A

where A = LC(b(x, fo(x — 1) 4+ 02, -+ , Bn(x — 1) + 04)) € Zp \ {0}.

Observe
a(o1,02,...,0n)/ A

5(01,02, ...,J,,)/A'

T(o1) =

We then compute
A-g(o) =a(0)/(a(0)/A).
We use 0 = (2/,3/,5/, ..., pﬂ,) for the Ben-Or/Tiwari algorithm.
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SEPPGCD Algorithm Outline Il

Let g = Zle ciMi(x1, ..., xn), mi = M;(2,3, ..., pn), A(z) = Hle(z— mj).
Step1l Set T =1.

Step 2 Create a local black-box Bg : (Zj, p) — Z, which takes as input a
prime p and a point ¢ € Zj. It outputs FAIL if B,(d, p) = 0 and
B.(0, p)/B(J, p) otherwise.

Step 3 Using a multivariate rational function separation algorithm [KY07],
compute 3(c¥)) mod p and b(c¥)) mod p using the point
o) = (2,3, ...,ph) for 0 < j < 2T.

Step 4 Compute g(oU)) = a(c1))/3(c0)) mod p for 0 < j < 2T.

Step 5 Use the Berlekamp-Massey algorithm to compute A(z).

Step 6 If deg(A(z)) = T then set T = 2T and repeat steps 3-5. Stop when
deg(A(2)) < T.

Step 7 Use Ben-Or/Tiwari sparse interpolation to compute g.
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Work Completed

@ The bivariate Hensel lifting algorithm has been implemented in C. We
published our results in [MP22] and presented our algorithm at ISSAC
2022 in Lille.

@ | have created a C implementation of our optimized fast Euclidean
algorithm.

© | have created Maple and C implementations of the MHLBBPGCD
and BBMGCD algorithms. Both algorithms work for 31-bit primes.

@ | have created a Maple implementation of the SEPPGCD algorithm.
It works for 63-bit primes.
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Work to be done

@ | am currently working on exploring alternate approaches to the
MHLBBPGCD algorithm. There are at least four different ways to
use CMBBSHL to find pp(g) using Hensel lifting.

@ | am working on additional optimizations for the Fast Euclidean
algorithm in C.

@ | am still working on the implementation of the SEPPGCD algorithm.

@ | need to compute the arithmetic complexity of the MHLBBPGCD,
BBMGCD, and SEPPGCD algorithms. This is not difficult in the
black-box model.

@ | need to calculate the probabilities of the MHLBBPGCD, BBMGCD,
and SEPPGCD algorithms returning either an incorrect gcd or FAIL.
This is likely to be difficult because of the high number of failure
cases.
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