
A new bivariate Hensel lifting algorithm for n

factors
by

Garrett Leonard Ross Paluck

B.Sc., Thompson Rivers University, 2015

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

c© Garrett Leonard Ross Paluck 2019
SIMON FRASER UNIVERSITY

Summer 2019

Copyright in this work rests with the author. Please ensure that any reproduction or
re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Garrett Leonard Ross Paluck

Degree: Master of Science (Pure Mathematics)

Title: A new bivariate Hensel lifting algorithm for n factors

Examining Committee: Chair: Tom Archibald
Professor

Michael Monagan
Senior Supervisor
Professor

Jonathan Jedwab
Supervisor
Professor

Stephen Choi
Internal Examiner
Professor

Date Defended: August 13, 2019

ii

Abstract

We present a new algorithm for performing Linear Hensel Lifting of bivariate polynomials over
the finite field Fp for some prime p. Our algorithm lifts n monic, univariate polynomials to re-
cover the factors of a polynomial A(x, y) ∈ Fp[x, y] which is monic in x, and bounded by degrees
dx = deg(A, x) and dy = deg(A, y). Our algorithm improves upon Bernardin’s algorithm in [2] and
reduces the number of arithmetic operations in Fp from O(nd2

x d
2
y) to O(d2

x dy + dx d
2
y) for p ≥ dx.

Experimental results in C verify that our algorithm compares favorably with Bernardin’s for large
degree polynomials.

Keywords: Hensel Lifting, polynomial factorization, modular methods, arithmetic operations, bi-
variate polynomials

iii

Table of Contents

Approval ii

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

List of Algorithms viii

1 Introduction 1
1.1 Historical Hensel Lifting in Z[x] . 4

1.1.1 Solving a polynomial Diophantine equation 5
1.1.2 Hensel’s Lemma . 6
1.1.3 Hensel Lifting in Z[x] for two factors . 9
1.1.4 The cost of Hensel Lifting mod pm . 19
1.1.5 Quadratic Hensel Lifting in Z[x] . 20

1.2 Hensel Lifting in Fp[x, y] . 20
1.3 Bernardin’s algorithm . 26

1.3.1 Cost of Bernardin’s algorithm . 34

2 Tools 36
2.1 Horner’s method . 36
2.2 Solving polynomial Diophantine equations . 37

2.2.1 The n = 2 factor case . 37
2.2.2 The n > 2 factor case . 42

2.3 Polynomial interpolation . 44
2.4 Base conversion . 45

3 The Cubic Algorithm 48

iv

3.1 Algorithm . 48
3.2 Analysis . 55

3.2.1 Evaluation points . 57
3.2.2 Generating Lagrange basis polynomials . 57
3.2.3 Base conversion . 58
3.2.4 Polynomial evaluation . 58
3.2.5 CoefficientExtraction and CoefficientUpdate 58
3.2.6 Lagrange interpolation . 59
3.2.7 Multi-Diophantine polynomial equation . 60
3.2.8 Total cost . 65

3.3 Small finite fields and general finite fields. 66
3.4 Optimizations for Fp[x, y] . 66

4 Benchmarks 69

5 Conclusion 74

Bibliography 76

Appendix A Code 78

v

List of Tables

Table 1.1 Hensel Lifting timings for Fp[x, y] with p = 231 − 1 and n = 4 factors. NA =
not attempted . 4

Table 1.2 Value of variables after Step 19 . 16
Table 1.3 Value of variables after Step 19 . 19
Table 1.4 The first 4 rows of matrix G which contains the intermediate products of

calculating f1 × f2 × f3 . 31
Table 1.5 The first 4 rows of matrix G which contains the sub-products of calculating

f1 × f2 × f3 after using CoefficientUpdate . 33
Table 1.6 The 10 rows of matrix G which contains the sub-products of calculating f1 ×

f2 × f3 . 33

Table 3.1 The first 4 columns of matrix H which contains the intermediate products of
calculating f1 × f2 × f3 . 53

Table 3.2 The first 4 rows of matrix H which contains the intermediate products of
calculating f1 × f2 × f3 . 54

Table 4.1 Hensel Lifting timings for Fp[x, y] with p = 231−1 and n = 4 factors. Compares
the overall execution times of our algorithm vs Bernardin’s algorithm 70

Table 4.2 Hensel Lifting timings for Fp[x, y] with p = 231−1 and n = 4 factors. Compares
the number of multiplications done by the polynomial evaluation, solving the
Diophantine equation, coefficient extraction and coefficient update, and poly-
nomial interpolation subroutines . 71

Table 4.3 Hensel Lifting timings for Fp[x, y] with p = 231− 1. Compares the timings and
number of multiplications performed when dx = dy = 2048 for our algorithm. . 72

vi

List of Figures

Figure 3.1 Homomorphism diagram for computing ∆(x) at iteration k ≥ 1 49

vii

List of Algorithms

1 Hensel Lifting in 2 factors . 15
2 Classical Linear Bivariate Hensel Lifting for Fp[x, y]: Monic Case. 25
3 Bernardin’s Coefficient Extraction Algorithm . 30
4 Bernardin’s Coefficient Update Algorithm . 30
5 Bernardin’s Bivariate Hensel Lift Algorithm . 34

6 Polynomial Diophantine equation algorithm: 2 factor case 41
7 Multi-Diophantine Polynomial equation Algorithm . 43
8 Shaw and Traub’s nonoptimal bivariate base conversion algorithm 46
9 Shaw and Traub’s bivariate optimal base conversion algorithm 47

10 Our CoefficientExtraction algorithm . 51
11 Our CoefficientUpdate Algorithm . 52
12 Our Cubic Bivariate Hensel Lifting Algorithm . 56
7 Multi-Diophantine Polynomial equation Algorithm . 61

viii

Chapter 1

Introduction

We have created a new Linear Hensel Lifting algorithm that calculates the factorization of a
polynomial A(x, y) over a finite field Fp for some prime p by lifting n ≥ 2 bivariate factors from
univariate images. Our algorithm is a variation of the Linear Hensel Lifting algorithm for fac-
toring bivariate polynomials. Let A have degree dx and dy in variables x and y respectively. Our
algorithm uses O(d2

x dy+dx d2
y) arithmetic operations in Fp to do the Hensel Lifting provided p ≥ dx.

We begin with a precise statement of what we want to compute. Suppose we are given some
prime p and a polynomial A ∈ Fp[x, y] that is monic in x. A must also be square-free, that is, @ b
with deg(b, x) > 0 such that b2|A. Suppose we choose some α ∈ Fp and obtain the factorization
A(x, α) =

∏n
i=1 fi,0 in which f1,0, f2,0, ..., fn,0 ∈ Fp[x] are monic and pairwise relatively prime. One

way to factor A(x, α) over Fp is to use the Cantor-Zassenhaus algorithm [3]. We note that it is
possible for A to be square-free but for A(x, α) to not be square-free. We discuss this in Section
1.2.

Bivariate Hensel Lifting aims to construct monic, bivariate polynomials f (k)
1 , f

(k)
2 , ..., f

(k)
n ∈

Fp[x, y] where

f
(k)
i = f

(k−1)
i + fi,k−1(y − α)(k−1) and f (1)

i = fi,0

such that

(1) ∀i : f (k)
i ≡ fi,0 (mod y − α), and

(2) A ≡
∏
i f

(k)
i (mod (y − α)k).

If k is sufficiently large, the f (k)
i obtained can be used to compute a factorization of A over Fp. We

will stop Hensel Lifting when
∏
i f

(k)
i = A(x, y) or when

∑n
i=1 deg(f (k)

i , y) > deg(A, y) = dy. If the
latter conditions occur, then we clearly have an incorrect factorization of A.

1

Example 1.1. Our algorithm will find a factorization of the bivariate polynomial

A(x, y) = x3 + 6y4 + (−6x+ 8)y3 + (4x2 − 8x+ 2)y2 + (−x2 + 6x+ 4)y − 5x2 − 6x

over the field F17. If we choose the element α = 3 and obtain the initial monic factors f1,0 =
x+ 7, f2,0 = x+ 6, and f3,0 = x− 2 such that A− f1,0f2,0f3,0 ≡ 0 (mod y− 3), then our algorithm
lifts f1,0, f2,0, and f3,0 to factorize A as

A(x, y) = (x+ 2(y − 3) + 7)︸ ︷︷ ︸
f1

× (x+ 4(y − 3)2 − (y − 3) + 6)︸ ︷︷ ︸
f2

× (x+ 5(y − 3)− 2)︸ ︷︷ ︸
f3

4

We restrict ourselves to the case of bivariate polynomials over a finite field. Bivariate polynomi-
als are common in practice. Moreover, as we outline below, state of the art algorithms for factoring
polynomials in more than two variables rely on multiple factorizations of bivariate polynomials [9],
[10], [18]. For these reasons, it is important to have a fast way of lifting bivariate polynomials.

One way to factor a multivariate polynomial in Z[x1, ..., xm] is to factor a univariate image
in Z[x], then Hensel lift the images to factors in Z[x1, ..., xm]. This method was developed by
Rothschild and Wang in [23]. It is used in the Maple and Magma computer algebra systems. The
computer algebra system Singular uses a different approach. In [12], Lee and Pfister factor a bi-
variate image, then lift the resulting bivariate images to the factors in Z[x1, ..., xm]. To compute
the bivariate images, they use Hensel lifts in Fp[x, y].

In [18], Monagan and Tuncer developed an algorithm to use Hensel Lifting to find a factoriza-
tion of multivariate polynomials in Z[x1, ..., xm]. They use evaluation to reduce the multivariate
polynomial to many bivariate images, then use bivariate Hensel Lifting to factor the images, and
finally use interpolation to recover the factorization of the original multivariate polynomial. Their
method requires an algorithm which can perform bivariate Hensel Lifting quickly since they may
have to do thousands of bivariate Hensel lifts if the factors of A have many terms or many variables
of high degree. Their algorithm makes repeated use of bivariate Hensel Lifting which provides clear
motivation for finding efficient algorithms for performing bivariate Hensel lifts.

We use a dense lifting approach which is most effective for bivariate polynomials. Factorization
algorithms for sparse multivariate polynomials (polynomials where most of the coefficients of its
monomials are zero) have been presented in [22], [9], [17], [21], [23]. Only as the number of vari-
ables grows does it becomes increasingly important to use sparse techniques to prevent exponential
behaviour in the number of variables.

2

Our algorithm is based on an algorithm developed by Laurent Bernardin in 1998 which we will
refer to as Bernardin’s algorithm. Bernardin’s algorithm was originally published in the proceed-
ings of ISSAC 1998[2] and presented a parallel algorithm for performing Linear Hensel Lifting of
bivariate polynomials with n factors over a finite field Fp. The sequential version of Bernardin’s
algorithm uses O(nd2

x d
2
y) arithmetic operations in Fp for lifting the initial univariate images to

the bivariate factors. Bernardin’s algorithm is currently implemented in Maple’s “modp2/Factors”
library and is called to factor certain bivariate polynomials over finite fields.

We make two major improvements to Bernardin’s algorithm. We improve the bottleneck and we
apply stricter degree bounds to some subroutines of Bernardin’s algorithm. Both of these improve-
ments result in a reduction of the asymptotic complexity of Bernardin’s algorithm. We will describe
the bottleneck when we cover Bernardin’s algorithm in detail in Section 1.3. In brief, the bottleneck
of Bernardin’s algorithm is its method for calculating a certain polynomial, ∆ ∈ Fp[x], which re-
quires calculating the product of many univariate polynomials and adding them together. As we will
show in Chapter 3, we use polynomial evaluation, interpolation, and point-wise multiplication in Fp
to calculate ∆ more efficiently. This improvement reduces the number of arithmetic operations done
by Bernardin’s algorithm from O(nd2

x d
2
y) to O(nd2

x dy+ndx d2
y). Through further analysis, we have

found that by applying strict degree bounds to all intermediate calculations and sub-algorithms
in our algorithm, we can reduce the complexity by an additional factor of n to O(d2

x dy + dx d
2
y).

Most notably, we use the fact that dx =
∑
i deg(f (k)

i , x) and dy ≤
∑
i deg(f (k)

i , y) to reduce the com-
plexity. The n = 2 case is considered by Monagan in [16]. This thesis considers the case when n ≥ 2.

To properly present our algorithm, which discovers a factorization of A, and its complexity,
we will break this thesis into several chapters. Chapter 1 will begin by chronicling the historical
versions of Hensel Lifting in Z[x] to factor univariate polynomials into two factors. We then expand
on the classical algorithm to show how Hensel Lifting can be used to factor a bivariate polynomial
in Fp[x, y] into n bivariate factors. We conclude Chapter 1 with an in-depth analysis of Bernardin’s
algorithm for factoring bivariate polynomials in Fp[x, y]. Chapter 2 will cover well-known algorithms
that we shall require. Chapter 3 will outline how and why our algorithm works, and calculate the
number of arithmetic operations in Fp that it uses. Finally, Chapter 4 will present some benchmarks
for the implementation of our algorithm and Bernardin’s algorithm in the C programming language.
We will verify, through experimentation, that our algorithm both outperforms Bernardin’s and has
a cubic complexity. In summary, this thesis will show why our algorithm is superior to Bernardin’s
algorithm in both theory and practice.

Our main technical result is the following theorem.

3

Theorem 1.2. Let A ∈ Fp[x, y], dx = deg(A, x) > 1, dy = deg(A, y) > 1. Suppose A = f1f2 . . . fn

and we are given pairwise relatively prime images fi(x, α) of the factors fi for some α ∈ Fp. If
p ≥ dx, we can compute f1f2 . . . fn in O(d2

x dy + dx d
2
y) arithmetic operations in Fp using space for

O(ndx dy) elements of Fp.

We cover benchmarks in detail in Chapter 4. Table 1.1 shows timings for using both our algo-
rithm and Bernardin’s algorithm for bivariate Hensel Lifting n = 4 factors in Fp[x, y] with p = 231−1
and d = dx = dy. The factors f1, f2, f3 and f4 have the form xd/4 +

∑ d
4
i=0(

∑ d
4−1
j=0 cijx

j)yi where the
coefficients cij are chosen at random from [0, p). We then input α = 3, A = f1 × f2 × f3 × f4,
f1,0 = f1(x, α), f2,0 = f2(x, α), f3,0 = f3(x, α), and f4,0 = f4(x, α) to the Hensel Lifting algorithms.
The speedup is a comparison between the time it took to compute our algorithm compared to
Bernardin’s.

Our Cubic Algorithm Bernardin’s Algorithm
d Time(ms) Time(ms) Speedup
16 0.13 0.11 0.85
32 0.36 0.43 1.19
64 1.49 3.38 2.27
128 7.77 34.40 4.43
256 45.38 362.85 8.00
512 324.19 4,319.31 13.32
1024 2,502.76 55,716.30 22.26
2048 18,017.49 782,982.80 43.46
4096 128,211.01 11,647,207.28 90.84
8192 963,335.81 NA -

Table 1.1: Hensel Lifting timings for Fp[x, y] with p = 231−1 and n = 4 factors. NA = not attempted

1.1 Historical Hensel Lifting in Z[x]

We begin our discussion with the history of the Hensel Lifting algorithm. The idea is based on
Hensel’s Lemma which was penned by Kurt Hensel (1861-1941). Zassenhaus [25] was the first to
apply Hensel’s Lemma to factor polynomials in Z[x]. The algorithm was then adapted by Miola
and Yun [15] to create an algorithm for performing Linear Hensel Lifting and applied to compute
polynomial gcds in Z[x]. Knuth in [11] suggested that if p is sufficiently large, then Hensel’s Lemma
could be used to find the gcd of two polynomials but did not attribute this observation to Zassen-
haus. A description of Hensel Lifting may be found in Modern Computer Algebra[6] and Algorithms
for Computer Algebra[7]. All modern Computer Algebra systems, such as Maple or Magma, factor
polynomials in Z[x] use Hensel Lifting.

4

In [2], Bernardin modified the Linear Hensel Lifting algorithm of Miola and Yun [15] to factor
polynomials in Fp[x, y]. Miola and Yun covered only the two factor case as that is all that is needed
for computing gcds. Bernardin covered the n ≥ 2 factor case.

1.1.1 Solving a polynomial Diophantine equation

Before we can discuss Hensel’s Lemma or Hensel Lifting, we need to be able to solve a particular
polynomial Diophantine equation for n = 2 factors. Given a prime p, and a(x), b(x), c(x) ∈ Zp[x],
we must solve

σa+ τb = c (1.1)

for σ(x), τ(x) ∈ Zp[x] where we are given gcd(a, b) = 1 and require deg(σ, x) < deg(b, x). The
degree constraint on σ imposes uniqueness. Solving (1.1) is necessary for lifting the factors in each
iteration of Hensel’s Lemma. We present the necessary theorem as Theorem 1.3. This theorem
corresponds to Theorem 2.6 in [7]. To demonstrate that this theorem holds for any field, we present
it for a general field F .

Theorem 1.3. Let F [x] be the Euclidean domain of univariate polynomials over a field F . Let
a(x), b(x) ∈ F [x] be given nonzero polynomials and let g(x) = gcd(a, b) ∈ F [x]. Then for any given
polynomial c(x) ∈ F [x] such that g|c there exist unique polynomials σ(x), τ(x) ∈ F [x] such that

σa+ τb = c and (1.2)

deg(σ, x) < deg(b, x)− deg(g, x). (1.3)

Moreover, if deg(c, x) < deg(a, x) + deg(b, x)− deg(g, x) then τ satisfies

deg(τ, x) < deg(a, x)− deg(g, x). (1.4)

We discuss the polynomial Diophantine equation now because it is used in both Hensel’s Lemma
and the Hensel Lifting algorithm. We will discuss this theorem in more detail, including its proof
of existence and uniqueness, as well as its complexity, later in Section 2.2.1. We will also prove that
finding a solution to (1.1) requires O(d2) arithmetic operations in F where deg(a, x) ≤ deg(b, x) ≤ d
and deg(c, x) < deg(a, x)+deg(b, x). We will then cover the extension of the polynomial Diophantine
equation for n > 2 factors directly following the n = 2 factor case in Section 2.2.2. We give an
example of how to solve (1.1) for σ and τ as Example 1.4.

Example 1.4. Let F = Z11 be the finite field with 11 elements. Let a = 3x2+4x+6, b = 2x2+x+3,
and c = 6x + 1. We will find σ, τ ∈ Z11[x] such that σa + τb = c and deg(σ, x) < deg(b, x). Note
that gcd(a, b) = 1 in Z11[x].

We begin by applying the Extended Euclidean Algorithm (EEA) to solve

5

sa+ tb = 1 (1.5)

for s, t ∈ Z11[x]. The EEA finds s = 2x + 2 and t = 8x. We then multiply both sides of (1.5) by c
to get

csa+ ctb = (x2 + 3x+ 2)(3x2 + 4x+ 6) + (4x2 + 8x)(2x2 + x+ 3) = 6x+ 1.

As deg(cs, x) 6< deg(b, x), we calculate cs ÷ b using the classical division algorithm to obtain some
quotient q and remainder r such that cs = qb+ r. We get q = 6 and r = 8x+ 6. We can now solve
for σ and τ as follows:

c = csa+ ctb = (qb+ r)a+ ctb = r︸︷︷︸
σ

a+ (qa+ ct)︸ ︷︷ ︸
τ

b. (1.6)

By applying (1.6), we obtain σ = r = 8x+ 6 and τ = qa+ ct = 10x+ 3. Note that now deg(σ, x) <
deg(b, x).

4

1.1.2 Hensel’s Lemma

Hensel’s Lemma, also known as Hensel’s Lifting Lemma, is a famous result in algebraic
number theory. It states that if a polynomial equation has a simple root modulo a prime number
p, then this root corresponds to a unique root of the same equation modulo any higher power of p,
which can be found by iteratively “lifting” the solution modulo successive powers of p. Since p-adic
analysis is in some ways simpler than real analysis, there are relatively neat criteria guaranteeing a
root of a polynomial. We present Hensel’s Lemma as Theorem 1.5. The proof of Hensel’s Lemma,
given here, is a constructive proof which is commonly referred to as the Hensel Construction. Our
proof of Hensel’s Lemma corresponds to the proof of Theorem 6.2 in [7].

Theorem 1.5 (Hensel’s Lemma). Let p be a prime in Z and let A(x) ∈ Z[x] be a given non-zero
polynomial over the integers. Let u(1), w(1) ∈ Zp[x] such that

A ≡ u(1)w(1) (mod p) (1.7)

and gcd(u(1), w(1)) = 1 in Zp[x]. Then for any integer k > 1, there exist polynomials u(k), w(k) ∈ Z[x]
such that

A ≡ u(k)w(k) (mod pk) (1.8)

and
u(k) ≡ u(1) (mod p), w(k) ≡ w(1) (mod p). (1.9)

6

Proof. The proof is by induction on k. The case k = 1 is given. Assume for k > 1 that we have
u(k), w(k) ∈ Z[x] satisfying (1.8) and (1.9). Notice that (1.8) implies pk divides A − u(k)w(k). We
define

ck = A− u(k)w(k)

pk
∈ Z[x]. (1.10)

Since, u(1)w(1) ∈ Zp[x] are relatively prime, by Theorem 1.3 we can find unique polynomials σk, τk ∈
Zp[x] such that

σkw
(1) + τku

(1) = ck (1.11)

with
deg(σk, x) < deg(u(1), x). (1.12)

Then by defining
u(k+1) = u(k) + σkp

k and w(k+1) = w(k) + τkp
k (1.13)

we have by performing multiplication modulo pk+1:

u(k+1)w(k+1) = (u(k) + σkp
k)(w(k) + τkp

k)

= u(k)w(k) + (σkw(k) + τku
(k))pk + σkτkp

2k

≡ u(k)w(k) + (σkw(k) + τku
(k))pk (mod pk+1), by (1.9)

≡ u(k)w(k) + ckp
k (mod pk+1), by (1.11)

≡ u(k)w(k) + (A− u
(k)w(k)

pk
)pk + 0 (mod pk+1), by (1.10)

≡ u(k)w(k) +A− u(k)w(k) (mod pk+1)

≡ A (mod pk+1).

Thus (1.8) holds for k + 1. Also from (1.13), it is clear that

u(k+1) ≡ u(k) (mod p) and w(k+1) ≡ w(k) (mod p)

and therefore since (1.9) holds for k, it also holds for k + 1.

Example 1.6. Consider the problem of finding polynomials u(3)(x), w(3)(x) ∈ Z[x] with respect to
u(1)(x), w(1)(x) ∈ Z7[x] respectively according to Theorem 1.5.

Let p = 7, A(x) = x4 + 24x3 + 160x2 + 229x− 84, u(1)(x) = x2 + 4x, and w(1)(x) = x2 + 6x+ 3.
Note that A(x) ≡ u(1)w(1) (mod p). We will define

7

c1 = A− u(1)w(1)

p
= x4 + 24x3 + 160x2 + 229x− 84− (x2 + 4x)(x2 + 6x+ 3)

7 = 2x3+19x2+31x−12.

We solve the polynomial Diophantine equation

σ1w
(1) + τ1u

(1) = c1

for σ1, τ1 ∈ Zp[x] such that deg(σ1, x) < deg(u(1), x). By applying the method described in Section
1.1.1, we find the unique solution σ1 = x+ 3 and τ1 = x+ 6. We then update u(2) and w(2) as

u(2) = u(1) + σ1p = (x2 + 4x) + (x+ 3)7 = x2 + 11x+ 21 and

w(2) = w(1) + τ1p = (x2 + 6x+ 3) + (x+ 6)7 = x2 + 13x+ 45.

We apply Theorem 1.5 again to find u(3) and w(3). Let

c2 = A− u(2)w(2)

p2 = −x2 − 11x− 21.

We next solve the polynomial Diophantine equation

σ2w
(1) + τ2u

(1) = c2

for σ2, τ2 ∈ Zp[x] such that deg(σ2, x) < deg(u(1), x).

By applying the method described in Section 1.1.1 again, we find the unique solution σ2 = 0 and
τ2 = 6. We then update u(3) and w(3) as

u(3) = u(2) + σ2p
2 = x2 + 11x+ 21 and w(3) = w(2) + τ2p

2 = x2 + 13x+ 290.

We have found u(3) and w(3) such that u(3) ≡ u(1) (mod p), w(3) ≡ w(1) (mod p), and A ≡
u(3)w(3) (mod p3). Note: in our example the leading coefficients of u(k) and w(k) are 1 and re-
main 1 throughout. This is a consequence of the degree constants deg(σ, x) < deg(u(1), x) and
deg(τ, x) < deg(w(1), x) from Theorem 1.3.

4

Corollary 1.7. (Uniqueness of the Hensel Construction). In Theorem 1.5, if the given polynomial
A(x) ∈ Z[x] is monic and if the relatively prime factors u(1), w(1) ∈ Zp[x] are monic, then for any
integer k ≥ 1 conditions (1.3), (1.4) uniquely determine the monic polynomial factors u(k), w(k) ∈

8

Zpk [x]. In addition, the leading monic term of u(k) and w(k) match the leading terms of u(1) and
w(1) respectively.

A proof of Corollary 1.7 can be found in [7]. All variations of Hensel Lifting come from Hensel’s
Lemma. We will next show how to adapt Hensel’s Lemma to define Hensel Lifting for 2 factors
in Z[x].

1.1.3 Hensel Lifting in Z[x] for two factors

In this section, we discuss the method needed to perform Hensel Lifting for two factors in Z[x].
We begin by describing the p-adic representation of polynomials as we will be lifting univariate
polynomials in terms of a prime p. We then explain the method of Hensel Lifting. This will be
followed by the statement of the classical Hensel Lifting algorithm in Z[x] for two factors. Finally,
we will finish this section by calculating the complexity of the Hensel Lifting algorithm.

Consider the problem of inverting the modular homomorphism φp : Z[x]→ Zp[x]. The starting
point in the development of Hensel Lifting is to consider yet another representation for integers
and polynomials. The approach is based on constructing an integer solution v in its p-adic (or base
p) representation. Let

v = v0 + v1p+ · · ·+ vn−1p
n−1 (1.14)

where p is a positive prime integer, n ∈ N is large enough that pn > 2|v|, and vi ∈ Zp for
0 ≤ i < n. The p-adic representation can be developed using either the positive or the symmetric
representation of Zp. If the positive representation is used then (1.14) is simply the familiar radix
p representation of the nonnegative integer v (and it is sufficient for n to be such that pn > v).
However, the symmetric representation is useful in practice because it allows the integer v to be
negative.

Lemma 1.8. Let p be a prime and u be an integer such that −pn

2 < v < pn

2 . There exist unique
integers vi (0 ≤ i ≤ n− 1) such that v =

∑n−1
i=0 vi p

i and −p
2 < vi <

p
2 .

Proof. We will not provide a proof of existence for this lemma. We will provide a method for finding
the p-adic representation for an integer v directly following this proof.

(Uniqueness) Suppose v = v0 +v1p+v2p
2 + ...+vn−1p

n−1 and v = v′0 +v′1p+v′2p2 + ...+v′n−1p
n−1

satisfying −p
2 < vi <

p
2 and −p

2 < v′i <
p
2 . Then

v − v = 0 = (v0 − v′0) + (v1 − v′1)p+ ...+ (vn−1 − v′n−1)pn−1. (1.15)

Reducing mod p, we have 0 ≡ (v0 − v′0) (mod p) which implies

9

p|(v0 − v′0).

Now, the conditions on v0 and v′0 imply −p < v0 − v′0 < p and therefore v0 − v′0 = 0 and so
v0 = v′0. Dividing (1.15) by p we obtain

0 = (v1 − v′1) + (v2 − v′2)p+ · · ·+ (vn−1 − v′n−1)pn−2. (1.16)

Repeating the above argument we show that v1 = v′1, then repeating again we show that vi = v′i
for all i, thus we have uniqueness for the symmetric p-adic representation.

There is a simple procedure for developing the p-adic representation for a given integer v. Firstly,
we see from equation (1.14) that v ≡ v0 (mod p), so using the modular mapping φp(a) = rem(a, p)
we have

v0 = φp(v). (1.17)

For the next p-adic coefficient v1, note that v− v0 must be divisible by p, and from equation (1.14)
it follows that

v − v0
p

= v1 + v2p+ ...vnp
n−1.

Notice (v − v0)/p is the quotient q1 of v ÷ p. Next we obtain v1 from

v1 = φp

(
v − v0
p

)
= φp(q1).

Again, for the next p-adic coefficient v2, note that q1 − v1 must be divisible by p, so it follows that

q1 − v1
p

= v2 + v3p+ ...+ vnp
n−2.

Notice (q1 − v1)/p is the quotient q2 of q1 ÷ p. Hence as before, we have

v2 = φp

(
q1 − v1
p

)
= φp(q2).

Continuing in this manner, if we let q0 = v, we get

vi = φp

(
qi−1 − vi−1

p

)
, for 1 ≤ i ≤ n− 1 (1.18)

where the division by p is guaranteed to be an exact integer division. In formula (1.18), it is
important to note that the calculation (qi−1−vi−1)/p is to be performed in the domain Z and then

10

the modular mapping φp is applied. We supplement our definition of the symmetric p-adic integer
representation with Example 1.9.

Example 1.9. Let v = −284400. We will find the symmetric p-adic representation of v choosing
p = 103 using equation (1.18). The p-adic coefficients are

q0 = v

v0 = φp(q0) = φ103(−284400) = −17

v1 = φp
(
q0−v0
p

)
= φ103

(
−284400−(−17)

103

)
= φ103(−1761) = 20

q1 = −1761

v2 = φp
(
q1−v1
p

)
= φ103

(
−1761−20

103

)
= φ103(−27) = −27

If we try to compute another coefficient v3 we find that q2 − v2 = 0, so we are finished. The
symmetric p-adic representation of v = −284400 when p = 103 is

v = −284400 = −17 + 20(103)− 27(1032).

4

The concept of a p-adic representation can be readily extended to polynomials. We can express
a polynomial v(x) ∈ Z[x] in its polynomial p-adic representation, where its general form is

v(x) = v0(x) + v1(x)p+ · · ·+ vn−1(x)pn−1

where vi ∈ Zp[x] for 0 ≤ i < n. Formulas (1.17) and (1.18) remain valid when v and vi for 0 ≤ i < n

are polynomials. We define φp : Z[x]→ Zp[x] by taking the coefficients of a polynomial modulo p.

Example 1.10. Let v(x) = 30x2−17x−29 ∈ Z[x]. We will find the symmetric p-adic representation
of v choosing p = 7 using equation (1.18). The polynomial p-adic coefficients are:

q0 = v

v0 = φp(q0) = φ7(30x2 − 17x− 29) = 2x2 − 3x− 1

v1 = φp
(
v−v0
p

)
= φ7

(
q0−v0
p

)
= φ7

(
(30x2−17x−29)−(2x2−3x−1)

7

)
= φ7(4x2 − 2x− 4)

= −3x2 − 2x+ 3

q1 = 4x2 − 2x− 4

v2 = φp
(
q1−v1
p

)
= φ7

(
(4x2−2x−4)−(−3x2−2x+3)

7

)
= φ7(x2 − 1) = x2 − 1

11

If we try to compute another coefficient v3, we find the q2 − v2 = 0 so we are finished. The p-adic
representation of v = 30x2 − 17x− 29 when p = 7 is

v(x) = 30x2 − 17x− 29 = (2x2 − 3x− 1) + (−3x2 − 2x+ 3)7 + (x2 − 1)72.

Note, there exists a positive p-adic representation of v(x) by taking the p-adic coefficients mod 72,
namely

30x2 − 17x− 29 ≡ (2x2 + 4x+ 6) + (4x2 + 4x+ 2)7 (mod 72).

4

We have defined the p-adic representation for polynomials in Z[x]. We can now adapt Hensel’s
Lemma to factor a polynomial A(x) ∈ Z[x] into two factors u,w ∈ Z[x]. We can recover u and w
using their p-adic representation for some prime p. That is, we can represent u and w in the form

u = u0 + u1p+ u2p
2 + · · ·+ unp

n

w = w0 + w1p+ w2p
2 + · · ·+ wnp

n

where ui =
∑m
j=0 uij x

j and wi =
∑m
j=0wij x

j such that −p
2 < uij , wij <

p
2 . For simplicity, we define

u(k) = u0 + u1p+ u2p
2 + · · ·+ uk−1p

k−1 and

w(k) = w0 + w1p+ w2p
2 + · · ·+ wk−1p

k−1

for k ≥ 1. Given u0, w0 ∈ Zp[x], such that A − u0w0 ≡ 0 (mod p) and gcd(u0, w0)=1, we wish to
find u,w. Using our definition of u(k), w(k), we can state, using Theorem 1.5, that

A− u(k)w(k) ≡ 0 (mod pk).

We need to find u(k+1) = u(k) + ukp
k and w(k+1) = w(k) + wkp

k such that

A− u(k+1)w(k+1) ≡ 0 (mod pk+1)

=⇒ A− (u(k) + ukp
k)(w(k) + wkp

k) ≡ 0 (mod pk+1)

=⇒ A− u(k)w(k)︸ ︷︷ ︸
1

−ukpkw(k)︸ ︷︷ ︸
2

−wkpku(k)︸ ︷︷ ︸
3

−ukwkp2k︸ ︷︷ ︸
4

≡ 0 (mod pk+1).

Now, we can consider 1 , 2 , 3 , 4 separately mod pk+1.

1 We know that A = uw. It follows that

12

A− u(k)w(k) = A− (u0 + u1p+ ...+ uk−1p
k−1)(w0 + w1p+ ...+ wk−1p

k−1)

= A− u0w0 − (u0w1 + u1w0)p− ...− (u0wk−1 + u1wk−2 + ...+ uk−1w0)pk−1 − (...)pk

As u(k)w(k) generates the complete p-adic representation of A for the first k coefficients, it is implied
that A− u(k)w(k) contains only terms that are multiples of pk. We will define a new quantity, the
error ek at iteration k, by

ek = A− u(k)w(k)

which represents the difference between A and the incomplete factorization of u(k)w(k). As every
term in ek is a multiple of at least pk, we need only consider the coefficients which are factors of
exactly pk modulo pk+1. So, if we divide ek by pk, we define the quantity

ck = ek
pk

for some ck ∈ Z[x].

2 Consider the expansion of w(k) divided by pk

ukp
kw(k)

pk
= uk(w0 + w1p+ ...+ wk−1p

k−1) ≡ ukw0 (mod p)

3 Using the same logic as used in 2 ,

wkp
ku(k)

pk
= wku

(k) ≡ u0wk (mod p).

4 Every term is a multiple of p2k and k ≥ 1, so

ukwkp
2k

pk
≡ 0 (mod p).

If we put together our results from 1 , 2 , 3 , and 4 , we conclude

A− (u(k+1)w(k+1)) ≡ 0 (mod pk+1) =⇒ ek − ukpkw(k) − wkpku(k) − ukwkp2k

pk
≡ 0 (mod p)

=⇒ ek
pk
− ukw0 − wku0 ≡ 0 (mod p)

=⇒ ukw0 + u0wk = ck ∈ Zp[x].

13

Now we must find uk and wk. We have a polynomial Diophantine equation of the form

σw0 + τu0 = ck

for a known polynomial ck ∈ Z[x]. Since gcd(u0, w0) = 1 in Zp[x], we can apply Theorem 1.3 and
find a unique solution for σ, τ ∈ Zp[x] with deg(σ, x) < deg(u0, x). We now set

u(k+1) = u(k) + σpk and w(k+1) = w(k) + τpk.

The Hensel construction provides a method for lifting a factorization modulo p up to a factor-
ization modulo pk for k ≥ 1. However, the Hensel construction may not lead to a factorization over
Z[x]. While Corollary 1.7 guarantees a unique construction if the relatively prime factors u(1) and
w(1) are monic, this is not true if the initial factors are not monic. Hensel construction can find
polynomials that satisfy the conditions of Theorem 1.5, but as the construction is not unique, the
polynomials calculated might not be the factorization of A. Therefore, we must discuss a stopping
condition for Hensel Lifting. The stopping condition will occur when k is large enough that pk is
larger than any possible integer coefficient of factors u or w. Specifically, let k be large enough
so that pk > 2B where B is an integer which bounds the magnitudes of all integer coefficients
appearing in A(x) and in any of its possible factors with the particular degrees deg(u(1), x) and
deg(w(1), x). For an upper bound on the size of the coefficients we will use Mignotte’s bound. We
present Mignotte’s bound as Theorem 1.11. A proof of Mignotte’s bound can be found in [6]. The
bound was originally presented in [14].

Theorem 1.11. (Mignotte’s bound) Suppose that f, g, h ∈ Z[x] have degrees deg(f, x) = n ≥
1,deg(g, x) = m, and deg(h, x) = k, and that gh divides f (in Z[x]). For a polynomial A ∈ Z[x],
let ||A||∞ be the magnitude of the coefficient of A with the largest magnitude. Then

(1) ||g||∞||h||∞ ≤
√
n+ 1 2m+k||f ||∞,

(2) ||h||∞ ≤
√
n+ 1 2k||f ||∞.

Proof. See Corollary 6.33 in [6].

The basic algorithm for Hensel Lifting a factorization in Zp[x] up to a factorization in Z[x]
is presented as Algorithm 1. In the monic case, Algorithm 1 corresponds precisely to the Hensel
construction presented above, since by Corollary 1.7 the factors at each step of the lifting process
are uniquely determined in the monic case. However, in the non-monic case, the non-uniqueness
of the factors modulo pk leads to the “leading coefficient problem” to be discussed shortly, and as
we shall see this accounts for the additional conditions and operations appearing in Algorithm 1.
For the moment, Algorithm 1 may be understood for the monic case if we simply ignore the stated
conditions (other than the conditions appearing in Hensel’s lemma), ignore Steps 3-9 and initialize

14

u ← u0 and w ← w0. Note that no adjustment to u and w is needed in Steps 14 and 15. We
will define the terms monic, lcoeff, content, and primitive when we discuss the “leading coefficient
problem”.

Algorithm 1: Hensel Lifting in 2 factors
1 Input: prime p, primitive A ∈ Z[x] and u0, w0 ∈ Zp[x] satisfying (i)A ≡ u0w0 (mod p) and

(ii)gcd(u0, w0) = 1, and B, an upper bound for the magnitude of the integer coefficients
of u,w.

2 Output: u,w ∈ Z[x] such that A = uw or FAIL.

3 α← lcoeff(A, x);
4 A← αA;
5 du← deg(u0, x); dw ← deg(w0, x);
6 u0 ← α· monic(u0) mod p;
7 w0 ← α· monic(w0) mod p;
8 u← u0− lcoeff(u0, x)xdu + αxdu;
9 w ← w0− lcoeff(w0, x)xdu + αxdw;

10 k ← 1;
11 while pk < 2B do
12 ek ← A− uw;
13 if ek = 0 then
14 u← u/content(u); w ← w/content(w);
15 return(u,w);
16 end
17 ck ← ek/p

k;
18 Solve σw0 + τu0 = ck for σ, τ ∈ Zp[x];
19 u← u+ σpk; w ← w + τpk;
20 k ← k + 1;
21 end
22 return FAIL end

Example 1.12. We will apply Algorithm 1 to factor the following monic polynomial over the
integers:

A(x) = x4 + 57x3 − 73493x2 + 74631x− 18860 ∈ Z[x].

Choosing p = 5 and applying the modular homomorphism φ5 to A yields

φ5(A) = x4 + 2x3 + 2x2 + x ∈ Z5[x].

15

The unique monic factorization in Z5[x] of this polynomial is

φ5(A) = (x2 + x)(x2 + x+ 1).

We therefore define
u(1)(x) = x2 + x, and w(1)(x) = x2 + x+ 1.

Since u(1) and w(1) are relatively prime in Z5[x], the Hensel construction may be applied. Applying
Algorithm 1 in the form noted above for the monic case, we first perform the initializations in Steps
8,9, and 12 which yields

u(x) = x2 + x, w(x) = x2 + x+ 1, and e(x) = 55x3 − 73496x2 + 74630x− 18860.

Steps 17-19 then apply the Hensel construction precisely as outlined in the proof of Hensel’s Lemma.
The sequence of values computed for e, ck, σk, τk, u, and w in Step 19 are as follows.

k ek ck σk τk u w

1 55x3 − 73495x2 + 74630x− 18860 x3 + x2 + x− 2 x− 2 2 x2 + 6x− 10 x2 + x+ 11
2 50x3 − 73500x2 + 74575x− 18750 2x3 − 2x 0 2x− 2 x2 + 6x− 10 x2 + 51x− 39
3 −73750x2 + 75375x− 19250 −2x+ 1 2x+ 1 2x− 1 x2 − 244x+ 115 x2 + 301x− 164
4 0 - - - - -

Table 1.2: Value of variables after Step 19

Note that at the end of each iteration k, ek(x) is divisible by 5k+1 as required at the beginning of
the next iteration. The iteration terminates with u(x) = x2−244x+115 and w(x) = x2+301x−164.
We therefore have the factorization

x4 + 57x3 − 73493x2 + 74631x− 18860 = (x2 − 244x+ 115)(x2 + 301x− 164).

A variation of Hensel Lifting exists that lifts A, u and w in the positive range. In this case, as
the loop terminated at k = 3, we could put A, u, and w into the positive range mod 53. In this case,
we would have the factorization of A ≡ (x2 + 6x+ 115)(x2 + 51x+ 86) (mod 53).

4

The Leading Coefficient Problem

The Hensel construction provides a method for lifting a factorization modulo p up to a factor-
ization modulo pk for any integer k ≥ 1. However, if the monic polynomial A(x) ∈ Z[x] has the
factorization

A ≡ u(1)w(1) (mod p)

16

where u(1), w(1) ∈ Zp[x] are relatively prime monic polynomials and if there exists a factorization
over the integers A = uw such that

u ≡ u(1) (mod p) and w ≡ w(1) (mod p)

then the Hensel construction must obtain this factorization by Corollary 1.7. Notice that subtracting
u(1)w(1) from A removes the leading monic term from A resulting in a polynomial of degree at
most deg(A, x) − 1. As the leading terms always cancel in the monic case, when the polynomial
Diophantine equation

σw(1) + τu(1) = ck

is solved for σ, τ ∈ Zp[x] where deg(σ, x) < deg(u(1), x) and deg(ck, x) < deg(A, x), then deg(u(1)w(1), x) =
deg(A, x) and the leading coefficients of u(k) and w(k) never change. This is fine when A is monic,
but is a problem is A is non-monic as the values of the leading coefficients will never change from
their initial values. We must discuss how to handle the case when A, and therefore at least one
of the factors, is non-monic. As our algorithm, introduced in Section 3.1, is intended to factor
bivariate polynomials that are monic in x, we will not provide the complete explanation of how
to solve the leading coefficient problem. A complete explanation can be read in pages 237-250 of [7].

We will assume the leading coefficient of A(x) ∈ Z[x] is α 6= 1. We want to find some β, γ ∈ Z
such that lcoeff(A) = α = βγ = lcoeff(u)lcoeff(w). We have u(1), w(1) such that gcd(u(1), w(1)) = 1
and A−u(1)w(1) ≡ 0 (mod p). Since we are working over the field Zp, each of the polynomials can be
written as a product of their leading coefficients and their monic forms. In other words, if the leading
coefficients of u(1) and w(1) are β′, γ′ respectively then αmonic(A) ≡ β′monic(u(1))·γ′monic(w(1))
(mod p).

Consider the following factorization of A:

αmonic(A) = βmonic(u)× γmonic(w). (1.19)

Now, if we multiply both sides of (1.19) by α we get

α2 monic(A) = α(βmonic(u)× γmonic(w))

= βγ (βmonic(u)× γmonic(w))

= βγmonic(u)× βγmonic(w)

= αmonic(u)× αmonic(w).

(1.20)

17

The first step to solving the leading coefficient problem is to multiply the monic forms of u(1)

and w(1) by α, then when we initialize u and w in Steps 8-9 of Algorithm 1, we can simply set the
leading coefficients to both be α. In this way, when we calculate A−uw in Step 12, the leading terms
cancel, deg(ek, x) = deg(ck, x < deg(A, x), so we are able to apply Theorem 1.3 to the polynomial
Diophantine equation to solve for σ and τ and update u and w.

The last thing to notice is if we do find a factorization A = uw, then there will be an extra
factor of α, the leading coefficient of A, split between u and w. To remove this, we need to find the
content of u and w. The content of a polynomial u ∈ Z[x] is the gcd of its coefficients. We then
divide the coefficients of u and w by their respective contents. This corresponds to Steps 14 and 15
in Algorithm 1 and results in correct factorization of A.

Example 1.13. We will apply the entirety of Algorithm 1 to factor the following non-monic poly-
nomial over the integers:

A(x) = 48x4 − 22x3 + 47x2 + 144.

The input of the algorithm is the primitive polynomial A, the prime is p = 7 (note that p does
not divide the leading coefficient of A), and the two relatively prime modulo p factors of A are
u(1)(x) = x2 − 3x+ 2 and w(1)(x) = −x2 + 3x+ 2.

We begin by finding the monic representation of u(1) and w(1) in Zp[x]. We then multiply u(1)

and w(1) by α. So,

αA = 2304x4 − 1056x3 + 2256x2 + 6912

u(1) = α·monic(u(1)) ≡ −x2 + 3x− 2 (mod 7), and
w(1) = α·monic(w(1)) ≡ −x2 + 3x+ 2 (mod 7).

We then can replace the leading term of u(1) and w(1) with α = 48 so that when we initialize u
and w we get

u = 48x2 + 3x− 2 and w = 48x2 + 3x+ 2.

We can then calculate the error e1 and c1 as

e1 = A− uw = −1344x3 + 2247x2 + 6916, and

c1 = e1
p

= −192x3 + 321x2 + 988.

We can then solve the Diophantine equation σw(1) + τu(1) = c1 for σ, τ ∈ Z7. We get σ1 = x and
τ1 = 2x+ 3. From here, we can update the values of u and w to get

18

u = 48x2 + 10x− 2 and w = 48x2 + 17x+ 23.

We can then repeat these steps to solve for u and w. The sequence of values computed for e, ck, σk, τk, u,
and w in Step 19 are as follows.

k ek ck σk τk u w

1 −1344x3 + 2247x2 + 6916 −192x3 + 321x2 + 988 x 2x+ 3 48x2 + 10x− 2 48x2 + 17x+ 23
2 −2352x3 + 1078x2 − 196x+ 6958 −48x3 + 22x2 − 4x+ 142 −2x+ 2 x+ 1 48x2 − 88x+ 96 48x2 + 66x+ 72
3 0 - - - - -

Table 1.3: Value of variables after Step 19

Finally, in Steps 13-17, we calculate δ = content(u), and find the factorization of A:

δ = content(48x2 − 88x+ 96) = 8,
u(x) = 48x2−88x+96

8 = 6x2 − 11x+ 12,
w(x) = 48x2+66x+72

48/8 = 8x2 + 11x+ 12.

We have found the factorization of A, namely

A(x) = 48x4 − 22x3 + 47x2 + 144 = (6x2 − 11x+ 12)(8x2 + 11x+ 12).

4

1.1.4 The cost of Hensel Lifting mod pm

The cost of Algorithm 1 is dominated by the cost of the kth step of Hensel Lifting where we
compute the error ek in Step 12 as

ek = A− u(k)w(k).

Suppose deg(A, x) = d and deg(u, x) = deg(w, x) = d/2 which maximizes the cost of this step.
Here u(k) and w(k) have degree d/2 with coefficients in the range (−pk

2 ,
pk

2). Multiplying u(k)×w(k)

costs O(d2
2
k2) if we use classical multiplication in Z and Z[x]. Therefore, the cost of lifting u(1) and

w(1) to pm is

m∑
k=1

O(d2k2) = O

d2
m∑
k=1

k2

 = O

(
d2m(m+ 1)(2m+ 1)

6

)
= O(d2m3).

Algorithm 1 performs O(d2m3) multiplications in Zp. It should be mentioned that Miola and
Yun [15] reduced the complexity of Linear Hensel Lifting in Z[x] to O(d2m2) by avoiding the
re-computation of ek−1 at each lifting step. They calculated ek/pk using

19

ek
pk

= A− u(k)w(k)

pk

= A− (u(k−1) + uk−1p
k−1)(w(k−1) + wk−1p

k−1)
pk

= A− (u(k−1)w(k−1) + wk−1u
(k−1)pk−1 + uk−1w

(k−1)pk−1 + uk−1wk−1p
2(k−1))

pk

= ek−1 − wk−1u
(k−1) − uk−1w

(k−1) + uk−1wk−1p
k−1

p

to reduce the number of multiplications done when calculating ek. Miola and Yun’s method does
not generalize to n > 2 factors. As Bernardin uses a different method to compute ck in each lifting
step, Miola and Yun’s optimization will not be used.

1.1.5 Quadratic Hensel Lifting in Z[x]

Zassenhaus [25] in 1969 was the first to propose the application of Hensel’s Lemma to the
problem of polynomial factorization over the integers and he proposed the use of a quadratic p-adic
Newton iteration. This quadratic iteration is usually referred to as the Zassenhaus construction and
it computes a sequence of factors modulo p2k , for k = 1, 2, 3, However, the additional cost of a
quadratic iteration, in comparison with the linear algorithm previously described, may outweigh the
advantage of fewer iteration steps. For example, in each iteration step of the quadratic Zassenhaus
construction one must solve a polynomial Diophantine equation of the form

σ(x)u(k)(x) + τ(x)w(k)(x) ≡ c(x) (mod p2k−1) (1.21)

for σ, τ ∈ Z
p2k−1 [x]. The corresponding computation in the linear Hensel construction is to solve the

same polynomial Diophantine equation modulo p for σ, τ ∈ Zp[x]. The latter computation is simpler
because it is performed in the smaller domain Zp[x], and another level of efficiency arises because
u(k) and w(k) in (1.21) can be replaced by the fixed polynomial u(1) and w(1) in the linear Hensel
case. A detailed comparison of these two p-adic constructions was carried out of Miola and Yun
[15] in 1974 and their analysis showed that the computational cost of the quadratic Zassenhaus
construction is higher than that of the linear Hensel construction for achieving the same p-adic
order of approximation.

1.2 Hensel Lifting in Fp[x, y]

In the previous section, we presented the Linear Hensel Lifting algorithm for polynomials in
Z[x] for two factors. We had to lift two polynomials from Zp to Z. We now have to lift n univariate
polynomials in Fp[x] to bivariate polynomials in Fp[x, y]. We present an algorithm that is capable
of performing Linear Hensel Lifting on polynomials in Fp[x, y] for n ≥ 2 factors and some prime p.
This can be done by modifying the univariate Hensel Lift algorithm for two factors from Section

20

1.1, Algorithm 1, to work for bivariate polynomials over some finite field Fp. In this section, we will
describe all the changes between Algorithm 1 and the bivariate Hensel Lifting algorithm in Fp[x, y]
for n ≥ 2 factors.

Let A(x, y) ∈ Fp[x, y] with dx = deg(A, x) > 0 and dy = deg(A, y) > 0. We will assume A(x, y)
is monic in x. Unlike the previous section, we will assume that we are factoring A into n ≥ 2 fac-
tors f1, f2, ..., fn ∈ Fp[x, y] such that A = f1×f2×...×fn. The non-monic case will not be discussed.

The first change we will discuss is how we represent each of the n factors. Previously, we
represented the factors as a p-adic representation around some prime p. We wrote the factor u as

u =
`−1∑
i=0

uip
i

where ui ∈ Zp[x] for 0 ≤ i < `. For Fp[x, y], we represent the factors as a power series around
(y − α) for some α ∈ Fp. In other words, we will define each factor fi as

fi =
m−1∑
j=0

fi,j(y − α)j

where fi,j ∈ Fp[x] for 0 ≤ j < m. Whereas for the univariate Hensel Lifting algorithm we lifted a
polynomial from Zp[x] to Z[x], we are now attempting to lift a univariate polynomial in Fp[x] to a
bivariate polynomial in Fp[x, y].

Suppose that A(x, y) is square-free in Fp[x, y] and we are given the factorization of A(x, α) =∏n
i=1 fi,0 where f1,0, f2,0, ..., fn,0 ∈ Fp[x] are pairwise relatively prime. We pick α such that A(x, α)

is square-free. Now

A(x, α) is square-free ⇐⇒ gcd
(
A(x, α), ∂A

∂x
(x, α)

)
= 1 by Theorem 8.1 of [7]

⇐⇒ res
(
A(x, α), ∂A

∂x
(x, α), x

)
6= 0 by Proposition 8 in Ch. 3.5 of [4]

⇐⇒ res
(
A(x, y), ∂A

∂x
(x, y), x

)
(y = α) 6= 0 as A is monic in x

where res(f, g, x) is the Sylvester resultant. Now, res
(
A, ∂A∂x (x, y), x

)
is a polynomial in Fp[y] of

finite degree, so there are only finitely many roots.

21

We are aiming to construct monic, bivariate polynomials f (k)
1 , f

(k)
2 , ..., f

(k)
n ∈ Fp[x, y] where

f
(k)
i = f

(k−1)
i + fi,k−1(y − α)(k−1) and f (1)

i = fi,0

such that

(1) ∀i : f (k)
i ≡ fi,0 (mod y − α), and

(2) A ≡
∏
i f

(k)
i (mod (y − α)k).

If k is sufficiently large, the f (k)
i obtained can be used to compute a factorization of A over Fp.

The single most noticeable change when going from 2 to n factors is the Diophantine equation
that we must solve. The method for solving the Diophantine equation introduced in Section 1.1.1
only can only find the lifting coefficients for exactly two factors. We must obtain a new Diophantine
equation that will allow us to solve for the n lifting coefficients of that factor in the bivariate Hensel
Lifting algorithm. Using the condition A−

∏n
i=1 f

(k+1)
i ≡ 0 (mod (y − α)(k+1)), we know

A−
n∏
i=1

f
(k+1)
i ≡ 0 (mod (y − α)(k+1))

=⇒ A−
n∏
i=1

(f (k)
i + fi,k(y − α)k) ≡ 0 (mod (y − α)(k+1))

=⇒ A−
n∏
i=1

f
(k)
i︸ ︷︷ ︸

1

−
n∑
i=1

∏n
j=1 f

(k)
j

f
(k)
i

fi,k(y − α)k︸ ︷︷ ︸
2

+ (. . .)(y − α)2k︸ ︷︷ ︸
3

≡ 0 (mod (y − α)(k+1)).

(1.22)

Now we can consider 1 , 2 , and 3 separately mod (y − α)k+1.

1 We know that A = f1f2...fn. This implies that A−
∏n
i=1 f

(k)
i contains only terms that are

multiples of (y − α)j for j ≥ k. We will define the error ek at iteration k for Hensel Lifting with n
factors as

ek = A−
n∏
i=1

f
(k)
i

which represents the difference between A and the possibly incomplete factorization of
∏n
i=1 f

(k)
i .

As every term in ek is a multiple of at least (y−α)k and we are seeking the terms modulo (y−α)k+1,
if we divide ek by (y − α)k, we get the polynomial

22

ck = ek
(y − α)k

for some ck. The terms we desire can be obtained by taking ck modulo (y − α).

2 Consider the expansion of
∏n

j=1 f
(k)
j

f
(k)
i

fi,k(y−α)k divided by (y−α)k. Using f
(k)
i =

∑k−1
j=0 fi,j(y− α)k

we find

∑n
i=1

∏n

j=1 f
(k)
j

f
(k)
i

fi,k(y − α)k

(y − α)k =
n∑
i=1

∏n
j=1 f

(k)
j

f
(k)
i

fi,k =
n∑
i=1

fi,k

n∏
j=1
j 6=i

f
(k)
j ≡

n∑
i=1

fi,k

n∏
j=1
j 6=i

fj,0 (mod (y − α)).

3 Easiest of all, as the remaining terms are all multiples of at least (y − α)2k, they are con-
gruent to 0 (mod y − α) after dividing by (y − α)k.

Combining our results from 1 , 2 , and 3 , we have

A−
∏n

i=1 f
(k+1)
i

(y−α)k ≡ 0 (mod (y − α))

=⇒
ek −

n∑
i=1

∏n
j=1 f

(k)
j

f
(k)
i

fi,k(y − α)k − (. . .)(y − α)2k

(y−α)k (mod (y − α)k) ≡ 0 (mod (y − α))

=⇒ ek

(y−α)k −
∑n
i=1

∏n

j=1 f
(k)
j

f
(k)
i

fi,k ≡ 0 (mod (y − α))

=⇒ ck −
∑n
i=1

∏n

j=1 fj,0

fi,0
fi,k ≡ 0 (mod (y − α)).

As we have shown ck =
∑n
i=1

∏n

j=1 fj,0

fi,0
fi,k in Fp[x]. We have derived the multi-Diophantine equa-

tion we must solve to obtain the lifting coefficients for n factors. We need to solve the polynomial
Diophantine equation

ck ≡
n∏
i=1

σi

∏n
j=1 fj,0

fi,0
(mod (y − α)) (1.23)

for σ1, ..., σn ∈ Fp[x] such that deg(σi, x) < deg(fi,0, x) for 1 ≤ i ≤ n. There are several ways to
solve (1.23). We will provide an efficient method to solve it later in Section 2.2.2. We show that
our method for solving (1.23) uses O(d2

x) arithmetic operations in Fp where dx = deg(A, x).

23

The remaining changes are trivial. We must now initialize and update n factors instead of two.
The stopping criteria have also changed. In Z[x], we used to have to lift until pk exceeds the upper
bound for the magnitude of the coefficients of the factors, but now we must perform the main loop
of Hensel lifting until

∑n
i=1 deg(f (k)

i , y) ≥ deg(A, y).

We compute the error as ek = A −
∏n
i=1 f

(k)
i and the polynomial ck = ek/(y − α)k. Miola

and Yun in [15] describe a way to improve how the error is calculated and in doing so reduce the
complexity by a factor of dy. We demonstrated their method in Section 1.1.4 and it reduced the
complexity of Algorithm 1 by a factor of m, where m refers to the power of p we lift the factors
u(1) and w(1) to during the analysis of the classical Hensel Lifting algorithm in Section 1.1.4. If we
follow Miola and Yun’s technique, we could calculate ck as

ck = ek
(y − α)k = A−

∏n
i=1 f

(k)
i

(y − α)(k)

=
A−

(
f

(k−1)
1 + f1,k−1(y − α)k−1

)(
f

(k−1)
2 + f2,k−1(y − α)k−1

)
...

(
f

(k−1)
n + fn,k−1(y − α)k−1

)
(y − α)k

=
A−

(∏n
i=1 f

(k−1)
i +

∑n
i=1 fi,k−1

∏n

j=1 f
k−1
j

f
(k−1)
i

(y − α)k−1 + ...+
∑n
i=1 fi,k−1(y − α)n(k−1)

)
(y − α)k

=

ek−1
(y−α)k−1 +

∑n
i=1 fi,k−1

∏n

j=1 f
(k−1)
j

f
(k−1)
i

+ ...+
∑n
i=1 fi,k−1(y − α)(n−1)(k−1)

(y − α)

to avoid recomputing ek−1. However, when n > 2, we are forced to multiply bivariate polynomials,
which increases the overall number of arithmetic operations. Therefore, we will not use Miola and
Yun’s improvement technique. Instead we calculate the error ek using the same method we used in
Algorithm 1 of Section 1.1.

We present the bivariate Hensel Lifting algorithm as Algorithm 2 below. The order terms on
the right count arithmetic operations in Fp.

By far, the most expensive step in Algorithm 2 is the computation of the error in Step 6. First,
we consider calculating the product

∏n
i=1 f

(k)
i . Since deg(f (k)

i , x) < dx and deg(f (k)
i , y) = k−1 < dy,

this implies that calculating the product results in O(k2 nd2
x) arithmetic operation in Fp. The overall

cost for the products is
∑dy

k=1O(k2 nd2
x) = O(nd2

x d
3
y).

24

Algorithm 2: Classical Linear Bivariate Hensel Lifting for Fp[x, y]: Monic Case.
1 Input: prime p, α ∈ Fp, A ∈ Fp[x, y] and f1,0, f2,0, ..., fn,0 ∈ Fp[x] satisfying

(i)A, f1,0, f2,0, ..., fn,0 are monic in x, (ii)A(x, y = α) = f1,0f2,0...fn,0 and
(iii)gcd(fi,0, fj,0) = 1 for i 6= j.

2 Output: f1, f2, ..., fn ∈ Fp[x, y] such that A = f1 f2 ... fn or FAIL.

3 dx ← deg(A, x); dy ← deg(A, y);
4 for i = 1 to n do fi ← fi,0; dfi ← 0; end do
5 for k = 1 to dy while

∑n
i=1 dfi ≤ dy do

6 ek ← A−
∏n
i=1 fi; . O(k2 nd2

x)
7 ck ← ek/(y − α)k; .O(k dx dy)
8 ck ← ck (mod (y − α)); .O(dxdy)
9 if ck 6= 0 then

10 Solve
∑n
i=1 σi

f1,0f2,0...fn,0
fi,0

= ck in Fp[x] for σ1, σ2, ..., σn ∈ Fp[x];O(d2
x)

11 for i = 1 to n do
12 fi,k ← σi;
13 fi ← fi + fi,k(y − α)k; . O(kdx)
14 dfi ← deg (fi, y);
15 end
16 end
17 end
18 if error = 0 then return f1, f2, ..., fn else return FAIL end if

25

1.3 Bernardin’s algorithm

Suppose we are given the initial factorization of A(x, α) = f1,0(x)f2,0(x)...fn,0(x) for some α ∈ Fp
such that gcd(fi,0, fj,0) = 1 in Fp[x] for i 6= j. We are looking for a factorization of A = f1 × f2 ×
· · · × fn with fi,0 = fi(x, α) for 1 ≤ i ≤ n. As we described in the previous section, we can define
the k’th order approximation of each factor to be

f
(k)
i =

k−1∑
j=0

fi,j(x)(y − α)j for 1 ≤ i ≤ n

with fi,j ∈ Fp[x] for 0 ≤ j ≤ k − 1 such that A−
∏n
i=1 f

(k)
i ≡ 0 mod (y − α)k.

In 1998, Laurent Bernardin [2] published a paper describing an asymptotic improvement to the
bivariate Hensel Lifting algorithm described in Section 1.2. He created an algorithm which improved
upon the bottleneck of Algorithm 2, namely Step 6

ek ← A−
n∏
i=1

fi. (1.24)

which is equivalent to calculating

ek = A−
n∏
i=1

f
(k)
i .

The reason (1.24) is so costly is that it fully computes the product of the factors,
∏n
i=1 f

(k)
i ,

during every iteration of Algorithm 2. This is inefficient as many multiplications are repeated. As
a reminder to the reader, during every iteration of Hensel Lifting, the algorithm finds a polynomial
ck ∈ Fp[x] such that

ck =
n∑
i=1

σi

∏n
j=1 fj,0

fi,0
. (1.25)

We derived this formula in Section 1.2. The algorithm then solves the Diophantine equation
(1.25) to find σi for 1 ≤ i ≤ n. Next, having found the lifting coefficients, the algorithm performs
the lifting operation on the f (k)

i factors.

Bernardin found a way to calculate ck that does not involve calculating the error ek. Let
A ∈ Fp[x, y] with dx = deg(A, x) > 0 and dy = deg(A, y) > 0. We assume A(x, y) is monic in
x. The non-monic case will not be discussed. Bernardin’s method calculates ck using O(nd2

x d
2
y)

arithmetic operations in Fp as opposed to the O(nd2
x d

3
y) arithmetic operations of Algorithm 2. We

explain Bernardin’s idea.

26

First, recall we are attempting to find factors of A such that A =
∏n
i=1 f

(k)
i for some k ≥ 1,

where each fi is a power series around (y−α). Bernardin writes A as a power series around (y−α),
namely,

A =
dy∑
i=0

ai(x)(y − α)i

where a0, a1, ..., ady ∈ Fp[x]. We will cover the method we use to compute this power series of A in
Section 2.4. In the previous algorithm, we derived the formula for ck from the formula

ck ≡
A−

∏n
i=1 f

(k)
i

(y − α)k (mod (y − α)).

This implies that ck = coeff(A −
∏n
i=1 f

(k)
i , (y − α)k). As we have shown, ak = coeff(A, (y − α)k).

So, we will let the remaining terms be defined as ∆ = coeff(
∏n
i=1 f

(k)
i , (y − α)k). This means that

we can define ck as ck = ak −∆ ∈ Fp[x]. We now need a way to find ∆ efficiently.

We will begin by describing the concept of convolution which is an alternative way to multiply
two polynomials that calculates each coefficient of the product exclusively. Suppose we have polyno-
mials a =

∑d1
i=0 aix

i, b =
∑d2
i=0 bix

i, and wish to calculate c = ab =
∑d1+d2
j=0 cjx

j . Using convolution,
we calculate the coefficients cj as

cj =
min(j,d2)∑

i=max(0,j−d1)
aj−ibi for 0 ≤ j ≤ d1 + d2. (1.26)

Example 1.14. We will use convolution to calculate the coefficient of x3 for the product of c = a×b
where a = 4x2 + 3x+ 5 and b = 6x3 + 2x2 + 8.

Using (1.26), we calculate the sum

coeff(c, x3) =
min(j,d2)∑

i=max(0,j−d1)
aj−ibi =

3∑
i=1

aj−ibi = a2b1 + a1b2 + a0b3 = 4 · 0 + 3 · 2 + 5 · 6 = 36.

4

It is obvious that we can easily extend this idea to work for bivariate polynomials in Fp[x, y]. We
can perform convolution using univariate multiplication in Fp[x] in terms of the variable y.

Example 1.15. We will use convolution to calculate the coefficient of y2 for the product of c = a×b
where a = (3x+ 5)y2 + (4x− 2)y + 5x and b = (x− 3)y2 + (−4x+ 1)y + (3x+ 2).

27

Using (1.26), we calculate the sum

coeff(c, y2) =
min(j,d2)∑

i=max(0,j−d1)
aj−ibi =

2∑
i=0

aj−ibi = a2b0 + a1b1 + a0b2

= (3x+ 5)× (3x+ 2) + (4x− 2)× (−4x+ 1) + (5x)× (x− 3) = −2x2 + 18x+ 8.

4

Bernardin uses this method of polynomial multiplication to compute ∆ for n ≥ 2 factors using
as few multiplications as possible. As a forewarning to the reader, the method for calculating ∆
is the most difficult part of this thesis. We were only able to understand it by working through
multiple examples.

The most straightforward method of calculating ∆ is to calculate the product of f (k)
1 ×· · ·×f

(k)
n

and take the coefficient for the (y − α)k term, or symbolically

∆ = coeff

 n∏
i=1

f
(k)
i , (y − α)k

 .
However, this is equivalent to calculating the error in the previous section. Suppose we use

convolution to calculate ∆ between the factor f (k)
n and the product of f (k)

1 ...f
(k)
n−1. Then

∆ =
k∑
j=0

fn,j × coeff

n−1∏
i=1

f
(k)
i , (y − α)k−j


 .

This is a valid way to calculate ∆, however, we would have to calculate coeff(
∏n−1
i=1 f

(k)
i , (y−α)m)

for 0 ≤ m ≤ k. So ,at this point there is still no asymptotic improvement over Algorithm
2. However, as we are in the kth iteration of the main Hensel lifting loop, we have calculated
coeff(

∏n−1
i=1 f

(k)
i , (y−α)m) for 0 ≤ m ≤ k− 1 in previous iterations. So, if we store those polynomi-

als in some matrix, G, then we only need to calculate the coefficient for m = k, and we can extract
the rest from G to save on additions and multiplications.

Next, we must calculate coeff(
∏n−1
i=1 f

(k)
i , (y−α)k) for some k. Using convolution, between f (k)

n−1
and f (k)

1 ...f
(k)
n−2, we get

coeff

n−1∏
i=1

f
(k)
i , (y − α)k

 =
k∑
j=0

fn−1,j × coeff

n−2∏
i=1

f
(k)
i , (y − α)k−j


 .

28

Similarly, we need to calculate coeff(
∏n−2
i=1 f

(k)
i , (y − α)m) for 0 ≤ m ≤ k, but since we have stored

the values for 0 ≤ m ≤ k− 1, we only need to calculate coeff(
∏n−2
i=1 f

(k)
i , (y− α)k). So, in every kth

iteration of the main Hensel Lifting loop, we must calculate the sequence of

coeff

 r∏
i=1

f
(k)
i , (y − α)k

 (1.27)

for r from 2 to n, where ∆ is equal to (1.27) when r = n.

We will now define the matrix G which will store the intermediate sub-products as we calcu-
late ∆. Let G be the n × (dy + 1) matrix of polynomials in Fp[x] whose (i, k) entry of G contains
the polynomial

Gi,k = coeff

 i∏
j=1

f
(k+1)
j , (y − α)k

 .
Notice that the polynomial stored in Gi,k represents the coefficient for the (k+ 1)st approximation
of the factors, not the kth approximation. This will be relevant later in this section.

We will refer to the algorithm that calculates ∆ as CoefficientExtraction. CoefficientExtraction
uses convolution and univariate multiplication in Fp[x] to calculate ∆ = coeff(

∏n
j=1 f

(k)
j , (y − α)k)

in the kth iteration of the Hensel Lifting algorithm. The algorithm calculates ∆ by calculating
(1.27) for r from 2 to n while using polynomials stored in G to minimize the number of univariate
polynomial multiplications. We present Bernardin’s CoefficientExtraction algorithm as Algorithm 3.

We will cover the algebraic complexity of Algorithm 3 after stating Bernardin’s Hensel Lifting
algorithm. We now encounter a new problem. When we calculate ∆, we only have the kth approx-
imation of the factors and not the (k + 1)st approximation. This means there are several terms,
corresponding to the n terms on the right hand side of (1.25), that are absent when we performed
the convolutions stored in G. We need to add these terms to G in order to calculate ∆ in future
iterations of the main Hensel Lifting loop. We could use the CoefficientExtraction algorithm again
after lifting the factors to their (k + 1)st approximation. Algorithm 3 would calculate the correct
polynomials and store them in G for the kth iteration without increasing the algebraic complexity,
but we can be more efficient. We introduce the CoefficientUpdate algorithm, which updates the
polynomials in G using the minimal number of arithmetic operations to include the missing terms.
We present Bernardin’s CoefficientUpdate algorithm as Algorithm 4.

Example 1.16. We will demonstrate one iteration of the CoefficientExtraction and Coefficien-
tUpdate algorithms to calculate ∆ for the k = 3 iteration of our algorithm and store the neces-

29

Algorithm 3: Bernardin’s Coefficient Extraction Algorithm
1 Input: prime p, α ∈ Fp, k ∈ Z+, f1, f2, ..., fn ∈ Fp[x, y], G an n× (dy + 1) matrix of

elements in Fp[x].
2 Output: ∆ =coeff(

∏n
i=1 fi, (y−α)k) ∈ Fp[x], G an n× (dy + 1) matrix of elements in Fp[x].

3 if n = 2 then
4 MIN← max(0, k − deg(f2, y));
5 MAX← min(k, deg(f1, y));
6 ∆←

∑MAX
j=MIN coeff(f1, (y − α)j)· coeff(f2, (y − α)k−j); . O(kd2

x)
7 else
8 d← deg(f1, y);
9 G1,k ←coeff(f1, (y − α)k);

10 for i from 2 to n do
11 δ ← d;
12 d← d+ deg(fi, y);
13 if k ≤ d then
14 MIN← max(0,k − δ);
15 MAX← min(k,deg(fi, y));
16 Gi,k ←

∑MAX
j=MIN Gi−1 ,k−j×coeff(fi, (y − α)j); . O(kd2

x)
17 end
18 end
19 ∆← Gn,k;
20 end
21 return ∆, G;

Algorithm 4: Bernardin’s Coefficient Update Algorithm
1 Input: prime p, α ∈ Fp, k ∈ Z+, f1, f2, ..., fn ∈ Fp[y], G an n× dy + 1 matrix of elements

in Fp.
2 Output: G an n× dy matrix of elements in Fp.

3 if n > 2 then
4 t← coeff(f1, (y − α)k);
5 G1,k ← t;
6 for i from 2 to n do
7 // t = fi,0

∑i−1
j=1 fj,k

∏i−1
j=m=1
m 6=j

fm,0 + fi,k
∏i−1
j=1 fj,0

8 t← coeff(fi, (y − α)0)× t + coeff(fi, (y − α)k)×Gi−1,0; .O(d2
x)

9 Gi,k ← Gi,k + t; .O(d2
x)

10 end
11 end
12 return G;

30

sary coefficients in the matrix H. Let p = 11, α = 3, n = 3, and the field be Fp. We will find
coeff(f1 × f2 × f3, (y − 3)3) where

f
(3)
1 = x2 + (5x− 1)(y − 3)2 + (−2x− 5)(y − 3) + (−x− 2),

f
(3)
2 = x2 + (−2x− 2)(y − 3)2 + (−4x+ 3)(y − 3) + (−4x+ 3), and

f
(3)
3 = x2 + (−3x+ 4)(y − 3)2 + (4x+ 5)(y − 3) + (5x+ 4).

The n× (dy + 1) matrix G was input as a 3× 10 matrix, where the first 4 rows can be seen in Table
1.4. Note the table is currently transposed to fit on the page more comfortably.

HH
HHHHdy

n 1 2 3

0 x2 − x− 2 x4 − 5x3 + 5x2 + 5x+ 5 x6 − 5x3 − x3 − 5x2 + x− 2
1 −2x− 5 5x3 − x2 − 3x+ 1 −2x5 − 2x4 − 4x3 + 5x2 + 5x− 4
2 5x− 1 3x3 − 2x2 − 5x− 3 −3x4 + 5x3 − 4x2 + 3x+ 2
3 - - -

Table 1.4: The first 4 rows of matrix G which contains the intermediate products of calculating
f1 × f2 × f3

Following Algorithm 3, we calculate the entries of the 3rd row of G, namely G1,3, G2,3, and G3,3.
First, we define G1,3 =coeff(f1, (y − α)3) = 0. Next, we calculate G2,3 and G3,3 as

G2,3 =
2∑
j=1

G1,3−j × coeff(f2, (y − 3)j)

= G1,2 × coeff(f2, (y − 3)1) +G1,1 × coeff(f2, (y − 3)2)

= coeff(f1, (y − 3)2)× coeff(f2, (y − 3)1)

= (5x− 1)× (−4x+ 3) + (−2x− 5)× (−2x− 2)

= −5x2 − 4

31

G3,3 =
2∑
j=0

G2,3−j · coeff(f3, (y − 3)j)

= G2,3 · coeff(f3, (y − 3)0) +G2,2 · coeff(f3, (y − 3)1) +G2,1 · coeff(f3, (y − 3)2)

= coeff(f1 × f2, (y − 3)3)× coeff(f3, (y − 3)0) + coeff(f1 × f2, (y − 3)2)× coeff(f3, (y − 3)1)

+ coeff(f1 × f2, (y − 3)1)× coeff(f3, (y − 3)2)

= (−5x2 − 4)(x2 + 5x+ 4) + (3x3 − 2x2 − 5x− 3)(4x+ 5) + (5x3 − x2 − 3x+ 1)(−3x+ 4)

= 3x4 + 5x3 − 5x2 + 5x− 5

So, we have updated the 3rd row of G as

3 0 −5x2 − 4 3x4 + 5x3 − 5x2 + 5x− 5

At this point of Bernardin’s algorithm, we would solve the Diophantine equation, then lift the
factors f1, f2 and f3. In this example, we lift them to

f
(4)
1 = x2 + (−4x+ 1)(y − 3)3 + (5x− 1)(y − 3)2 + (−2x− 5)(y − 3) + (−x− 2),

f
(4)
2 = x2 + (3x− 3)(y − 3)3 + (−2x− 2)(y − 3)2 + (−4x+ 3)(y − 3) + (−4x+ 3), and

f
(4)
3 = x2 + (−2x− 5)(y − 3)3 + (−3x+ 4)(y − 3)2 + (4x+ 5)(y − 3) + (5x+ 4).

So, now we need to add the values of f1,3f2,0f2,0 + f1,0f2,3f2,0 + f1,0f2,0f2,3 to G. We do this by
applying the CoefficientUpdate algorithm. By executing Algorithm 4, we get

t = coeff(f1, (y − 3)3) = −4x+ 1

G3,1 = t = −4x+ 1

t = coeff(f2, (y − 3)0) · t+ coeff(f2, (y − 3)3) ·G1,0

= (x2 − 4x+ 3)(−4x+ 1) + (3x− 3)(x2 − x− 2) = −x3 + 3x− 2

G3,2 = G3,2 + t = (−5x2 − 4) + (−x3 + 3x− 2) = −x3 − 5x2 + 3x+ 5

t = coeff(f3, (y − 3)0) · t+ coeff(f3, (y − 3)3) ·G2,0 = −3x5 + 3x3

G3,3 = G3,3 + t = (3x4 +5x3−5x2 +5x−5)+(−3x5 +3x3) = −3x5 +3x4−3x3−5x2 +5x−5

This leads to the updated G:

32

HHH
HHHHdy

n
1 2 3

0 x2 − x− 2 x4 − 5x3 + 5x2 + 5x+ 5 x6 − 5x3 − x3 − 5x2 + x− 2
1 −2x− 5 5x3 − x2 − 3x+ 1 −2x5 − 2x4 − 4x3 + 5x2 + 5x− 4
2 5x− 1 3x3 − 2x2 − 5x− 3 −3x4 + 5x3 − 4x2 + 3x+ 2
3 −4x+ 1 −x3 − 5x2 + 3x+ 5 −3x5 + 3x4 − 3x3 − 5x2 + 5x− 5

Table 1.5: The first 4 rows of matrix G which contains the sub-products of calculating f1× f2× f3
after using CoefficientUpdate

Note the polynomial in G3,3 in Table 1.4 is equivalent to coeff(f (3)
1 × f (3)

2 × f (3)
3 , (y− 3)3), while

the polynomial G3,3 in Table 1.5 is equivalent to coeff(f (4)
1 ×f

(4)
2 ×f

(4)
3 , (y−3)3). To give an idea of

what G looks like at the end of the algorithm, we present the complete matrix G in the k = 9th and
final iteration of the Hensel Lifting algorithm as Table 1.6. The entries denoted by “. . . ” represent
non-zero polynomials.

HH
HHH

HHdy

n
1 2 3

0 x2 − x− 2 x4 − 5x3 + 5x2 + 5x+ 5 x6 − 5x3 − x3 − 5x2 + x− 2
1 −2x− 5 5x3 − x2 − 3x+ 1 −2x5 − 2x4 − 4x3 + 5x2 + 5x− 4
2 5x− 1 3x3 − 2x2 − 5x− 3 −3x4 + 5x3 − 4x2 + 3x+ 2
3 −4x+ 1 −x3 − 5x2 + 3x+ 5 −3x5 + 3x4 − 3x3 − 5x2 + 5x− 5
4 0

5 0

6 0

7 0 0 . . .

8 0 0 . . .

9 0 0 . . .

Table 1.6: The 10 rows of matrix G which contains the sub-products of calculating f1 × f2 × f3

4

The differences between Bernardin’s algorithm and the classical bivariate Hensel Lifting iter-
ation come down to how ck is calculated. The classical version calculates ck by subtracting the
product of f (k)

1 f
(k)
2 ...f

(k)
n from A(x, y) and dividing by (y − α)k, while Bernardin chose to trans-

form A into a power series around (y−α), then subtract the necessary terms, ∆, from the coefficients
of A. We state Bernardin’s algorithm as Algorithm 5. The order terms on the right count arithmetic
operations in Fp.

33

Algorithm 5: Bernardin’s Bivariate Hensel Lift Algorithm
1 Input: prime p, α ∈ Fp, A ∈ Fp[x, y] and f1,0, f2,0, ..., fn,0 ∈ Fp[x] satisfying

(i)A, f1,0, f2,0, ..., fn,0 are monic in x, (ii)A(y = α) = f1,0f2,0...fn,0 and
(iii)gcd(fi,0, fj,0) = 1 for i 6= j.

2 Output: f1, f2, ..., fn ∈ Fp[x, y] such that A = f1 f2 ... fn or FAIL.
3 dx ← deg(A, x); dy ← deg(A, y);
4 for i = 1 to n do f (1)

i ← fi,0; dfi ← 0; end
5 Compute a0, a1, ..., ady ∈ Fp[x] s.t. A =

∑dy

k=0 ak(y − α)k; . O(dx d2
y)

6 Gn,0 ←coeff(fn, (y − α)0);
7 for i = n− 1 by −1 to 1 do
8 Gi ,0 ← Gi+1 ,0·coeff(fi, (y − α)0); .O(d2

x)
9 end

10 for k = 1 to dy while
∑n
i=1 dfi < dy do

11 ∆← CoefficientExtraction(p, α, k, f1, f2, ..., fn, G)∈ Fp[x]; O(k n d2
x)

12 ck ← ak −∆;
13 if

∑n
i=1 dfi = deg(A, y) and ck 6= 0 then Return FAIL; end

14 if ck 6= 0 then
15 Solve

∑n
i=1 σi

f1,0f2,0...fn,0
fi,0

= ck in Fp[x] for σ1, σ2, ..., σn ∈ Fp[x]; O(nd2
x)

16 for i=1..n do
17 fi,k ← σi;
18 fi ← fi + fi,k(y − α)k; .O(k dx)
19 dfi ← deg (fi, y);
20 end
21 CoefficentUpdate(f1, f2, ..., fn, (y − α)k, G); . O(nd2

x)
22 end
23 end
24 if

∑n
i=1 dfi = dy then Return f1, f2, ..., fn else return FAIL; end

1.3.1 Cost of Bernardin’s algorithm

We will consider the algebraic complexity of the CoefficientExtraction and CoefficientUpdate
algorithms, Algorithms 3 and 4, before computing the cost of Bernardin’s algorithm. Note, for
the sake of historical context, we will perform the analysis suboptimally, that is, we can reduce
the arithmetic operations of most of the sub-algorithms in Bernardin’s algorithm, but the optimal
analysis was not done in [2]. Therefore, we will not do optimal calculations here. We will perform
optimal calculations during the analysis of our new algorithm in Section 3.2.

Consider the cost of performing the CoefficientExtraction algorithm. Suppose dx = deg(A, x), dy =
deg(A, y), and deg(fi, x) < dx for 1 ≤ i ≤ n. The cost of the algorithm is clearly dominated by
the number of multiplications done in Step 6 of CoefficientExtraction if n = 2 or Step 16 if n > 2.
If n = 2, then at most k + 1 univariate multiplications are performed. As the degree of each

34

polynomial is bounded above by dx, the algebraic complexity of Step 6 in Algorithm 3 is at most
(k+ 1)O(d2

x) = O(kd2
x). Similarly, if n > 2, at most k+ 1 univariate multiplications are performed.

As the degree of each polynomial is bounded above by dx, and each of the k + 1 multiplications is
done n− 1 times, the algebraic cost of Step 17 is (k + 1)(n− 1)O(d2

x) = O(nk d2
x). Therefore, the

cost of the CoefficientExtraction algorithm is O(nk d2
x).

Consider the cost of performing the CoefficientUpdate algorithm. The cost of the algorithm
is defined by two univariate multiplications in Step 8 of Algorithm 4. As both polynomials have
a degree of at most dx, this step performs O(d2

x) multiplications and O(dx) additions. The mul-
tiplications are done n−1 times, so the cost of the CoefficientUpdate algorithm is nO(d2

x) = O(nd2
x).

The cost of Bernardin’s algorithm, Algorithm 5, is dominated by the cost of performing Coef-
ficientExtraction in Step 11. As Algorithm 5 must calculate ∆ for each of the dy coefficients of A
to ensure we have found the factorization of A. Therefore, the main loop is executed dy times and
the algebraic complexity of Bernardin’s algorithm is

∑dy

k=1O(nk d2
x) = O(nd2

x d
2
y).

In theory, the CoefficientExtraction and CoefficientUpdate algorithms calculate the product of
f1f2...fn exactly once. As we are unaware if a proof of this concept exists, we leave it as a conjecture.

Conjecture 1.17. In Bernardin’s algorithm, the multiplications computed by the initialization of
G, the CoefficientExtraction algorithm and the CoefficientUpdate algorithm are the same as the
multiplications in Fp[x] needed to calculate the product f1 × f2 × · · · × fn in Fp[x, y]. If A =

∏
fi,

dx = deg(A, x) and dy = deg(A, y) then the cost of these multiplications is bounded by O(d2
x d

2
y)

arithmetic operations in Fp using classical multiplication in Fp[x].

35

Chapter 2

Tools

In this chapter, we will describe several algorithms that we will be using in our proposed algo-
rithm. We will discuss the method and calculate the arithmetic operations done by each algorithm.
The four well-known algorithms we will cover are:

• Horner’s method for evaluating polynomials

• Solving polynomial Diophantine equations

• Polynomial interpolation

• Power series base conversion

2.1 Horner’s method

Horner’s method refers to a polynomial evaluation method named after William George Horner.
This algorithm is much older than Horner; he himself ascribed it to Joseph-Louis Lagrange, but it
can be traced back many hundreds of years to Chinese and Persian mathematicians [1].

Consider a polynomial p(x) ∈ Z[x] given by

p(x) =
d∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ adx
d. (2.1)

To perform polynomial evaluation at x = α, for some α ∈ Z, we could first calculate α2, α3, ..., αd

using d − 1 multiplications. We then perform an additional d scalar multiplications followed by d
additions to sum up the d+1 terms. Performing evaluations this way results in 2d−1 multiplications
and d additions. Consider writing (2.1) as

p(x) = a0 + x(a1 + x(a2 + · · ·+ x(ad)...)). (2.2)

36

If we perform the same polynomial evaluation on (2.2), we require exactly d multiplications and d
additions. Horner’s method performs O(d) arithmetic operations in Z when applied to univariate
polynomials over a coefficient ring.

2.2 Solving polynomial Diophantine equations

It is vital that we have an algorithm which can solve polynomial Diophantine equations quickly.
If we are given f10, f20, ..., fn0, c ∈ Fp[x] for some prime p such that gcd(fi0, fj0) = 1 in Fp[x] for
i 6= j, then we need to be able to solve a Diophantine equation of the form

n∑
i=1

σi

∏n
j=1 fj,0

fi,0
= c (2.3)

for σ1, ..., σn ∈ Fp[x]. Hensel’s Lemma assumes that a solution to (2.3) exists when n = 2, and every
iteration of Hensel Lifting stated in this thesis needs to be able to solve a Diophantine equation for
n ≥ 2 factors. In Chapter 1, when performing Historical Hensel Lifting for two factors, we needed
to solve (2.3) for the n = 2 factor case. For Bernardin’s algorithm and our algorithm, which have
n factors, we need an algorithm which can solve the n ≥ 2 case. We will start by defining the
algorithm for the n = 2 factor case and then extend it to work for n > 2 factors.

2.2.1 The n = 2 factor case

Suppose we are given a prime p and polynomials u0, w0, c ∈ Fp[x] such that gcd(u0, w0) = 1 in
Fp[x] and deg(c, x) < deg(u0, x) + deg(w0, x). We need to solve the Diophantine equation

σw0 + τu0 = c (2.4)

for some unique polynomials σ, τ ∈ Fp[x]. We will remain consistent with the notation used in
Chapter 1 by defining f1,0 = u0 and f2,0 = w0.

This is the Diophantine equation that appears in the two factor case of Hensel Lifting in Sec-
tion 1.1. Before we describe how to find a solution to (2.4), we restate Theorem 1.3 from Section 1.1.1
for a field F , and give a formal proof. The theorem and proof are presented as Theorem 2.6 in [7].

37

Theorem 1.3. Let F [x] be the Euclidean domain of univariate polynomials over a field F . Let
a(x), b(x) ∈ F [x] be given nonzero polynomials and let g(x) = gcd(a, b) ∈ F [x]. Then for any given
polynomial c(x) ∈ F [x] such that g|c there exist unique polynomials σ(x), τ(x) ∈ F [x] such that

σa+ τb = c and (1.2)

deg(σ, x) < deg(b, x)− deg(g, x). (1.3)

Moreover, if deg(c, x) < deg(a, x) + deg(b, x)− deg(g, x) then τ satisfies

deg(τ, x) < deg(a, x)− deg(g, x). (1.4)

Proof. (Existence): The Extended Euclidean Algorithm can be applied to compute polynomials
s(x), t(x) ∈ F [x] satisfying the equation

sa+ tb = g.

Then since g|c, it is easily seen that

(sc/g)a+ (tc/g)b = c. (2.5)

We therefore have a solution of equation (1.2), say σ̂ = sc/g and τ̂ = tc/g. However, the degree
constraint of (1.3) will not in general be satisfied by this solution, so we will proceed to show how
to reduce the degree. Writing (2.5) in the form

σ̂(a/g) + τ̂(b/g) = c/g (2.6)

we apply Euclidean division of σ̂ by (b/g) yielding q, r ∈ F [x] such that

σ̂ = (b/g)q + r (2.7)

where r = 0 or deg(r, x) < deg(b, x)− deg(g, x). Now define σ = r and note that (1.3) is satisfied.
Also define τ = τ̂ + q(a/g). It is easily verified by using (2.6) and (2.7) that

σ(a/g) + τ(b/g) = c/g.

Equation (1.2) follows immediately.

(Uniqueness): Let σ1(x), τ1(x) ∈ F [x] and σ2(x), τ2(x) ∈ F [x] be two pairs of polynomials
satisfying (1.2) and (1.3). The two different solutions of (1.2) can be written in the form

σ1(a/g) + τ1(b/g) = c/g and σ2(a/g) + τ2(b/g) = c/g

38

which yields on subtraction

(σ1 − σ2)(a/g) = −(τ1 − τ2)(b/g). (2.8)

Now, since a/g and b/g are relatively prime it follows from equation (2.8) that

(b/g)|(σ1 − σ2). (2.9)

But, from the degree constraint (1.3) satisfied by σ1 and σ2 it follows that

deg(σ1 − σ2) < deg(b/g, x). (2.10)

Now (2.9) and (2.10) together imply that σ1 − σ2 = 0. It then follows from (2.8) that τ1 − τ2 = 0
since b/g 6= 0. Therefore σ1 = σ2 and τ1 = τ2.

(Final Degree Constraint:) It remains to prove (1.4). From (1.2) we can write

τ = (c− σa)/b

so that

deg(τ, x) = deg(c− σa, x)− deg(b, x). (2.11)

Note, if deg(c, x) ≥ deg(σa) then from (2.11)

deg(τ, x) ≤ deg(c, x)− deg(b, x) < deg(a, x)− deg(g, x)

as long as deg(c, x) < deg(a, x)+deg(b, x)−deg(g, x) as stated. Otherwise, if deg(c, x) < deg(σa, x)
(in which case the stated degree bound for c also holds because of (1.3)) then from (2.11)

deg(τ, x) = deg(σa, x)− deg(b, x)

= deg(σ, x) + deg(a, x)− deg(b, x)

< deg(a, x)− deg(g, x) since deg(σ, x) < deg(b, x)− deg(g, x)

where the last inequality follows from (1.3). Thus (1.4) is proved.

Now that we have proved Theorem 1.3, we know a unique solution to (2.4) exists. We can now
describe the necessary algorithm. Let h = gcd(u0, w0). We are given two polynomials u0, w0 ∈ Fp[x].
We can apply the Extended Euclidean Algorithm (EEA) to solve for the greatest common divisor
of u0 and w0. As a consequence of the algorithm, we find two polynomials s, t ∈ Fp[x] such that

39

sw0 + tu0 = h. (2.12)

We assume that gcd(u0, w0) = 1 in Fp[x] for Hensel Lifting. Now, we need the right hand side of
(2.12) to be equal to c, so we can multiply both sides by c to get

csw0 + ctu0 = c. (2.13)

We now have a solution to (2.4), σ = cs and τ = ct, however, this may not satisfy the condition that
deg(σ, x) < deg(u0, x). To ensure this condition holds, we use the polynomial division cs ÷ u0 to
obtain the quotient q and the remainder r where cs = qu0 + r and r = 0 or deg(r, x) < deg(u0, x).
We can then substitute cs = qu0 + r into (2.13) and rearrange to get

(qu0 + r)w0 + ctu0 = c

⇒ r︸︷︷︸
σ

w0 + (qw0 + ct︸ ︷︷ ︸
τ

)u0 = c. (2.14)

We have now found a solution to the Diophantine equation, namely σ = r and τ = qw0 + ct.
In addition, deg(τ, x) < deg(w0, x) by Theorem 1.3. One last problem arises from this definition
of τ . Calculating τ using τ = qw0 + ct can be very expensive as the degrees of q and t can be large.
Notice that we can rearrange (2.14) to get an alternative way to calculate τ as τ = c−σw0

u0
.

We claim that calculating τ = c−σw0
u0

uses fewer arithmetic operations than calculating τ =
qw0 + ct. Suppose d1 = deg(u0, x), d2 = deg(w0, x), and d3 = deg(c, x) such that d1 ≤ d2. We
will assume d3 < d1 + d2 so that deg(τ, x) < deg(w0, x) by Theorem 1.3. Before we can do proper
analysis, we need to find the degrees of polynomials s, t, cs, q, r, σ, and c− σw0. According to Sec-
tion 3.3 of [6], using the EEA we can find s, t ∈ Fp[x] such that deg(s, x) < deg(u0, x) = d1 and
deg(t, x) < deg(w0, x) = d2. Then deg(cs, x) = deg(c, x) + deg(s, x) < d3 + d1. Using the divi-
sion algorithm, we find quotient q and remainder r such that deg(q, x) = deg(cs, x) − deg(u0) <
d3 + d1 − d1 = d3 and deg(r, x) < deg(u0) = d1. Then, deg(σ, x) = deg(r, x) < d1. Finally, we con-
sider deg(c−σw0, x). As deg(c, x) = d3 < d1+d2 and deg(σw0, x) = deg(σ, x)+deg(w0, x) < d1+d2,
we have deg(c− σw0, x) < d1 + d2. To summarize

• deg(u0, x) = d1 • deg(w0, x) = d2 •deg(c, x) = d3

• deg(s, x) < d1 • deg(t, x) < d2 •deg(cs, x) < d3 + d1

• deg(q, x) < d3 • deg(r, x) < d1 •deg(σ, x) < d1

• deg(c− σw0, x) < d1 + d2

40

Consider the number of multiplications needed to find τ using τ = qw0 + ct and τ = c−σw0
u0

. We
will be using classical polynomial multiplication for calculations. When calculating τ = qw0 +ct, we
perform two multiplications where qw0 requires at most (d3)(d2 + 1) multiplications and where ct
requires at most (d3 +1)(d2) multiplications. On the other hand, when calculating c−σw0

u0
we need to

calculate the multiplication σw0 and the division (c−σw0)÷u0. The multiplication σw0 performs at
most d1(d2+1) multiplications and the division does at most (d1+1)(d1+d2−d1+1) = (d1+1)(d2+1)
multiplications. To summarize,

• qw0 does d3(d2 + 1) < (d1 + d2)(d2 + 1) ∈ O(d2
2) multiplications

• ct does (d3 + 1)(d2) < (d1 + d2 + 1)(d2 + 1) ∈ O(d2
2) multiplications

• σw0 does d1(d2 + 1) ∈ O(d1d2) multiplications

• c− σw0 ÷ u0 does (d1 + 1)(d2 + 1) ∈ O(d1d2) multiplications

Then computing τ = qw0 + ct performs O(d2
2) multiplications and τ = c−σw0

u0
does O(d1d2) mul-

tiplications. Since we are assuming that d1 ≤ d2, it is clear that calculating τ = c−σw0
u0

performs
fewer arithmetic operations than calculating τ = qw0 + ct. The latter is much better if d1 � d2.

We present the algorithm to solve the polynomial Diophantine equation for two factors as Al-
gorithm 6. The number of arithmetic operations done by each step is stated on the right.

Algorithm 6: Polynomial Diophantine equation algorithm: 2 factor case
1 Input: a prime p, u0, w0 ∈ Fp[x] such that gcd(u0, w0) = 1 in Fp[x],c ∈ Fp[x] where

d1 = deg(u0, x), d2 = deg(w0, x), and deg(c, x) < d1 + d2.
2 Output: σ, τ ∈ Fp[x].

3 Solve sw0 + tu0 = 1 for s, t ∈ Fp[x] using the EEA;. .O(d1d2)
4 Compute cs; .O(d1d2)
5 Solve cs = qu0 + r for q, r ∈ Fp[x] using the Division Algorithm; O(d1d2)
6 σ ← r;
7 τ ← c−σw0

u0
; .O(d1d2)

8 return σ, τ

We consider the total arithmetic operations in Fp needed to perform Algorithm 6. Let d1 =
deg(u0, x), d2 = deg(w0, x) and d3 = deg(c, x) such that d1 ≤ d2 and d3 < d1 + d2. The first sub-
routine that is used is the Extended Euclidean Algorithm in Step 3. The EEA has a known cost of
O(nm) where m and n are the degrees of the two input polynomials to the EEA: see Theorem 3.16
of [6]. Therefore, the EEA does O(d1d2) arithmetic operations in Fp. In addition, [6] states that

41

the EEA calculates some s, t ∈ Fp[x] that satisfy sw0 + tu0 such that deg(s, x) < deg(u0, x) = d1

and deg(t, x) < deg(w0, x) = d2 using O(d1d2) arithmetic operations in Fp.

Consider the cost of calculating cs. We know that deg(c, x) = d3 and deg(s, x) < d1. So, using
classical multiplication, calculating cs does (d3+1)(d1) < (d1+d2+1)(d1) ∈ O(d1d2) multiplications.

Next, we consider the number of multiplications done by the division algorithm in Step 5. The
number of multiplications performed by the division algorithm on univariate polynomials in Fp[x] is
(m+ 1)(n−m+ 1) where n is the degree of the dividend and m is the degree of the divisor. See [6].
The dividend, cs, has deg(cs, x) < d3 + d1 and the divisor, u0, has deg(u0, x) = d1. Therefore, in
the worst case, the number of multiplications done is (d1 + 1)(d3 +d1−d1 + 1) = (d1 + 1)(d3 + 1) <
(d1 + 1)(d1 + d2 + 1). As d1 ≤ d2, performing polynomial division in Step 5 uses O(d1d2) multipli-
cations.

Finally, we consider the calculation of τ . We have already shown above that computing τ using
c−σw0
u0

does O(d1d2) multiplications in Fp.

We can find the total cost of Algorithm 6 by adding up the costs of the individual steps. As each
step has a algebraic complexity of O(d1d2), the algebraic complexity of Algorithm 6 is O(d1d2).

2.2.2 The n > 2 factor case

We will now cover the case of solving a polynomial Diophantine equation for n > 2 factors which
is needed to perform Hensel Lifting for n > 2 factors.

Suppose we are given a prime p, and polynomials f1,0, f2,0, ..., fn,0 ∈ Fp[x] such that gcd(fi,0, fj,0) =
1 in Fp[x] for all i 6= j. Let U(x) =

∏n
j=1 fj,0 and Ui(x) = U(x)

fi,0
for 1 ≤ i ≤ n. Given some polynomial

c(x) ∈ Fp[x], we need to solve the equation

σ1U1 + σ2U2 + σ3U3 + ...+ σnUn = c (2.15)

for σ1, σ2, ..., σn ∈ Fp[x] where deg(σi, x) < deg(fi,0, x) for 1 ≤ i ≤ n.

To solve (2.15), we will take advantage of the method used to solve Diophantine equations
for the two factor case in the previous section. That method can solve an equation of the form
σa + τb = c for unique σ, τ ∈ Fp[x] given gcd(a, b) = 1 and deg(c, x) < deg(a, x) + deg(b, x). If we
factor polynomial f1,0 from the rightmost n− 1 elements of (2.15), we get

42

σ1U1 + f1,0

(
σ2

U2
f1,0

+ σ3
U3
f1,0

+ ...σn
Un
f1,0

)
︸ ︷︷ ︸

τ1

= c. (2.16)

To solve (2.16), since gcd(U1, f1,0) = 1, we solve σ1U1 + τ1f1,0 = c using the two factor method. We
obtain σ1 and τ1 with deg(σ1, x) < deg(f1,0, x) as required.

Next, we notice from (2.16) that

σ2
U2
f1,0

+ σ3
U3
f1,0

+ · · ·+ σn
Un
f1,0

= τ1. (2.17)

This is a polynomial Diophantine equation in one less term where τ1 is known. If we factor
polynomial f2,0 from the rightmost n− 2 elements, we get

σ2
U2
f1,0

+ f2,0

(
σ3

U3
f1,0f2,0

+ · · ·+ σn
Un

f1,0f2,0

)
︸ ︷︷ ︸

τ2

= τ1. (2.18)

Now we solve σ2
U2
f1,0

+ f2,0τ2 = τ1 for σ2 and τ2 using the two factor method. Iterating this
process, we can solve for all polynomials σ1, σ2, ..., σn. We present the algorithm which can solve a
Diophantine equation for n factors as Algorithm 7.

Algorithm 7: Multi-Diophantine Polynomial equation Algorithm
1 Input: prime p, f1,0, f2,0, ..., fn,0 ∈ Fp[x] satisfying gcd(fi,0, fj,0) = 1 in Fp[x] for i 6= j,

c ∈ Fp[x].
2 Output: σ1, σ2, ..., σn ∈ Fp[x].

3 Mn ← 1;
4 for i = n− 1 by −1 to 1 do Mi ←Mi+1 × fi+1,0 end; . O(d2

x)
5 c1 ← c;
6 //Solve σiMi + τifi,0 = ci

7 for i = 1 to n− 1 do
8 Solve siMi + tifi,0 = 1 for si, ti ∈ Fp[x] using the EEA; . O(d2

x)
9 σi ← (ci · si) rem fi,0; . O(d2

x)
10 τi ← (ci − σiMi) quo fi,0; .O(d2

x)
11 ci+1 ← τi;
12 end
13 σn ← cn;
14 return σ1, σ2, ..., σn;

43

Now that we have defined the algorithm for solving a univariate, polynomial Diophantine equa-
tion for n factors, we must calculate the number of arithmetic operations it uses. Bernardin found
the cost of Algorithm 7 to be O(nd2

x), because every step in the loop has a cost of at most O(d2
x)

and the loop is performed n− 1 times. In [2], Bernardin states that solving the Diophantine equa-
tion (2.15) “has a cost of O(m) multiplications in the coefficient ring Fp[x] and thus a total cost
of O(mM(n)) operations in Fp, where M(n) is the complexity of multiplying two univariate poly-
nomials of degree n”. Bernardin uses m to represent the number of factors where we use n and n
to represent the degree of the univariate polynomials in Fp[x] where we use dx. However, we have
found that by using

∑n
i=1 deg(fi, x) = dx, and by calculating τi using τi = ci−σiMi

fi,0
instead of using

τi = qM0 − citi, we can reduce the cost of the algorithm to O(d2
x). As Bernardin’s analysis was

suboptimal, we will not recite his analysis of the multi-Diophantine equation. We will perform the
complexity analysis of Algorithm 7 in Section 3.2.7.

2.3 Polynomial interpolation

The polynomial interpolation problem is, given n data points (x1, y1), ..., (xn, yn), to find a
polynomial f(x) that interpolates the data, that is f(xi) = yi for 1 ≤ i ≤ n. The following well-
known theorem gives us existence and uniqueness conditions for f(x).

Theorem 2.1. Let xi, yi, 1 ≤ i ≤ n be elements of a field F where the xi are distinct. Then there
exists a unique polynomial f(x) ∈ F [x] of degree at most n− 1 such that yi = f(xi), 1 ≤ i ≤ n.

Proof. See Theorem 2.5.7 of [19].

There are many ways to compute the polynomial f in Theorem 2.1. The two most well-known
methods of interpolation are Newton interpolation and Lagrange interpolation. Both methods per-
form O(n2) arithmetic operations in F . We will be using the Lagrange interpolation method in Zp.
While Lagrange interpolation is named after Joseph Louis Lagrange, who published it in 1795, the
method was first discovered in 1779 by Edward Waring [24]. It is also an easy consequence of a
formula published in 1783 by Leonhard Euler [13].

Consider a polynomial f =
∑d−1
i=0 aix

i where ai ∈ Fp. The Lagrange basis polynomials, denoted
Li, are polynomials in Zp[x] with degree less than d having the property that Li(xj) = 0 if i 6= j

and Li(xj) = 1 when i = j. So

f =
d∑
i=1

yiLi (2.19)

is a polynomial of degree less than d such that f(xi) = yi for all i. The interpolating polynomial
with this degree constraint is unique, since the difference of two such polynomials has degree less

44

than d and d roots, hence is the zero polynomial.

Let (xi, yi) be the data in Theorem 2.1. Let

M(x) =
d∏
i=1

(x− xi)

and let

Mi(x) = M(x)
(x− xi)

for 1 ≤ i ≤ d.

The Mi are called the Lagrange basis polynomials. By construction, they have the property
that Mi(xj) = 0 if i 6= j. Let αi = Mi(xj) for i = j. We need them to have the property that
Mi(xi) = 1 for 1 ≤ i ≤ d. So, we can let Li = Mi/αi to get the desired result. Since we are working
in a field, multiplicative inverses exist, so Li ∈ Zp[x]. Therefore, we have found the polynomials in
Zp[x] such that Li(xj) = 0 if i 6= j and Li(xj) = 1 if i = j.

Now, let

f(x) =
d∑
i=1

yiLi.

So, f(x) is a polynomial of degree at most d − 1 such that f(xi) = 0 + 0 + ... + (1 × yi) + ... +
0 = yi. Therefore, we have found the desired basis polynomials. We now consider the cost of
Lagrange interpolation. We present Theorem 2.2 as a formal statement of the cost of the Lagrange
interpolation method.

Theorem 2.2. Evaluating a polynomial f ∈ F [x] of degree less than d at d distinct points
x1, ..., xd ∈ F or computing an interpolating polynomial at these points can be performed with O(d2)
operations in F . More precisely, evaluation takes 2d2 − 2d operations, and Lagrange interpolation
uses 7d2 − 8d+ 1 operations.

Proof. See Theorem 5.1 in [6].

2.4 Base conversion

In this section, we are going to discuss performing a base conversion on a finite power series of
the form

d∑
i=0

biy
i = a0 + a1(y − α) + a2(y − α)2 + · · ·+ ad(y − α)d (2.20)

45

where an represents the coefficient of the nth term and α is a constant. an is independent of y and
may be expressed as a function of n. The power series we are interested in is the power series for
some A ∈ Fp[x, y] about some α ∈ Fp for some prime p. If we let dy = deg(A, y), then A can be
represented as

A(x, y) =
dy∑
i=0

ai(y − α)i (2.21)

where a0, a1, ..., ady ∈ Fp[x]. There are several algorithms that we can use to find a0, a1, ..., ady . The
most straightforward method is to repeatedly perform polynomial division with remainder. If we
divide A by (y − α) to get A = q(y − α) + r, we obtain r = a0 and q =

∑dy−1
i=0 ai+1(y − α)i. By

dividing q by (y − α), we get q = q1(y − α) + r1 which gives us a1 = r1. Repeatedly dividing by
(y−α) leads to an algorithm that does O(dxd2

y) multiplications in Fp. Shaw and Traub reduce this
to O(dxdy) multiplications and O(dxd2

y) additions. As multiplications are more costly, we will use
Shaw and Traub’s method as described in [11].

Consider the Taylor representation of A(x, y). By Taylor’s theorem, the desired coefficients are
given by the derivatives of A at y = α, namely

A(x, y − α) = A(x, α) + ∂A

∂y
(x, α)(y − α) + ∂2A

∂y2 (x, α)(y − α)2/2! + · · ·+ ∂nA

∂yn
(x, α)(y − α)n/n!.

So, the problem is equivalent to evaluating A and all its derivatives at y = α. Note that this method
needs p > n.

If we write A(x, y) = q(x, y)(y + α) + r(x), then A(x, y − α) = q(x, y − α)y + r(x); so r(x)
is the univariate coefficient of A(x, y − α), and the problem reduces to finding the coefficients of
q(x, y − α), where q(x, y) is a known polynomial of degree dy − 1. Thus the following algorithm is
indicated:

Algorithm 8: Shaw and Traub’s nonoptimal bivariate base conversion algorithm
1 Input: prime p, α ∈ Fp, dy ∈ Z+, a0, a1, ..., ady ∈ Fp[x].
2 Output: v0, v1, ..., vdy ∈ Fp[x].

3 vj ← aj for 0 ≤ j ≤ dy; .O(dx dy)
4 for k = 0 to dy − 1 do
5 for j = dy − 1 to k do
6 vj ← vj + αvj+1; .O(dx)
7 end
8 end
9 return v0, ..., vdy ;

46

At the conclusion of the algorithm, we have A(x, y − α) = v0 + v1(y − α) + ... + vdy (y − α)dy .
This procedure was a principal part of Horner’s root-finding method, and when k = 0 it is exactly
Horner’s method for evaluating A(x, α).

If dx = deg(A, x) and dy = deg(A, y), we perform Step 6 dy + (dy− 1) + ...+ 1 = dy(dy+1)
2 times.

In each call, we perform at most dx+1 multiplication and dx+1 additions. Therefore this algorithm
does (dx + 1)(d2

y + dy)/2 multiplications and (dx + 1)(d2
y + dy)/2 additions. Notice that if α = 1 we

may avoid all the multiplications. Fortunately, we can reduce the general problem to the case α = 1
by introducing comparatively few multiplications and divisions. We present the modified version of
Algorithm 8 as Algorithm 9.

Algorithm 9: Shaw and Traub’s bivariate optimal base conversion algorithm
1 Input: prime p, a nonzero α ∈ Fp, dy ∈ Z+, a0, a1, ..., ady ∈ Fp[x].
2 Output: v0, v1, ..., vdy ∈ Fp[x].

3 Compute and store the values α2, α3, ..., αdy ; .O(dy)
4 vj ← αjaj for 0 ≤ j ≤ dy.; .O(dx dy)
5 for k = 0 to dy − 1 do
6 for j = dy − 1 to k do
7 vj ← vj + vj+1; .O(dx)
8 end
9 end

10 vj ← vj/α
j for 0 < j ≤ dy.; .O(dx dy)

11 return v0, ..., vdy ;

This idea, due to Shaw and Traub [11], has the same number of additions as Horner’s method,
but it needs only dy(dx + 1) + dy − 1 multiplications and dy(dx + 1) divisions in the field Fp. Jong
and Leeuwen in [8] show how to improve on Algorithm 9 by computing only about 1

2dy powers
of α. Performing these optimizations reduces the number of multiplications to O(dxdy) and the
number of additions to O(dxd2

y). This means that Shaw and Traub’s method for calculating the
power series of A requires O(dxd2

y) arithmetic operations. While the other algorithms (division and
differentiation) have the same asymptotic cost, this algorithm’s cost is bounded by addition, not
multiplication, saving a significant amount of computation time.

47

Chapter 3

The Cubic Algorithm

3.1 Algorithm

In this chapter, we will state and calculate the complexity of our improved bivariate Hensel
Lifting algorithm. Our algorithm will calculate the factorization of a polynomial A(x, y) over a
finite field Fp for some prime p by lifting n ≥ 2 bivariate factors from univariate images. Let
dx = deg(A, x) and dy = deg(A, y). Through two improvements we will describe throughout this
chapter, we have managed to reduce the cost from Bernardin’s O(nd2

x d
2
y) arithmetic operations in

Fp to O(d2
x dy+dx d2

y). Therefore, our algorithm is cubic in respect to the degrees of dx and dy. We in-
troduce a method of evaluation, point-wise multiplication in Fp, and interpolation to asymptotically
improve our algorithm by a factor of dx or dy, and we improve the complexity analysis of several
of our sub-algorithms to reduce the overall complexity of our algorithm by an additional factor of n.

We remind the reader of what our algorithm is going to calculate. Suppose we are given some
prime p and a polynomial A ∈ Fp[x, y] that is monic in x. A must also be square-free, that is,
@ b with deg(b, x) > 0 such that b2|A. Suppose we pick some α ∈ Fp and obtain the factorization
A(x, α) =

∏n
i=1 fi,0 in which f1,0, f2,0, ..., fn,0 ∈ Fp[x] are monic and pairwise relatively prime.

Bivariate Hensel Lifting aims to construct monic, bivariate polynomials f (k)
1 , f

(k)
2 , ..., f

(k)
n ∈

Fp[x, y] where

f
(k)
i = f

(k−1)
i + fi,k−1(y − α)(k−1) and f

(1)
i = fi,0

such that

(1) ∀i : f (k)
i ≡ fi,0 (mod y − α), and

(2) A ≡
∏
i f

(k)
i (mod (y − α)k).

48

If k is sufficiently large, the f (k)
i obtained can be used to compute a factorization of A over Fp. We

will stop Hensel Lifting when
∏
i f

(k)
i = A(x, y) or when

∑n
i=1 deg(f (k)

i , y) > deg(A, y) = dy.

In Section 1.3, we showed that Bernardin’s Hensel Lifting algorithm does O(nd2
x d

2
y) arithmetic

operations in Fp. This complexity comes directly from Step 11 of Algorithm 5,

∆← CoefficientExtraction(p, α, k, f1, f2, ..., fn, (y − α)k, G).

This process is described in detail in Section 1.3. This step refers to using convolution to multiply the
n bivariate factors sequentially using univariate multiplication in Fp[x] to recover coeff(

∏n
i=1 f

(k)
i , (y− α)k).

We will continue to define this coefficient as ∆(x) ∈ Fp[x]. This step is the single most costly op-
eration of Bernardin’s algorithm.

To eliminate the bottleneck, we offer an alternative method to calculate ∆(x). Instead of mul-
tiplying univariate polynomials in Fp[x] using Karatsuba’s algorithm as Bernardin did, we will use
(i) polynomial evaluation in x, (ii) point-wise multiplication in Fp, and (iii) polynomial interpola-
tion to calculate ∆. Since we can show that deg(∆, x) < dx, we need dx points β0, ... , βdx−1 ∈ Fp
to interpolate ∆. As we will prove, the total cost of these operations is O(d2

x dy), O(dx d2
y), and

O(d2
x dy) arithmetic operations in Fp respectively. Our method of calculating ∆(x) is presented as

a homomorphism diagram in Figure 3.1.

f
(k)
1 , f

(k)
2 , ..., f

(k)
n ∈ Fp[x, y] ∆ ∈ Fp[x]

f
(k)
1,j , f

(k)
2,j , ..., f

(k)
n,j ∈ Fp[y] ∆j ∈ Fp

coeff
(∏n

i=1 f
(k)
i , (y−α)k

)

evaluate f (k)
i at x=βj

for 0≤j≤dx−1 for 1≤i≤n

coeff
(∏n

i=1 f
(k)
i,j , (y−α)k

)
for 0≤j≤dx−1

interpolate x
Solve ∆(βj)=∆j for 0≤j≤dx−1

Figure 3.1: Homomorphism diagram for computing ∆(x) at iteration k ≥ 1

We need to discuss the three algorithms we will use to calculate ∆. For polynomial evaluation we
will use Horner’s method and for interpolation we will use Lagrange interpolation. Both of these are
well-known algorithms, and we discussed them in Sections 2.1 and 2.3 respectively. We need p ≥ dx

49

to have enough evaluation points to interpolate ∆. We still need to discuss the final sub-algorithm,
point-wise multiplication in Fp. The method is similar to how Bernardin used convolution and uni-
variate multiplication to calculate ∆(x) in Fp[x]. He found ∆ = coeff(

∏n
i=1 f

(k)
i , (y−α)k) by saving

intermediate calculations thus minimizing the multiplications needed. We will use convolution and
point-wise multiplication to find the constant coefficient,

∆j = coeff

 n∏
i=1

f
(k)
i (βj , y), (y − α)k

 for 0 ≤ j ≤ dx − 1.

We will use Bernardin’s CoefficientExtraction algorithm described in Section 1.3 to accomplish
this. We need to modify his algorithm so that the multiplications are done in Fp instead of Fp[x], but
our algorithm uses the same method. Our algorithm is the same CoefficientExtraction algorithm
where the polynomials are evaluated at x = βj for 0 ≤ j < dx. We still need to store the sub-
products calculated as a result of the convolutions in a coefficient matrix G. However, to calculate
every ∆j , we need to use the CoefficientExtraction algorithm dx times, so G must now be a dx ×
n× (dy + 1) matrix of elements in Fp, as opposed to an n× (dy + 1) matrix of polynomials in Fp[x].
We define an element of G as

Gj, i, k = coeff

 i∏
m=1

f (k+1)
m (βj , y), (y − α)k

 . (3.1)

For simplicity, in our CoefficientExtraction algorithm, we will store and access the sub-products
in a matrix H of size n × (dy + 1), which is a submatrix of G that contains all the intermediate
convolution calculations for a particular βj . We will denote this submatrix as H = Gj for 0 ≤ j ≤
dx − 1. We present our CoefficientExtraction algorithm as Algorithm 10.

50

Algorithm 10: Our CoefficientExtraction algorithm
1 Input: prime p, α ∈ Fp, k ∈ Z+, f1, f2, ..., fn ∈ Fp[y], H an n× (dy + 1) matrix of elements

in Fp.
2 Output: ∆ = coeff(

∏n
j=1 fj , (y − α)k) ∈ Fp, H an n× (dy + 1) matrix of elements in Fp.

3 if n = 2 then
4 MIN← max(0, k − deg(f2, y));
5 MAX← min(k, deg(f1, y));
6 ∆←

∑MAX
j=MIN coeff(f1, (y − α)j)· coeff(f2, (y − α)k−j); .O(k)

7 else
8 d← deg(f1, y);
9 H1,k ←coeff(f1, (y − α)k);

10 for i from 2 to n do
11 δ ← d;
12 d← d+ deg(fi, y);
13 if k ≤ d then
14 MIN← max(0,k − δ);
15 MAX← min(k,deg(fi, y));
16 Hi,k ←

∑MAX
j=MIN Hi−1 ,k−j×coeff(fi, (y − α)j); . O(k)

17 end
18 end
19 ∆← Hn,k;
20 end
21 return ∆, H;

We will cover the cost of Algorithm 10 after stating our Hensel Lifting algorithm in Section
3.2.5. After we calculate ∆0, ...,∆dx−1, we perform Lagrange interpolation to recover ∆(x) ∈ Fp[x].
We will then solve the multi-Diophantine equation

n∑
i=1

σi

∏n
j=1 fj,0

fi,0
= ck

for σ1, ..., σn ∈ Fp[x]. We use the lifting coefficients σi to lift the n factors from f
(k)
i to f (k+1)

i using
f

(k+1)
i = f

(k)
i + σi(y − α)k for 1 ≤ i ≤ n.

Finally, we have to consider the problem of updating the coefficients stored in G. The same
problem that occurred in Bernardin’s algorithm occurs in ours, where we have to update the
elements in G after lifting the factors from f

(k)
i to f (k+1)

i to account for the additional terms added.

51

We introduce our version of Bernardin’s CoefficientUpdate algorithm, which adds the necessary sub-
products to G using minimal arithmetic operations. We present the CoefficientUpdate algorithm
as Algorithm 11.

Algorithm 11: Our CoefficientUpdate Algorithm
1 Input: prime p, α ∈ Fp, k ∈ Z+, f1, f2, ..., fn ∈ Fp[y], H an n× (dy + 1) matrix of elements

in Fp.
2 Output: H an n× (dy + 1) matrix of elements in Fp.

3 if n > 2 then
4 t← coeff(f1, (y − α)k);
5 H1,k ← t;
6 for i from 2 to n do
7 //t = fi,0

∑i−1
j=1 fj,k

∏i−1
j=m=1
m6=j

fm,0 + fi,k
∏i−1
j=1 fj,0

8 t← coeff(fi, (y − α)0)× t + coeff(fi, (y − α)k)×Hi−1,0; .O(1)
9 Hi,k ← Hi,k + t; .O(1)

10 end
11 end
12 return H;

We will calculate the number of arithmetic operations in Algorithm 11 in Section 3.2.5.

Example 3.1. We demonstrate one iteration of the CoefficientExtraction and CoefficientUpdate
algorithms to calculate ∆ for the k = 3 iteration of our algorithm and store the necessary coefficients
in the matrix H. Let p = 11, α = 3, n = 3, and the field be Fp. We will find coeff(f1×f2×f3, (y−3)3)
where

f
(3)
1 = −2(y − 3)2 + 2(y − 3),

f
(3)
2 = 5(y − 3)2 − 5(y − 3)− 1, and

f
(3)
3 = −2(y − 3)2 + 2(y − 3)− 4.

The n× (dy + 1) matrix H was input as a 3× 10 matrix, where the first 4 columns can be seen in
Table 3.1. The polynomials chosen for this example correspond to the initial polynomials in Example
1.16 evaluated at x = 2.

52

HHH
HHHHn

dy 0 1 2 3

1 0 2 −2 -
2 0 −2 3 -
3 0 −3 −5 -

Table 3.1: The first 4 columns of matrix H which contains the intermediate products of calculating
f1 × f2 × f3

Following Algorithm 3, we calculate the 3rd row of H, H1,3, H2,3, and H3,3. First, we define
H1,3 =coeff(f1, (y − 3)3) = 0. Next, we calculate H2,3 and H3,3 as

H2,3 =
2∑
j=1

H1,3−j × coeff(f2, (y − 3)j)

= H1,2 × coeff(f2, (y − 3)1) +H1,1 × coeff(f2, (y − 3)2)

= coeff(f1, (y − 3)2)× coeff(f2, (y − 3)1) + coeff(f1, (y − 3)1)× coeff(f2, (y − 3)2)

= (−2)× (−5) + (2)× (5)

= −2

H3,3 =
2∑
j=0

H2,3−j · coeff(f3, (y − 3)j)

= H2,3 · coeff(f3, (y − 3)0) +H2,2 · coeff(f3, (y − 3)1) +H2,1 · coeff(f3, (y − 3)2)

= coeff(f1 × f2, (y − 3)3)× coeff(f3, (y − 3)0) + coeff(f1 × f2, (y − 3)2)× coeff(f3, (y − 3)1)

+ coeff(f1 × f2, (y − 3)1)× coeff(f3, (y − 3)2)

= −2×−4 + 3× 2 +−2×−2

= −4

So, we have updated the 4th column of H as

3

0
-2
-4

53

At this point of Bernardin’s algorithm, we would solve the Diophantine equation, then lift the
factors f1, f2 and f3. In this example, we lift them to

f
(3)
1 = 4(y − 3)3 − 2(y − 3)2 + 2(y − 3),

f
(3)
2 = 3(y − 3)3 + 5(y − 3)2 − 5(y − 3)− 1, and

f
(3)
3 = 2(y − 3)3 − 2(y − 3)2 + 2(y − 3)− 4.

So, now we need to add the value of f1,3f2,0f2,0 + f1,0f2,3f2,0 + f1,0f2,0f2,3 to H. We do this by
applying the CoefficientUpdate algorithm. By executing Algorithm 4, we get

t = coeff(f1, (y − 3)3) = 4

H3,1 = t = 4

t = coeff(f2, (y − 3)0) · t+ coeff(f2, (y − 3)3) ·H1,0 = (−1) · 4 + 3 · 0 = −4

H3,2 = H3,2 + t = (−2) + (−4) = 5

t = coeff(f3, (y − 3)0) · t+ coeff(f3, (y − 3)3) ·H2,0 = (−4) · (−4) + 2 · 0 = 5

H3,3 = H3,3 + t = (−4) + 5 = 1

This leads to the updated table H represented by Table 3.2.

H
HHH

HHHn

dy 0 1 2 3

1 0 2 −2 4
2 0 −2 3 5
3 0 −3 −5 1

Table 3.2: The first 4 rows of matrix H which contains the intermediate products of calculating
f1 × f2 × f3

Note the polynomial in H3,3 in Table 3.1 is equivalent to coeff(f (3)
1 × f (3)

2 × f (3)
3 , (y− 3)3), while

the polynomial H3,3 in Table 3.2 is equivalent to coeff(f (4)
1 × f (4)

2 × f (4)
3 , (y − 3)3).

4

The second improvement to Bernardin’s algorithm is an improvement to the analysis of the
sub-algorithms. In the initial analysis of our algorithm, we had found the complexity of polynomial
evaluation, point-wise multiplication, and solving the multi-Diophantine equations to be O(nd2

x dy),
O(ndx d2

y), and O(nd2
x dy) respectively. However, after considering the degree bounds of each of

the n factors, it is clear that the following bounds exist:

54

•
∑n
i=1 deg(fi, x) = dx •

∑n
i=1 deg(fi, y) = dy

•n ≤ dx as deg(f (k)
i , x) ≥ 1 •n ≤ dy as deg(f (k)

i , y) ≥ 1

Using these obvious bounds, we performed a more accurate analysis of the subroutines in our
algorithm and managed to remove a factor of n from the three sub-algorithms mentioned above.
We will show, in Section 3.2, that performing the optimal analysis improves the overall cost of our
algorithm from O(nd2

x dy + ndx d
2
y) arithmetic operations in Fp to O(d2

x dy + dx d
2
y). The optimiza-

tion techniques we used could have been applied to reduce the cost of Bernardin’s algorithm from
O(nd2

x d
2
y) arithmetic operations in Fp to O(d2

x d
2
y). We present our new bivariate Hensel Lifting

algorithm as Algorithm 12. The number of arithmetic operations done by each step is stated on
the right.

We present Maple code for our bivariate Hensel Lifting algorithm in Figures A.1 and A.2 in
Appendix A. We include Maple code for the main subroutines of our algorithm: the code for
our CoefficientExtraction algorithm, the code for our CoefficientUpdate algorithm, the code for
generating the Mi and si polynomials used for solving the Diophantine equations, and the code for
finding a solution to the Diophantine equations, in Figures A.3, A.4, A.5, and A.6 respectively.

3.2 Analysis

In this section, we will calculate the number of arithmetic operations in Fp used by our improved
bivariate Hensel Lifting algorithm. We restate the cost of our algorithm as Theorem 1.2.

Theorem 1.2. Let A ∈ Fp[x, y], dx = deg(A, x) > 1, dy = deg(A, y) > 1. Suppose A = f1f2 . . . fn

and we are given pairwise relatively prime images fi(x, α) of the factors fi for some α ∈ Fp. If
p ≥ dx, we can compute f1f2 . . . fn in O(d2

x dy + dx d
2
y) arithmetic operations in Fp using space for

O(ndx dy) elements of Fp.

We will prove that the cost of our bivariate Hensel Lifting algorithm is O(d2
x dy + dx d

2
y) by

analyzing the number of arithmetic operations done by every operation of Algorithm 12 and show
that every subroutine does at most O(d2

x dy) or O(dx d2
y) arithmetic operations. The six subroutines

we will analyze are:
1. Generating Lagrange basis polynomials - Step 4

2. Performing a base conversion on polynomial A(x, y) from y to (y − α) - Step 5

3. Univariate polynomial evaluation - Steps 10 and 30

4. CoefficientExtraction and CoefficientUpdate - Steps 19 and 34

5. Lagrange interpolation - Step 21

6. Solving the multi-Diophantine polynomial equation - Step 25

55

Algorithm 12: Our Cubic Bivariate Hensel Lifting Algorithm
1 Input: prime p, α ∈ Fp, A ∈ Fp[x, y] and f1,0, f2,0, ..., fn,0 ∈ Fp[x] satisfying

(i)A, f1,0, f2,0, ..., fn,0 are monic in x, (ii)A(y = α) = f1,0f2,0...fn,0 and
(iii)gcd(fi,0, fj,0) = 1 for i 6= j.

2 Output: f1, f2, ..., fn ∈ Fp[x, y] such that A = f1 f2 ... fn or FAIL.

3 dx ← deg(A, x); dy ← deg(A, y);

4 Generate Lagrange Polynomials Li(x) s.t. Li(x) =
∏dx−1

j=0 (x−j)
(x−i) ; . O(d2

x)
5 Compute a0, a1, ..., ady ∈ Fp[x] s.t. A =

∑dy

k=0 ak(y − α)k; . O(dx d2
y)

6 for i = 1 to n do
7 fi ← fi,0;
8 dfi ← 0; //deg(fi, y)
9 gi,j ← fi,0(x = j) ∈ Fp for 0 ≤ j ≤ dx − 1; . O(deg(fi, x))

10 end
11 for j = 0 to dx − 1 do
12 Gj,n,0 ← gn,j ;
13 for i = n− 1 by −1 to 2 do
14 Gj,i,0 ← Gj,i+1,0·coeff(gi,j , (y − α)0); .O(1)
15 end
16 end
17 for k = 1 to dy do
18 for j = 0 to dx − 1 do
19 ∆j , Gj ← CoefficientExtraction(p, α, k, g1,j , g2,j , ..., gn,j , Gj); O(k n)
20 end
21 interpolate ∆(x) ∈ Fp[x] s.t. ∆(j) = ∆j ; .O(d2

x)
22 ck ← ak −∆ ;
23 if

∑n
i=1 dfi = dy and ck 6= 0 then Return FAIL end;

24 if ck 6= 0 then
25 Solve

∑n
i=1 σi

f1,0f2,0...fn,0
fi,0

= ck for σ1, σ2, ..., σn ∈ Fp[x] with deg(σi, x) < deg(fi,0, x)
or σi = 0;. .O(d2

x)
26 for i=1 to n do
27 fi ← fi + σi(y − α)k;
28 dfi ← deg (fi, y);
29 for j = 0 to dx − 1 do
30 σij ← σi(x = j) ∈ Fp; .O(deg(fi, x))
31 gi,j ← gi,j + σij(y − α)k;
32 end
33 end
34 Gj ←CoefficientUpdate(p, α, k, g1,j , g2,j , ..., gn,j , Gj) for 0 ≤ j ≤ dx − 1 ;O(ndx)
35 end
36 end
37 if

∑n
i=1 dfi = deg(A, y) then return f1, f2, ..., fn else return FAIL end;

56

3.2.1 Evaluation points

Before we can discuss polynomial evaluation, point-wise multiplication, and Lagrange interpo-
lation, we need to discuss the number of evaluation points that are required to successfully recover
a polynomial using interpolation. To perform Lagrange interpolation and recover ∆(x), we need
deg(∆, x) + 1 evaluation points. As we know deg(∆, x) ≤ deg(A, x), we could set the number of
evaluation points to be dx + 1 and we would always have enough points to recover ∆. However,
since we are working with monic polynomials in x, this implies that if A =

∑dy

i=0 ai(y − α)i in
which ai ∈ Fp[x], then deg(ai, x) < dx for (1 ≤ i ≤ dy) or else A is not monic in x. Therefore,
deg(∆, x) < dx and we require only dx evaluation points. For simplicity, we shall let these points
be

{βj = j : 0 ≤ j ≤ dx − 1}.

3.2.2 Generating Lagrange basis polynomials

We begin our analysis by considering how we generate the Lagrange basis polynomials in Step
4 of our algorithm. We described how to calculate the Lagrange basis polynomials in Section 2.3.
Using the evaluation points β0, ..., βdx−1 ∈ Fp, we will calculate the dx Lagrange basis polynomials
by first calculating

M(x) =
dx−1∏
j=0

(x− βj).

We then calculate the basis polynomials by dividing M(x) by each of the factors

Mj(x) = M(x)
(x− βj)

for 0 ≤ j ≤ dx − 1.

Finally, we will calculate αj = Mj(βj) for 0 ≤ j ≤ dx − 1 using Horner’s method. We then update
the Lagrange basis polynomials by calculating Lj = Mj/αj ∈ Fp[x] for 0 ≤ j ≤ dx− 1. This results
in the Lagrange basis polynomial having the property that Lj(βi) = 0 if i 6= j and Lj(βi) = 1 if
i = j.

As stated Section 2.3, the cost of generating the Lagrange basis polynomials is O(d2) where d is
the number of evaluation points. Therefore, the cost of generating the Lagrange basis polynomials
is O(d2

x). As the Lagrange basis polynomials do not change throughout the algorithm, we only need
to generate them once at the beginning of Algorithm 12.

57

3.2.3 Base conversion

We must perform a base conversion on our initial polynomial A ∈ Fp[x, y] from y to (y−α). Using
Shaw and Traub’s method [20] (see Section 2.4) uses O(dxd2

y) arithmetic operations in Fp.

3.2.4 Polynomial evaluation

We consider the number of arithmetic operations needed to evaluate the n factors at the dx eval-
uation points. First, consider the standard form of a polynomial a(x) = a0 +a1x+a2x

2 + ...+adx
d.

Horner’s method, as described in Section 2.1, evaluates a(x) at some value α ∈ Fp using d multi-
plications and d additions.

In our algorithm, we perform univariate polynomial evaluation in terms of variable x on the
bivariate polynomials. Let dx,i = deg(fi, x) and dy,i = deg(fi, y). Each of the n factors can be
written as fi =

∑dy,i

j=0 fi,j(y−α)j where fi,j ∈ Fp[x] and deg(fi,j , x) ≤ dx,i. We evaluate each of the
factors fi at the dx evaluation points.

Using Horner’s method, the number of multiplications and additions used to evaluate each of
the n factors for a particular evaluation point βj in our algorithm is

(dy,i + 1)(dx,i).

Therefore, the number of arithmetic operations for evaluating the n factors at one evaluation point
βj is

n∑
i=1

O((dy,i + 1)dx,i) = O

 n∑
i=1

dy,idx,i

 ⊂ O
 n∑
i=1

dydx,i


= O

dy n∑
i=1

dx,i

 = O(dx dy).

(3.2)

Finally, we have to evaluate each of the n factors at dx evaluation points, so that brings the
total number of arithmetic operations in Fp to dxO(dxdy) = O(d2

xdy).

3.2.5 CoefficientExtraction and CoefficientUpdate

The next step of our algorithm is to perform the CoefficientExtraction algorithm. In the kth
iteration of the main loop, it finds the coefficient of the (y−α)k term from the product f (k)

1 (βj , y)×
f

(k)
2 (βj , y)× ...×f (k)

n (βj , y) ∈ Fp[y] for one evaluation point βj . The coefficient of the (y−α)k term,

58

∆j , is needed to interpolate ∆(x) using Lagrange interpolation. We described the CoefficientEx-
traction algorithm earlier for Bernardin’s algorithm in Section 1.3 and we covered the necessary
modifications for our CoefficientExtraction algorithm in Section 3.1. We defined our CoefficientEx-
traction algorithm as Algorithm 10.

We consider the number of arithmetic operation in Fp performed by the CoefficientExtraction
algorithm for the n > 2 case. Suppose deg(fi, y) = dy/n for 1 ≤ i ≤ n, which maximizes the
cost of Step 16 of Algorithm 10. If we are trying to maximize the number of multiplications and
additions done in one iteration, then we will ignore the conditional statement in Step 13 and apply
the maximum difference between the MIN and MAX variables. In any iteration k, the largest
difference occurs when MIN = 0 and MAX = k. The upper bound for k is when k = dy/n. In
this case, our CoefficientExtraction algorithm does

n−1∑
i=1

(k + 1) ≤
n−1∑
i=1

(
dy
n

+ 1
)
<

n∑
i=1

(
dy
n

+ 1
)

=
n∑
i=1

dy
n

+
n∑
i=1

1 = dy + n

≤ 2dy as n ≤ dy

(3.3)

multiplications every time it is used. Therefore, this algorithm has a cost of O(dy). As this algo-
rithm is called dy times for each of the dx evaluation points, this algorithm has a total cost of
dy dxO(dy) = O(dx d2

y).

We will now calculate the cost of the CoefficientUpdate algorithm. This algorithm is presented
as Algorithm 11. It is easy to observe that this algorithm does exactly 2(n− 1) multiplications and
2(n − 1) additions with each call of the algorithm, so this algorithm has an algebraic complexity
of O(n). As we must use this algorithm in each of the dy iterations of the main loop for each of
the dx evaluation points of Algorithm 12, the total cost is dy dxO(n) = O(ndx dy). Since n ≤ dy,
this algorithm uses O(dx d2

y) arithmetic operations in Fp. Therefore, the CoefficientExtraction and
CoefficientUpdate algorithms use O(dx d2

y) arithmetic operations in Fp.

3.2.6 Lagrange interpolation

We use Lagrange interpolation to recover the polynomial ∆(x) from the data points
{(β0,∆0), ..., (βdx−1,∆dx−1)}. That is, we want to find a polynomial ∆(x) ∈ Fp[x] such that
∆(βj) = ∆j for 0 ≤ j ≤ dx − 1. We covered Lagrange interpolation in Section 2.3 and the cost of
generating the Lagrange basis polynomials for our algorithm in Section 3.2.2. As a reminder, the
Lagrange basis polynomial, denoted Li, are dx polynomials of degree dx− 1 that have the property
that Lj(βi) = 0 if i 6= j and Lj(βi) = 1 if i = j for 0 ≤ i, j ≤ dx − 1.

59

Given dx Lagrange polynomials, we need to calculate ∆ =
∑dx−1
j=0 ∆jLj(x) where ∆(βj) = ∆j .

We calculated ∆j by evaluating the n factors at x = βj , then found the coefficient for the (y− α)k

term of the product f1(βj , y)× f2(βj , y)× ...× fn(βj , y). We then calculate ∆ using the following
matrix vector multiplication.



c0

c1

c2
...

cdx−1


=


| | | | |
L0 L1 L2 . . . Ldx−2 Ldx−1

| | | | |





∆0

∆1

∆2
...

∆dx−2

∆dx−1


= L∆

for c0, ..., cdx−1 ∈ Fp where ∆ =
∑dx−1
i=0 cix

i. In our C implementation, we added several optimiza-
tion to the Lagrange interpolation algorithm. These will be detailed in Section 3.4.

Since L ∈ Fdx×dx
p and ∆ ∈ Fdx

p , this does d2
x multiplications and dx(dx−1) additions. Therefore,

Lagrange interpolation uses O(d2
x) arithmetic operations in Fp. We will perform at most dy Lagrange

interpolations for a total cost of dyO(d2
x) = O(d2

xdy).

3.2.7 Multi-Diophantine polynomial equation

We will perform cost analysis for solving the multi-Diophantine equation in Step 25 of Algorithm
12. Suppose we are given polynomials f1,0, f2,0, ..., fn,0 ∈ Fp[x] such that gcd(fi,0, fj,0) = 1 in Fp[x]
for all i 6= j. Let U(x) =

∏n
j=1 fj,0 and Ui(x) = U(x)

fi,0
for 1 ≤ i ≤ n. Given some polynomial

c(x) ∈ Fp[x] with deg(c, x) < dx, we need to solve the equation

σ1U1 + σ2U2 + σ3U3 + ...+ σnUn = c (3.4)

for σ1, σ2, ..., σn ∈ Fp[x] where deg(σi, x) < deg(fi,0, x) for 1 ≤ i ≤ n.

We covered how to solve multi-Diophantine equations of this form in Section 2.2. We will
perform the complexity analysis here. We restate Algorithm 7 which finds a solution to (3.4).

60

Algorithm 7: Multi-Diophantine Polynomial equation Algorithm
1 Input: prime p, f1,0, f2,0, ..., fn,0 ∈ Fp[x] satisfying gcd(fi,0, fj,0) = 1 in Fp[x] for i 6= j,

c ∈ Fp[x].
2 Output: σ1, σ2, ..., σn ∈ Fp[x].

3 Mn ← 1;
4 for i = n by −1 to 2 do Mi−1 ←Mi × fi,0 end; .O(d2

x)
5 c1 ← c;
6 //Solve σiMi + τifi,0 = ci

7 for i = 1 to n− 1 do
8 Solve siMi + tifi,0 = 1 for si, ti ∈ Fp[x] using the EEA; . O(d2

x)
9 σi ← (ci · si) rem fi,0; . O(d2

x)
10 τi ← (ci − σiMi) quo fi,0; .O(d2

x)
11 ci+1 ← τi;
12 end
13 σn ← cn;
14 return σ1, σ2, ..., σn

We will consider the following six major operations used in Algorithm 7. In Algorithm 7, we
have given the costs of the main steps on the right. We must prove these costs.

1. Calculate M1,M2, ...,Mn in Step 4

2. Solve siMi + tifi,0 = 1 for s, t using the EEA in Step 8

3. Calculating ci · si in Step 9

4. Multiplying rem(ci · si, fi,0, x) in Step 9

5. Calculating σi ·Mi in Step 10

6. Multiplying quo(ci − σi ·Mi, fi,0, x) in Step 10

Before we can consider the cost of this algorithm, we give degree bounds for the polynomials
Mi, ci, si, and σi. First, consider the initial univariate polynomials f1,0, f2,0, ..., fn,0 ∈ Fp[x]. For
each factor, fi,0, let di = deg(fi,0, x). We have di > 0 and

∑n
i=1 di = dx.

Consider the degree bounds for each Mi. As each of the Mi are products of the initial n − i
factors, and the product of all factors has degree dx, trivially deg(Mi, x) < dx. Specifically,

deg(Mi, x) = dx −
i∑

j=1
dj =

n∑
j=i+1

dj < dx for 1 ≤ i ≤ n.

61

The degree bounds for the polynomials ci, si, and σi for 1 ≤ i ≤ n are as follows:

• deg(ci, x) < dx because as A =
∑dy

i=0 ai(y−α)i, then deg(ai, x) < dx for 1 ≤ i ≤ dy, else A is
not monic.

• deg(si, x) < deg(fi,0, x) = di as a consequence of the EEA.

• deg(σi, x) < deg(fi,0, x) = di as σi = (cisi) rem fi,0

We can now calculate cost of solving the multi-Diophantine polynomial equation.

1 Observe, in Algorithm 12, that f1,0, f2,0, ..., fn,0, the initial set of factors, remain the same for
every call to this algorithm. So, we can compute the polynomialsM1,M2, ...,Mn once and all the so-
lutions to the equations siMi+tifi,0 = 1 once and store polynomials si for each call to Algorithm 7.

We will calculate the products ofM1,M2, ...,Mn first. To calculateMi, we use classical univariate
multiplication. By calculating Mi−1, we do (deg(Mi, x) + 1) × (deg(fi,0, x) + 1) multiplications.
Therefore, the cost can be calculated as

n−1∑
i=1

O
(
(deg(Mn−i, x) + 1)(deg(fi,0, x) + 1)

)
≤

n∑
i=1

O


 n∑
j=i+1

dj + 1

 (di + 1)


=

n∑
i=1

O

di n∑
j=i+1

dj +
n∑

j=i+1
dj + di + 1


= O

 n∑
i=1

di

n∑
j=i+1

dj +
n∑
i=1

n∑
j=i+1

dj +
n∑
i=1

di +
n∑
i=1

1


⊂ O

dx n∑
i=1

di +
n∑
i=1

dx +
n∑
i=1

di +
n∑
i=1

1


= O(d2

x + ndx + dx + n) = O(d2
x).

Therefore, generating M1,M2, ...,Mn costs O(d2
x).

2 We consider the cost of executing the Extended Euclidean Algorithm (n− 1) times to find
a solution to siMi + tifi,0 = 1 for si, ti in Fp[x]. If the EEA is used to find the greatest common
divisor of two polynomials, A,B, then it will use 3dA dB multiplications, where dA = deg(A, x) and
dB = deg(B, x) by Theorem 15.1 in [6]. Therefore, the EEA uses O(dA dB) arithmetic operations
in Fp. So, the total cost of the EEA in solving the Diophantine equation is

62

Cost
n−1∑
i=1

EEA(Mi, fi,0) <
n∑
i=1

O


 n∑
j=i+1

dj

 di
 =

n∑
i=1

O

di n∑
j=i+1

dj


= O

 n∑
i=1

di

n∑
j=i+1

dj

 = O

dx n∑
i=1

di

 = O(d2
x).

Therefore, finding the solution to siMi+tifi,0 for 1 ≤ i ≤ n−1 uses O(d2
x) arithmetic operations

in Fp.

3 Now, consider the cost of calculating ci · si in the algorithm. Again, deg(ci, x) ≤ dx − 1 and
deg(si, x) < deg(fi,0, x) = di. Therefore, the cost is

Cost

n−1∑
i=1

ci · si

 <
n∑
i=1

O((dx − 1)(di − 1))

=
n∑
i=1

O(dxdi − dx − di + 1)

= O

dx n∑
i=1

di −
n∑
i=1

dx −
n∑
i=1

di +
n∑
i=1

1


= O(d2

x − ndx − dx + n) = O(d2
x).

Therefore, the cost of computing
∑n−1
i=1 ci · si for the n − 1 iterations of Algorithm 7 is O(d2

x)
arithmetic operations in Fp.

4 Now we can calculate the cost doing the division (cisi) ÷ fi,0. The division algorithm
performs at most m(n −m + 1) multiplications, where n is the degree of the dividend, and m is
the degree of the divisor. Now the degree of the dividend is

deg(ci si, x) = deg(ci, x) + deg(si, x) ≤ (dx − 1) + (di − 1) = dx + di − 2.

So, the total cost for doing the division by fi,0 is

63

Cost

n−1∑
i=1

cisi rem fi,0

 <
n∑
i=1

O(di · (dx + di − 2− di + 1))

=
n∑
i=1

O(di · (dx − 1)) =
n∑
i=1

O(dxdi − di)

= O

dx n∑
i=1

di −
n∑
i=1

di

 = O(d2
x − dx) = O(d2

x).

The cost of taking the remainders is O(d2
x) arithmetic operations in Fp.

5 Next, we will calculate the cost of finding σi×Mi. Note that deg(σi) ≤ di−1, and deg(Mi, x) =∑n
j=i+1 dj for 1 ≤ i ≤ n. Then the cost, using classical polynomial multiplication is

Cost

n−1∑
i=1

(σi ·Mi)

 <
n∑
i=1

O

(di − 1)


 n∑
j=i+1

dj

+ 1




=
n∑
i=1

O

di n∑
j=i+1

dj + di −
n∑

j=i+1
dj − 1


= O

 n∑
i=1

di

n∑
j=i+1

dj +
n∑
i=1

di −
n∑
i=1

n∑
j=i+1

dj −
n∑
i=1

1


= O

dx n∑
i=1

di +
n∑
i=1

di −
n∑
i=1

dx −
n∑
i=1

1


= O(d2

x + dx − ndx − n) = O(d2
x).

So again, the cost of calculating all σi ×Mi is O(d2
x) arithmetic operations in Fp.

6 Finally, we calculate the cost taking the quotient of ci − σiMi ÷ fi,0. As we are calculating
the cost of τi, it is implied that deg(ci − σiMi, x) ≤ dx − 1. This has the cost

Cost

n−1∑
i=1

(ci − σiMi) quo fi,0

 <
n∑
i=1

O(di(dx − 1− di + 1))

=
n∑
i=1

O(di(dx − di)) =
n∑
i=1

O(dxdi − d2
i)

=
n∑
i=1

O(dxdi) = O

dx n∑
i=1

di

 = O(d2
x).

64

Therefore, the number of arithmetic operation in Fp needed to find a solution to the multi-
Diophantine equation is

6O(d2
x) = O(d2

x).

We conclude the complexity analysis of Algorithm 7 with Theorem 3.2 which provides a precise
statement about the cost of finding a solution to the multi-Diophantine equation.

Theorem 3.2. Let p be a prime. Suppose we are given n ≥ 2 pairwise relatively prime polynomials
f1,0, f2,0, ..., fn,0 ∈ Fp[x] such that dx =

∑n
i=1 deg(fi,0, x) and a polynomial ck ∈ Fp[x] such that

deg(ck, x) < dx. Then, we can compute polynomials f1,k, ..., fn,k ∈ Fp[x] such that

n∑
i=1

fi,k

n∏
j=1
j 6=i

fj,0 = ck

and deg(fi,k, x) < deg(fi,0, x) for 1 ≤ i ≤ n using O(d2
x) arithmetic operations in Fp.

As we solve at most dy Diophantine equations in Algorithm 12, they have a total cost of
dy O(d2

x) = O(d2
xdy). We present our Maple code for generating the Mi and si polynomials as

Figure A.5 in Appendix A and present our Maple code for solving the multi-Diophantine equation
as figure A.6 in Appendix A.

3.2.8 Total cost

We will now calculate the final cost of our algorithm. We will achieve this by adding the cost
of every subroutine in algorithm 12. The costs of each of the major subroutines are as follows:

1. Generating Lagrange polynomials - O(d2
x)

2. Performing a base conversion - O(dxdy) multiplications plus O(dxd2
y) additions

3. Univariate polynomial evaluation - O(d2
xdy)

4. CoefficientExtraction and CoefficientUpdate - O(dxd2
y)

5. Lagrange interpolation - O(d2
xdy)

6. Solving the multi-Diophantine polynomial equation - O(d2
xdy)

Adding the costs, Algorithm 12 does

O(d2
x + dxdy + d2

xdy + d2
xdy + dxd

2
y + d2

xdy + d2
xdy) = O(d2

xdy + dxd
2
y)

arithmetic operations in Fp. So, our algorithm is cubic in respect to the degrees of dx and dy. This
completes the proof of Theorem 1.2.

65

3.3 Small finite fields and general finite fields.

Throughout our thesis, we have assumed that we are working over the finite field Fp for some
prime p. The only restriction we have placed on p is that p ≥ dx so that we can have enough
evaluation points to interpolate ∆ ∈ Fp[x]. This was discussed in detail in Section 3.2.6. Consider
the situation when p < dx. The first question is: what should we do if p < dx? The second question
is: what if the input field is Fq, where Fq is a general finite field with q elements. Does our algorithm
still apply?

First, we will address whether our algorithm works over a field Fq where q is a prime power.
As Fq is a field, it has the same properties as Fp, such as being closed under addition, closed under
multiplication, and multiplicative inverses exist for every non-zero element in Fq. Therefore, all of
the major operations in our algorithm, evaluation, interpolation, point-wise multiplication, solving
the Multi-Diophantine equation, and performing a base conversion will work in the field Fq. That
is, Algorithm 12 works over the finite field Fq again provided q ≥ dx.

We consider the case when the field Fp (or Fq) doesn’t contain enough elements to perform
interpolation. Let r = pm where m is the smallest positive integer such that pm ≥ dx and let
f(z) ∈ Fp[z] be a monic, irreducible polynomial with a degree of m. Such a polynomial exists by
Corollary 33.11 of [5]. Then Fr = Fp/〈f(z)〉 is a finite field of order r = pm by Theorem 33.1 of
[5]. By the above argument, our cubic Hensel lifting algorithm works over Fr and by extending our
field from Fp to Fp/〈f(z)〉, we now have enough elements to successfully interpolate the polynomial
∆(x). Similarly, we can extend Fq to be large enough for our algorithm to interpolate ∆(x). This
implies that our algorithm can work for very small fields by extending them to larger fields.

3.4 Optimizations for Fp[x, y]

In the C implementation of our algorithm, we made several improvements that did not affect the
asymptotic complexity, but are still worth mentioning. Most notably, we used an accumulator to re-
duce the number of divisions in Fp and we also used a set of ± points as our evaluation points. Both
of these optimizations make significant improvements to the overall execution time of our algorithm.

In the C implementation of our algorithm, we implemented an accumulator. An accumulator is
a method to reduce the number of times we have to perform a division by p operation in our code.
Whenever we add or multiply any two elements of the field we have to do a modulo p operation
to make sure the sum or product remains within the field. However, if we are doing convolutions
of the form

∑n
i=0 aibi or

∑n
i=0 aibn−i, then we can add all the products together and perform only

one division by p at the end. This is assuming that the sum does not overflow the accumulator.

66

This is a major optimization as a division by p is much more expensive than integer multiplications
on current hardware. It should be noted that we have implemented convolution in our evaluation,
interpolation, and CoefficientExtraction subroutines, so this is a significant improvement.

We have implemented our code to store integers that are 64 bits in size, and we implemented
a 128 bit accumulator. We limited the size of primes to be at most 31 bits. As all integers in the
field will be at most 31 bits in length, the product of any two integers will be at most 62 bits in
size. This means we can add at least 2128/262 = 266 products together before we risk overflowing
the accumulator. Implementing an accumulator drastically reduces the number of divisions for the
convolutions

∑n
i=0 aibi and

∑n
i=0 aibn−i for n+ 1 to 1.

In Section 3.2.1, we stated that we would use 0, 1, ..., d− 1 as evaluation points for polynomial
evaluation and interpolation. However, in our implementation, we used the points 0,±1,±2, ...,±d

2 .
Consider some polynomial c(x) =

∑d
i=0 cix

i. If we evaluate c(x) at a negative point, it results in
a polynomial of the form c(−x) = c0 − c1x + c2x

2 − c3x
3 + ... + (−1)dcdxd. Observe that each

coefficient of an odd degree has a negative sign compared to its positive counterpart. Assuming d
is even, we can then write

c(−x) = c0 + c2x
2 + c4x

4 + ...+ cdx
d)︸ ︷︷ ︸

a(x2)

−x (c1 + c3x
2 + c5x

4 + ...+ cd−1x
d−2)︸ ︷︷ ︸

b(x2)

.

Let c(x) be the polynomial we wish to interpolate and let d = deg(c, x). In what follows, we
will assume that d is even; if not, we add 1 to d and use an additional evaluation point. It is easy
to see how to evaluate a polynomial c(x) in Fp[x] twice as fast using ± points. If we have already
evaluated c(α) = a(α2) +αb(α2) we can compute c(−α) = a(α2)−αb(α2) using one further multi-
plication and subtraction. To also use the accumulator trick, we compute a(α2) via the dot product
[a0, a2, a4, ..., ad] · [1, α2, ..., αd]T and b(α2) via the dot product [a1, a3, a5, ..., ad−1] · [1, α2, ..., αd−2]T .
For α = i, the arrays, [1, i2, i4, ..., id] for i = 1, 2, ..., d/2 are computed before the main Hensel loop
so they can be reused.

Let c(x) =
∑d
i=0 cix

i and assume we have computed c(0) and c(±i) for 1 ≤ i ≤ d/2. We will
use Lagrange interpolation to interpolate c(x). Let

M(x) =
∏d/2
i=−d/2(x− i) and Mi(x) = M(x)

(x−i) for −d
2 ≤ i ≤

d
2 .

We then use the method we described in Section 2.3. If αi = Mi(i) for 1 ≤ i ≤ n, then we cal-
culate the polynomials Li(x) = Mi/αi for 1 ≤ i ≤ n. This gives the polynomials the property that
Li(j) = 0 if i 6= j and Li(j) = 1 if i = j. The polynomials Li are the Lagrange basis polynomials
so we may write c(x) =

∑d/2
i=−d/2 ∆iLi(x) for some unique ∆i.

67

We need a way to refer to the coefficients of Li(x). Let Li(x) =
∑d
j=0 Lijx

j and Li = [Li0Li1Li2...Lid].
In matrix vector form, we can compute the coefficients ci of c(x) using



c0

c1

c2
...
cd


=


| | | | |
L0 L1 L−1 . . . Ld/2 L−d/2

| | | | |





∆0

∆1

∆−1
...

∆d/2

∆−d/2


First note that Li(0) = 0 for all i 6= 0 so c0 = ∆0L00. Because d is even we have L−1(x) = Li(−x)

so we only compute Li(x) for i ≥ 0. For even i we can compute ci using (d2 + 1)d2 multiplications
as follows.



c2

c4

c6
...
cd


=



L02 L12 L22 . . . L d
2 2

L04 L14 L24 . . . L d
2 4

L06 L16 L26 . . . L d
2 6

.

L0 d L1 d L2 d . . . L d
2 d





∆0

∆1 + ∆−1

∆2 + ∆−2

∆3 + ∆−3
...

∆ d
2

+ ∆− d
2


Similarly, for odd i we can compute ci using



c1

c3

c5
...

cd−1


=



L01 L11 L21 . . . L d
2 1

L03 L13 L23 . . . L d
2 3

L05 L15 L25 . . . L d
2 5

.

L0 d−1 L1 d−1 L2 d−1 . . . L d
2 d−1





∆0

∆1 −∆−1

∆2 −∆−2

∆3 −∆−3
...

∆ d
2
−∆− d

2


Thus we can determine c1, c2, ..., cd using d(d2 + 1) multiplications. Crucially, if we do all these
multiplications as dot products of vectors, we can use our accumulator optimization if the matrices
are constructed in row major order.

We compute Li(x) for 0 ≤ i ≤ d/2 by first computing L(x) then dividing L(x) by x − i using
polynomial division. The two matrices formed from Li(x) for 0 ≤ i ≤ d/2 and the inverses of the
factorials are computed once before the main Hensel Lifting loop and reused in the loop.

68

Chapter 4

Benchmarks

In the previous chapter, we showed that the complexity of our cubic algorithm is O(d2
xdy+dxd

2
y)

where dx = deg(A, x) and dy = deg(A, y). We wish to demonstrate, in practice, the following three
facts: that our algorithm is an improvement on Bernardin’s algorithm, our algorithm is cubic in the
degrees of A in x and y, and changing the number of factors, n, doesn’t affect the execution time.
We have implemented both Bernardin’s algorithm and our cubic algorithm in C. The timings were
gathered using C’s clock() function and converted to milliseconds. Tables 4.1 and 4.2 show that
our algorithm is superior to Bernardin’s and has a cubic cost. Table 4.3 shows that changing the
number of factors n for a fixed input polynomial A does not affect the number of multiplications
done. The timings were obtained on a workstation with 8 gigabytes of RAM and one Intel Core
i5-4590 running at 3.3GHz base and 3.7Ghz turbo.

Table 4.1 shows timings for Hensel Lifting n = 4 factors in Fp[x, y] using both our algorithm
and Bernardin’s algorithm for p = 231 − 1 and d = dx = dy. The factors f1, f2, f3 and f4 have
the form xd/4 +

∑ d
4
i=0(

∑ d
4−1
j=0 cijx

j)yi where the coefficients cij are chosen at random from [0, p).
We then input α = 3, A = f1 × f2 × f3 × f4, f1,0 = f1(x, α), f2,0 = f2(x, α), f3,0 = f3(x, α), and
f4,0 = f4(x, α) to the Hensel Lifting algorithms.

The first column represents the degrees of the polynomial A which is being factored. It has
degree d in variables x and y. The second column labelled “Time(ms)” is for the time it took for
our cubic O(d2

xdy + dxd
2
y) algorithm to completely execute. The third column labelled “Ratio” is

computed as

Execution time for 2d
Execution time for d .

Eg. 4.14 = 1.49/0.36. Similarly, we compute the “Time(ms)” and “Ratio” of Bernardin’s algorithm
in columns 4 and 5. The speedup is a comparison between the time it took to compute our algo-
rithm compared to Bernardin’s.

69

Our Cubic Algorithm Bernardin’s Algorithm
Deg A
d

Time(ms) Ratio Time(ms) Ratio Speedup

16 0.13 - 0.11 - 0.85
32 0.36 2.77 0.43 3.91 1.19
64 1.49 4.14 3.38 7.86 2.27
128 7.77 5.21 34.40 10.18 4.43
256 45.38 5.84 362.85 10.54 8.00
512 324.19 7.14 4319.31 11.90 13.32
1024 2502.76 7.72 55716.30 12.90 22.26
2048 18017.49 7.19 782982.80 14.05 43.46
4096 128211.01 7.11 11647207.28 14.88 90.84
8192 963335.81 7.51 - - -

Table 4.1: Hensel Lifting timings for Fp[x, y] with p = 231 − 1 and n = 4 factors. Compares the
overall execution times of our algorithm vs Bernardin’s algorithm

Our algorithm significantly outperformed Bernardin’s algorithm. In the final iteration, when
dx = dy = 4096, our algorithm ran approximately 91 times faster than Bernardin’s. As expected,
the timings of our algorithm increased a factor approaching eight, while Bernardin’s increased by
a factor approaching sixteen as we doubled the degrees of dx and dy.

Our algorithm performs slightly better than the expected Θ(d2
xdy + dxd

2
y). To illustrate that

our algorithm is indeed cubic, we will count the number of multiplications performed by each of
the subroutines. In Section 3.2, we proved that polynomial evaluation, interpolation, the Coeffi-
cientExtraction and CoefficientUpdate algorithms, and solving the Diophantine equation all have
cubic cost. Therefore, we consider the number of multiplications done by these four subroutines.

In Table 4.2, we use the same polynomials and setup from the previous experiment. Column
one refers to the degree of polynomial A which is being factored. Columns two, four, six, and eight
represent the total number of multiplications in Fp performed by our algorithm. Columns three,
five, seven, and nine, which are labeled as “Ratio”, are computed as

Number of multiplications for 2d
Number of multiplications for d .

As we can see, the number of multiplications done by the four major subroutines of our algo-
rithm increase by a factor of eight when doubling the degrees of dx and dy. This shows that our
algorithm is cubic. Now we will show that changing the number of factors, n, does not change the
number of multiplications done by our algorithm.

70

Number of multiplications in Fp
degA
d

Evaluations Ratio Diophantine Ratio

16 544 - 2,064 -
32 4,160 7.647 16,704 8.093
64 32,896 7.908 134,400 8.046
128 262,400 7.977 1,078,272 8.023
256 2,097,664 7.994 8,638,464 8.011
512 16,778,240 7.999 69,156,864 8.006
1024 134,219,776 8.000 553,451,520 8.003
2048 1,073,745,920 8.000 4,428,398,592 8.001
4096 8,589,942,784 8.000 35,430,334,464 8.001
8192 68,719,493,120 8.000 283,455,258,624 8.000
degA
d

CoeffExtract +
CoeffUpdate Ratio Interpolation Ratio

16 1,989 - 1,168 -
32 14,025 7.051 8,736 7.479
64 105,105 7.494 67,648 7.744
128 813,345 7.738 532,608 7.873
256 6,398,529 7.867 4,227,328 7.937
512 50,758,785 7.933 33,686,016 7.969
1024 404,359,425 7.966 268,960,768 7.984
2048 3,228,045,825 7.983 2,149,582,848 7.992
4096 25,797,075,969 7.992 17,188,261,888 7.996
8192 206,267,492,352 7.996 137,472,516,096 7.998

Table 4.2: Hensel Lifting timings for Fp[x, y] with p = 231 − 1 and n = 4 factors. Compares the
number of multiplications done by the polynomial evaluation, solving the Diophantine equation,
coefficient extraction and coefficient update, and polynomial interpolation subroutines

In Table 4.3, we set the degrees of the bivariate polynomial A(x, y) to be 2048 in x and y. The
factors f1, ..., fn have the form xd/n +

∑ d
n
i=0(

∑ d
n
−1

j=0 cijx
j)yi where the coefficients cij are chosen at

random from [0, p). We then input α = 3, A = f1 × f2 × ...× fn, f1,0 = f1(x, α), ..., fn,0 = fn(x, α)
into the Hensel Lifting algorithm.

The first column, “n”, represents the number of factors for polynomial A(x, y). The second
column labelled “Time(ms)” is for the time it took for our cubic algorithm to execute. The third
column labelled “Ratio” is computed as

Execution time for 2n
Execution time for n .

71

The fourth, sixth, and eighth column represent the total number of multiplications in Fp performed
by our algorithm. The fifth, seventh, and ninth column labeled “Ratio” are computed as

Number of multiplications for 2n
Number of multiplications for n .

Number of multiplications in Fp

n Time(ms) Ratio Evaluations Ratio Diophantine Ratio CoeffExtraction
+ CoeffUpdate Ratio

4 17,678.54 - 1,073,745,920 - 4,428,398,592 - 3,228,047,874 -
8 19,111.93 1.081 536,879,104 0.500 2,230,910,976 0.503 3,774,100,227 1.169
16 23,648.20 1.237 268,451,840 0.500 1,100,759,040 0.493 4,059,710,337 1.076
32 31,204.01 1.320 134,250,496 0.500 544,346,112 0.495 4,227,746,778 1.041
64 42,223.92 1.353 67,174,400 0.500 270,369,792 0.497 4,362,161,178 1.032
128 66,773.93 1.581 33,685,504 0.500 134,697,216 0.498 4,530,179,178 1.039

Table 4.3: Hensel Lifting timings for Fp[x, y] with p = 231 − 1. Compares the timings and number
of multiplications performed when dx = dy = 2048 for our algorithm.

We wish to demonstrate that changing the number of factors, n, does not affect the execution
time of our algorithm. If you observe column three of Table 4.3, as the value of n doubles, it appears
as though the execution time is increasing as opposed to remaining unchanged. This contradicts
the expected results, so we need to do some additional testing.

By observing our algorithm, Algorithm 12, there are only three sub-algorithms that can be
asymptotically affected by the number of factors: polynomial evaluations (Steps 9, 30), solving
the multi-Diophantine equations (Step 25), and the CoefficientExtraction and CoefficientUpdate
sub-algorithms (Steps 19, 34). So, instead of looking at the execution times of these operations,
we will count the number of multiplications they perform during the execution of Algorithm 12.
We expect that, by changing the number of n factors, the number of multiplications should not
change. By observing the fifth and seventh columns of Table 4.3, we see that doubling the number
of factors causes the number of multiplications to be reduced by a factor approaching one half
when performing evaluations and solving the multi-Diophantine equations. We also see that, in the
ninth column, the number of multiplications appears to be approaching 1.0 when we double the
number of factors for the CoefficientExtraction and CoefficientUpdate algorithms. The results for
the CoefficientExtraction and CoefficientUpdate algorithms were as expected, but the results for
the other two sub-algorithms were not expected.

Consider the number of times that the polynomial evaluation and solving the multi-Diophantine
equations sub-algorithms are called. They are only used if we are trying to find non-zero polynomi-
als σ1, ..., σn to update the factors f (k)

i in the kth iteration. In other words, we only call those two

72

subroutines if ck 6= 0 in the kth iteration of Algorithm 12. In our experiments, we let the degree
in y of each of the n factors be equal to d/n. Therefore, after d/n iterations of the main loop of
our algorithm, we will have found the complete factorization of A. So, if we double n, it takes
half as many iterations to find a factorization of A, and there are half as many calls to perform
polynomial evaluation and solve multi-Diophantine equations. This is confirmed in the fifth and
seventh columns of Table 4.3. Therefore, we have confirmed that changing the number of factors
when using our algorithm doesn’t affect the number of multiplications done. Therefore, the number
of factors does not asymptotically affect the complexity of Algorithm 12.

This leads to the question: why does increasing the number of factors significantly increase
the execution time of our algorithm? This is only speculation, but the reason for the increase in
execution time is most likely the workstation accessing the data stored for our algorithm. There
are several arrays in our code of size n× dx × (dy + 1), including G which we use in the Coefficien-
tExtraction algorithm. These arrays double in size as we double n, so it would take longer to go
through the arrays and extract the necessary data.

73

Chapter 5

Conclusion

We have created a new Hensel Lifting algorithm which calculates a factorization of a monic
polynomial A(x, y) over a finite field Fp by lifting n ≥ 2 bivariate factors from univariate images.
Let A have degree dx and dy in variables x and y respectively. The algorithm we have created does
O(dx 2dy + dx d

2
y) arithmetic operations in Fp to Hensel lift n factors of A.

Our algorithm was based on Bernardin’s algorithm[2]. We made two major improvements to his
algorithm. We showed that using polynomial evaluation, interpolation, and point-wise multiplica-
tion to calculate ∆(x) uses fewer arithmetic operations than univariate polynomial multiplication.
We have also shown that we can remove a factor of n from the cost of Bernardin’s algorithm by
minimizing the number of multiplications done by every subroutine. Both of these changes lead to
an improvement from O(nd2

x d
2
y) arithmetic operations in Fp to O(dx 2dy + dx d

2
y).

Finally, we consider the results in Chapter 4. We have shown, in practice, that our algorithm
is more efficient than Bernardin’s algorithm for polynomials with a degree greater than 20 in x

and y. We have also confirmed, through execution time and the number of multiplications done,
that our algorithm is cubic in the degree of A. Finally, we have demonstrated that while increasing
the number of factors does slightly increase the number of multiplications performed by the Coef-
ficientExtraction algorithm, it does not change the complexity.

In summary, Chapter 1 covered the classical Hensel Lifting algorithm for factoring polynomials
in Z[x] and showed how Bernardin improved upon it to create an algorithm to factor polynomials
in Fp[x, y] into n ≥ 2 factors. Then, in Chapter 2, we discussed well-known algorithms that were
needed in our algorithm. In Chapter 3, we outlined our improvements to Bernardin’s algorithm,
stated our new algorithm, and proved that our algorithm uses O(d2

x dy + dx d
2
y) arithmetic opera-

tions in Fp. Finally, in Chapter 4, we presented some benchmarks for the implementation of our
algorithm in C, as well as analysis of the results. The results showed that our algorithm runs faster
than Bernardin’s algorithm and verifies that it uses O(d2

x dy + dx d
2
y) arithmetic operations in Fp.

74

Throughout this thesis, we have shown that our algorithm is superior to Bernardin’s algorithm in
theory and in practice.

We conclude this thesis with a look at what is to come. First and foremost, we would like to
investigate the case when A and the factors f1, ..., fn are not monic in x. We started with the monic
case because it is easier to work with. In [18], Monagan showed that the two factor case can be
modified to work for the non-monic case. After that, we hope to find a proof for Conjecture 1.17.
Finally, we hope to apply our method to improve the algorithm described by Monagan and Tuncer
in [18]. They developed an algorithm to use Hensel Lifting to find a factorization of multivariate
polynomials in m variables. They use evaluation to reduce the multivariate polynomial to many
bivariate images, then use bivariate Hensel Lifting to factor the images, and finally use sparse
interpolation to recover the factorization of the original multivariate polynomial. Their algorithm
would benefit from using our algorithm to perform their bivariate lifts.

75

Bibliography

[1] J. L. Berggren, Sharaf Al-Dīn Al-T̄ius̄ii, Roshdi Rashed, and Sharaf Al-Din Al-Tusi. Innovation
and Tradition in Sharaf Al-d̄in Al-t̄is̄is Mu’ādalāt. Journal of the American Oriental Society,
110(2):304–309, 1990.

[2] Laurent Bernardin. On bivariate Hensel lifting and its parallelization. Proceedings of the 1998
International Symposium on Symbolic and Algebraic Computation - ISSAC 98, pages 96–100,
1998.

[3] David G. Cantor and Hans Zassenhaus. A New Algorithm for Factoring Polynomials Over
Finite Fields. Mathematics of Computation, 36(154):587–587, 1981.

[4] David A. Cox, John B. Little, and Donal OShea. Ideals, varieties, and algorithms: an intro-
duction to computational algebraic geometry and commutative algebra. Springer, 3 edition,
2008.

[5] John B. Fraleigh. A First Course in Abstract Algebra. Pearson, 7 edition, 2014.

[6] Joachim von zur Gathen and Gerhard Jürgen. Modern Computer Algebra. Cambridge Univer-
sity Press, 3 edition, 2013.

[7] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer
Academic, 1992.

[8] Lieuwe De Jong and Jan Van Leeuwen. An Improved Bound on the Number of Multiplications
and Divisions necessary to Evaluate a Polynomial and all its Derivatives. ACM SIGACT News,
7(3):32–34, 1975.

[9] Erich Kaltofen. Sparse Hensel Lifting. EUROCAL 85 Lecture Notes in Computer Science,
pages 4–17, 1985.

[10] Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given by Black Boxes for
Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and
Denominators. Journal of Symbolic Computation, 9(3):301–320, 1990.

[11] D. E. Knuth. The Art of Computer Programming. 2.ed. 2: Seminumerical algorithms. Addison-
Wesley, 1981.

[12] Martin Mok-Don Lee and Gerhard Pfister. Factorization of Multivariate Polynomials. PhD
thesis, Simon Fraser University, 2013.

76

[13] Erik Meijering. A Chronology of Interpolation: From Ancient Astronomy to Modern Signal
and Image Processing. In Proceedings of the IEEE, pages 319–342, 2002.

[14] M. Mignotte. Some Useful Bounds. Computing Supplementa Computer Algebra, pages 259–263,
1983.

[15] Alfonso Miola and David Y. Y. Yun. Computational Aspects of Hensel-type Univariate Poly-
nomial Greatest Common Divisor Algorithms. SIGSAM Bull., 8(3):46–54, August 1974.

[16] Michael Monagan. Linear Hensel Lifting for Zp[x, y] and Z[x] with Cubic Cost. To appear
in Proceedings of the 2019 International Symposium on Symbolic and Algebraic Computation,
2019.

[17] Michael Monagan and Baris Tuncer. Using Sparse Interpolation in Hensel Lifting. volume
9890, pages 381–400, 09 2016.

[18] Michael Monagan and Baris Tuncer. Sparse Multivariate Hensel Lifting: A High-Performance
Design and Implementation. Mathematical Software - ICMS 2018 Lecture Notes in Computer
Science, pages 359–368, 2018.

[19] Norman R. Reilly. Introduction to Applied Algebraic Systems. Oxford University Press, 2010.

[20] Mary Shaw and J. F. Traub. On the Number of Multiplications for the Evaluation of a
Polynomial and Some of Its Derivatives. J. ACM, 21(1):161–167, January 1974.

[21] Paul Wang. An Improved Multivariate Polynomial Factoring Algorithm. Mathematics of
Computation, 32:1215–1231, 01 1978.

[22] Paul S. Wang. Parallel Polynomial Operations on SMPs: an Overview. Journal of Symbolic
Computation, 21(4-6):397–410, 1996.

[23] Paul S. Wang and Linda Preiss Rothschild. Factoring Multivariate Polynomials Over the
Integers. Mathematics of Computation, 29(131):935–950, 1975.

[24] Edward Waring. VII. Problems concerning Interpolations. Philosophical Transactions of the
Royal Society of London, 69:59–67, 1779.

[25] Hans Zassenhaus. On Hensel Factorization, I. Journal of Number Theory, 1(3):291–311, 1969.

77

Appendix A

Code

78

Figure A.1: Maple Code for our Cubic Algorithm part 1

79

Figure A.2: Maple Code for our Cubic Algorithm part 2

80

Figure A.3: Maple Code for the Coefficient Extraction Algorithm

81

Figure A.4: Maple Code for the Coefficient Update Algorithm

82

Figure A.5: Maple Code for which generates polynomials for the Diophantine Equation

Figure A.6: Maple Code for solving the Multi-Diophantine Equation for n factors

83

	Approval
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Historical Hensel Lifting in Z[x]
	Solving a polynomial Diophantine equation
	Hensel's Lemma
	Hensel Lifting in Z[x] for two factors
	The cost of Hensel Lifting mod pm
	Quadratic Hensel Lifting in Z[x]

	Hensel Lifting in Fp[x,y]
	Bernardin's algorithm
	Cost of Bernardin's algorithm

	Tools
	Horner's method
	Solving polynomial Diophantine equations
	The n=2 factor case
	The n>2 factor case

	Polynomial interpolation
	Base conversion

	The Cubic Algorithm
	Algorithm
	Analysis
	Evaluation points
	Generating Lagrange basis polynomials
	Base conversion
	Polynomial evaluation
	CoefficientExtraction and CoefficientUpdate
	Lagrange interpolation
	Multi-Diophantine polynomial equation
	Total cost

	Small finite fields and general finite fields.
	Optimizations for Fp[x,y]

	Benchmarks
	Conclusion
	Bibliography
	Appendix Code

