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Abstract

Let a be a polynomial in Z[x1, · · · , xn] that is represented by a black box. In this thesis, we
have designed and implemented a new factorization algorithm that, on input of the black
box, outputs the irreducible factors of a in the sparse representation. Our new algorithm
based on sparse Hensel lifting applies equally well to general multivariate polynomials, both
sparse and dense. We first designed the algorithm for a being monic in x1 and square-free,
then completed the factorization problem by considering a being non-monic, non-square-
free, and non-primitive. Our algorithm first finds the factors of the primitive part of a, then
the factors of the content of a in the main variable x1. We implemented our algorithm in
Maple with some subroutines in C. A variety of timing benchmarks are presented. All our
timings are much faster than the current best determinant and factorization algorithms in
Maple and Magma. We also present a worst-case complexity analysis of our new black box
factorization algorithm, along with a failure probability analysis. The case for large integer
coefficients has also been considered.

Keywords: sparse Hensel lifting; multivariate polynomial factorization; black box factor-
ization; determinant computation
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Chapter 1

Introduction

1.1 Multivariate polynomial factorization: a brief history

Polynomial factorization is one of the central problems in computer algebra. It has many
applications in other fields such as algebraic coding theory, cryptography, number theory
and algebraic geometry [19]. In this thesis, we consider the following problem (Problem P)
of factoring a multivariate polynomial over the ring of integers. Our work focuses on the
design, analysis and implementation of algorithms to solve Problem P.

Problem P: Given a polynomial a ∈ Z[x1, · · · , xn], compute the irreducible factors of
a with coefficients in Z.

Note that we do not factor the integer content. For example, in 6x2−6y2 = 6(x+y)(x−y),
we will not factor the integer content 6.

One of the main algorithmic tools for solving Problem P is sparse Hensel lifting (SHL).
Hensel lifting was initially used for factoring univariate polynomials over the integers [59].
Zassenhaus’s algorithm [59], developed in 1969, first factors the polynomial mod p, then
Hensel lifts the factors to mod p2k . For factoring univariate polynomials over finite fields,
see [3, 7] for early references. The Cantor-Zassenhaus algorithm from 1981 [7] is a Las Vegas
algorithm for factoring a univariate polynomial a prime field Fp. It is implemented in many
computer algebra systems including Maple and Magma.

The idea of Hensel lifting can be extended to multivariate polynomials. All multivari-
ate polynomial factorization algorithms reduce to univariate factorization in Z[x1]. For
multivariate polynomial factorization algorithms that use Hensel lifting, Hensel lifting is
performed to recover the variables x2, · · · , xn in the factors. Sparse Hensel lifting is an
improvement upon the classical multivariate Hensel lifting (MHL) originally developed by
Yun [58] and Wang [54]. Wang’s multivariate Hensel lifting algorithm has been implemented
in many computer algebra systems including Maple, Magma, Macsyma, Mathematica and
Singular, and it is still widely used today.
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To factor a multivariate polynomial a ∈ Z[x1, x2, · · · , xn], Wang’s algorithm [54] first
chooses integers α2, . . . , αn and factors the univariate image a(x1, α2, . . . , αn) in Z[x1]. Then
it recovers the multivariate factors from their images one variable at a time by solving
multivariate polynomial Diophantine equations (MDPs) one variable at a time. For a detailed
description of Wang’s multivariate Hensel lifting we refer the reader to Chapter 6 of [19].

It is known that when factors are sparse and the evaluation points α2, . . . , αn are mostly
non-zero, Wang’s algorithm for solving MDPs can be exponential in the number of variables
[43, 46]. In 1981, Zippel [61] gave the first polynomial-time randomized algorithm that
takes advantage of sparsity. Another well-known sparse Hensel lifting (SHL) algorithm was
developed by Kaltofen in 1985 [27].

In 2016, Monagan and Tuncer [43] contributed a new sparse Hensel lifting algorithm
which they call MTSHL. It outperforms the previous sparse Hensel lifting algorithms and it
solves the MDPs that appear in Wang’s algorithm in random polynomial time. Algorithm
MTSHL was integrated into Maple 2019 for multivariate polynomial factorization [47].

In 2018, Monagan and Tuncer [45] gave another approach that does not solve MDPs.
Instead, at each Hensel lifting step, their algorithm interpolates the factors from many
bivariate images obtained from bivariate Hensel lifts (BHL). The classical bivariate Hensel
lifting algorithm by Bernardin [4] costs O(d2

xd
2
y) arithmetic operations in Zp on input a ∈

Zp[x, y], where dx = deg(a, x) and dy = deg(a, y). In 2022, Monagan and Paluck [48]
developed a cubic BHL algorithm which costs O(d2

xdy + dxd
2
y) arithmetic operations in Zp.

Based on [45], Chen and Monagan [8] developed a highly parallelizable algorithm in 2020
which they call CMSHL. Algorithm CMSHL no longer does any multivariate polynomial
arithmetic, and it eliminated a long standing problem of expression swell. A worst case
complexity analysis for both MTSHL and CMSHL is presented in [8].

However, the dominating cost of CMSHL in practice is often evaluating the input poly-
nomial a(x1, . . . , xn) at many points since the polynomial a(x1, . . . , xn) is stored using a
sparse representation. For this reason, we considered the black box representation of a in-
stead to reduce the cost of evaluating a. The memory space needed to store a in its sparse
representation is also saved. An example is factoring the determinant of a matrix A with
multivariate polynomial entries. Usually the factors of a = detA ∈ Z[x1, . . . , xn] have a lot
fewer terms than a. Our goal is to compute the factors of a in their sparse representation.

In 1990, Kaltofen and Trager [31] contributed the first black box factorization algorithm
for multivariate polynomials with coefficients in a field. Their algorithm first computes the
black boxes of the factors, then the sparse representation of the factors can be recovered
using sparse polynomial interpolation. Early references for sparse polynomial interpolation
include [2, 32, 62]. For a recent bibliography we refer the reader to Roche [50]. In 1994,
a simpler algorithm for factoring polynomials in Z[x1, · · · , xn] was presented by Rubinfeld
and Zippel [51]. Instead of using bivariate transformations to compute black boxes of the
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factors in [31], Rubinfeld and Zippel’s algorithm uses simple integer evaluations for each
variable x2, · · · , xn and factors many univariate polynomials in Z[x1].

Another implicit polynomial representation called the straight-line program (SLP) was
considered prior to the black box representation. Several articles on factorization and com-
puting the greatest common divisors with polynomials given by straight-line programs were
published by Kaltofen in the late 1980’s [29, 28, 30]. However, the black box representation
is superior to the straight-line program model in many ways [31]. For example, in the SLP
representation one must have access to the code. We have chosen to use the black box
representation.

In 2022, Chen and Monagan [9] contributed a new black box factorization algorithm that
computes the factors in the sparse representation directly by a modified CMSHL algorithm.
The algorithm in [9] works if a is monic in x1 and square-free. It outperforms Rubinfeld and
Zippel’s method as it requires fewer probes to the black box [10]. The non-monic, non-square-
free and non-primitive cases have also been worked out and the complete factorization
algorithm is presented in [10] with various timing benchmarks. This new algorithm is called
CMBBSHL. A complexity analysis with failure probabilities for algorithm CMBBSHL is
also given in [10].

If the polynomial a is dense then alternative methods for factoring should be considered.
We cite the work of Lecerf [35] who factors a in Q[[x2, . . . , xn]][x1] and uses fast arithmetic
for power series in Q[[x2, . . . , xn]].

Another recent algorithm for sparse polynomial factorization that does not use Hensel
lifting at all is described in a paper by Huang and Gao [23] in 2023. The main idea of their
algorithm is that a multivariate polynomial a(x1, · · · , xn) ∈ Z[x1, · · · , xn] is reduced to a
univariate polynomial with a substitution xi = piy

si for i = 1, · · · , n, where si is selected
at random from [0, 9

2T (T − 1)]. The integer T = ∑r
ρ=1 #fρ is the sum of the number of

terms in the irreducible factors fρ. The distinct primes p1, · · · , pn are selected at random
from [N + 1, 2N ] for some large number N . Since the terms in the irreducible factors of
a(x1y

si , · · · , xnysn) are separated with respect to y with a probability ≥ 1 − ε (i.e. each
coefficient of fρ(x1y

si , · · · , xnysn) in y contains only one monomial in fρ(x1, · · · , xn)), the
monomials can be recovered by trial divisions using the pi’s. Therefore, the problem of
multivariate polynomial factorization is reduced to one univariate factorization. However,
when T is large, a large degree univariate polynomial is created, and factoring it becomes
expensive. Thus, their algorithm is not efficient for factoring polynomials with many terms.

1.2 Contributions

This thesis is based on the following three published papers co-authored with my PhD
supervisor Prof. Michael Monagan.
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1. T. Chen and M. Monagan. The complexity and parallel implementation of two sparse
multivariate Hensel lifting algorithms for polynomial factorization. In Proceedings of
CASC 2020, LNCS 12291, 150–169. Springer (2020) [8]

2. T. Chen and M. Monagan. Factoring multivariate polynomials represented by black
boxes: A Maple + C Implementation. Math. Comput. Sci. 16,18 (2022) [9]

3. T. Chen and M. Monagan. A new black box factorization algorithm - the non-monic
case. In Proceedings of ISSAC 2023, pp. 173–181. ACM (2023) [10]

The first paper improves upon Monagan and Tuncer’s sparse Hensel lifting algorithm
MTSHL [45]. I improved their algorithm to eliminate an expression swell, so it no longer
does any multivariate polynomial arithmetic. It is also highly parallelizable. We call this
algorithm CMSHL. I did a worst case complexity analysis for both MTSHL and CMSHL,
presented in Section 4.4 of this thesis. In Chapter 4, Sections 4.3 and 4.4 are my new
contributions.

The second paper presents a new black box factorization from a modified CMSHL algo-
rithm (Approach II, as indicated in Figure 1.4). It works for a(x1, · · · , xn) monic in x1 and
square-free only. I designed the algorithm at Prof. Monagan’s suggestion to use a black box
representation. I implemented the algorithm with a Maple + C hybrid implementation. Two
sets of timing benchmarks are presented. The first benchmark computes the determinant
of symmetric Toeplitz matrices. Let Tn be an n × n symmetric Toeplitz matrix. I believe
that I am the first to compute the factors of det(T16) with factors expressed in the sparse
representation. I can factor det(T16) in 4877 seconds. Timings are presented in Section 5.3.2.
In Chapter 5, Section 5.3 is my new contribution.

The third publication which was presented at ISSAC 2023, completes the black box
factorization problem P2. I call my new algorithm CMBBSHL. I designed and implemented
the algorithm to handle all cases of input polynomials, i.e. non-monic, non-square-free and
non-primitive cases. For the non-primitive case, I also implemented the code for recursively
computing the content. After the conference in July 2023, I finished the benchmarks for
content computation (Tables 6.3 – 6.7). A variety of timing benchmarks are presented in
Section 6.3. I further considered the case for large integer coefficients and coded that in
Maple. A timing benchmark for large integer coefficients is presented in Section 6.5. All of
Chapter 6 is my new contribution.

I further improved the timings of computing the determinants of Toeplitz matrices
det(Tn) for n = 12, · · · , 16 by integrating a Maple implementation of the fast Vandermonde
solver of Kaltofen and Yagati [32]. The new timing benchmarks are in Section 5.3 (see
Tables 5.3 and 5.4).
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1.3 Thesis outline

This thesis is organized as follows. Chapter 1 gives an introduction. Chapter 2 gives a code
demo for my new black box factorization algorithm CMBBSHL. Chapter 3 describes es-
sential tools (both mathematical and computational) used for designing both sparse Hensel
lifting algorithms CMSHL and CMBBSHL. Chapter 4 presents details of algorithm CMSHL
[8] which is used for factoring a polynomial in its sparse representation. Chapter 5 describes
my new black box factorization algorithm CMBBSHL for the monic and square-free case
only [9]. Chapter 6 presents the complete black box factorization algorithm CMBBSHL. It
includes the non-monic, non-square-free, non-primitive and large integer cases with a variety
of timing benchmarks. The chapter ends with a detailed complexity analysis with failure
probabilities. Chapter 7 presents some implementation details of CMBBSHL. Chapter 8 is
a summary of this thesis and a description of a few open problems.

1.4 Preliminary concepts and notations

We denote Z as the set of integers, Z+ as the set of positive integers, N the set of non-negative
integers, and Q the set of rational numbers. Let m be the set of all integers which have the
same remainder as m when divided by p, where p is a prime. The set {0, 1, · · · , p− 1} is a
field and it is denoted by Zp.

Let R be a commutative ring. Let R[x1, · · · , xn] denote the set of all multivariate polyno-
mials in the indeterminates x1, · · · , xn with coefficients lying in the ring R. For our problem
of interest, R = Z, which is a unique factorization domain (UFD). If R is a UFD, then
R[x1, · · · , xn] is also a UFD (Theorem 2.7 in [19]).

We can also view the multivariate polynomial domain R[x1, · · · , xn] as a univariate poly-
nomial domain (R[x2, · · · , xn])[x1], for example, since R[x1, · · · , xn] and (R[x2, · · · , xn])[x1]
are isomorphic. Here, x1 is a chosen main variable and the coefficients are in R[x2, · · · , xn].

Definition 1.4.1. Let a ∈ R[x1, · · · , xn]. The total degree of a multivariate monomial
xe1

1 · · ·xenn is ∑n
j=1 ej , where ej ∈ N [18]. The total degree of a, denoted as deg(a), is the

maximal total degree of its monomials.

Definition 1.4.2. The individual degrees of a ∈ R[x1, · · · , xn], denoted as deg(a, xj), are
the degrees of a in each variable xj for 1 ≤ j ≤ n.

Definition 1.4.3. Suppose that the terms in a non-zero multivariate polynomial a ∈
R[x1, · · · , xn] have been arranged in (pure or graded) lexicographically decreasing order with
x1 > x2 > · · · > xn. The first term is called the leading term, denoted as LT(a), and its
coefficient is called the leading coefficient, denoted as LC(a).

Definition 1.4.4. Let a ∈ R[x1, · · · , xn]. If LC(a) = 1, we say the polynomial a is monic
(Section 2.6 of [19]). The leading coefficient of a in xj is denoted as LC(a, xj), a polynomial
in R[x2, · · · , xj−1, xj+1, · · · , xn]. If LC(a, xj) = 1, we say the polynomial a is monic in xj .
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We denote #a as the number of non-zero terms of a ∈ R[x1, · · · , xn].
Note: For the context of the monic case of bivariate Hensel lifting, CMSHL and CMBB-

SHL, we mean a is monic in x1.

Example 1. For example, with w > x > y > z,

a = 11w3xz − 49x3yz − 29x2y2 + 95z4 − 8w3 − 61 ∈ Z[w, x, y, z]

= (95x)z4 + (11w3x− 49x3y)z − 29x2y2 − 8w3 − 61 ∈ Z[w, x, y][z]

Here, #a = 5, deg(a) = 5, LC(a) = 11, deg(a, z) = 4 and LC(a, z) = 95x.

Definition 1.4.5. Let a ∈ Z[x1, · · · , xn] be a non-zero polynomial. Suppose the terms of
a have been arranged in (pure or graded) lexicographically decreasing order with x1 > x2 >

· · · > xn. We define the sign of a as

sign(a) =

1, if LC(a) ≥ 0,

−1, if LC(a) < 0.
(1.1)

Definition 1.4.6. (Definition 2.18 in [19]) Let a ∈ Z[x2, · · · , xn][x1]. Let d1 = deg(a, x1)
and a = ∑d1

i=1 aix
i
1 with ai ∈ Z[x2, · · · , xn]. The content of a, denoted as Cont(a), is the

unique GCD of all coefficients of a s.t. sign(Cont(a)) = 1, i.e. Cont(a) = gcd(a0, a1, · · · , ad1).

Note: For practical purpose of our algorithm design, the word ‘content’ is referred as a
generic content, defined below.

Definition 1.4.7. Let a ∈ Z[x2, · · · , xn][x1]. The generic content cont(a) is defined as

cont(a) = sign(a) · Cont(a). (1.2)

Definition 1.4.8. Let a ∈ Z[x1, · · · , xn]. The integer content of a is the unique non-negative
GCD of all integer coefficients of a, denoted as iCont(a). Similar to the generic content, we
also have the generic integer content defined as

icont(a) = sign(a) · iCont(a). (1.3)

Definition 1.4.9. A non-zero polynomial a ∈ Z[x2, · · · , xn][x1] is primitive if Cont(a) = 1
and sign(a) = 1. The primitive part of a, denoted as pp(a), is defined as

pp(a) = a

sign(a) · Cont(a) = a

cont(a) . (1.4)

Thus, any non-zero a ∈ Z[x2, · · · , xn][x1] can be uniquely represented in the form

a = sign(a) · Cont(a) · pp(a) = cont(a) · pp(a). (1.5)
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Example 2. Let a = (−3x2−3x3−3)x1−3x2
2−6x2x3−3x2

3−6x2−6x3−3 ∈ Z[x2, x3][x1].
Its irreducible factorization over Z is:

a = −3(x2 + x3 + 1)(x1 + x2 + x3 + 1).

In this case, sign(a) = −1, Cont(a) = 3(x2 + x3 + 1) (a is not primitive), cont(a) =
−3(x2 + x3 + 1), pp(a) = x1 + x2 + x3 + 1, icont(a) = −3 and iCont(a) = 3.

1.5 Sparse polynomials and sparse representation

Various definitions for sparse polynomials exist in the literature. We shall use the following
definition by Monagan [41] to distinguish a sparse polynomial from a dense polynomial.

Definition 1.5.1. Let a ∈ Z[x1, · · · , xn] and let d = deg(a) be the total degree of a. The
maximum possible number of terms in a is T =

(n+d
d

)
. We say a is sparse if #a ≤

√
T .

Example 3. a = 11x5
1 + 4x3

1x2x4 − 9x3
1x4 + 7x1x

2
2x3 + 20x3

2x3x4 is sparse. In this case,
n = 4, d = 5, T =

(n+d
d

)
= 126.

√
T ≈ 11.225 and #a = 5 <

√
T .

One might be inclined to think that sparse polynomials also have sparse irreducible
factors. However, this is not always the case as shown in the following example [27].

Example 4. Let a = x401y23 − x401 − y23 + 1 ∈ Z[x, y]. Factoring a gives

a = (y − 1) (y22 + y21 + · · ·+ y + 1)︸ ︷︷ ︸
23 terms

(x− 1) (x400 + x399 + · · ·+ x+ 1)︸ ︷︷ ︸
401 terms

.

In this case, n = 2, d = 424, T =
(n+d
d

)
= 90525 and

√
T ≈ 300.87. #a = 4 < 300.87 so a

is sparse by Definition 1.5.1. However, one of the factors of a has 401 terms and it is not
sparse as 401 >

√
T .

The current best known bound for the number of terms of the factors of a polynomial
is give by Bhargava et al [5]. They proved that for a ∈ F[x1, · · · , xn] where F is a field, with
individual degrees of its variables bounded by dmax, i.e. deg(a, xj) ≤ dmax for all 1 ≤ j ≤ n,
the number of terms of each factor of f is bounded by (#a)O(d2

max logn).
However, in practice and in theory, the number of terms of each irreducible factor of a

is almost always less than #a.
On the other hand, from a computer science standpoint, a sparse or dense polynomial

can also be classified by its data structure or representation [50]. A dense representation
of a polynomial a ∈ Z[x1, · · · , xn] stores its zero coefficients. For example, the polynomial
a = x3 + y3 − 2xy ∈ Z[x, y] can be stored as an array of arrays

[[0, 0, 0, 1], [0,−2, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0]].
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The sub-arrays represent the coefficients of a in x (i.e. a polynomial in Z[y] represented by
coefficients of y0, y1, y2, y3).

There is also a recursive dense representation [17]. For example, in Maple’s RECDEN
data structure [22], the polynomial x3 + y3 − 2xy is stored as

[[0, 0, 0, 1], [0,−2], 0, [1]].

For a sparse representation, we employ the following definition (Section 16.6 of [18]):

Definition 1.5.2. The sparse representation of a polynomial a ∈ Z[x1, · · · , xn] consists of
a list of coefficients ck 6= 0, ck ∈ Z and distinct exponent vectors ~ek = (ek1 , · · · , ekn) ∈ Nn

s.t.

a =
#a∑
k=1

ck · x
ek1
1 · · ·xeknn , (1.6)

where #a is the number of non-zero terms of a.

Definition 1.5.3. Let a ∈ Z[x1, · · · , xn] be represented as in (1.6). The max-norm (also
known as the height) of a, denoted as ‖a‖∞ is defined as

‖a‖∞ = #amax
k=1
|ck|. (1.7)

It is the largest absolute value of the coefficients of a. E.g. ‖2x1 − 3‖∞ = 3.

Example 5. Maple’s POLY data structure [42] is a sparse representation. Figure 1.1 illus-
trates how Maple stores the polynomial a = 5x9

4− 2x3
2x

5
3 + x4

1. The exponents are stored as
64-bit integers with their total degrees. Each coefficient is stored next to the exponent.

POLY 8

SEQ 5 x1 x2 x3 x4

︸ ︷︷ ︸
64 bits

9 0 0 0 9 8 0 3 5 0 4 4 0 0 05 −2 1

Figure 1.1: Maple’s POLY data structure for a = 5x9
4 − 2x3

2x
5
3 + x4

1.

A monomial xi1x
j
2x
k
3x

l
4 is encoded in 64 bits as the integer

(i+ k + j + l) · 248 + i · 236 + j · 224 + k · 212 + l
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where we use b64/5c = 12 bits for i, j, k, l and 16 bits for i+j+k+ l. Monomials can then be
compared in the graded lexicographic order with x1 > x2 > x3 > x4 using a 64-bit integer
comparison and multiplied using a 64-bit integer addition provided no overflow occurs.

This representation has a limit for the number of variables stored. The maximum number
of variables can be stored using POLY data structure is 31.

1.6 The black box representation of a polynomial

The sparse representation as defined in (1.6) is a natural, readable and explicit representa-
tion. On the other hand, the black box representation defined in Definition 1.6.1 is implicit.

Definition 1.6.1. Let a ∈ R[x1, · · · , xn] where R is an integral domain, e.g. R = Z. The
black box representation of a is a computer program BB : Rn → R that on input ααα ∈ Rn

computes a(ααα), i.e. BB(ααα) = a(ααα) (see Figure 1.2).

α1

α2

αn

a(α1, ..., αn)...

Figure 1.2: The black box representation of a ∈ R[x1, ..., xn].

We cannot see inside the black box BB. The only thing we can do is to call the black
box at a given point ααα ∈ Rn and obtain its evaluation BB(ααα).

Definition 1.6.2. We define one function call to the black box BB as one probe to BB.

Since algorithm CMBBSHL is modular, we use a modular black box for a ∈ Z[x1, · · · , xn],
defined below.

Definition 1.6.3. A modular black box representation of a ∈ Z[x1, · · · , xn] is a computer
program B : Zn × {p} → Zp that on input ααα ∈ Zn and a prime p outputs B(ααα, p) = a(ααα)
mod p (see Figure 1.3).

α1

α2

αn

a(α1, ..., αn) mod p...

p

Figure 1.3: A modular black box representation of a ∈ Z[x1, ..., xn].
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1.6.1 The Schwartz-Zippel lemma

Given a black box representation BB for a polynomial f ∈ Zp[x1, · · · , xn], what information
can we get from it? Can we determine whether f = 0? Or f = c, a constant function? In
order to answer these questions, we first need the Schwartz-Zippel lemma (also known
as the DeMillo-Lipton-Schwartz-Zippel lemma [52, 60, 15]).

Lemma 1.6.4. (Schwartz-Zippel lemma) Let R be an integral domain and let S ⊆ R
be finite. Let f ∈ F[x1, x2, · · · , xn] be a non-zero polynomial with total degree d. Then the
number of roots of f in Sn is at most d|S|n−1. Hence if βββ is chosen at random from Sn,
then Pr[f(βββ) = 0] ≤ d

|S| .

The Schwartz-Zippel lemma is often used for probabilistically determining whether a
given multivariate polynomial is identically zero by evaluating the polynomial at a single
point. Our sparse Hensel lifting algorithms are modular, i.e. arithmetic operations are per-
formed in Zp during sparse Hensel lifting steps. If a large prime p is used, and the total
degree d of f ∈ Zp[x1, · · · , xn] (f 6= 0) is much less than p, i.e. d� p, then the probability
of evaluating f to be zero is � 1.

A simple way to determine whether f = 0 is to evaluate f at a random point ααα ∈ Zpn

and see if BB(ααα) = 0. If BB(ααα) 6= 0, then f 6= 0. If BB(ααα) = 0, then f = 0 with high
probability (w.h.p.). The failure probability is bounded by d/p, by Lemma 1.6.4.

To determine whether f is a constant function, we first probe the black box BB at
βββ1 = (0, 0, · · · , 0) and let c1 = BB(βββ1). Then another point βββ ∈ Zpn is chosen at random
to test if BB(βββ) − c1 = 0. If not, then f is not a constant function. If yes, f is a constant
w.h.p. and the failure probability is mostly d/p, again by Lemma 1.6.4.

In fact, if a polynomial a ∈ Z[x1, · · · , xn] is represented by a black box BB (or a modular
black box B), the sparse representation of a can be computed in random polynomial time
by sparse polynomial interpolation (see for example, [2, 32, 62]).

Without interpolating the polynomial a, we can also determine some other information.
For example, the total degree of a (see Section 1.6.2 for details) and the individual degrees
of a (Section 3.1) can be computed w.h.p.

1.6.2 Computing the total degree of a polynomial

Given a modular black box B : Zn × {p} → Zp for a ∈ Z[x1, · · · , xn], we can compute the
total degree of a, deg(a), with high probability (see Algorithm 3). The method presented
in this section is based on Prof. Monagan’s lecture notes in Computer Algebra [40], which
is different from the algorithm by Kaltofen and Trager [31].

In order to compute deg(a), the multivariate polynomial a is first transformed to a
univariate polynomial by the following formula

g(z) = a(β1z, β2z, · · · , βnz) ∈ Z[z] (1.8)
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Algorithm 1 Construct Ug : Z× {p} → Zp for g(z) ∈ Z[z].
Input: A black box B : Zn × {p} → Zp representing a ∈ Z[x1, · · · , xn],

a large prime p, β1, · · · , βn ∈ Zp.
Output: A black box Ug : Z× {p} → Zp s.t. Ug(γ, p) = g(γ) mod p.

1: Ug = procedure( γ, p ) // γ ∈ Z
2: βββγ ← (β1γ, · · · , βnγ).
3: return B(βββγ , p) // B(βββγ , p) = a(β1γ, · · · , βnγ) mod p = g(γ) mod p.
4: end procedure
5: return Ug

Algorithm 2 UnivDeg: Compute the degree of f(x) ∈ Z[x] w.h.p.
Input: A black box U : Z× {p} → Zp representing f(x) ∈ Z[x], a large prime p.
Output: deg(f) with high probability.

1: g−1 ← 0; k ← 0; m← 1.
2: while true do
3: Pick αk ∈ Zp at random s.t. m(αk) 6= 0.
4: yk ← U(αk, p). //yk = f(αk) mod p
5: vk ← (yk − gk−1(αk))/m(αk).
6: if vk = 0 then return k − 1 end if
7: gk ← gk−1 + vk ·m.
8: m← m · (x− αk).
9: k ← k + 1.

10: end while

Algorithm 3 TotalDeg: Compute the total degree of a(x) ∈ Z[x1, · · · , xn] w.h.p.
Input: A modular black box B : Zn × {p} → Zp representing a(x) ∈ Z[x1, · · · , xn].
Output: deg(a) with high probability.

1: Pick a large prime p.
2: Pick β1, · · · , βn ∈ Zp at random.
3: Construct a black box Ug : Z× {p} → Zp for g(z) = a(β1z, · · · , βnz) by Algorithm 1.
4: return UnivDeg(Ug, p)

where βββ = (β1, · · · , βn) ∈ Zpn is chosen at random. We construct a modular black box
Ug : Z× {p} → Zp for g(z) ∈ Z[x] by Algorithm 1.

By computing the degree of g(z) ∈ Z[x] w.h.p. (Algorithm 2), we obtain d = deg(a)
w.h.p. (Algorithm 3). The failure probabilities of Algorithm 2 and Algorithm 3 are given
by Proposition 1.6.5 and Theorem 1.6.7 respectively.

Algorithm 2 (UnivDeg) computes the degree of a univariate polynomial f(x) ∈ Z[x]
represented by a modular black box U : Z×{p} → Zp. Let α0, α1, · · · , αd be distinct points
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in Zp and suppose d < p. Let f(x) ∈ Z[x] be written in the Newton form as

f(x) = v0 + v1(x− α0) + v2(x− α0)(x− α1) + · · ·+ vd(x− α0) · · · (x− αd−1)

+ vd+1︸ ︷︷ ︸
=0

(x− α0) · · · (x− αd) + · · ·

where vk ∈ Z for k = 0, 1, · · · , and d = deg(f). This renders unique vk’s with vd 6= 0 and
vk = 0 for k ≥ d+ 1. Algorithm 2 computes vk for k = 0, 1, · · · , until the first vk = 0.

Proposition 1.6.5. Let f(x) ∈ Z[x] and d = deg(f). Let p be a large prime and suppose
d < p. Assume deg(f mod p) = d. Let dU be the output from Algorithm 2 (UnivDeg). Then,

Pr[dU < d] ≤ d2

p− d+ 1 . (1.9)

Proof. By assumption, deg(f) = deg(f mod p). Thus, vd 6= 0 mod p. Thus, Algorithm 2
returns dU < d if vk = 0 for some k ∈ {0, · · · , d− 1}.

vk = 0 ⇐⇒ f(αk)︸ ︷︷ ︸
yk

−gk−1(αk) = 0.

Let h(x) = f(x)−gk−1(x). Since deg(f) = d and deg(gk−1) = k−1, deg(h) = d. Since there
are p− k choices for αk /∈ {α0, · · · , αk−1}, we have for k ∈ {0, · · · , d− 1},

Pr[vk = 0] = Pr[h(αk) = 0] ≤ deg(h)
p− k

= d

p− k
.

Thus,

Pr[v0 = 0 or v1 = 0 or · · · or vd−1 = 0] ≤ d

p
+ d

p− 1 + · · ·+ d

p− d+ 1 ≤
d2

p− d+ 1 .

W.l.o.g, let p be a 63-bit prime, i.e. p ∈ (262, 263). Let P63 = {all 63-bit primes}. The
number of 63-bit primes, |P63|, can be estimated using the prime number theorem, i.e.

π(N) ∼ N

log(N) , (1.10)

where π(N) is the prime-counting function that counts the number of primes less than or
equal to N ∈ Z+ and log(N) is the natural logarithm of N .

The number of 63-bit primes is approximately

|P63| = π(263)− π(262) ∼ 263

log(263) −
262

log(262) ≈ 1.039× 1017. (1.11)
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Choosing a prime at random from P63 is non-trivial. We shall discuss this problem in
Chapter 8. For now, we assume this can be done computationally.

Proposition 1.6.6. Let a ∈ Z[x1, · · · , xn]. Let g(z) = a(β1z, β2, z, · · · , βnz) ∈ Z[z] where
βββ = (β1, · · · , βn) ∈ Zpn is chosen at random. Let az = a(x1z, · · · , xnz) ∈ Z[x1, · · · , xn][z]
and let Hs be the smallest absolute value of the coefficients of LC(az). Let d = deg(a) and
p ∈ P63 be chosen at random. Then,

Pr[deg(g mod p) < deg(a)] ≤ d

p
+
⌊ log2(Hs)

62

⌋ 1
|P63|

. (1.12)

Proof. Let dg = deg(g mod p). We have

dg < d ⇐⇒ LC(az)(βββ) = 0 mod p.

This happens if p|LC(az) or if p - LC(az), LC(az)(βββ) = 0 mod p.
Since Hs has at most blog2(Hs)/62c prime divisors from P63,

Pr[p|LC(az)] ≤ Pr[p|Hs] ≤
⌊ log2(Hs)

62

⌋ 1
|P63|

.

Thus,

Pr[dg < d] = Pr[LC(az)(βββ) = 0 mod p | p - LC(az)] + Pr[p|LC(az)]

≤ d

p
+
⌊ log2(Hs)

62

⌋ 1
|P63|

.

The first term above is obtained from the Schwartz-Zippel lemma (Lemma 1.6.4).

Example 6. Let a = 7x1x
4
3 − 13x3

2x
2
3 + 2x1x

2
2 + 3x2

1 ∈ Z[x1, · · · , x3]. Let p = 262 + 135.
Then, az = (7x1x

4
3− 13x3

2x
2
3)z5 + 2x1x

2
2z

3 + (3x2
1)z2. LC(az) = 7x1x

4
3− 13x3

2x
2
3 and Hs = 7.

We see that d = 5 and

dg < d ⇐⇒ 7β1β
4
3 − 13β3

2β
2
3 = 0 mod p.

Since Pr[p|LC(az)] = 0 and Pr[LC(az)(βββ) = 0 mod p | p - LC(az)] ≤ d/p,

Pr[dg < d] ≤ d

p
= 5
p
≈ 1.084× 10−18.

Theorem 1.6.7. Let p be a prime chosen randomly from P63. Let az = a(x1z, · · · , xnz) ∈
Z[x1, · · · , xn][z]. Let Hs be the smallest absolute value of the coefficients of az. Let d =
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deg(a) be the total degree of a and let dT be the output from Algorithm 3. Then,

Pr[dT < d] ≤ d

p
+
⌊ log2(Hs)

62

⌋ 1
|P63|

+ d2

p− d+ 1 . (1.13)

Proof. Let dg = deg(g mod p) where g(z) = a(β1z, β2, z, · · · , βnz). We have

Pr[dT < d] = Pr[dT < d|dg < d]Pr[dg < d] + Pr[dT < d|dg = d]Pr[dg = d]

≤ 1 ·
(
d

p
+
⌊ log2(Hs)

62

⌋ 1
|P63|

)
︸ ︷︷ ︸

Proposition 1.6.6

+
(

d2

p− d+ 1

)
︸ ︷︷ ︸

Proposition 1.6.5

·Pr[dg = d]︸ ︷︷ ︸
≤1

≤ d

p
+
⌊ log2(Hs)

62

⌋ 1
|P63|

+ d2

p− d+ 1 .

1.7 Factoring a polynomial represented by a black box

1.7.1 Problem description

Problem P2: Given a polynomial a ∈ Z[x1, · · · , xn] represented by a black box BB : Zn →
Z or a modular black box B : Zn×{p} → Zp, compute its irreducible factors in Z[x1, · · · , xn]
in their sparse representation but do not factor the integer content.

ααα ∈ Zn

p

a ∈ Z[x1, ..., xn] f1, ..., fr ∈ Z[x1, ..., xn]

Sparse

Rubinfeld and Zippel (1994)

Algorithm CMBBSHL

Chen and Monagan (2020)

Black boxes of the factors

Approach I: Approach II:Approach 0:

· · ·

Sparse Representation Sparse Representation

Black box representation of a

Interpolation
Sparse
Interpolation

Algorithm CMSHL

Chen and Monagan (2023)

Figure 1.4: Factoring a ∈ Z[x1, ..., xn] represented by a black box.
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Figure 1.4 shows three approaches for Problem P2. Approach 0 first interpolates the
sparse representation of a and then factors it using a sparse Hensel lifting algorithm, e.g.
algorithm CMSHL [8] (described in Chapter 4). Approach I uses the black box representa-
tion BB. It first constructs black boxes of the factors and then applies sparse polynomial
interpolation (e.g. [2, 62]) to obtain the sparse representation of the factors, e.g, Kaltofen
and Trager’s algorithm [31] and Rubinfeld and Zippel’s algorithm [51]. Approach II (Algo-
rithm CMBBSHL) uses the modular black box representation B. It computes the factors
in the sparse representation directly by a modified CMSHL algorithm [9, 10]. Algorithm
CMBBSHL is my new contribution and it is described in Chapter 5 and Chapter 6. Ap-
proach II is a modular algorithm and it is the most efficient of the three for two reasons.
The first reason is that Algorithm CMBBSHL requires fewer probes to the black box than
both Kaltofen and Trager’s algorithm and Rubinfeld and Zippel’s algorithm. The second
and the key reason is that Algorithm CMBBSHL works mod p while both Kaltofen and
Trager’s algorithm [31] and Rubinfeld and Zippel’s algorithm [51] work over Q.

1.7.2 Example of a determinant computation

Consider the problem of computing the irreducible factors of the determinant of a symmetric
Toeplitz matrix where

Tn =



x1 x2 x3 · · · xn

x2 x1 x2

x3 x2 x1
... . . . ...
xn · · · x1


. (1.14)

For example, if n = 4, then

det(T4) = (x2
1−x1x2−x1x4−x2

2+2x2x3+x2x4−x2
3)(x2

1+x1x2+x1x4−x2
2−2x2x3+x2x4−x2

3)

which has two factors and each has 7 terms. If det(T4) is expanded, it has 12 terms.
The determinant of Tn has two factors for all n ≥ 2. If n is even, the number of terms is

the same for both factors. The factors of det(Tn) are generally dense, according to Definition
1.5.1. For example, when n = 10, both factors of det(Tn) have 931 terms and a total degree
of 5. Thus,

(n+5
5
)

= 3003, and #fi = 931 >
√

3003 ≈ 54.8. It is worth noting that our
algorithm works well for both sparse and dense polynomials.

Let a = det(Tn) ∈ Z[x1, · · · , xn]. The modular black box representation B of a can be
coded in Maple as a procedure:

B := proc( alpha::Array, p::prime )

local n := numlems(alpha), i,j,Tn;

Tn := Matrix(n,n);
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for i to n do

for j to n do

Tn[i,j] := alpha[abs(i-j)+1];

od;

od;

Det(Tn) mod p;

end:

Overview of algorithm CMBBSHL applied to Toeplitz determinant
Algorithm CMBBSHL first chooses an evaluation point ααα = (α2, · · · , αn) ∈ Zn−1 (see
Section 3.2 for details), then a(x1,ααα) mod p ∈ Zp[x1] is computed w.h.p. from d1 + 1
(d1 = deg(a, x1), pre-computed w.h.p., see Section 3.1 for details) probes to the black box
B and a Lagrange (or Newton) interpolation. This process is called a univariate dense in-
terpolation. Then a(x1,ααα) ∈ Z[x1] is computed using Chinese remaindering with different
primes to recover the coefficients in Z. Next, a(x1,ααα) is factored over Z[x1]. For example, if
ααα = (3, 5, 4),

a(x1,ααα) = x4
1 − 93x2

1 + 420x1 − 416 = (x2
1 − 7x1 + 8)(x2

1 + 7x1 − 52).

If we choose p = 101, the initial input factors of algorithm CMBBSHL are x2
1− 7x1 + 8 and

x2
1 + 7x1 + 49. The first Hensel lift (a bivariate Hensel lift) recovers x2 and we get

f2 = x2
1 − x1x2 − x2

2 − 4x1 + 14x2 − 25,

g2 = x2
1 + x1x2 − x2

2 + 4x1 − 6x2 − 25.

The second Hensel lifting step recovers x3, and we get

f3 = x2
1 − x1x2 − x2

2 + 2x2x3 − x2
3 − 4x1 + 4x2,

g3 = x2
1 + x1x2 − x2

2 − 2x2x3 − x2
3 + 4x1 + 4x2.

And at the final Hensel lifting step, we recover x4 and the true factors

f = x2
1 − x1x2 − x1x4 − x2

2 + 2x2x3 + x2x4 − x2
3,

g = x2
1 + x1x2 + x1x4 − x2

2 − 2x2x3 + x2x4 − x2
3.

Algorithm CMBBSHL calls the black box B in each Hensel lifting step, but it does not
compute the sparse representation of a = det(Tn). As n increases, #a becomes very large,
but the factors have fewer terms. The memory space to store a in its sparse representation
is saved. Table 1.1 shows the number of terms of det(Tn) and the number of terms in each
factor of det(Tn) for n up to 16. Although we could compute the factors of det(T16), we
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could not multiply them out in Maple since Maple ran out of memory on an Intel Xeon
E5-2660 8 core CPU (64 GB RAM).

n # det(Tn) #fi
8 1628 167, 167
9 6090 294, 153
10 23797 931, 931
11 90296 1730, 849
12 350726 5579, 5579
13 1338076 10611, 4983
14 5165957 34937, 34937
15 19732508 66684, 30458
16 − 221854, 221854

Table 1.1: Number of terms of det(Tn) and its factors (#fi).

1.8 Randomized algorithms

Our sparse Hensel lifting algorithms CMSHL and CMBBSHL for multivariate polynomial
factorization are randomized.

A randomized algorithm is an algorithm whose behavior depends not only on the input,
but also by values that produced by a random-number generator [13]. The main advantage
of using a randomized algorithm is that it is often more efficient than the best known
deterministic algorithm. As shown in complexity analyses [8, 10], both algorithms CMSHL
and CMBBSHL are random polynomial time algorithms (defined below).

Definition 1.8.1. A randomized algorithm (or probabilistic algorithm) that runs in ex-
pected polynomial time is called a random polynomial time algorithm.

There are three types of randomized algorithms: Las Vegas, Monte Carlo, and Atlantic
City algorithms. A Las Vegas algorithm always produces the correct output or outputs a
message of failure but it may get unlucky, and take a long time but with a low probability.
A Monte Carlo algorithm is a random polynomial time algorithm that answers correctly at
least 50% of the time. An Atlantic City algorithm is a random polynomial time algorithm
that answers correctly at least 75% of the time [37].

Las Vegas algorithms are always correct, but only probably fast. Monte Carlo algorithms
are always fast, but only probably correct. Atlantic City algorithms are both probably
correct and probably fast [53].

Algorithm CMSHL is Las Vegas and CMBBSHL is Monte Carlo. In fact, algorithm
CMBBSHL is Atlantic City, as the probability of returning an incorrect answer is very low
(see Section 6.4). There has been active research on deterministic algorithms for factor-
ing multivariate polynomials. The current best known is a quasi-polynomial deterministic
algorithm by Bhargava et al [5].
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Chapter 2

Implementation demonstration

My implementation of algorithm CMBBSHL is a hybrid of Maple and C code. The main
program is in Maple and it consists of four major subroutines:

1. probes to the black box and bivariate dense interpolation,

2. evaluations of the partially recovered factors fρ(x1, · · · , xj−1, αj , · · · , αn),

3. bivariate Hensel lifts,

4. Vandermonde solves.

All of the above subroutines are coded in C to speed up computations.
My contributions to the implementation of algorithm CMBBSHL include the following:

the main program in Maple, which includes Maple to C interface functions to call all four
major sub-routines coded externally in C, and the C code for bivariate dense interpolation
and determinant computation of symmetric Toeplitz matrices using Bareiss’ O(n2) algo-
rithm [1]. I also wrote Maple code for black box constructions. In particular, given a matrix
A with multivariate polynomial entries, I wrote a Maple program to output a black box B
which takes input ααα ∈ Zn, a prime p, and outputs det(A(ααα)) mod p.

For implementation details, see Chapter 7. For details of algorithm CMBBSHL, see
Section 5.3 and Chapter 6. The complete code for algorithm CMBBSHL is on the website
http://www.cecm.sfu.ca/~mmonagan/code/CMBBSHL/. Appendix A presents the code to
run CMBBSHL.

In this chapter, we present two examples. The first example has only two factors, which is
very simple, and it illustrates the basic idea of algorithm CMBBSHL. The second example
is to compute the irreducible factors of a determinant of a large matrix and it is more
complicated.
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2.1 A simple two-factor example

Let us compute the factors of a = x1x2 + x1x3 + x2
2 + 2x2x3 + x2

3 + x1 + 2x2 + 2x3 + 1 over
Z. The factorization is

a = (x2 + x3 + 1)(x1 + x2 + x3 + 1) ∈ Z[x1, x2, x3].

If the main variable is chosen to be x1, a has a content which is x2 + x3 + 1. If we choose
the main variable to be x2, a has no content but both factors are monic (in x2). We first
look at the latter case.

The input modular black box B : Zn×{p} → Zp is coded in Maple as a Maple procedure:

BBInput := proc( alpha::Array, p::prime ) global CNT; CNT++;

alpha[1]*alpha[2]+alpha[1]*alpha[3]+alpha[2]^2+2*alpha[2]*alpha[3]

+alpha[3]^2+alpha[1]+2*alpha[2]+2*alpha[3]+1 mod p;

end;

Other inputs for procedure CMBBSHLcont, the main program for algorithm CMBBSHL,
are (see Appendix A for detailed descriptions):

X := [x2, x1, x3]: # Variables with a chosen ordering

alpha := Array(1..3, [2908,3830,2798]): # Evaluation point chosen at random

degA := [2, 1, 2]: # Pre-computed individual degrees

p := prevprime(2^62-1): # A chosen large prime number

Var_Perm := 1: # Yes, X is permuted

Cont_Flag := 1: # Yes, compute and factor the content recursively

sqfinterp := 0: # An option to use SquareFreeImage, turned off

MapleCode := [Maple,C,C,C]: # Use Maple or C code for each subroutine

LI := 0: # Not for large coefficients

Running CMBBSHLcont produces the following output:

> CNT := 0:

> ff := CMBBSHLcont( BBInput, X, alpha, degA, p, Var_Perm, Cont_Flag,

sqfinterp, MapleCode, LI );

CMBBSHLcont: N = 3

1 prime(s) used to recover a(x2) = a(alpha1,x2,alpha3)

a(x2) = x2^2+9428*x2+18554571

N = 3, factors of a(x2) = [[x2+6629, 1], [x2+2799, 1]] in Z[x2]

CMBBSHL step 3: s = 2

fN = [x1+x2+x3+1, x2+x3+1]

Total time for CMBBSHLcont at N=3 (Computing F_pp) = 0.016000s
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CMBBSHLcont: N = 2

Total time for CMBBSHLcont at N=2 (deg(a,x1)=0, MakeCont only) = 0.000000s

CMBBSHLcont: N = 1

Total time for CMBBSHLcont at N=1 (deg(a,x3)=0, MakeCont only) = 0.000000s

CMBBSHLcont: N = 0

1 prime(s) used to recover content

Total time for CMBBSHLcont at N=0 = 0.000000s

N = 0, integer content = 1

N = 1, content (in the variable x3) = 1

N = 2, content (in the variable x1) = 1

N = 3, f_pp = (x1+x2+x3+1)*(x2+x3+1), content (in the variable x2) = 1

ff := (x1 + x2 + x3 + 1) (x2 + x3 + 1)

> printf("Total no.of probes for CMBBSHL = %d\n", CNT):

Total no.of probes for CMBBSHL = 44

After choosing an evaluation point ααα ∈ Zn−1 (for details of how ααα should be chosen, see
Section 3.2), the program first interpolates a(α1, x2, α3) from the modular black box B with
Chinese remaindering. We got a(α1, x2, α3) = x2

2 +9428x2 +18554571 in the above example.
Then it is factored over Z, which gives (x2 + 6629)(x2 + 2799). By Hilbert’s irreducibility
theorem [21], with high probability (see Section 3.3), the irreducible factors of a remain
irreducible when evaluated at ααα. Thus, the number of factors of a(α1, x2, α3) is two w.h.p.
After two Hensel lifting steps, we obtained the factors f_pp = (x1 +x2 +x3 +1)(x2 +x3 +1).
These are the factors of the primitive part of a, which equals the final answer ff, since a
has no content, and no integer content.

Running CMBBSHLcont with x1 to be the main variable gives following:

X := [x1, x2, x3]: # Variables with a chosen ordering

alpha := Array(1..3, [2908,3830,2798]): # Evaluation point chosen at random

degA := [1, 2, 2]: # Pre-computed individual degrees

p := prevprime(2^62-1): # A chosen large prime number

Var_Perm := 0: # Yes, X is permuted

Cont_Flag := 1: # Yes, compute and factor the content recursively

sqfinterp := 0: # An option to use SquareFreeImage, turned off

MapleCode := [Maple,C,C,C]: # Use Maple or C code for each subroutine

LI := 0: # Not for large coefficients

> CNT := 0:

> ff := CMBBSHLcont( BBInput, Xnew, alpha, degA, p, Var_Perm, Cont_Flag,

sqfinterp, MapleCode, LI );
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CMBBSHLcont: N = 3

1 prime(s) used to recover a(x1)

N = 3, factors of a(x1) = [[6629*x1+43943641, 1]] in Z[x1]

CMBBSHL step 3: s = 2

fN = [x1+x2+x3+1]

Total time for CMBBSHLcont at N=3 (Computing F_pp) = 0.013000s

CMBBSHLcont: N = 2

1 prime(s) used to recover a(x2)

N = 2, factors of a(x2) = [[x2+2799, 1]]

fN = [x2+x3+1]

Total time for CMBBSHLcont at N=2 (Computing F_pp) = 0.002000s

CMBBSHLcont: N = 1

Total time for CMBBSHLcont at N=1 (deg(a,x3)=0, MakeCont only) = 0.000000s

CMBBSHLcont: N = 0

1 prime(s) used to recover content

Total time for CMBBSHLcont at N=0 = 0.000000s

N = 0, integer content = 1

N = 1, content (in the variable x3) = 1

N = 2, f_pp = x2+x3+1, content (in the variable x2) = 1

N = 3, f_pp = x1+x2+x3+1, content (in the variable x1) = x2+x3+1

ff := (x1 + x2 + x3 + 1) (x2 + x3 + 1)

> printf("Total no.of probes for CMBBSHL = %d\n", CNT):

Total no.of probes for CMBBSHL = 40

In this case, we only got the factor f_pp = x1 + x2 + x3 + 1 for the primitive part of a.
The factors of the content are then computed recursively by building new black boxes from
the product of the primitive factors. For a detailed description of content computation, see
Section 6.2.

2.2 Computing the irreducible factors of a determinant
Now we consider how to factor the determinant of a 63 × 63 matrix A of polynomials
in Z[as, bs, cs, · · · , is, js, vo] (example heron4d in Section 6.3). Matrix A comes from a
Dixon matrix for solving polynomial system of equations [25]. It is sparse and looks like the
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following:

as2 + gs − hs 0 0 0 0 0 · · ·
0 as2 − ds + fs 0 0 0 0 · · ·
0 0 as2 − bs + cs 0 0 0 · · ·
0 0 0 as2 − ds + fs 0 0 · · ·
0 0 0 0 as2 − bs + cs 0 · · ·
...

...
...

... 0 −as2 − gs + hs · · ·
0 0 · · ·

−as2 − gs + hs 0 · · ·
−2as 0 · · ·

0 as2 − ds + fs · · ·
...

...



.

Let ã = det(A) ∈ Z[as, bs, cs, · · · , is, js, vo]. In this case, n = 11 and det(A) has 4
square-free factors. Let #fi be the number of terms of each square-free factor, and ei

be the corresponding power of each square-free factor. We have #fi = 1, 6, 22, 131 and
ei = 37, 7, 2, 4. Explicitly,

fe1
1 = as37,

fe2
2 = (as4 − 2as2bs− 2as2cs+ bs2 − 2bs cs+ cs2)7,

fe3
3 = (as4es+ as2bs cs− · · · − cs ds fs+ cs es fs︸ ︷︷ ︸

22 terms
)2,

fe4
4 = (−as4es2 + 2as4es is+ 2as4 es js · · · − fs2is2 + 9216 vo2︸ ︷︷ ︸

131 terms
)4.

If ã is expanded out, it has 37, 666, 243 terms.
The black box B : Zn × {p} → Zp computes det(A(ααα)) mod p for a given ααα ∈ Zn and a

prime p. It can be constructed from the matrix A using a Maple procedure MakeBBdet_C.
The procedure returns an anonymous procedure which is the black box B. The black box B
calls two external C programs fromMaple, namely EVALMOD1 and Det64. EVALMOD1 evaluates
the polynomial entries of A at ααα mod p. Det64 then computes the modular determinant of
the evaluated matrix by Gaussian Elimination.

MakeBBdet_C := proc( A::Matrix, VarPerm::list )

local n,X,N,Xnew,i,AL,AA;

n := LinearAlgebra:-RowDimension(A);

X := indets(A); N := nops(X); Xnew := Array(1..N);

for i to N do Xnew[i] := X[VarPerm[i]]; od;

Xnew := convert(Xnew,list);

AL := convert(A,list);

AA := Array(1..n,1..n,datatype=integer[8],order=C_order);
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proc( alpha::Array, p::prime ) global CNT,tBBeval,tBBdet;

local st:=time(),et,d; CNT++;

EVALMOD1( AL, Xnew, alpha, AA, p );

et := time()-st; tBBeval += et;

st := time();

d := Det64s(AA, n, p);

et := time()-st; tBBdet += et;

return d;

end;

end:

VP := [6, 2, 3, 4, 1, 5, 7, 8, 9, 10, 11] # Choose a variable permutation

BBInput := MakeBBdet_C( A, VP );

With trial and error, we have chosen the following variable ordering (corresponding to
VP) to minimize the computational time:

X := [fs, bs, cs, ds, as, es, gs, hs, is, js, vo]:

With this ordering, the factors of the primitive part are f3 and f4. The factors of the content
are f1 and f2. Other inputs to procedure CMBBSHLcont are:

alpha := Array(1..11, [2908, 3830, 2798, 3961, 1324, 2015, 5, 3002, 2347,

2147, 1573], datatype=integer[8]): # Random evaluation point

degA := [12, 26, 26, 12, 89, 12, 8, 8, 8, 8, 8]: # Pre-computed degrees

p := prevprime(2^62): # A chosen large prime

Var_Perm := 1: # Yes, X is permuted

Cont_Flag := 1: # Yes, compute and factor the content recursively

sqfinterp := 0: # An option to use SquareFreeImage, turned off

MapleCode := [C, C, C, C]: # Use C code for each subroutine

LI := 0: # Not for large coefficients

Running CMBBSHLcont produces the following output:

> CNT := 0: tBBeval := 0: tBBdet := 0:

> st := time():

> ff := CMBBSHLcont( BBInput, X, alpha, degA, p, Var_Perm, Cont_Flag,

sqfinterp, MapleCode, LI );

35 prime(s) used to recover a(fs)

23 prime(s) used to recover a(bs)

1 prime(s) used to recover a(as)

1 prime(s) used to recover content

N = 0, integer content = 268435456
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N = 1, content (in the variable vo) = 268435456

N = 2, content (in the variable js) = 268435456

N = 3, content (in the variable is) = 268435456

N = 4, content (in the variable hs) = 268435456

N = 5, content (in the variable gs) = 268435456

N = 6, content (in the variable es) = 268435456

N = 7, f_pp = as^37, content (in the variable as) = 268435456

N = 8, content (in the variable ds) = 268435456*as^37

N = 9, content (in the variable cs) = 268435456*as^37

N = 10, f_pp = (as^4-2*as^2*bs-2*as^2*cs+bs^2-2*bs*cs+cs^2)^7, content (in

the variable bs) = 268435456*as^37

N = 11, f_pp = (as^4*es+as^2*bs*cs-as^2*bs*es-as^2*bs*fs-as^2*cs*ds-as^2*cs

*es-as^2*ds*es+as^2*ds*fs+as^2*es^2-as^2*es*fs+bs^2*fs-bs*cs*ds-bs*cs*fs+

bs*ds*es-bs*ds*fs-bs*es*fs+bs*fs^2+cs^2*ds+cs*ds^2-cs*ds*es-cs*ds*fs+cs*es*

fs)^2*(-as^4*es^2+2*as^4*es*is+2*as^4*es*js-as^4*is^2+2*as^4*is*js- as^4*js

^2+4*as^2*bs*cs*js+2*as^2*bs*es*fs-2*as^2*bs*es*gs-2*as^2*bs*es*js-2*as^2

*bs*fs*is-2*as^2*bs*fs*js+2*as^2*bs*gs*is-2*as^2*bs*gs*js-2*as^2*bs*is*js+2

*as^2*bs*js^2+2*as^2*cs*ds*es-2*as^2*cs*ds*is-2*as^2*cs*ds*js-2*as^2*cs*es*

hs-2*as^2*cs*es*js+2*as^2*cs*hs*is-2*as^2*cs*hs*js-2*as^2*cs*is*js+2*as^2*

cs*js^2-2*as^2*ds*es*gs-2*as^2*ds*es*is+4*as^2*ds*fs*is-2*as^2*ds*gs*is+2*

as^2*ds*gs*js+2*as^2*ds*is^2-2*as^2*ds*is*js+2*as^2*es^2*gs+2*as^2*es^2*hs

-2*as^2*es*fs*hs-2*as^2*es*fs*is+4*as^2*es*gs*hs-2*as^2*es*gs*is-2*as^2*es*

gs*js-2*as^2*es*hs*is-2*as^2*es*hs*js+4*as^2*es*is*js-2*as^2*fs*hs*is+2*as

^2*fs*hs*js+2*as^2*fs*is^2-2*as^2*fs*is*js-bs^2*fs^2+2*bs^2*fs*gs+2*bs^2*fs

*js-bs^2*gs^2+2*bs^2*gs*js-bs^2*js^2+2*bs*cs*ds*fs-2*bs*cs*ds*gs-2*bs*cs*ds

*js-2*bs*cs*fs*hs-2*bs*cs*fs*js+2*bs*cs*gs*hs-2*bs*cs*gs*js-2*bs*cs*hs*js+2

*bs*cs*js^2+4*bs*ds*es*gs-2*bs*ds*fs*gs-2*bs*ds*fs*is+2*bs*ds*gs^2-2*bs*ds*

gs*is-2*bs*ds*gs*js+2*bs*ds*is*js-2*bs*es*fs*gs-2*bs*es*fs*hs+2*bs*es*gs^2-

2*bs*es*gs*hs-2*bs*es*gs*js+2*bs*es*hs*js+2*bs*fs^2*hs+2*bs*fs^2*is-2*bs*fs

*gs*hs-2*bs*fs*gs*is+4*bs*fs*gs*js+4*bs*fs*hs*is-2*bs*fs*hs*js-2*bs*fs*is*

js-cs^2*ds^2+2*cs^2*ds*hs+2*cs^2*ds*js-cs^2*hs^2+2*cs^2*hs*js-cs^2*js^2+2*

cs*ds^2*gs+2*cs*ds^2*is-2*cs*ds*es*gs-2*cs*ds*es*hs-2*cs*ds*fs*hs-2*cs*ds*

fs*is-2*cs*ds*gs*hs+4*cs*ds*gs*is-2*cs*ds*gs*js-2*cs*ds*hs*is+4*cs*ds*hs*js

-2*cs*ds*is*js+4*cs*es*fs*hs-2*cs*es*gs*hs+2*cs*es*gs*js+2*cs*es*hs^2-2*cs*

es*hs*js+2*cs*fs*hs^2-2*cs*fs*hs*is-2*cs*fs*hs*js+2*cs*fs*is*js-ds^2*gs^2+2

*ds^2*gs*is-ds^2*is^2+2*ds*es*gs^2-2*ds*es*gs*hs-2*ds*es*gs*is+2*ds*es*hs

*is+2*ds*fs*gs*hs-2*ds*fs*gs*is-2*ds*fs*hs*is+2*ds*fs*is^2-es^2*gs^2+2*es^2

*gs*hs-es^2*hs^2-2*es*fs*gs*hs+2*es*fs*gs*is+2*es*fs*hs^2-2*es*fs*hs*is-fs

^2*hs^2+2*fs^2*hs*is-fs^2*is^2+9216*vo^2)^4, content (in the variable fs) =
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268435456*as^37*(as^4-2*as^2*bs-2*as^2*cs+bs^2-2*bs*cs+cs^2)^7

> et := time() - st:

> printf("Total time for CMBBSHL = %fs\n", et);

Total time for CMBBSHL = 17.559000s

> printf("Total no.of probes for CMBBSHL = %d\n", CNT):

Total no.of probes for CMBBSHL = 68295

It took 17.559 seconds to compute the factors of det(A) with our chosen variable order-
ing [fs, bs, cs, ds, as, es, gs, hs, is, js, vo]. Computing the primitive factors (f3 and f4) took
88.9% of the total time (15.616 seconds). 11.1% of the time was to compute the factors of
the content recursively.

If we set Cont_Flag := 0, then the program only computes the primitive factors f3

and f4, and the content is not computed and factored. When solving a parametric system
of polynomial equations using resultant methods, one often eliminates variables x2, · · · , xn.
We will have a resultant R1 := R(x1, y1, · · · , ym) for some parameters y1, · · · , ym, and we
want to solve R1 = 0. In this application we do not want cont(R1, x1) [25].

With different variable orderings, timings can be quite different. For example, if X =
[as, bs, cs, ds, es, fs, gs, hs, is, js, vo], the total time was 43.8 seconds (see Table 6.6).

Using the Maple command LinearAlgebra:-Determinant(A) only took 0.383 seconds
to compute det(A) as Maple likely recognized that A has a diagonal block structure. Maple
returns det(A) in the form det(A) = c0g1g2g3g4 where

c0 = 268435456,

g1 = f37
1 = as37,

g2 = (f2
2 f4)2 (in the factored form),

g3 = expand(f2f4) (#g3 = 4378),

g4 = expand(f2
2 f3f4) (#g4 = 8752).

To prevent Maple recognizing the block structure, I tried Gentleman and Johnson’s algo-
rithm [26] that uses a bottom up minor expansion and Maple ran out of memory. For more
benchmarks, see Section 6.3.

All matrices used for our benchmarks are available at:
http://www.cecm.sfu.ca/~mmonagan/code/BBfactor/
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Chapter 3

Tools for sparse Hensel lifting

In this chapter we present essential tools for designing and analyzing our sparse Hensel
lifting algorithms CMSHL and CMBBSHL.

Sections 3.1 to 3.3 are tools for prior Hensel lifting steps. Section 3.1 presents an algo-
rithm to pre-compute the individual degrees of a ∈ Z[x1, · · · , xn] represented by a modular
black box B : Zn × {p} → Zp. It is for CMBBSHL. Section 3.2 and 3.3 define Hilbertian
point and the weak SHL assumption which are two necessary conditions for the initial
evaluation point ααα to succeed both CMSHL and CMBBSHL.

Sections 3.4, 3.5 and 3.6 are square-free factorization, bivariate Hensel lifting
and solving Vandermonde systems respectively. These are sub-algorithms used at each
Hensel lifting step in both CMSHL and CMBBSHL.

Section 3.7 presents rational number reconstruction that is used after the last Hensel
lifting step to recover the rational coefficients of the factors from their modular images. It
is for the non-monic case of algorithm CMBBSHL.

3.1 Computing the individual degrees of a polynomial

The individual degrees of a ∈ Z[x1, · · · , xn] (i.e. deg(a, xj) for 1 ≤ j ≤ n) are needed as an
input for CMBBSHL. Given a modular black box representation B : Zn × {p} → Zp of a,
one can compute the individual degrees of a probabilistically using Algorithm 4.

Algorithm 4 assumes a known (correct) total degree bound D, or individual degree
bounds Dj if known. The total degree of a can be computed w.h.p. by Algorithm 3. For the
case of computing the determinant of a matrix A with multivariate polynomial entries, the
individual degree bounds Dj can be found in the following way.

Let A be an N × N matrix with Aik ∈ Z[x1, · · · , xn] for 1 ≤ i ≤ N and 1 ≤ k ≤ N .
Then,

Dj =
N∑
i=1

Nmax
k=1

(deg(Aik), xj) ≥ deg(det(A), xj) = dj . (3.1)

26



Algorithm 4 Pre-computing deg(a, xj).
Input: A modular black box B : Zn × {p} → Zp representing a ∈ Z[x1, · · · , xn],
j ∈ Z s.t. 1 ≤ j ≤ n, individual degree bounds Dj for 1 ≤ j ≤ n, a large prime p.
Output: deg(a, xj) with high probability (w.h.p.)

1: Pick βββ = (β1, · · · , βj−1, βj+1, · · · , βn) ∈ Zpn−1 at random.
2: for k from 0 to Dj do
3: bk ← B([β1, · · · , βj−1, k, βj+1, · · · , βn], p).
4: end for
5: Interpolate hj(z) ∈ Zp[z] from bk = hj(k) for 0 ≤ k ≤ Dj .
6: return deg(hj)

The failure probability for Algorithm 4 is stated in Proposition 3.1.1.

Proposition 3.1.1. Let Hj be the smallest absolute value of the coefficients of LC(a, xj).
Let d = deg(a) and dj = deg(a, xj). Suppose p is a prime chosen at random from P63.
Assume the individual degree bounds Dj’s are correct, i.e. Dj ≥ dj for all 1 ≤ j ≤ n. Let
deg(hj) be the output from Algorithm 4. Then,

Pr[deg(hj) < dj ] ≤
d− dj
p

+
⌊ log2(Hj)

62

⌋ 1
|P63|

. (3.2)

Proof. Let hj(z) := a(β1, · · · , βj−1, z, βj+1, · · · , βn) mod p.
Let ajz = a(x1, · · · , xj−1, z, xj+1, · · · , xn) ∈ Z[x1, · · · , xj−1, xj+1, · · · , xn][z].
For example, a = (91x2

1 + x3 + 2)x2
2 + (68x1x3 − 10x2

3 + 3)x2 − 40x2
1x3.

Let j = 2, then ajz = (91x2
1 + x3 + 2)z2 + (68x1x3 − 10x2

3 + 3)z − 40x2
1x3 and

LC(ajz) = 91x2
1 + x3 + 2 = LC(a, xj).

Let p = 263 − 25, then hj(z) = (91β2
1 + β3 + 2)z2 + (68β1β3 − 10β2

3 + 3)z − 40β2
1β3.

We see that

deg(hj) < dj ⇐⇒ 91β2
1 + β3 + 2 = 0 mod p

⇐⇒ LC(a, xj)(βββ) = 0 mod p.

This happens if p|LC(a, xj) or p - LC(a, xj) and LC(a, xj)(βββ) mod p = 0.
Hj has at most blog2(Hj)/62c prime divisors from P63. Thus,

Pr[p|LC(a, xj)] ≤ Pr[p|Hj ] ≤
⌊ log2(Hj)

62

⌋ 1
|P63|

.
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Furthermore,

Pr[deg(hj) < dj ] = Pr[LC(a, xj)(βββ) = 0 mod p | p - LC(a, xj)] + Pr[p|LC(a, xj)]

≤ deg(LC(a, xj))
p︸ ︷︷ ︸

by Lemma 1.6.4

+
⌊ log2(Hj)

62

⌋ 1
|P63|

≤ d− dj
p

+
⌊ log2(Hj)

62

⌋ 1
|P63|

.

3.2 Hilbertian point

Prior to sparse Hensel lifting, an evaluation point ααα ∈ Zn−1 is chosen randomly from
[1, Ñ − 1]n−1 where Ñ ∈ Z+ and Ñ < p. The initial evaluation point ααα must satisfy the
following two conditions for algorithm CMSHL and CMBBSHL to succeed:

1. ααα is Hilbertian;

2. ααα satisfies the weak SHL assumption (see Section 3.3).

Definition 3.2.1. Let P ∈ Z[x1, · · · , xn] be an irreducible polynomial over Z. We call a
point ααα = (α2, · · · , αn) ∈ Zn−1 Hilbertian if P (x1, α2, · · · , αn) remains irreducible over Z
and deg(P (x1,ααα)) = deg(P, x1) [36].

The sharpest result on a bound for the number of non-Hilbertian points of P (x1, · · · , xn)
was obtained by Cohen [11], and stated in [51]:

Proposition 3.2.2. Let R(d, n, Ñ) be the number of non-Hilbertian points (α2, · · · , αn) ∈
Zn−1 with 0 ≤ αi < Ñ (Ñ ∈ Z+) for an irreducible polynomial P (x1, · · · , xn) of total degree
d. Then,

R(d, n, Ñ) < c̄(d)Ñn−3/2 log(Ñ), (3.3)

where c̄ depends only on the degree of the irreducible polynomial.

It is conjectured in [51] that c̄(d) < c1d
c2 for some absolute constants c1, c2. We can see

that limÑ→∞R(d, n, Ñ)/Ñn−1 = 0. Thus, a sufficiently large Ñ ensures ααα chosen randomly
from [1, Ñ − 1]n−1 is Hilbertian with high probability.

Example 7. Let P = x3 + y3 + 1 ∈ Z[x, y]. The only non-Hilbertian points are y = 0 and
y = −1.

We remark that in practice non-Hilbertian points are rare.
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3.3 The weak SHL assumption

The evaluation point ααα must also satisfy the weak SHL assumption (the weak sparse
Hensel lifting assumption) [8, 46] for each factor at every Hensel lifting step. Algorithm
CMSHL (and CMBBSHL) differs from algorithm MTSHL [43] as MTSHL uses the strong
SHL assumption [43, 46] instead.

Definition 3.3.1. Let αj ∈ Zp be chosen at random. Let

f =
dj∑
i=0

σi(x1, · · · , xj−1)(xj − αj)i ∈ Zp[x1, · · · , xj ]

be the Taylor polynomial of f ∈ Zp[x1, · · · , xn] about αj of degree dj = deg(f, xj). Let
Supp(σi) be the set of all monomials in σi. The assumption that Supp(σi) ⊆ Supp(σ0)
for all 1 ≤ i ≤ dj is called the weak SHL assumption [8, 46]. The assumption that
Supp(σi) ⊆ Supp(σi−1) for all 1 ≤ i ≤ dj is called the strong SHL assumption [43, 46].

The following Lemma (stated in [8], modified from Lemma 1 by Monagan and Tuncer
[43]) ensures that algorithms CMSHL and CMBBSHL succeed with high probability (w.h.p.).
If p is large, it says that the weak SHL assumption holds for almost all choices of αj ∈ Zp.

Lemma 3.3.2. Let f ∈ Zp[x1, · · · , xj ]. Let f = ∑dj
i=0 σi(x1, · · · , xj−1)(xj − αj)i where

dj = deg(f, xj). If αj is a randomly chosen element in Zp, then

Pr[Supp(σi) * Supp(σ0)] ≤ |Supp(σi)|
dj

p− dj + i
for 1 ≤ i ≤ dj .

In other words, the weak SHL assumption assumes that all monomials in the coefficients
of (xj − αj)i are contained in Supp(σ0) for all 1 ≤ i ≤ dj .

Example 8. Let p = 231 − 1. One of the factors of the determinant of symmetric Toeplitz
matrix T4 is f = x2

1 − x1x2 − x1x4 − x2
2 + 2x2x3 + x2x4 − x2

3 ∈ Zp[x1, x2, x3, x4]. If α4 = 3,
expanding f about x4 = 3 gives

f = σ0 + σ1(x4 − α4) = (x2
1 − x1x2 − x2

2 + 2x2x3 − x2
3 − 3x1 + 3x2) + (−x1 + x2)(x4 − 3).

Here, Supp(σ0) = {x2
1, x1x2, x

2
2, x2x3, x

2
3, x1, x2} and Supp(σ1) = {x1, x2} ⊆ Supp(σ0). The

weak SHL assumption is satisfied. However, if we choose α4 = 0, then

f = σ0 + σ1(x4) = (x2
1 − x1x2 − x2

2 + 2x2x3 − x2
3) + (−x1 + x2)x4.

In this case, Supp(σ0) = {x2
1, x1x2, x

2
2, x2x3, x

2
3} and Supp(σ1) = {x1, x2}. The weak SHL

assumption fails since Supp(σ1) * Supp(σ0).
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3.4 Square-free factorization

Square-free factorization is an important technique that is used in designing both algo-
rithms CMSHL and CMBBSHL. For CMSHL, the polynomial to be factored is in its sparse
representation and square-free factorization is done prior to Hensel lifting to remove any
repeated factors (see Chapter 4 for details). On the other hand, for CMBBSHL, the in-
put polynomial is represented by a black box. Square-free factorization is performed within
each Hensel lifting step to compute the square-free part of the bivariate images of the input
polynomial (see Chapter 6 for details).

The definition for square-free factorization is stated below (see Definition 8.1 in [19]):

Definition 3.4.1. Let a(x) ∈ R[x] be a primitive polynomial over a unique factorization
domain R (R can be a multivariate polynomial domain, e.g. Z[x2, · · · , xn]). Then a(x) is
square-free if it has no repeated factors, i.e. there exists no b(x) with deg(b(x)) ≥ 1 such
that b(x)2|a(x). The square-free factorization of a(x) is

a(x) =
k∏
i=1

ai(x)i (3.4)

where each ai(x) is a square-free polynomial and deg(gcd(ai(x), aj(x)), x) = 0 for i 6= j. The
square-free factorization is unique up to units. The square-free part of a(x), sqf(a(x)) is
then defined as

sqf(a(x)) =
k∏
i=1

ai(x), (3.5)

the product of the square-free factors without their multiplicities.

For our application, we must consider the case where a ∈ Z[x2, · · · , xn][x1] is non-
primitive. Let h = cont(a) ∈ Z[x2, · · · , xn]. Consider the factorization

a = h
r∏
i=1

feii︸ ︷︷ ︸
pp(a)

(3.6)

where deg(fi, x1) > 0, gcd(fi, fj) = 1 for i 6= j and fi is irreducible in Z[x1, · · · , xn].

Lemma 3.4.2. Let a ∈ Z[x2, · · · , xn][x1] be non-primitive. Assume a has the factorization
as in (3.6). Let g = gcd(a, ∂a/∂x1). Then,
(i) g = ±h∏r

i=1 f
ei−1
i ,

(ii) a/g = ±∏r
i=1 fi = ±sqf(pp(a)) and

(iii) cont(a/g) = ±1.
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Proof. (i) From (3.6),

g = gcd
(
a,

∂a

∂x1

)

= gcd

h r∏
i=1

feii , h

 r∑
i=1

eif
ei−1
i

∂fi
∂x1

∏
j 6=i

f
ej
j


= ±h

r∏
i=1

fei−1
i · gcd

 r∏
i=1

fi,
r∑
i=1

ei
∂fi
∂x1

∏
j 6=i

fj

 .
Since gcd(fi, ∂fi/∂x1) = 1 and gcd(fi, fj) = 1 for i 6= j, we have

gcd

 r∏
i=1

fi,
r∑
i=1

ei
∂fi
∂x1

∏
i 6=j

fj

 =
r∏
i=1

gcd

fi, r∑
i=1

ei
∂fi
∂x1

∏
i 6=j

fj

 = 1.

Thus
g = ±h

r∏
i=1

fei−1
i .

(ii) From (i),
a

g
= h

∏r
i=1 f

ei
i

±h
∏r
i=1 f

ei−1
i

= ±
r∏
i=1

fi.

Since each fi is irreducible, it is square-free. By (3.5), ∏r
i=1 fi = sqf(pp(a)). Thus

a

g
= ±

r∏
i=1

fi = ±sqf(pp(a)).

(iii) Since sqf(pp(a)) is primitive, cont(sqf(pp(a)) = 1. Therefore,

cont(a/g) = cont(±sqf(pp(a)) = ±cont(sqf(pp(a)) = ±1.

Definition 3.4.3. Let a ∈ Z[x2, · · · , xn][x1] (not necessarily primitive). We define the
square-free part of a, denoted as sqf(a) to be the square-free part of the primitive part of
a, i.e.

sqf(a) = sqf(pp(a)). (3.7)

In our factorization algorithm CMBBSHL, we will do many Hensel lifts with sqf(a) for
a ∈ Zp[x1, xj ]. We use Lemma 3.4.2 part (ii) to compute sqf(a) and it is unique up to units.
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Example 9. Consider a = −3(2y + z)(x+ y + z)2(x2 + 21y + 5)3 ∈ Z[y, z][x]. Then,

g = gcd
(
a,
∂a

∂x

)
= 3(2y + z)(x+ y + z)(x2 + 21y + 5)2.

Thus,
a

g
= −(x+ y + z)(x2 + 21y + 5) = −sqf(pp(a)) = −sqf(a).

Both the polynomial content 2y + z and the integer content 3 of a are removed in sqf(a).

A consequence of using sqf(a) = ±a/ gcd(a, ∂a/∂x1) to lift the irreducible factors of
a ∈ Z[x1, · · · , xn] is that we lose cont(a). In applications where we do not need cont(a),
this will be a significant computational advantage of our factorization algorithm CMBBSHL
when cont(a) is larger than pp(a). Table 6.3 shows an application that illustrates that the
time to factor pp(a) is 10 times smaller than the time to factor cont(a).

3.5 Bivariate Hensel lifting

Many bivariate Hensel lifts (BHL) are performed in each Hensel lifting step in algorithms
CMSHL and CMBBSHL. Since both CMSHL and CMBBSHL are modular algorithms,
bivariate Hensel lifting is for lifting polynomials (lifting univariate images to bivariate im-
ages) with coefficients in Zp. Below we present a quintic algorithm, followed by Bernardin’s
quartic algorithm [4], and then a high-level explanation of Monagan and Paluck’s cubic
algorithm [48]. For simplicity, we first consider the monic case, i.e. LC(a, x) = 1 (x is the
chosen main variable). The non-monic case can be modified accordingly (see Section 6.1.1).
All BHL algorithms presented in this thesis are linear Hensel lifting algorithms.

Given a ∈ Zp[x, y] where a is square-free and monic in x, i.e. LC(a, x) = 1. Define
dx = deg(a, x) and dy = deg(a, y). Given some α ∈ Zp and f1,0, · · · , fr,0 ∈ Zp[x] s.t.

(i) gcd(fk,0, fl,0) = 1 for k 6= l,

(ii) a(y = α) = ∏r
ρ=1 fρ,0,

(iii) fρ,0 is monic for 1 ≤ ρ ≤ r.

The goal of bivariate Hensel lifting is to construct fρ ∈ Zp[x, y] (assuming fρ exists) for
1 ≤ ρ ≤ r s.t.

(i) a = ∏r
ρ=1 fρ mod (y − α)k for any k ≥ 1,

(ii) fρ(y = α) = fρ,0 for 1 ≤ ρ ≤ r,

(iii) fρ is monic in x for 1 ≤ ρ ≤ r.
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Algorithm 5 Bivariate Hensel lifting: monic case – O(d2
xd

3
y)

Input: A prime p, α ∈ Zp, a ∈ Zp[x, y] where a is square-free and monic in x, i.e.
LC(a, x) = 1, fρ,0 ∈ Zp[x] for 1 ≤ ρ ≤ r s.t. (i) gcd(fk,0, fl,0) = 1 for k 6= l, (ii)
a(y = α) = ∏r

ρ=1 fρ,0, (iii) fρ,0 is monic for 1 ≤ ρ ≤ r.
Output: fρ ∈ Zp[x, y] for 1 ≤ ρ ≤ r s.t. (i) a = ∏r

ρ=1 fρ, (ii) fρ(y = α) = fρ,0 for all
1 ≤ ρ ≤ r, (iii) fρ is monic in x for 1 ≤ ρ ≤ r. Or FAIL (fρ does not exists, for some
1 ≤ ρ ≤ r).

1: dx← deg(a, x); dy ← deg(a, y); dfρ,0 ← deg(fρ,0, x).
2: M ←

∏r
ρ=1 fρ,0 ∈ Zp[x].

3: for ρ from 1 to r do fρ ← fρ,0; Mρ ←M/fρ,0 end for
4: for k from 1 to dy do
5: ack ← coeff(a, (y − α)k) ∈ Zp[x].
6: ∆k ← coeff(∏r

ρ=1 fρ, (y − α)k) ∈ Zp[x].
7: ck ← ack −∆k ∈ Zp[x].
8: if

∑r
ρ=1 deg(fρ, y) = dy and ck 6= 0 return FAIL end if

9: if ck 6= 0 then
10: Solve ∑r

ρ=1 σρ,kMρ = ck for σρ,k ∈ Zp[x] with deg(σρ,k, x) < deg(σρ,0, x)
for 1 ≤ ρ ≤ r. // a multi-term Diophantine equation

11: for ρ from 1 to r do fρ ← fρ + σρ,k(x)(y − α)k end for
12: end if
13: end for
14: if ck 6= 0 and a−

∏r
ρ=1 fρ 6= 0 then return FAIL end if

15: return fρ for 1 ≤ ρ ≤ r.

We first present a quintic algorithm which does O(d2
xd

3
y) multiplications in Zp in Algo-

rithm 5. Let

f (k)
ρ =

k−1∑
j=0

σρ,j(y − α)j (3.8)

for all 1 ≤ ρ ≤ r with σρ,j ∈ Zp[x]. If fρ exists for all 1 ≤ ρ ≤ r, then the uniqueness of
f

(k)
ρ is also guaranteed at each k ≥ 1. This is because the solution σρ,k of the Diophantine
equation in step 10 is unique for each k ≥ 1 (Theorem 2.6 in [19]).

The bottleneck of Algorithm 5 is at Step 6. In the computation of

∆k = coeff

 r∏
ρ=1

f (k)
ρ , (y − α)k

 , (3.9)

computing the product ∏r
ρ=1 f

(k)
ρ is the bottleneck. Naively, we can compute ∏r

ρ=1 f
(k)
ρ in

(3.9) by multiplying the factors one at a time. Since

f
(k)
1 = σ1,0(x) + σ1,1(x)(y − α) + σ1,2(x)(y − α)2 + · · ·+ σ1,k−1(x)(y − α)k−1,

f
(k)
2 = σ2,0(x) + σ2,1(x)(y − α) + σ2,2(x)(y − α)2 + · · ·+ σ2,k−1(x)(y − α)k−1,
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multiplying f (k)
1 and f (k)

2 needs at most k2 multiplications of σ1,i and σ2,j ’s. Now let

P
(k)
2 = f

(k)
1 f

(k)
2 mod (y − α)k+1

= p2,0(x) + p2,1(x)(y − α) + p2,2(x)(y − α)2 + · · ·+ p2,k(x)(y − α)k,

and then

P
(k)
3 = P

(k)
2 f

(k)
3 mod (y − α)k+1

= p3,0(x) + p3,1(x)(y − α) + p3,2(x)(y − α)2 + · · ·+ p3,k(x)(y − α)k.

Multiplying P (k)
2 and f (k)

3 now needs at most k(k+ 1) multiplications of p2,i and σ3,j ’s. Let
dfρ,0 = deg(fρ,0, x) for 1 ≤ ρ ≤ r, we have deg(p2,i, x) ≤ df1,0 + df2,0 for all i = 0, · · · , k.
Assuming classical polynomial multiplications, the costs of computing P (k)

2 and P (k)
3 are at

most k2df1,0df2,0 and k(k + 1)(df1,0 + df2,0)df3,0 multiplications in Zp respectively.
Define in general

P (k)
q =

q∏
ρ=1

f (k)
ρ mod (y − α)k+1, (3.10)

for 2 ≤ q ≤ r. For each k in the loop (for 1 ≤ k ≤ dy), computing P (k)
r costs at most

r−1∑
i=1

k(k + 1)id2
fmax,0 = r(r − 1)

2 k(k + 1)d2
fmax,0 <

1
2k(k + 1)d2

x

multiplications in Zp. In the above, dfmax,0 = maxrρ=1 dfρ,0 , dx = deg(a, x) and dy =
deg(a, y). We used the inequality rdfmax,0 ≤ dx.

Therefore, the total cost of Algorithm 5 is at most

dy∑
k=1

1
2k(k + 1)d2

x = 1
6d

2
xdy(d2

y + 3dy + 2) ∈ O
(
d2
xd

3
y

)
(3.11)

multiplications in Zp.

3.5.1 Bernardin’s quartic algorithm

Bernardin’s bivariate Hensel lifting algorithm [4] costs O(d2
xd

2
y). Instead of naively multi-

plying the factors to compute P (k)
q , it uses the terms computed in the previous step to save

computations.
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The product of the first two factors gives

P
(k)
2 = σ1,0σ2,0 + (σ1,0σ2,1 + σ1,1σ2,0)(y − α) + · · ·

+ (σ1,0σ2,k−1 + · · ·+ σ1,k−2σ2,1 + σ1,k−1σ2,0)(y − α)k−1

+ (σ1,1σ2,k−1 + · · ·+ σ1,k−2σ2,2 + σ1,k−1σ2,1)(y − α)k.

For successive q (3 ≤ q ≤ r), P (k)
q can be computed as

P (k)
q = pq−1,0σq,0 + (pq−1,0σq,1 + pq−1,1σq,0)(y − α) + · · ·

+ (pq−1,0σq,k−1 + · · ·+ pq−1,k−2σq,1 + pq−1,k−1σq,0)(y − α)k−1

+ (pq−1,1σq,k−1 + · · ·+ pq−1,k−1σq,1 + pq−1,kσq,0)(y − α)k,

where pq−1,j = coeff(P (k)
q−1, (y − α)j). Moving to step k + 1 we have

P
(k+1)
2 = σ1,0σ2,0 + (σ1,0σ2,1 + σ1,1σ2,0)(y − α) + · · ·

+ (σ1,0σ2,k−1 + · · ·+ σ1,k−2σ2,1 + σ1,k−1σ2,0)(y − α)k−1

+ (σ1,0σ2,k + · · ·+ σ1,k−1σ2,1 + σ1,kσ2,0)(y − α)k

+ (σ1,1σ2,k + · · ·+ σ1,k−1σ2,2 + σ1,kσ2,1)(y − α)k+1,

P (k+1)
q = pq−1,0σq,0 + (pq−1,0σq,1 + pq−1,1σq,0)(y − α) + · · ·

+ (pq−1,0σq,k−1 + · · ·+ pq−1,k−2σq,1 + pq−1,k−1σq,0)(y − α)k−1

+ (pq−1,0σq,k + · · ·+ pq−1,k−1σq,1 + pq−1,kσq,0)(y − α)k

+ (pq−1,1σq,k + · · ·+ pq−1,kσq,1 + pq−1,k+1σq,0)(y − α)k+1,

where pq−1,j = coeff(P (k+1)
q−1 , (y − α)j).

Observe that from step k to step k + 1, the only terms that need to be computed and
have not been computed are

σ1,0σ2,k, σ1,kσ2,0, and σ1,1σ2,k + · · ·+ σ1,k−1σ2,2 + σ1,kσ2,1 (3.12)

for the first two factors and

pq−1,0σq,k and pq−1,1σq,k + · · ·+ pq−1,kσq,1 + pq−1,k+1σq,0 (3.13)

for each subsequent product P (k+1)
q .
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Assuming polynomial multiplications have quadratic cost, the total cost for step k is

r−1∑
i=1

(k + 2)id2
fmax,0 = r(r − 1)

2 (k + 2)d2
fmax,0 <

1
2(k + 2)d2

x

multiplications in Zp. Therefore, the total cost for Bernardin’s algorithm is at most

dy∑
k=1

1
2(k + 2)d2

x = 1
4d

2
xdy(dy + 5) ∈ O

(
d2
xd

2
y

)
(3.14)

multiplications in Zp.

3.5.2 Monagan and Paluck’s cubic algorithm

Monagan and Paluck’s BHL algorithm [48] further reduces the cost to O(d2
xdy + dxd

2
y)

arithmetic operations in Zp. Instead of multiplying polynomials in Zp[x] to compute the
missing terms in (3.12) and (3.13) as in Bernardin’s algorithm, Monagan and Paluck’s
algorithm uses evaluation and interpolation to compute (3.12) and (3.13) and hence ∆k in
(3.9). We present their idea with a homomorphism diagram in Figure 3.1 [48].

f
(k)
1 , · · · , f (k)

r ∈ Zp[x, y]

f
(k)
1,l , · · · , f

(k)
r,l ∈ Zp[y]

Evaluate f
(k)
ρ (1 ≤ ρ ≤ r) at x = βl

∆k,l = coeff
(∏r

ρ=1 f
(k)
ρ,l , (y − α)k

)
for 0 ≤ l ≤ dx

for 0 ≤ l ≤ dx

coeff
(∏r

ρ=1 f
(k)
ρ , (y − α)k

)
∆k ∈ Zp[x]

∆k,l ∈ Zp

Interpolating x
in ∆k

Figure 3.1: Homomorphism diagram for computing ∆k in Monagan and Paluck’s cubic
algorithm.

Each f
(k)
ρ (1 ≤ ρ ≤ r) is evaluated at x = βl for 0 ≤ l ≤ dx. Then multiplications

are performed in Zp instead of Zp[x]. After computing ∆k,l (the images of ∆k at x = βl),
Lagrange interpolation is used to recover ∆k ∈ Zp[x].

An earlier version of Monagan and Paluck’s algorithm [49] computes the missing terms
as exactly in (3.12) and (3.13) by evaluation and interpolation with factors multiplied one at
a time. The most recent version [48] further reduces the space complexity so that the factors
are no longer multiplied one at a time but as pairs of products instead. For either version of
their algorithms, the cost for evaluation and interpolation is O(d2

xdy) arithmetic operations
in Zp and the cost of computing ∆k,l for 1 ≤ l ≤ dx is O(dxd2

y) arithmetic operations in Zp.
The total cost is O(d2

xdy + dxd
2
y). For detailed complexity analyses, see [48, 49].
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3.6 Solving Vandermonde systems

3.6.1 Solving Vandermonde systems in CMSHL

Vandermonde systems of linear equations appear in both algorithms CMSHL and CMBB-
SHL. At the jth Hensel lifting step, we evaluate fρ(x1, · · · , xj−1, αj , · · · , αn) at

x2 = βk2 , · · · , xj−1 = βkj−1

for k = 1, 2, 3, · · · , s, where s is the number of bivariate images needed at the jth Hensel
lifting step and β2, · · · , βj−1 are chosen at random from Zp\{0}. The definition of s is
defined in step 5 of Algorithm 9. The sizes of the Vandermonde systems si at step 15
of Algorithm 9 can be smaller than s, since s is the maximum of the sizes of all those
Vandermonde matrices. We present an example below to show how Vandermonde systems
appear in CMSHL (also CMBBSHL).

Example 10. Let p = 101 (a large prime is usually needed for CMSHL, but in this example
p = 101 is sufficient) and let j = 5. Let

f = x4
1 + (29x2x3 + 10x2

4)x2
5x

3
1 − 3x2x

2
3x5x

2
1 + (8x2x

3
3 + 4x2x3x4)x1 ∈ Z101[x1, · · · , x5].

In this case, we need s = 2 bivariate images, f1(x1, x5) and f2(x1, x5), to recover the
coefficients 29 and 10 corresponding to the monomials x2x3 and x2

4 in the second term of f .
Suppose β2 = 15, β3 = 97, and β4 = 42 have been chosen. For k = 1, the monomials

M1 = x2x3 and M2 = x2
4 are evaluated as m1 = β2β3 = 41 and m2 = β2

4 = 47. For k = 2,
M1 and M2 are evaluated at [x2, x3, x4] = [β2

2 , β
2
3 , β

2
4 ]. Note that

mk
i = (Mi(β2, · · · , βj−1))k = Mi(βk2 , · · · , βkj−1) (3.15)

for all k ≥ 1 (for i = 1, · · · , s). Evaluating f at [x2, x3, x4] = [βk2 , βk3 , βk4 ] for k = 1, 2 gives

f1 = x4
1 + (29 · 41 + 10 · 47)x3

1x
2
5 + 88x2

1x5 + 16x1 = x4
1 + 43x3

1x
2
5 + 88x2

1x5 + 16x1,

f2 = x4
1 + (29 · 412 + 10 · 472)x3

1x
2
5 + 11x2

1x5 + x1 = x4
1 + 38x3

1x
2
5 + 11x2

1x5 + x1.

Note that we avoided the evaluation [x2, x3, x4] = [β0
2 , β

0
3 , β

0
4 ] = [1, 1, 1]. This is because we

want random evaluation points for the variables x2, · · · , xj−1 at other steps (e.g. step 8 of
Algorithm 13). Thus we get a shifted transposed Vandermonde system:

(
m1 m2

m2
1 m2

2

)
︸ ︷︷ ︸

Ṽ

(
c1

c2

)
=
(

43
38

)
.

Solving it gives c1 = 10 and c2 = 29.
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For distinct monomial evaluations mi, det(Ṽ ) 6= 0, and we can get a unique solution.
Monomial evaluations might not be distinct as βi’s are chosen at random from Zp\{0}.

3.6.2 Solving transposed Vandermonde systems in O(s2)

We present the quadratic algorithm of Zippel [62] to solve the transposed Vandermonde
system. For an s × s system, Zippel’s algorithm does O(s2) arithmetic operations in Zp
and uses O(s) space of elements of Zp. For most implementation examples of algorithm
CMBBSHL, solving Vandermonde systems is not the bottleneck. For computing the factors
of the determinant of Toeplitz matrices, solving the Vandermonde systems is the bottleneck.
Thus, I integrated a Maple implementation of the fast Vandermonde solver of Kaltofen and
Yagati [32] which costs O(M(s) log s).

Given distinct mi ∈ Zp (p is a prime), 1 ≤ i ≤ s (s ≥ 1), bbb = (b1, · · · , bs)T ∈ Zps, we
want to solve for ccc = (c1, · · · , cs)T ∈ Zps s.t.

1 1 · · · 1
m1 m2 · · · ms

...
...

...
ms−1

1 ms−1
2 · · · ms−1

s


︸ ︷︷ ︸

V


c1

c2
...
cs

 =


b1

b2
...
bs

 . (3.16)

Since det(V ) = ∏
1≤i<j≤s(mi−mj) and mi 6= mj , we have det(V ) 6= 0. We can compute

V −1 and hence ccc = V −1bbb. Let

V −1 =


a11 a12 · · · a1s

a21 a22 · · · a2s
...

...
as1 as2 · · · ass

 .

Then,

V −1V = I =


P1(m1) P1(m2) · · · P1(ms)
P2(m1) P2(m2) · · · P2(ms)

...
...

Ps(m1) Ps(m2) · · · Ps(ms)

 ,

where Pj(x) = aj1 + aj2x+ · · ·+ ajsx
s−1 for j = 1, · · · , s. We need

Pj(mi) =

1, if i = j

0, otherwise.
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Let

M(x) =
s∏
i=1

(x−mi) and Qj(x) = M(x)/(x−mj). (3.17)

Pj(x)’s are the Lagrange basis polynomials, i.e.

Pj(x) = (x−m1) · · · (x−mj−1)(x−mj+1) · · · (x−ms)
(mj −m1) · · · (mj −mj−1)(mj −mj+1) · · · (mj −ms)

= Qj(x)
Qj(mj)

.

Pj(x) can be computed using

Pj(x) = Qj(x)Qj(mj)−1. (3.18)

The coefficients of Pj(x) are (aj1, · · · , ajs), which is row j of V −1. Finally, ccc = V −1bbb.
Computing M(x) in (3.17) costs O(s2) arithmetic operations in Zp if using multiplica-

tions with quadratic cost. For each j, computing Qj(x) using ordinary division of M(x) by
x−mj costs O(s) arithmetic operations in Zp. Evaluating Qj(x) at x = mj using Horner’s
evaluation costs O(s) arithmetic operations in Zp. Thus, computing Pj(x) for j = 1, · · · , s
costs O(s2) arithmetic operations in Zp. The total cost for solving the transposed Vander-
monde system (3.16) using the method above is O(s2) arithmetic operations in Zp.

For a shifted transposed Vandermonde system

m1 m2 · · · ms

m2
1 m2

2 · · · m2
s

...
...

...
ms−1

1 ms−1
2 · · · ms−1

s


︸ ︷︷ ︸

Ṽ


c1

c2
...
cs

 =


b1

b2
...
bs

 , (3.19)

we notice that

Ṽ =


1 1 · · · 1
m1 m2 · · · ms

...
...

...
ms−1

1 ms−1
2 · · · ms−1

s


︸ ︷︷ ︸

V


m1

m2
. . .

ms


︸ ︷︷ ︸

D

with D a diagonal matrix. Since Ṽ ccc = V (Dccc)︸ ︷︷ ︸
uuu

= bbb, we first solve V uuu = bbb for uuu and then

ccc = D−1uuu.
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3.7 Rational number reconstruction

For the non-monic case of our black box factorization algorithm CMBBSHL, we use rational
number reconstruction after sparse Hensel lifting to recover the rational coefficients from
modular images and then the integer coefficients of the factors. The problem of rational
number reconstruction is described as follows:

Let n/d ∈ Q, gcd(n, d) = 1 and d > 0. Suppose we have computed u ≡ n/d mod m,
0 ≤ u < m and gcd(d,m) = 1. Question: How can we recover n/d from u, m?

The following theorem [57] shows that Wang’s algorithm RATCONVERT [56] always recon-
structs such n/d provided m > 2ND where N,D ∈ Z, N ≥ |n| and D ≥ d.

Theorem 3.7.1. (Wang, Guy and Davenport, 1982) Let n, d ∈ Z with d > 0 and gcd(n, d) =
1. Let m ∈ N and gcd(m, d) = 1. Suppose u ≡ n/d mod m with 0 ≤ u < m. Let N,D ∈ Z
s.t. N ≥ |n| and D ≥ d. Then,
(i) if m > 2ND, then for any 0 ≤ u < m there exists a unique rational number n/d s.t.
n/d ≡ u mod m, and
(ii) if m > 2ND then on input of m,u, there exists a unique index i in the extended
Euclidean algorithm s.t. ri/ti = n/d. Moreover, i is the first index s.t. ri ≤ N .

Example 11. Let n = 22, d = 7. Let m = 21311 and N = D = 100 so that m > 2ND. We
have 22/7 ≡ 6092 mod 21311. Running the extended Euclidean algorithm in Maple gives
the following:

> EEA := proc(m::integer, u::integer)

local r, s, t, i, q;

r[0] := m; r[1] := u;

s[0] := 1; s[1] := 0;

t[0] := 0; t[1] := 1;

printf("%4s %7s %7s %7s %12s\n", "i","r[i]","t[i]","q[i+1]","r[i]/t[i]");

for i from 1 while ( r[i]<>0 ) do

q[i+1] := iquo(r[i-1],r[i]);

s[i+1] := s[i-1] - q[i+1]*s[i];

r[i+1] := r[i-1] - q[i+1]*r[i];

t[i+1] := t[i-1] - q[i+1]*t[i];

printf("%4d %7d %7d %7d %12a\n",i,r[i],t[i],q[i+1],r[i]/t[i]);

od;

return r[i-1],s[i-1],t[i-1];

end:

> EEA(21311,6092);

i r[i] t[i] q[i+1] r[i]/t[i]
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1 6092 1 3 6092

2 3035 -3 2 -3035/3

3 22 7 137 22/7

4 21 -962 1 -21/962

5 1 969 21 1/969

1, -277, 969

We see that i = 3 is the first index s.t. ri = 22 ≤ N = 100. So we recover the rational
number r3/t3 = n/d = 22/7 by Wang’s algorithm [56].

Maple’s iratrecon(u,m,N,D) uses Wang’s algorithm by default with specified N,D.

> iratrecon(6092,21311,100,100);

22/7

IfN,D are unspecified, iratrecon(u,m) uses Wang’s algorithm by default withN = D = k,
where k is the largest integer s.t. 2k2 < m.

> iratrecon(6092,21311);

22/7

Maple’s iratrecon command has an option to use Monagan’s Maximal Quotient Ra-
tional Reconstruction [38]. It is a probabilistic algorithm that is more efficient than Wang’s
algorithm especially when |n| � d or d � |n|. Currently our algorithm CMBBSHL uses
iratrecon(u,m), i.e. Wang’s algorithm without specifying N,D.
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Chapter 4

Algorithms for sparse Hensel lifting

In this chapter, we present two algorithms developed by Monagan and Tuncer [43, 45],
and then algorithm CMSHL by Monagan and myself [8]. These are sparse Hensel lifting
algorithms used for factoring sparse polynomials given in the sparse representation. We
describe Monagan and Tuncer’s algorithms in Section 4.2, and then CMSHL in Section 4.3.
The last section gives worst-case complexity analyses for both MTSHL and CMSHL.

We refer to the algorithm developed by Monagan and Tuncer in 2016 as MTSHL [43].
For MTSHL, the authors used the strong SHL assumption (Lemma 1 of [43]) to solve
the multivariate polynomial Diophantine equations (MDPs) that appear in Wang’s MHL
algorithm in random polynomial time. A detailed complexity analysis for the average-case
was completed in [46]. MTSHL was integrated into Maple 2019 as the default command
factor [47].

In 2018, Monagan and Tuncer introduced another approach [45]. Instead of solving
MDPs, at each Hensel lifting step, the factors are recovered from many bivariate images
obtained from bivariate Hensel lifts (BHL). Classical BHL by Bernardin [4] costs O(d2

xd
2
y)

for an input polynomial a ∈ Zp[x, y] with dx = deg(a, x) and dy = deg(a, y). The cost of
BHL is improved to O(d2

xdy + dxd
2
y) by Monagan and Paluck [39, 48]. This approach is

suitable for sparse Hensel lifting since the individual degrees of the factors are often low,
e.g. deg(a, xj) < 1000 for all 1 ≤ j ≤ n.

However, it is observed in both Monagan and Tuncer’s algorithms, as well as in Wang’s
MHL, when the evaluation point αj is non-zero, an expression swell occurs in each factor
as it is recovered. Algorithm CMSHL removes the expression swell by reorganizing the
algorithm in [45]. It no longer does any multivariate polynomial multiplications and the
algorithm is highly parallelizable.

In this chapter, Sections 4.2.1, 4.3 and 4.4 are new and they are my own contributions.
Section 4.2.1 analyzes the expression swell that occurs in Monagan and Tuncer’s algorithms
which leads to the design and analysis of algorithm CMSHL.
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4.1 Steps prior to Hensel lifting

Suppose we seek the factors of a multivariate polynomial a ∈ Z[x1, · · · , xn]. Similar to
Wang’s multivariate Hensel lifting (MHL), a few preliminary steps are performed prior
sparse Hensel lifting (SHL) [44, 8]:

The first step is to compute and remove the content of a in a chosen main variable, say x1.
Let a = ∑d1

i=0 ai(x2, · · · , xn)xi1 where d1 = deg(a, x1). The content of a is gcd(a0, · · · , ad1),
a polynomial with one fewer variables which can be factored recursively. Let us assume the
content has been removed.

The second step is to identify any repeated factors in a by doing a square-free factoriza-
tion (described in Section 3.4). After this, we obtain the factorization a = b1b

2
2 · · · bkk such

that each factor bi is square-free and gcd(bi, bj) = 1 for i 6= j. Suppose this has also been
done and let a = sqf(a) = b1b2 · · · bk be the square-free part of a. Let a = f1f2 · · · fr be the
irreducible factorization over Z. We aim to compute f1, · · · , fr.

Next, select a large prime p. For algorithms CMSHL and MTSHL, we assume that p
does not divide any term in any irreducible factor fρ (for ρ = 1, · · · , r). Then, a positive
integer Ñ < p is chosen. Next, an evaluation point ααα = (α2, · · · , αn) ∈ Zn−1 is chosen
randomly from [1, Ñ − 1]n−1 and a(x1,ααα) is factored over Z.

For simplicity, we consider the irreducible factors that are monic in x1. For the non-
monic case, the leading coefficients of the factors can be found by Wang’s leading coefficient
correction algorithm (LCC) [54]. Wang’s LCC works well in practice and Maple currently
uses it. If the input polynomial a is represented by a black box, then the non-monic case
requires a different approach (see [10] and Section 6.1 for details).

We further restrict to consider only two irreducible factors in this chapter. For MTSHL,
the multi-factor case is considered in [44]. For algorithm CMSHL, the two-factor case can
be easily extended to multi-factors, and for the black box representation (Section 5.3). Let
a = fg where f and g are irreducible polynomials in Z[x1, · · · , xn] and monic in x1. We
define hj := h(x1, · · · , xj , αj+1, · · · , αn) mod p for a polynomial h ∈ Z[x1, · · · , xn].

Now we are ready to start the process of sparse Hensel lifting to recover f and g mod p
from a ∈ Z[x1, · · · , xn], f1 = f(x1,ααα) mod p, g1 = g(x1,ααα) mod p. The input and output
of sparse Hensel lifting are:

• Input: a prime p, ααα ∈ Zn−1, a ∈ Zp[x1, · · · , xn], f1, g1 ∈ Zp[x1] s.t.
(i) gcd(f1, g1) = 1 in Zp[x1];
(ii) a1 = f1g1 ∈ Zp[x1];
(iii) f1 and g1 are monic in x1.

• Output: fn, gn ∈ Zp[x1, · · · , xn] s.t.
(i) an = fngn ∈ Zp[x1, · · · , xn];
(ii) fn(x1,ααα) = f1 and gn(x1,ααα) = g1;
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Algorithm 6 MTSHL: Hensel lift xj with MDPs via sparse interpolation (j > 2).
Input: A prime p, αj ∈ Z, aj ∈ Zp[x1, · · · , xj ] monic in x1, fj−1, gj−1 ∈ Zp[x1, · · · , xj−1]

both monic in x1 s.t. aj(x1, ..., xj−1, αj) = fj−1gj−1.
Output: fj , gj ∈ Zp[x1, · · · , xj ] both monic in x1 s.t.

(i) aj = fjgj , (ii) fj(xj = αj) = fj−1 and gj(xj = αj) = gj−1; Or FAIL.
1: (σ0, τ0)← (fj−1, gj−1); (fj , gj)← (fj−1, gj−1).
2: error ← aj − fjgj . // Computed in Zp[x1, · · · , xn]
3: monomial ← 1.
4: for i = 1, 2, · · · while error 6= 0 and deg(fj , xj) + deg(gj , xj) < deg(aj , xj) do
5: monomial ← monomial · (xj − αj).
6: ci ← coeff(error, (xj − αj)i).
7: if ci 6= 0 then
8: Solve the MDP σigj−1 + τifj−1 = ci for σi, τi ∈ Zp[x1, · · · , xj−1]

with deg(σi, x1) < deg(fj−1, x1).
9: σf ← σi−1; τf ← τi−1. // Applying the strong SHL

10: (σi, τi)← SparseInterp(gj−1, fj−1, ci, σf , τf ) // Algorithm 7
11: if (σi, τi) = FAIL then return FAIL end if
12: (fj , gj)← (fj + σi ·monomial, gj + τi ·monomial).
13: error← aj − fjgj . // Multiplication is in Zp[x1, · · · , xj ]
14: end if
15: end for
16: if error = 0 then return (fj , gj) else return FAIL end if

(iii) fn and gn are monic in x1.
Or FAIL.

Let dfj = deg(f, xj) and dgj = deg(g, xj). Let

fj =
dfj∑
i=0

σji(xj − αj)i and gj =
dgj∑
i=0

τji(xj − αj)i

where σji, τji ∈ Zp[x1, · · · , xj−1] and σj0 = fj−1 and τj0 = gj−1. The sparse Hensel lifting
algorithm lifts (fj−1, gj−1) to (fj , gj) for 2 ≤ j ≤ n by computing the σji’s and τji’s using
sparse interpolation. At each step, aj = fjgj ∈ Zp[x1, · · · , xj ] so that at the final step,
an = fngn ∈ Zp[x1, · · · , xn].

If the initial evaluation point ααα is non-Hilbertian, then FAIL is returned and it means
no such fn and gn exist. If ααα is Hilbertian, then both algorithms MTSHL (Algorithm 6)
and CMSHL (Algorithm 9) can still return FAIL with a low probability (both MTSHL and
CMSHL are Las Vegas). Algorithm MTSHL could return FAIL if the sparse interpolation
algorithm for computing the MDPs (Algorithm 7) returns FAIL (at step 10 of Algorithm
6). This means the strong SHL assumption failed. Algorithm CMSHL could return FAIL at
several steps, i.e. at steps 4, 9, or 19 of Algorithm 9.
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Algorithm 7 SparseInterp: solve an MDP using sparse interpolation.
Input: u,w, c, σf , τf ∈ Zp[x1, · · · , xj−1] where u,w are monic in x1.
Output: The unique solution (σ, τ) to the MDP σu+ τw = c ∈ Zp[x1, · · · , xj−1] with
deg(σ, x1) < deg(w, x1) or FAIL.

1: Let dσ = deg(σf , x1) and σ = ∑dσ
i=0 ζi(x2, · · · , xj−1)xi1 with ζi = ∑si

l=1 ailMil

and dτ = deg(τf , x1) and τ = ∑dτ
i=0 ηi(x2, · · · , xj−1)xi1 with ηi = ∑ti

l=1 bilNil, where
ail, bil are to be determined, xi1Mil, xi1Nil are the monomials in σf , τf respectively.

2: Let s be the maximum of the si and ti.
3: Pick βββ = (β2, · · · , βj−1) ∈ (Zp\{0})j−2 at random.
4: Evaluate monomials at βββ: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O((j − 2))(#f + #g + dmax))
S = {Si = {mil = Mil(βββ) : 1 ≤ l ≤ si}, 0 ≤ i ≤ dσ} and
T = {Ti = {nil = Nil(βββ) : 1 ≤ l ≤ ti}, 0 ≤ i ≤ dτ}.
// Require distinct monomial evaluations to get unique solutions for Vandermonde solves:

5: if any |Si| 6= si or |Ti| 6= ti then return FAIL end if
6: for k from 1 to s do
7: Let Yk = (x2 = βk2 , · · · , xj−1 = βkj−1).
8: Evaluate u,w, c at Yk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(s(#f + #g + #a))
9: if gcd(u(x1, Yk), w(x1, Yk)) 6= 1 then return FAIL end if

10: Solve σk(x1)u(x1, Yk) + τk(x1)w(x1, Yk) = c(x1, Yk) ∈ Zp[x1]. . . . . . . . . . . . . . . .O(s d2
1)

11: end for
12: for i from 0 to dσ do
13: Construct and solve the si × si linear system for the unique solution ail: . . .O(s#f){∑si

l=1 ailm
k
il = coeff(σk(x1), xi1) for 1 ≤ k ≤ si

}
.

14: end for
15: Substitute the solution ail into σ.
16: Similarly, construct τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(s#g)
17: if σu+ τw = c then return (σ, τ) else return FAIL end if // wrong σf or τf

To recover the integer coefficients in the factors one must use a sufficiently large p to
perform the sparse Hensel lifting (e.g. we use 63-bit primes). For large integer coefficients,
a 63-bit prime p may still not be large enough, in that case we could do a subsequent p-adic
lift [44].

4.2 Monagan and Tuncer’s algorithms

The jth Hensel lifting step for both approaches of Monagan and Tuncer’s sparse Hensel
lifting algorithms [43, 45] are presented. The first approach (MTSHL [43, 46]) is presented
in Algorithms 6 and 7. Algorithm 7 is called from Algorithm 6 in a loop to solve the MDPs
via sparse interpolation. Note that in Algorithm 7, if max(ti) is much larger (or much
smaller) than max(si) then it will be faster to interpolate the smaller of σ and τ only and
obtain the larger of σ and τ using σu + τw = c. The second approach [45] is shown in
Algorithm 8. Along with the pseudocode, worst case complexity bounds for the main steps
are also included as an aid for the reader and for later reference.
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Algorithm 8 Hensel lift xj via bivariate Hensel lifting (j > 2) [45].
Input: A prime p, αj ∈ Z, aj ∈ Zp[x1, · · · , xj ] monic in x1, fj−1, gj−1 ∈ Zp[x1, · · · , xj−1]

both monic in x1 s.t. aj(x1, ..., xj−1, αj) = fj−1gj−1.
Output: fj , gj ∈ Zp[x1, · · · , xj ] both monic in x1 s.t.

(i) aj = fjgj , (ii) fj(xj =αj) = fj−1 and gj(xj =αj) = gj−1; Or FAIL.
1: Let σ0 = fj−1, fj = ∑dfj

h=0 σh(x1, ..., xj−1)(xj − αj)h with σh = ∑df
i=0

(∑si
l=1 chilMil

)
xi1.

Let τ0 = gj−1, gj = ∑dgj
h=0 τh(x1, ..., xj−1)(xj − αj)h with τh = ∑dg

i=0

(∑ti
l=1 dhilNil

)
xi1.

Milx
i
1, Nilx

i
1 are monomials in σ0, τ0. df = deg(fj−1, x1), dg = deg(gj−1, x1).

We are to determine: chil, dhil, dfj = deg(fj , xj), dgj = deg(gj , xj).
2: Pick βββ = (β2, · · · , βj−1) ∈ (Zp\{0})j−2 at random.
3: Evaluate monomials at βββ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O((j − 2)(#f + #g + dmax))
S = {Si = {mil = Mil(βββ), 1 ≤ l ≤ si}, 0 ≤ i ≤ df − 1} and
T = {Ti = {nil = Nil(βββ), 1 ≤ l ≤ ti}, 0 ≤ i ≤ dg − 1}.

4: if any |Si| 6= si or any |Ti| 6= ti then return FAIL end if // Require distinct monomial
evaluations so that the solutions for the Vandermonde solves are unique.

5: Let s be the maximum of the si and ti.
6: for k from 1 to s do
7: Let Yk = (x2 = βk2 , · · · , xj−1 = βkj−1).
8: Ak, Fk, Gk ← aj(x1, Yk, xj), fj−1(x1, Yk), gj−1(x1, Yk). . . . . . . . .O(s(#f + #g + #a))
9: if gcd(Fk, Gk) 6= 1 then return FAIL end if // unlucky evaluation

10: Call BivariateHenselLift(Ak, Fk, Gk, αj , p) to compute σhk(x1) and τhk(x1) s.t.
Ak = fkgk where fk = ∑dfj

h=0 σhk(xj − αj)h and gk = ∑dgj
h=0 τhk(xj − αj)h.

11: end for
12: for h from 1 to dfj do
13: for i from 0 to df do
14: Construct and solve the si×si linear system for the unique solution chil: O(sdj#f){∑si

l=1 chilm
k
il = coeff(σhk(x1), xi1) for 1 ≤ k ≤ si

}
15: end for
16: end for
17: Substitute the chil’s into σh = ∑df

i=0
(∑si

l=1 chilMil

)
xi1 for 0 ≤ h ≤ dfj and expand∑dfj

h=0 σh(x1, ..., xj−1)(xj − αj)h to get fj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(d2
j#f)

18: Similarly to construct gj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(sdj#g)
19: if aj = fjgj then return (fj , gj) else return FAIL end if . . . . . . . . . . . . . . O(#f#g)

4.2.1 Intermediate expression swell

Definition 4.2.1. An intermediate expression swell occurs if an intermediate polyno-
mial has more terms than both the input and output polynomials.

The presence of an intermediate expression swell makes it harder to bound the complex-
ity of an algorithm. In Algorithm 6, an expression swell may occur in steps 12 and 13. In
Algorithm 8 an expression swell may occur at the final expansion step (step 17). To study
the expression swell, we consider the partial sums of fj , f (i)

j and f (i)
jH , which correspond to
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step 12 of Algorithm 6 and in step 17 of Algorithm 8 respectively. Let

f
(i)
j =

i∑
k=0

σk(x1, · · · , xj−1)(xj − αj)k for 0 ≤ i ≤ dfj and

f
(i)
jH = (((σdfj (xj − αj) + σdj−1)(xj − αj) + · · · )(xj − αj)) + σdj−i

where f (i)
jH is the expansion using Horner’s form and dfj = deg(fj , xj). We shall look at

#f (i)
j and #f (i)

jH for all 0 ≤ i ≤ dfj .
Table 4.1 shows an example of a randomly generated polynomial with p = 231−1, j = 5,

dfj = 14, d = deg(a) = 20 and #fj = 989. The density ratio #fj/
(d+j
j

)
≈ 0.0186. The ratios

max
(
#f (i)

j

)
/#fj and max

(
#f (i)

jH

)
/#fj are 2021/989 = 2.043 and 2983/989 = 3.016 re-

spectively. This example shows a typical trend in an average case where max
(
#f (i)

j

)
/#fj /

1 + d/j [46]. We observe that #σi decreases as i increases from 0 to dfj . The number of
terms #f (i)

j increases to a peak in the first few expansions and gradually shrinks back to
#fj , whereas #f (i)

jH increases to a higher peak than max(#f (i)
j ) and drops down to #fj at

the last iteration.

i 0 1 2 3 4 5 6 7
#σi 925 737 584 459 352 268 196 134

#f (i)
j 925 1512 1851 1999 2021 1934 1768 1628

#f (i)
jH 3 10 23 47 95 159 253 387
i 8 9 10 11 12 13 14 max

#σi 94 64 48 24 13 7 3 -
#f (i)

j 1486 1411 1226 1130 1071 1028 989 2021
#f (i)

jH 583 851 1203 1662 2246 2983 989 2983

Table 4.1: Number of terms in f (i)
j and f (i)

jH with a randomly generated polynomial.

i 0 1 2 3 4
#σi 7 7 7 7 7

#f (i)
j 7 14 21 28 7

#f (i)
jH 7 14 21 28 7

Table 4.2: Number of terms in f (i)
j and f (i)

jH in a worst case.

The following example illustrates the worst case when both #f (i)
j and #f (i)

jH increase
linearly to their maximum, dfj · (#fj).

Example 12. Let p = 101, j = 4,

fj = (31x3 + 100x2
3 + (49 + 36x2

2 + (x4
1 + 44x2

1 + 28)x3
2)x3

3)x4
4
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with #fj = 7 and dfj = 4. Table 4.2 shows the number of terms in f
(i)
j and f

(i)
jH . Here,

max
(
#f (i)

j

)
= max

(
#f (i)

jH

)
= dfj · (#fj) = 4 · 7 = 28. Since σi = 1

i!
∂(i)fj
∂xij

(xj = αj) for 0 ≤
i ≤ dfj and fj only contains terms with x4

j , #σi remains constant as i increases from 0 to
dfj . Thus, we have max

(
#f (i)

j

)
/#fj = dfj .

4.3 Our new algorithm CMSHL

We present a new algorithm which eliminates the expression swell in Algorithm 8. The idea
is depicted in Figure 4.1.

fj(x1, xj) =
∑dfj

i=0 σi(x1)(xj − αj)
i

∑dfj
i=0 σ̄i(x1)x

i
j

fj(x1, · · · , xj) =
∑dfj

i=0 σi(x1, · · · , xj−1)(xj − αj)
i ∑dfj

i=0 σ̄i(x1, · · · , xj−1)x
i
j

Sparse Interpolation Sparse Interpolation

Expansion

Figure 4.1: Dashed arrow: Algorithm 8 [45], expression swell occurs at the expansion step.
Lined arrow: CMSHL (Algorithm 9).

Consider one of the factors fj at the jth Hensel lifting step:

fj(x1, · · · , xj) =
dfj∑
i=0

σi(x1, · · · , xj−1)(xj − αj)i =
dfj∑
i=0

σ̄i(x1, · · · , xj−1)xij , (4.1)

where dfj = deg(fj , xj). There are two routes to recover σ̄i(x1, · · · , xj−1) in (4.1) from its
bivariate image fj(x1, xj). One route is to first recover σi(x1, · · · , xj−1) from σi(x1) using
sparse interpolation and then expand to get σ̄i(x1, · · · , xj−1) in (4.1) (through the dashed
arrows in Figure 4.1). This was done by Monagan and Tuncer in [45] (Algorithm 8). In our
new algorithm (CMSHL), bivariate images are computed and expanded first and then the
coefficients σ̄i(x1, · · · , xj−1) are recovered directly from σ̄i(x1) to get the final expanded
form. This is through the lined arrows in Figure 4.1. Multivariate polynomial expansions in
step 13 of Algorithm 6 and step 17 of Algorithm 8 are avoided where expression swells can
occur.

Our new algorithm is presented in Algorithm 9 and we call it CMSHL (Chen-Monagan
sparse Hensel lifting). The correctness of this algorithm is based on the following: since all
loop ranges are finite, algorithm CMSHL terminates. When algorithm CMSHL terminates,
it outputs either two factors fn, gn or FAIL. Since Algorithm 9 tests if aj = fjgj in step 19,
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Algorithm 9 CMSHL: Hensel lifting xj via bivariate Hensel lifting (j > 2).
Input: A prime p, αj ∈ Zp, aj ∈ Zp[x1, · · · , xj ] monic in x1,
fj−1, gj−1 ∈ Zp[x1, · · · , xj−1] both monic in x1 s.t. aj(x1, ..., xj−1, αj) = fj−1gj−1.
Output: fj , gj ∈ Zp[x1, · · · , xj ] both monic in x1 s.t.
(i) aj = fjgj , (ii) fj(xj =αj) = fj−1 and gj(xj =αj) = gj−1; Or FAIL.

1: Let fj−1 = xdf1 +∑df−1
i=0 σi(x2, ..., xj−1)xi1 with σi = ∑si

k=1 cikMik

and gj−1 = xdg1 +∑dg−1
i=0 τi(x2, ..., xj−1)xi1 with τi = ∑ti

k=1 dikNik,
where Mik, Nik are the monomials in σi, τi respectively.

2: Pick βββ = (β2, · · · , βj−1) ∈ (Zp\{0})j−2 at random.
3: Evaluate monomials at βββ: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O((j − 2)(#f + #g + dmax))
S = {Si = {mik = Mik(βββ), 1 ≤ k ≤ si}, 0 ≤ i ≤ df − 1} and
T = {Ti = {nik = Nik(βββ), 1 ≤ k ≤ ti}, 0 ≤ i ≤ dg − 1}.

4: if any |Si| 6= si or any |Ti| 6= ti then return FAIL end if
5: Let s be the maximum of the si and ti.
6: for k from 1 to s in parallel do
7: Let Yk = (x2 = βk2 , · · · , xj−1 = βkj−1).
8: Ak, Fk, Gk ← aj(x1, Yk, xj), fj−1(x1, Yk), gj−1(x1, Yk). . . . . . . . .O(s(#f + #g + #a))
9: if gcd(Fk, Gk) 6= 1 then return FAIL end if // unlucky evaluation

10: fk, gk ← BivariateHenselLift(Ak, Fk, Gk, αj , p). . . . . . . . . . . . . . . . . . .O(s(d2
1dj + d1d

2
j ))

11: end for
12: Let fk = xdf1 +∑µ

l=1 αklM̃l(x1, xj) for 1 ≤ k ≤ s, where µ ≤ d1dj .
13: for l from 1 to µ in parallel do
14: i← deg(M̃l, x1).
15: Solve the si× si linear system for clk:

{∑si
k=1m

t
ikclk = αnl for 1 ≤ t ≤ si

}
O(sdj#f)

16: end for
17: Construct fj ← xdf1 +∑µ

l=1
(∑si

k=1 clkMik(x2, ..., xj−1)
)
M̃l(x1, xj).

18: Similarly, construct gj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(sdj#g)
19: if aj = fjgj then return (fj , gj) else return FAIL end if . . . . . . . . . . . . . . .O(#f#g)

the output (fj , gj) is the correct factorization. We present an upper bound on the probability
that Algorithm 9 outputs FAIL in Section 4.4.

Algorithm CMSHL also has a significant advantage for parallelization, however, it only
uses the weak SHL assumption during a sparse interpolation. It can not use the strong
SHL assumption as in MTSHL. The strong and the weak SHL assumptions are both
defined in Section 3.3.

4.4 Complexity analyses with failure probabilities

For both MTSHL and CMSHL, the number of arithmetic operations in Zp is bounded for
the worst-case, along with their failure probabilities.
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4.4.1 MTSHL

MTSHL uses the strong SHL assumption to solve the multivariate polynomial Diophan-
tine equations (MDPs) in a loop. The following lemma was proved in [43]:

Lemma 4.4.1. Let f ∈ Zp[x1, · · · , xn] and let α be a randomly chosen element in Zp. Let
f = ∑dn

i=0 σi(x1, · · · , xn−1)(xn − α)i where dn = deg(f, xn). Then,

Pr[Supp(σi+1) * Supp(σi)] ≤ |Supp(σi+1)| dn − i
p− dn + i+ 1 for 0 ≤ i < dn.

Step 10 of Algorithm 6 applies the strong SHL assumption by using Supp(σf ) =
Supp(σi−1) and Supp(τf ) = Supp(τi−1) as the supports for σi and τi. Therefore we only
need to solve systems of linear equations for the coefficients. This is the key idea used to
solve the MDPs in Algorithm 7, which we shall analyze in the following.

The failure probability of the MDPs

There are two places where Algorithm 7 can return FAIL intermediately: step 5 and step
9. The failure probabilities are bounded as follows. The proof closely follows Monagan and
Tuncer’s method in [46], but I do it for the worst-case analysis instead of the average-case as
in [46]. I present the proof below since I use their method in the failure probability analysis
of CMSHL.

In order to prove Proposition 4.4.4, we need Definition 4.4.2 (in Chapter 3 of [14]) and
Lemma 4.4.3 (Lemma 4 in [24]).

Definition 4.4.2. Let R be a commutative ring and let A,B ∈ R[x1]. Let A = ∑s
i=0 aix

i
1

and B = ∑t
j=0 bjx

j
1 with s > 0 and t > 0, where ai, bj ∈ R. The Sylvester matrix of A

and B with respect to x1, denoted as Syl(A,B, x1), is the following s+ t by s+ t matrix

Syl(A,B, x1) =



as 0 0 bt 0 0
as−1 as 0 bt−1 bt 0
... as−1

. . . 0
... bt−1

. . . 0

a1
... as b1

... bt

a0 a1 as−1 b0 b1 bt−1

0 a0
... 0 b0

...

0 0 . . . a1 0 0 . . . b1

0 0 a0 0 0 b0



. (4.2)

The Sylvester resultant of A and B with respect to x1, denoted as res(A,B, x1), is the
determinant of the Sylvester matrix Syl(A,B, x1).
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A key property of the resultant is that if R = F a field then

deg(gcd(A,B), x1) > 0 ⇐⇒ res(A,B, x1) = 0. (4.3)

Lemma 4.4.3. Let F be a field and let A,B ∈ F[x2, · · · , xn][x1] with deg(A, x1) > 0 and
deg(B, x1) > 0. Let βββ = (β2, · · · , βn) ∈ Fn−1. If LC(A)(βββ) 6= 0 and LC(B)(βββ) 6= 0, then

deg(gcd(A(x1,βββ), B(x1,βββ)), x1) > 0 ⇐⇒ res(A(x1,βββ), B(x1,βββ), x1) = 0.

Proposition 4.4.4. Let p be a large prime, d = deg(a) and s be the integer defined in
step 2 of Algorithm 7. When Algorithm 6 calls Algorithm 7 with inputs (u,w, c, σf , τf ) =
(gj−1,fj−1,ci,σi−1,τi−1), if Supp(σi) ⊆ Supp(σi−1) and Supp(τi) ⊆ Supp(τi−1), for i =
1, 2, 3, · · · , then Algorithm 7 fails to compute (σi, τi) for the MDP σigj−1 + τifj−1 = ci with
a probability less than

d s(#fj−1 + #gj−1)
2(p− 1)︸ ︷︷ ︸

step 5

+ d2s2

p− 1︸ ︷︷ ︸
step 9

. (4.4)

Proof. For step 5, let ∆i = ∏
1≤l<k≤si(Mil − Mik), where Mil,Mik are monomials in S

defined in step 4. Let ∆ = ∏dσ
i=0 ∆i, where dσ = deg(σf , x1). Then ∆(βββ) = 0 implies

∆i(βββ) = 0 for some i so that not all monomial evaluations are distinct. Also, deg(Mil) ≤ d
for each monomial in S and ∑dσ

i=0 si = #fj−1. Thus,

deg(∆) ≤
dσ∑
i=0

d

(
si
2

)
≤ d s

2

dσ∑
i=0

(si − 1) < ds#fj−1
2 .

By the Schwartz-Zippel lemma (Lemma 1.6.4), since the β′is are chosen randomly from
[1, p− 1],

Pr[∆(βββ) = 0] ≤ deg(∆)
p− 1 <

ds#fj−1
2(p− 1) .

Similarly, the monomial evaluations for τ are considered. Thus,

Pr[Algorithm 7 fails at step 5] < ds(#fj−1 + #gj−1)
2(p− 1) .

To be able to solve the Diophantine equation in step 10, we need

gcd(u(x1, Yk), w(x1, Yk)) = gcd(gj−1(x1, Yk), fj−1(x1, Yk)) = 1.
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Let R = res(gj−1, fj−1, x1) ∈ Zp[x2, · · · , xj−1]. Since fj−1 and gj−1 are monic in x1, by
Lemma 4.4.3, step 9 returns FAIL if

deg(gcd(gj−1(x1, Yk), fj−1(x1, Yk)), x1) > 0 ⇐⇒ R(Yk) = 0 ⇐⇒ R(βk2 , · · · , βkj−1) = 0.

Let S = ∏s
k=1R(xk2, xk3, · · · , xkj−1). Since deg(fj−1) < d and deg(gj−1) < d, deg(R) < d2

(from Definition 4.4.2) and

deg(S) =
s∑

k=1
k deg(R) <

s∑
k=1

kd2 = d2s(s+ 1)
2 ≤ d2s2.

By Lemma 1.6.4, since β′is are chosen randomly from [1, p− 1],

Pr[R(Yk) = 0 for some k] = Pr[S(βββ) = 0] ≤ deg(S)
p− 1 <

d2s2

p− 1 .

Adding the failure probabilities at step 5 and 9, we obtain the result.

At the end of Algorithm 7, at step 17, σu+τw = c can be checked probabilistically with
a single evaluation point. If Algorithm 7 returns FAIL at step 17, the support in either σf
or τf was wrong (the strong SHL assumption fails). By Lemma 4.4.1, Algorithm 6 fails at
the jth Hensel lifting step due to a wrong support in σi with a probability no more than

dj−1∑
i=0
|supp(σi+1)| dj − i

p− dj + i+ 1 ≤ #fj−1

dj−1∑
i=0

dj − i
p− dj + i+ 1 <

dj(dj + 1)#fj−1
2(p− dj + 1) ,

where dj = deg(a, xj).
Note that the number s in Proposition 4.4.4 varies since MDPs are called in a loop from

Algorithm 6. We denote sj,i as the maximum number of monomials in the coefficients of σi−1

and τi−1 in x1 for the ith call of the MDP in the jth Hensel lifting step. Let sj = maxi(sj,i)
and Tj−1 = #fj−1 +#gj−1. We have dj ≤ d. We assume that ααα is Hilbertian. Adding up the
failure probabilities at step 5, 9 and 17, we obtain the failure probability at the jth Hensel
lifting step:

Proposition 4.4.5. Let p be a large prime, d = deg(a), sj = maxi(sj,i) and Tj−1 =
#fj−1 +#gj−1. Assume that ααα is Hilbertian. Algorithm 6 (MTSHL) fails to compute fj and
gj from fj−1 and gj−1 at the jth Hensel lifting step (j > 2) by Algorithm 7 with a probability
less than

d2(2s2
j + Tj−1) + d(sj + 1)Tj−1

2(p− d+ 1) . (4.5)

For the whole MTSHL process (for 2 ≤ j ≤ n), we have #fj−1 ≤ #f , #gj−1 ≤ #g.
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Proposition 4.4.6. Let p be a large prime s.t. p does not divide any term of f and g, n
be the number of variables in a, d = deg(a), smax = max(sj) and Tfg = #f + #g. Assume
that ααα is Hilbertian. MTSHL (the jth Hensel lifting step as in Algorithm 6) fails to solve
the MDP via sparse interpolation (Algorithm 7) with a probability less than

(n− 2)(d2(2s2
max + Tfg) + d(smax + 1)Tfg)

2(p− d+ 1) . (4.6)

We illustrate the probability in Proposition 4.4.6 for a typical large factorization prob-
lem. Let n = 10, d = 102, Tfg = 2× 104 and smax = 102. If p = 263 − 25, then MTSHL fails
with probability less than 2.611× 10−10.

The complexity of solving the MDP

It remains to bound the number of arithmetic operations in Zp for Algorithm 7. Theorem
4.4.7 gives the complexity of solving the MDP.

Theorem 4.4.7. Let p be a large prime, s be the integer defined in step 2 of Algorithm
7, d1 = deg(a, x1) and aj (j > 2) be monic in x1. We assume j − 2 / s. Let Tj−1 =
#fj−1 + #gj−1. When Algorithm 6 calls Algorithm 7, if Algorithm 7 succeeds (the failure
probability is bounded by (4.5)), the number of arithmetic operations in Zp for solving the
MDP σigj−1 +τifj−1 = ci for i = 1, 2, · · · using Algorithm 7 in the worst case is O(s(#aj +
Tj−1 + d2

1)).

Proof. Let dmax = maxj−1
i=2 deg(a, xi) and dfmax = maxj−1

i=2 deg(f, xi).
For step 4 of Algorithm 7, one way to evaluate the monomials is to create a table of

powers for each variable x2, · · · , xj−1, as shown in Fig. 4.2. Let dσfi = deg(σf , xi). It takes∑j−1
i=2 (dσfi−1) ≤ (j−2)(dfmax−1) multiplications to compute the table. After creating the

table, it takes O
(
(j − 3)∑dσ

i=0 si
)

= O((j − 3)#σf ) multiplications to evaluate monomials
in S. Similarly for the evaluations in T . Thus, the total cost is O((j−2)(#σf +#τf +dmax))
arithmetic operations in Zp.

1

1

1

β2

β3

βj−1

β2
2

β2
3

β2
j−1

β
dσf2
2

β
dσf3
3

β
dσfj−1
j−1

...

· · ·

· · ·

· · ·

Figure 4.2: Evaluation table for variables x2, · · · , xj−1.
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For step 8 of Algorithm 7, the monomial evaluations and the coefficients of u are stored
in two arrays (M and C) of each size #u. Similarly for w and c. At the first iteration, each
entry inM is squared and then multiplied by the corresponding coefficient in C to compute
the sum. Each iteration costs 3(#u+ #w+ #c) arithmetic operations in Zp. The total cost
is O(s(#fj−1 + #gj−1 + #aj)).

For step 10, solving each univariate Diophantine equation using the extended Euclidean
algorithm costs O(d2

1) arithmetic operations in Zp (for a reference, see Chapter 2 of [19]).
For steps 12 to 14, the Vandermonde solver (Zippel’s algorithm [62]) costs∑dσ

i=0O(s2
i ) ⊆

O(s#σf ) arithmetic operations in Zp.
We have #σf ≤ #fj−1 and #τf ≤ #gj−1. The total cost of Algorithm 7 is

O(s(#fj−1 + #gj−1 + #aj)︸ ︷︷ ︸
eval in step 8

+ s d2
1︸︷︷︸

step 10

+ s(#σf + #τf )︸ ︷︷ ︸
VS in steps 12−14

)

⊆ O(s(#aj + #fj−1 + #gj−1 + d2
1)) = O(s(#aj + Tj−1 + d2

1))

arithmetic operations in Zp in the worst case.

The complexity of MTSHL

Now we return to the analysis of Algorithm 6 – Hensel lifting xj with multivariate polyno-
mial Diophantine equations. One bottleneck of Algorithm 6 is the error computation at step
13. There is an expression swell of fj and gj at step 12 of up to a factor of dj = deg(a, xj)
(Example 12). Theorem 4.4.8 gives the complexity at the jth Hensel lifting step.

Theorem 4.4.8. Let p be a large prime s.t. p does not divide any term of f and g. Let
d1 = deg(a, x1), dj = deg(a, xj) and sj = maxi(sj,i). We assume ααα is Hilbertian. Let
Tj−1 = #fj−1 + #gj−1. If the jth Hensel lifting step of MTSHL (Algorithm 6) succeeds (the
failure probability is bounded by (4.5)), the number of arithmetic operations in Zp is

O( d2
j#aj︸ ︷︷ ︸

step 6,12

+ djsj(#aj + Tj−1 + d2
1)︸ ︷︷ ︸

MDP

+ d3
j#fj−1#gj−1︸ ︷︷ ︸

error comp.

) (4.7)

in the worst case.

Proof. To compute coeff(error, (xj−αj)i) in step 6, using repeated differentiation and eval-
uation costs O(i#error). The total cost is O(d2

j#aj).
The total cost of solving the MDPs using sparse interpolation in step 10 is O(djsj(#aj+

Tj−1 + d2
1)), from Theorem 4.4.7.

The total cost of the error computation in step 13 in the worst case is

O

 dj∑
k=1

#f (k)
j #g(k)

j

 = O

 dj∑
i=1

(i#fj−1)(i#gj−1)

 ⊆ O(d3
j#fj−1#gj−1)
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arithmetic operations in Zp assuming classical polynomial multiplication.
The total cost for Algorithm 6 is

O( d2
j#aj︸ ︷︷ ︸

step 6,12

+ djsj(#aj + Tj−1 + d2
1)︸ ︷︷ ︸

MDP

+ d3
j#fj−1#gj−1︸ ︷︷ ︸

error comp.

)

arithmetic operations in Zp in the worst case.

We remark that in Theorem 4.4.8, the expression swell appears as the factor of d2
j . On

average the expression swell is much less. The complexity of the whole MTSHL process is
given by Theorem 4.4.9.

Theorem 4.4.9. Let a ∈ Z[x1, · · · , xn] be monic in x1. Let f and g be the monic irreducible
factors of a. Let p be a large prime s.t. p does not divide any term of f and g. Let ααα =
(α2, · · · , αn) ∈ Zn−1 be a random evaluation point selected from [1, Ñ − 1]n−1. Assume
ααα is Hilbertian. Let Tfg = #f + #g. Let f1 = f(x1,ααα) and g1 = g(x1,ααα) be the image
polynomials with gcd(f1, g1) = 1. Let di = deg(a, xi) for 1 ≤ i ≤ n, dmax = maxni=2(di)
and smax = maxnj=3(sj). If Algorithm MTSHL succeeds (the failure probability is bounded
by (4.6)), the total number of arithmetic operations in Zp for lifting f1 and g1 to fn and gn
in n− 1 steps in the worst case is

O(d2
1d2 + d1d

2
2︸ ︷︷ ︸

first BHL

+(n− 2)(d2
max#a+ smaxdmax(#a+ Tfg + d2

1) + d3
max#f#g︸ ︷︷ ︸

MTSHL x3,x4,··· ,xn

)). (4.8)

4.4.2 CMSHL

In algorithm CMSHL, the weak SHL assumption is used instead of the strong SHL
assumption as in MTSHL (see Definition 3.3).

The failure probability of CMSHL

For the jth Hensel lifting step, by Lemma 3.3.2, the failure probability due to a wrong
support in either fj or gj (Algorithm 9 fails at step 19) is bounded by

(#fj−1 + #gj−1)
dj∑
i=1

dj
p− dj + i

≤
d2
j (#fj−1 + #gj−1)

p− dj + 1 .

The number s defined in step 5 of Algorithm 9 is equivalent to sj = max(sj,i) in MTSHL.
We denote sj as the number s in step 5 of Algorithm 9 at the jth Hensel lifting step. Identical
to MTSHL (Proposition 4.4.4), the failure probabilities at steps 4 and 9 are

d sj(#fj−1 + #gj−1)
2(p− 1)︸ ︷︷ ︸

step 4

+
d2s2

j

p− 1︸ ︷︷ ︸
step 9

.
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We assume that ααα is Hilbertian. Adding the failure probabilities at steps 4, 9 and 19,
we have the failure probability at the jth Hensel lifting step for Algorithm 9 (CMSHL) is:

Proposition 4.4.10. Let p be a large prime s.t. p does not divide any term of f and g. Let
d = deg(a), Tj−1 = #fj−1 + #gj−1 and sj be the number s defined in step 5 of Algorithm
9 at the jth Hensel lifting step. Then Algorithm 9 fails to compute fj and gj from fj−1 and
gj−1 at the jth Hensel lifting step (j > 2) with a probability less than

2d2(s2
j + Tj−1) + dsjTj−1

2(p− d+ 1) . (4.9)

The complexity of CMSHL

Theorem 4.4.11. Let p be a large prime s.t. p does not divide any term of f and g. Let
dj = deg(a, xj) for 1 ≤ j ≤ n and sj be the number s defined in step 5 of Algorithm 9 for
the jth Hensel lifting step. Let Tj−1 = #fj−1 + #gj−1. If Algorithm 9 succeeds (the failure
probability is bounded by (4.9)), the number of arithmetic operations in Zp for the jth Hensel
lifting step of CMSHL in the worst case is

O(djsj(Tj−1 + d2
1 + d1dj) + sj#aj + #fj#gj). (4.10)

Proof. Similar to the analysis of Algorithm 7, we bound the total number of arithmetic
operations in Zp for the worst case in Algorithm 9. Let dmax = maxj−1

i=2 di.
The total cost of evaluations in step 3 is O((j − 2)(#fj−1 + #gj−1 + dmax)).
The total cost of step 8 is O(sj(#fj−1 + #gj−1 + #aj)).
Each bivariate Hensel lift in line 10 costs Θ(d1d

2
j + djd

2
1) [39, 48].

Using Zippel’s algorithm [62], the total cost of the Vandermonde solver in step 15 is
dj
∑df−1
i=0 Θ(s2

i ) ⊆ O(djsj#fj−1) for fj . Similarly, for gj , we have O(djsj#gj−1).
Finally, in step 19, the cost of multiplying fj and gj is O(#fj#gj).
Assuming j − 2 / sj , the total cost of Algorithm 9 is

O(sj(#fj−1 + #gj−1 + #aj)︸ ︷︷ ︸
eval in step 8

+ sj(d2
1dj + d1d

2
j )︸ ︷︷ ︸

BHL in step 10

+ sj dj(#fj−1 + #gj−1)︸ ︷︷ ︸
VS in step 15

+ #fj#gj︸ ︷︷ ︸
step 19

)

⊆ O(djsj(#fj−1 + #gj−1 + d2
1 + d1dj) + sj#aj + #fj#gj)

= O(djsj(Tj−1 + d2
1 + d1dj) + sj#aj + #fj#gj).

For the whole process of CMSHL (for 2 ≤ j ≤ n), we have the following:

Theorem 4.4.12. Let a ∈ Z[x1, · · · , xn] be monic in x1. Let f and g be the monic irre-
ducible factors of a. Let p be a large prime s.t. p does not divide any term of f and g.
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Let ααα = (α2, · · · , αn) ∈ Zn−1 be a randomly chosen evaluation point from [1, Ñ − 1]n−1.
Assume ααα is Hilbertian. Let Tfg = #f + #g. Let d = deg(a), di = deg(a, xi) for 1 ≤ i ≤ n,
dmax = maxni=2(di), and smax = maxnj=3(sj). The failure probability of CMSHL is less than

(n− 2)(2d2(s2
max + Tfg) + dsmaxTfg)

2(p− d+ 1) . (4.11)

Let f1 = f(x1,ααα) and g1 = g(x1,ααα) be the image polynomials with gcd(f1, g1) = 1. If
CMSHL succeeds, the number of arithmetic operations in Zp for lifting f1 and g1 to fn and
gn in n− 1 steps (via Algorithm 9) in the worst case is

O(d2
1d2 + d1d

2
2︸ ︷︷ ︸

first BHL

+(n− 2) (dmaxsmax(Tfg + d2
1 + d1dmax) + smax#a+ #f#g)︸ ︷︷ ︸

CMSHL x3,x4,··· ,xn

). (4.12)

Remark 1. In Theorem 4.4.12, Tfg = #f + #g is the size of the output factors, which
may be greater than #a, the size of the input polynomial.
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Chapter 5

Black box factorization algorithms

From the complexity analysis of CMSHL (Theorem 4.4.12), we observed that the dominating
cost of CMSHL is often evaluating the input polynomial at many points. This motivated us
to consider using a black box representation for the input polynomial a ∈ Z[x1, · · · , xn].

In this chapter, we present several algorithms for factoring polynomials represented by
black boxes. We first discuss Kaltofen and Trager’s algorithm [31] for factoring multivari-
ate polynomials with coefficients in a field (Section 5.1), and then Rubinfeld and Zippel’s
algorithm [51] for factoring multivariate polynomials with integer coefficients (Section 5.2).
We refer to both algorithms as Approach I (see Figure 1.4 in Section 1.7.1). For Approach
I, the black boxes of the factors are constructed first, then the sparse representation of the
factors is computed using sparse polynomial interpolation [2, 32, 62]. Both algorithms use
a non-modular black box presentation of a.

The new algorithm CMBBSHL is presented in Section 5.3 (Approach II) for the monic
and square-free case. Section 5.3 is based on our publication in 2022 [9]. Chapter 6 is based on
our publication in ISSAC 2023 [10] which extends algorithm CMBBSHL to treat all cases of
inputs, i.e. non-monic, non-square-free, and non-primitive cases. Algorithm CMBBSHL has
been implemented in Maple with all major subroutines coded in C. Several benchmarks with
a variety of problems are presented. We compared our timings with Maple and Magma’s
current best determinant and factorization algorithms and our algorithm is much faster
when the determinant has large number of terms. We also show that the number of probes
to the black box required in our algorithm is fewer than Rubinfeld and Zippel’s algorithm
[51] (the best known algorithm for Approach I), briefly in Section 5.3 and formally in the
complexity analysis in Chapter 6.

5.1 Kaltofen and Trager’s algorithm

Let a ∈ F[x1 · · · , xn], where F is a field of characteristic 0. The notation a is used here to
distinguish polynomials over a field (only for this and the next sections). Let BB : Fn → F
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Algorithm 10 Kaltofen and Trager’s algorithm [31].
Input: (i) The black box BB : Fn → F s.t. BB(ααα) = a(ααα); (ii) a given failure probability

ε� 1; (iii) d = deg(a), the total degree of a.
Output: FF : Fn → Fr s.t. FF(ααα) = (f1(ααα), · · · , fr(ααα)).
Part A: // This part computes g1,i(X1) and their multiplicities ēi, for all 1 ≤ i ≤ r.
A1: Pick random elements a2, · · · , an, b1, · · · , bn, c1, c3, · · · , cn from a sufficiently large

finite subset R ⊂ F.
A2: By calling BB O(d2) times and using Lagrange interpolation, interpolate
a2(X1, X2) := a(X1 +c1X2 +b1, a2X1 +X2 +b2, a3X1 +c3X2 +b3, · · · , anX1 +cnX2 +bn).
A3: Factor a2 over F[X1, X2] into irreducible factors

a2(X1, X2) =
r̃∏
i=1

g2,i(X1, X2)ẽi , ẽi ∈ Z+.

Pr[r̃ = r and ẽi = ei] ≥ 1− ε for all 1 ≤ i ≤ r (Theorem 1 of [31]).
A4: Assign g1,i(X1) := g2,i(X1, 0) for all 1 ≤ i ≤ r.

if gcd(g1,i, g1,j) 6= 1 for any 1 ≤ i < j ≤ r, then return FAIL.
if deg(g1,i) 6= deg(g2,i, X1) for any 1 ≤ i ≤ r, then return FAIL.
Now, w.h.p.,

a1(X1) := a(X1 + b1, a2X1 + b2, · · · , anX1 + bn) =
r∏
i=1

g1,i(X1)ei . (5.1)

Part B: // The following program constructs the black box of the factors FF.
Input: ααα, r, g1,i (1 ≤ i ≤ r), ei (1 ≤ i ≤ r), d, a2, · · · , an, b1, · · · , bn, c1, c3, · · · , cn.
Output: FF : Fn → Fr s.t. FF(ααα) = (f1(ααα), · · · , fr(ααα)).
procedure (ααα)
B1: By calling BB O(d2) times and using Lagrange interpolation, interpolate
ā(X1, Y ) := a(X1 + b1, Y (α2 − a2(α1 − b1)− b2) + a2X1 + b2, · · · , Y (αn − an(α1 − b1)−
bn) + anX1 + bn). Note that ā(α1 − b1, 1) = a(α1, · · · , αn︸ ︷︷ ︸

ααα

) and ā(X1, 0) = a1(X1).

B2: By Hensel lifting (5.1) obtain a factorization
r∏
i=1

ḡi(X1, Y )ei = ā(X1, Y ) (mod Y d+1), deg(ḡi, Y ) ≤ d.

Note that ḡi(X1, 0) = g1,i(X1) for all 1 ≤ i ≤ r. Test if ḡi divides ā for all 1 ≤ i ≤ r.
If any test fails, return ‘program incorrect’, since the factor degree patterns of a and
a2 must disagree.

B3: return ḡi(α1 − b1, 1) = fi(ααα) for 1 ≤ i ≤ r.
end procedure

be the black box representation of a. Suppose

a(x1, · · · , xn) =
r∏

ρ=1
fρ(x1, · · · , xn)eρ , eρ ∈ Z+,
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is the factorization of a into irreducibles. Let FF : Fn → Fr be a black box that represents
the irreducible factors fρ (1 ≤ ρ ≤ r) s.t. FF(ααα) = (f1(ααα), · · · , fr(ααα)).

Kaltofen and Trager’s algorithm uses a bivariate transformation to compute the eval-
uations of the factors. Their algorithm for constructing the black boxes of the factors is
summarized in Algorithm 10. It consists of two parts: Part A and Part B. Part A computes
a list of factors of a bivariate image of a, and their multiplicities ēρ ∈ Z+ s.t. with a prob-
ability greater or equal than 1 − ε, ēρ = eρ for all 1 ≤ ρ ≤ r. Using the factors computed
in Part A for determining the order of the factors, Part B outputs the black box FF w.h.p.
The failure probability applies to the construction of the black box, not to the execution of
the black box FF. If the black box FF is constructed correctly, it always produces the true
values of the factors, up to a fixed associate for each factor.

The input and output of Algorithm 10 are:

• Input:
(i) The black box BB : Fn → F s.t. BB(ααα) = a(ααα);
(ii) a failure probability ε� 1;
(iii) d = deg(a), the total degree of a.

• Output:
The black box of the factors FF : Fn → Fr s.t. FF(ααα) = (f1(ααα), · · · , fr(ααα)).

The multivariate polynomial a is first reduced to a bivariate polynomial a2(X1, X2) in step
A2. Then, the second variable X2 is set to 0 to further reduce it to a univariate polynomial
a1(X1). Reduction to a bivariate polynomial first is necessary for a general field F since their
algorithm uses the effective Hilbert irreducibility theorem [30] to ensure the factor degree
patterns of a and a2 agree w.h.p., i.e. eρ = ẽρ w.h.p., for all 1 ≤ ρ ≤ r.

5.1.1 Number of probes to the black box

Theorem 5.1.1. (Theorem 1 in [31]) Let BB : Fn → F be the black box representation
of a ∈ F[x1, · · · , xn], where F is a field of characteristic 0. Let d = deg(a). Kaltofen and
Trager’s method (Algorithm 10) can construct the black box of the factors of a in polynomi-
ally many arithmetic operations in F as a function of n and d, and an additional bivariate
polynomial factorization in F[X1, X2] (or a univariate polynomial factorization in F[X1]
plus a bivariate Hensel lifting). It requires O(d2) probes to BB. If the cardinality of R in
step A1 of Algorithm 10 satisfies

card(R) ≥ 6d2d/ε,

then the algorithm succeeds with a probability no less than 1− ε and the output program, the
black box of the factors FF : Fn → Fr, always correctly evaluate all irreducible factors of a,
i.e. FF(ααα) = (f1(ααα), · · · , fr(ααα)) (up to the same units).
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The output black box FF can be executed in polynomially many arithmetic operations in F. It
performs one bivariate polynomial factorization (or one univariate polynomial factorization
in F[X1] plus one bivariate Hensel lifting). It calls the black box BB O(d2) times.

Theorem 5.1.2. Let FF : Fn → Fr denote the black box of the irreducible factors of
a ∈ F[x1, · · · , xn] constructed by Kaltofen and Trager’s algorithm (Algorithm 10). Let δj =
maxrρ=1 deg(fρ, xj), δmax = maxnj=1 δj and #fmax = maxrρ=1 #fρ. Using Zippel’s sparse
interpolation [62], it takes O(nδmaxd

2#fmax) probes to BB plus O(nδmax#fmax) bivariate
polynomial factorizations to recover the sparse representation of the irreducible factors fρ
for all 1 ≤ ρ ≤ r.

Remark 2. If instead one uses Ben-Or and Tiwari’s sparse interpolation algorithm [2], it
only takes O(d2#fmax) probes to the black box BB plus O(#fmax) bivariate polynomial
factorizations to recover the sparse representation of the factors. However, for Ben-Or and
Tiwari’s algorithm, a much bigger prime is required than Zippel’s sparse interpolation thus
large integer arithmetic operations are used.

Remark 3. If F = Q, an expression swell occurs also in the Hensel lifting wherein one must
solve Diophantine equations in Q[x] (at step B2 of Algorithm 10) during the construction
of the black box FF. One of the reasons that our algorithm is much faster in practice is
that we work modulo a prime.

5.2 Rubinfeld and Zippel’s algorithm

Rubinfeld and Zippel’s algorithm [51] does not apply any bivariate transformation as in
Kaltofen and Trager’s method [31]. Since it is designed specifically for factoring polynomials
with coefficients in Q (and hence for Z), it uses a simple evaluation point for each variable
thus the classical Hilbert irreducibility theorem [34] (see also Section 3.2) is applied. Their
algorithm does not use the effective Hilbert irreducibility theorem [30] as in Kaltofen and
Trager’s algorithm.

Let BB : Qn+1 → Q be the black box representation of a ∈ Q[X,Y1, · · · , Yn]. For
Rubinfeld and Zippel’s algorithm [51], a is assumed to be square-free and monic in X. For
non-monic polynomials, a simple modification can be made (described in Appendix C of
[51]) so that the algorithm for the monic case can still be used. Suppose the irreducible
factorization of a is

a =
r∏

ρ=1
fρ(X,Y1, · · · , Yn)
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where r is the number of irreducible factors of a. Let δ0 = maxrρ=1 deg(fρ, X). Expanding
the factors, we get

f1 = p1,δ0(Y1, · · · , Yn)Xδ0 + p1,δ0−1(Y1, · · · , Yn)Xδ0−1 + · · ·+ p1,0(Y1, · · · , Yn),

f2 = p2,δ0(Y1, · · · , Yn)Xδ0 + p2,δ0−1(Y1, · · · , Yn)Xδ0−1 + · · ·+ p2,0(Y1, · · · , Yn),
... (5.2)

fr = pr,δ0(Y1, · · · , Yn)Xδ0 + pr,δ0−1(Y1, · · · , Yn)Xδ0−1 + · · ·+ pr,0(Y1, · · · , Yn).

Since fρ’s are monic in X, we have for 1 ≤ ρ ≤ r,

pρ,δ0 =

1 if deg(fρ, X) = δ0,

0 if deg(fρ, X) < δ0.

The first step of Rubinfeld and Zippel’s algorithm is to build δ0 + 1 black boxes Mi

(0 ≤ i ≤ δ0) for the coefficients of fρ (1 ≤ ρ ≤ r) in Xi, i.e. Mi : Qn → Qr s.t. Mi(yyy) =
{p1,i(yyy), · · · , pr,i(yyy)} for all 0 ≤ i ≤ δ0, where yyy = (y1, · · · , yn) ∈ Qn and yyy is chosen
randomly from [0, Ñ)n, a sufficiently large set to make yyy Hilbertian (defined in Section
3.2) w.h.p. The assumption that yyy is Hilbertian ensures that the irreducible factors of a
evaluated at yyy remain irreducible. Note that each Mi is an unordered black box meaning
that {pρ,1(yyy), · · · , pρ,r(yyy)} is an unordered set. We can construct the black boxes Mi by
factoring a(X,yyy) into irreducibles. If a bound for d1 = deg(a, X) is known, a(X,yyy) can be
interpolated by calling the black box BB d1 + 1 times and using a Lagrange interpolation.
This process is called a univariate dense interpolation.

Secondly, the unordered black boxes Mi are transformed into ordered black boxes M′
i :

Qn → Qr s.t. M′
i(yyy) = (p1,i(yyy), · · · , pr,i(yyy)) for all 0 ≤ i ≤ δ0. The transformation involves a

technique of interpolating an unordered multi-valued black box of univariate polynomials,
which we shall discuss in Section 5.2.2.

Lastly, the ordered black boxes M′
i (0 ≤ i ≤ δ0) can be interpolated by a standard

sparse multivariate interpolation algorithm [2, 32, 62].

5.2.1 Black boxes of multivariate polynomials

Given an unordered black box M : Qn → Qr representing the multivariate polynomials
p1, · · · , pr ∈ Q[Y1, · · · , Yn], we aim to convert it to an ordered black box M′ : Qn → Qr s.t.
M′(yyy) = (p1(yyy), · · · , pr(yyy)).

Let zzz = (z1, · · · , zn) ∈ Qn be a reference point. We say zzz is a reference point if pi(zzz) 6=
pj(zzz) for all i 6= j. Given the reference point zzz, we compute one ordered sequence

M(zzz) = (p1(zzz), · · · , pr(zzz)).
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Define an unordered black box for univariate polynomials Uyyy,zzz as Uyyy,zzz : Q → Qr s.t.
Uyyy,zzz(θ) = M(zzz + θ(yyy − zzz)) = {p1(zzz + θ(yyy − zzz)), · · · , pr(zzz + θ(yyy − zzz))}.

For a fixed yyy, applying the technique described in Section 5.2.2, we can get explicitly
the set of univariate polynomials

Syyy = {p1(zzz + Θ(yyy − zzz)), · · · , pr(zzz + Θ(yyy − zzz))}.

By substituting Θ = 0 into Syyy and comparing it with the reference value M(zzz), we deter-
mine the order of p1, · · · pr. By substituting Θ = 1, we can now determine p1(yyy), · · · , pr(yyy).

5.2.2 Black boxes of univariate polynomials

Let p1(Θ), · · · , pr(Θ) be univariate polynomials with degree no more than D. Given an
unordered black box U s.t. U(θ) = {p1(θ), · · · , pr(θ)}, the goal is to reconstruct the poly-
nomials p1(Θ), · · · , pr(Θ).

Define the symmetric functions in the p1(θ), · · · , pr(θ) to be

σ1(θ) = p1(θ) + p2(θ) + · · ·+ pr(θ),

σ2(θ) = p1(θ)p2(θ) + p1(θ)p3(θ) + · · ·+ pr−1(θ)pr(θ),
...

σr(θ) = p1(θ)p2(θ) · · · pr(θ).

The symmetric functions can be computed given the values of {p1(θ), · · · , pr(θ)} without
knowing which one is which. Now we can construct r black boxes Σρ, each for the symmetric
function σρ(Θ), i.e. Σρ : Q → Q s.t. Σρ(θ) = σρ(θ) for all 1 ≤ ρ ≤ r. Each σρ(Θ) has
degree no more than ρD and can be interpolated using Lagrange interpolation in O((ρD)2)
arithmetic operations in Q and O(ρD) calls to Σρ.

After determining the σρ(Θ)’s, the following bivariate polynomial

Q(Z,Θ) = Zr − σ1(Θ)Zr−1 + σ2(Θ)Zr−2 + · · ·+ (−1)rσr(Θ)

can be constructed. It factors into linear factors as

Q(Z,Θ) = (Z − p1(Θ))(Z − p2(Θ)) · · · (Z − pr(Θ)).

Hence p1(Θ), · · · , pr(Θ) are determined.

5.2.3 The number of probes to the black box

Theorem 5.2.1. Let BB : Qn+1 → Q be the black box representing a ∈ Q[X,Y1, · · · , Yn].
Suppose a can be factored into irreducible factors as represented in (5.2). Let Tmax be the
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maximum number of terms in all pρ,i for all 1 ≤ ρ ≤ r and for all 0 ≤ i ≤ δ0. Let
d1 = deg(a, X). Let δj = maxrρ=1 deg(fρ, Yj) and δmax = maxnj=1 δj. If using Zippel’s sparse
interpolation [62] to recover the sparse representation of the factors fρ, the required number
of probes to BB for Rubinfeld and Zippel’s algorithm [51] is O(rn2δ2

maxd1Tmax). Also, it
does O(rn2δ2

maxTmax) univariate polynomial factorizations in Q[X].

I present a proof below since my result for the number of probes to the black box in
Theorem 5.2.1 is fewer than in [51].

Proof. To produce one ordered evaluation of M′
i (0 ≤ i ≤ δ0) from the unordered black box

Mi, Rubinfeld and Zippel’s algorithm needs to call Mi and hence Uyyy,zzz exactly rnδmax + 1
times. This is because the degree (in Θ) of each pρ,i(zzz + Θ(yyy− zzz)) for 1 ≤ ρ ≤ r is no more
than nδmax. Thus, it requires rnδmax +1 probes to Uyyy,zzz to determine each pρ,i(zzz+Θ(yyy−zzz)),
and hence (p1,i(yyy), · · · , pr,i(yyy)) as an ordered output of M′

i (0 ≤ i ≤ δ0).
By probing the black box BB d1 + 1 times and doing a Lagrange interpolation in the

variable X, we can get a univariate image a(X,yyy). Factoring it produces one evaluation for
all the Mi’s. Thus, to get one evaluation of M′

i for all 0 ≤ i ≤ δ0, we need Θ(rnδmaxd1)
probes to BB and Θ(rnδmax) univariate polynomial factorizations.

If using Zippel’s sparse interpolation [62], it requires O(nδmaxTmax) evaluation points to
interpolate all pρ,i’s and hence all the factors. Thus, the total number of probes to BB is
O(rn2δ2

maxd1Tmax). The total number of univariate factorizations is O(rn2δ2
maxTmax).

Remark 4. If using Ben-Or and Tiwari’s sparse interpolation algorithm [2], it only takes
O(rnδmaxd1Tmax) probes to the black box BB plus O(rnδmaxTmax) univariate polynomial
factorizations to recover the sparse representation of the factors. However, a very big prime
is needed for Ben-Or and Tiwari’s algorithm as the black box BB is non-modular thus large
integer arithmetic operations are used.

5.3 My new algorithm CMBBSHL: monic and square-free
case

Both algorithms described in Section 5.1 and Section 5.2 are referred to as Approach I in
Figure 1.4 and they both use a non-modular black box representation of a ∈ Q[x1, · · · , xn].
Unlike Rubinfeld and Zippel’s algorithm [51] or Kaltofen and Trager’s algorithm [31], my
new algorithm CMBBSHL uses a modular black box representation of a ∈ Z[x1, · · · , xn]. All
arithmetic operations are performed in Zp, so my algorithm avoids large integer arithmetic
operations. Let B : Zn × {p} → Zp denote the modular black box representation of a ∈
Z[x1, · · · , xn] s.t. B(βββ, p) = a(βββ) mod p. For simplicity, we first consider the case of a being
monic in x1 (the chosen main variable) and square-free. The more difficult non-monic, non-
square-free, and non-primitive cases are discussed in Chapter 6. Since a is monic in x1, a
has no content and we do not need to compute it. Also, since a is square-free, we can simply
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extend Algorithm 9 (CMSHL) to work with multi-factors and adapt it to the black box
case.

The following steps are performed prior to Hensel lifting:

1. Choose a large prime p, e.g. p = 262 − 57 and a positive integer Ñ < p.

2. Choose an evaluation point ααα = (α2, · · · , αn) ∈ Zn−1 randomly from a sufficiently
large set [1, Ñ − 1]n−1. I use Ñ = 100003 for computing the factors of det(Tn), where
Tn is an n× n symmetric Toeplitz matrix.

3. Compute dj = deg(a, xj) for all 1 ≤ j ≤ n w.h.p. (e.g. by Algorithm 4).

4. a(x1,ααα) mod p is computed w.h.p. by a univariate dense interpolation. Then a(x1,ααα) ∈
Z[x1] is computed using Chinese remaindering with different primes to recover the
coefficients of a(x1,ααα) in Z.

5. a(x1,ααα) is factored over Z. Let a = f1f2 · · · fr be the irreducible factorization of a ∈
Z[x1, · · · , xn] over Z. Then, w.h.p. fρ(x1,ααα) are irreducible in Z[x1] for all 1 ≤ ρ ≤ r,
if Ñ is sufficiently large.

Define fρ,1 := fρ(x1,ααα) mod p (1 ≤ ρ ≤ r) and aj := a(x1, · · · , xj , αj+1, · · · , αn) mod p
for 1 ≤ j ≤ n. Let fρ,j := fρ(x1, · · · , xj , αj+1, · · · , αn) mod p (2 ≤ ρ ≤ r). The input and
output of sparse Hensel lifting algorithm CMBBSHL for the monic and square-free case is:

• Input: A prime p, ααα ∈ Zn−1, the modular black box B : Zn×{p} → Zp s.t. B(βββ, p) =
a(βββ) mod p (a is monic in x1 and square-free), di = deg(a, xi) (1 ≤ i ≤ n) (pre-
computed), fρ,1 ∈ Zp[x1] (1 ≤ ρ ≤ r) s.t.
(i) gcd(fk,1, fl,1) = 1 for k 6= l in Zp[x1], for Hensel lifting to work,
(ii) a1 = a(x1,ααα) mod p = ∏r

ρ=1 fρ,1 ∈ Zp[x1],
(iii) fρ,1 is monic in x1 for all 1 ≤ ρ ≤ r.

• Output: fρ,n ∈ Zp[x1, · · · , xn] (1 ≤ ρ ≤ r) s.t.
(i) an = ∏r

ρ=1 fρ,n ∈ Zp[x1, · · · , xn],
(ii) fρ,n(x1,ααα) = fρ,1 for 1 ≤ ρ ≤ r;
Or FAIL (at step 4, 11 or 23 of Algorithm 11).

Other than returning FAIL with a low probability, algorithm CMBBSHL could also re-
turn an incorrect answer with a low probability. The analysis for failure probabilities is
presented in Chapter 6. Algorithm CMBBSHL lifts fρ,1(x1) to fρ,2(x1, x2) then fρ,2(x1, x2)
to fρ,3(x1, x2, x3) etc. until we obtain fρ,n(x1, · · · , xn) for 1 ≤ ρ ≤ r. At each step aj =∏r
ρ=1 fρ,j , and at the end an = ∏r

ρ=1 fρ,n. If p is not large enough to recover the integer
coefficients in fρ, we need to use larger and larger primes until the the algorithm succeeds.

The jth Hensel lifting step is shown in Algorithm 11. The number of arithmetic opera-
tions in Zp for these steps is shown in blue. There are four major sub-steps, namely
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1. the probes to the black box to interpolate the bivariate images Ak = a(x1, Yk, xj) in
step 8,

2. evaluations of the factors fρ,j−1 for 1 ≤ ρ ≤ r in step 10,

3. the bivariate Hensel lifts [4, 49] in step 12,

4. solving the Vandermonde systems [62] in step 18.

All four steps are parallelizable.
The major difference between Algorithm 11 and Algorithm 9 is at step 8 of Algorithm

11 (highlighted in blue). Instead of evaluating the polynomial a (step 8 of Algorithm 9),
the bivariate images of a, Ak(x1, xj), are interpolated from the black box B using bivari-
ate dense interpolations, i.e. using Lagrange (or Newton) interpolations for a bivariate
polynomial (see Chapter 7 for a more detailed description).

The test to check if aj = ∏r
ρ=1 fρ,j at the end of the jth Hensel lifting step becomes

probabilistic (step 23). This avoids explicit multiplications of the factors to obtain the
product, ∏r

ρ=1 fρ,j .

5.3.1 Number of probes to the black box

In order to count the number of probes to the black box for algorithm CMBBSHL and
compare with the algorithms for Approach I, we define an important quantity, smax, in
Definition 5.3.1.

Definition 5.3.1. Let a ∈ Z[x1, · · · , xn]. Let (fρ, 1 ≤ ρ ≤ r) be the irreducible factors of a
over Z. Let fρ = ∑dfρ

i=0 σρ,i(x2, · · · , xn)xi1, where dfρ = deg(fρ, x1). Define

smax = rmax
ρ=1

dfρmax
i=0

#σρ,i. (5.3)

Example 13. Let n = 3, ρ = 2,

f1 = (7x2
2 + 31x3)x3

1 + (5x2
2x3 − 29x3)x2

1 + (97x3
3 + 1)x1 + (2x2x

2
3 + 58), and

f2 = (−36x2x
2
3 + 5x3)x1 + (47x2x

2
3 + 90x2).

In this case, maxi #σ1,i = 2 = 8/(3 + 1) = #f1/(df1 + 1), and maxi #σ2,i = 2 = 4/(1 + 1) =
#f2/(df2 + 1). Thus, smax = 2.

Example 14. f1 = (3x2x3)x1 + 49x2, and f2 = x4
1 + (−63x3

2 − 5x2
2x3 + 3x3

3 + 78x2
2 + 5x2

3 −
12x3 + 65). Now, smax = 7 = maxi #σ2,i = #f2 − 1.

Proposition 5.3.2. Assume fρ has at least two terms in x1. Then,

rmax
ρ=1

#fρ
dfρ + 1 ≤ smax ≤

rmax
ρ=1

#fρ − 1. (5.4)
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Algorithm 11 CMBBSHL for black box: Hensel lifting xj (square-free and monic).
Input: A prime p, αj ∈ Z, the modular black box B : Zn × {p} → Zp s.t.

B(βββ, p) = a(βββ) mod p, di = deg(a, xi) (1 ≤ i ≤ n) (pre-computed),
fρ,j−1 ∈ Zp[x1, · · · , xj−1] (1 ≤ ρ ≤ r) s.t. aj(xj = αj) = ∏r

ρ=1 fρ,j−1 with j > 2.
Output: fρ,j ∈ Zp[x1, · · · , xj ] (1 ≤ ρ ≤ r) s.t.

(i) aj = ∏r
ρ=1 fρ,j , (ii) fρ,j(xj =αj) = fρ,j−1 for 1 ≤ ρ ≤ r;

Otherwise, return FAIL.
1: Let fρ,j−1 = x

dfρ
1 + ∑dfρ−1

i=0 σρ,i(x2, ..., xj−1)xi1 where σρ,i = ∑sρ,i
k=1 cρ,ikMρ,ik, Mρ,ik are

the monomials in σρ,i for 1 ≤ ρ ≤ r. dfρ = deg(fρ,j−1, x1).
2: Pick βββ = (β2, · · · , βj−1) ∈ (Zp\{0})j−2 at random.
3: Evaluate: {Sρ = {Sρ,i = {mρ,ik = Mρ,ik(βββ), 1 ≤ k ≤ sρ,i}, 0 ≤ i ≤ dfρ − 1}, 1 ≤ ρ ≤ r}.
4: if any |Sρ,i| 6= sρ,i then return FAIL end if
5: Let s be the maximum of sρ,i.
6: for k from 1 to s do
7: Let Yk = (x2 = βk2 , · · · , xj−1 = βkj−1).
8: Ak ← aj(x1, Yk, xj) ∈ Zp[x1, xj ]. // via probes to B and bivariate dense interpolation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(sd1djC(probe B) + s(d2
1dj + d1d

2
j ))

9: if deg(Ak, xj) 6= dj then return FAIL end if
10: Fρ,k ← fρ,j−1(x1, Yk) ∈ Zp[x1] for 1 ≤ ρ ≤ r. . . . . . . . . . . . . . . . O

(
s
(∑r

ρ=1 #fρ,j−1
))

11: if gcd(Fρ,k, Fφ,k) 6= 1 for any ρ 6= φ (1 ≤ ρ, φ ≤ r) then return FAIL end if
12: fρ,k ← BivariateHenselLift(Ak(x1, xj), Fρ,k(x1), αj , p). . . . . . . . . . .O(s(d1d

2
j + d2

1dj))
13: end for
14: Let fρ,k = x

dfρ
1 +∑tρ

l=1 αρ,klM̃ρ,l(x1, xj) for 1 ≤ k ≤ s where tρ ≤ d1dj for 1 ≤ ρ ≤ r.
15: for ρ from 1 to r do
16: for l from 1 to tρ do
17: i← deg(M̃ρ,l, x1).
18: Solve the linear system for cρ,lk:

{∑sρ,i
k=1m

t
ρ,ikcρ,lk = αρ,tl for 1 ≤ t ≤ sρ,i

}
.

19: end for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O
(
sdj

(∑r
ρ=1 #fρ,j−1

))
20: Construct fρ,j ← x

dfρ
1 +∑tρ

l=1

(∑sρ,i
k=1 cρ,lkMρ,ik(x2, ..., xj−1)

)
M̃ρ,l(x1, xj).

21: end for
22: Pick βββ = (β2, · · · , βj) ∈ Zj−1

p at random.
23: if B(βββ, αj+1, · · · , αn) = ∏r

ρ=1 fρ,j(βββ) then return fρ,j (1 ≤ ρ ≤ r) else return FAIL
24: end if

Proof. Since
#fρ
dfρ + 1 ≤

dfρmax
i=0

#σρ,i ≤ #fρ − 1,

for all 1 ≤ ρ ≤ r, the inequality in (5.4) follows from Definition 5.3.1.

Since step 8 of Algorithm 11 is the only step to probe the black box, the number of
probes to the black box B needed for algorithm CMBBSHL is given by Theorem 5.3.3.

Theorem 5.3.3. Let B be the modular black box representation of a ∈ Z[x1, · · · , xn] where
a is square-free and monic in x1. Let dj = deg(a, xj) for 1 ≤ j ≤ n and dmax = maxnj=2 dj.
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The total number of probes to the black box B for CMBBSHL is

n∑
j=2

sj(d1 + 1)(dj + 1) ∈ O(nd1dmaxsmax). (5.5)

Proof. Let sj be he number s defined in step 5 of Algorithm 11. For step 8, using bi-
variate dense interpolation (for details, see Chapter 7) to interpolate the bivariate image
Ak(x1, xj) = aj(x1, Yk, xj) we need (d1 +1)(dj +1) points. Thus, the total number of probes
to B for step j is O(d1djsj). Hence, the total number of probes to the black box B for
algorithm 11 is O((n− 1)d1dmaxsmax) = O(nd1dmaxsmax).

For Rubinfeld and Zippel’s method [51], the total number of probes to the black box is
O(rn2δ2

maxd1Tmax), where δmax is the maximum degree in each variable in all the factors,
Tmax is the maximum number of terms in all the coefficients of x1 in all the factors. We have
Tmax ≥ smax and rδmax ≥ dmax, so Rubinfeld and Zippel’s algorithm probes the black box
at least O(nδmax) times more than our algorithm. Second, Rubinfeld and Zippel’s algorithm
evaluates over Z and my algorithm performs arithmetic operations in Zp. Their algorithm
has to do arithmetic operations with large integers, and there is a large loss of efficiency
because of this. Third, their algorithm doesO(rn2δ2

maxTmax) univariate factorizations, which
is a large number and will be the bottleneck. My new algorithm has only one univariate
factorization to do at the beginning.

5.3.2 Benchmarks

We made a hybrid Maple + C implementation for Algorithm 11. The main program is in
Maple and the major subroutines are coded in C. To call C code from Maple we use Maple’s
foreign function interface (see Section 7.1 for details). This allows us to pass arrays of 32-bit
or 64-bit integers between Maple and C. Our Maple code and C code can be downloaded
from http://www.cecm.sfu.ca/~mmonagan/code/CMSHL/. Instructions for compiling the
C code are given there.

In order to get better performance each of the four main sub-steps has been coded in
C. Step 8 interpolates the bivariate image Ak(x1, xj) = aj(x1, Yk, xj) by probing the black
box at (d1 + 1)(dj + 1) points and a bivariate dense interpolation. Both evaluations of the
black box and bivariate dense interpolations are coded in C. I coded the bivariate dense
interpolation in C. For the problem of computing the determinant of a matrix A, the black
box B consists of two parts: BB eval and BB det. BB eval evaluates the polynomial entries
of the matrix A (coded in C by Prof. Monagan). BB det computes the determinant of the
evaluated entries in Zp by Gaussian Elimination (coded in C by Prof. Monagan). I assembled
the C codes BB eval and BB det to make a black box that is called from Maple.
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n 10 11 12 13 14 15 16
CMBBSHL 5.790 13.430 50.855 154.441 722.310 1967.725 17,212.991
# probes 109,139 267,465 894,358 2,180,399 6,981,462 17,175,949 53,416,615
Det minor 0.306 1.754 8.429 49.080 315.842 > 72gb N/A
Gentleman 0.67 3.52 10.41 57.99 339.77 2058.20 N/A
Maple fac 1.91 3.48 23.11 57.75 509.82 7334.50 N/A
Maple tot 2.22 5.23 31.54 106.83 825.66 9392.70 -
Magma det 1.89 5.10 36.12 327.79 2108.42 > 72gb N/A
Magma fac 1.21 7.58 158.97 583.39 13,640.79 > 72gb N/A
Magma tot 3.10 12.68 195.09 911.18 15,749.21 - -

Table 5.1: CPU timings in seconds for computing det(Tn) using Zippel’s quadratic Vander-
monde solver. N/A: Not attempted.

Step 10 evaluates the factors at Yk to obtain univariate images. This step, which initially
was a bottleneck, is optimized by taking advantage of previously computed evaluations. This
optimization in the C code was done by Prof. Monagan.

For the bivariate Hensel lifts in step 12, I use the cubic algorithm of Monagan and Paluck
[39, 49] that costs O(d1d

2
j + d2

1dj) arithmetic operations in Zp. The C code is contributed
by my colleague Garrett Paluck and I integrated it into my algorithm.

To solve the Vandermonde systems in step 18, a quadratic algorithm of Zippel [62] which
does O(s2) arithmetic operations in Zp has been implemented in C by Prof. Monagan. I
integrated his C code into my algorithm in Maple. Prof. Monagan also contributed the Maple
code for the fast Vandermonde solver by Kaltofen and Yagati [32], which costs O(s log2 s)
arithmetic operations in Zp. I integrated the fast Vandermonde solver into my algorithm,
and the first benchmark was significantly sped up.

For the monic and square-free case of algorithm CMBBSHL, I present two timing bench-
marks. All timings were obtained on an Intel Xeon E5-2660 8 core CPU on the CECM server,
gaby.cecm.sfu.ca. The first benchmark is for computing the factors of det(Tn), where Tn
is a symmetric Toeplitz matrix. The old timings for which I used Zippel’s quadratic Van-
dermonde solver [62] are shown in Tables 5.1 and 5.2. Table 5.1 shows the total CPU time
in seconds for computing the factors of det(Tn). I compared our timings with timings for
computing det(Tn) then factoring det(Tn) in Maple 2021 and in Magma V2.25−5. For con-
structing the black box for this benchmark, I implemented Bareiss’ algorithm [1] in C to
compute the determinant in Zp in O(n2) arithmetic operations (see Section 7.3 for details)
instead of Gaussian elimination, which costs O(n3).

For computations in Maple, Gentleman & Johnson’s determinant algorithm [26] (coded
by Prof. Monagan) is used to compute det(Tn). Maple 2021 uses MTSHL [47] for factoring
polynomials.

In Table 5.1, n is the number of variables, the second row (CMBBSHL) is the total time
for my new algorithm, and the third row is the total number of probes to the black box.
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n 10 11 12 13 14 15 16
H.L. xn total 1.045 1.819 9.256 20.785 143.883 266.496 4182.199
s (H.L. xn) 522 814 3174 5223 19,960 34,081 127,690

BB 0.137 0.240 1.304 3.043 11.363 20.350 109.592
Interp2var 0.046 0.081 0.307 0.631 2.172 3.469 17.191
Eval fρ,j−1 0.153 0.262 1.327 2.931 21.158 41.056 683.224

BHL 0.106 0.180 0.754 1.678 5.200 8.238 51.347
VSolve 0.058 0.101 1.937 4.219 72.887 143.183 2903.867

Table 5.2: Breakdown of CPU timings in seconds for Hensel lifting the last variable xn.

The second block shows the time for computing det(Tn) in the sparse representation using
Maple’s determinant command with the option method=minor, Prof. Monagan’s implemen-
tation of the Gentleman-Johnson algorithm [26] and the time of Maple’s factor command.
The third block shows the time of determinant computation and factorization in Magma.

Table 5.2 is a summary of the breakdown of the four major sub-steps of Algorithm 11
for Hensel lifting the last variable xn. The first block shows the total time for Hensel lifting
the last variable xn and the number of bivariate images needed to recover xn which is s. In
the second block, BB and Interp2var are timings for probes to the black box and bivariate
dense interpolation to get aj(x1, Yk, xj) (step 8). Eval fρ,j−1 is the time for evaluating fρ,j−1

(step 10). BHL is the time for bivariate Hensel lifts (step 12). VSolve is the time for solving
Vandermonde systems (step 18).

My algorithm becomes faster than Maple at n = 14 and faster than Magma at n = 12.
Maple runs out of memory (exceeds 72gigs) when trying to compute det(T16). Note that
solving Vandermonde systems dominates the cost of my algorithm after n = 13. I further
improved the timings by integrating a Maple implementation of the fast Vandermonde
solver of Kaltofen and Yagati [32] which costs O(M(s) log s). The new timings are shown in
Tables 5.3 and 5.4. In [12], Connolly’s experimentation with Monagan’s implementation of
the fast Vandermonde solver from [32] first beats Zippel’s O(s2) Vandermonde solver at size
s = 2024 (so at n ≥ 12). We can see that in Table 5.3 that our new timings for CMBBSHL
are faster than the old timings for n ≥ 12. It only took 4876.8 seconds to compute the factors
of det(T16), which is more than 3.5 times faster than using Zippel’s quadratic Vandermonde
solver [62]. The code for obtaining the new timings in Tables 5.3 and 5.4 is on the website
http://www.cecm.sfu.ca/~mmonagan/code/CMBBSHL/.

In an earlier implementation of Kaltofen and Trager’s algorithm using FOXBOX [16], it
took 43 minutes to construct the black boxes of the factors of det(T16). However, this timing
does not include the time for recovering the factors in the sparse representation using sparse
polynomial interpolation [2, 62]. They have only been able to recover the factors of det(Tn)
in the sparse representation up to n = 13, for which the sparse polynomial interpolation
took 15 hours and 24 minutes. For their implementation, the processor was a Sun Untra 2
(168 MHz). Our computer is an Intel Xeon E5-2660 8 core CPU at 2.2/3.0 GHz (64 GB
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n 10 11 12 13 14 15 16
CMBBSHL 6.299 14.679 43.927 106.838 403.089 1020.001 4876.827
# probes 109,139 267,465 894,358 2,180,399 6,981,462 17,175,949 53,416,615
Maple det 0.306 1.754 8.429 49.080 315.842 > 72gb N/A
Maple fac 1.91 3.48 23.11 57.75 509.82 7334.50 N/A
Maple tot 2.22 5.23 31.54 106.83 825.66 - -

Table 5.3: CPU timings in seconds for computing det(Tn) using the fast Vandermonde
solver. N/A: Not attempted.

n 10 11 12 13 14 15 16
H.L. xn total 1.309 2.162 7.129 12.663 64.635 126.665 1041.959

tn 522 814 3174 5223 19,960 34,081 127,690
BB 0.195 0.394 1.031 2.046 9.152 18.496 80.853

Interp2var 0.024 0.033 0.149 0.254 0.981 1.764 10.052
Eval fi,j−1 0.061 0.099 0.634 1.269 14.709 32.935 508.658

BHL 0.578 0.992 3.455 6.234 24.352 45.136 240.095
VSolve 0.330 0.453 1.243 1.773 10.594 19.547 165.371

Table 5.4: Breakdown of CPU timings in seconds for Hensel lifting the last variable xn.

RAM), which is more than 10 times faster. However, only 1 core was used for the benchmark
timings. For our benchmark (Table 5.3), it took 4876.8 seconds (≈ 81 minutes) in total to
recover the factors for n = 16 in the sparse representation.

The first benchmark does not show the power of the black box approach, since det(Tn)
has only two factors and they are relatively dense compared to the factors in the second
benchmark. The second benchmark shows CPU times for factoring determinants which have
four factors where the number of terms of the factors are much smaller than the number
of terms of the determinant in the sparse representation. The matrices are generated as
follows. First, two different n× n symmetric Toeplitz matrices T1 and T2 with multivariate
polynomial entries are created. Then the N ×N block diagonal matrix

B =
(
T1 0
0 T2

)

is created. If we ask Maple to compute detB, Maple’s determinant routine will automatically
identify the block structure and find the factorization detB = detT1 detT2. To hide this
factorization from Maple we create an upper triangular matrix Pu with diagonal entries 1
and entries above the diagonal chosen from {0, 1} at random and also a lower triangular
matrix Pl with diagonal entries 1 and entries below the diagonal chosen at random from
{0, 1}. Now we create the input matrix A = PlBPu so that

detA = detPl detB detPu = detB = detT1 detT2.
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For example, when n = 2, taking

T1 =
(

x1 x2 + 5
x2 + 5 x1

)
and T2 =

(
x1 2x2

2 + 3
2x2

2 + 3 x1

)
,

and matrices

Pu =


1 0 0 1
0 1 1 0
0 0 1 1
0 0 0 1

 and Pl =


1 0 0 0
0 1 0 0
1 1 1 0
1 0 0 1


we obtain the matrix

A =


x1 x2 + 5 2x2

2 + x2 + 8 2x2
2 + 2x1 + 3

x2 + 5 x1 2x1 2x2
2 + x1 + x2 + 8

x1 + x2 + 5 x1 + x2 + 5 5 + 2x1 + x2 2x2
2 + 2x1 + x2 + 8

x1 x2 + 5 2x2
2 + x2 + 8 2x2

2 + 2x1 + 3

 .

We still have det(A) = det(T1) det(T2). However, Maple’s determinant routine will no longer
find this factorization.

The matrices for the second benchmark and Maple code and Magma code for computing
and factoring their determinants can be found on the web under
http://www.cecm.sfu.ca/~mmonagan/code/CMSHL/.

The timings are shown in Tables 5.5 and 5.6. In both tables, the first block of rows
are the number of variables n and the matrix size N . In Table 5.5, the second block shows
the total time for algorithm CMBBSHL, the total number of probes to the black box, and
information about the number of terms in each factor and the determinant det(A). Note that
the number of terms in each factor is much smaller than # det(A). The third block shows
the time for computing det(A) using Prof. Monagan’s implementation of the Gentleman &
Johnson’s algorithm, Maple’s factor time and the total time Maple uses. The last block is
the timings for Magma’s determinant computation and factorization.

In this example, algorithm CMBBSHL is faster than Maple and Magma for all n ≥ 5
and at n = 8, algorithm CMBBSHL is more than 330 times faster than Maple. Maple runs
out of memory when computing det(A) at n = 9. The bottleneck is probes to the black box
since, unlike the Toeplitz matrices, evaluations of the polynomial entries are needed prior to
each determinant computation in Zp. In Table 5.6, the timings for probes to the black box
is divided into BB eval and BB det. BB eval measures the time to evaluate the polynomial
entries of the matrix A. BB det is the time for determinant computation in Zp.
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n 5 6 7 8 9 10 11
N = 2n 10 12 14 16 18 20 22

CMBBSHL 0.383 1.537 4.778 20.971 77.894 342.264 1334.654
# probes 3064 10,772 27,490 95,212 278,098 973,240 3,089,700

#fi 12,24 52,63 69,147 319,363 411,891 1953,1951 2780,2634
12,25 52,63 66,136 319,363 431,897 2066,2067 5768,6017

# det(A) 3644 19,750 70,522 811,363 3,980,956 36,906,753 147,531,107
Gentleman 0.675 13.717 161.22 6628.5 N/A N/A N/A
Maple fac 0.170 0.405 1.270 11.706 242.81 N/A N/A
Maple tot 0.845 14.122 162.49 6640.206 - - -
Magma fac 0.030 1.810 13.020 1757.1 N/A N/A N/A
Magma det 1.600 20.490 422.77 >120,000 N/A N/A N/A
Magma tot 1.63 22.3 435.79 >121,757 - - -

Table 5.5: CPU timings for computing det(A) using Zippel’s quadratic Vandermonde solver.
N/A: Not attempted.

n 5 6 7 8 9 10 11
N = 2n 10 12 14 16 18 20 22

H.L. xn total 0.086 0.116 0.273 0.997 2.675 9.690 31.161
s (H.L. xn) 10 28 80 218 466 1221 3074
BB tot 0.029 0.039 0.116 0.514 1.580 6.362 21.586
BB eval 0.019 0.025 0.078 0.382 1.239 5.165 17.610
BB det 0.002 0.007 0.021 0.065 0.220 0.787 2.710

Interp2var 0.002 0.003 0.004 0.016 0.037 0.156 0.258
Eval fρ,j−1 0.004 0.023 0.045 0.126 0.275 0.898 2.385

BHL 0.002 0.006 0.013 0.041 0.088 0.233 0.596
VSolve 0.003 0.003 0.003 0.009 0.033 0.263 1.221

Table 5.6: Breakdown of CPU timings in seconds for Hensel lifting the last variable xn.
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Chapter 6

The complete black box
factorization algorithm CMBBSHL

In this chapter, we present the complete factorization algorithm CMBBSHL that handles
all cases of input, i.e. the non-monic, non-square-free, and non-primitive polynomial input
a ∈ Z[x1, · · · , xn]. A variety of test examples with timing benchmarks are presented in
Section 6.3. A detailed complexity analysis with failure probabilities is presented in Section
6.4. Finally, the case of large integer coefficients is also considered with timing benchmarks
in Section 6.5.

The work in this chapter is new and the entire chapter is my own contribution.

6.1 Non-monic and non-square-free cases

If the input polynomial a is in the sparse representation and is non-monic, two methods
are known to pre-compute the leading coefficients of the factors. One is Wang’s leading
coefficient correction [55], and the other is by Kaltofen [27]. However, for our black box
factorization algorithm CMBBSHL, pre-computing the leading coefficients of the factors is
not necessary and would compromise the complexity if LC(a, x1) is large. In order to obtain
the correct leading coefficients of the factors, I discovered a new strategy which is to scale
the bivariate images at each Hensel lifting step to match their leading coefficients with the
input factors. The details of this technique are explained in this section.

Similar to the monic and square-free case (the first four steps are identical), the following
steps are performed prior to sparse Hensel lifting:

1. Choose a large prime p, e.g. p = 262 − 57 and a positive integer Ñ < p.

2. Choose an evaluation point ααα = (α2, · · · , αn) ∈ Zn−1 randomly from [1, Ñ − 1]n−1. In
my implementation, I choose Ñ = 4001.

3. Compute di = deg(a, xi) for all 1 ≤ i ≤ n w.h.p. (e.g. by Algorithm 4).
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4. Compute a(x1,ααα) mod p w.h.p. by a univariate dense interpolation. Then a(x1,ααα) ∈
Z[x1] is computed using Chinese remaindering with different primes to recover the
coefficients of a(x1,ααα) in Z.

5. a(x1,ααα) is factored over Z. Let the irreducible factorization of a over Z be of the form

a = hfe1
1 fe2

2 · · · f
er
r ∈ Z[x1, · · · , xn], (6.1)

where deg(fρ, x1) > 0, fρ is irreducible over Z and primitive in x1 with sign(fρ) = 1 for
1 ≤ ρ ≤ r, h = cont(a, x1) ∈ Z[x2, · · · , xn] is the generic content (which is multiplied
by sign(a), see Definition 1.4.7) of a in x1 and it is not factored at this stage.

Let λρ := icont(fρ(x1,ααα)) ∈ Z for 1 ≤ ρ ≤ r and let λh := ∏r
ρ=1 λ

eρ
ρ . Let

f̂ρ := 1
λρ
fρ(x1, · · · , xn) ∈ Z[x1, · · · , xn] for 1 ≤ ρ ≤ r and (6.2)

ĥ := λhh(x2, · · · , xn) ∈ Z[x2, · · · , xn]. (6.3)

With high probability (w.h.p.), ααα is Hilbertian. Thus,

a(x1,ααα) = h(ααα)f1(x1,ααα)e1 · · · fr(x1,ααα)er

= h(ααα)
(
λ1f̂1(x1,ααα)

)e1 · · ·
(
λrf̂r(x1,ααα)

)er w.h.p. (6.4)

= h(ααα)

 r∏
ρ=1

λeρρ


︸ ︷︷ ︸

ĥ(ααα)

f̂1(x1,ααα)e1 · · · f̂r(x1,ααα)er .

= ĥ(ααα)f̂1(x1,ααα)e1 · · · f̂r(x1,ααα)er ∈ Z[x1], (6.5)

where f̂ρ(x1,ααα) is primitive (i.e. icont(f̂ρ(x1,ααα)) = 1 and sign(f̂ρ(x1,ααα)) = 1) and
irreducible over Z.

We define the square-free part of the input polynomial a as (see also Section 3.4):

Definition 6.1.1.
sqf(a) :=

r∏
ρ=1

fρ ∈ Z[x1, · · · , xn]. (6.6)

Note: sqf(a) = ±a/ gcd(a, ∂a/∂x1) by Lemma 3.4.2.

Define Λ := ∏r
ρ=1 λρ. By (6.2), w.h.p. (since ααα is Hilbertian),

sqf(a) =
r∏

ρ=1
λρ

r∏
ρ=1

f̂ρ(x1, · · · , xn) = Λ
r∏

ρ=1
f̂ρ(x1, · · · , xn) ∈ Z[x1, · · · , xn], (6.7)

where r is the number of factors in sqf(a), and f̂ρ(x1, · · · , xn) ∈ Q[x1, · · · , xn] if |λρ| > 1.
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Example 15. Let a = hf1f2 where h = 2x3, f1 = 3x2
1x

2
2 + x1x2x

2
3 + 2x2x

4
3 + 3 and

f2 = 3x1x2 + 4x3. Let ααα = (15, 7). Then,

a(x1,ααα) = h(ααα)f1(x1,ααα)f2(x1,ααα)

= 14︸︷︷︸
h(ααα)

(3(225x2
1 + 245x1 + 24011))︸ ︷︷ ︸

f1(x1,ααα)

(45x1 + 28)︸ ︷︷ ︸
f2(x1,ααα)

= 42︸︷︷︸
ĥ(ααα)

(225x2
1 + 245x1 + 24011)︸ ︷︷ ︸

f̂1(x1,ααα)

(45x1 + 28)︸ ︷︷ ︸
f̂2(x1,ααα)

.

In this example, λ1 = 3, λ2 = 1, and ĥ(ααα) = (λ1λ2)h(ααα) = 3 · 14 = 42. In our algo-
rithm the λρ’s are only determined after the last Hensel lifting step using rational number
reconstruction.

Define aj := a(x1, · · · , xj , αj+1, · · · , αn) mod p for 1 ≤ j ≤ n and f̂ρ,1 := f̂ρ(x1,ααα) mod
p. Define f̂ρ,j := f̂ρ(x1, · · · , xj , αj+1, · · · , αn) mod p for 2 ≤ j ≤ n (to be computed).

The input and output to algorithm CMBBSHL (Algorithm 12) for the non-monic and
non-square-free case is:

• Input: The modular black box B : Zn × {p} → Zp s.t. B(βββ, p) = a(βββ) mod p,
(f̂ρ,1, 1 ≤ ρ ≤ r) ∈ Zp[x1]r, ααα ∈ Zn−1, a prime p, di = deg(a, xi) for 1 ≤ i ≤ n

(pre-computed), X = [x1, · · · , xn], n ∈ Z s.t.
(i) gcd(f̂k,1, f̂l,1) = 1 for k 6= l in Zp[x1],
(ii) sqf(a1) = Λ∏r

ρ=1 f̂ρ,1 mod p ∈ Zp[x1], Λ ∈ Zp,
(iii) f̂ρ,1 is primitive in x1 for all 1 ≤ ρ ≤ r.

• Output: (f̂ρ,n, 1 ≤ ρ ≤ r) ∈ Zp[x1, · · · , xn]r s.t.
(i) sqf(an) = Λ∏r

ρ=1 f̂ρ,n mod p ∈ Zp[x1, · · · , xn], Λ ∈ Zp,
(ii) f̂ρ,n(x1,ααα) = f̂ρ,1 mod p for all 1 ≤ ρ ≤ r,
(iii) f̂ρ,n is primitive in x1 for all 1 ≤ ρ ≤ r;
Or FAIL.

In our algorithm, (f̂ρ,1,1 ≤ ρ ≤ r) are irreducible in Z[x1] but not necessarily irreducible in
Zp[x1]. Condition (i) of the input is needed for BHL. Our algorithm CMBBSHL could also
lift the square-free factorization of sqf(a(x1,ααα)) if input condition (i) holds mod p.

Algorithm CMBBSHL lifts (f̂ρ,1, 1 ≤ ρ ≤ r) ∈ Zp[x1]r to (f̂ρ,2, 1 ≤ ρ ≤ r) ∈ Zp[x1, x2]r

then lifts (f̂ρ,2, 1 ≤ ρ ≤ r) ∈ Zp[x1, x2]r to (f̂ρ,3, 1 ≤ ρ ≤ r) ∈ Zp[x1, x2, x3]r etc. After the
jth Hensel lifting step (see Algorithm 13), sqf(aj) = Λ∏r

ρ=1 f̂ρ,j mod p and f̂ρ,j(xj = αj) =
f̂ρ,j−1 for all 1 ≤ ρ ≤ r. After the nth step, sqf(an) = Λ∏r

ρ=1 f̂ρ,n. (A proof of correctness is
given in Section 6.1.2.)

The jth Hensel lifting step of algorithm CMBBSHL for the non-monic and non-square-
free case is presented in Algorithm 13. Algorithm CMBBSHL could return FAIL at several
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Algorithm 12 CMBBSHL: non-monic and non-square-free.
Input: The modular black box B : Zn×{p} → Zp s.t. B(βββ, p) = a(βββ) mod p, (f̂ρ,1, 1 ≤
ρ ≤ r) ∈ Zp[x1]r, ααα ∈ Zn−1, a prime p, di = deg(a, xi) for 1 ≤ i ≤ n (pre-computed),
X = [x1, · · · , xn], n ∈ Z (the recursive variable) s.t. conditions (i)-(iii) of the input are
satisfied.
Output: (f̂ρ,n, 1 ≤ ρ ≤ r) ∈ Zp[x1, · · · , xn]r s.t. conditions (i)-(iii) of the output are
satisfied. Otherwise, return FAIL.

1: if n = 2 then
2: Ak ← a2(x1, x2) ∈ Zp[x1, x2]. // via probes to B and bivariate dense interpolation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(d1d2C(probe B)) +O(d2
1d2 + d1d

2
2)

3: if deg(Ak, x1) 6= d1 or deg(Ak, x2) 6= d2 then return FAIL end if
4: gk ← gcd(Ak, ∂Ak∂x1

) mod p ∈ Zp[x1, x2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(d2
1d2 + d1d

2
2)

5: if deg(gk, x1) 6= d1 −
∑r
ρ=1 deg(f̂ρ,1, x1) then return FAIL end if

6: Asf ← quo(Ak, gk) mod p. // Asf = sqf(Ak) mod p, up to a constant in Zp.
7: Asfm ← Asf/(LC(LC(Asf , x1), x2)) mod p. // make LC(Asf , x1) monic in x2.
8: return BivariateHenselLift(Asfm, (f̂ρ,1, 1 ≤ ρ ≤ r), α2, p) . . . . . . . . . .O(d2

1d2 + d1d
2
2)

9: end if
10: (f̂ρ,n−1, 1 ≤ ρ ≤ r)← CMBBSHL(B, (f̂ρ,1, 1 ≤ ρ ≤ r),ααα, p, di, X, n− 1).
11: return CMBBSHLstepj(B, (f̂ρ,n−1, 1 ≤ ρ ≤ r),ααα, p, di, X, n) // Algorithm 13

steps, i.e. at step 4, 9, 11,15,16, or 29 of Algorithm 13. If it returns FAIL at step 29, then
either the weak SHL assumption fails or the initial evaluation point ααα is not Hilbertian.
Algorithm CMBBSHL could also return an incorrect answer with a low probability. If p
divides any integer coefficient of any irreducible factor fρ ∈ Z[x1, · · · , xn], then algorithm
CMBBSHL returns an answer that is not FAIL but is incorrect. We present a detailed
failure probability analysis in Section 6.4.

The key idea of Algorithm CMBBSHL is to interpolate the square-free part of the
bivariate images of a and then use them to perform non-monic bivariate Hensel lifts. In
steps 10–12 of Algorithm 13, a square-free image of a, sqf((aj(x1, Yk, xj)), is computed via
a bivariate gcd computation and a division, i.e.

Asf := aj(x1, Yj , xj)
gcd

(
aj(x1, Yk, xj), ∂

∂x1
(aj(x1, Yk, xj))

) .
Asf = sqf(aj(x1, Yj , xj)) up to a scalar in Zp. This removes the content of aj(x1, Yk, xj) in
x1, a polynomial in xj , by Lemma 3.4.2.

Step 13 then makes LC(Asf , x1) monic, i.e. LC(sqf(aj(x1, Yk, xj)), x1) becomes monic
in xj . Step 14 evaluates the input factors to get a univariate image f̂ρ,j−1(x1, Yk). Then at
step 17, a non-monic bivariate Hensel lift (BHL) is performed, so we get a bivariate image
of the factors, f̂ρ,j(x1, Yk, xj). After obtaining s bivariate images of the factors (s is defined
in step 5 in Algorithm 13), we use them to recover the variables x2, · · · , xj−1 in the factor
f̂ρ,j ∈ Zp[x1, · · · , xj ] by solving Vandermonde systems at step 23.
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Algorithm 13 CMBBSHLstepj: Hensel lifting xj (non-monic and non-square-free).
Input: The modular black box B : Zn×{p} → Zp s.t. B(βββ, p) = a(βββ) mod p, (f̂ρ,j−1, 1 ≤
ρ ≤ r) ∈ Zp[x1, · · · , xj−1]r, ααα ∈ Zn−1, a prime p, di = deg(a, xi) for 1 ≤ i ≤ n (pre-
computed), X = [x1, · · · , xn], j ∈ Z s.t. sqf(aj(xj = αj)) = ∏r

ρ=1 λρ
∏r
ρ=1 f̂ρ,j−1.

Output: (f̂ρ,j , 1 ≤ ρ ≤ r) ∈ Zp[x1, · · · , xj ]r s.t. (i) sqf(aj) = ∏r
ρ=1 λρ

∏r
ρ=1 f̂ρ,j , (ii)

f̂ρ,j(xj =αj) = f̂ρ,j−1 for all 1 ≤ ρ ≤ r; Otherwise, return FAIL.
1: Let f̂ρ,j−1 = ∑dfρ

i=0 σρ,i(x2, ..., xj−1)xi1 (1 ≤ ρ ≤ r) where σρ,i = ∑sρ,i
k=1 cρ,ikMρ,ik with

Mρ,ik the monomials in σρ,i and dfρ = deg(f̂ρ,j−1, x1).
2: Pick βββ = (β2, · · · , βj−1) ∈ (Zp\{0})j−2 at random.
3: Evaluate (for 1 ≤ ρ ≤ r): Sρ = {Sρ,i = {mρ,ik = Mρ,ik(βββ), 1 ≤ k ≤ sρ,i}, 0 ≤ i ≤ dfρ}.
4: if any |Sρ,i| 6= sρ,i then return FAIL end if // monomial evals must be distinct
5: Let s be the maximum of sρ,i.
// Compute s images of the factors in Zp[x1, xj ]:

6: for k from 1 to s do
7: Let Yk = (x2 = βk2 , · · · , xj−1 = βkj−1).
8: Ak ← aj(x1, Yk, xj) ∈ Zp[x1, xj ]. // via probes to B and bivariate dense interpolation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(sd1djC(probe B)) +O(s(d2
1dj + d1d

2
j ))

9: if deg(Ak, x1) 6= d1 or deg(Ak, xj) 6= dj then return FAIL end if
10: gk ← gcd(Ak, ∂Ak∂x1

) mod p ∈ Zp[x1, xj ]. . . . . . . . . . . . . . . . . . . . . . . . . . .O(s(d2
1dj + d1d

2
j ))

11: if deg(gk, x1) 6= d1 −
∑r
ρ=1 dfρ then return FAIL end if

12: Asf ← quo (Ak, gk) mod p. // Asf = sqf(Ak) mod p, up to a constant in Zp.
13: Asfm ← Asf/(LC(LC(Asf , x1), xj)) mod p. // make LC(Asf , x1) monic in xj .
14: Fρ,k ← f̂ρ,j−1(x1, Yk) ∈ Zp[x1] for 1 ≤ ρ ≤ r. . . . . . . . . . . . . . . . . . . O(s(∑r

ρ=1 #f̂ρ,j−1))
15: if any deg(Fρ,k) < dfρ (for 1 ≤ ρ ≤ r) then return FAIL end if
16: if gcd(Fρ,k, Fφ,k) 6= 1 for any 1 ≤ ρ < φ ≤ r then return FAIL end if
17: f̂ρ,k ← BivariateHenselLift(Asfm(x1, xj), Fρ,k(x1), αj , p). . . . . . . . .O(s(d̃1d̃

2
j + d̃2

1d̃j))
18: end for
19: Let f̂ρ,k = ∑tρ

l=1 αρ,klM̃ρ,l(x1, xj) ∈ Zp[x1, xj ] for 1 ≤ k ≤ s, for 1 ≤ ρ ≤ r (tρ = #f̂ρ,k).
20: for ρ from 1 to r do
21: for l from 1 to tρ do
22: i← deg(M̃ρ,l, x1).
23: Solve the linear system

{∑sρ,i
k=1m

t
ρ,ikcρ,lk = αρ,tl for 1 ≤ t ≤ sρ,i

}
for cρ,lk.

24: end for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(sd̃j(
∑r
ρ=1 #f̂ρ,j−1))

25: f̂ρ,j ←
∑tρ
l=1

(∑sρ,i
k=1 cρ,lkMρ,ik(x2, ..., xj−1)

)
M̃ρ,l(x1, xj).

26: end for
27: Pick βββ = (β2, · · · , βj) ∈ Zj−1

p at random until deg(f̂ρ,j(x1,βββ)) = dfρ for all 1 ≤ ρ ≤ r.
28: Aβββ ← aj(x1,βββ) mod p via probes to B and Lagrange interpolation.
29: if f̂ρ,j(x1,βββ) | Aβββ for all 1 ≤ ρ ≤ r then return (f̂ρ,j , 1 ≤ ρ ≤ r) else return FAIL
30: end if
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After the last Hensel lifting step, rational number reconstruction (see also Section 3.7)
is performed on the coefficients of f̂ρ,n in Zp for 1 ≤ ρ ≤ r to get the integer coefficients of
the factors fρ in Z. We elaborate. Suppose

fρ =
#fρ∑
k=1

ckMk ∈ Z[x1, · · · , xn],

where ck ∈ Z (to be determined),Mk is a monomial of fρ and #fρ is the number of terms in
fρ. After the last Hensel lifting step, we have computed f̂ρ,n = ∑#fρ

k=1 ĉkMk ∈ Zp[x1, · · · , xn].
Thus,

f̂ρ,n =
#fρ∑
k=1

ĉkMk ≡
1
λρ
fρ mod p ≡

#fρ∑
k=1

ck
λρ
Mk mod p.

Thus, we use rational number reconstruction to obtain λρ and ck from ĉk ≡ ck
λρ

mod p
(1 ≤ k ≤ #fρ). Then fractions are cleared and we obtain fρ ∈ Z[x1, · · · , xn].

Remark 5. Rational number reconstruction may fail. If we use Wang’s rational reconstruc-
tion [57], to guarantee the correct answer, we need

p > 2 max
(

rmax
ρ=1
|λρ|,

rmax
ρ=1
‖fρ‖∞

)2
, (6.8)

where ‖fρ‖∞ is the max-norm of the irreducible factor fρ ∈ Z[x1, · · · , xn].

Example 16. Consider a = f1f2 ∈ Z[x1, · · · , x4] where

f1 = (2x2
2x

3
3 + 4)x8

1 + (4x2
2x

3
3 + 22x2

2x
3
4 + 1452x2

2x4)x1+x2
2x3x4−4x3,

f2 = (3x2 + 39x4 + 3x3)x8
1 + (5x2x

2
3x4 + 33x2x3x

2
4)x2

1 − 363x2
4 + 44.

In this case, h = 1 (a has no content in x1 and neither integer content) and sqf(a) = a. Let
ααα = (2, 3, 9),

a(x1,ααα) = 80520x16
1 + 3706560x10

1 + · · · − 3430775304x1 − 2818464

= 4︸︷︷︸
λ1

(55x8
1 + 29214x1 + 24)︸ ︷︷ ︸

f̂1(x1,ααα)

(366x8
1 + 16848x2

1 − 29359)︸ ︷︷ ︸
f̂2(x2,ααα)

= f1(x1,ααα)f2(x1,ααα).

We have λ1 = 4 and λ2 = 1, thus f1(x1,ααα) = λ1f̂1 = 4f̂1 and f2(x1,ααα) = f̂2. The input to
algorithm CMBBSHL is p = 231 − 1, ααα ∈ Zn−1, the modular black box B : Zn × {p} → Zp
s.t. B(βββ, p) = a(βββ) mod p, f̂ρ,1 = f̂ρ mod p (ρ = 1, 2), and the pre-computed degrees
dj = deg(a, xj) = [16, 3, 5, 5] for j = 1, · · · , 4.
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After the 1st (denoted as the 2nd) Hensel lifting step (which does a bivariate Hensel
lift only), the algorithm outputs f̂ρ,2 ∈ Zp[x1, x2] (for ρ = 1, 2) such that a2 = sqf(a2) =
(λ1λ2)f̂1,2f̂2,2 mod p with

f̂1,2 = (1073741837x2
2 + 1)x8

1 + 1073749127x2
2x1 + 1610612742x2

2 + 2147483644,

f̂2,2 = (3x2 + 360)x8
1 + 8424x2x

2
1 + 2147454288.

After the 3rd Hensel lifting step, Algorithm 13 outputs

f̂1,3 = (1073741824x2
2x

3
3 + 1)x8

1 + (x2
2x

3
3 + 1073749100x2

2)x1

+ 536870914x2
2x3 + 2147483646x3,

f̂2,3 = (3x2 + 3x3 + 351)x8
1 + (45x2x

2
3 + 2673x2x3)x2

1 + 2147454288.

The last Hensel lifting step outputs f̂ρ,4 ∈ Zp[x1, x2, x3, x4] (ρ = 1, 2) s.t. a4 = sqf(a4) =
(λ1λ2)f̂1,4f̂2,4 mod p with

f̂1,4 = (1073741824x2
2x

3
3 + 1)x8

1 + (x2
2x

3
3 + 1073741829x2

2x
3
4 + 363x2

2x4)x1

+ 536870912x2
2x3x4 + 2147483646x3

f̂2,4 = (3x2 + 39x4 + 3x3)x8
1 + (5x2x

2
3x4 + 33x2x3x

2
4)x2

1 + 2147483284x2
4 + 44.

Now, we notice that 4f̂1,4 mod p = f1 and f̂2,4 mod p = f2 (where mod is taken in the
symmetric range). The values for λ1, λ2 are still unknown, so we perform rational number
reconstruction on the coefficients of f̂ρ,4 to find λρ and hence get the true factors fρ (ρ =
1, 2). In Maple, we do the following for the first factor:

> fr[1] := iratrecon(f_hat[1,4],p);

fr1 := 1
2x

2
2x

8
1x

3
3 + x8

1 + x1x
2
2x

3
3 + 11

2 x
2
2x1x

3
4 + 363x2

2x1x4 + 1
4x

2
2x3x4 − x3

Observe that λ1 = 4 is the least common multiple of the denominators of coefficients of
fr1. Multiply fr1 by λ1, we get the true factor f1 ∈ Z[x1, · · · , xn]:

> f[1] := 4*fr[1];

f1 := 2x2
2x

8
1x

3
3 + 4x8

1 + 4x1x
2
2x

3
3 + 22x2

2x1x
3
4 + 1452x2

2x1x4 + x2
2x3x4 − 4x3

Similarly for the second factor f2:
> fr[2] := iratrecon(f_hat[2,4],p);

fr2 := 3x8
1x2 + 3x8

1x3 + 39x8
1x4 + 5x2

1x2x
2
3x4 + 33x2

1x2x3x
2
4 − 363x2

4 + 44

There is no fraction in fr2, so f2 = fr2.
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6.1.1 Non-monic bivariate Hensel lifting

Define lcAsf := LC(LC(sqf(aj(x1, Yk, xj), x1), xj). The non-monic bivariate Hensel lift (step
17 of Algorithm 13) has the following input and output:

• Input: A prime p, αj ∈ Zp, Asfm = monic(sqf(aj(x1, Yk, xj)) (step 13), Fρ,k =
f̂ρ,j−1(x1, Yk) (1 ≤ ρ ≤ r) (step 14) s.t.
(i) gcd(f̂ρ,j−1(x1, Yk), f̂φ,j−1(x1, Yk)) = 1 for ρ 6= φ,
(ii) Asfm(xj = αj) = ξ

∏r
ρ=1 f̂ρ,j−1(x1, Yk), ξ ∈ Zp,

(iii) Fρ,k = f̂ρ,j−1(x1, Yk) is primitive in x1 for all 1 ≤ ρ ≤ r.

• Output: f̂ρ,j(x1, Yk, xj) (1 ≤ ρ ≤ r) s.t.
(i) Asfm = ξ

∏r
ρ=1 f̂ρ,j(x1, Yk, xj), ξ ∈ Zp,

(ii) f̂ρ,j(x1, Yk, xj)(xj = αj) = f̂ρ,j−1(x1, Yk) for all 1 ≤ ρ ≤ r,
(iii) f̂ρ,j(x1, Yk, xj) is primitive in x1 for all 1 ≤ ρ ≤ r;
Or FAIL.

In the above, monic(.) means LC(sqf(aj(x1, Yk, xj)), x1) is monic in xj . Also, we have
ξ = Λ/lcAsf ∈ Zp.

If Algorithm 14 returns FAIL, it means the factorization Asfm = ξ
∏r
ρ=1 f̂ρ,j(x1, Yk, xj)

does not exist. This could imply that the initial evaluation point ααα is not Hilbertian.
Notice that the output of BHL f̂ρ,j(x1, Yk, xj) satisfies

f̂ρ,j(x1, Yk, xj)(xj = αj) = f̂ρ,j−1(x1, Yk) (1 ≤ ρ ≤ r).

Thus, when evaluating the output bivariate factors f̂ρ,j(x1, Yk, xj) at xj = αj , their lead-
ing coefficients equal the leading coefficients of the input factors f̂ρ,j−1(x1, Yk). The correct
return of the leading coefficients from BHL ensures that we have the correct leading coeffi-
cients after each Hensel lifting step of CMBBSHL, i.e. f̂ρ,j ∈ Zp[x1, · · · , xj ] satisfies

f̂ρ,j(xj = αj) = f̂ρ,j−1 (1 ≤ ρ ≤ r).

We modified the monic BHL algorithm developed by Monagan and Paluck in 2022 [48] to
handle the non-monic case. It has a cubic cost of O(d1d

2
j +d2

1dj). Pseudocode for non-monic
bivariate Hensel lifting is shown in Algorithm 14.

In Algorithm 14, there is a potential issue when γ(y) = LC(a, x) has a high degree.
Thus after step 2 of Algorithm 14, a(x, y) ← γ(y)r−1a(x, y) has a high degree in y. This
may happen if the number of factors is large. In such case, we could implement a recursive
algorithm to break down the factors into a binary tree for bivariate Hensel lifts.

6.1.2 Proof of correctness

We need Proposition 6.1.2 to prove Theorem 6.1.3.
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Algorithm 14 Non-monic bivariate Hensel lifting - cubic cost.
Input: A prime p, α ∈ Zp, a ∈ Zp[x, y] where a is primitive in x and LC(LC(a, x), y) = 1,
fρ,0 ∈ Zp[x] for 1 ≤ ρ ≤ r s.t.
(i) gcd(fk,0, fl,0) = 1 for k 6= l,
(ii) a(y = α) = ξ

∏r
ρ=1 fρ,0, ξ ∈ Zp,

(iii) fρ,0 is primitive in x for all 1 ≤ ρ ≤ r.
Output: fρ ∈ Zp[x, y] for 1 ≤ ρ ≤ r s.t.
(i) a = ξ

∏r
ρ=1 fρ,

(ii) fρ(y = α) = fρ,0,
(iii) fρ is primitive in x for all 1 ≤ ρ ≤ r; Or FAIL.

1: γ(y)← lc(a, x) ∈ Zp[y];
2: a(x, y)← γ(y)r−1a(x, y) ∈ Zp[x, y].
3: fρ,0 ← γ(y)·monic(fρ,0(x)) mod (y − α) ∈ Zp[x] (1 ≤ ρ ≤ r).
4: dx← deg(a, x); dy ← deg(a, y); dfρ,0 ← deg(fρ,0, x).
5: M ←

∏r
ρ=1 fρ,0 ∈ Zp[x].

6: for ρ from 1 to r do fρ ← fρ,0; Mρ ←M/fρ,0 end for
7: for k from 0 to dy do
8: γk ← coeff(γ, (y − α)k).
9: for ρ from 1 to r do Tfρ,k ← γkx

dfρ,0 end for
10: end for
11: for k from 1 to dy do
12: ack ← coeff(a, (y − α)k).
13: ∆k ← coeff(∏r

ρ=1 fρ, (y − α)k). // via eval and interpolation.
14: δk ←

∑r
ρ=1 Tfρ,k ·Mρ.

15: ck ← ack −∆k − δk.
16: if

∑r
ρ=1 deg(fρ, y) = dy and ck 6= 0 return FAIL end if

17: if ck 6= 0 then
18: Solve∑r

ρ=1 f̄ρ,kMρ = ck for f̄ρ,k ∈ Zp[x] with deg(f̄ρ,k, x) < deg(fρ,0, x) (1 ≤ ρ ≤ r).
19: for ρ from 1 to r do
20: fρ,k ← Tfρ,k + f̄ρ,k; fρ ← fρ + fρ,k(y − α)k.
21: end for
22: end if
23: end for
24: if

∑r
ρ=1 deg(fρ, y) 6= dy then return FAIL end if

25: if ck = 0 then
26: for ρ from 1 to r do
27: f̃ρ ← primpart(fρ(x, y), x)). // lc(lc(f̃ρ, x), y) = 1.
28: lceval ← lc(f̃ρ(x, y), x)(y = α); η ← lc(fρ,0, x)/lceval.
29: fρ ← ηf̃ρ.
30: end for
31: return fρ for 1 ≤ ρ ≤ r.
32: else
33: return FAIL
34: end if
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Proposition 6.1.2. The output factors fρ ∈ Zp[x, y] (1 ≤ ρ ≤ r) from Algorithm 14
(non-monic BHL) are uniquely determined.

Proof. Since deg(f̄ρ,k, x) < deg(fρ,0, x), the multi-term Diophantine equation (step 18) gives
unique solutions f̄ρ,k (Theorem 2.6 in [19]). By construction in step 20, fρ,k = γkx

dfρ,0 + f̄ρ,k,
where γkxdfρ,0 is the leading term of fρ,k. Since deg(f̄ρ,k, x) < deg(fρ,0, x) in step 18, the
leading coefficients of fρ,k do not change, and the solution f (k+1)

ρ = fρ,0 +fρ,1(y−α) + · · ·+
fρ,k(y − α)k obtained at the kth iteration (step 20) is uniquely determined.

In Algorithm 14, the input polynomial a is Asfm which comes from step 13 of Algorithm
13. Since LC(LC(Asfm, x), y) = 1, for each f̃ρ = primpart(fρ(x, y), x)), LC(LC(f̃ρ, x), y) = 1
and the f̃ρ’s (1 ≤ ρ ≤ r) are also uniquely determined. This means

a =
r∏

ρ=1
f̃ρ ∈ Zp[x, y]. (6.9)

By evaluating (6.9) at y = α, we get

a|y=α = f̃1f̃2 · · · f̃r|y=α = ξf1,0f2,0 · · · fr,0 ∈ Zp[x],

where ξ ∈ Zp. Since Zp is a field, there exists ηρ ∈ Zp s.t. f̃ρ(y = α) = (1/ηρ)fρ,0 for all 1 ≤
ρ ≤ r.
Define fρ := ηρf̃ρ(x, y) (1 ≤ ρ ≤ r). Since Zp[x, y] is a UFD,

a =
r∏

ρ=1
f̃ρ =

∏r
ρ=1 fρ∏r
ρ=1 ηρ

= ξ
r∏

ρ=1
fρ ∈ Zp[x, y],

where ξ = 1/(∏r
ρ=1 ηρ), and fρ’s are uniquely determined.

Theorem 6.1.3. Let sqf(aj) = sqf(a(x1, · · · , xj , αj+1, · · · , αn)) mod p ∈ Zp[x1, · · · , xj ].
Let r be the number of square-free factors of a ∈ Z[x1, · · · , xn] and Λ = ∏r

ρ=1 λρ ∈ Z where
λρ = icont(fρ(x1,ααα)). Let f̂ρ,j ∈ Zp[x1, · · · , xj ] be the output factors after the jth Hensel
lifting step of CMBBSHL (Algorithm 13). Then,

sqf(aj) = Λ
r∏

ρ=1
f̂ρ,j mod p, (6.10)

for all 1 ≤ j ≤ n.

Proof. We want to show that (6.10) is satisfied for each j (1 ≤ j ≤ n). The first Hensel
lifting step (j = 1) is the initial input, and (6.10) is satisfied. For j = 2, it is a bivariate
Hensel lift, and from Proposition 6.1.2, (6.10) is satisfied.
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Suppose (6.10) is satisfied at the beginning of Hensel lifting step j, i.e. (6.10) is satisfied
for j − 1. Before each bivariate Hensel lift,

sqf(aj(x1, Yk, αj)) = Λ
∏

f̂ρ,j−1(x1, Yk) mod p

⇒ monic(sqf(aj(x1, Yk, αj))) = Λ/lcAsf
∏

f̂ρ,j−1(x1, Yk) mod p.

And after each BHL, Proposition 6.1.2 ensures unique f̂ρj ’s s.t.

monic(sqf(aj(x1, Yk, xj))) = Λ/lcAsf
∏

f̂ρ,j(x1, Yk, xj) mod p

⇒ sqf(aj(x1, Yk, xj)) = Λ
∏

f̂ρ,j(x1, Yk, xj) mod p.

After all bivariate Hensel lifts, the Vandermonde solves give unique solutions for coefficients
cρ,lk (since the monomial evaluations are distinct in step 3, det(V ) 6= 0, see Section 3.6.2
for details) to recover f̂ρ,j . Therefore,

sqf(aj) = Λ
r∏

ρ=1
f̂ρ,j mod p.

6.2 Non-primitive case: content computation

Algorithm CMBBSHL returns the irreducible factors of the primitive part of a for a ∈
Z[x1, · · · , xn] (w.h.p.) in their sparse representation. In order to compute the irreducible
factors of the content of a, we construct another black box for the content of a and compute
its irreducible factors recursively.

Let a = h
∏r
ρ=1 f

eρ
ρ , where h = cont(a, x1) and fρ’s are the irreducible factors of pp(a)

which have been computed already by Algorithm CMBBSHL (Algorithm 12). To compute
h(βββ) mod p, we use

h(βββ) = a([γ,βββ)])∏r
ρ=1 fρ([γ,βββ])eρ mod p (6.11)

for a random γ ∈ Zp.
Let Cn = a ∈ Z[x1, · · · , xn]. We have Cn = cont(Cn) · pp(Cn) = cont(a) · pp(a) where

cont(a) and pp(a) are the content and primitive part of a respectively. After computing the
irreducible factors of pp(a), we also want to compute the irreducible factors of cont(a) =
cont(Cn). Let Cn−1 = cont(Cn) ∈ Z[x2, · · · , xn]. Cn−1 is a polynomial with one fewer variable
(without the main variable x1). We now construct another black box Cn−1 : Zn−1×{p} → Zp
for Cn−1 (see the next paragraph for how to construct Cn−1) and use Algorithm CMBBSHL
to compute its irreducible factors for pp(Cn−1). Now we let Cn−2 = cont(Cn−1). Construct
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another black box Cn−2 : Zn−2 × {p} → Zp for Cn−2 and use Algorithm CMBBSHL to
compute the irreducible factors of pp(Cn−2). Repeat this process until C0 = cont(C1) ∈ Z. At
this stage, C0 is an integer and it can be computed by calling the black box C0 : φ×{p} → Zp
with different primes and Chinese remaindering.

In order to build the black box Cn−1 : Zn−1 × {p} → Zp for Cn−1, we first construct a
black box Fn : Zn×{p} → Zp s.t. Fn(ααα, p) = pp(a)(ααα) mod p. Let f1,n, · · · , fr,n be the irre-
ducible factors of pp(a) found by Algorithm CMBBSHL.We have pp(a)(ααα) = ∏r

ρ=1 fρ,n(ααα)eρ

mod p. Next, the black box Cn−1 : Zn−1 × {p} → Zp can be computed by a division mod
p, i.e.

Cn−1(βββ, p) = Cn([γ,βββ], p)
Fn([γ,βββ], p) mod p

for a fixed γ ∈ Zp chosen at random. If Fn([γ,βββ], p) = 0 then FAIL is returned.
If deg(Cn−1, x2) = 0, this means pp(Cn−1) = 1. In this case, we do not need to call

algorithm CMBBSHL to compute pp(Cn−1). The black box Cn−1 is constructed as

Cn−1(βββ, p) = Cn([γ,βββ], p)

for a fixed γ ∈ Zp chosen at random and we proceed to the next level of recursion.
In Maple, the programs to make the black boxes Fn and Cn−1 are written as Maple

procedures MakeBF and MakeCont.
The input to MakeBF contains an array FA of the factors fρ,n with their multiplicities

eρ. In my implementation, the array FA is indexed from 0 to r′, where r′ is the number of
irreducible factors that need to be Hensel lifted. FA[0] stores [x1, e0], which represents a
single term xe0

1 if it exists, since xe0
1 does not need to be Hensel lifted. If there is no such

single term, FA[0] stores a 0. For 1 ≤ i ≤ r′, FA[i] stores [fi,n, ei], and fi,n is computed
from Hensel lifting. MakeBF outputs a Maple procedure which is the black box Fn. Inside
the procedure Fn, each factor is evaluated at ααα mod p, then the product ∏r

ρ=1 fρ,n(ααα)eρ mod
p is computed.

MakeBF := proc( FA::Array, r::nonnegint, X::list ) local N := nops(X), Fn;

Fn := proc( alpha::Array, p::prime )

local tmult:=1,i,t,tmon,tpow,teval,ii;

for i from 0 to r do t := FA[i];

if i = 0 then if t = 0 then next i; fi; fi;

tmon := t[1]; tpow := t[2];

teval := Eval( t[1], [seq(X[ii]=alpha[ii],ii=1..N)] ) mod p;

teval := teval^tpow mod p;

tmult := tmult*teval mod p;

od;

tmult;

85



end;

end:

BF := MakeBF( FA, r, X );

The Maple program MakeCont has input the black box Cn (which is B for the first
recursive step), the black box Fn, a fixed γ ∈ Zp, and a prime p. It outputs the black box
Cn−1.

MakeCont := proc( Cn::procedure, Fn::procedure, gamma::integer, p::prime )

local ‘Cn-1‘;

‘Cn-1‘:= proc( alpha::Array, p::prime )

local na := numelems(alpha), alphaNew, g, i;

alphaNew := Array(1..na+1); alphaNew[1] := gamma;

for i to na do alphaNew[i+1] := alpha[i]; od;

g := Fn( alphaNew, p );

if g = 0 then return FAIL; fi;

Cn( alphaNew, p )/g mod p;

end;

end;

alpha0 := rand(p)();

BC := MakeCont( B, BF, alpha0, p );

6.3 Benchmarks

Before presenting the complexity analysis, we first show some timing benchmarks. We made
a hybrid Maple and C implementation for algorithm CMBBSHL. The complete Maple code
is on the website http://www.cecm.sfu.ca/~mmonagan/code/CMBBSHL/ and Appendix A
is the script to run algorithm CMBBSHL. Similarly to the monic and square-free case, the
following sub-steps in each Hensel lifting step are coded in C to speed up computations:

• Step 8: Probes to the black box B and bivariate dense interpolation;

• Step 14: Evaluations of the factors f̂ρ,j−1;

• Step 17: Non-monic bivariate Hensel lifts (Algorithm 14);

• Step 23: Vandermonde solves.

At step 8 of Algorithm 13, the matrix A is converted to a list of polynomials to be
passed into a C program for evaluations (BB eval). After evaluating each polynomial entry,
another C program is called to calculate its determinant in Zp (BB det). To compute
Ak = aj(x1, Yk, xj), we need O(d1dj) such evaluations and then perform a bivariate dense
interpolation to get the bivariate image Ak.
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At step 14, the polynomials f̂ρ,j−1 are evaluated by using two arrays for each factor.
One array stores the coefficients cρ,ik, which is defined in step 1, the other array stores the
monomial evaluations. This enables us to make use of the previous evaluation points, since
our evaluation points (βk2 , · · · , βkj−1) in step 7 are powers of the βi’s andM(βki ) = (M(βi))k.

Step 17 uses the cubic bivariate Hensel lifting (BHL) algorithm developed by Monagan
and Paluck [48] in 2022. One BHL costs O(d1d

2
j + d2

1dj) arithmetic operations in Zp.
The Vandermonde solves in step 23 use the classical algorithm of Zippel [62]. It does

O(s2
ρ,i) arithmetic operations in Zp.
We present three timing benchmarks. All timings were obtained on the CECM gaby

server which has 2 Intel Xeon E5-2660 8 core CPUs with 64 GB RAM. We used p = 262−57
and Ñ = 4001. We only used 1 core.

The first benchmark presents timings to compute the determinants of matricesBn, where
each Bn consists of four factors. For example, B4 is of size 8× 8 and it has 4 variables:

B4 =



uvw v uvw + v + w ... uvw + v

v uvw uvw + 2v ... uvw + v

w v uvw + v + w ... v + w
...

...
... . . . ...

w v uvw + v + w ... 2vwx+ 2ux+ 3v + 4w


.

det(B4) = −(−v2w2x2 + uvwx2 + vw2x− uwx+ v2 − 2vw + w2)

(v2w2x2 + uvwx2 + vw2x+ uwx− v2 − 2vw − w2)

(u2v2w2 + u2vwx+ uv2w + uvx− v2 − 2vw − w2)

(u2v2w2 − u2vwx− uv2w + uvx− v2 + 2vw − w2).

The number of terms in det(B4) is 120, and each factor has 7 terms. And the leading
coefficients in each variable is non-monic, e.g.

lcoeff(B, u) = −v6w6x4 + v4w4x6 + v4w6x2 − v2w4x4,

lcoeff(B, v) = u4w8x4 − 2u4w6x2 − 3u2w6x4 + u4w4 + 6u2w4x2 + w4x4 − 3u2w2

− 2w2x2 + 1.

All the matrices we used for our benchmarks are available online:
http://www.cecm.sfu.ca/~mmonagan/code/BBfactor/

Table 6.1 shows the CPU timings (in seconds) for our new algorithm CMBBSHL, com-
pared with Maple and Magma’s current best determinant and factorization algorithms. We
used Maple 2022 and Magma V2.25-5 to compute the determinants of Bn and factored
them. Maple 2022 uses Monagan and Tuncer’s algorithm MTSHL [47] for factoring mul-
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Table 6.1: CPU timings (in seconds) for computing the factors of det(Bn).
n 5 6 7 8 9

N = 2n 10 12 14 16 18
#f1,#f2 12,7 32,32 56,30 167,167 153,294
#f3,#f4 12,7 32,32 56,30 167,167 253,294
# det(Bn) 701 5162 79740 1716810 7490224

CMBBSHL tot 0.323 0.999 3.320 17.542 34.150
probes tot 1944 6156 18936 84240 143775
Maple det 0.455 7.880 382.80 > 64 gigs N/A
Maple fac 0.109 0.326 1.270 42.15 139.80
Maple tot 0.564 8.206 384.07 - -
Magma det 1.680 6.290 594.60 > 3h N/A
Magma fac 0.120 0.480 33.140 N/A N/A
Magma tot 1.800 6.770 627.74 N/A N/A

N/A: Not attempted.

Table 6.2: Breakdown of timings for H.L. xn for computing det(Bn).
n 5 6 7 8 9

N = 2n 10 12 14 16 18
H.L. xn total 0.110 0.332 0.801 5.931 10.756
probes xn 648 2115 4620 25753 45465
s (H.L. xn) 9 25 31 131 201
BB tot 0.031 0.138 0.437 3.397 7.650
BB eval 0.016 0.076 0.315 2.586 5.773
BB det 0.008 0.038 0.069 0.512 1.189

Interp2var 0.002 0.004 0.008 0.065 0.116
Eval f̂ρ,j−1 0.005 0.017 0.020 0.072 0.143

BHL 0.038 0.109 0.211 1.263 1.989
VSolve 0.003 0.002 0.004 0.017 0.026

tivariate polynomials. The timings for Maple det were obtained by using Gentleman and
Johnson’s algorithm [26].

In Table 6.1, n is the number of variables of a = det(Bn). The size of matrix Bn is
of N × N with N = 2n. #fi (i = 1, 2, 3, 4) is the number of terms in each factor of a.
# det(Bn) is the number of terms of det(Bn) in expanded form. CMBBSHL tot is the total
time for our algorithm, and probes tot is the total number of probes to the black box B
for CMBBSHL. Maple det is the time for determinant computation in Maple. Maple fac is
the time for Maple’s factorization. Similarly for the last section of Magma’s timings. Our
algorithm outperformed both Maple and Magma at n = 5. At n = 7, CMBBSHL is more
than 100 times faster than Maple and 190 times faster than Magma. At n = 8, Maple ran
out of memory at computing det(B8) and CMBBSHL only took 17.5 seconds.
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Table 6.2 shows a breakdown of timings for each subroutine for Hensel lifting the last
variable xn. The number s is the number of bivariate images needed for the last Hensel
lifting step (s is defined in step 5 of Algorithm 13). BB tot is the total time for probes to
the black box B (at step 8). BB eval is the time for evaluating the polynomial entries of
the matrix Bn. BB det is the time for computing the determinant in Zp. Eval f̂ρ,j−1 is the
time for evaluating the factors f̂ρ,j−1 at step 14. BHL is the time for bivariate Hensel lifts
at step 17. VSolve is the time for Vandermonde solves at step 23.

The second benchmark shows the CPU timings for computing the factors of the deter-
minant of Vandermonde matrices. This benchmark has a non-trivial content. The content
itself is factored recursively by our algorithm. Let Vn be an n×n Vandermonde matrix. For
example,

V4 =


1 x1 x2

1 x3
1

1 x2 x2
2 x3

2
1 x3 x2

3 x3
3

1 x4 x2
4 x3

4

 . (6.12)

det(V4) = (x1− x2)(x1− x3)(x1− x4)(x2− x3)(x2− x4)(x3− x4). If det(V4) is expanded, it
has 24 terms. In general, there are

(n
2
)
linear factors for det(Vn).

In Table 6.3, n is the number of variables (is also dim(Vn)), r is the number of fac-
tors of det(Vn), and # det(Vn) is the number of terms of det(Vn) in its expanded form.
CMBBSHL tot is the total time for algorithm CMBBSHL, and probes tot is the total
number of probes to the black box B : Zn × {p} → Zp for algorithm CMBBSHL. Maple
det is the time for Maple to compute the determinant of Vn by Gentleman and Johnson’s
algorithm [26]. Maple minor is the time for Maple to compute det(Vn) by the command
Determinant(V_n,method=minor). Maple fac uses Monagan and Tuncer’s algorithm MT-
SHL [47] for factoring multivariate polynomials. We see that at n = 9, algorithm CMBBSHL
outperforms Maple, and at n = 11, algorithm CMBBSHL is 170 times faster than Maple.
Maple ran out of memory for computing det(V12), but algorithm CMBBSHL took only 5.19
seconds.

Table 6.4 shows the CPU timings for computing the primitive factors of the content at
each recursive step. Recall that from Section 6.2, we defined Cn = a = cont(Cn) · pp(Cn) ∈
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Table 6.3: CPU timings (in seconds) for computing the factors of det(Vn).
n = N 7 8 9 10 11 12 13
r =

(n
2
)

21 28 36 45 55 66 78
# det(Vn) 5040 40320 362880 3628800 39916800 O/M* N/A

CMBBSHL tot 0.336 0.649 1.137 1.990 3.290 5.190 8.175
probes tot 1328 2256 3597 5467 7975 11263 15479

pp(a) fac only 0.097 0.130 0.175 0.262 0.331 0.401 0.513
Maple det 0.061 0.100 0.446 5.700 45.07 > 64 gigs N/A

Maple minor 0.009 0.036 0.297 5.391 35.518 > 64 gigs N/A
Maple fac 0.012 0.068 0.882 17.96 523.80 N/A N/A
Maple tot 0.021 0.104 1.179 23.351 559.318 N/A N/A
N/A: Not attempted. O/M*: Out of memory at expanding the factors in Maple.

Table 6.4: CPU timings (in seconds) for computing the factors of pp(Ci).
n = N 7 8 9 10 11 12 13

CMBBSHL tot 0.366 0.649 1.137 1.990 3.290 5.190 8.175
probes tot 1328 2256 3597 5467 7975 11263 15479
pp(a) fac 0.097 0.130 0.175 0.262 0.331 0.401 0.513
pp(Ci) fac 0.098 0.180 0.263 0.369 0.593 0.808 1.140

(i = n− 1, · · · , 0) 0.097 0.137 0.246 0.426 0.654 0.924 1.348
0.045 0.100 0.213 0.411 0.541 0.913 1.348
0.021 0.065 0.127 0.237 0.474 0.746 1.155
0.005 0.026 0.070 0.153 0.351 0.577 0.984
0.000 0.005 0.030 0.083 0.190 0.370 0.707
0.002 0.000 0.007 0.036 0.100 0.267 0.495
- 0.001 0.000 0.008 0.042 0.115 0.267
- - 0.002 0.000 0.009 0.051 0.142
- - - 0.002 0.001 0.011 0.056
- - - - 0.002 0.000 0.012
- - - - - 0.003 0.000
- - - - - - 0.003

Z[x1, · · · , xn]. And Cn−1 := cont(Cn) = cont(Cn−1) · pp(Cn−1) ∈ Z[x2, · · · , xn]. For example,

C4 = det(V4) = (x3 − x4)(x2 − x3)(x2 − x4)︸ ︷︷ ︸
C3=cont(C4)

(x1 − x2)(x1 − x3)(x1 − x4)︸ ︷︷ ︸
pp(C4)

,

C3 = (x3 − x4)︸ ︷︷ ︸
C2=cont(C3)

(x2 − x3)(x2 − x4)︸ ︷︷ ︸
pp(C3)

,

C2 = x3 − x4︸ ︷︷ ︸
pp(C2)

,

C1 = cont(C2) = 1,

C0 = cont(C1) = 1.
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Table 6.5: CPU timings (in seconds) for computing the factors of det(Vn) for larger n.
n = N 15 20 25 30 35 40
r =

(n
2
)

105 190 300 435 595 780
CMBBSHL tot 18.625 109.996 440.17 1376.793 3560.706 9057.977

probes tot 27311 85622 207912 429752 793809 1350786
pp(a) fac 0.791 2.246 5.891 13.968 29.597 57.745
H.L. xn 0.055 0.117 0.256 0.467 0.800 1.487
probes xn 465 820 1275 1830 2485 3240
s (H.L. xn) 1 1 1 1 1 1
BB tot 0.024 0.070 0.156 0.353 0.650 1.224
BB eval 0.015 0.039 0.090 0.208 0.368 0.709
BB det 0.009 0.031 0.066 0.145 0.282 0.515

Interp2var 0.001 0.002 0.004 0.009 0.015 0.027
Eval f̂ρj−1 0.002 0.002 0.003 0.004 0.004 0.005

BHL 0.004 0.005 0.008 0.009 0.010 0.011
VSolve 0.004 0.003 0.006 0.009 0.007 0.012

At each recursive call, the factors of pp(Ci) are computed. In Table 6.4, pp(a) fac is the
timing for computing the primitive factors of det(Vn). pp(Ci) fac presents the timings for
algorithm CMBBSHL to compute the factors of pp(Ci) for i = n− 1, · · · , 0.

Our software has the capability to compute the factors of pp(a) only. Here pp(a) =∏n
j=2(x1− xj) is much smaller than the content cont(a) = ∏

2≤i<j≤n(xi− xj). In Table 6.4,
for n = 13, it took only 0.513 seconds to factor pp(a) and 8.175− 0.153 = 7.662 seconds to
be able to factor cont(a).

Table 6.5 shows more timings for det(Vn) with larger n. pp(a) fac is the time for com-
puting the factors of the primitive part of a = det(Vn). H.L. xn is the total time for Hensel
lifting the last variable xn. The last block of rows shows breakdown of timings for each
subroutine at Hensel lifting xn.

In the first benchmark, det(Bn) is non-monic but square-free and primitive. In the second
benchmark, det(Vn) is non-monic and non-primitive but still square-free. The matrices in the
first two benchmarks are also relatively small. Our third benchmark is for large matrices and
their determinants are non-monic, non-square-free and non-primitive. The matrices come
from Dixon matrices which come from solving polynomial systems of equations. Table 6.6
presents timings for 7 different matrices with various n and N . For example, heron3d is
13× 13 and it has the following determinant with 7 variables:

det(A) = 64as7(as− bs+ cs)(as− bs− cs)(as+ bs+ cs)(as+bs−cs)

(as4es2 + as2bs2cs2 − · · · − cs2es2fs2 + 144vo2)2︸ ︷︷ ︸
23 terms

.
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In Table 6.6, n is the number of variables, the size of the matrices is N × N . r is the
number of square-free factors of a. dj = deg(a, xj) are the degrees of a in each variable xj ,
computed prior to Hensel lifting. #fi are the number of terms of each square-free factor
and ei are the corresponding powers of the factors. The number max λρ is the maximum of
λρ (1 ≤ ρ ≤ r), computed from rational number reconstruction. CMBBSHL tot is the total
time for algorithm CMBBSHL including computing the factors of the content. pp(a) fac is
the time for computing the primitive factors only. We compared our timings with Maple’s
determinant computation and factorization. Using Gentleman and Johnson’s algorithm [26]
to compute the determinant, Maple ran out of memory for computing the determinant of
heron4d, and algorithm CMBBSHL took only 43.809 seconds. The timings in Table 6.6 were
all computed with the variables sorted lexicographically. With different variable orderings,
timings can be quite different. For example, for heron4d, as also presented in Chapter 2
using X = [es, bs, cs, ds, fs, as, gs, hs, is, js, vo], it only took 17.56 seconds in total.

Table 6.7 shows a breakdown of timings for our algorithm CMBBSHL at the last Hensel
lifting step. BB tot includes the timings of BB eval (evaluations of the polynomial entries)
and BB det (determinant computation in Zp). The matrix robotarms (b2) has a larger
number of terms (about 100) in each matrix entry. We can see that BB tot is much larger
for robotarms (b2) than heron4d. heron5d is a much larger matrix, and BB tot is the
bottleneck.
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6.4 Complexity analysis with failure probabilities

Algorithm CMBBSHL can return FAIL with a low probability. It could also return an
incorrect answer (not a FAIL) with a low probability. If p divides any integer coefficient of
any irreducible factor fρ ∈ Z[x1, · · · , xn], algorithm CMBBSHL returns an incorrect answer.
The failure probability bound is pessimistic, and in practice, I have never observed a failure.

Example 17. Let p = 262 − 57. Let a = f1f2 ∈ Z[x, y, z], where f1 = 2xy + 5 and
f2 = 3x2z + pxy+ 7. Suppose ααα = (9, 5). Factoring a(x,ααα) gives (18x+ 5)(15x2 + 9px+ 7).
Thus, f̂1,1 = 18x + 5 and f̂2,1 = 15x2 + 7. After the first BHL (the second Hensel lifting
step), algorithm CMBBSHL outputs

f̂1,2 = 2xy + 5 and f̂2,2 = 15x2 + 7.

After the third Hensel lifting step,

f̂1,3 = 2xy + 5 and f̂2,3 = 3x2z + 7.

After rational number reconstruction, we get the factors fρ = f̂ρ,3 for ρ = 1, 2. Because the
Hensel lifting is done mod p, the second term pxy in f2 is missing.

Proposition 6.4.2 gives a bound for the probability of CMBBSHL returning FAIL at the
jth Hensel lifting step (Algorithm 13). Proposition 6.4.3 gives a bound for the probability of
CMBBSHL returning an incorrect answer due to the fact that p divides at least one integer
coefficient of any irreducible factor.

In order to prove Proposition 6.4.2, we need Lemma 6.4.1 (Proposition 1(ii) in Section
6 of Chapter 3 in [14]) on the theory of resultants.

Lemma 6.4.1. Let F be a field. Let A,B ∈ F[x1, · · · , xn] such that deg(A, x1) > 0 and
deg(B, x1) > 0. Then

res(A,B, x1) = 0 ⇐⇒ deg(gcd(A,B), x1) > 0. (6.13)

Proposition 6.4.2. Let p be a large prime. Let r be the number of factors of sqf(a). Let
d = deg(a), d̃ = deg(sqf(a)), d̃j = deg(sqf(a), xj) and s be the number defined at step 5
in Algorithm 13. Let #f̂ρ,j−1 denote the number of terms in the input factors f̂ρ,j−1 at the
jth Hensel lifting step of Algorithm 13. Then, CMBBSHL (Algorithm 13) fails to compute
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f̂ρ,j ∈ Zp[x1, · · · , xj ] with a probability less or equal than

((r2 − r + 2)d̃2 + 2d+ d̃)s2 +
(
2d̃2 + d̃

(∑r
ρ=1 #f̂ρ,j−1 + 1

)
+ 2d

)
s

2(p− 1)︸ ︷︷ ︸
steps 4,9,11,15,16

+
d̃2
j

∑r
ρ=1 #f̂ρ,j−1

p− d̃j + 1︸ ︷︷ ︸
Lemma 3.3.2

.

(6.14)

Proof. For step 11, let Āk = Ak/gk ∈ Zp[x1, xj ] and let ∂Ak
∂x1

= ∂Ak
∂x1

/gk ∈ Zp[x1, xj ], where
gk = gcd(Ak, ∂Ak∂x1

) ∈ Zp[x1, xj ] from step 10. Then, by Lemma 6.4.1,

deg
(

gcd
(
Āk,

∂Ak
∂x1

)
, x1

)
> 0⇔ res

(
Āk,

∂Ak
∂x1

, x1

)
= 0.

Let gj = gcd(aj , ∂aj∂x1
) ∈ Zp[x1, · · · , xj ]. Let āj = aj/gj ∈ Zp[x1, · · · , xj ]. Let ∂aj

∂x1
= ∂aj

∂x1
/gj ∈

Zp[x1, · · · , xj ]. Define R = res
(
āj ,

∂aj
∂x1

, x1

)
∈ Zp[x2, · · · , xj ]. Let Rk = R(xk2, · · · , xkj−1, xj)

and let S = ∏s
k=1Rk.

Algorithm CMBBSHL step j fails at step 11 if R(Yk, xj) = Rk(β2, · · · , βj−1, xj) = 0 for
some k. Let (β2, · · · , βj) be chosen at random from (Zp\{0})j−1,

Pr[R(Yk, xj) = 0 for some k] = Pr[S(β2, · · · , βj−1, xj) = 0].

Let dSj = deg(S, xj) and S = ∑dSj
i=0 ci(x2, · · · , xj−1)xij , where ci ∈ Zp[x2, · · · , xj−1]. Then,

Pr[S(β2, · · · , βj−1, xj) = 0]

= Pr
[
c0(β2, · · · , βj−1) = 0 ∧ c1(β2, · · · , βj−1) = 0 ∧ · · · ∧ cdSj (β2, · · · , βj−1) = 0

]
≤Pr[ck(β2, · · · , βj−1) = 0] for some k ∈ {0, 1, · · · , dSj} with ck 6= 0

≤deg(ck)
p− 1 by Lemma 1.6.4

≤deg(S)
p− 1 .

Now,

deg(S) =
s∑

k=1
deg(Rk) ≤

s∑
k=1

2kd̃2 = d̃2s(s+ 1).

Thus, CMBBSHL (Algorithm 13) step j fails at step 11 with a probability less than

d̃2s(s+ 1)
p− 1 .
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For step 9, let L1 := LC(aj , x1) ∈ Zp[x2, · · · , xj ] and Lj := LC(aj , xj) ∈ Zp[x1, · · · , xj−1].
Algorithm CMBBSHL fails at step 9 if L1(Yk, xj) = 0 or Lj(Yk, x1) = 0 for some k.

Let L1,k := L1(xk2, · · · , xkj−1, xj) and S1 = ∏s
k=1 L1,k. By the same argument for step 11

and Lemma 1.6.4,

Pr[L1(Yk, xj) = 0 for some k] = Pr[S1(β2, · · · , βj−1, xj) = 0] ≤ deg(S1)
p− 1 .

We have deg(L1) ≤ d− d1, hence deg(L1,k) ≤ kd− d1. Thus,

deg(S1) =
s∑

k=1
deg(L1,k) ≤

s∑
k=1

(kd− d1) = ds(s+ 1)
2 − sd1 <

ds(s+ 1)
2 .

Similarly for LC(aj , xj). Thus,

Pr[step 9 fails at step j] < ds(s+ 1)
p− 1 .

The proof for step 15 is similar to step 9 above. The proofs for failure probabilities at steps
4 and 16 follow from [46] and Section 4.4 of this Thesis. And we have the following:

Pr[step 4 fails at step j] <
d̃s
∑r
ρ=1 #f̂ρ,j−1

2(p− 1) ,

Pr[step 15 fails at step j] < d̃s(s+ 1)
2(p− 1) ,

Pr[step 16 fails at step j] < d̃2s2r(r − 1)
2(p− 1) .

Adding up, we get the first term in (6.14). The second term in (6.14) comes from the weak
SHL assumption (Lemma 3.3.2).

Proposition 6.4.3. Let p be a 63-bit prime, i.e. p ∈ (262, 263). Let P63 = {all 63-bit primes}.
Let fρ = ∑#fρ

i=1 cρ,i · x
ei1
1 · · ·x

ein
n for 1 ≤ ρ ≤ r, where cρ,i 6= 0, cρ,i ∈ Z, and (ei1 , · · · , ein) ∈

Nn. Let χρ = {i ∈ Z | |cρ,i| ≥ p} and let #fρ,p = |χρ| for 1 ≤ ρ ≤ r. Let hρ = ‖fρ‖∞ for
1 ≤ ρ ≤ r. Let hmax = maxrρ=1 hρ. Then,

Pr[p | at least one cρ,i in any fρ] ≤
1
|P63|

⌊ log2(hmax)
62

⌋ r∑
ρ=1

#fρ,p. (6.15)
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Proof.

Pr[p | at least one cρ,i in fρ, i ∈ χρ] ≤
∑
i∈χρ

Pr[p|cρ,i]

≤
∑
i∈χρ

⌊ log2(|cρ,i|)
62

⌋ 1
|P63|

≤
⌊ log2(hρ)

62

⌋ #fρ,p
|P63|

.

Thus

Pr[p | at least one cρ,i in any fρ] ≤
r∑

ρ=1

⌊ log2(hρ)
62

⌋ #fρ,p
|P63|

≤ 1
|P63|

⌊ log2(hmax)
62

⌋ r∑
ρ=1

#fρ,p.

For example, consider the matrix BL9 in Table 6.8 (benchmark for the large integer
case). We have log2(hmax) = 150.907, #f1,p ≤ 153, and #f2,p ≤ 294. |P63| ≈ 1.039 × 1017.
Thus

1
|P63|

⌊ log2(hmax)
62

⌋ r∑
ρ=1

#fρ,p ≈ 8.604× 10−15.

Theorem 6.4.4 gives the complexity of CMBBSHL (Algorithm 13).

Theorem 6.4.4. Let p be a large prime and Ñ < p, Ñ ∈ Z+. Let a ∈ Z[x1, · · · , xn]
and ααα = (α2, · · · , αn) ∈ Zn−1

p be randomly chosen such that 0 < αi < Ñ . Suppose ααα
is Hilbertian and condition (i) of the input of CMBBSHL is satisfied. Then, if algorithm
CMBBSHL returns an answer that is not FAIL, the total number of arithmetic operations
in Zp in the worst case for lifting f̂ρ,1 to f̂ρ,n using Algorithm 13 n− 1 times is

O

(n− 2)smaxdmax

 r∑
ρ=1

#f̂ρ,j−1 + d2
1 + d1dmax + d1C(probe B)

 . (6.16)

where d1 = deg(a, x1), dmax = maxnj=2(deg(a, xj)), smax is defined in Definition 5.3.1 and
C(probe B) is the number of arithmetic operations in Zp for one probe to the black box B.
The total number of probes to the black box is O(nd1dmaxsmax).

Proof. Let dj = deg(a, xj), d̃1 = deg(sqf(a), x1) and d̃j = deg(sqf(a), xj). For step 8, we use
dense interpolation to get a bivariate image aj(x1, Yk, xj). Thus, it requires O(d1dj) probes
to B and O(d1d

2
j + d2

1dj) arithmetic operations in Zp for one image. The total cost for step
8 for CMBBSHL step j is O(s(d1djC(probe B))) plus O(s(d2

1dj + d1d
2
j )) operations in Zp

for all dense interpolations.
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For step 10, we can use Brown’s GCD algorithm [6] for GCDs in Zp[x1, xj ] which costs
O(d2

1dj + d1d
2
j ) arithmetic operations in Zp. An alternative with the same asymptotic cost

would be to use the bivariate Hensel lifting of Monagan and Paluck [48]. The total cost for
step 10 for step j of Algorithm CMBBSHL is O(s(d2

1dj + d1d
2
j )) operations in Zp.

The proofs of the following steps follow from Section 4.4 of this Thesis. We give the
total count of arithmetic operations in Zp for step j:

Step 14 costs O(s∑r
ρ=1 #f̂ρ,j−1).

Step 17 costs O(s(d̃2
1d̃j + d̃1d̃

2
j )) ⊆ O(s(d2

1dj + d1d
2
j )).

Step 23 costs O(sd̃j
∑r
ρ=1 #f̂ρ,j−1).

Adding up, we get the total number of arithmetic operations in Zp for step j of algorithm
CMBBSHL:

O

s (d2
1dj + d1d

2
j

)
+ sd̃j

r∑
ρ=1

#f̂ρ,j−1 + sd1djC(probe B)

 . (6.17)

And (6.16) follows from (6.17).

6.5 Large integer coefficients

For large integer coefficients, we need to use a larger prime than a 63-bit prime. In this
case, the C codes can no longer be used since they are coded using signed 63-bit integers.
However, algorithm CMBBSHL has an option to run every subroutine in Maple instead. To
enable this, set the option MapleCode := [Maple,Maple,Maple,Maple], so each of the 4
major sub-steps is computed in Maple.

We created some test examples to compute det(BLn) for n = 4, · · · , 9. The matrix BLn
is created similarly to the matrix Bn in Section 6.3 except the coefficients of det(BLn) are
large (greater than 264). The matrices BLn for n = 4, · · · , 9 are available on the website
http://www.cecm.sfu.ca/~mmonagan/code/CMBBSHL/.

For example, BL5 is a 10× 10 matrix and it looks like:
984961191x1 303065689x2 236721026x3 · · ·
303065689x2 984961191x1 303065689x2 · · ·

303065689x2 + 236721026x3 984961191x1 + 303065689x2 984961191x1 + 303065689x2 · · ·
...

...
...

 .

The max-norm for det(BL5) in its expanded form is 2298.755 (see Table 6.8).
Table 6.8 shows timings for computing the factors of det(BLn) for n = 5, · · · , 9. In Table

6.8, n is the number of variables, N is the number of rows (or columns) of BLn, #fi denote
the number of terms in each square-free factor, and ei are the corresponding powers. For
each det(BLn), there are two irreducible factors and each factor is squared. # det(BLn)
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is the number of terms of det(BLn) if expanded. Since the max-norm of det(BLn) and p

are quite large, we present them in log base 2. As n increases, we used larger primes. If
algorithm CMBBSHL returns a FAIL, the size of the prime is then doubled. Our algorithm
outperforms Maple at n = 6. At n = 8, our algorithm is over 290 times faster than Maple’s
determinant and factorization. Table 6.9 shows the breakdown of timings at Hensel lifting
the last variable xn. The bottleneck is probes to the black box B.

Table 6.8: Timings (in seconds) for computing det(BLn)
n 5 6 7 8 9

N = 2n 10 12 14 16 18
#fi 12,7 32,32 56,30 167,167 153,294
ei 2,2 2,2 2,2 2,2 2,2

# det(BLn) 297 1873 11463 73184 455236
log2 (#fi) 84.768 89.067 118.916 119.664 150.907

log2 (‖ det(BLn)‖∞) 298.755 360.788 421.960 480.880 548.934
log2(p) 298.755 360.222 420.912 479.133 546.178

CMBBSHL tot 2.762 17.263 67.526 355.197 1083.36
content tot 0.011 0.006 0.009 0.014 0.023
probes tot 1487 5527 13757 47857 109689
Maple det 0.842 18.69 858 104256 > 48hrs
Maple fac 0.118 0.263 5.77 88.63 N/A
Maple tot 0.960 18.953 863.77 104344.63 N/A

Table 6.9: Breakdown of timings for H.L. xn for det(BLn).
n 5 6 7 8 9

N = 2n 10 12 14 16 18
H.L. xn total 0.632 3.942 9.565 59.609 123.810
s (H.L. xn) 5 18 24 93 130
BB eval 0.179 1.016 2.459 14.392 28.057
BB det 0.404 2.706 6.767 43.428 92.870

Eval f̂ρj−1 0.000 0.001 0.001 0.055 0.188
BHL 0.009 0.035 0.056 0.259 0.375
VSolve 0.002 0.012 0.018 0.177 0.238
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Chapter 7

Implementation details

In this chapter, I present some implementation details for algorithm CMBBSHL. We used
a hybrid of Maple and C codes. The main program is coded in Maple. Some sub-programs
are coded in C. All four major subroutines in the jth Hensel lifting step of CMBBSHL have
been coded in C.

Algorithm CMBBSHL is a black box factorization algorithm. Thus, we give particular
details on black box construction and the step (the only step) that CMBBSHL calls the
black box, i.e., the bivariate dense interpolation in step 8 of Algorithm 13. Section 7.1 gives
a demonstration of how a Maple + C hybrid implementation works. Section 7.2 presents de-
tails on black box construction. In particular, given a matrix A with multivariate polynomial
entries, we construct a black box that computes the determinant of A. Section 7.3 presents
Bareiss’ O(n2) algorithm for computing the determinant of a Toeplitz matrix. Section 7.4
shows implementation details for bivariate dense interpolation.

For the implementations described in this chapter, I am the author of the codes. For the
implementation of bivariate dense interpolation in C, which I discussed with Prof. Monagan,
he gave me an idea of how to store the matrices efficiently.

7.1 Maple + C implementation

Within a Maple program, an external C program can be called by using the command
define_external, which produces a Maple procedure that links to the external C program.

For example, the C program det64s computes the determinant of a matrix A mod a
prime p. The input variables to the C program are a one-dimensional C array of size n2

representing a matrix A stored in row-major order, an integer n < 231 which has data type
int, and an integer p < 263 which has data type long long int.

The following Maple code is used to create an interface to the external C function
det64s. The input variables of Det64s are a square matrix A with entries of data type
long long int, the number of rows (and columns) of the matrix, n, which has data type
int, and a prime p, which has data type long long int.
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> Det64s := define_external( ’det64s’,

> AA::ARRAY(1..nn,1..nn,integer[8],order=C_order),

> nn::integer[4],

> pp::integer[8],

> LIB=cat(CCodeDir,"detinterp4.so"),

> RETURN::integer[8]):

The option order=C_order means that the row-major order is used to store the matrix
A as a one-dimensional array. This means that for an n×n matrix A, the entries are stored
as

[A1,1, A1,2, · · · , A1,n, A2,1, · · · , A2,n, · · · , An,1, · · · , An,n].

After creating a Maple procedure Det64s, it can be used as any other Maple procedure.
Det64s computes the determinant of a matrix mod a prime p. It calls the external C program
det64s to do it. Running a test example gives the following output:

> CCodeDir := "./":

> n := 3: p := 101:

> A := Matrix([[1,2,3],[1,4,9],[1,8,27]],datatype=integer[8],order=C_order);

[1 2 3]

[ ]

A := [1 4 9]

[ ]

[1 8 27]

> d := Det64s(A,n,p); # Calls the external C program det64s

d := 12

> A; # A has been modified after Gaussian elimination

[1 2 3]

[ ]

[0 1 3]

[ ]

[0 0 1]

# Re-define the matrix A and check in Maple:

> A := Matrix([[1,2,3],[1,4,9],[1,8,27]]):

> Det(A) mod p;

12

To compile the C code, the following commands are used in LINUX:
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gcc -c -O3 -fpic detinterp4.c

gcc -shared -o detinterp4.so detinterp4.o

Now detinterp4.c which contains the C program det64s has been compiled. The output
file detinterp4.so must be saved in the directory CCodeDir.

7.2 Black box construction

Given a matrix A with multivariate polynomial entries aij ∈ Z[x1, · · · , xn], we want to
construct a modular black box B : Zn × {p} → Zp s.t. B(ααα, p) = det(A) mod p.

Calling the black box B involves two steps: BB eval and BB det. BB eval evaluates
the entries aij at ααα mod p. The output of BB eval is stored in a matrix Ã with ãij ∈ Zp.
Then, BB det computes det(Ã) mod p. Both BB eval and BB det have been coded in C.
My supervisor Prof. Monagan contributed the C code for BB eval, as well as BB det for
the general case, i.e. the C program det64s which computes det(Ã) mod p by Gaussian
elimination. For the special case of symmetric Toeplitz matrices, I coded the C program for
Bareiss’ O(n2) algorithm [1] for determinant computation, described in the next section.

In order to construct the black box B, I wrote a Maple procedure MakeBBdet_C. It out-
puts an anonymous Maple procedure which is the black box B. The anonymous procedure
calls two external C programs (EVALMOD1 is for BB eval and det64s is for BB det).

MakeBBdet_C := proc( A::Matrix, VarPerm::list )

local n,X,N,Xnew,i,AL,AA;

n := LinearAlgebra:-RowDimension(A);

X := convert(indets(A),list);

N := nops(X);

Xnew := [seq(X[VarPerm[i]],i=1..N)];

AL := convert(A,list);

AA := Array(1..n,1..n,datatype=integer[8],order=C_order);

proc( alpha::Array, p::prime ) global CNT;

CNT++; # CNT = no. of probes to B

EVALMOD1(AL, Xnew, alpha, AA, p); # Evaluate A at alpha mod p in C

Det64s(AA, n, p); # Compute det(AA) mod p in C

end;

end:

The second argument of MakeBBdet_C, VarPerm, is an input of an arbitrary variable per-
mutation of choice. This is because algorithm CMBBSHL allows the user to choose any
variable ordering as an input.
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7.3 Bareiss’ O(n2) algorithm for computing the determinant
of a symmetric Toeplitz matrix

Bareiss’ algorithm [1] for computing the determinant of a Toeplitz matrix costs only O(n2)
arithmetic operations, whereas Gaussian elimination costs O(n3).

Bareiss’ algorithm transforms a Toeplitz matrix (not necessarily symmetric) A into a
lower triangular matrix A(−n) and an upper triangular matrix A(n) by successive steps
A(0), A(±1), A(±2) · · · , A(±n). Suppose a Toeplitz matrix A has the form

A =



a0 a1 a2 · · · an

a−1 a0 a1 · · · an−1

a−2 a−1 a0 · · · an−2
...

...
... . . . ...

a−n a−(n−1) a−(n−2) · · · a0


. (7.1)

Then, at the ith step, A(−i) and A(i) take the form

A(−i) =



a
(0)
0 a

(0)
1 · · · a

(0)
n

0 a
(−1)
0

...

0 0 . . .
...

... . . . a
(−i+1)
0 a

(−i+1)
1 · · · a

(−i+1)
n−i+1

0 0 · · · 0 a
(−i)
0 a

(−i)
1 · · · a

(−i)
n−i

a
(−i)
−(i+1) 0 · · · . . . . . . . . . ...
... . . . . . .

. . . a
(−i)
1

a
(−i)
−n · · · a

(−i)
−(i+1) 0 · · · 0 a

(−i)
0



, (7.2)

A(i) =



a0 0 · · · 0 a
(i)
i+1 · · · a

(i)
n

a
(i)
−1

. . . . . . ...
... . . . . . .

. . . . . . 0 · · · 0 a
(i)
i+1

a
(i)
−n+i · · · a

(i)
−1 a0 0 · · · 0

a
(i−1)
−n+i−1 · · · a

(i−1)
−1 a0 0 · · · 0

... . . . . . . . . . . . . ...
0

a
(0)
−n · · · a

(0)
−1 a0



. (7.3)
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The algorithm for updating A(±i) is given by:

a
(0)
j = aj (j = −n,−n+ 1, · · · , 0, · · · , n) (7.4)

and for i = 1, 2, · · · , n:

a
(−i)
j = a

(−i+1)
j −

a
(−i+1)
−i
a0

a
(i−1)
j+i (7.5)

(j = −n, · · · ,−i− 1; 0, · · · , n− i for i < n; j = 0 for i = n),

a
(i)
j = a

(i−1)
j − a

(i−1)
i

a0(−i)a
(−i)
j−i (7.6)

(j = −n+ i, · · · ,−1; i+ 1, · · · , n for i < n).

For the case of a symmetric Toeplitz matrix, the above formulae are further simplified. They
are noted as equations (3.4a) and (3.4b) in [1], which are

a
(0)
j = a|j| (j = −n,−n+ 1, · · · , 0, · · · , n), (7.7)

a
(i)
j = a

(i−1)
j − a

(i−1)
i

a
(i−1)
0

a
(i−1)
i−j , (7.8)

a
(−i)
j = a

(i)
−j (j = −n+ i, · · · , 0; i+ 1, · · · , n for i < n; j = 0 for i = n). (7.9)

Corollary 1 in [1] states that the determinant of A is a0a
(−1)
0 a

(−2)
0 · · · a(−n)

0 . For the case of
computing the determinant of a symmetric Toeplitz matrix, we do not need to store a(−i)

j .
The determinant is calculated as a0a

(1)
0 a

(2)
0 · · · a

(n)
0 = ∏n

i=0 a
(i)
0 .

My C program named as DetBareissSym uses equations (7.7) and (7.8) with modular
arithmetic operations. It has the following input and output:

• Input:
(i) b = [a0, · · · , an], the entries of a symmetric Toeplitz matrix A of size (n+1)×(n+1),
(ii) the integer n,
(iii) a prime p.

• Output: det(A) mod p.

Inside DetBareissSym, I used arrays a, a_new, and inv. Both arrays a and a_new have
size 2n + 1 which store the elements a(i)

j and a(i+1)
j for j = −n, · · · , n. The array inv has

size n+1 and it stores the inverses of a(i)
0 for i = 0, · · · , n. If any a(i)

0 = 0, then the program
calls det64s to compute the determinant using Gaussian elimination instead.
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LONG DetBareissSym( LONG *b, int n, LONG p ) {

// Input: vector b=[b_0,...,b_n], diag entries of symmetric Toeplitz

// matrix A (size (n+1)*(n+1))

// Output: Det(A) mod p

LONG *a, *anew, *inv, prod; int i, j;

if ( b[0]==0 ){ //printf("note: a[0]=0, used G.E.\n");

LONG *A = matrix64s(n+1); LONG d = tdet64s(b,n+1,p,A); free(A);

return d;

}

a = array( 2*n+1 ); anew = array( 2*n+1 ); inv = array( n+1 );

a[0] = b[n]; for ( j=1; j<n+1; j++ ){ a[j] = b[n-j]; a[j+n] = b[j]; }

inv[0] = inv64s( a[n],p ); prod = a[n];

for ( i=1; i<n; i++ ) {

for ( j=i; j<n+1; j++ ) { // j=-n+i to 0 in (3.4b)

anew[j] = sub64s( a[j], mul64s(mul64s(a[n+i],inv[i-1],p),

a[2*n-j+i], p ), p );

}

if ( anew[n]==0 ) { //printf("note:a[%d]=0, used G.E.\n",i);

LONG *A = matrix64s(n+1); LONG d = tdet64s(b,n+1,p,A); free(A);

return d;

}

inv[i] = inv64s( anew[n],p ); prod = mul64s( anew[n], prod, p );

for ( j=n+i+1; j<2*n+1; j++ ) { // j=i+1 to n in (3.4b)

anew[j] = sub64s( a[j], mul64s(mul64s(a[n+i],inv[i-1],p),

a[2*n-j+i], p ), p );

}

for ( j=0;j<2*n+1;j++ ) { a[j] = anew[j]; }

}

anew[n] = sub64s( a[n], mul64s(mul64s(a[2*n],inv[n-1],p), a[2*n], p ),

p );

return mul64s( anew[n], prod, p );

}

7.4 Bivariate dense interpolation

Since the individual degrees of a, di = deg(a, xi), are pre-computed prior to Hensel lift-
ing, we can use d1 and dj as degree bounds for x1 and xj to interpolate Ak(x1, xj) =
a(x1, β

k
2 , · · · , βkj−1, xj , αj+1, · · · , αn) mod p (step 8 of Algorithm 13) by using Newton in-
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terpolations on both variables x1 and xj . Lagrange interpolation also works, I used Newton
interpolation. This process is known as bivariate dense interpolation.

After (d1 + 1)(dj + 1) probes to the black box B, the values

Ml,m := a(γl, βk2 , · · · , βkj−1, δm, αj+1, · · · , αn) mod p

for 0 ≤ l ≤ d1 and 0 ≤ m ≤ dj are stored as a matrix M , as shown in Figure 7.1. Here,
γl ∈ Zp and δm ∈ Zp are evaluation points for x1 and xj respectively. β2, · · · , βj−1 are
chosen from step 2 of Algorithm 13, and αj+1, · · · , αn are values from the initial evaluation
point ααα prior to Hensel lifting.

From the columns ofM , Ak(γl, xj) ∈ Zp[xj ] for 0 ≤ l ≤ d1 are interpolated using Newton
interpolations on the variable xj . They are denoted as Ak(γl, xj) = cl,0+cl,1xj+· · ·+cl,djx

dj
j

for 0 ≤ l ≤ d1. The coefficients cl,m for 0 ≤ l ≤ d1 and 0 ≤ m ≤ dj are stored back onto the
matrix M , one column at a time. After updating the last column of M , we get Ml,m = cl,m.

M0,0 M1,0 Md1,0

M0,1 M1,1 Md1,1

M0,dj M1,dj Md1,dj

m = 0

m = 1

m = dj

l = 0 l = 1 l = d1

Ak(γ0, xj) = c0,0 + c0,1xj + · · ·+ c0,djx
dj
j

Newton interpolation

Figure 7.1: The matrixM for storing (d1+1)(dj+1) values for bivariate dense interpolation.

Next, the coefficients cl,m for 0 ≤ l ≤ d1 (the rows of M) are used to interpolate
cm(x1) ∈ Zp[x1] for all 0 ≤ m ≤ dj . cm(x1) are the coefficients of Ak(x1, xj) ∈ Zp[x1][xj ].
We have

Ak(x1, xj) = c0(x1) + c1(x1)xj + · · · cdj (x1)xdjj , (7.10)

where cm(x1) = c̄0,m + c̄1,mx1 + c̄d1,mx
d1
1 for 0 ≤ m ≤ dj . The values c̄l,m are stored back to

the matrixM again one row at a time. After updating the last row, we recover the bivariate
polynomial Ak(x1, xj), with coefficients stored as Ml,m = c̄l,m.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

We designed and implemented a new black box factorization algorithm for polynomials
a ∈ Z[x1, · · · , xn]. Our algorithm first finds the factors of the primitive part of a, then the
factors of the content of a in the main variable x1.

Two benchmarks for a monic and square-free were presented in Chapter 5. One of them
was to compute the factors of det(Tn), where Tn is a symmetric Toeplitz matrix. I be-
lieve that I am the first to compute det(T16) with its factors in the sparse representation.
Three more benchmarks were presented in Chapter 6 for the non-monic, non-square-free,
and non-primitive cases. For the non-primitive cases, two benchmarks were presented. The
first benchmark was to compute det(Vn), where Vn is a Vandermonde matrix. The second
benchmark was to compute the determinant of Dixon matrices, which came from solving
polynomial systems of equations. For those two benchmarks, we demonstrated an advan-
tage of our algorithm: when computing the content of a (w.r.t. x1) is not necessary, the
computational cost is significantly saved by computing the factors of the primitive part
only. All our timings were much faster than the current best determinant and factorization
algorithms in Maple and Magma.

We also presented a complexity analysis for algorithm CMSHL as well as our new
black box algorithm CMBBSHL with bounds on failure probabilities. Algorithm CMSHL is
Las Vegas, while algorithm CMBBSHL is Monte-Carlo (in fact, Atlantic City). Algorithm
CMBBSHL can return a FAIL with a low probability or an incorrect answer (not a FAIL)
with a low probability.

For our black box factorization algorithm, we further considered the case for large in-
teger coefficients and coded that in Maple. One benchmark for large integer coefficients is
presented in Section 6.5.
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8.2 Future work

There are several directions for future research. First, I would like to finish implementing
Rubinfeld and Zippel’s algorithm [51] (and Kaltofen and Trager’s algorithm [31]) for Ap-
proach I. We have made an analysis to compare the number of probes to the black box
for our algorithm and Rubinfeld and Zippel’s algorithm. It will be more convincing to have
timings for Rubinfeld and Zippel’s algorithm alongside our benchmarks.

Another interesting problem is selecting a large prime from P63 at random, where P63 is
the set of all 63-bit primes. In Section 1.6.2, we need to select a prime from P63 at random
when computing the total degree of a multivariate polynomial represented by a black box.
However, P63 is too big to create explicitly. Because the prime distribution in P63 is not
uniform, picking y ∈ [262, 263] at random and using the Maple command nextprime(y)

does not make the prime selection uniform.
An application of our algorithm that we would like to investigate is solving parametric

linear systems of equations. Let A be a matrix of size m×m with Aij ∈ Z[y1, · · · , yn]. Let
b be a vector of size m× 1 with bi ∈ Z[y1, · · · , yn]. Let A(i) be formed from A by replacing
the ith column of A with b. We can solve Ax = b by computing xi = det(A(i))/ det(A) for
1 ≤ i ≤ m in factored form using a black box factorization algorithm.
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Appendix A

Maple code to run algorithm
CMBBSHL

read "CMSHL_NMContLI3.mpl";
read "MakeBlackBoxes.mpl";

# ------------- Initial settings ---------------------------
# ---- Choose a black box mode for creating a black box ----
# 1. BBMPoly: Uses a given polynomial a in Z[x1,...,xn] to generate a
# modular black box Bm(alpha,p)=a(alpha) mod p.
# 2. BBdet: Uses a matrix A with entries in Z[x1,...,xn] to create a
# modular black box Bm(alpha,p)=det(A(alpha)) mod p.
BBMode := BBMPoly:

# --- For BBdet ONLY ---
# BBdetCode = C: both BBeval and BBdet coded in C, for general (non-
# structured) matrices
# BBdetCode = Maple: both BBeval and BBdet coded in Maple.
BBdetCode := C:

# ---- Choose a test example ----
# BBMPoly: testex = 0,1,2,3;
# BBdet: testex = 0,1,...,9.
testex := 2:

# --------------- For CMBBSHL ---------------
# ---- Choose p and Ntilde ----
p := prevprime(2^62-1):
Ntilde := 4001: # Ntilde as in our ISSAC 2023 paper

# ---- Options for content and square-free computation ----
Cont_Flag := 1: # 0 or 1 for content computation in a chosen variable
sqfinterp := 0: # 0 or 1 for an option to use SquareFreeImage

114



# ---- Choose Maple or C code for each subroutine ----
# Subroutines: 1. Bivariate interp, 2. Eval fjm1,
# 3. BHL, 4. Vandermonde Solves.
# For large integer coefficients, use Maple code for all.
MapleCode := [C,C,C,C]:
# ------------- End of initial settings ---------------------

C := 0: Maple := 1:
LI := 0: # for large integer coeffs
printf("Cont_Flag=%d, sqfinterp=%d, MapleCode=%a, LargeInt=%a\n", Cont_Flag,
sqfinterp, MapleCode, LI);
randzp := rand(p):
randzp1 := rand(Ntilde):

# Read in data and create black boxes
if BBMode = ‘BBMPoly‘ then

# Make a black box from a given polynomial a in Z[x1,...,xn]
if testex = 0 then a := 232;
elif testex = 1 then

a := 299*(x^2+x+1)*(3*x+19);
elif testex = 2 then

a := (x1+x2+x3+1)*(x2+x3+1);
elif testex = 3 then

a := (x1+x3+3*x4^2+2)*(31*x1^2*x3+x2+3*x4+1)*(x3+2)*(x2+1)^2*(x4+3);
fi;
X := convert(indets(a),list); printf("a = %a, X = %a\n",a,X);
N := nops(X);
# ---- OPTIONAL: Choose a variable permutation ----
# VarPermGen(N,opt,MainVar)
# opt = 0, no perm; opt = 1, reverse; opt = 2, random perm;
# opt > 2, choose a MainVar between 1 to N, swap with the first variable.
VPL := VarPermGen( N, 3, 2 );
# -------------------------------------------------
Var_Perm := VPL[1]; # indicator for variable permutation, 0 or 1.
VP := VPL[2]; # A list of variable permutation.
Xnew := Array(1..N);
for i to N do Xnew[i] := X[VP[i]]; od;
Xnew := convert(Xnew,list);
BBInput := MakeBBMPoly( a, VP ); # Outputs procedure BB_MPoly(alpha,p)

elif BBMode = ‘BBdet‘ then
# Make a black box for det(A)
# ----- Choose a matrix for testex 0,1,2,8,9 ONLY -----
# --- For testex 0 ----------
n0 := 4: # The size of the square matrix. For Toeplitz, need n0>=1.
# --- For testex 1,2,8,9: B||m, T||m, TL||m, BL||m
# m := 5;
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# --- For testex 6 (robotarms): m = 1,2,3,4 for b1,b2,t1,t2 ---
m := 9;
# -----------------------------------------------------
if testex = 0 then

#A := LinearAlgebra:-RandomMatrix(n0,n0,generator=-1000..1000);
v := <seq(x||i,i=1..n0)>;
A := LinearAlgebra:-VandermondeMatrix(v);
#A := LinearAlgebra:-ToeplitzMatrix(v,symmetric);

elif testex = 1 then
reader := subs(FILENAME=B||m, proc() read FILENAME; end); reader();

elif testex = 2 then
reader := subs(FILENAME=T||m, proc() read FILENAME; end); reader();
A := T||m;

elif testex = 3 then
reader := subs(FILENAME=heron3dB, proc() read FILENAME; end);
reader();
A := B;

elif testex = 4 then
reader := subs(FILENAME=heron4dB, proc() read FILENAME; end);
reader();
A := B;

elif testex = 5 then
reader := subs(FILENAME=heron5dB, proc() read FILENAME; end);
reader();
A := B;

elif testex = 6 then
if m = 1 then ReadFileName := robotarmsB_b1;
elif m = 2 then ReadFileName := robotarmsB_b2;
elif m = 3 then ReadFileName := robotarmsB_t1;
elif m = 4 then ReadFileName := robotarmsB_t2;
fi;
reader := subs(FILENAME=ReadFileName, proc() read FILENAME; end);
reader();
A := B;

elif testex = 7 then
reader := subs(FILENAME="LinearSystem.mpl", proc() read FILENAME;

end);
reader();

elif testex = 8 then # Large Interger case TL4-TL9: p is read-in
reader := subs(FILENAME=TLI||m, proc() read FILENAME; end); reader();
A := TL||m;
LI := 1;

elif testex = 9 then # Large Integer case BL4-BL9: p is read-in
reader := subs(FILENAME=BLI||m, proc() read FILENAME; end); reader();
p := nextprime(p^2);
A := BL||m;
LI := 1;
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fi;
printf("A = %a\n",A);
X := convert(indets(A),list);
N := nops(X);
n := LinearAlgebra:-RowDimension(A);
# ---- OPTIONAL: Choose a variable permutation ----
# VarPermGen(N,opt,MainVar)
# opt = 0, no perm; opt = 1, reverse; opt = 2, random perm;
# opt > 2, choose a MainVar between 1 to N, swap with the first variable.
VPL := VarPermGen( N, 0, 1 );
#VPL := [1,[6,2,3,4,1,5,7,8,9,10,11]];
# -------------------------------------------------
Var_Perm := VPL[1]; # indicator for variable permutation, 0 or 1.
VP := VPL[2]; # List of variable permutation.
Xnew := Array(1..N);
for i to N do Xnew[i] := X[VP[i]]; od;
Xnew := convert(Xnew,list);
if BBdetCode = ‘C‘ then

BBInput := MakeBBdet_C( A, VP );
elif BBdetCode = ‘Maple‘ then

BBInput := MakeBBdet_Maple( A, VP, 2 ); # The 3rd arg = 2: Use G.E.
fi;

fi:

# Select alpha’s at random:
if LI = 0 then alpha := Array([seq(randzp1(),i=1..N)],datatype=integer[8]);
else alpha := Array([seq(randzp1(),i=1..N)]);
fi:

printf("No.of variables = %d\n", N);
printf(" X = %a\n Xnew = %a\n",X, Xnew);
printf("Variables permutated? %a\n Variable perm = %a\n", VPL[1], VP);
printf("Large Integer? LI = %d\n", LI);
printf("alpha = %a\n",alpha);

# Compute a total degree bound
if BBMode = ‘BBdet‘ then tdegbd := 0:

for ii to n do maxdeg[ii] := -1;
for jj to n do dd := degree(A[ii,jj]);

if dd > maxdeg[ii] then maxdeg[ii] := dd; fi;
od;
tdegbd += maxdeg[ii];

od:
else tdegbd := degree(a);
fi:
printf("total deg bound = %a\n", tdegbd);
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# Compute deg(a,xj) w.h.p.
CNT := 0: tBBeval := 0: tBBdet := 0:
st := time():
for j to N do #printf("j = %d\n",j);

deg[j] := degB(BBInput,N,j,p,tdegbd,LI);
od:
et := time()-st: printf("time for degree computation = %f\n", et);
degA := [seq(deg[j],j=1..N)]:
printf("degA = %a\n", degA);
printf("no.of probes for deg compt = %d\n", CNT):
printf("total times for BB in deg compt: BBeval = %f, BBdet = %f\n",
tBBeval,tBBdet);

# Start CMBBSHL
CNT := 0: tBBeval := 0: tBBdet := 0:
st := time():
ff := CMBBSHLcont( BBInput, Xnew, alpha, degA, N, p, Var_Perm, Cont_Flag,
sqfinterp, MapleCode, LI );
et := time() - st:
printf("Total time for CMBBSHL = %f\n", et);
printf("Total no.of probes for CMBBSHL = %d\n", CNT):

saver := subs(FILENAME=factors_ContNMLI||BBMode||testex||m, proc() save ff,
FILENAME; end):
saver():
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