
MITACS Symbolic Analysis Project – Supervisor Peter Borwein
Centre for Experimental and Constructive Mathematics
Computer Algebra Group
Simon Fraser University

Division Using Heaps
To divide f by g we compute a quotient q while merging f − qg.
Let #q = n and #g = m and #f ≤ nm. The straightforward
approach is to merge f and each −qig using a heap of size n + 1.
The terms of each −qig are computed on-the-fly just like in the
multiplication algorithm, but we must dynamically grow the heap
because the size of the quotient is initially unknown.

This algorithm takes O(nm log n) time and uses O(n) space, plus
storage for the remainder if it is desired. One nice feature of using
a heap is that terms are merged in descending order. For an exact
division where division fails, we stop after merging the minimum
number of terms.

An interesting alternative that is unique to heaps is the possibility
to merge f with each −giq. That is, the heap elements point to
terms of the divisor g and increment along the quotient q while q

is being constructed.

This variant takes O(nm log m) time and uses O(m + n) space,
but only O(m) memory is accessed randomly. The algorithm uses
a heap of size m and does m − 1 simultaneous passes over the
quotient. For problems with small divisors and large quotients,
this is substantially faster.

One such case is computing over algebraic number fields. The
minimal polynomials of algebraic extensions are typically small,
but they are frequently used to reduce terms, i.e., their quotients
are large. With the second heap algorithm one can reduce large
polynomials of very high degree in time and space that is linearly
proportional to the number of reductions that occur.

References
[1] Stephen C. Johnson. Sparse polynomial arithmetic. ACM SIGSAM Bul-
letin, Volume 8, Issue 3 (1974) 63–71.

[2] Thomas Yan. The Geobucket Data Structure for Polynomials. J. Symb.
Comput. 25 (1998) 285–293.

[3] Olaf Bachmann, Hans Schönemann. Monomial representations for Gröbner
bases computations. Proceedings of ISSAC 1998, ACM Press (1998) 309–316.

[4] Michael Monagan and Roman Pearce. Polynomial Division using Dynamic

Arrays, Heaps, and Packed Exponent Vectors. Proceedings of CASC 2007.

Heaps of Pointers
Instead of merging polynomials one by one into an intermediate
object we can use a heap to do a simultaneous n-ary merge. The
largest term of each polynomial is placed into the heap, and each
time a term is extracted from the heap its successor is inserted.
Summing n polynomials with m terms each is O(nm log n), the
same complexity as divide-and-conquer. The heap requires O(n)

space plus storage for the result.

heap

2

f 2

3x
732x x x1089

h 16

6

7

x

x

x

h

g

x284x204 6x

6

2

2115 x3 x

14 x10

8

7x9 4x f

result
g

Figure 1: adding polynomials with a heap of pointers

To multiply fg we store two pointers in each element of the heap.
The first points to a term fi of f and the second pointer increments
along g. The terms of each fig are constructed on-the-fly as they
are inserted into the heap.

f

5 3x5x

3 3x x44x2

732x x x1089

7 1

2

2

3

2

1

g

g

g

f

f

f

6

6

7

x

x

x

result

heap

g

Figure 2: multiplying polynomials with a heap of pointers

Heap multiplications perform very well in the presence of cache.
Let #f = n and #g = m with n ≤ m. The computation of fg

makes n simultaneous passes over g while randomly accessing f

and a heap of size n. The heap and f are O(n) space, and fit in the
cache for practical values of n. Even if g does not fit in the cache,
the memory access pattern will cache its terms effectively.

Introduction
Our goal is to compute with large sparse polynomials efficiently.
The polynomials are multivariate and their terms are sorted in a
monomial order. They may have coefficients in Z or in Zp. E.g.:

f = −9x4 − 7x3y + 6x2y3 + 8y2

We store the polynomials as arrays, encoding small coefficients
and exponents in place. Cache misses are reduced by eliminating
pointers and random memory access. We can store f in 12 words:

−9

yxcoeff

4 20832613−70

We pack multiple exponents into each word to reduce storage and
speed up monomial operations. The savings are significant for
problems in many variables, especially on 64-bit machines. Here
is f with two exponents packed into each word:

y

−9 0 −7 3 1 6 2 3 8 0 24

coeff x

Classical Algorithms
To add or subtract two polynomials we use a merge, but adding
multiple polynomials this way is slow. E.g., adding n polynomials
with m terms each can produce intermediate sums with im terms.
The cost of merging will be ∑n

i=2(im − 1) ∈ O(n2m). This can
happen even when the result is small, from an intermediate blowup
in the number of terms.

A divide-and-conquer approach is often used for multiplication
to reduce the complexity to O(nm log n). With “geobuckets” the
space required is O(nm), the size of the result. Buckets with, e.g.
{4, 8, 16, 32, . . . } terms are allocated and polynomials are merged
into the first bucket that is larger. When buckets overflow their
contents are merged into the next larger bucket.

Geobuckets are less attractive for exact division. If the quotient
has n terms and the divisor has m terms, O(nm) memory is used
to cancel terms and produce zero when the result is O(n) space.
The complexity is O(nm log(nm)), slower than a multiplication,
due to computations of the buckets’ leading term.

Michael Monagan Roman Pearce

Sparse Polynomial Arithmetic Using Heaps of Pointers


