
Efficient Multivariate Factorization Over Finite
Fields

Laurent Bernardin 1 and Michael B. Monagan 2

I Ifistitut ffir Wissenschaftliches Rechnen
ETH Zfirich, Switzerland
bernardin@inf, etl~. ch

2 Center for Experimental and Constructive Mathematics
Department of Mathematics and Statistics

Simon Fraser University, Canada
monagan@cecm, sfu. ca

Abstract . We describe the Maple [23] implementation of multivariate
factorization over general finite fields. Our first implementation is avail-
able in Maple V Release 3. We give selected details of the algorithms and
show several ideas that were used to improve its efficiency. Most of the
improvements presented here are incorporated in Maple V Release 4.
In particular, we show that we needed a general tool for implement-
ing computations in GF(pk)[xl, x2, . . . , x,,]. We also needed an efficient
implementation of our algorithms in Zp[y][x] because any multivariate
factorization may depend on several bivariate factorizations.
The efficiency of our implementation is illustrated by the ability to factor
bivariate polynomials with over a million monomials over a small prime
field.

1 Introduction

This paper describes a state-of-the~art implementation of algorithms for fac-
toring multivariate polynomials over finite fields, based on ideas presented in
[21,8,1,2].

Our implementation includes many refinements that make these algorithms
efficient in practice. The motivation for improving its efficiency came from fac-
torization problems that are part of applications in computing resultants, Galois
groups [18] and Grbbner bases [4] as well as algebraic geometry [15].

A Maple [23] implementation has also been presented in [18]. Another imple-
mentation of multivariate factorization over finite fields has been done in Axiom
[7]. Our implementation makes it possible to factor polynomials of much larger
degree. This was achieved by identifying the performance bottlenecks and by
making improvements to all the steps of the factorization; Square-free factoriza-
tion, Hensel lifting and combination of extraneous factors.

From the systems design viewpgint, it was necessary to code three sepa-
rate implementations of the algorithms, first a general purpose implementation,

16

using the Domains (formerly Gauss) package [13], second a special purpose im-
plementation for bivariate polynomials, using a recursive dense data structure
and third, an implementation using Maple's builtin sparse distributed general
purpose data structure which is called the "sum-of-products" data structure.

This paper is organized as follows: Section 2 presents the basic algorithms
and details of their implementation. Section 3 presents the data structures that
are used. Section 4 contains the conclusion as well as remarks on future work.

2 Algorithms and Implementation Details

We factor multivariate polynomials by using a modular algorithm. Given h E
Fq[xl,...,x~], an evaluation homomorphism r a2~.~ E Fq reduces the
problem to factoring a univariate polynomial. The univariate image factors are
then lifted one variable at a time using Hensel lifting to reconstruct the true
multivariate factors.

In the following we will assume that the polynomial to factor is primitive.
This condition can be achieved by removing the content in each variable and
recursively factoring the resulting polynomials in one less variable. For poly-
nomials in more than two variables, this is a potentially expensive step. Also,
sparse polynomials may become dense after the content removal [8]. Nonetheless,
rendering the input polynomial primitive enables us to apply optimizations to
the factorization process, which have proven very effective in practice.

The homomorphism diagram in table 1 outlines the multivariate factorization
process. We will examine each step of the process and give details on how to
efficiently implement the algorithms.

2.1 Square f ree Factorization

The square-free factorization removes multiple factors from the input polyno-
mial thus reducing the degree of the polynomial. In our implementation, we use
a deterministic algorithm given in [2] which is derived from Yun's square-free
decomposition algorithm for characteristic zero. The cost of this step is roughly
the same as computing the greatest common divisor of the input polynomial and
its derivative.

Computing this GCD can be the performance bottleneck for the entire fac-
torization, especially over finite fields with a small number of elements where
it is difficult to apply a modular GCD algorithm because we might not be able
to find a good evaluation homomorphism. For multivariate polynomials, Maple
tries to use the Extended Hensel GCD algorithm [6]. For bivariate polynomials
we use an interpolation algorithm if the coefficient field contains enough evalua-
tion points. In both cases we fall back to the subresultant GCD algorithm if the
modular method fails. For polynomials in more than two variables, it might be
better to choose enough evaluation values from an extension field rather than
using the subresultant GCD algorithm but this has not been implemented.

17

Multivariate factorization
h E F[xl, ..., Xn]

Squarefree factorization

f E F[Xl, ..., xn]
squarefree and primitive

Cx~=ok, k r i

-> h = YI(~ j

!
Y=nY~

$ Combine
: / extraneous
: " factors

f = H ~ <x, . .~-~l . . . >

Sparie. lHensel Lifting

Ic . , (5) e F[x2,...x,~]

Lift~eading

Bivariate factorizati2: et~cients

f(x,) e F[Xl, xi] • f(~:')

f(x,)
i

Use factorlzation
pattern to!combi
factors bei~ore
the liftingi

g E F[Xl]
Univariate factorization

"J$ Combine
/ extraneous

factors
| Rational

_~J~reconstruction
= 1-If' ' <Xi--Oli>

CXi-~-Oq

"7

e

Hensel Lifting

> g=I ' Ig j

Table 1. Factorization Process

18

2.2 Choosing Evaluation Points and Field Extensions

We will use an evaluation homomorphism to reduce the problem of factoring a
multivariate polynomial to factoring a univariate one. Not all possible evalua-
tions will work so we might have to try several ones before successfully factoring
the input polynomial. Most of the time however, we can detect unlucky eval-
uations before starting the costly Hensel lifting process. In particular, we can
discard evaluations that produce an image polynomial with degree less than the
degree of the original polynomial in the main variable (xl). Likewise, we discard
evaluations that produce non-square free factors as we know at this stage that
the multivariate polynomial is square-free.

The current implementation tries to find 4v valid evaluation points for a
polynomial in v variables in order to perform a degree analysis on the factoriza-
tion patterns of the univariate images. Information gathered here can be used to
deduce that the polynomial is irreducible even if none of the image polynomials
is irreducible by narrowing the set of possible factorization patterns of the multi-
variate polynomial. E{ren if we can't conclude that the polynomial is irreducible,
we can often use this information after the Hensel lifting to reduce the number
of combinations of lifted factors that we have to do in order to find true factors.
Our current implementation does not take advantage of this possibility. The
potential efficiency gain seems marginal as our heuristics for combining lifted
factors are very efficient (see section 2.4).

If the coefficient field does not contain any valid evaluation points we have
to choose points from an extension field of IFq. We know from [20] that if we
would choose a field extension of prime degree larger than the total degree d of
the polynomial to be factored, we are guaranteed that the polynomial has the
same factorization pattern over the extension field as over the ground field IFq.

In practice, however, it would be too expensive to compute with field exten-
sions of that size as the cost increases quadratically with d using our general
representation of finite fields. Instead we choose a small extension, knowing that
we might need to combine lifted factors in order to get true factors over the
ground field. Combining factors might have exponential cost but in practice we
have found that extraneous factors do not appear too often at this point. Note
that by first considering combinations of factors that have coefficients not in
the ground field we can reduce the number of combinations that have to be
considered. On the other hand it does not make sense to choose the field ex-
tension too small as we incur the risk of having to extend it again. Even if a
very small extension would contain enough valid points, working over a slightly
larger extension will not degrade the performance significantly. For this reason
the current implementation uses a field extension of degree 3 even when an ex-
tension of degree 2 would be sufficient in most cases. If the first field extension
is not sufficiently large we do not build a tower of extensions but instead extend
the ground field again by choosing the smallest prime degree larger than the
previous extension. Choosing a prime degree for the field extensions guarantees
us that the polynomial is irreducible over the ground field if it is irreducible over
the extension field, which is not guaranteed for arbitrary extensions [20].

19

2.3 Hense l Lifting

After evaluating the multivariate polynomial using the homomorphism r
we factor the univariate image using the Cantor-Zassenhaus algorithm [3] for
small fields or Shoup's algorithm [16] for large ones. Now we seek to reconstruct
the multivariate factors from the univariate ones.

For polynomials with more than two variables, we use the Hensel lifting al-
gorithm described in [6] to lift the bivariate factors to multivariate ones. For
non-monic polynomials this means that we have to know the multivariate lead-
ing coefficients of the factors in the main variable before the lifting. We solve
this "leading coefficient problem" with Kaltofen's approach [8]: We first compute
bivariate factorizations in the main variable and each of the remaining variables.
The leading coefficients that this step produces are polynomials in one variable
which we can lift recursively with respect to the lea~ling coefficient of the input
polynomial in the main variable. This means that the first step of lifting image
factors with respect to a multivariate polynomial involves recursively lifting im-
ages of the leading coefficients of the factors with respect to a polynomial in one
variable less than the input polynomial.

The multivariate leading coefficients of the factors that we determined in the
previous step are attached to the bivariate factors before lifting the remaining
variables.

For bivariate polynomials we use a fast dense lifting algorithm [1] which, for
dense polynomials, is one order of magnitude faster than previous algorithms.
This algorithm solves the leading coefficient problem using the post-lifting lead-
ing coefficient computation proposed by Kaltofen [8] which uses Pad~ approxi-
mations to compute the univariate leading coefficients of the bivariate factors.

We also implemented a quadratic Hensel lifting algorithm. Although it is
asymptotically faster, we found that the break even point with linear lifting is
too high for it to be practical. For the largest example we tried, a dense, bivariate
polynomial with degree 1000 in both variables, the quadratic algorithm still took
twice as long as the linear one.

Note that the lifting algorithms that we implemented only work for eval-
uations at zero. If we have to use a different evaluation point, which is the
case most of the time, we first translate the polynomial by this value, lift and
undo the translation after the lifting. Translating a polynomial of degree n by a
constant is fast, requiring O(n) coefficient multiplications and O(n 2) coefficient
additions[Ill. However, the disadvantage of this translation is that a sparse poly-
nomial will be made dense. We will address this issue in section 2.5.

2.4 Combin ing E x t r a n e o u s Factors

Applying an evaluation homomorphism to a multivariate polynomial may gen-
erate extraneous factors. These have to be recombined after the lifting in order
to recover the true factors. By its nature, this step has exponential complexity.
For more than two variables, keeping the running-time polynomial is possible
by noticing that there exists a set of evMuations that will produce an evaluated

20

polynomial with the same factorization pattern [20,8], thus avoiding the combi-
nation step. For bivariate polynomials polynomial-time algorithms exist [21] but
in practice it is better to use a fast lifting algorithm and accept the possibility
of extraneous factors. In practice the combinatorial step will not be a problem
except for pathological cases.

So we have to check for divisibility of the input polynomial by each combina-
tion of the lifted factors. Because of what was said above, doing this after lifting
one variable will produce the correct factorization pattern in most cases. As seen
in section 2.3, in order to compute the multivariate leading coefficients in ad-
vance, we have to factor multiple bivariate polynomials which are derived from
the multivariate input polynomial by evaluating all but two variables. We use
the combination pattern of one bivariate factorization to combine the univariate
image factors before the lifting with respect to the other bivariate polynomials.
In practice this means that we have to execute the combination step only for the
first bivariate factorization.

Because this step involves an exponential number of combinations it is crucial
for these to be processed as fast as possible.

Combinations will be necessary when lifting from univariate to bivariate most
of the time but rarely occur when lifting variables of higher order. For this reason
we discuss the following heuristics for bivariate polynomials only.

If the input polynomial is monic we first try to divide only the trailing co-
efficients in the main variable which are univariate polynomials in the lifted
variable. If this division is successful we do a full multivariate trial division.

In the non-monic case, we have to reconstruct the leading coefficients of the
lifted factors as seen in section 2.3. We have to perform this for each combina-
tion of factors. We can compute a multiple of the leading coefficient by using any
single univariate coefficient of the lifted factor. So, we first try to reconstruct the
leading coefficient by using only the trailing coefficients of each combination of
lifted factors. If this reconstruction fails, we discard the combination. If we suc-
ceed in computing a leading coefficient (or multiple thereof), we check whether
the (univariate) leading coefficient of the input polynomial divides the product
of the partially reconstructed leading coefficients of each combination of lifted
factors.

In practice these heuristics always detected bad combinations without any
need for a full multivariate trial division.

As pointed out by an anonymous referee, the number of combinations to try
can be reduced by fixing one of the lifted factors. This factor can be ignored
during the combinations and it is then known to either be a true factor, or
belong to a combination together with those factors, that could not be resolved
by the combination step. We do not currently implement this improvement.

2.5 Sparse Heuristic

In practice, the more indeterminates a polynomial involves, the sparser it wilt
be. However, using our Hensel Lifting algorithm on a sparse polynomiM might
turn it into a dense problem. This happens if we have to use non-zero evaluation

21

points because the necessary translation by a constant turns a sparse polynomial
into one with many more monomials.

One solution would be to use a sparse Hensel Lifting algorithm [19,22,8,10]
but we use a different approach which proved to be efficient for practical prob-
lems. For polynomials with more than 2 variables, we first call a heuristic factor-
ization algorithm that will try to "guess" coefficients of the multivariate factors
given the bivariate factorization and the already computed multivariate leading
coefficients [12]. This heuristic will succeed if the factors are sufficiently sparse.
If they are not, we apply the dense Hensel Lifting algorithm.

The equations are set up in the following way. For each factor fi(x, y) of the
bivariate factorization over the coefficient field IF:

where ci E F and ai(y) E F[y], ai(y) monic, we replace the ci by symbols Zi
which represent the coefficients in the remaining variables of the multivariate
factors.

L = Z ao(v) + Zlal(V)x + . . .

Now we multiply the fi and subtract the result from the multivariate input
polynomial which we are factoring. The coefficients of each monomial in x and y
are the equations we are left to solve. In order to solve these, we first put in the
leading coefficients that we have already computed. Next we search the set for
linear equations, solve those that we find, plug the solutions back into the whole
set and iterate this process until the set of equations does not change anymore.
If the set is empty at this point, we succeeded in factoring the multivariate
polynomial.

Our implementation uses the leading coefficients as a starting point to solving
the arising system of equations. If knowing the leading coefficients is not enough
to make the heuristic succeed, we could precompute the trailing coefficients using
the same techniques as for the leading coefficients and apply the heuristic again
using that additional piece of information. This improvement is currently not
implemented.

Note that this heuristic can only succeed if the bivariate factorization does not
have any spurious factors. Fortunately, this has been shown to be very probable
[2O].

3 D a t a S t r u c t u r e s

3.1 Bivariate Polynomials

Kaltofen's method of determining the true leading coefficients of the final factors
relies on the factorization of v - 1 bivariate polynomials (v being the number
of indeterminates in the polynomial to factor). In addition to this, in practice,
factoring bivariate polynomials is a very common ease. Hence we need an efficient
way of computing with bivariate polynomials.

22

Maple [23] already has an efficient data structure for dense univariate polyno-
mials over prime fields, called the Inodpl representation [14]. If the characteristic
is sufficiently small, a polynomial is represented as an array of machine integers,
otherwise as a Maple list of arbitrary precision integers. The basic arithmetic
operations have been coded in "C" and, for small characteristics, they run in
place without function call overhead for the coefficient arithmetic.

On top of this data structure, we have implemented dense bivariate poly-
nomials over prime fields as Maple lists of modpl polynomials representing the
univariate coefficients of the bivariate polynomial in the main variable. Comput-
ing with this new data structure (called the modp2 representation) proves to be
quite efficient. We obtained a speedup of a factor of 5-60 compared to Maple's
general purpose "sum of products" representation for multivariate polynomials.

Internally a list in Maple is a (non-mutable) array of pointers to the list
entries. So the modp2 representation is a recursive dense data structure [17]. We
have to store all the coefficients of the polynomial in the main variable, even
if they are zero. Still, the space taken by the univariate coefficients depends on
their degree and the representation of a sparse polynomial of degree n in both
variables needs far less space than d 2 field elements.

We have implemented all basic polynomial operations for the modp2 rep-
resentation: �9 , +, - , pseudo-quotient and pseudo-remainder, GCD, evaluation,
differentiation, translation by a constant, swapping variables. Multiplication uses
an implementation of Karatsuba's algorithm. The break-even with classical mul-
tiplication depends on the size of the univariate coefficients. It varies from de-
gree 40 in the main variable (with univariate coefficients of degree 100 and less)
to degree 2 in the main variable (with univariate coefficients of degree 1000
and larger). Note that Karatsuba multiplication is not yet implemented for the
modpl data structure.

The GCD algorithm being used is a modular interpolation-type algorithm. It
falls back to the subresultant GCD algorithm if the coefficient field is too small
to provide enough evaluation values [6].

3.2 Mul t i va r i a t e Po lynomia l s

For polynomials with more than two variables we use Maple's builtin "sum-of-
products" data structure if we are working over a prime field. This is a sparse
distributed data structure. Arithmetic is reasonably efficient and it allows us to
tackle sparse polynomials in many variables.

Over general Galois fields, we use the Domains (formerly Gauss) package
[13]. This package provides a way of setting up domains of computation, each
with their unique set of operations. The Domains package provides a sparse dis-
tributed as well as a dense recursive representation for multivariate polynomials.
We made the choice of implementing our factorization algorithms using the re-
cursive dense representation partly because the nature of the algorithms favor a
recursive data structure and partly because for polynomials which are not too
sparse, the dense representation offers better performance.

23

For sparse polynomials in many variables, the data structure of choice should
be black boxes [10] but we have not implemented this. A reasonably efficient
black box implementation would require a complete system design which allows
for dynamic creation and compilation of black box programs.

3.3 Comput ing with Field Extensions

As mentioned previously, if the ground field GF(q) is small, it may not be pos-
sible to find enough sets of evaluation points. When this happens it is necessary
to extend the field to GF(q k) for a reasonable choice of k. Consider for example
the following polynomial over Z2:

f = z2y 3 + xy+ xy 2 + 1

There are only 2 possible substitution values for y: 0 and 1. Substituting 0
results in a univariate image whose degree is smaller than the degree of f in
x. Substituting 1 results in a univariate image which is not square-free while f
itself is square-free. Both evaluation values are thus invalid.

In our implementation we use k = 3,5,7, 11,. . . until enough evaluation
points can be found. To compute in GF(p k) our implementation again makes
use of the modpl representation for efficient univariate polynomial arithmetic in
Zp[Z] to implement the field operations in GF(p k) "" Zp[x]/m(x) with m(x) an
irreducible polynomial of degree k. Thus each field operation requires univariate
polynomial operations, which are done using compiled machine code.

For our example from above we would choose k = 3 and

re(x) -- x 3 + x + 1

Note that m(x) is irreducible over 22. Let a denote a root of re(x). Substituting
a for y leads to the univariate factorization

(a + 1) (x + a 2 + 1) (x + a 2 + a + 1)

These univariate images can now be lifted in order to recover the multivariate
factorization:

(xy + 1) (xy2 + 1)

Since we use a polynomial representation, there is no limit to the size of k or pk,
in fact the additional cost of moving from, e.g., k = 3 to k = 5 is low. However,
in terms of computing in GF(pk)[xl, x~,. . . , xv] the overhead is noticeable. For
small pk, it would be more efficient to implement the field arithmetic using
the Zech-Jacobi representation which uses the fact that GF(p k) is isomorphic
to {0, e, e 2, e 3, ..., e p~-I} for some primitive element e E GF(pk). For this one
would have to write a package similar to the modpl package which provides
efficient arithmetic in GF(p ~) and then implement the factorization algorithms
on top of that package. However, we have not done this and consequently there
is a noticeable performance loss when going from Zp to GF(p k) for small pk.

24

4 E x p e r i m e n t a l R e s u l t s

In this section, we present a selection of examples that we used to test our im-
plementation. Times are in CPU seconds on a Sparcstation 20/51. The example
polynomials used in this section are available from the authors on request or from
h t t p ://www. in f . e thz . chlpersonal/bernardi/factor/. We describe them in
detail because we believe these are typical examples of such factorizations.

Note that we failed to factor any of the polynomials from this section with
Axiom 2.0 [7] which incorporates another implementation of multivariate factor-
ization over finite fields.

Example 1: Our first example is a random dense polynomial in two variables
with degree 100 in both variables. The leading coefficient in each of the two
variables is a univariate polynomial of degree 20. The polynomial is primitive
and square-free and has two factors of equal degrees over ZT. The following table
shows the time spent in each of the factorization steps.

of total time

Square-free Factorization ~ 27%
Evaluations and Univariate F a c t o r i z a t i o n ~ 2%
Hensel Lifting 54%
Discard Bad Combinations 9%
Trial Divisions 8%

Total % 100%

Notes: Of the 7 elements of ~7 only one is found valid for evaluating this
polynomial. The corresponding univariate image splits into 9 factors which have
to be lifted to degree 121. After that, 60 bad combinations are discarded before
finding a combination of 3 of the lifted factors which lead to a true one. The
algorithm then goes on to discard 20 more bad combinations before it concludes
that the remaining 6 lifted factors all correspond to the same true factor because
all combinations of 3 and less factors have been tried.

Example 2: The next example is a random dense polynomial in two variables
with degree 300 in both variables, primitive and square-free. The polynomial is
monic which means that we don't have to worry about the leading coefficient
problem.

~ % of total time

Square-free Factorization ~ 16%
Evaluations and Univariate Factorization~ 23%
Hensel Lifting 59%
Discard Bad Combinations 1%
Trial Divisions 0%

Total ~ 100%

Notes: All 11 elements of 2511 are tried and the best evaluation produces
3 univariate factors which are lifted to degree 301. After verifying that none of
the lifted factors divides the input polynomial, the algorithm concludes that the

25

polynomial is irreducible. This verification is done solely by the heuristics of the
combination step and does not need any multivariate trial division.

Example 3: The next example is a primitive and square-free polynomial in
three variables x, y, z with degrees (35, 15, 10). The sparsity quotient

Number of possible terms
Number of actual terms

of this polynomial is 30, which means that it is rather sparse. Over Z~ the poly-
nomial splits into two factors of degrees (15, 5, 5) and (20, 10, 5). This polynomial
is part of solving a classification problem in algebraic geometry [5].

ITime[% of total time

Square-free Factorization ls 11%
Evaluations and Univariate Factorization 3s 33%
Leading Coefficient Determination 3s 33%
Sparse Heuristic 2s 23%

Total ~ 100%

Notes: z is chosen as main variable in order to reduce the degree of the
univariate polynomial and thus the possibility of spurious factors. The multi-
variate leading coefficients are computed from the factorization of the bivariate
polynomials obtained by evaluating the variable z, then the variable y. Using
the leading coefficients, the sparse heuristic succeeds in producing the complete
multivariate factorization without the need of any further lifting.

Example 4: The next example is a small bivariate polynomial of degree
(7, 5). It is primitive and square-free and splits into two factors of degrees (4, 3)
and (3, 2) over ~2. However, because there are no valid evaluation points to be
found in the ground field, a field extension is necessary.

Exhaust Values from the Ground Field
Search Evaluation Points in GF(2 3)
Hensel Lifting
Combinations and Trial Divisions

[Time % of total time

ls 2%
7s 13%
15s 29%
29s 56%

[52s I 100% Total

Notes: The size of the example above is much smaller than that of the previ-
ous ones. This is partly because the Domains code is slower due to the overhead
of its genericity but also because we have not implemented all of the perfor-
mance improvements in that version of the code. In particular the heuristics for
detecting bad combinations of lifted factors are missing.

Example 5: Following is an example of a bivariate polynomial over 2513 of
degree 1000 in both variables. It is dense and its expanded form would have
more than one million terms. It splits into two monic factors of equal degree.

26

~ % of total time

Is quare-free Factorization 1317s 1%
Evaluations and Univariate Factorization 5528s 4%
Hensel Lifting 82128s 60%
Discard Bad Combinations 169s 0%
Trial Division 47752s 35%

Total 1136894si 100% i:

Notes: The square-fl'ee factorization quickly realizes that the GCD of the
polynomial and its derivative is one because the modular GCD algorithm suc-
ceeds in finding a suitable evaluation value. If the modular algorithm would fail,
the subresultant algorithm would take a long time to compute that GCD. Thir-
teen univariate factorizations are then tried, taking from 5 to 20 minutes each.
The best evaluation leads to 9 univariate image factors which are then lifted to
degree 1001. After the lifting, 183 bad combinations of the lifted factors are tried
and discarded by the heuristic. The trial division, which accounts for more than
one third of the total factorization time, amounts to dividing a polynomial of de-
gree 1000 in both variables by a polynomial of degree 500 in both variables. The
factorization of this huge polynomial needed a total of 112MB of main memory.

Example 6: The last example exercises the combination of extraneous fac-
tors. We use a bivariate Swinerton-Dyer polynomial [9] of degrees 32 and 16
with coefficients from ~17. The polynomial is irreducible but any evaluation to
a univariate polynomial splits it into 16 factors.

Square-free Factorization [- ~ 0%
Evaluations and Univariate Fuctorization ~ 0%
Hensel Lifting 0%
Discard Bad Combinations 100%

Total ~ 100%

Notes: After the lifting, 16 factors have to be combined in groups of 1, 2,
3, 4, 5, 6, 7 and 8 before it can be concluded that the bivariate polynomial is
irreducible. Thus, a total of 39202 bad combinations have to be discarded.

5 C o d e O u t l i n e

Our Maple implementation consists of three separate versions of the algorithms
described herein.

The most general version of the factorizer has been implemented using the
Domains (formerly Gauss) package [13]. The Domains package provides generic
coding, in that the same code will work for different implementations of multi-
variate polynomials and for different implementations of finite fields. Therefore,
this version of the faetorizer can be used over arbitrary finite fields. This in-

27'

cludes finite fields given by a tower of algebraic extensions over a ground field.
The Domains code is used for polynomials over a general Galois field GF(pk).

The standard Maple factorization code using the "sum of products" data
structure is about 5 times faster than the Domains version but works only for
multivariate polynomials over prime fields. If we have to use evaluation values
from an extension field, the Domains code is used instead.

Finally, the modp2 version, using the dense modp2 data structure for bivari-
ate polynomials over prime fields gives another factor of 5 in efficiency. Field
extensions are handled by code written using the Domains package but tuned
for bivariate polynomials.

All these routines are wrapped by the top-level command "Factor". The only
exception is when the coefficient field is given as a tower of extensions and the
Domains package has to be used directly.

6 C o n c l u s i o n s a n d F u t u r e W o r k

The conclusions of this work are first, that in order to factor multivariate poly-
nomials over finite fields, we need an efficient implementation of factorization of
bivariate polynomials over finite fields. To obtain a good implementation, it is
sufficient to use a recursive dense representation, Zp[y][x] where the implemen-
tation for ~p[y] is an array of machine integers and operations in Zp[y] are done
in place with no function call overhead for the coefficient arithmetic. Second, a
reasonably efficient implementation for GF(pk)[z] can be obtained similarly, by
representing the coefficients in GF(p k) as polynomials in Zp[z]. But, for small pk,
a better implementation would encode elements of GF(p k) as a single machine
integer, and represent elements of GF(p~)[z] as an array of machine integers.
However, we have not implemented this and it requires a substantial amount of
work to do so.

In order to make the factorization algorithms practical for high degree poly-
nomials, improvements were necessary at all the major steps of the algorithms.
Our implementation includes new techniques for the square-free factorization,
Hensel lifting and extraneous factor combination steps.

Another area for future work is the data structure used for representing poly-
nomials in many variables. For polynomials over prime fields we use a sparse
distributed data structure but over general Galois fields, the representation is
recursive dense. Better would be to implement the factorization algorithm for
polynomials in many variables using the black-box representation [10]. This al-
gorithm could rely on our fast bivariate factorization algorithm.

R e f e r e n c e s

1. BERNARDIN, L. Fast dense Hensel lifting, manuscript, ETH Z6rich, 1995. Available
via http://www, inf. ethz. ch/personal/bernardi.

2. BERNARDIN, L. On square-free factorization of multivariate polynomials over a
finite field. Theoretical Computer Sc{ence 187 (1997). to appear.

28

3. CANTOR, D. G., AND ZASSENHAUS, H. A new algorithm for factoring polynomials
over finite fields. Mathematics of Computation 36, 154 (1981), 587-592.

4. CZAPOR, S. a. Solving algebraic equations:combining Buchberger's algorithm with
multivariate factorization. Journal of Symbolic Computation 7, 1 (January 1989),
49-54.

5. DA ROSA, R. M. Private communication, February 1996.
6. GEDDES, K. O., CZAPOR, S. R., AND LABAHN, G. Algorithms for Computer

Algebra. Kluwer Academic Publishers, Boston, 1992.
7. JENKS, R., AND SUTOR, R. AXIOM: The Scientific Computation System. Springer

Verlag, 1992.
8. KALTOFEN, E. Sparse Hensel lifting. In Proceedings of Eurocal '85, Vol. H (1985),

B. F. Caviness, Ed., vol. 204 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 4-17.

9. KALTOFEN, E., MUSSER, D. R., AND SAUNDERS, B. D. A generalized class of
polynomials that are hard to factor. SIAM Journal on Computing I2, 3 (1983),
473-485.

10. KALTOFEN, E., AND TRAGER, B. M. Computing with polynomials given by black
boxes for their evaluations: Greatest common divisors, factorization, separation
of numerators and denominators. Journal of Symbolic Computation 9, 3 (March
1990), 300-320.

11. KNUTH, D. E. Seminumerical Algorithms, vol. 2 of The Art o] Computer Pro-
gramming. Addison Wesley, 1981.

12. LucKs, M. A fast implementation of polynomial factorization. In SYMSAC '86:
Proceedings of the 1986 A CM Symposium on Symbolic and Algebraic Computation
(1986), pp. 228-232.

13. MONAGAN, M. B. Gauss: A parameterized domain of computation system with
support for signature functions. In Proceedings of DISCO '93 (1993), vol. 722 of
Lecture Notes in Computer Science~ Springer-Verlag, pp. 81-94.

14. MONAGAN, M. B. In-place arithmetic for polynomials over Z,~. In Proceedings o]
DISCO '92 (1993), vol. 721 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 22-34.

15. PoPP, H. Moduli Theory and Classification Theory of Algebraic Varieties, vol. 620
of Lecture Notes in Mathematics. Springer-Verlag, 1977.

16. SHouP, V. A new polynomial factorization algorithm and its implementation.
Journal of Symbolic Computation 20, 4 (1995), 363-397.

17. STOUTMYER, D. R. Which polynomial representation is best? In Proceedings of
the 1984 MACSYMA User's Con]erence (1984), V. E. Golden, Ed , pp. 221-243.

18. SWANSON, S. L. On the Factorization of Multivariate Polynomials over Finite
Fields. PhD thesis, Purdue University, 1993.

19. YON ZUR GATItEN, J. Factoring sparse multivariate polynomials. In Proceedings of
the 24th IEEE Symposium on Foundations of Computer Science (1983), pp. 172-
179.

20. VON ZUR GATHEN, J. Irreducibility of multivariate polynomials. Journal of Com-
puter and System Sciences 31 (1985), 225-264.

21. VON ZUR GATHEN, J., AND KALTOFEN, E. Polynomial-time factorization of multi-
variate polynomials over finite fields, tn Proceedings of ICALP '83 (1983), vol. 154
of Lecture Notes in Computer Science, Springer-Verlag, pp. 250-262.

22. VON ZUR GATHEN, J., AND KALTOFEN, E. Factoring sparse multivariate polyno-
mials. Journal of Computer and System Sciences 31 (1985), 265-287.

23. WATERLOO MAPLE INC. Maple V learning guide. Springer-Verlag, 1996.

