
Efficient Multivariate Factorization Over Finite 
Fields 

Laurent Bernardin 1 and Michael B. Monagan 2 

I Ifistitut ffir Wissenschaftliches Rechnen 
ETH Zfirich, Switzerland 
bernardin@inf, etl~. ch 

2 Center for Experimental and Constructive Mathematics 
Department of Mathematics and Statistics 

Simon Fraser University, Canada 
monagan@cecm, sfu. ca 

Abstract .  We describe the Maple [23] implementation of multivariate 
factorization over general finite fields. Our first implementation is avail- 
able in Maple V Release 3. We give selected details of the algorithms and 
show several ideas that were used to improve its efficiency. Most of the 
improvements presented here are incorporated in Maple V Release 4. 
In particular, we show that we needed a general tool for implement- 
ing computations in GF(pk)[xl, x2, . . . ,  x,,]. We also needed an efficient 
implementation of our algorithms in Zp[y][x] because any multivariate 
factorization may depend on several bivariate factorizations. 
The efficiency of our implementation is illustrated by the ability to factor 
bivariate polynomials with over a million monomials over a small prime 
field. 

1 Introduction 

This paper describes a state-of-the~art implementation of algorithms for fac- 
toring multivariate polynomials over finite fields, based on ideas presented in 
[21,8,1,2]. 

Our implementation includes many refinements that  make these algorithms 
efficient in practice. The motivation for improving its efficiency came from fac- 
torization problems that  are part of applications in computing resultants, Galois 
groups [18] and Grbbner bases [4] as well as algebraic geometry [15]. 

A Maple [23] implementation has also been presented in [18]. Another imple- 
mentation of multivariate factorization over finite fields has been done in Axiom 
[7]. Our implementation makes it possible to factor polynomials of much larger 
degree. This was achieved by identifying the performance bottlenecks and by 
making improvements to all the steps of the factorization; Square-free factoriza- 
tion, Hensel lifting and combination of extraneous factors. 

From the systems design viewpgint, it was necessary to code three sepa- 
rate implementations of the algorithms, first a general purpose implementation, 
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using the Domains (formerly Gauss) package [13], second a special purpose im- 
plementation for bivariate polynomials, using a recursive dense data structure 
and third, an implementation using Maple's builtin sparse distributed general 
purpose data structure which is called the "sum-of-products" data structure. 

This paper is organized as follows: Section 2 presents the basic algorithms 
and details of their implementation. Section 3 presents the data structures that 
are used. Section 4 contains the conclusion as well as remarks on future work. 

2 Algorithms and Implementation Details 

We factor multivariate polynomials by using a modular algorithm. Given h E 
Fq[xl,...,x~], an evaluation homomorphism r a2~.~ E Fq reduces the 
problem to factoring a univariate polynomial. The univariate image factors are 
then lifted one variable at a time using Hensel lifting to reconstruct the true 
multivariate factors. 

In the following we will assume that the polynomial to factor is primitive. 
This condition can be achieved by removing the content in each variable and 
recursively factoring the resulting polynomials in one less variable. For poly- 
nomials in more than two variables, this is a potentially expensive step. Also, 
sparse polynomials may become dense after the content removal [8]. Nonetheless, 
rendering the input polynomial primitive enables us to apply optimizations to 
the factorization process, which have proven very effective in practice. 

The homomorphism diagram in table 1 outlines the multivariate factorization 
process. We will examine each step of the process and give details on how to 
efficiently implement the algorithms. 

2.1 Square f ree  Factorization 

The square-free factorization removes multiple factors from the input polyno- 
mial thus reducing the degree of the polynomial. In our implementation, we use 
a deterministic algorithm given in [2] which is derived from Yun's square-free 
decomposition algorithm for characteristic zero. The cost of this step is roughly 
the same as computing the greatest common divisor of the input polynomial and 
its derivative. 

Computing this GCD can be the performance bottleneck for the entire fac- 
torization, especially over finite fields with a small number of elements where 
it is difficult to apply a modular GCD algorithm because we might not be able 
to find a good evaluation homomorphism. For multivariate polynomials, Maple 
tries to use the Extended Hensel GCD algorithm [6]. For bivariate polynomials 
we use an interpolation algorithm if the coefficient field contains enough evalua- 
tion points. In both cases we fall back to the subresultant GCD algorithm if the 
modular method fails. For polynomials in more than two variables, it might be 
better to choose enough evaluation values from an extension field rather than 
using the subresultant GCD algorithm but this has not been implemented. 
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2.2 Choosing Evaluation Points  and Field Extensions 

We will use an evaluation homomorphism to reduce the problem of factoring a 
multivariate polynomial to factoring a univariate one. Not all possible evalua- 
tions will work so we might have to try several ones before successfully factoring 
the input polynomial. Most of the time however, we can detect unlucky eval- 
uations before starting the costly Hensel lifting process. In particular, we can 
discard evaluations that produce an image polynomial with degree less than the 
degree of the original polynomial in the main variable (xl). Likewise, we discard 
evaluations that produce non-square free factors as we know at this stage that 
the multivariate polynomial is square-free. 

The current implementation tries to find 4v valid evaluation points for a 
polynomial in v variables in order to perform a degree analysis on the factoriza- 
tion patterns of the univariate images. Information gathered here can be used to 
deduce that the polynomial is irreducible even if none of the image polynomials 
is irreducible by narrowing the set of possible factorization patterns of the multi- 
variate polynomial. E{ren if we can't conclude that the polynomial is irreducible, 
we can often use this information after the Hensel lifting to reduce the number 
of combinations of lifted factors that we have to do in order to find true factors. 
Our current implementation does not take advantage of this possibility. The 
potential efficiency gain seems marginal as our heuristics for combining lifted 
factors are very efficient (see section 2.4). 

If the coefficient field does not contain any valid evaluation points we have 
to choose points from an extension field of IFq. We know from [20] that if  we 
would choose a field extension of prime degree larger than the total degree d of 
the polynomial to be factored, we are guaranteed that the polynomial has the 
same factorization pattern over the extension field as over the ground field IFq. 

In practice, however, it would be too expensive to compute with field exten- 
sions of that size as the cost increases quadratically with d using our general 
representation of finite fields. Instead we choose a small extension, knowing that 
we might need to combine lifted factors in order to get true factors over the 
ground field. Combining factors might have exponential cost but in practice we 
have found that extraneous factors do not appear too often at this point. Note 
that by first considering combinations of factors that have coefficients not in 
the ground field we can reduce the number of combinations that have to be 
considered. On the other hand it does not make sense to choose the field ex- 
tension too small as we incur the risk of having to extend it again. Even if a 
very small extension would contain enough valid points, working over a slightly 
larger extension will not degrade the performance significantly. For this reason 
the current implementation uses a field extension of degree 3 even when an ex- 
tension of degree 2 would be sufficient in most cases. If the first field extension 
is not sufficiently large we do not build a tower of extensions but instead extend 
the ground field again by choosing the smallest prime degree larger than the 
previous extension. Choosing a prime degree for the field extensions guarantees 
us that the polynomial is irreducible over the ground field if it is irreducible over 
the extension field, which is not guaranteed for arbitrary extensions [20]. 
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2.3 Hense l  Lifting 

After evaluating the multivariate polynomial using the homomorphism r 
we factor the univariate image using the Cantor-Zassenhaus algorithm [3] for 
small fields or Shoup's algorithm [16] for large ones. Now we seek to reconstruct 
the multivariate factors from the univariate ones. 

For polynomials with more than two variables, we use the Hensel lifting al- 
gorithm described in [6] to lift the bivariate factors to multivariate ones. For 
non-monic polynomials this means that we have to know the multivariate lead- 
ing coefficients of the factors in the main variable before the lifting. We solve 
this "leading coefficient problem" with Kaltofen's approach [8]: We first compute 
bivariate factorizations in the main variable and each of the remaining variables. 
The leading coefficients that this step produces are polynomials in one variable 
which we can lift recursively with respect to the lea~ling coefficient of the input 
polynomial in the main variable. This means that the first step of lifting image 
factors with respect to a multivariate polynomial involves recursively lifting im- 
ages of the leading coefficients of the factors with respect to a polynomial in one 
variable less than the input polynomial. 

The multivariate leading coefficients of the factors that we determined in the 
previous step are attached to the bivariate factors before lifting the remaining 
variables. 

For bivariate polynomials we use a fast dense lifting algorithm [1] which, for 
dense polynomials, is one order of magnitude faster than previous algorithms. 
This algorithm solves the leading coefficient problem using the post-lifting lead- 
ing coefficient computation proposed by Kaltofen [8] which uses Pad~ approxi- 
mations to compute the univariate leading coefficients of the bivariate factors. 

We also implemented a quadratic Hensel lifting algorithm. Although it is 
asymptotically faster, we found that the break even point with linear lifting is 
too high for it to be practical. For the largest example we tried, a dense, bivariate 
polynomial with degree 1000 in both variables, the quadratic algorithm still took 
twice as long as the linear one. 

Note that the lifting algorithms that we implemented only work for eval- 
uations at zero. If we have to use a different evaluation point, which is the 
case most of the time, we first translate the polynomial by this value, lift and 
undo the translation after the lifting. Translating a polynomial of degree n by a 
constant is fast, requiring O(n) coefficient multiplications and O(n 2) coefficient 
additions[Ill. However, the disadvantage of this translation is that a sparse poly- 
nomial will be made dense. We will address this issue in section 2.5. 

2.4 Combin ing  E x t r a n e o u s  Factors  

Applying an evaluation homomorphism to a multivariate polynomial may gen- 
erate extraneous factors. These have to be recombined after the lifting in order 
to recover the true factors. By its nature, this step has exponential complexity. 
For more than two variables, keeping the running-time polynomial is possible 
by noticing that there exists a set of evMuations that will produce an evaluated 
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polynomial with the same factorization pattern [20,8], thus avoiding the combi- 
nation step. For bivariate polynomials polynomial-time algorithms exist [21] but 
in practice it is better to use a fast lifting algorithm and accept the possibility 
of extraneous factors. In practice the combinatorial step will not be a problem 
except for pathological cases. 

So we have to check for divisibility of the input polynomial by each combina- 
tion of the lifted factors. Because of what was said above, doing this after lifting 
one variable will produce the correct factorization pattern in most cases. As seen 
in section 2.3, in order to compute the multivariate leading coefficients in ad- 
vance, we have to factor multiple bivariate polynomials which are derived from 
the multivariate input polynomial by evaluating all but two variables. We use 
the combination pattern of one bivariate factorization to combine the univariate 
image factors before the lifting with respect to the other bivariate polynomials. 
In practice this means that we have to execute the combination step only for the 
first bivariate factorization. 

Because this step involves an exponential number of combinations it is crucial 
for these to be processed as fast as possible. 

Combinations will be necessary when lifting from univariate to bivariate most 
of the time but rarely occur when lifting variables of higher order. For this reason 
we discuss the following heuristics for bivariate polynomials only. 

If the input polynomial is monic we first try to divide only the trailing co- 
efficients in the main variable which are univariate polynomials in the lifted 
variable. If this division is successful we do a full multivariate trial division. 

In the non-monic case, we have to reconstruct the leading coefficients of the 
lifted factors as seen in section 2.3. We have to perform this for each combina- 
tion of factors. We can compute a multiple of the leading coefficient by using any 
single univariate coefficient of the lifted factor. So, we first try to reconstruct the 
leading coefficient by using only the trailing coefficients of each combination of 
lifted factors. If this reconstruction fails, we discard the combination. If we suc- 
ceed in computing a leading coefficient (or multiple thereof), we check whether 
the (univariate) leading coefficient of the input polynomial divides the product 
of the partially reconstructed leading coefficients of each combination of lifted 
factors. 

In practice these heuristics always detected bad combinations without any 
need for a full multivariate trial division. 

As pointed out by an anonymous referee, the number of combinations to try 
can be reduced by fixing one of the lifted factors. This factor can be ignored 
during the combinations and it is then known to either be a true factor, or 
belong to a combination together with those factors, that could not be resolved 
by the combination step. We do not currently implement this improvement. 

2.5 Sparse Heuristic 

In practice, the more indeterminates a polynomial involves, the sparser it wilt 
be. However, using our Hensel Lifting algorithm on a sparse polynomiM might 
turn it into a dense problem. This happens if we have to use non-zero evaluation 
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points because the necessary translation by a constant turns a sparse polynomial 
into one with many more monomials. 

One solution would be to use a sparse Hensel Lifting algorithm [19,22,8,10] 
but we use a different approach which proved to be efficient for practical prob- 
lems. For polynomials with more than 2 variables, we first call a heuristic factor- 
ization algorithm that will try to "guess" coefficients of the multivariate factors 
given the bivariate factorization and the already computed multivariate leading 
coefficients [12]. This heuristic will succeed if the factors are sufficiently sparse. 
If they are not, we apply the dense Hensel Lifting algorithm. 

The equations are set up in the following way. For each factor fi(x, y) of the 
bivariate factorization over the coefficient field IF: 

where ci E F and ai(y) E F[y], ai(y) monic, we replace the ci by symbols Zi 
which represent the coefficients in the remaining variables of the multivariate 
factors. 

L = Z ao(v) + Zlal(V)x + . . .  

Now we multiply the fi and subtract the result from the multivariate input 
polynomial which we are factoring. The coefficients of each monomial in x and y 
are the equations we are left to solve. In order to solve these, we first put in the 
leading coefficients that we have already computed. Next we search the set for 
linear equations, solve those that we find, plug the solutions back into the whole 
set and iterate this process until the set of equations does not change anymore. 
If the set is empty at this point, we succeeded in factoring the multivariate 
polynomial. 

Our implementation uses the leading coefficients as a starting point to solving 
the arising system of equations. If knowing the leading coefficients is not enough 
to make the heuristic succeed, we could precompute the trailing coefficients using 
the same techniques as for the leading coefficients and apply the heuristic again 
using that additional piece of information. This improvement is currently not 
implemented. 

Note that this heuristic can only succeed if the bivariate factorization does not 
have any spurious factors. Fortunately, this has been shown to be very probable 
[2O]. 

3 D a t a  S t r u c t u r e s  

3.1 Bivariate Polynomials 

Kaltofen's method of determining the true leading coefficients of the final factors 
relies on the factorization of v - 1 bivariate polynomials (v being the number 
of indeterminates in the polynomial to factor). In addition to this, in practice, 
factoring bivariate polynomials is a very common ease. Hence we need an efficient 
way of computing with bivariate polynomials. 
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Maple [23] already has an efficient data structure for dense univariate polyno- 
mials over prime fields, called the Inodpl representation [14]. If the characteristic 
is sufficiently small, a polynomial is represented as an array of machine integers, 
otherwise as a Maple list of arbitrary precision integers. The basic arithmetic 
operations have been coded in "C" and, for small characteristics, they run in 
place without function call overhead for the coefficient arithmetic. 

On top of this data structure, we have implemented dense bivariate poly- 
nomials over prime fields as Maple lists of modpl polynomials representing the 
univariate coefficients of the bivariate polynomial in the main variable. Comput- 
ing with this new data structure (called the modp2 representation) proves to be 
quite efficient. We obtained a speedup of a factor of 5-60 compared to Maple's 
general purpose "sum of products" representation for multivariate polynomials. 

Internally a list in Maple is a (non-mutable) array of pointers to the list 
entries. So the modp2 representation is a recursive dense data structure [17]. We 
have to store all the coefficients of the polynomial in the main variable, even 
if they are zero. Still, the space taken by the univariate coefficients depends on 
their degree and the representation of a sparse polynomial of degree n in both 
variables needs far less space than d 2 field elements. 

We have implemented all basic polynomial operations for the modp2 rep- 
resentation: �9 , +, - ,  pseudo-quotient and pseudo-remainder, GCD, evaluation, 
differentiation, translation by a constant, swapping variables. Multiplication uses 
an implementation of Karatsuba's algorithm. The break-even with classical mul- 
tiplication depends on the size of the univariate coefficients. It varies from de- 
gree 40 in the main variable (with univariate coefficients of degree 100 and less) 
to degree 2 in the main variable (with univariate coefficients of degree 1000 
and larger). Note that Karatsuba multiplication is not yet implemented for the 
modpl  data structure. 

The GCD algorithm being used is a modular interpolation-type algorithm. It 
falls back to the subresultant GCD algorithm if the coefficient field is too small 
to provide enough evaluation values [6]. 

3.2 Mul t i va r i a t e  Po lynomia l s  

For polynomials with more than two variables we use Maple's builtin "sum-of- 
products" data structure if we are working over a prime field. This is a sparse 
distributed data structure. Arithmetic is reasonably efficient and it allows us to 
tackle sparse polynomials in many variables. 

Over general Galois fields, we use the Domains (formerly Gauss) package 
[13]. This package provides a way of setting up domains of computation, each 
with their unique set of operations. The Domains package provides a sparse dis- 
tributed as well as a dense recursive representation for multivariate polynomials. 
We made the choice of implementing our factorization algorithms using the re- 
cursive dense representation partly because the nature of the algorithms favor a 
recursive data structure and partly because for polynomials which are not too 
sparse, the dense representation offers better performance. 



23 

For sparse polynomials in many variables, the data structure of choice should 
be black boxes [10] but we have not implemented this. A reasonably efficient 
black box implementation would require a complete system design which allows 
for dynamic creation and compilation of black box programs. 

3.3 Comput ing  with Field Extensions 

As mentioned previously, if the ground field GF(q) is small, it may not be pos- 
sible to find enough sets of evaluation points. When this happens it is necessary 
to extend the field to GF(q k) for a reasonable choice of k. Consider for example 
the following polynomial over Z2: 

f = z2y 3 + xy+ xy 2 + 1 

There are only 2 possible substitution values for y: 0 and 1. Substituting 0 
results in a univariate image whose degree is smaller than the degree of f in 
x. Substituting 1 results in a univariate image which is not square-free while f 
itself is square-free. Both evaluation values are thus invalid. 

In our implementation we use k = 3,5,7, 11,. . .  until enough evaluation 
points can be found. To compute in GF(p k) our implementation again makes 
use of the modpl representation for efficient univariate polynomial arithmetic in 
Zp[Z] to implement the field operations in GF(p k) "" Zp[x]/m(x) with m(x) an 
irreducible polynomial of degree k. Thus each field operation requires univariate 
polynomial operations, which are done using compiled machine code. 

For our example from above we would choose k = 3 and 

re(x) -- x 3 + x + 1 

Note that m(x) is irreducible over 22. Let a denote a root of re(x). Substituting 
a for y leads to the univariate factorization 

( a +  1) (x + a 2 + 1) ( x +  a 2 + a + 1) 

These univariate images can now be lifted in order to recover the multivariate 
factorization: 

(xy + 1) (xy2 + 1) 

Since we use a polynomial representation, there is no limit to the size of k or pk, 
in fact the additional cost of moving from, e.g., k = 3 to k = 5 is low. However, 
in terms of computing in GF(pk)[xl, x~,. . . ,  xv] the overhead is noticeable. For 
small pk, it would be more efficient to implement the field arithmetic using 
the Zech-Jacobi representation which uses the fact that GF(p k) is isomorphic 
to {0, e, e 2, e 3, ..., e p~-I} for some primitive element e E GF(pk). For this one 
would have to write a package similar to the modpl package which provides 
efficient arithmetic in GF(p ~) and then implement the factorization algorithms 
on top of that package. However, we have not done this and consequently there 
is a noticeable performance loss when going from Zp to GF(p k) for small pk. 
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4 E x p e r i m e n t a l  R e s u l t s  

In this section, we present a selection of examples that we used to test our im- 
plementation. Times are in CPU seconds on a Sparcstation 20/51. The example 
polynomials used in this section are available from the authors on request or from 
h t t p  ://www. in f .  e thz .  chlpersonal/bernardi/factor/. We describe them in 
detail because we believe these are typical examples of such factorizations. 

Note that we failed to factor any of the polynomials from this section with 
Axiom 2.0 [7] which incorporates another implementation of multivariate factor- 
ization over finite fields. 

Example  1: Our first example is a random dense polynomial in two variables 
with degree 100 in both variables. The leading coefficient in each of the two 
variables is a univariate polynomial of degree 20. The polynomial is primitive 
and square-free and has two factors of equal degrees over ZT. The following table 
shows the time spent in each of the factorization steps. 

of total time 

Square-free Factorization ~ 27% 
Evaluations and Univariate F a c t o r i z a t i o n ~  2% 
Hensel Lifting 54% 
Discard Bad Combinations 9% 
Trial Divisions 8% 

Total % 100% 

Notes: Of the 7 elements of ~7 only one is found valid for evaluating this 
polynomial. The corresponding univariate image splits into 9 factors which have 
to be lifted to degree 121. After that, 60 bad combinations are discarded before 
finding a combination of 3 of the lifted factors which lead to a true one. The 
algorithm then goes on to discard 20 more bad combinations before it concludes 
that the remaining 6 lifted factors all correspond to the same true factor because 
all combinations of 3 and less factors have been tried. 

Example 2: The next example is a random dense polynomial in two variables 
with degree 300 in both variables, primitive and square-free. The polynomial is 
monic which means that we don't have to worry about the leading coefficient 
problem. 

~ %  of total time 

Square-free Factorization ~ 16% 
Evaluations and Univariate Factorization~ 23% 
Hensel Lifting 59% 
Discard Bad Combinations 1% 
Trial Divisions 0% 

Total ~ 100% 

Notes:  All 11 elements of 2511 are tried and the best evaluation produces 
3 univariate factors which are lifted to degree 301. After verifying that none of 
the lifted factors divides the input polynomial, the algorithm concludes that the 
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polynomial is irreducible. This verification is done solely by the heuristics of the 
combination step and does not need any multivariate trial division. 

Example  3: The next example is a primitive and square-free polynomial in 
three variables x, y, z with degrees (35, 15, 10). The sparsity quotient 

Number of possible terms 
Number of actual terms 

of this polynomial is 30, which means that it is rather sparse. Over Z~ the poly- 
nomial splits into two factors of degrees (15, 5, 5) and (20, 10, 5). This polynomial 
is part of solving a classification problem in algebraic geometry [5]. 

ITime[% of total time 

Square-free Factorization ls 11% 
Evaluations and Univariate Factorization 3s 33% 
Leading Coefficient Determination 3s 33% 
Sparse Heuristic 2s 23% 

Total ~ 100% 

Notes:  z is chosen as main variable in order to reduce the degree of the 
univariate polynomial and thus the possibility of spurious factors. The multi- 
variate leading coefficients are computed from the factorization of the bivariate 
polynomials obtained by evaluating the variable z, then the variable y. Using 
the leading coefficients, the sparse heuristic succeeds in producing the complete 
multivariate factorization without the need of any further lifting. 

Example  4: The next example is a small bivariate polynomial of degree 
(7, 5). It is primitive and square-free and splits into two factors of degrees (4, 3) 
and (3, 2) over ~2. However, because there are no valid evaluation points to be 
found in the ground field, a field extension is necessary. 

Exhaust Values from the Ground Field 
Search Evaluation Points in GF(2 3) 
Hensel Lifting 
Combinations and Trial Divisions 

[Time % of total time 

ls 2% 
7s 13% 
15s 29% 
29s 56% 

[52s I 100% .............. Total 

Notes:  The size of the example above is much smaller than that of the previ- 
ous ones. This is partly because the Domains code is slower due to the overhead 
of its genericity but also because we have not implemented all of the perfor- 
mance improvements in that version of the code. In particular the heuristics for 
detecting bad combinations of lifted factors are missing. 

Example  5: Following is an example of a bivariate polynomial over 2513 of 
degree 1000 in both variables. It is dense and its expanded form would have 
more than one million terms. It splits into two monic factors of equal degree. 
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~ %  of total time 

Is quare-free Factorization 1317s 1% 
Evaluations and Univariate Factorization 5528s 4% 
Hensel Lifting 82128s 60% 
Discard Bad Combinations 169s 0% 
Trial Division 47752s 35% 

Total ...... 1136894si 100% i: 

Notes:  The square-fl'ee factorization quickly realizes that the GCD of the 
polynomial and its derivative is one because the modular GCD algorithm suc- 
ceeds in finding a suitable evaluation value. If the modular algorithm would fail, 
the subresultant algorithm would take a long time to compute that GCD. Thir- 
teen univariate factorizations are then tried, taking from 5 to 20 minutes each. 
The best evaluation leads to 9 univariate image factors which are then lifted to 
degree 1001. After the lifting, 183 bad combinations of the lifted factors are tried 
and discarded by the heuristic. The trial division, which accounts for more than 
one third of the total factorization time, amounts to dividing a polynomial of de- 
gree 1000 in both variables by a polynomial of degree 500 in both variables. The 
factorization of this huge polynomial needed a total of 112MB of main memory. 

Example  6: The last example exercises the combination of extraneous fac- 
tors. We use a bivariate Swinerton-Dyer polynomial [9] of degrees 32 and 16 
with coefficients from ~17. The polynomial is irreducible but any evaluation to 
a univariate polynomial splits it into 16 factors. 

Square-free Factorization [ - ~  0% 
Evaluations and Univariate Fuctorization ~ 0% 
Hensel Lifting 0% 
Discard Bad Combinations 100% 

Total ~ 100% 

Notes:  After the lifting, 16 factors have to be combined in groups of 1, 2, 
3, 4, 5, 6, 7 and 8 before it can be concluded that the bivariate polynomial is 
irreducible. Thus, a total of 39202 bad combinations have to be discarded. 

5 C o d e  O u t l i n e  

Our Maple implementation consists of three separate versions of the algorithms 
described herein. 

The most general version of the factorizer has been implemented using the 
Domains (formerly Gauss) package [13]. The Domains package provides generic 
coding, in that the same code will work for different implementations of multi- 
variate polynomials and for different implementations of finite fields. Therefore, 
this version of the faetorizer can be used over arbitrary finite fields. This in- 
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cludes finite fields given by a tower of algebraic extensions over a ground field. 
The Domains code is used for polynomials over a general Galois field GF(pk). 

The standard Maple factorization code using the "sum of products" data 
structure is about 5 times faster than the Domains version but works only for 
multivariate polynomials over prime fields. If we have to use evaluation values 
from an extension field, the Domains code is used instead. 

Finally, the modp2 version, using the dense modp2 data structure for bivari- 
ate polynomials over prime fields gives another factor of 5 in efficiency. Field 
extensions are handled by code written using the Domains package but tuned 
for bivariate polynomials. 

All these routines are wrapped by the top-level command "Factor". The only 
exception is when the coefficient field is given as a tower of extensions and the 
Domains package has to be used directly. 

6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

The conclusions of this work are first, that in order to factor multivariate poly- 
nomials over finite fields, we need an efficient implementation of factorization of 
bivariate polynomials over finite fields. To obtain a good implementation, it is 
sufficient to use a recursive dense representation, Zp[y][x] where the implemen- 
tation for ~p[y] is an array of machine integers and operations in Zp[y] are done 
in place with no function call overhead for the coefficient arithmetic. Second, a 
reasonably efficient implementation for GF(pk)[z] can be obtained similarly, by 
representing the coefficients in GF(p k) as polynomials in Zp[z]. But, for small pk, 
a better implementation would encode elements of GF(p k) as a single machine 
integer, and represent elements of GF(p~)[z] as an array of machine integers. 
However, we have not implemented this and it requires a substantial amount of 
work to do so. 

In order to make the factorization algorithms practical for high degree poly- 
nomials, improvements were necessary at all the major steps of the algorithms. 
Our implementation includes new techniques for the square-free factorization, 
Hensel lifting and extraneous factor combination steps. 

Another area for future work is the data structure used for representing poly- 
nomials in many variables. For polynomials over prime fields we use a sparse 
distributed data structure but over general Galois fields, the representation is 
recursive dense. Better would be to implement the factorization algorithm for 
polynomials in many variables using the black-box representation [10]. This al- 
gorithm could rely on our fast bivariate factorization algorithm. 
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