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Abstract. Let Ax = b be a parametric linear system where the entries
of the matrix A and vector b are polynomials in m parameters with
integer coefficients and A be of full rank n. The solutions xi will be
rational functions in the parameters. We present a new algorithm for
computing x that uses our sparse rational function interpolation which
was presented at CASC 2022. It modifies Cuyt and Lee’s sparse rational
function interpolation algorithm to use a Kronecker substitution on the
parameters. A failure probability analysis and complexity analysis for
our new algorithm is presented. We have implemented our algorithm in
Maple and C. We present timing results comparing our implementation
with a Maple implementation of Bareiss/Edmonds/Lipson fraction free
Gaussian elimination and three other algorithms in Maple for solving
Ax = b.

Keywords: Parametric Linear Systems, Sparse Rational Function In-
terpolation, Kronecker Substitution, Failure Probability, Black Box.

1 Introduction

Consider the parametric linear system Ax = b where the coefficient matrix
A ∈ Z[y1, y2, · · · , ym]n×n is of full rank n and b ∈ Z[y1, y2, · · · , ym]n is the right
hand side column vector such that the number of terms in the entries of A and
b denoted by #Aij ,#bi ≤ t and deg(Aij),deg(bi) ≤ d. It is well know that the
solution x is unique since rank(A) = n. In this paper we aim to compute the
solution vector of rational functions

x =
[
x1 x2 · · · xn

]T
=

[
f1
g1

f2
g2
· · · fn

gn

]T
(1)

such that for fk, gk ∈ Z[y1, y2, · · · , ym], gk 6= 0, gk|det(A) and gcd(fk, gk) = 1
for 1 ≤ k ≤ n. Using Cramer’s rule, the solutions of Ax = b are given by

xi =
det(Ai)

det(A)
∈ Z(y1, · · · , ym) (2)

where Ai is the matrix obtained by replacing the i-th column of A with the right
hand side column vector b and det(A) is a polynomial in Z[y1, y2, · · · , ym]. Let
x̃i = xi det(A) be a polynomial in Z[y1, y2, · · · , ym].
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Maple and other computer algebra systems such as Magma have an imple-
mentation of the Bareiss/Edmonds one step fraction free Gaussian elimination
algorithm [2, 5] which triangularizes an augmented matrix B = [A|b] to obtain
det(A) as a polynomial in Z[y1, y2, · · · , ym] and then solves for the polynomials
x̃i via back substitution using Lipson’s fraction free back formula [8]. Ignor-
ing pivoting, the following pseudo-code of the Bareiss/Edmonds algorithm and
Lipson’s fraction free back substitution formula solves Ax = b:

B := [A|b ] ; B0,0 := 1;
// fraction free triangularization begins
for k = 1, 2, · · · , n− 1 do

for i = k + 1, k + 2, · · · , n do
for j = k + 1, k + 2, · · · , n+ 1 do

Bi,j := (Bk,kBi,j −Bi,kBk,j) quo Bk−1,k−1 (3)

end do
Bi,k := 0;

end do
end do
// fraction free back substitution begins
x̃n := B[n, n+ 1];
for i = n− 1, n− 2, · · · , 2, 1 do

Ni := Bi,n+1Bn,n −
∑n
j=i+1Bi,j x̃j ;

Di := Bi,i;

x̃i := Ni quo Di; (4)

end do
// simplification begins
for i = 1, 2, · · · , n do

hi = gcd(x̃i, Bn,n);
fi := x̃i quo hi; gi := Bn,n quo hi;

xi :=
fi
gi

;

end do
Note that the divisions indicated by the quotient operator quo are exact in
Z[y1, y2, · · · , ym] and Bk,k is the determinant of the principle k by k submatrix
of A. However there is an expression swell because at the last major step of
triangularizing B when k = n− 1 where it computes

Bn,n =
Bn−1,n−1Bn,n −Bn,n−1Bn−1,n

Bn−2,n−2
= det(A), (5)

the numerator polynomial in (5) is the product of determinants

Bn,nBn−2,n−2 ∈ Z[y1, y2, · · · , ym]. (6)
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If the original entries Bi,j from B are sparse polynomials in many parameters
then the numerator polynomial in (5) may be 100 times or more larger than
det(A). The same situation also holds for the polynomials x̃i.

One approach to avoid this expression swell tried by Monagan and Vrbik [15]
computes the quotients of (3) and (4) directly using lazy polynomial arithmetic.
Another approach is to interpolate the polynomials x̃i and det(A) directly from
points using sparse polynomial interpolation algorithms [3, 17] and Chinese re-
maindering when needed. This approach is described briefly as follows. Pick an
evaluation point α ∈ Zmp and solve A(α)x(α) = b(α) mod p for x̃(α) using
Gaussian elimination over Zp and also compute det(A(α)) at the same time.
Then x̃i(α) is given by xi(α)×det(A(α)). Thus we have images of x̃i and det(A)
so we can interpolate them.

To compute the solution vector x in simplest terms that we compute the
hi = gcd(x̃i,det(A)) for 1 ≤ i ≤ n and cancel them from x̃i

det(A) to simplify
the solutions. However, in practice there may be a large cancellation in x̃i

det(A) .

That is, hi may be a large factor so that the final solution xi = x̃i/hi

det(A)/hi
may

be small. Our new algorithm will interpolate xi directly thus avoiding any gcd
computations which may be expensive.

Example 1 Consider the following linear system of 21 equations in variables
x1, x2, · · · , x21 and parameters y1, y2, · · · , y5

x7 + x12 = 1, x8 + x13 = 1, x21 + x6 + x11 = 1, x1y1 + x1 − x2 = 0

x3y2 + x3 − x4 = 0, x11y3 + x11 − x12 = 0, x16y5 − x17y5 − x17 = 0

y3(−x20 + x21) + x21 = 0, y3(−x5 + x6) + x6 − x7 = 0, − x8y4 + x9y3 + x9 = 0

y2(−x10 + x18) + x18 − x19 = 0, y4(x14 − x13) + x14 − x15 = 0

2x3(y22 − 1) + 4x4 − 2x5 = 0, 2y21(x1 − 1)− 2x10 + 4x2 = 0

2y23(x19 − 2x20 + x21)− 2x21 = 0, 2y24(x7 − 2x8 + x9)− 2x9 = 0

2x11(y23 − 1) + 4x12 − 2x13 = 0, 2y24(x12 − 2x13 + x14)− 2x14 + 4x15 − 2x16 = 0

2y23(x4 − 2x5 + x6)− 2x6 + 4x7 − 2x8 = 0, 2y25(x15 − 2x16 + x17)− 2x17 = 0

2y22(−2x10 − x18 − x2)− 2x18 + 4x19 − 2x20 = 0

where the solution of the above system defines a general cubic Beta-Splines in
the study of modelling curves in Computer Graphics.

Using the Bareiss/Edmonds/Lipson algorithm on page 2, we find that #B[n, n] =
det(A) = 1033,#B[n−2, n−2] = 672 and #B[n, n]×B[n−2, n−2] = 14348, so
an expression swell factor of 14348/1033 = 14. Furthermore, we obtain #x̃i,#xi
and the expression swell factor labelled swell for computing x̃i in Table 1.

The Gentleman & Johnson minor expansion algorithm [7] can also be used
to compute the solutions xi by computing n + 1 determinants, namely, the nu-
merators det(Ai) for 1 ≤ i ≤ n (Ai is as defined in (2)) and the denominator
det(A) only once. But then we still have to compute gi = gcd(det(Ai),det(A))
to simplify the solutions xi which is not cheap.
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1 2 3 4 5 6 7 8 9 10 11
#Ni 586 1,172 1,197 1,827 2,142 1,666 2,072 1,320 1,320 2,650 2,543
#Di 2 3 6 9 9 9 9 9 18 18 27
#x̃i 293 586 504 693 882 686 840 536 424 879 638
swell 2 2 3 3 3 3 3 3 3 3 4
# fi 1 2 4 4 4 19 16 8 8 8 2
# gi 5 3 10 7 4 22 16 16 26 12 3

12 13 14 15 16 17 18 19 20 21
#Ni 3,490 3,971 5,675 7,410 4,940 7,072 11,793 12,802 11,211 9,620
#Di 36 36 117 153 153 432 672 672 672 672
#x̃i 834 1,033 871 1044 696 348 690 836 693 528
swell 4 4 7 7 7 20 17 15 16 18
# fi 1 1 1 1 1 2 14 4 1 1
# gi 3 3 5 5 3 3 23 7 4 7

Table 1: Number of terms in x̃i and xi and expression swell factor for computing x̃i

In this work, we interpolate the simplified solutions xi = fi/gi directly using
sparse rational function interpolation. We use a black box representation to
denote any given parametric linear system. That is, a black box BB representing
Ax = b denoted by BB : Zmp → Znp is a computer program that takes a prime p
and an evaluation point α ∈ Zmp as inputs and outputs x(α) = A−1(α)b(α) ∈ Znp .
The implication of the black box representation of Ax = b is that important
properties of x such as #fk,#gk and their variable degrees are unknown so we
have to find them by interpolation.

Our first contribution is a new algorithm that probes a given black box BB
and uses sparse multivariate rational function interpolation to interpolate the
rational function entries in x modulo primes and then uses Chinese remaindering
and rational number reconstruction to recover its integer coefficients.

Our algorithm for solving Ax = b follows the work of Jinadu and Monagan
in [10] where they modified Cuyt and Lee’s sparse rational function interpola-
tion algorithm to use the Ben-Or/Twari interpolation algorithm and Kronecker
substitution on the parameters in order to solve parametric polynomial systems
by computing its Dixon resultant.

Our second contribution is a hybrid Maple + C implementation of our al-
gorithm for solving parametric linear systems and it can be downloaded for use
from the web at:

http://www.cecm.sfu.ca/personal/monaganm/code/ParamLinSolve/.

Our third contribution is the failure probability analysis and complexity analysis
of our algorithm in terms of number of black box probes required. The analysis
in this paper follows [12].

This paper is organized as follows. In section 2, we review the sparse mul-
tivariate rational function algorithm of Cuyt and Lee and we describe how it
should be modified with the use of a Kronecker substitution on the parame-
ters. Our algorithms are presented in Section 3. Section 4 contains the failure
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probability analysis and complexity analysis of our algorithm. In section 5, we
present timing results comparing a hybrid Maple+C implementation of our algo-
rithm with a Maple implementation of the Bareiss/EdmondsLipson fraction free
Gaussian elimination algorithm with three other algorithms for solving Ax = b.

2 Sparse Multivariate Rational Function Interpolation

2.1 Cuyt and Lee’s algorithm

Let K be a field and let f/g ∈ K(y1, · · · , ym) be a rational function such that
gcd(f, g) = 1. Cuyt and Lee’s algorithm [4] to interpolate f/g must be combined
with a sparse polynomial interpolation to interpolate f and g.

The first step in their algorithm is to introduce a homogenizing variable z to
form the auxiliary rational function

f(y1z, · · · , ymz)
g(y1z, · · · , ymz)

=
f0 + f1(y1, · · · , ym)z + · · ·+ fdeg(f)(y1, · · · , ym)zdeg(f)

g0 + g1(y1, · · · , ym)z + · · ·+ gdeg(g)(y1, · · · , ym)zdeg(g)

and then normalize it using either constant terms f0 6= 0 or g0 6= 0. However
it is not uncommon to have f0 = g0 = 0. Thus in the case when both constant
terms g0 and f0 are zero, one has to pick a basis shift β ∈ (K \ {0})m and form
the auxiliary rational function as

f̂(y1z, · · · , ymz)
ĝ(y1z, · · · , ymz)

:=
f(y1z + β1, · · · , ymz + βm)

g(y1z + β1, · · · , ymz + βm)
=

∑deg(f)
j=0 f̂j(y1, · · · , ym)zj∑deg(g)
j=0 ĝj(y1, · · · , ym)zj

.

The introduction of the basis shift β forces the production of a constant term
in f̂/ĝ so that we can normalize it using either f̂0 or ĝ0. Thus we can write

f̂(y1z, · · · , ymz)
ĝ(y1z, · · · , ymz)

=

∑deg(f)
j=0

f̂j(y1,···,ym)zj

ĝ0

1 +
∑deg(g)
j=1

ĝj(y1,···,ym)zj

ĝ0

.

Note that ĝ0 = c̃ × g(β1, β2, · · · , βm) 6= 0 for some c̃ ∈ K. If a rational function
f/g is represented by a a black box, we can recover it by densely interpolating
univariate auxiliary rational functions

Â(αj , z) =

f0
g0

+ f1(α
j)

g0
z + · · ·+ fdeg(f)(α)

g0
zdeg(f)

1 + g1(αj)
g0

z + · · ·+ gdeg(g)(αj)

g0
zdeg(g)

∈ Zp(z) for j = 0, 1, 2, · · ·

for α ∈ Zmp from the black box and then use the coefficients of Â(αj , z) via sparse
interpolation to recover f/g. In order to densely interpolate Â(αj , z), we use the
Maximal Quotient Rational Function Reconstruction algorithm (MQRFR) [14]
which requires deg(f) + deg(g) + 2 black box probes on z.

Note that the use of a basis shift in the formation of the auxiliary rational
function destroys the sparsity of f/g, so its effect has to be removed before f/g
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can be recovered. Cuyt and Lee remove the effect of this basis shift by adjusting
the coefficients of the lower degree terms in the numerator and denominator of
Â(αj , z) by the contributions from the higher degree terms before the sparse
interpolation step is performed. We show how to do this in Subroutine 6.

2.2 Using a Kronecker Substitution on the parameters

In this work, the Ben-Or/Tiwari algorithm is the preferred sparse polynomial
algorithm for the Cuyt and Lee’s algorithm because it requires the fewest num-
ber of black box probes. However, in order to interpolate a polynomial f 6= 0
using the Ben-Or/Twari interpolation algorithm over Zp, the working prime p is
required to be at least pdn where pn is the m-th prime and d = deg(f). Unfortu-
nately, such a prime p may be too large for machine arithmetic if the number of
parameters m or the total degree d is large. This is the main drawback of using
the BenOr/Tiwari algorithm. Here we review the idea of Jinadu and Monagan
from [10] where they formulated how to use a Kronecker substitution to combat
the large prime problem posed by using the Ben-Or/Twari algorithm in Cuyt
and Lee’s method.

Definition 2 Let K be an integral domain and let f/g ∈ K(y1, · · · , ym). Let
r = (r1, r2, · · · , rm−1) ∈ Zm−1 with ri > 0. Let Kr : K(y1, · · · , ym) → K(y) be
the Kronecker substitution

Kr(f/g) =
f(y, yr1 , yr1r2 , · · · , yr1r2···rm−1)

g(y, yr1 , yr1r2 , · · · , yr1r2···rm−1)
∈ K(y).

Let di = max{(deg f, yi),deg(g, yi)} for 1 ≤ i ≤ m. Provided we choose ri > di
for 1 ≤ i ≤ m− 1 then Kr is invertible, g 6= 0 and Kr(f/g) = 0 ⇐⇒ f = 0.

Unfortunately, we cannot use the original definition of auxiliary rational func-
tion given by Cuyt and Lee that we reviewed in Subsection 2.1 to interpolate
the univariate mapped function Kr(f/g). Thus we need a new definition for how
to compute the corresponding auxiliary rational function relative to the mapped
univariate function Kr(f/g), and not the original function f/g itself. Thus using
a homogenizing variable z we define auxiliary rational function

F (y, z) =
f(zy, zyr1 , · · · , zyr1r2···rm−1)

g(zy, zyr1 , · · · , zyr1r2···rm−1)
∈ K[y](z). (7)

As before, the existence of a constant term in the denominator of F (y, z) must
be guaranteed, so we use a basis shift β ∈ (K\{0})m and instead formally define
an auxiliary rational function with Kronecker substitution as follows.

Definition 3 Let K be a field and let f/g ∈ K(y1, · · · , ym) such that gcd(f, g) =
1. Let z be the homogenizing variable and let r = (r1, · · · , rm−1) with ri > di =
max{(deg f, yi),deg(g, yi)}. Let Kr be the Kronecker substitution. We define

F (y, z, β) :=
fβ(y, z)

gβ(y, z)
=
f(zy + β1, zy

r1 + β2, · · · , zyr1r2···rm−1 + βm)

g(zy + β1, zyr1 + β2, · · · , zyr1r2···rm−1 + βm)
∈ K[y](z)

as an auxiliary rational function with Kronecker substitution Kr.



Title Suppressed Due to Excessive Length 7

Notice in the above definition that

F (y, 1, 0) =
f0k (y, 1)

g0k(y, 1)
= Kr(f/g).

Thus Kr(fk/gk) can be recovered using the coefficients of F (αi, z, β) for some
evaluation point α ∈ Zmp and i ≥ 0. If g has a constant term, then one can
use β = (0, · · · , 0). Also observe that deg(Kr(f/g)) is exponential in y but
deg(F (y, z, β), z) through which Kr(f/g) is interpolated remains the same and
the number of terms and the number of probes needed to interpolate f/g are
the same. To recover the exponents in y we require our input prime p >

∏m
i=1 ri.

3 The Algorithm

Let the polynomials fk and gk of the entries xk = fk
gk

be viewed as

fk =

deg(f)∑
i=0

fi,k(y1, y2, · · · , ym) and gk =

deg(g)∑
i=0

gi,k(y1, y2, · · · , ym) (8)

such that deg(fi,k) = i and deg(gi,k) = i. Given a black box BB representing
Ax = b, we divide the steps to recover x by our algorithm (Algorithm 1) into
six main steps.

The first step in our algorithm is to obtain the degrees needed to interpolate
x. These include the total degrees deg(fk),deg(gk) for 1 ≤ k ≤ n, which are
needed to densely interpolate the univariate auxiliary rational functions, the
maximum partial degrees max (maxnk=1(deg(fk, yi),deg(gk, yi))) for 1 ≤ i ≤ m,
which are needed to apply Kronecker substitution and the total degrees of the
polynomials fi,k and gi,k which helps avoid doing unnecessary work when the
effect of the basis shift is removed in Subroutine 6 (See Lines 1-5 of Algorithm
1). With high probability, we describe how to discover these degrees as follows.

Let p be a large prime. First, pick α, β ∈ (Zp \ {0})m at random, and use
enough distinct points for z selected at random from Zp \ {0} to compute

hk(z) =
Nk(z)

Dk(z)
=
fk(α1z + β1, · · · , αmz + βm)

gk(α1z + β1, · · · , αmz + βm)
∈ Zp(z),

so that deg(fk) = deg(Nk) and deg(gk)− deg(Dk) with high probability.
Next, pick α ∈ (Zp \ {0})m−1, β, θ ∈ Zp at random and compute

Hi(z) :=
Hfi

Hgi

=
fk(α1, · · · , αi−1, θz + β, αi+1, · · · , αn)

gk(α1, · · · , αi−1, θz + β, αi+1, · · · , αm)
∈ Zp(z)

using enough distinct random points for z from Zp \ {0}. With high probability
deg(fk, yi) = deg(Hfi , z) and deg(gk, yi) = deg(Hgi , z) for 1 ≤ i ≤ m.
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Finally, suppose we have obtained deg(fk),deg(gk) correctly for 1 ≤ k ≤ n.
Then pick α ∈ (Zp \ {0})m at random and use enough random distinct points
for z selected from Zp \ {0} to compute the univariate rational function

Wk(z) =
Nk

Dk

=

∑dfk
j=0 N̄i,k(z)∑dgk
i=0 D̄i,k(z)

=
fk(α1z, · · · , αmz)
gk(α1z, · · · , αmz)

.

Now if deg(fk) = dfk and deg(gk) = dgk then deg(fi,k) = deg(N̄i,k) and
deg(gi,k) = deg(D̄i,k) with high probability. But, if there is no constant term in
fk and gk then deg(fk) 6= dfk and deg(gk) 6= dgk because ek = deg(gcd(Nk, Dk)) >
0. Since we do not know what ek is, then it follows that if ek = deg(fk) −
dfk = deg(gk) − dgk with high probability then deg(fi,k) = deg(N̄j,k) + ek and
deg(gi,k) = deg(D̄i,k) + ek with high probability.

Example 4 Let
f1
g1

=
y31 + y1y2
y22 + y3

where f3,1 = y31 , f2,1 = y1y2, g2,1 = y22 and

g1,1 = 1. Then W1(z) =
f1(α1z, α2z, α3z)

g1(α1z, α2z, α3z)
=
α3
1z

2 + α2z

α2z + α3
. Thus deg(f1) = 3 6=

df1 = 2 and deg(g1) = 2 6= dg1 = 1. Hence deg(f3,1) = 2 + 3− 2 = 3,deg(f2,1) =
1 + 3− 2 = 2,deg(g2,1) = 1 + 2− 1 = 2,deg(g2,1) = 0 + 2− 1 = 2.

The second step in our algorithm is to probe the black box BB with α ∈ Zmp
as input evaluation point to obtain x(α) = A−1(α)b(α) ∈ Znp (See Line 17-18).
The third step is to perform dense interpolation of auxiliary univariate rational
functions using the images x(α) = A−1(α)b(α) ∈ Znp (See Lines 23-25). By
design, the fourth step is to determine the number of terms in the leading term
polynomials fdeg(fk),k and gdeg(fk),k and interpolate them via calls to Subroutine
BMStep in Lines 29-30. Next #fi,k and #gi,k as defined in (8) are determined
by calls Subroutine RemoveShift in Lines 33-34 where the effect of the basis
shift β 6= 0 is removed and the coefficients of the auxiliary rational functions in
variable are adjusted in order to interpolate fi,k and gi,k

Note that for each i,#fi,k (or #gi,k) is obtained when deg(λ, z) <
#fi,k

2 for
some feedback polynomial λ ∈ Zp[z] produced by the Berlekamp-Massey algo-
rithm in Subroutine BMStep. Once fi,k, gi,k modulo a prime have been interpo-
lated, the sixth step in our algorithm is to apply rational number reconstruction
(RNR) on the assembled vector X = [ fkgk mod p, 1 ≤ k ≤ n] to get x in Line
41. If RNR process fails then more primes and images of x are needed to inter-
polate x. The final step is to call Algorithm 2, a similar to Algorithm 1, except
that #fi,k and gi,k are now known, and it uses Chinese remaindering to get the
solution x.
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Algorithm 1: ParamLinSolve
Input: A black box BB : Zm

p → Zn
p with m ≥ 1.

Output: Vectors x ∈ Z(y1, · · · , ym)n or FAIL.
1 Compute total degrees (deg(fk), deg(gk)) for 1 ≤ k ≤ n
2 ek ← deg(fk) + deg(gk) + 2.
3 emax ← maxn

k=1 {ek}
4 Compute (Efk , Egk ) where Efk and Egk denote the lists of the total degrees

of the polynomials fik and gik in fk and gk respectively as defined in (8)
5 Dyi ← max (maxn

k=1(deg(fk, yi), deg(gk, yi))) for 1 ≤ i ≤ m.
6 Initialize ri = Dyi + 1 for 1 ≤ i ≤ m and let r = (r1, r2, · · · , rm−1).
7 Pick a prime p such that p >

∏m
j=1 ri and a basis shift β 6= 0 ∈ Zm

p at random.
8 Let Kr : Zp(y1, y2, · · · , ym)→ Zp(y) be the Kronecker substitution Kr(fk/gk)
9 Pick a random shift ŝ ∈ [1, p− 2] and any generator α for Z∗

p.
10 Let z be the homogenizing variable
11 Pick θ ∈ Zemax

p at random with θi 6= θj for i 6= j.
12 M ←

∏emax
i=1 (z − θi) ∈ Zp[z]; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(e2

max)
13 k ← 1
14 for i = 1, 2, · · · while k ≤ n do
15 Ŷi ← (αŝ+i−1, α(ŝ+i−1)r1 , · · ·α(ŝ+i−1)(r1r2···rm−1)).
16 for j = 1, 2, . . . , emax do
17 Zj ← Ŷiθj + β ∈ Zm

p

18 vj ← BB(Zj) // Here vj = A−1(Zj)b(Zj) ∈ Zn
p

19 if vj = FAIL then return FAIL end // rank(A(Zj)) < n.
20 end
21 if i /∈ {2, 4, 8, 16, 32, · · ·} then next end
22 for j = 1, 2, . . . , i do
23 Interpolate U ∈ Zp[z] using points (θi, vkj : 1 ≤ j ≤ ek); . . . . . . . . O(e2

k)
24 Aj(z)← MQRFR(M,U, p); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(e2

k)

25 Let Aj(z) =
Nj(z)

N̂j(z)
∈ Zp(z) // These are the auxiliary functions in z.

26 if deg(Nj) 6= deg(fk) or deg(N̂j) 6= deg(gk) return FAIL end
27 Normalize Aj(z) such that N̂j(z) = 1 +

∑deg(N̂)
i=1 aiz

i.

28 end
29 Fk ← BMStep([coeff(Nj , z

deg(fk)) : 1 ≤ j ≤ i], α, ŝ, r);O(i2 + #F 2
k log p)

30 Gk ← BMStep([coeff(N̂j , z
deg(gk)) : 1 ≤ j ≤ i], α, ŝ, r);O(i2 + #G2

k log p)
31 // Here Fk = fdeg(fk),k mod p and Gk = gdeg(gk),k mod p
32 if Fk 6= FAIL and Gk 6= FAIL then
33 fk ← RemoveShift(Fk, [Ŷ1, · · · , Ŷi], [N1, · · · , Ni], α, ŝ, β, r, Efk )

34 gk ← RemoveShift(Gk, [Ŷ1, · · · , Ŷi], [N̂1, · · · , N̂i], α, ŝ, β, r, Egk )
35 if fk 6= FAIL and gk 6= FAIL then
36 k ← k + 1 // we have interpolated xk mod p
37 end
38 end
39 end
40 X ← [ fk

gk
, 1 ≤ k ≤ n] // Here X = x mod p

41 Apply rational number reconstruction on the coefficients of X mod p to get x
42 if x 6= FAIL and x mod p = X then return x end
43 return MorePrimes(BB, X, ((deg(fk), deg(gk)) : 1 ≤ k ≤ n))
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Algorithm 2: MorePrimes
Input: Black box BB : Zm

q → Zn
q with m ≥ 1.

Input: Degrees {(deg(fk), deg(gk)) : 1 ≤ k ≤ n}
Output: Vectors x ∈ Z(y1, · · · , ym)n or FAIL.

1 Let ek = deg(fk) + deg(gk) + 2 for 1 ≤ k ≤ n and let emax = max ek.
2 Let B1 = {fdeg(fk)−1,k, · · · , f0,k} and B2 = {gdeg(gk)−1,k, · · · , g0,k} where

fi,k, gi,k are as in (8) and
3 P ← p.

4 Let Nmax = maxn
k=1

{
max

deg(fk)
i=0 {#fi,k},max

deg(gk)
i=0 {#gi,k}}

}
.

5 do
6 Get a new 62 bit prime q > p.
7 Pick α, β ∈ (Zq \ {0})m, θ ∈ Zemax

q and shift ŝ ∈ [1, q − 2] at random.
8 for i = 1, 2, · · · , Nmax do
9 Ŷi ← (αŝ+i−1

1 , αŝ+i−1
2 · · · , αŝ+i−1

m ).
10 for j = 1, 2, . . . , emax do
11 Zj ← Ŷiθj + β ∈ Zm

p

12 vj ← BB(Zj) // Here vj = A−1(Zj)b(Zj) ∈ Zn
p

13 if vj = FAIL then return FAIL end // rank(A(Zj)) < n).
14 end
15 end
16 for k = 1, 2, · · · , n do
17 (n̂, M̂)← (#fdeg(fk),k, supp(fdeg(fk),k)) // supp means support.
18 (n̄, M̄)← (#gdeg(gk),k, supp(gdeg(gk),k))

19 (m̂, m̄)← ([M̂i(α) : 1 ≤ i ≤ n̂], [M̄i(α) : 1 ≤ i ≤ n̄]); . . . . . O(m(n̂+ n̄))
20 if the evaluations m̂i = m̂j or m̄i = m̄j then return FAIL end.
21 M ←

∏ek
i=1(z − θi) ∈ Zq[z]; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(e2

k)
22 for j = 1, 2, · · · , Nmax do
23 Interpolate U ∈ Zp[z] using points (θi, vkj : 1 ≤ j ≤ ek); . . . . . O(e2

k)

24 Bj ← MQRFR(M,U, p)//Bj = Nj(z)/N̂j(z) ∈ Zq(z). . . . . . . .O(e2
k)

25 Normalize Bj(z) s.t. N̂j(z) = 1 +
∑deg(N̂)

i=1 biz
i.

26 if deg(Nj) 6= deg(fk) or deg(N̂j) 6= deg(gk) return FAIL
27 end
28 Let ai = LC(Nj , z) and let bi = LC(N̂j , z) for 1 ≤ i ≤ Nmax.

29 Fk ←VandermondeSolver(m̂, [a1, · · · , an̂], ŝ, M̂); . . . . . . . . . . . . . . . . O(n̂2)
30 Gk ←VandermondeSolver(m̄, [b1, · · · , bn̄], ŝ, M̄); . . . . . . . . . . . . . . . . . O(n̄2)

31 Fk ←GetTerms(Fk, [Ŷ1, · · · , ŶNmax ], [N1, · · · , NNmax ], ŝ, α, β,B1)

32 Gk ←GetTerms(Gk, [Ŷ1, · · · , ŶNmax ], [N̂1, · · · , N̂Nmax ], ŝ, α, β,B2)
33 if Fk = FAIL or Gk = FAIL then return FAIL end
34 end
35 X̂ ← [ Fk

Gk
, 1 ≤ k ≤ n] // Here X̂ = x mod q

36 Solve F̂ ≡ X mod P and F̂ ≡ X̂ mod q using the Chinese remainder
theorem

37 P ← P × q.
38 Apply rational number reconstruction on coefficients of F̂ mod P to get x
39 if x 6= FAIL and x mod q = F̂ then return F else (X, p)← (F̂ , q) end
40 end
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Subroutine 3: GetTerms
Input: Fk ∈ Zq[y1, · · · , ym], α ∈ (Zq \ {0})m, β ∈ Zm

q , ŝ ∈ [1, q − 2], and list of
lower total degree polynomials B1 = {fdeg(fk)−1,k, · · · , f0,k}, points
[Ŷj ∈ Zm

q : 1 ≤ j ≤ Nmax] and [Nj ∈ Zq[z] : 1 ≤ j ≤ Nmax].
Output: fk ∈ Zq[y1, · · · , ym]

1 (A, fk, d̂)← (Fk, Fk, deg(Fk)) and set Γ = (0, 0, , · · · , 0) ∈ ZNmax
q .

2 D ← [deg(e) : e ∈ B1], M̂ ← [supp(e) : e ∈ B1] // supp means support.
3 for h = 1, 2, · · · , |D| do
4 d← Dh

5 if β 6= 0 then
6 Pick θ ∈ Zd̂+1

q at random.
7 for j = 1, 2, · · · , Nmax do
8 Zj,t ← A(y1 = Ŷj,1θt + β1, · · · , ym = Ŷj,mθt + βm) for

1 ≤ t ≤ d̂+ 1; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(m#A+md̂)
9 Interpolate W j ∈ Zq[z] using (θt, Zj,t : 1 ≤ t ≤ d̂+ 1); . . . . . . O(d̂2)

10 Γj ← Γj +W j ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(d̂)

11 end
12 end
13 if d 6= 0 then
14 P ←

[
coeff(Nj , z

d) : 1 ≤ j ≤ Nmax

]
15 if β 6= 0 then Pj ← Pj − coeff(Γj , z

d) for 1 ≤ j ≤ Nmax end
16 m̂← [M̂i(α) : 1 ≤ i ≤ n̂] where n̂ = #M̂h; . . . . . . . . . . . . . . . . . . . . . O(mn̂)
17 if any monomial evaluations m̂i = m̂j then return FAIL end.
18 A← VanderSolver(m̂, P, ŝ, M̂h); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(n̂2)

19 else
20 A← coeff(N1, z

0) // We use only one point to get the constant term
21 if β 6= 0 then A← A− coeff(Γ1, z

0) end
22 (fk, d̂)← (fk +A,deg(A) + 1).

23 end
24 end
25 return fk.

Subroutine 4: BMStep
Input: P = [Pj ∈ Zp : 1 ≤ j ≤ i] , i is even, α ∈ Zp, shift ŝ ∈ [1, p− 2] and r

which defines the Kronecker substitution Kr.
Output: F̄ ∈ Zp[y1, y2, · · · , ym] or FAIL.

1 Run the Berlekamp-Massey algorithm [1] on P to obtain λ(z) ∈ Zp[z]; . . O(i2)
2 if deg(λ, z) = i

2
then return FAIL end // More images are needed

3 Compute the roots of λ in Zp[z] to obtain the monomial evaluations m̂i. Let
m̂ ⊂ Zp be the set of monomial evaluations m̂i and let t = |m̂|; . . . O(t2 log p)

4 if t 6= deg(λ, z) then return FAIL end // λ(z) is wrong.
5 Solve αei = m̂i for ei with ei ∈ [0, p− 2] // The exponents are found here.
6 Let M̂ = [ yei : i = 1, 2 · · · , t ] // These are the monomials
7 F ←VandermondeSolver (m̂, [P1, · · ·Pt], ŝ, M̂) // F ∈ Zp[y]; . . . . . . . . . . . . O(t2)
8 F̄ ← K−1

r (F ) ∈ Zp[y1, · · · , ym].// Invert the Kronecker map Kr.
9 return F̄
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Subroutine 5: VandermondeSolver
Input: Vectors m̂, b ∈ Zt

p, shift ŝ ∈ [1, p− 2] and monomials [M1, · · · ,Mt]
Output: F ∈ Zp[y1, · · · , ym]

1 Let Vij = m̂ŝ+j−1
i for 1 ≤ i, j ≤ t.

2 Solve V a = b for the coefficients ai using Zippel’s O(t2) algorithm [17].
3 return F =

∑t
i=1 aiMi

Subroutine 6: RemoveShift
Input: Fk ∈ Zp[y1, · · · , ym], β ∈ Zm

p , list of degrees Efk , random shift
ŝ ∈ [1, p− 2], a generator α for Z∗

p, r which defines Kronecker
substitution Kr, list of vectors [Ŷj ∈ Zm

p : 1 ≤ j ≤ i] and list of
univariate polynomials [Nj ∈ Zp[z] : 1 ≤ j ≤ i].

Output: fk ∈ Zp[y1, · · · , ym] or FAIL
1 (A, fk, d)← (Fk, Fk, deg(Fk))
2 Initialize Γj = 0 for 1 ≤ j ≤ i.
3 for d̄ ∈ Efk do
4 if β 6= 0 then
5 Pick θ ∈ Zd+1

p at random.
6 for j = 1, 2, · · · , i do
7 Evaluate A; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(m#A+md)).

8 Zj,t ← A(y1 = Ŷj,1θt + β1, · · · , ym = Ŷj,mθt + βm) for
: 1 ≤ t ≤ d+ 1.

9 Interpolate W j ∈ Zp[z] using (θt, Zj,t : 1 ≤ t ≤ d+ 1); . . . . . . O(d2)

10 Γj ← Γj +W j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(d)

11 end
12 end
13 if d̄ 6= 0 then
14 P ←

[
coeff(Nj , z

d̄ : 1 ≤ j ≤ i
]
.

15 if β 6= 0 then Pj ← Pj − coeff(Γj , z
d̄) for j = 1, 2, · · · , i end

// The Pj ’s are adjusted to correct the effect of the basis shift β.//
16 if [Pj = 0 : 1 ≤ j ≤ i] then
17 A← 0 // There is no monomial of total degree d̂.
18 else
19 A← BMStep([P1, · · · , Pi], α, ŝ, r); . . . . . . . . . . . . . . . O(i2 + #A

2
log p)

20 if A = FAIL then return FAIL end // More Pj ’s are needed.
21 end
22 else
23 A← coeff(N1, z

0)// We get the constant term.
24 if β 6= 0 then A← A− coeff(Γ1, z

0) end
25 end
26 (fk, d)← (fk +A, d̂+ 1).

27 end
28 return fk
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4 Analysis

4.1 Failure Probability Analysis

Here we identify all the problems that can occur in our algorithm for solving
parametric linear systems. The proofs in this paper require the Schwartz-Zippel
Lemma [16, 17]. We state the lemma and some useful results now. The analysis
in this section follows [12].

Lemma 5 (Schwartz-Zippel Lemma) Let K be a field and let f be a non-
zero polynomial in K[y1, y2, · · · , ym]. If α is chosen at random from Fm with
F ⊂ K then Prob[f(α) = 0] ≤ deg(f)

|F | .

Definition 6 Let f =
∑t
i=1 aiNi ∈ Z[y1, y2, · · · , ym] where ai ∈ Z \ {0}, t =

#f ≥ 1 and Ni is a monomial in variables y1, y2, · · · , ym. The height of f
denoted by ‖f‖∞ is defined as ‖f‖∞= maxti=1|ai|. We also define ‖H‖∞=

max (‖fk‖∞, ‖gk‖∞) where H = fk(y1,·,ym)
gk(y1,·,ym) .

Theorem 7 [9, Proposition 2] Let A be a n×n matrix with Aij ∈ Z[y1, · · · , ym],
#Aij ≤ t and ‖Aij‖∞≤ h. Then ‖det(A)‖∞ < n

n
2 tnhn.

Lemma 8 [6, Lemma 2, page 135] Let f, g ∈ Z[y1, y2, · · · , ym]. If g|f then
‖g‖∞≤ e

∑m
i=1 deg(f,yi)‖f‖∞ where e = 2.718.

For the rest of this paper, let #Aij ,#bj ,#fi,#gi ≤ t and let ‖Aij‖∞, ‖bj‖∞≤
h,deg(bj),deg(Aij),deg(fi),deg(gi) ≤ d. Let P = {p1, p2, · · · , pN} be the list of
machine primes to be used in our algorithm such that pmin = minNi=1{pi} and
N is a large positive integer. We now estimate the height of the entries xi.

Theorem 9 We have ‖xk‖∞ ≤ enmdn
n
2 tnhn where e = 2.718.

Proof. By Cramer’s rule, the solutions of Ax = b are given by
Rk
R

=
det(Ak)

det(A)
where Ak denotes the matrix obtained by replacing the k-th column of the
coefficient matrix A by the column vector b. Let hk = gcd(Rk, R). Observe that

xk =
Rk/hk
R/hk

=
fk
gk

where gcd(fk, gk) = 1. Therefore fk|Rk and gk|R. By Lemma 8, it follows that

‖gk‖∞ ≤ e
∑m

i=1 deg(R,yi)‖R‖∞≤ e
∑m

i=1 nd‖R‖∞≤ enmd‖R‖∞ (9)

and
‖fk‖∞ ≤ enmd‖Rk‖∞ (10)

since deg(R, yi) ≤ deg(R) ≤ n×maxni=1{deg(Aij)} ≤ nd. Therefore

‖xk‖∞ ≤ max (‖fk‖∞, ‖gk‖∞) ≤ enmd max (‖Rk‖∞, ‖R‖∞) ≤ enmdn
n
2 tnhn

by Theorem 7. ut

We remark that the above bound for the height of xk is the worst case bound.
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4.1.1 Unlucky Primes and Evaluation Points

Definition 10 Let p be a prime. A prime p is said to be unlucky if p|det(A).

Definition 11 Suppose p is not an unlucky prime. Let α ∈ Zmp be an evaluation
point. We say that α unlucky if det(A)(α) = 0.

Lemma 12 Let p be a prime chosen at random from P and let e = 2.718. Then

Pr[p is unlucky] ≤
n logpmin

(th
√
n) + nmd logpmin

e

N
.

Proof. Let R = det(A) and let c be an integer coefficient of R. The number of
primes p from P that can divide c is at most blogpmin

cc. So

Pr[ p | c ] ≤
logpmin

c

N
.

By definition, prime p is unlucky ⇐⇒ p|R =⇒ p divides one term in R. So

Pr[p is unlucky] = Pr[ p |R ] ≤ Pr[ p divides one term in R ] ≤
logpmin

‖R‖∞
N

.

Using Theorem 9, it follows that

Pr[p is unlucky] ≤
logpmin

(
enmdn

n
2 tnhn

)
N

≤
n logpmin

(th
√
n) + nmd logpmin

e

N
.

ut

Lemma 13 Let p be a prime chosen at random from P . Let α ∈ Zmp be an

evaluation point. Then Pr[α is unlucky] ≤ nd

p
.

Proof. Pr[α is unlucky] = Pr[det(A)(α) = 0] ≤ deg(det(A))

p
≤ nd

p
. ut

4.1.2 Bad Evaluation Points, Primes and Basis Shift

Definition 14 We say that an evaluation point α ∈ Zmp is a bad evaluation
point if deg(fβk (α, z)) < deg(fk, z) or deg(gβk (α, z)) < deg(gk, z) for any k.

Definition 15 We say that β ∈ (Zp\{0})m is a bad basis shift if gcd(fk, gk) =

1 but deg(gcd(fβk (α, z), gβk (α, z))) > 0 for any k.

Definition 16 We say a prime p is bad if p|LC(fk) or p|LC(gk) for any k.

To avoid the occurrence of bad evaluation points with high probability in
Algorithm 1, we had to interpolate Fk(αŝ+i, z, β) for some random point ŝ ∈
[1, p−2] instead of Fk(αi, z, β). This is labelled as Aj in Line 25. Line 26 detects
the occurrence of bad evaluation points, a bad basis shift or a bad prime.
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Example 17 Let p be a sufficiently large prime and let

f1
g1

=
y1

(y1 + y3)y2
∈ Zp(y1, y2, y3).

Observe that the partial degrees ei = max{deg(f1, yi),deg(g1, yi)} = 1 for 1 ≤
i ≤ 3. For the Kronecker map Kr to be invertible we need ri > ei, so let r = (2, 2).
Thus the mapped function

Kr(f1/g1) =
f(y, y2, y4)

g(y, y2, y4)
=

y

(y + y4)y2
=

y

y3 + y6
.

Since g1 has no constant term, we need a basis shift β ∈ (Zp\{0})3. To interpolate
Kr(f1/g1), we need to densely interpolate F1(αj , z, β) for 1 ≤ j ≤ 4 = 2×#g1.
Computing F1(α, z, β) directly yields

F1(α, z, β) =
fβ1 (α, z)

gβ1 (α, z)
=

αz + β1
(zα4 + zα+ β1 + β3)(zα2 + β2)

.

The Sylvester resultant

R = Res(fβ1 (α, z), gβ1 (α, z), z) = α2(α3β1 − β3)(αβ1 − β2) 6= 0

since α 6= 0 and β = (β1, β2, β3) 6= (0, 0, 0). But, if β2 = αβ1 6= 0 or β3 =
α3β1 6= 0 then R(β) = 0 which implies that β is a bad basis shift.

4.1.3 Main Results

Theorem 18 Let Na be greater than the required number of auxiliary rational
function needed to interpolate the unique solution x and suppose all the degree
bounds obtained in Lines 1-5 of Algorithm 1 are correct. If prime p is chosen at
random from P then the probability that Algorithm 1 returns FAIL is at most

6Nan
2d
(
logpmin

(th
√
n) + 2md logpmin

e
)

N
+

2Nan(1 + d)m + 2nt3d2 + 5n2Nad
2

p
.

Proof. First, recall that emax = maxnk=1{deg(fk)+deg(gk)+2}. Now notice that

Pr[ vj = FAIL in Line 18] = Pr[ p or evaluation point Zj in Line 17 is unlucky].

By Lemma 13 and 12, Pr[Algorithm 1 returns FAIL in Line 13] is at most

nemaxNa

(
nd

p
+
n
(
logpmin

(th
√
n) +md logpmin

e
)

N

)
. (11)

There are three causes of FAIL in Line 26 of Algorithm 1. All three failure
causes (bad evaluation point, bad basis shift and bad prime) are direct conse-
quence of our attempt to interpolate auxiliary rational functions Aj in Line 25.
We will handle the bad evaluation point case first. Let

∆(y) =

n∏
k=1

LC(fβk (y, z))LC(gβk (y, z)) ∈ Zp[y].
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Notice that the evaluation point αŝ+j−1 in Line 15 is random since ŝ ∈ [1, p− 2]
is random and α is randomly selected in Line 9. Since a basis shift β does not
affect the degree and the leading coefficients of auxiliary rational functions, we
have that if αŝ+j−1 is a bad then ∆(αŝ+j−1) = 0. Thus

Prob[αŝ+j−1 is a bad for 0 ≤ j ≤ Na − 1] ≤ Na deg(∆)

p
≤ 2Nan(1 + d)m

p
.

Now suppose θj := αŝ+j−1 is not bad for 1 ≤ j ≤ Na. Let w1, w2, · · ·wm be new
variables and let

Gkj =
f̂kj
ĝkj

=
fk(θjz + w1, · · · , zθ(r1r2···rm−1)

j + wm)

gk(θjz + w1, · · · , zθ(r1r2···rm−1)
j + wm)

∈ Zp(w1, w2, · · · , wm)(z).

Recall that LC(f̂kj )(β) 6= 0 and LC(ĝkj )(β) 6= 0. Let Rkj = Res(f̂kj , ĝkj , z) ∈

Zp[w1, w2, · · · , wm] be the Sylvester resultant and let ∆(w1, w2, · · · , wm) =

Na∏
j=1

n∏
k=1

Rkj .

Clearly, β picked at random in Line 7 is a bad basis shift ⇐⇒ ∆(β) =

0 ⇐⇒ deg(gcd(f̂kj (z, β), ĝkj (z, β)) > 0 for any k and j. Using Bezout’s
bound [9, Lemma 4], we have deg(Rkj) ≤ deg(fk) deg(gk) ≤ d2. Thus

Prob[β is a bad basis shift] = Prob[∆(β) = 0] ≤ deg(∆)

p
≤ nd2Na

p
.

Finally, we deal with the bad prime case. Observe that Prob[ prime p is bad ] ≤

Prob[ p divides 1 term of LC(fk) or LC(gk) for 1 ≤ k ≤ n] ≤
n logpmin

(‖fk‖∞‖gk‖∞)

N
.

Using Equations (9) and (10), we have Prob[ prime p is bad : 1 ≤ j ≤ Na]

≤
Nan logpmin

(‖fk‖∞‖gk‖∞)

N
≤

2Nan
2
(
logpmin

(th
√
n) + 2md logpmin

e
)

N

Thus Pr[Algorithm 1 returns FAIL in Line 26] is at most

2Nan
2
(
logpmin

(th
√
n) + 2md logpmin

e
)

N
+

2Nan(1 + d)m

p
+
nd2Na
p

. (12)

Since Na is greater than the required number of auxiliary rational function
needed by Algorithm 1 to interpolate x, then Line 2 of Subroutine 4 will never
return FAIL. However the feedback polynomial λ ∈ Zp[z] generated to find the
number of terms in fi,k or gi,k in Line 4 of Subroutine 4 might be wrong so it will
return FAIL which causes Algorithm 1 to return FAIL in either Lines 29 or 30 or
33 or 34. By [13, Theorem 3], the probability of getting the wrong #fi,k or #gi,k

≤
∑n
k=1

∑deg(fk)

i=0 #fi,k(#fi,k+1)(2#fi,k+1) deg(fi,k)+
∑deg(gk)

i=0 #gi,k(#gi,k+1)(2#gi,k+1) deg(gi,k)

6p .

Since #fi,k,#gi,k ≤ t and deg(fi,k),deg(gi,k) ≤ d, we get

Pr[Algorithm 1 returns FAIL in Lines 29 or 30 or 33 or 34] ≤ 2nt3d2

p
. (13)
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Since emax ≤ 4d, our result follows by adding (11)-(13). ut

Theorem 19 Suppose additional primes are selected at random from the list of
primes P to reconstruct the coefficients of x using rational number reconstruc-
tion. Let p be the first prime used by Algorithm 1. Then Pr[Algorithm 2 returns FAIL]

≤
6Nan

2d
(
logpmin

(th
√
n) + 2md logpmin

e
)

N
+

2ndNa + nd2Na + 4nd2t2

p− 1
.

Proof. Any prime q selected by Algorithm 2 > p, so 1
q < 1

p . Using (11), the
probability that Algorithm 2 returns FAIL in Line 13 is at most

n2emaxNa

(
d

p
+

(
logpmin

(th
√
n) +md logpmin

e
)

N

)
(14)

If the monomial evaluations obtained in Line 20 of Algorithm 2 or the monomial
evaluations obtained in Line 17 of Subroutine 3 are not distinct then

Pr[Algorithm 2 returns FAIL in Line 20 or 31 or 32]

≤
n∑
k=1

(
∑deg(fk)
i=0

(
#fi,k

2

)
deg(fi,k) +

∑deg(gk)
i=0

(
#gi,k

2

)
deg(gi,k))

p− 1
≤ 4nd2t2

p− 1
. (15)

Notice that the functions Bj obtained in Line 24 are of the form

fβk (y1, y2, · · · , ym, z)
gβk (y1, y2, · · · , ym, z)

=
fk(y1z + β1, · · · , ymz + βm)

gk(y1z + β1, · · · , ymz + βm)
,

and are different from the Aj obtained in Algorithm 1 because a Kronecker map
is not used. Let ∆ =

∏n
k=1 LC(fβk )LC(gβk ) ∈ Zp[y1, y2, · · · , ym]. Since deg(∆) ≤

2nd and Na ≥ N̂max, then Prob[Ŷj picked in Line 9 of Algorithm 2 is bad : 0 ≤

j ≤ N̂max − 1] ≤ 2ndNa
p

. Hence Pr[Algorithm 2 returns FAIL in Line 26] ≤

2Nan
2
(
logpmin

(th
√
n) + 2md logpmin

e
)

N
+

2ndNa
p

+
nd2Na
p

. (16)

Our result follows by adding (14)-(16). ut

4.2 Complexity Analysis

Theorem 20 Let B = [A|b] be a n×n+1 augmented matrix such that #Bij ≤ t
and ‖Bij‖∞≤ CT . Let prime p chosen at random from P and C < p < 2C. A
black box probe costs O(n2tT + n2mdt+ n3) arithmetic operations in Zp.

Proof. Let Bij =
∑t
k=1 akBij,k(y1, · · · , ym). The total cost of computing B

mod p is O(n2tTmax) since the modular reduction Bij mod p costs O(tT ). All
monomial evaluations Bijk(α) can be computed using O(mdt) multiplications
and t multiplications for the product akBijk(α) ∈ Zp. Hence the cost of evaluat-
ing B is O(n2mdt). The cost of solving B(α) over Zp using Gaussian elimination
is O(n3). Thus a black box probe costs O(n2tT + n2mdt+ n3). ut
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Theorem 21 Let N̂max = maxnk=1(max
deg(gk)
i=0 {#fi,k},max

deg(fk)
j=0 {#gi,k}) where

fi,k, gi,k, fk, gk is as defined in (8) and let emax = 2+maxnk=1{deg(fk)+deg(gk)}.
Let H be maximum of all the integer coefficients of all the polynomials fk and
gk. Then the number of black box probes required by our algorithm to interpolate
the solution vector x is O(emaxN̂max logH).

5 Implementation and Benchmarks

We have implemented our new algorithm in Maple with some parts coded in
C to improve its overall efficiency. The parts coded in C include evaluating an
augmented matrix at integer points modulo prime p, solving the evaluated aug-
mented matrix with integer entries over Zp using Gaussian elimination, finding
and factoring the feedback polynomial produced by the Berlekamp-Massey algo-
rithm, solving a t×t shifted Vandermonde system and performing dense rational
function interpolation using the MQRFR algorithm modulo a prime. Each probe
to the black box is computed using C code and its supports primes up to 63 bits
in length. We have benchmarked our code on a 24 core Intel Gold 6342 processor
with 128 gigabytes of RAM using only 1 core.

To test the the performance of our algorithm, we create the following artifi-
cial problem. Let D ∈ Z[y1, y2, · · · , ym]n×n with rank(D) = n. Let the coefficient
matrix A be a diagonal matrix such that its diagonal entries are non zero poly-
nomials g1, · · · , gn and let the vector b =

[
f1 f2 · · · fn

]T
. Clearly the vector

x =
[
f1
g1

f2
g2
· · · fngn

]T
solves Ax = b. But suppose we create a new linear system

Wx∗ = c by premultiplying Ax = b by D so that Wx∗ = (DA)x∗ = Db = c.
Then both parametric systems Ax = b and Wx∗ = c are equivalent. That is,

x∗ = W−1c =
Adj(DA)c

det(DA)
=

Adj(A)Adj(D)Db

det(D) det(A)
=

Adj(A)b

det(A)
= A−1b = x

where Adj denotes the adjoint matrix.
In Table 2 we compare our new algorithm (row ParamLinSolve) with a Maple

implementation of the Bareiss/Edmonds fraction free one step Gaussian elimina-
tion method with Lipson’s fraction formula for back substitution (row Bareiss),
a Maple implementation of the Gentleman & Johnson minor expansion method
(row Gentleman) and using Maple’s commands ReducedRowEchelonForm (row
ReducedRow) and LinearSolve (row LinearSolve) for solving the systemsWx∗ =
c that were created artificially.

The two input systems solved in Table 3 are real systems (Example 1 and a
system from an engineering problem) which were the motivation for this work.
Note that the timings reported for the real systems in Table 3 are in the columns
and not in rows as in Table 2. The notation ! indicates that Maple was unable
to allocate enough memory to finish the computation and − means unknown in
both Tables 2 and 3. The breakdown of the timings for all individual algorithms
involved for computing the system named bigsys are reported in 4.
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The artificial input systems Wx∗ = c were created by generating matrices
D,A and column vector b randomly, with all of their entries in Z[y1, · · · , ym]
where m = 10,deg(Dij) ≤ dT = 5,#Di,j = T ≤ 2 and deg(Aij),deg(bj) ≤ d =
10,#Ai,j ,#bj = t ≤ 5 and rank(A) = rank(D) = n for 3 ≤ n ≤ 10. Using
the Gentleman & Johnson algorithm, we obtain # det(A),# det(D),# det(W )
(rows 2-4) and the total CPU time used to compute each of them are reported in
rows 10-13. We remark that we did not compute the gcd(det(Ak),det(A)) when
the Gentleman & Johnson algorithm was used. As the reader can see from Table
2, our algorithm performed better than other algorithms for n ≥ 5.

n 3 4 5 6 7 8 9 10
# det(A) 125 625 3,125 15,500 59,851 310,796 1,923,985 9,381,213
# det(D) 40 336 3,120 38,784 518,009 8,477,343 156,424,985 -
# det(W ) 5,000 209,960 9,741,747 - - - - -

ParamLinSolve 0.079s 0.176s 0.154s 0.211s 0.220s 0.239s 0.259s 0.317s
LinearSolve 0.129s 1.26s 304.20s 124200s ! ! ! !
ReducedRow 0.01s 0.083 11.05s 3403.2s ! ! ! !

Bareiss 2.02s ! ! ! ! ! ! !
Gentleman 0.040s 3.19s 239.40s ! ! ! ! !
time-det(A) 0s 0s 0.003s 0.08s 0.898s 0.703s 17.03s 25.32s
time -det(D) 0s 0s 0.007s 1.21s 1.39s 601.8s 2893.8s !
time-det(W ) 0s 0.310s 20.44s ! ! ! ! !

Table 2: CPU Timings for solving Wx∗ = c with #fi,#gi ≤ 5 for 3 ≤ n ≤ 10.

system names n m max ParamLinSolve Gentleman LinearSolve ReducedRow Bareiss # det(A)
Bspline 21 5 26 0.220s 2623.8s 0.021s 0.026s 0.500s 1033
Bigsys 44 48 58240 7776s ! 17.85s 1.66s ! 6037416

Table 3: CPU Timings for solving two real parametric linear systems

Time(ms) Percentage
Matrix Evaluation 151.48s 1.9 %

Gaussian Elimination 110.71s 1.4 %
Univariate Rational Function Interpolation 706.07s 9 %

Finding λ ∈ Zp[z] using the Berlekamp-Massey Algorithm 208.25s 2.6 %
Roots of λ over Zp 4856.96s 62 %

Solving Vandermonde systems 434.46s 5.6 %
Multiplication and Addition of Evaluation points 257.40s 3.3 %

Computing Discrete logarithms 586.64s 7.6 %
Miscellaneous 464.67s 9.4 %
Overall Time 7776s 100 %

Table 4: Breakdown of CPU timings for all individual algorithms for computing bigsys

In our experiments, the cost of evaluating augmented matrices over Zp is
often the most expensive part. But as the reader can see in Table 4, comput-
ing the roots of the feedback polynomial for the bigsys system is the domi-
nating cost. This is because the number of terms in many of the polynomials
fi, gi to be interpolated is large. In particular, it has four polynomials where
max(#fi,#gi) > 50, 000 and our root finding algorithm for computing the roots
of λ(z) costs O(t2 log p) where t = deg(λ) is the number of terms of the fi and
gi being interpolated.
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A Appendix

The systems Wx∗ = c for Table 2 were created using the following Maple code:
CreateSystem := proc(n,m,T,dT,t,d) local A, D,W,c,b,Y,i;

Y := [ seq(y||i,i=1..m) ];
D := Matrix(n,n, () -> randpoly( Y,terms=T, degree=dT));
b := Vector[column](n, () -> randpoly(Y, terms = t, degree= d));
i := [ seq( randpoly( Y, terms = t, degree= d),i=1..n) ];
A := DiagonalMatrix(i);
W,c := D.A, D.b; return W,c,A,D;

end:

References

1. Atti, N. B. and Lombardi, H. and Diaz-Toca G. M.: The Berlekamp-Massey algo-
rithm revisited. AAECC 17, (4), pp. 75–82, 2006.

2. Bareiss, E.: Sylvester’s Identity and multistep integer-preserving Gaussian elimina-
tion. Math. Comp. 22, (103), pp. 565–578, 1968.

3. Ben-Or, M., and Tiwari, P.: A Deterministic Algorithm for Sparse Multivariate
Polynomial Interpolation. Proceedings of STOC ’20 , pp. 301–309, ACM, 1988.

4. Cuyt, A., and Lee, W.-S.: Sparse Interpolation of Multivariate Rational Functions.
J. Theoretical Comp. Sci. 412: pp. 1445–1456, Elsevier, 2011.

5. Edmonds, J.: Systems of Distinct Representatives and Linear Algebra. J. Research
of the National Bureau of Standards 718, (4), pp. 241–245, 1967.

6. Gelfond A.: Transcendental and Algebraic Numbers. GITTL, Moscow, 1952; English
translation by Leo F. Boron, Dover, New York, 1960

7. Gentleman, W. M., and Johnson, S. C.: The Evaluation of Determinants by Ex-
pansion by Minors and the General Problem of Substitution. Mathematics of Com-
putation 28(126): pp. 543–548,1974.

8. Lipson, J.: Symbolic methods for the computer solution of linear equations with
applications to flow graphs. Proceedings of SISMC ’1968 , pp. 233–303, IBM, 1969.

9. Hu, J., and Monagan, M.: A fast parallel sparse polynomial GCD algorithm. Pro-
ceedings of ISSAC ’2016 , pp. 271–278, ACM, 2016.

10. Jinadu, A., and Monagan, M.: An Interpolation Algorithm for computing Dixon
Resultants. Proceedings of CASC ’2022, LNCS 13366: pp 185-205, Springer, 2022.

11. Jinadu, A., and Monagan, M.: A new interpolation algorithm for computing Dixon
Resultants. ACM 56 (2): pp 88-91, 2022.

12. Jinadu, A., and Monagan, M.: The Failure Probability and Complexity Analysis
of a Dixon Resultant Interpolation Method. Submmitted to ISSAC ’2023

13. Kaltofen, E. , and Lee, W. , and Lobo, A.: Early termination in Ben-Or/Tiwari
sparse interpolation and a hybrid of Zippel’s algorithm. Proceedings of ISSAC 2000,
pp. 192–201, ACM, 2000.

14. Monagan, M.: Maximal Quotient Rational Reconstruction: An Almost Optimal
Algorithm for Rational Reconstruction. Proceedings of ISSAC ’2004 , pp. 243–249,
ACM, 2004.

15. Monagan, M., Vrbik, P: Lazy and Forgetful Polynomial Arithmetic and Applica-
tions. Proceedings of CASC ’2009, LNCS 5743: pp 226-239, Springer, 2009.

16. Schwartz, J: Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM , 27:701–717 (1980)



Title Suppressed Due to Excessive Length 21

17. Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. Proceedings of EU-
ROSAM ’79 , pp. 216–226, (1979), Springer-Verlag, 1979.


	Solving Parametric Linear Systems using Sparse Rational Function Interpolation
	Introduction
	Sparse Multivariate Rational Function Interpolation 
	 Cuyt and Lee's algorithm
	Using a Kronecker Substitution on the parameters

	The Algorithm
	Analysis
	Failure Probability Analysis
	Unlucky Primes and Evaluation Points
	Bad Evaluation Points, Primes and Basis Shift
	Main Results

	Complexity Analysis

	Implementation and Benchmarks
	Appendix


