
A new Dixon resultant algorithm for solving parametric
polynomial systems using sparse multivariate rational

function interpolation

Ayoola Jinadua,b, Michael Monagana

aDepartment of Mathematics, Simon Fraser University, Burnaby, V5A 1S6, B.C., Canada
bDepartment of Mathematics, Alexander College, Burnaby, V5H 4T6, B.C., Canada

Abstract

Elimination methods such as Gröbner bases and triangular sets have been
employed to address the growing demand for solving parametric polynomial
systems in practice. However, experiments have shown that when used in Com-
puter Algebra Systems such as Maple and Magma they often struggle with
systems that have many parameters. To address this problem, we present a
new interpolation algorithm for solving parametric polynomial systems over Q
using the Dixon resultant. The Dixon resultant is a multiple of the unique gen-
erator of an elimination ideal of a polynomial system. It can be expressed as
the determinant of a matrix of polynomial entries called the Dixon matrix.

In practice, the Dixon resultant R often has many repeated factors and a
large polynomial content. To avoid computing these unwanted factors of R, our
new algorithm interpolates the rational function coefficients in the parameters
of the monic square-free factors of R from monic univariate images of R. It
does this using our newly developed sparse multivariate rational function inter-
polation method. By not computing R in expanded form, our approach often
dramatically reduces the number of images needed to interpolate the monic
square-free factors of R over Q.

We have implemented our new Dixon resultant algorithm in Maple with
many parts of the algorithm coded in C for increased efficiency. Our bench-
marks show that our new Dixon resultant algorithm can solve many parametric
polynomial systems that other algorithms for computing R are unable to solve.
Our new algorithm is probabilistic; it may fail to produce an answer, and even
when successful, it may return an incorrect answer, but with provably low prob-
ability. In this work we identify and classify all the causes of failure in our new
algorithm, and we give a detailed failure probability analysis.

Keywords: Black box, Parametric Polynomial system, Dixon Resultants,
Sparse Multivariate Rational Function Interpolation, Kronecker Substitution

Preprint submitted to Journal of Symbolic Computation March 7, 2025

1. Introduction

Solving parametric polynomial systems has become increasingly important
in many fields such as computer vision, robotics, physics, and control theory.
Various elimination techniques including Gröbner bases [6] and triangular sets
[2] have been used to solve these systems. However, experiments by Lewis in [26,
27, 28] showed that when these methods are used to solve parametric polynomial
systems arising from practical applications in Computer Algebra Systems such
as Maple and Magma, they often fail on systems with many parameters. They
can take a very long time to execute or they run out of memory due to the
intermediate expression swell caused by the parameters.

To address this problem, we study the Dixon resultant method [8, 9], a deter-
minant approach for solving polynomial systems which eliminates n−1 variables
from n polynomial equations in n variables. The Dixon resultant method is rec-
ognized as the most efficient method of all known resultant methods. Notably,
comparison results from [14] show that the dimension of the Dixon matrix (see
Section 2) and the size of the polynomial entries in it are smaller compared to
the resultant matrices produced by the Macaulay and sparse resultant methods.

Let X = {x1, . . . , xn} be the set of variables and let Y = {y1, . . . , ym} be
the set of parameters with n ≥ 2 and m ≥ 1. Let F = {f̂1, f̂2, . . . , f̂n} ⊂
Q[Y][X] such that |F|= |X|= n. We refer to F as a parametric polynomial
system where each f̂i is a polynomial in variables X with coefficients in the
polynomial ring Q[Y]. Let I = ⟨f̂1, f̂2, . . . , f̂n⟩ be the ideal generated by F and
let J = I ∩ Q(Y)[x1] be the elimination ideal in Q(Y)[x1]. The Dixon resultant
R of F in x1 is a multiple of the unique generator of J [8, 9, 13], and it can be
expressed as a determinant of a matrix of polynomial entries in x1, y1, · · · , ym
called the Dixon matrix (see Section 2). Suppose

R =

d̂∑
k=0

r̄k(y1, · · · , ym)xk
1 ∈ Q[Y][x1]

where d̂ = deg(R, x1). If d̂ = 0, then F does not have a solution. Now let d̂ > 0,
and let C = gcd(r̄0, r̄1 · · · , r̄d̂) be the polynomial content of R.

In practice, when R factors over Q, it often has many repeated factors with
large degrees and a large polynomial content C. To avoid computing these un-
wanted polynomial factors, we do not try to compute R. Instead, we compute
the monic square-free factors Rj of R. The monic square-free factorization of R
is a factorization of the form r̂

∏l
j=1 R

j
j where each Rj can be written as

Rj = x
dTj

1 +

Tj−1∑
k=0

fjk(y1, y2, . . . , ym)

gjk(y1, y2, . . . , ym)
x
djk
1 ∈ Q(Y)[x1]

for non-zero fjk, gjk ∈ Q[y1, y2, . . . , ym] such that

1. r̂ = C/L for some L ∈ Q[Y],

2

2. each Rj is monic and square-free, that is, gcd(Rj , ∂Rj/∂x1) = 1,

3. gcd(Ri, Rj) = 1 for i ̸= j,

4. gcd(fjk, gjk) = 1 for all 0 ≤ k ≤ Tj − 1, and

5. the leading coefficient of gjk denoted by LC(gjk) = 1.

This monic square-free factorization exists and it is unique [15, Section 14.6]. We
remark that the monic square-free factors Rj of R are not necessarily irreducible
in Q(Y)[x1]. To give the reader an idea of what we are computing, we give the
following real example from [26, Section 8, page 247].

Example 1. The robot arms system F = {f̂1, f̂2, f̂3, f̂4} ⊂ Q[Y][X] where
X = {x1, x2, x3, x4} and Y = {y1, y2, . . . , y7}. The four polynomials f̂1, f̂2, f̂3, f̂4
are listed in Appendix A. Let

C = −65536
(
y22 + 1

)8 (
y22y

2
4 + 2y22y4y5 + y22y

2
5 + y24 − 2y4y5 + y25

)4
y84

A1 = x2
1 + 1

A2 = (y22y
2
3 + 2y22y3y6 − y22y

2
4 − 2y22y4y5 − y22y

2
5 + y22y

2
6 + y22y

2
7 + y23 + 2y3y6

−y24 + 2y4y5 − y25 + y26 + y27)x
2
1 + (−4y22y3y7 − 4y3y7)x1 + y22y

2
3 − y24

−2y22y3y6 − y22y
2
4 − 2y22y4y5 − y22y

2
5 + y22y

2
6 + y22y

2
7 + y23 − 2y3y6

+2y4y5 − y25 + y26 + y27

A3 =
(
y21 + 2y1y4

)
x2
1 + y21 − 4y1y3 + 2y1y4 + 4y23 − 4y3y4

A4 =
(
y21 − 2y1y4

)
x2
1 + y21 − 4y1y3 − 2y1y4 + 4y23 + 4y3y4.

By eliminating {x2, x3, x4} from F , we determined that the Dixon resultant R
of F in x1 has 6,924,715 terms in expanded form and it factors over Q as

CA24
1 A4

2A
2
3A

2
4 .

Our new Dixon resultant algorithm interpolates R1, R2 and R3 where R1 =
A1, R2 = monic(A2, x1) and R3 = monic(A3A4, x1) where monic(A, x1) =
A/LC(A, x1) means that A is monic in x1. The largest polynomial coefficients
of R1, R2 and R3 to be interpolated by our algorithm are the coefficients of
A2 of degree 0 and 2 in x1 (shown in blue) which both have only 14 terms.
For comparison, Kapur, Saxena and Yang [14] use Zippel’s algorithm [37] to
interpolate R which has 6,924,715 terms. Note that R1 and R2 are irreducible
over Q(y1, y2, . . . , y7) but R3 is not.

1.1. Modular Black box model for R

A black box is a device or a computer program in which its inputs and
output are known, but the internal functionality is unknown. The black box
model was first studied in Computer Algebra by Kaltofen and Trager in [23] who
gave algorithms for computing the greatest common divisor of two polynomials

3

represented by two black boxes and factoring a polynomial given by a black
box. A black box can be constructed for a polynomial, a rational function, and
a parametric linear system. A function call to the black box is referred to as a
black box probe.

For our purposes, we assume we can modify a given black box that works over
Z or Q to work modulo a prime p. We do this to improve the efficiency of evaluat-
ing the black box at a point to avoid large integer or rational number arithmetic.
Figure 1 depicts a modular black box representation of f ∈ Z[x1, x2, . . . , xn],
where p is prime and α ∈ Zn

p is an evaluation point.

f(α1, α2, . . . , αn) mod p

prime p

x1 = α1

x2 = α2

x3 = α3

...
xn = αn

Figure 1: Modular Black box model for f ∈ Z[x1, x2, . . . , xn]

In this work, the modular black box for our proposed Dixon resultant al-
gorithm denoted by BB will represent a determinant computation. We con-
struct the modular black box BB from a Dixon matrix D of polynomials in
x1, y1, y2, . . . , ym over Z to evaluate D at a point α ∈ Zm+1

p where p is prime
and then compute the determinant of the integer matrix D(α) mod p. We then
input BB : (Zm+1

p , p) → Zp to our proposed Dixon resultant algorithm which
treats it as a black box.

1.2. Overview of our Dixon resultant algorithm
Given the modular black box BB : (Zm+1

p , p)→ Zp for the Dixon resultant
R, our new Dixon resultant algorithm probes BB at many points to interpolate
the monic square-free factors Rj one at a time. It does not interpolate R.
Our new algorithm interpolates the Rj from monic univariate images of R in
x1 using our new sparse multivariate rational function interpolation method to
interpolate the rational function coefficients of the monic square-free factors Rj

in Q(Y) modulo primes. It then uses Chinese remaindering and rational number
reconstruction [15, 30] to recover the rational coefficients of Rj .

We interpolate the monic square-free factors because it is (1) cheap to com-
pute a square-free factorization of a monic image of R in Zp[x1], (2) the square-
free factorizations will have the same degree pattern with high probability, and
(3) the square-free factors of R will often be smaller than the square-free part
of R. Interpolating the Rj ’s instead of R often results in a huge gain because
all unwanted repeated factors and the polynomial content are avoided. This is

4

the main advantage of our algorithm over using polynomial interpolation algo-
rithms such as the Ben-Or/Tiwari algorithm [4] and Zippel’s algorithm [37] for
interpolating R. Furthermore, the number of primes used by our algorithm to
recover the rational coefficients of Rj using Chinese remaindering and rational
number reconstruction is also reduced. The number of polynomial terms in the
Rj to be interpolated is much less than in R so the number of black box probes
required to interpolate the Rj is often much fewer than the number required to
interpolate R.

To interpolate the rational function coefficients of the Rj , we have developed
a new sparse multivariate rational function interpolation method for our Dixon
resultant algorithm. We modify the sparse multivariate rational function inter-
polation algorithm of Cuyt and Lee [7] and the Ben-Or/Tiwari algorithm [4] to
use a Kronecker substitution on the parameters y1, y2, . . . , ym and a new set of
randomized evaluation points.

Previous methods for computing Dixon resultants
To the best of our knowledge, the work of Kapur, Saxena and Yang in

1995 [14] is the only previous attempt to interpolate the Dixon resultant R.
The authors used Zippel’s sparse interpolation [37]. Zippel’s algorithm makes
O(D̂t) probes to the black box BB for the first image modulo a prime where
D̂ = deg(R, x1) +

∑m
i=1 deg(R, yi), m is the number of parameters and t is the

number of terms of R. To recover the integer coefficients of R using Chinese re-
maindering, one can use the support of the result obtained for the first prime for
the subsequent primes. Zippel’s algorithm uses O(t) probes for each subsequent
prime.

In 2015, in [26], Lewis developed the Dixon-EDF (Early Detection Factor)
algorithm for computing the Dixon resultant R. This algorithm is a variant
of the Gaussian elimination algorithm. It is a modified row reduction of the
Dixon matrix that factors out the gcd of each pivot row at each elimination
step. The Dixon-EDF method is able to detect factors of the Dixon resultant
R early. However, if there are many parameters, a severe expression swell may
occur when computing in Q[Y][x1]. If this happens Lewis often switches to
the Gentleman & Johnson minor expansion algorithm [12] to try to finish the
computation. The implementation of the Dixon-EDF algorithm was done in
Fermat; a Computer Algebra System designed and implemented by Lewis whose
built-in multivariate gcd algorithm uses Zippel’s gcd algorithm [25]. In 2017,
another variant of the Dixon-EDF algorithm was designed and implemented
in Maple by Minimair [32] which requires fewer gcd computations than Lewis’
Dixon-EDF method.

New Contributions
This paper is the full version of our preliminary work [19] which was pre-

sented and published in the proceedings of CASC 2022. It was also presented at
the ISSAC 2022 poster session and was subsequently published as an extended
abstract [20]. However, the failure probability analysis and the complexity anal-
ysis of the algorithm in terms of the number of black box probe were left for

5

future work. The referees for the CASC paper asked for the failure probability
analysis and one of the ISSAC referees asked us to compare our Dixon resultant
algorithm with an implementation of the Dixon-EDF algorithm. In comparison
with our previous works [19, 20], the Dixon resultant algorithm presented in this
paper is an improved version. We have redesigned our algorithm to pre-compute
certain degree bounds for speed up (see Subsection 4.3.2 for benchmarks). The
failure probability analysis of our algorithm, the benchmarks and timing results
data are new. Algorithm 8 which uses the support of the first image of the Rj ’s
modulo the first prime to get new images when additional primes are required
is new. It uses at most 50% of the total number of black box probes used for
the first prime to get a new image.

Our Maple and C code is freely available for download at: https://www.
cecm.sfu.ca/personal/monaganm/code/DixonRes/DixonRes/. There you will
also find the polynomial systems we use in our benchmarks.

Paper Outline
We review the Dixon resultant formulation for solving polynomial systems

in Section 2, and we present some new results which include Theorems 8, 14
and 16. In Section 3, we give an overview of the rational function interpolation
algorithm of Cuyt and Lee [7] and the Ben-Or/Tiwari sparse polynomial algo-
rithm [4]. Then we discuss how we modify these algorithms to use a Kronecker
substitution and a new randomized evaluation point sequence to adress both
the large prime problem and the issue of unlucky evaluation points that occur
when the adopted sparse polynomial algorithm in Cuyt and Lee’s method is
the Ben-Or/Tiwari sparse polynomial algorithm [4]. Our Dixon resultant al-
gorithm is presented in Section 4. We also compare our new Dixon resultant
algorithm with the Gentleman and Johnson minor expansion algorithm, Lewis’
Dixon-EDF algorithm, and a hybrid Maple and C implementation of Zippel’s
algorithm to interpolate R on real parametric polynomial systems that emerged
from practical applications. A detailed failure probability analysis and the com-
plexity analysis of our Dixon resultant algorithm in terms of the number of black
box probes used is presented in Section 5.

1.3. Some Useful Results
Many of the proofs in this paper require the use of the Schwartz-Zippel

Lemma [33, 37]. We state the lemma and some useful results now.

Lemma 2 (Schwartz-Zippel Lemma). Let K be a field and let S be a finite
subset of K. Let f be a non-zero polynomial in K[y1, y2, · · · , ym]. If α is chosen
at random from Sm then Pr[f(α) = 0] ≤ deg(f)

|S| .

Definition 3. Let f =
∑t

i=1 aiNi ∈ Z[y1, y2, · · · , ym] where the coefficients ai
are non-zero in Z, Ni is a monomial in variables y1, y2, · · · , ym. Let t = #f
denote the number of terms in f and let supp(f) = {Ni : 1 ≤ i ≤ t}. The height

6

https://www.cecm.sfu.ca/personal/monaganm/code/DixonRes/DixonRes/
https://www.cecm.sfu.ca/personal/monaganm/code/DixonRes/DixonRes/

of f denoted by ∥f∥∞ is defined as ∥f∥∞= maxti=1|ai|. Let

H =

dT∑
k=0

fk(y1, y2, · · · , ym)

gk(y1, y2, · · · , ym)
xk
1

where the fk and gk are polynomials in Z[y1, y2, · · · , ym]. We also define ∥H∥∞=

maxdT

k=0 (∥fk∥∞, ∥gk∥∞) and #H =
∑dT

k=0(#fk +#gk).

Theorem 4. [17, Proposition 2] Let A be a t×t matrix with Aij ∈ Z[y1, · · · , ym],

#Aij ≤ N and ∥Aij∥∞≤ h. Then ∥det(A)∥∞ < t
t
2N tht.

Lemma 5. [11, Lemma 2, page 135] Let f, g ∈ Z[y1, y2, · · · , ym]. If g|f then
∥g∥∞≤ e

∑m
i=1 deg(f,yi)∥f∥∞ where e ≈ 2.718 is the Euler number. Note, for

almost all polynomials if g|f we will have ∥g∥∞≤ ∥f∥∞.

2. Dixon Resultants

Let f̂ be a polynomial in x1, x2, . . . , xn. Let {x̄2, · · · , x̄n} be the set of new
variables corresponding to x2, · · · , xn respectively. Let α = (α1, α2, . . . , αn)
where each αi ≥ 0. Let xα = xα1

1 xα2
2 · · ·xαn

n and let π1(xα) = xα. Fix i ≥ 2 and
let x1 be the main variable. Let

πi(xα) = xα1
1 x̄α2

2 . . . x̄αi
i x

αi+1

i+1 x
αi+2

i+2 · · ·x
αn
n .

The evaluation map πi can be extended naturally to polynomials as

πi(f̂(x1, x2, · · · , xn)) = f̂(x1, x̄2, . . . , x̄i︸ ︷︷ ︸
i−1 variables

, xi+1, xi+2 . . . , xn).

Observe that the evaluation map πi replaces the (i − 1) variables x2, . . . , xi in
f̂ with the new variables x̄2, . . . x̄i, so x1 is never affected.

There are four major steps involved in computing the Dixon resultant of a
given parametric system polynomial F . Our presentation follows Kapur [13].

2.1. Step 1: Constructing the Cancellation Matrix C.
Definition 6. Given a parametric polynomial system F = {f̂1, f̂2, . . . , f̂n} ⊂
Z[y1, y2, . . . , ym][x1, x2, . . . , xn], let Xe = {x2, · · · , xn} be the set of variables to
be eliminated from F and let x1 be the main variable to appear in the Dixon
resultant R. Let Xe = {x̄2, x̄3 · · · , x̄n} be the set of new variables corresponding
to Xe. We define the n× n cancellation matrix

C =


π1(f̂1) π1(f̂2) . . . π1(f̂n)

π2(f̂1) π2(f̂2) . . . π2(f̂n)
...

...
...

πn(f̂1) πn(f̂2) . . . πn(f̂n)

 . (1)

7

Definition 7. Let

∆Xe
=

det(C)∏n
i=2(xi − x̄i)

∈ Q[Y, x1][Xe, Xe]. (2)

We refer to ∆Xe
as the Dixon polynomial of F with respect to Xe.

Notice that det(C) is a multiple of ∆Xe . Thus, if the number of variables n is
large, and since there are 2n−1 terms in

∏n
i=2(xi − x̄i) when expanded, then

computing ∆Xe
using (2) will result in large intermediate expression swell. This

intermediate expression swell can cause the computation of the Dixon polyno-
mial to become the most expensive step of the Dixon resultant method.

To compute ∆Xe we do not use (2). Instead, we use an idea communicated to
us by Lewis [29]. We construct a matrix Ĉ from C as follows. Define Row1(Ĉ) =
Row1(C) and

Rowj(Ĉ) =
Rowj(C)− Rowj−1(C)

xj − x̄j
for j = 2, 3, . . . n (3)

where Rowj(C) is the j-th row of C. To obtain a tight height bound for ∥∆Xe
∥∞

in Theorem 14, Theorem 8 avoids the polynomial divisions by xj − x̄j in (3).

Theorem 8. Let F = {f̂1, f̂2, . . . , f̂n} ⊂ Z[y1, y2, . . . , ym][x1, x2, . . . , xn] and let
dj = maxf̂∈F deg(f̂ , xj). Then for j = 2, 3, . . . , n, and k = 1, 2, . . . , n,

(i) the entries Ĉj,k of the new cancellation matrix Ĉ are polynomials and

det(Ĉ) = ∆Xe
=

det(C)∏n
i=2(xi − x̄i)

.

(ii) Furthermore, by expressing

πj(f̂k)− πj−1(f̂k) =

dj∑
u=0

f̃u,j,kx
u
j , (4)

where for u ̸= 0, f̃u,j,k ∈ Z[y1, y2, . . . , ym][x1, x̄2, . . . , x̄j−1, xj+1, . . . , xn]

and f̃0,j,k ∈ Z[y1, y2, . . . , ym][x1, x̄2, . . . , x̄j , xj+1, . . . , xn], we obtain

Ĉj,k =
πj(f̂k)− πj−1(f̂k)

xj − x̄j
=

dj−1∑
i=0

dj−1∑
u=i

f̃u+1,j,k xu−i
j

 x̄ i
j . (5)

Proof. For 2 ≤ j ≤ n, observe that (xj − x̄j) divides πj(f̂k) − πj−1(f̂k) =

f̂k(x1, x̄2, . . . , x̄j , xj+1, xj+2 . . . , xn)−f̂k(x1, x̄2, . . . , x̄j−1, xj , xj+1 . . . , xn). Thus,

8

the entries Ĉj,k =
πj(f̂k)−πj−1(f̂k)

xj−x̄j
are polynomials. Now let

E =


π1(f̂1) π1(f̂2) . . . π1(f̂n)

π2(f̂1)− π1(f̂1) π2(f̂2)− π1(f̂2) . . . π2(f̂n)− π1(f̂n)

π3(f̂1)− π2(f̂1) π3(f̂2)− π2(f̂2) . . . π3(f̂n)− π2(f̂n)
...

...
...

πn(f̂1)− πn−1(f̂1) πn(f̂2)− πn−1(f̂2) . . . πn(f̂n)− πn−1(f̂n)


where the i-th row of E denoted by Rowi(E) = Rowi(C)−Rowi−1(C). It follows
that det(E) = det(C). Next, since xj− x̄j divides πj(f̂k)−πj−1(f̂k), we can write

πj(f̂k)− πj−1(f̂k) = (xj − x̄j)Ĉj,k

for some polynomial Ĉj,k ∈ Z[y1, . . . , ym][x1, x̄2, . . . , x̄j , xj , xj+1, . . . , xn]. So ma-
trix E becomes

E =


Ĉ1,1 Ĉ1,2 . . . Ĉ1,n

(x2 − x̄2)Ĉ2,1 (x2 − x̄2)Ĉ2,2 . . . (x2 − x̄2)Ĉ2,n
(x3 − x̄3)Ĉ3,1 (x3 − x̄3)Ĉ3,2 . . . (x3 − x̄3)Ĉ2,n

...
...

...
...

(xn − x̄n)Ĉn,1 (xn − x̄n)Ĉn,2 . . . (xn − x̄n)Ĉn,n

 .

Therefore, det(E) = det(Ĉ)
∏n

j=2(xj − x̄j). Using (2), it follows that

∆Xe =
det(C)∏n

j=2(xj − x̄j)
=

det(E)∏n
j=2(xj − x̄j)

=
det(Ĉ)

∏n
j=2(xj − x̄j)∏n

j=2(xj − x̄j)
= det(Ĉ).

This completes part (i). For the proof of part (ii), we recall the formal power
series representation of (xj − x̄j)

−1 when expanded about x̄j is given by

1

xj − x̄j
=

∞∑
i=1

x−i
j x̄ i−1

j .

Using (4), it follows that

Ĉj,k =
πj(f̂k)− πj−1(f̂k)

xj − x̄j
=

dj∑
u=0

f̃u,j,kx
u
j

(∞∑
i=1

x−i
j x̄ i−1

j

)

=

dj∑
u=0

f̃u,j,kx
u
j

(
u∑

i=1

x−i
j x̄ i−1

j

)
+

dj∑
u=0

f̃u,j,kx
u
j

(∞∑
i=u+1

x−i
j x̄ i−1

j

)
︸ ︷︷ ︸

G

.

9

Since the entries Ĉj,k are polynomials, we have that G = 0. Therefore,

Ĉj,k =

dj∑
u=0

f̃u,j,kx
u
j

(
u∑

i=1

x−i
j x̄ i−1

j

)
. (6)

Observe that

u∑
i=1

x̄i−1
j

xi−1
j

=
1−

(
x̄j

xj

)u
1− x̄j

xj

=
xu
j − x̄u

j

xu−1
j (xj − x̄j)

.

So,

xu
j

(
u∑

i=1

x−i−1
j x̄ i

j

)
=

xu
j

xj

(
u∑

i=1

x−i
j x̄ i

j

)
=

xu−1
j

(
xu
j − x̄u

j

)
xu−1
j (xj − x̄j)

=
xu
j − x̄u

j

xj − x̄j

=
x̄u
j

((
xj

x̄j

)u
− 1
)

x̄j

(
xj

x̄j
− 1
) =

x̄u−1
j

((
xj

x̄j

)u
− 1
)

(
xj

x̄j
− 1
) = x̄u−1

j

u∑
i=1

xi−1
j

x̄i−1
j

.

Therefore,

xu
j

(
u∑

i=1

x−i−1
j x̄ i

j

)
= x̄u−1

j

u∑
i=1

xi−1
j x̄−i+1

j =

u∑
i=1

xi−1
j x̄u−i

j =

u−1∑
i=0

xi
j x̄u−i−1

j .

Thus, (6) becomes

Ĉj,k =

dj∑
u=1

f̃u,j,k

(
u−1∑
i=0

xi
j x̄ u−i−1

j

)
. (7)

By expanding (7) and rearranging the terms in powers of x̄j , we get

Ĉj,k = x̄0
j

dj−1∑
i=0

f̃i+1,j,kx
i−0

+ x̄1
j

dj−1∑
i=1

f̃i+1,j,kx
i−1


+ · · ·+ x̄

dj−2
j

 dj−1∑
i=dj−2

f̃i+1,j,kx
i−(dj−2)

+ x̄
dj−1
j f̃dj ,j,k

(
x(dj−1−(dj−1)

)

=

dj−1∑
i=0

dj−1∑
u=i

f̃u+1,j,k xu−i
j

 x̄ i
j .

10

Remark 9. Simplifying (6) to get (5) yields a tighter bound for ∥∆Xe∥∞.

2.2. Step 2: Constructing the Dixon Matrix from the Dixon Polynomial
The second step is to build the Dixon matrix D from the Dixon polynomial

∆Xe
. To do this, we first need degree bounds for ∆Xe

in xi and x̄i using (2).
Let di = maxf̂∈F deg(f̂ , xi). Since the evaluation map πi does not affect x1,
we have that deg(∆Xe , x1) ≤ nd1. Notice that deg(∆Xe , x2) ≤ d2 − 1 and
deg(∆Xe , x̄2) ≤ (n− 1)d2 − 1 because x2 is replaced with x̄2 from row 2 to row
n of matrix C and we have to do a division by x2 − x̄2 from

∏n
i=2(xi − x̄i) in

(2). Following the same reasoning, for 2 ≤ i ≤ n, it follows that

deg(∆Xe
, xi) ≤ (i− 1)di − 1 (8)

and
deg(∆Xe

, x̄i) ≤ (n− i+ 1)di − 1. (9)

Let V be a monomial column vector in Xe = {x̄2, x̄3 · · · , x̄n} when ∆Xe is
viewed as a polynomial in Xe and let V be a monomial row vector in Xe =
{x2, x2, . . . , xn} when ∆Xe

is viewed as a polynomial in Xe. Notice that

|V | ≤
n∏

i=2

(n− i+ 1)di − 1 + 1 ≤ (n− 1)!

n∏
i=2

di

because |Xe|= n − 1 and the maximum number of possible monomials that
appears in V in x̄i including the constant term 1 is at most (n − i + 1)di.
Following the same argument as before, one can see that

|V | ≤
n∏

i=2

(i− 1)di − 1 + 1 ≤ (n− 1)!

n∏
i=2

di.

Lemma 10. Let V be a monomial column vector in variables Xe when ∆Xe
is

viewed as a polynomial in Xe and let V be a monomial row vector in Xe when
∆Xe

is viewed as a polynomial in Xe. In bilinear form, ∆Xe
can be written as

∆Xe
= V DV

such that D is a s× t matrix with t, s ≤ (n− 1)!
∏n

i=2 di and Dij ∈ Q[Y, x1].

Definition 11. The s × t matrix D in the above lemma is called the Dixon
matrix and R = det(D) ∈ Q[Y, x1] is the Dixon resultant if s = t and R ̸= 0.

Example 12. Let F = {x2
2 + x2

3 − y23 , (x2 − y1)
2
+ x2

3 − y22 , −x3y1 +2x1}. Let
Xe = {x2, x3} be the variables to be eliminated from F and let Xe = {x̄2, x̄3}
be the new variables corresponding to Xe. Using our new formula (5), we get

Ĉ =

 x2
2 + x2

3 − y2
3 (x2 − y1)

2 + x2
3 − y2

2 −x3y1 + 2x1

x2 + x̄2 x2 − 2y1 + x̄2 0
x3 + x̄3 x3 + x̄3 −y1


11

and the Dixon polynomial

∆Xe = (−2x2y
2
1 + y31 − y1y

2
2 + y1y

2
3)x̄2 +

(
−2x3y

2
1 + 4x1y1

)
x̄3

+
(
x2y

3
1 − x2y1y

2
2 + x2y1y

2
3 − 2y21y

2
3 + 4x1x3y1

)
.

The Dixon polynomial ∆Xe expressed in bilinear form yields

V DV = [x2 x3 1]

[−2y2
1 0 y3

1 − y1y
2
2 + y1y

2
3

0 −2y2
1 4x1y1

y3
1 − y1y

2
2 + y1y

2
3 4x1y1 −2y2

1y
2
3

][
x̄2

x̄3

1

]
.

Finally, the Dixon resultant

R = det(D) = 2y41(16x
2
1 + y41 − 2y21y

2
2 − 2y21y

2
3 + y42 − 2y22y

2
3 + y43).

2.3. Step 3: Extracting a sub-matrix M of maximal rank from the Dixon matrix
In practice, the Dixon matrix D is often rectangular. This is evident from

our bounds for the dimensions of D in Lemma 10. Also, when D is square,
R = det(D) is often 0, thus providing no information about the solutions of F .
These problems were addressed by Kapur, Saxena and Yang in [13]. They proved
that the determinant of any square sub-matrix M of D with rank(M) = rank(D)
is an element of the elimination ideal I∩Q(Y)[x1]. Thus, once the Dixon matrix
D is constructed, the third step is to identify M .

Our Probabilisitic Approach
In this paper, we select a square sub-matrix M of maximal rank from D as

follows. We pick a 62 bit prime p and choose an evaluation point β ∈ Zm+1
p

at random. Then we compute B = D(β) and identify a square sub-matrix
of maximal rank from B in the Dixon matrix D. This requires doing Gaussian
elimination over Zp only and in contrast to [13] crucially avoids doing polynomial
arithmetic in Q[Y, x1]. However, the evaluation point β or the input prime may
result in the selection of a sub-matrix M with rank(M) < rank(D). Example
13 illustates this failure and Theorem 16 bounds the failure probability.

Example 13. Consider the matrices D and M below.

D =


x2
1y1 1 0 0 0

2x1y1 2 0 0 0
1 0 5 x2

1 0
7 8 10 4x1 0

 M =


x2
1y1 1 0 0

2x1y1 2 0 0
1 0 5 x2

1

7 8 10 4x1

 .

It is not hard to see M is a submatrix of D of maximal rank as det(M) =
−20x4

1y1 + 60x3
1y1 − 40x2

1y1. Since det(M) has a root x1 = 2, y1 = 3, for any
prime p used, if β = (2, 3) is selected, then an incorrect sub-matrix x2

1y1 1 0
2x1y1 2 0
1 0 5


12

would be chosen whose rank is less than rank(D) = 4.

2.4. Step 4: Computing det(M) the Dixon resultant
The final step is to compute det(M) where M is an s by s matrix of polyno-

mials in the ring Z[x1, y1, . . . , ym]. The Bareiss-Edmonds fraction free algorithm
[3, 10] is implemented in Maple and many Computer Algebra Systems. It is a
fraction-free variation of Gaussian elimination which does O(s3) multiplications
and exact divisions in the ring Z[x1, y1, . . . , ym]. We do not use it because a
severe expression swell occurs when m is large. In [12] Gentleman and John-
son compared minor expansion with Bareiss-Edmonds on polynomial matrices.
Even though minor expansion does O(s2s) ring operations, it is much faster than
Bareiss-Edmonds when m is not small. We have implemented a sparse varia-
tion of Gentleman-Johnson in Maple. We find it is effective for small matrices
and modestly sized sparse matrices on our benchmarks in Section 4. Another
division free algorithm is the Berkowitz algorithm [5] which does O(s4) ring op-
erations. We implemented a sparse version of it in Maple. It performed poorly
on our benchmarks. We also implemented Lewis’ Dixon-EDF algorithm [26] in
Maple. It performs well on many of our benchmarks.

2.5. Height and Degree Bounds
We derive some degree and height bounds for the Dixon resultant R and

its monic square-free factors which we will interpolate. Let the parametric
polynomial system F = {f̂1, f̂2, · · · , f̂n} ⊂ Z[y1, y2, . . . , ym][x1, x2, . . . , xn]. Let
H = maxf̂∈F∥f̂∥∞, N = maxf̂∈F #f̂ , dx = maxni=1(maxf̂∈F deg(f̂ , xi)) and
Dy = maxmi=1(maxf̂∈F deg(f̂ , yi)). Let D be the rectangular Dixon matrix
obtained by Step 2 from F with Dij ∈ Z[x1, y1, y2, . . . , ym]. Let s = rank(D),
t = maxi,j(#Dij), and Dmax = maxi,j(deg(Dij)). These parameters appear in
the next two theorems and in Section 5.

Theorem 14. Let M be any s× s sub-matrix of D with rank(M) = s. Let

R = det(M) =
d̂∑

k=0

r̄k(y1, . . . , ym)xk
1 ∈ Z[y1, y2, . . . , ym][x1]

be the Dixon resultant and suppose its monic square-free factors are

Rj = x
dTj

1 +

Tj−1∑
k=0

fjk(y1, y2, . . . , ym)

gjk(y1, y2, . . . , ym)
x
djk
1 ∈ Z(y1, y2, . . . , ym)[x1]

for fjk, gjk ̸= 0 in Z[y1, y2, . . . , ym] where gcd(fjk, gjk) = 1 and d̂ > 0. Then

(i) deg(R, x1) ≤ nsdx.

(ii) deg(R, yk) ≤ nsDy for 1 ≤ k ≤ m.

(iii) ∥∆Xe
∥∞≤ n

n
2 HnNn where ∆Xe

is the Dixon polynomial.

13

(iv) ∥R∥∞ ≤ tsn
n
2 (HN)nss

s
2 .

(v) ∥Rj∥∞≤ ensdx+2nmsDy∥R∥∞ where e ≈ 2.718 is the Euler number.

Proof. For claim (i) and(ii), we have

deg(R, x1) ≤ s× max
1≤i,j≤s

{deg(Mij , x1)} ≤ s× deg(∆Xe , x1) ≤ nsdx,

and

deg(R, yk) ≤ s× max
1≤i,j≤s

{deg(Mij , yk)} ≤ s× deg(∆Xe
, yk) ≤ nsDy.

We prove claim (iii) using the formula (5) derived in Theorem 8 for creating
the new cancellation matrix Ĉ. Recall that

Ĉj,k =

dj−1∑
i=0

dj−1∑
u=i

f̃u+1,j,k xu−i
j

 x̄ i
j

where f̃0,j,k ∈ Z[y1, y2, . . . , ym][x1, x̄2, . . . , x̄j , xj+1, . . . , xn] and for u ̸= 0, f̃u,j,k ∈
Z[y1, y2, . . . , ym][x1, x̄2, . . . , x̄j−1, xj+1, . . . , xn]. Since f̃u,j,k does not contain vari-
ables xj and x̄j for u ̸= 0, we get

∥Ĉj,k∥∞≤ ∥f̃u,j,k∥∞≤ ∥f̂k∥∞≤ H. (10)

Now, using Theorem 4, we have

∥∆Xe
∥∞≤ ∥det(Ĉ)∥∞≤ n

n
2 ∥Ĉij∥n∞Nn ≤ n

n
2 HnNn. (11)

Since R = det(M) and ∥Mij∥∞ ≤ ∥∆Xe
∥∞, it follows that

∥R∥∞ ≤
(
t ∥Mij∥∞

√
s
)s ≤ tsn

n
2 (HN)nss

s
2

by Theorem 4. This proves claim (iv). Finally, we prove claim (v).

Suppose we clear the fractions of Rj = x
dTj

1 +

Tj−1∑
k=0

fjk(y1, y2, . . . , ym)

gjk(y1, y2, . . . , ym)
x
djk
1 in

y1, y2, . . . , ym. Let Lj = LCM{gjk ∈ Z[x1, y1, . . . , ym] : 0 ≤ k ≤ Tj − 1} be the
least common multiple of the gjk and let Hj = LjRj ∈ Z[x1, y1, . . . , ym] such
that Hj =

∑Tj

k=0 ajk(y1, . . . , ym)x
djk
1 . Since Hj |R, by Lemma 5, we get

∥Hj∥∞ ≤ edeg(R,x1)+
∑m

k=1 deg(R,yk)∥R∥∞ ≤ ensdx+nmsDy∥R∥∞.

Observe that
Hj

Lj
= x

dTj

1 +

Tj−1∑
k=0

ajk(y1, . . . , ym)

Lj
x
djk
1 . Let hjk = gcd(ajk, Lj).

14

Observe that
ajk/hjk

Lj/hjk
=

fjk
gjk

.

So, fjk|ajk and gjk|Lj =⇒ gjk|LC(R, x1). Using Lemma 5, we get

∥fjk∥∞ ≤ enmsDy∥ajk∥∞ ≤ enmsDy∥Hj∥∞ ≤ ensdx+2nmsDy∥R∥∞

and
∥gj,k∥∞ ≤ enmsDy∥LC(R, x1)∥∞ ≤ enmsDy∥R∥∞.

Therefore, ∥Rj∥∞ ≤
Tj−1
max
k=0

(max (∥fjk∥∞, ∥gjk∥∞)) ≤ ensdx+2nmsDy∥R∥∞.

Remark 15. The height bound for ∥Rj∥∞ obtained in Theorem 14(v) is a worst
case bound because ∥Rj∥∞ is always smaller than ∥R∥∞ in our experiments. It
is rare for the factors of R to have larger coefficients than R.

2.6. Failure Probability
We give a failure probability bound for our probabilistic approach in Step 3

to extract a submatrix M of maximal rank from the Dixon matrix D.

Theorem 16. Let D be the rectangular Dixon matrix obtained from F in Step 2
with s = rank(D). Let p be a random prime selected from a list of pre-computed
primes P and let pmin = min(P). Let β be an evaluation point chosen at random
from Zm+1

p and let B = D(β). Then

Pr[rank(B) < s] ≤
logpmin

|tsnn
2 (HN)nss

s
2 |

|P|
+

sDmax

p
.

Proof. Let M be a s × s sub-matrix of D with rank(M) = s. Since M has full
rank, det(M) ̸= 0, thus deg(det(M)) ≤ sDmax. To extract M from B in D,
we compute B and then perform row operations on B over Zp using Gaussian
elimination. Thus, an incorrect sub-matrix of D is obtained if rank(B) < s =⇒
det(M(β)) = 0 or rank(D mod p) < s. Using Lemma 2, we have

Pr[rank(B) < rank(D)] ≤ Pr[rank(D mod p) < s] + Pr[det(M(β)) = 0]

≤ Pr[p|det(M)] +
deg(detM)

p

≤ Pr[p divides one term in det(M)] +
deg(detM)

p

≤
logpmin

∥det(M)∥∞
|P|

+
sDmax

p

≤
logpmin

|tsnn
2 (HN)nss

s
2 |

|P|
+

sDmax

p

by Theorem 14.

15

Example 17. For the robot arms system listed in Appendix A, we determined
that s = 16, Dmax = 16, N = 34, t = 305, n = 4 and H = 4. So using P =
{the set of 62 bit primes}, |P| ≈ 5.28 × 1016, and p = 262 − 57, it follows that
Pr[rank(B) < rank(D)] < 2.13× 10−16 < 2−52.

3. Modified Interpolation using Kronecker Substitution

In order to minimize the number of black box probes needed by our proposed
Dixon resultant algorithm to interpolate the rational function coefficients of
the monic square-free factors of R, we adapt the sparse multivariate rational
function interpolation algorithm of Cuyt and Lee [7], and the Ben-Or/Tiwari
algorithm [4] for interpolating sparse polynomials for our purposes.

3.1. The algorithm of Cuyt and Lee
Let K be a field and let f/g ∈ K(y1, · · · , ym) be a rational function such that

gcd(f, g) = 1. Suppose the polynomials f and g can be written as

f =

deg(f)∑
i=0

fi(y1, y2, . . . , ym) and g =

deg(g)∑
j=0

gj(y1, y2, . . . , ym)

such that fi and gj are homogeneous with deg(fi) = i and deg(gj) = j.
Cuyt and Lee’s algorithm to interpolate f/g must be combined with a sparse

polynomial interpolation algorithm to interpolate f and g. The main advan-
tage of their algorithm is that it exploits the sparsity structure of f and g by
interpolating fi and gj instead of f and g directly which have more terms.

The first step of their algorithm is to introduce a homogenizing variable z
to form an auxiliary rational function

f(y1z, . . . , ymz)

g(y1z, . . . , ymz)
:=

f0 + f1(y1, . . . , ym)z + . . .+ fdeg(f)(y1, . . . , ym)zdeg(f)

g0 + g1(y1, . . . , ym)z + . . .+ gdeg(g)(y1, . . . , ym)zdeg(g)

and then normalize it using either constant terms f0 ̸= 0 or g0 ̸= 0. However, if
both f0 and g0 are zero, one has to pick a basis shift β ∈ (K \ {0})m such that
g(β) ̸= 0 and then form a new auxiliary rational function as

f(y1z + β1, . . . , ymz + βm)

g(y1z + β1, . . . , ymz + βm)
:=

F (z)

G(z)
=

∑deg(f)
j=0 f̄j(y1, . . . , ym)zj∑deg(g)
j=0 ḡj(y1, . . . , ym)zj

∈ K(y1, . . . , ym)(z)

where F (0) = f̄0(y1, . . . , ym) = c̃×f(β1, β2, . . . , βm) and G(0) = ḡ0(y1, . . . , ym) =
c̃×g(β1, β2, . . . , βm) ̸= 0 for some c̃ ∈ K. Notice that the introduction of β forces
the production of a constant coefficient in the auxiliary rational function so that
it can be normalized using either f̂0 or ĝ0. Therefore, we can write

f(y1z + β1, . . . , ymz + βm)

g(y1z + β1, . . . , ymz + βm)
=

∑deg(f)
j=0

f̄j(y1,...,ym)zj

ḡ0

1 +
∑deg(g)

j=1
ḡj(y1,...,ym)zj

ḡ0

.

16

The drawback of introducing a basis shift β when needed in the formation
of the auxiliary rational function is that it destroys the sparsity of f/g. In
particular, f̄deg(f) and ḡdeg(f) coincide with fdeg(f) and gdeg(f) respectively, but
the non-leading lower degree polynomials f̄i ̸= fi and ḡj ̸= gj , requiring the
effect of the basis shift β to be removed before f/g can be recovered. Thus, if
a rational function f/g ∈ Q(y1, . . . , ym) is represented by a modular black box
B, we can recover it by densely interpolating univariate rational functions

Â(αj , z) =

f̄0
ḡ0

+ f̂1(α
j)

ḡ0
z + · · ·+ f̄deg(f)(α)

ḡ0
zdeg(f)

1 + ḡ1(αj)
ḡ0

z + · · ·+ ḡdeg(g)(αj)

ḡ0
zdeg(g)

∈ Zp(z) for j = 0, 1, 2, · · ·

first using image points obtained from probes to B for some evaluation point
α ∈ Zm

p , then we adjust the non-leading coefficients in the numerator and de-
nominator of Â(αj , z) by the contributions from the higher degree coefficients
before applying sparse polynomial interpolation to recover f/g. Thus, using an
appropriate sparse polynomial interpolation algorithm, the adjusted coefficients
of the auxiliary rational functions produce the desired rational function f/g
that was represented by a black box. We demonstrate how to do this with an
example in Subsection 3.5. In order to densely interpolate Â(αj , z), we use the
Maximal Quotient Rational Function Reconstruction algorithm (MQRFR) [30]
which requires deg(f) + deg(g) + 2 black box probes on z.

3.2. The Ben-Or/Tiwari Algorithm
Let f =

∑t
k=1 akNk(x1, · · · , xn) ∈ Z[x1, · · · , xn] with ak ̸= 0 and t ≥ 1. The

maximum number of possible terms in f is A =
(
n+deg(f)
deg(f)

)
. We say that f is

sparse if t <
√
A. A sparse polynomial f can be written as

f =

t∑
k=1

akNk(x1, · · · , xn) =

t∑
k=1

akx
ek,1

1 x
ek,2

2 · · ·xek,n
n .

The Ben-Or/Tiwari algorithm [4] interpolates f using 2T prime power eval-
uation points {(2j , 3j , · · · , pjn) : 0 ≤ j ≤ 2T − 1} where pn is the n-th prime
assuming a term bound T ≥ t is known. Let m̂i = Ni(2, 3, · · · , pn) be the
monomial evaluations and let λ(z) =

∏t
k=1(z− m̂k) ∈ Z[z]. The Ben-Or/Tiwari

algorithm can be easily implemented using the following five main steps:

1. Compute v ∈ Z2T where vj = f(2j , 3j , · · · , pjn) for 0 ≤ j ≤ 2T − 1.

2. Compute t and λ(z) from v using the Berlekamp-Massey algorithm [1].

3. Compute the integer roots m̂1, m̂2, . . . , m̂t of λ(z).

4. Obtain the exponents ei,j for Ni for 1 ≤ j ≤ n by factoring m̂i via
repeated trial divisions by the successive primes 2, 3, . . . , pn. For example,
88200 = 23325272 corresponds to the monomial x3

1x
2
2x

2
3x

2
4.

17

5. Determine the unknown coefficients ak by solving the transposed Vander-
monde system

V a =


1 1 · · · 1
m̂1 m̂2 · · · m̂t

...
...

...
...

m̂t−1
1 m̂t−1

2 · · · m̂t−1
t



a1
a2
...
at

 =


v0
v1
...

vt−1

 = v. (12)

The above linear system can be solved in O(t2) arithmetic operations
[37]. We also note that the solution a ∈ Zt is unique since the monomial
evaluations are distinct as they are evaluated at powers of primes.

Due to the size of the constant term
∏t

k=1 m̂k in λ(z) which is a large
integer, the Ben-Or/Tiwari algorithm must be performed modulo a prime p
satisfying p > maxti=1 mi ≤ pdn where d = deg(f). However, such a prime p
may be too large to use machine arithmetic. For example, suppose n = 8 and
deg(f, xi) = 11. Then the prime p required by the Ben-Or/Tiwari sparse polyno-
mial algorithm must be larger than 211311 · · · 1911 = 7.2× 1077. This is the pri-
mary disadvantage of using the Ben-Or/Tiwari algorithm. Also, one has to deal
with unlucky evaluation points problem posed by using points (2j , 3j , · · · , pjn)
in modular GCD algorithms [17]. To avoid these problems, we modify the Cuyt
and Lee’s algorithm and the Ben-Or/Tiwari sparse polynomial interpolation
algorithm to use a Kronecker substitution with randomized evaluation points.

We also note that good term bounds T ≥ t are not known. In particular, if
f is given by a black box then t is not known. For our purposes, we follow the
solution of Kaltofen, Lee and Lobo in [24]. We compute λ(z) using j = 2, 4, 6, . . .
points for a sufficiently large prime p and we stop when the degree of λ does not
change. That is, deg(λ, z) = 1, 2, 3, . . . , t−2, t−1, t, t, t, . . . with high probability.

3.3. A new sparse multivariate rational function interpolation method
We develop a new sparse multivariate rational function interpolation algo-

rithm that modifies the Cuyt and Lee’s method and the Ben-Or/Tiwari al-
gorithm. Our approach involves the use of a new set of randomized evaluation
points and employs a Kronecker substitution to effectively reduce the size of our
working primes. Thus, we transform the problem of interpolating a multivari-
ate rational function into a univariate rational function interpolation problem
modulo a prime.

3.3.1. Kronecker substitution
Using a Kronecker substitution in Cuyt and Lee’s method, we reduce the

problem of interpolating a sparse multivariate rational function to many uni-
variate rational function interpolations.

Definition 18. Let K be an integral domain and let A = f/g ∈ K(y1, . . . , ym)
such that gcd(f, g) = 1. Let r = (r1, r2, . . . , rm−1) ∈ Zm−1 with ri > 0. Let

18

Kr : K(y1, . . . , ym)→ K(y) be the Kronecker substitution

Kr(A) =
f(y, yr1 , yr1r2 , . . . , yr1r2···rm−1)

g(y, yr1 , yr1r2 , . . . , yr1r2···rm−1)
.

Let di = max{deg(f, yi),deg(g, yi)} for 1 ≤ i ≤ m. Provided we choose ri > di
for 1 ≤ i ≤ m− 1, then Kr is invertible, g ̸= 0 and Kr(A) = 0 ⇐⇒ f = 0.

Unfortunately, we cannot use the original presentation and definition of the
auxiliary rational function given by Cuyt and Lee to interpolate the univari-
ate mapped function Kr(A). Thus, we need a new method to interpolate the
corresponding auxiliary rational function relative to the mapped univariate ra-
tional function Kr(A), and not the original sparse multivariate rational function
A = f/g. Using a new variable z, we define our new auxiliary rational function

F (y, z) =
f(zy, zyr1 , . . . , zyr1r2···rm−1)

g(zy, zyr1 , . . . , zyr1r2···rm−1)
∈ K[y](z). (13)

To guarantee the existence of a constant term in the denominator of F (y, z), we
use a basis shift β ∈ (K \ {0})m such that g(β) ̸= 0, and instead formally define
an auxiliary rational function with a Kronecker substitution as follows.

Definition 19. Let K be a field and let f/g ∈ K(y1, . . . , ym) with gcd(f, g) = 1.
Let r = (r1, . . . , rm−1) with ri > di = max{deg(f, yi),deg(g, yi)}. Let z be the
homogenizing variable and let Kr be the Kronecker substitution. Let β ∈ Km be
a basis shift and β ̸= (0, 0, . . . , 0) ∈ Km. We define

F (y, z, β) :=
fβ(y, z)

gβ(y, z)
=

f(zy + β1, zy
r1 + β2, . . . , zy

r1r2···rm−1 + βm)

g(zy + β1, zyr1 + β2, . . . , zyr1r2···rm−1 + βm)
∈ K[y](z)

as an auxiliary rational function with a Kronecker substitution Kr.

We will often refer to F (y, z, β) simply as an auxiliary rational function.
Notice in the above definition that for β = 0,

F (y, 1, 0) =
f0(y, 1)

g0(y, 1)
= Kr(A).

Thus, the univariate rational function Kr(A) can be recovered using the coeffi-
cients of zi in F (αi, z, β) for some evaluation point α ∈ Z∗

p and i ≥ 0. If g has
a constant term, then one can use β = (0, . . . , 0). Although the degree of y of
the mapped univariate rational function Kr(A) is exponential in m, the degree
of the auxiliary function F (y, z, β) in z through which the univariate rational
function Kr(A) is interpolated remains the same. Consequently, the number of
terms and the number of probes needed to interpolate A = f/g does not change.
To uniquely recover the exponents in y and to also make our discrete logarithm
computations in Z∗

p feasible, we follow Kaltofen [22] and pick a smooth prime
p >

∏m
j=1 rj such that p − 1 = 2kŝ where ŝ is small. An example illustrating

how our method works is provided in Subsection 3.5.

19

Remark 20. Suppose we want to interpolate a polynomial f such that m =
6,deg(f, yi) = 10 and deg(f) = 60. If we use the Ben-Or/Tiwari algorithm, we
require p > 1360 = 6.8 × 1066. Using a Kronecker substitution, we only need
p > 116 = 1.7× 106.

To invert a Kronecker substitution Kr, we must know the partial degrees of f
and g for all variables. We also need to know the total degrees of f and g in order
to interpolate the auxiliary rational functions with a Kronecker substitution Kr

in variable z whose coefficients are needed to recover A. We discuss how to
pre-compute these degrees with high probability now.

Pre-computing the partial degrees of A = f/g in each variable
Let A = f/g ∈ Q(y1, y2, y3, . . . , ym) be represented by a black box. Let

dfi = deg(f, yi) and dgi = deg(g, yi) be the partial degrees of f and g in variables
yi respectively for 1 ≤ i ≤ m. Let A be viewed as

A = f/g =

∑dfi

k=0 ak(y1, . . . , yi−1, yi+1, yi+2, . . . , ym)yki∑dgi

k=0 bk(y1, . . . , yi−1, yi+1, yi+2, . . . , ym)yki

(14)

such that f, g ∈ Q[y1, y2, . . . , yi−1, yi+1, yi+2, . . . , ym][yi].
Let p be a sufficiently large prime and let z be a new variable. Let α =

(α1, . . . , αi−1, αi, αi+1, . . . , αm) ∈ (Zp \ {0})m−1 be selected at random. To
obtain the partial degrees deg(f, yi) and deg(g, yi), we pick θ ∈ Zp \ {0} at
random, and we use enough random distinct points (at least dfi +dgi +2 points)
for z selected from Zp to probe the modular black box for A = f/g to interpolate
the univariate rational function

Hi(z) := Hfi/Hgi = A(α1, . . . , αi−1, θz︸︷︷︸
the i-th component

, αi+1, · · · , αm) ∈ Zp(z)

such that deg(Hfi , z) = dfi and deg(Hgi , z) = dgi with high probability.

Pre-computing the total degrees of f and g in A = f/g

Similar to our approach for pre-computing the partial degrees of f and g
in A = f/g, we describe how to pre-compute deg(f) and deg(g). Let p be a
sufficiently large prime and let z be a new variable. Let α, β ∈ (Zp \ {0})m be
random evaluation points. Using enough random distinct points for z from Zp,
we discover the total degrees of f and g by probing the modular black box for
A = f/g to interpolate the univariate rational function h(z) where

h(z) :=
f̄(z)

ḡ(z)
=

f(β1z + α1, . . . , βmz + αm)

g(β1z + α1, . . . , βmz + αm)
∈ Zp(z) (15)

such that deg(f̄) = deg(f) and deg(ḡ) = deg(g). The evaluation points α, β ∈
(Zp\{0})m are selected at random to ensure that deg(f̄) = deg(f) and deg(ḡ) =
deg(g) with high probability.

20

3.4. Randomizing the evaluation point sequence
Let p be a prime. Since we map a multivariate rational function A = f/g in

variables y1, y2, . . . , ym to become a univariate rational function Kr(A) ∈ Zp(y)
using a Kronecker substitution Kr, we now need to interpolate many univariate
numerator and denominator polynomials in Zp[y].

Let H =
∑t

j=1 ajNj(y) be one of the univariate polynomials to be inter-
polated in either the numerator or denominator of Kr(A). We avoid unlucky
evaluation point (which causes a degree loss of the total degree of the numer-
ator and the denominator of the univariate auxiliary rational functions in z)
with high probability by randomizing the evaluation points αj for j ≥ 0. This
modification is done as follows.

We pick a random shift ŝ ∈ [0, p − 2] and compute vj = H(αŝ+j) for 0 ≤
j ≤ t − 1. Changing the point sequence from αj to αŝ+j does not affect the
way we recover the univariate monomials Ni in y of H using our new approach.
However, solving for the coefficients ai means we now have to solve the shifted
transposed Vandermonde system [17]

V a =


m̂ŝ

1 m̂ŝ
2 · · · m̂ŝ

t

m̂ŝ+1
1 m̂ŝ+1

2 · · · m̂ŝ+1
t

...
...

...
...

m̂ŝ+t−1
1 m̂ŝ+t−1

2 · · · m̂ŝ+t−1
t



a1
a2
...
at

 =


v0
v1
...

vt−1

 = v,

where m̂j
i = Ni(α

j). To compute the coefficients ai we first solve the transposed
Vandermonde system

Wc =


1 1 · · · 1
m̂1 m̂2 · · · m̂t

...
...

...
...

m̂t−1
1 m̂t−1

2 · · · m̂t−1
t



c1
c2
...
ct

 =


v0
v1
...

vt−1

 = v,

using Zippel’s O(t2) algorithm [38] which yields c = W−1v. Notice that V =
WD where D is a t× t diagonal matrix with entries Dii = m̂ŝ

i . Thus, we obtain
the unknown coefficients ai using ai = m̂−ŝ

i ci since

V a = v =⇒ (WD)a = v =⇒ (Da) = W−1v = c =⇒ a = D−1c.

Therefore, for our new method which uses a Kronecker substitution, we use
the randomized evaluation point sequence {αŝ+i : j ≥ 0} where α ∈ Z∗

p, and a
random shift ŝ ∈ [0, p−2] where p is prime, we interpolate the rational functions

fβ(αŝ+i, z)

gβ(αŝ+i, z)
=

f(zαŝ+i + β1, zα
(ŝ+i)r1 + β2, . . . , zα

(ŝ+i)r1r2···rm−1 + βm)

g(zαŝ+i + β1, zα(ŝ+i)r1 + β2, . . . , zα(ŝ+i)r1r2···rm−1 + βm)
(16)

for i = 0, 1, 2, · · · . Randomizing the point sequence {αŝ+i : i ≥ 0} ensures
deg(fβ(αŝ+i, z)) = deg(f) and deg(gβ(αŝ+i, z)) = deg(g) with high probability.

21

3.5. An illustrative example of our new method
We demonstrate how our new sparse rational function interpolation method

works with the following example before the algorithm is presented. Let

A = f/g =
y41 + y42 + y43 + y24 + y25 + y8

y46 + y47 + y48 + y6
∈ Z(y1, y2, . . . , y8)

be represented by a black box and suppose we want to interpolate A. Let f4 =
y41 + y42 + y43 , f2 = y24 + y25 , f1 = y8 and g4 = y46 + y47 + y48 and g1 = y6. So,
f = f4+f2+f1 and g = g4+g1. Suppose we have discovered deg(f) = deg(g) = 4
and the maximum partial degrees of f and g in each variable denoted by di for
1 ≤ i ≤ 8 using the description presented in Subsection 3.3.1.

We use a Kronecker substitution Kr : Zp(y1, . . . , ym)→ Zp(y) such that

Kr(A) =
f(y, yr1 , yr1r2 , . . . , yr1r2···r7)

g(y, yr1 , yr1r2 , . . . , yr1r2···r7)
=

y28125 + y750 + y250 + y100 + y20 + y4

y112500 + y22500 + y4500 + y1125

where our smooth prime p = 7·220+1 >
∏8

i=1 ri and r = (d1+1, d2+1, . . . , d8+
1) = (4, 4, 4, 2, 2, 4, 4, 4). So, Kr(A) is what we want to interpolate. For the sake
of brevity, we will only show how to interpolate f .

Now, let α = 3, which is a generator for Z∗
p, and let shift ŝ = 2 ∈ [0, p− 2]

be picked at random. Let β = (2, 0, 5, 11, 19, 14, 73, 0). We use β as our basis
shift since g(β) = 28436671 ̸= 0. Note that β must be selected at random in Z8

p

and β ̸= 0.
Step 1: Let I = {1, 2, 4} and J = {1, 4}. Let Na = 2×maxi∈I,j∈J(#fi,#gj)

denote the (minimum) number of auxiliary rational functions needed to inter-
polate Kr(A). For the purpose of description, suppose we know that Na = 6.
We compute the auxiliary rational functions in (16) for 0 ≤ i < Na. They are

fβ(αŝ+0, z)

gβ(αŝ+0, z)
=

1533140z4 + 372219z3 + 2414380z2 + 5792080z + 3074789

541036z4 + 3498541z3 + 3660193z2 + 2300570z + 1

fβ(αŝ+1, z)

gβ(αŝ+1, z)
=

2677008z4 + 1189072z3 + 6815537z2 + 4155022z + 3074789

3557971z4 + 1747545z3 + 398839z2 + 2439065z + 1

fβ(αŝ+2, z)

gβ(αŝ+2, z)
=

1087572z4 + 5756913z3 + 7222964z2 + 1730591z + 3074789

3167873z4 + 2963937z3 + 3921591z2 + 4402146z + 1

fβ(αŝ+3, z)

gβ(αŝ+3, z)
=

3241826z4 + 1542919z3 + 4207334z2 + 3394522z + 3074789

6152965z4 + 6720854z3 + 4202034z2 + 6224289z + 1

fβ(αŝ+4, z)

gβ(αŝ+4, z)
=

1275646z4 + 5200608z3 + 3365526z2 + 2444422z + 3074789

5437940z4 + 5888099z3 + 6974374z2 + 6413638z + 1

fβ(αŝ+5, z)

gβ(αŝ+5, z)
=

3290219z4 + 2061131z3 + 4627299z2 + 1433977z + 3074789

1372709z4 + 1670491z3 + 6302257z2 + 6233953z + 1
.

In practice, these 6 univariate rational functions must be interpolated by
probing the black box for the rational function A. Now since deg(f) = 4, we

22

attempt to interpolate all possible homogeneous polynomials fk in f of degrees
k = 4, 3, 2, 1, 0, in that order using the coefficients of fβ(αŝ+i, z) for 0 ≤ i ≤ 5.

Step 2: Next, for all i, we check that deg(fβ(αŝ+i, z)) = deg(f) = 4 and
deg(gβ(αŝ+i, z)) = deg(g) = 4. In this case, the degrees are equal so we continue.
The degree 4 homogeneous polynomial f4 in f is the first polynomial that must
be interpolated. To do this, we collect the leading coefficient sequence

v = [1533140, 2677008, 1087572, 3241826, 1275646, 3290219]

where vi = LC(fβ(αŝ+i, z), z) for 0 ≤ i ≤ 5. Next, we run the Berlekamp-
Massey algorithm (BMA) on v ∈ Z6

p which generates the feedback polynomial

λ4(z) = z3 + 6573867z2 + 1966358z + 566808 ∈ Zp[z].

Step 3: Computing the roots of λ4(z) over Zp yields the monomial eval-
uations m̂ = {268726, 81, 497359}. Using Shanks [34] and the Pohlig-Helman
algorithm [35], we solve the discrete logarithms {3e1 = 268726, 3e2 = 81, 3e3 =
497359} in Z∗

p to obtain the exponents {e1 = 20, e2 = 4, e3 = 100}. Thus, the
monomials of Kr(f4) are {y20, y4, y100}.

Step 4: Let Kr(f4) = a1y
20 + a2y

4 + a3y
100. Since #Kr(f4) = 3, we set

v = [v1, v2, v3]. We now need to solve for for the coefficients ai in the following
3× 3 shifted transposed Vandermonde systemm̂ŝ+0

1 = 2418422 m̂ŝ+0
2 = 6561 m̂ŝ+0

3 = 6862781

m̂ŝ+1
1 = 6348552 m̂ŝ+1

2 = 531441 m̂ŝ+1
3 = 3749719

m̂ŝ+2
1 = 6474694 m̂ŝ+2

2 = 6346556 m̂ŝ+2
3 = 907481


︸ ︷︷ ︸

V

a1a2
a3


︸ ︷︷ ︸

a

=

15331402677008
1087572


︸ ︷︷ ︸

v

.

To solve the above linear system V a = v, we follow our explanation in Subsection
3.4 by first solving the transposed Vandermonde system

Wc =

 1 1 1
m̂1 = 268726 m̂2 = 81 m̂3 = 497359
m̂2

1 = 2418422 m̂2
2 = 6561 m̂2

3 = 6862781

c1c2
c3

 = v

to get {c1 = 5641816, c2 = 303581, c3 = 2927776}. Then we compute ai =
cim̂

−ŝ
i = 5244685 for 1 ≤ i ≤ 3 to get

Kr(f4) = 5244685y20 + 5244685y4 + 5244685y1000.

Step 5: Next, we invert the Kronecker map Kr to obtain y4 7→ y41 , y
20 7→

y42 , and y100 7→ y43 . So, f4 = 5244685y41 + 5244685y42 + 5244685y43 .

Step 6: Since deg(f) = 4, we now attempt to interpolate all the homo-
geneous polynomials in f of degree less than 4. in f. First, we attempt to
interpolate f3 (if there is such polynomial). To do this, we have to compute

vi = Coeff(fβ(αs+i, z), z3)− Coeff(Hi(z), z
3)

23

for 0 ≤ i ≤ 5 where

Hi(z) = f4(zα
ŝ+i + β1, zα

(ŝ+i)r1 + β2, . . . , zα
(ŝ+i)r1r2···r7 + β8) ∈ Zp[z].

The above computation of v is the coefficient adjustment that must be done
to remove the coefficient contributions of f4 to f3 due to the basis shift β. If
one uses the coefficients of z3 in fβ(αŝ+i, z) then the wrong polynomial will be
obtained. To compute the univariate polynomials Hi(z) we interpolate them
from values in z. We get

H0(z) = 1533140z4 + 372219z3 + 254554z2 + 5583z + 107971

H1(z) = 2677008z4 + 1189072z3 + 5247335z2 + 2751103z + 107971

H2(z) = 1087572z4 + 5756913z3 + 6050364z2 + 2571585z + 107971

H3(z) = 3241826z4 + 1542919z3 + 7104743z2 + 1035452z + 107971

Hz(4) = 1275646z4 + 5200608z3 + 5708463z2 + 1191952z + 107971

H5(z) = 3290219z4 + 2061131z3 + 7026380z2 + 5172735z + 107971

Observe that the coefficients of z3 in f4(αŝ+i, z) and Hi(z) which are highlighted
in blue are equal hence v = [0, 0, 0, 0, 0, 0] which indicates f3 = 0.

Step 7: Next, we attempt to interpolate f2 the homogeneous polynomial of
total degree 2 in f. Similar to the previous steps, we compute

v = [2159826, 1568202, 1172600, 4442624, 4997096, 4940952]

where vi = Coeff(fβ(αŝ+i, z), z2)−Coeff(Hi(z), z
2) for 0 ≤ i ≤ 5. Then, we run

the BMA on v which generates the feedback polynomial

λ5(z) = z2 + 744046774z + 2377407692 ∈ Zp[z].

Computing the roots of λ2(z) over Zp yields the monomial evaluations m̂ =
{4600185, 3153711}.

Step 8: Next, we solve {3e1 = 4600185, 3e2 = 3153711} in Z∗
p to obtain

the exponents {e1 = 51840, e2 = 8640}. Thus, the monomials of Kr(f2) are
{y250, y750}.

Step 9: Let Kr(f2) = a1y
250 + a2y

750. To solve for a1 and a2 we set up the
2× 2 shifted transposed Vandermonde system

V a =

[
mŝ+0

1 = 5213509 mŝ+0
2 = 1555861

mŝ+1
1 = 3153711 mŝ+1

2 = 4630034

] [
a1
a2

]
=

[
2159826
1568202

]
= v,

and first, solve the transposed Vandermonde system

Wc =

[
1 1

m̂1 = 4600185 m̂2 = 3153711

] [
c1
c2

]
=

[
2159826
1568202

]
= v

to obtain {c1 = 1019250191, c2 = 230831155}. Thus ai = cim
−ŝ
i = 5244685 for

24

1 ≤ i ≤ 2. Inverting the Kronecker map Kr yields y250 7→ y24 , y
750 7→ y25 =⇒

f2 = 5244685y24 + 5244685y25 .
Step 10: Before we attempt to interpolate any more homogeneous poly-

nomials degree less than 2 in f, we update the H polynomials because of the
coefficient contributions by f4 and f2 due to the basis shift. We compute

Hi(z) := Hi(z) + f2(zα
ŝ+i + β1, zα

(ŝ+i)r1 + β2, . . . , zα
(ŝ+i)r1r2···r7 + β8)

for 0 ≤ i ≤ 5 and we obtain

H0(z) = 1533140z4 + 372219z3 + 2414380z2 + 4661291z + 3074789

H1(z) = 2677008z4 + 1189072z3 + 6815537z2 + 4830020z + 3074789

H2(z) = 1087572z4 + 5756913z3 + 7222964z2 + 4724315z + 3074789

H3(z) = 3241826z4 + 1542919z3 + 4207334z2 + 2942806z + 3074789

Hz(4) = 1275646z4 + 5200608z3 + 3365526z2 + 1555699z + 3074789

Hz(5) = 3290219z4 + 2061131z3 + 4627299z2 + 6009748z + 3074789

Step 11: To determine a possible polynomial of degree 1 in f, we compute

v = [1130789, 6665035, 4346309, 451716, 888723, 2764262]

where vi = Coeff(fβ(αŝ+i, z), z1) − Coeff(Hi(z), z
1) for 0 ≤ i ≤ 5. Applying

the Berlekamp-Massey Algorithm to v generates the feedback polynomial

λ1(z) = z + 5062589 ∈ Zp[z].

Step 12: Computing the roots of λ1(z) yields the monomial evaluation
m̂ = {2277444}. Next, we solve the discrete logarithms {3e1 = 2277444} to
obtain the exponent {e1 = 28125}. Thus, the corresponding monomial in y is
y28125. Next, we set up and solve the shifted transposed Vandermonde system

V a =
[
mŝ

1 = 4934082
] [

a1
]
=
[
1130789

]
= v.

to get a = [5244685]. Inverting the Kronecker map Kr yields

y28125 7→ y8 =⇒ f1 = 5244685y8.

Step 13: Next we update the H polynomials for 0 ≤ i ≤ 5 by computing
Hi(z) = Hi(z) + f1(zα

s+i + β1, zα
(s+i)r1 + β2, . . . , zα

(s+i)r1r2···r7 + β8) in order
to interpolate f0 of f. We get

H0(z) = 1533140z4 + 372219z3 + 2414380z2 + 5792080z + 3074789

H1(z) = 2677008z4 + 1189072z3 + 6815537z2 + 4155022z + 3074789

H2(z) = 1087572z4 + 5756913z3 + 7222964z2 + 1730591z + 3074789

H3(z) = 3241826z4 + 1542919z3 + 4207334z2 + 3394522z + 3074789

25

Hz(4) = 1275646z4 + 5200608z3 + 3365526z2 + 2444422z + 3074789

H5(z) = 3290219z4 + 2061131z3 + 4627299z2 + 1433977z + 3074789

Step 14: Next, we attempt to interpolate f0. Observe that

vi = Coeff(fβ(αŝ+i, z), z0)− Coeff(Hi(z), z
0) = 0 for 0 ≤ i ≤ 5.

So, f0 = 0. Hence,

f4 + f2 + f1
g4 + g1

=
5244685

(
y41 + y42 + y43 + y24 + y25 + y8

)
5244685 (y46 + y47 + y48 + y6)

∈ Zp(y1, y2, . . . , y8).

Notice that multiplying the numerator and denominator by 5244685−1 yields

A = f/g =
f4 + f2 + f1

g4 + g1
.

For each rational function interpolation in z in Step 1, we use the Maximal
Quotient Rational Function Reconstruction algorithm of Monagan [30] which
needs deg f +deg g+2 = 4+4+2 points. Therefore, our algorithm needed only
60 = 6× (4 + 4 + 2) black box probes to reconstruct A!

Finding #fi,#gj using the Berlekamp Massey Algorithm (BMA)
For convenience, we assumed that the (minimum) number of auxiliary ratio-

nal functions Na needed to interpolate A = f/g in step 1 of the above illustrative
example is known. This information cannot be determined beforehand because
#fi and #gi are not known. We discuss how to use the BMA to discover Na.

By design, the homogeneous polynomials fdeg(f) and gdeg(g) must be interpo-
lated first. Thus, we discover #fdeg(f) and #gdeg(g) by inputting the sequence
of leading coefficients from fβ(αs+i, z) and gβ(αs+i, z) respectively from the
auxiliary rational functions F (αs+i, z, β) for i = 0, 1, . . . , to the BMA to gener-
ate the feedback polynomials λ1(z) and λ2(z). Then we check if deg(λ1, z) <

i
2

and deg(λ2, z) < i
2 . If these degree conditions are satisfied then #fdeg(f) =

deg(λ1, z) and #gdeg(g = deg(λ2, z) with high probability. If the condition is
not satisfied, then more auxiliary rational functions are needed. We note that
for 0 ≤ j < deg(f) and 0 ≤ k < deg(g), the number of terms in the polynomials
fj or gk might be greater than #fdeg(f) or #gdeg(g). Therefore, we must also
check that we have enough auxiliary rational functions to interpolate the lower
degree homogeneous polynomials after removing the effect of the basis shift. As
before, we feed the adjusted coefficients to the BMA and wait until the degree of
the corresponding feedback polynomial < i

2 . Otherwise, more auxiliary rational
function coefficients are needed to complete the interpolation process.

Pre-computing the total degrees of fi of f and gi of g in A = f/g

Let A = f/g be a sparse rational function in Q(y1, y2, . . . , ym) such that
f =

∑deg(f)
i=0 fi and g =

∑deg(g)
j=0 gj where fi and gj are homogeneous poly-

26

nomials with deg(fi) = i and deg(gj) = j. To avoid performing unnecessary
coefficient adjustment computation in our new sparse rational function interpo-
lation method especially when f and g are very sparse, we must discover deg(fi)
and deg(gj) for all i and j. For example, if f = f100000 + f0, then after interpo-
lating f100000, we should not try to interpolate f99999, f99998, . . . , f1, since f0 is
what we should interpolate next. We describe how to pre-compute deg(fi) = i
and deg(gj) = j.

Suppose A is represented by a modular black box B where p is a sufficiently
large prime and suppose we have obtained the total degrees deg(f) and deg(g)
correctly. Then pick α ∈ (Zp\{0})m at random, and use enough random distinct
points for z selected from Zp \ {0} to interpolate the rational function

W (z) =
N

D
=

∑df

j=0 N̄i(z)∑dg

i=0 D̄i(z)
=

f(α1z, . . . , αmz)

g(α1z, . . . , αmz)
∈ Zp(z),

via probes to B, where df = deg(N) and dg = deg(D). Now, if df = deg(f)
and dg = deg(g), then deg(fi) = deg(N̄i) and deg(gi) = deg(D̄i) with high
probability. But, if there is no constant term in f or g, which we do not know
beforehand, then deg(f) ̸= df or deg(g) ̸= dg because e = deg(gcd(N,D))
might be greater than zero. Since we do not know what e is, it follows that, if
e = deg(f)−df = deg(g)−dg with high probability, then deg(fi) = deg(N̄i)+e
and deg(gi) = deg(D̄i) + e with high probability.

3.6. Our new sparse multivariate rational function interpolation algorithm
We give a pseudocode which outlines the steps involved to interpolate A =

f/g using our new sparse rational function interpolation method. The steps are
more detailed in our proposed Dixon resultant algorithm where it is applied.

Algorithm NewRationalFunctionInterpolationMethod

Input: The modular black box B : (Zm
p , p) → Zp for A = f/g over Q which

returns "division by zero" if g(γ) = 0 for some evaluation point γ ∈ Zm
p .

Remark: Polynomials f and g are viewed as f =
∑deg(f)

i=0 fi and g =
∑deg(g)

j=0 gj ,
where fi and gj are homogeneous polynomials, deg(fi) = i and deg(gj) = j. The
input prime p for B will be determined while the algorithm is running.
Output: A = f/g mod p with high probability.

1. Probe B with a sufficiently large prime q to obtain deg(f) and deg(g),
di = max(deg(f, yi),deg(g, yi)) for 1 ≤ i ≤ m, and deg(fi) for 0 ≤ i ≤
deg(f) and deg(gj) for 0 ≤ j ≤ deg(g).

2. Pick a smooth prime p = 2ks+1 >
∏m

i=1(di+1) to be used by B, a random
shift ŝ ∈ [0, p− 2], and any generator α for Z∗

p. Let Kr : Zp(y1, . . . , ym)→
Zp(y) be the Kronecker substitution with ri > di for 1 ≤ i ≤ m.

3. Let β = (0, 0, . . . , 0) ∈ Zm be a basis shift.

While B (β, p) = "division by zero" or B(β, p) = 0 do

27

Pick a new random basis shift β ∈ (Zp \ {0})m.

end do
4. For i = 0, 1, 2, . . . do

Probe the black box B to interpolate the auxiliary rational functions

F (αŝ+i, z, β) =
fβ(αŝ+i, z)

gβ(αŝ+i, z)
∈ Zp(z)

such that gβ(αŝ+i, z) is of the form 1 +
∑deg(g)

k=1 akz
k.

5. if i /∈ {2, 4, 6, . . .} then go to 4 end if
6. Set (v, w) :=

(
[LC(fβ(αŝ+j , z), z) : 0 ≤ j ≤ i], [LC(gβ(αŝ+j , z), z) : 0 ≤ j ≤ i]

)
.

7. Apply the Berlekamp Massey algorithm (BMA) on v and w to generate
feedback polynomials λv(z) and λw(z) over Zp respectively.

8. if deg(λv) <
i
2 and deg(λw) <

i
2 then

Interpolate fdeg(f), gdeg(g) ∈ Zp[y1, y2, . . . , ym].

else go to 4 end if
9. // Interpolate the lower degree homogenous polynomials fdeg(f)−1, fdeg(f)−2, . . . , f0

For k = deg(f)− 1,deg(f)− 2, . . . , 0 do
v ← [Coeff(fβ(αŝ+j , z), zk) : 0 ≤ j ≤ i].

if β ̸= (0, 0, . . . , 0) then
Let H = [0, 0, . . . , 0] ∈ Zi.

For j = 0, 1, 2, . . . , i

Interpolate the unique polynomial Wj ∈ Zp[z] where

Wj := fk+1(zα
ŝ+j+β1, zα

(ŝ+j)r1+β2, . . . , zα
(ŝ+j)

∏m−1
i=1 ri+βm).

Compute Hj ← Hj +Wj ∈ Zp[z] // Update Hj .

end for
v ← [vj − Coeff(Hj , z

k) : 0 ≤ j ≤ i].

end if
Apply the BMA on v to get the feedback polynomial λ ∈ Zp[z].

If deg(λ) < i
2 then interpolate fk ∈ Zp[y1, y2, . . . , ym] end if

end for
10. // Interpolate the lower degree homogenous polynomials gdeg(g)−1, gdeg(g)−2, . . . , g0

Execute Step 9 with all instances of f replaced by g.
end for

11. Construct f =
∑deg(f)

i=0 fi and g =
∑deg(g)

i=0 gi.

12. Output A = f/g mod p.

28

4. The Dixon Resultant Algorithm

For the purpose of description, we assume that there is one monic square-free
factor to be interpolated. That is, our algorithms are presented to interpolate
only one square-free factor. However, we note that the implementation of our
Dixon resultant algorithm handles more than one monic square-free factor. Let

S := R1 = xdT
1 +

T−1∑
k=0

fk(y1, . . . , ym)

gk(y1, . . . , ym)
xdk
1 (17)

be the one monic square-free factor to be interpolated, and suppose

fk =

deg(fk)∑
i=0

fi,k(y1, . . . , ym) and gk =

deg(gk)∑
j=0

gj,k(y1, . . . , ym) (18)

such that fi,k and gj,k are homogeneous with deg(fi,k) = i and deg(gj,k) = j.

4.1. Algorithm DixonRes
Our Dixon resultant algorithm consists of two main parts, the main algo-

rithm, Algorithm DixonRes (Algorithm 5), and the supplementary algorithm,
Algorithm NewPrime (Algorithm 8). Algorithm DixonRes calls Subroutines
PolyInterp, RatFun, Remove-Shift, VandermondeSolver and BMStep. It also
calls Algorithm NewPrime if additional primes are required. Algorithm 5 to
interpolate the monic square-free factor S involves eight major steps, namely:

1. The computation of the degrees [d0, . . . , dT] as defined in (17), the total
degrees deg(fk,) deg(gk), and deg(fi,k),deg(gi,k) as defined in (18), and the
maximum partial degrees Dyi = max(maxT−1

k=0 (deg(fk, yi),deg(gk, yi))) of S for
1 ≤ i ≤ m in Lines 1-5.

2. The use of a Kronecker substitution in Lines 6-7 to reduce the interpo-
lation of the multivariate rational function coefficients fk

gk
of S to a univariate

rational function interpolation. This consequently leads to a reduction in the
size of the prime needed by our algorithm, because the prime p needed by our
algorithm must satisfy p >

∏m
i=1(Dyi

+1), which is typically much smaller than
the prime required for the Ben-Or/Twari sparse interpolation algorithm.

3. The selection of a basis shift β ̸= 0 ∈ Zm
p if needed by our Dixon resultant

algorithm in Lines 8-13. If there is a non-zero integer in the leading coefficient
of the Dixon resultant R = det(M) in x1, that the input prime does not divide
then a non-zero basis shift is not needed. With high probability, we are assured
of the presence of a constant term in the denominator polynomials gk, which
is needed for normalizing the corresponding auxiliary rational functions. We
detect if a basis shift is needed at the start of the algorithm by checking if the
degree of R(x1, β) where β = (0, 0, · · · 0) ∈ Zm

p is equal to deg(R, x1) using
random evaluation points for x1 via the black box BB for R. If both degrees
are the same then our algorithm does not need a basis shift.

29

4. The interpolation of many univariate monic square-free polynomial images
Hi in x1 of S via probes to the black box BB. This is done by calls to Subroutine
PolyInterp in Line 19. We remark that Hi in Line 19 is a list of emax monic
polynomial images in x1 since we need at most emax = 2 + maxT−1

k=0 deg(fk) +
deg(gk) points to produce an auxiliary rational function with high probability.

5. The dense interpolation of auxiliary univariate rational functions Aj in
Line 23 using the coefficients of the monic images Hi. These univariate rational
functions are the intermediate functions whose coefficients are used to interpo-
late the rational function coefficients of S, and they are produced in Line 23 via
calls to Subroutine Ratfun. By design, these univariate rational functions must
have a constant term in their denominator, so a basis shift β may be needed to
force the production of a constant term (See Lines 8-13).

6. The discovery of the number of terms in the rational function coefficients
of S using the Berlekamp Massey Algorithm (BMA). By design, the leading term
polynomials fdeg(fk),k and gdeg(gk),k, referred to as Fk and Gk, respectively, in
Lines 28-29 are interpolated first by calls to Subroutine BMStep, before the lower
total degree polynomial terms can be interpolated. In Subroutine BMStep, the
size of the supports #Fk and #Gk are discovered with high probability when
the BMA returns the feedback polynomials, say λ1, λ2 ∈ Zp[z] respectively.
The roots of λ1 and λ2 determine the supports of Kr(Fk) and Kr(Gk) in y. The
univariate functions Kr(Fk) and Kr(Gk) in y are the mapped images of Fk and
Gk since a Kronecker substitution Kr was used.

Note that Subroutine BMStep generates a feedback polynomial λ(z) using
an input P, a sequence of coefficients of length i, collected from the coefficients of
the auxiliary rational functions Aj . Line 2 of Subroutine BMStep will not cause
the algorithm to return FAIL if deg(λ, z) < i

2 . The condition deg(λ, z) < i
2

ensures that λ(z) is correct with high probability. Otherwise, it returns FAIL
indicating that we do not have the correct term bound, so more univariate
polynomial images and auxiliary rational functions are needed. Algorithm 5
then computes more polynomial images and auxiliary rational functions, so
that the process is repeated until a new term bound is found. The next step
is to assemble polynomials Fk and Gk by solving for their coefficients using
Subroutine VandermondeSolver (Section 3.4), an algorithm that solves shifted
transposed Vandermonde systems using Zippel’s quadratic algorithm.

7. The interpolation of the lower degree homogeneous polynomials fi,k and
gi,k in Lines 31-32 by calls to Subroutine RemoveShift. Before the polynomials
fi,k and gi,k can be interpolated, Subroutine RemoveShift adjusts the coefficients
of the auxiliary rational functions in order to remove the effect of the basis shift
β that was contributed by fj,k and gj,k for j > i, whenever β ̸= 0.

8. Performing sparse interpolation using additional primes in Line 38 when-
ever the rational number reconstruction process fails on the integer coefficients
of the first image of S for the first prime. Algorithm 8 (is similar to Algorithm
5 but does not use a Kronecker substitution Kr since the first image of S has
been found) uses the support obtained from Algorithm 5 to get more images
if additional primes are needed to recover S. We remark that one 62 bit prime
was often enough to interpolate the Rj ’s in our benchmark systems. Finally, we

30

check if the returned answer is correct using a probabilistic approach.

Subroutine 1: PolyInterp

Inputs: A prime p and the black box BB :
(
Zm+1
p , p

)
→ Zp for the Dixon

resultant R = det(M) with m ≥ 1, a list of m− tuple evaluation
points Z = [Zj ∈ Zm

p : 1 ≤ j ≤ emax], degree emax ≥ 2, the support
d = {xd0

1 , . . . , xdT
1 } as defined in (17) and degree D̂ = deg(R, x1).

Output: A list of emax monic univariate polynomials
H = [monic(Hj) ∈ Zp[x1] : 1 ≤ j ≤ emax] or FAIL.

1 Pick δ ∈ ZD̂+1
p at random with δi ̸= δj for i ̸= j.

2 for j = 1, 2, . . . , emax do
3 Compute Gj = (BB ((δi, Zj), p) : 1 ≤ i ≤ D̂ + 1). // D̂ + 1 probes to BB.
4 Interpolate Bj ∈ Zp[x1] using points (δi, Gj,i : 1 ≤ i ≤ D̂ + 1); O(D̂2)

5 if deg(Bj , x1) < D̂ then return FAIL end
6 Compute the square-free part Hj = Bj/gcd(Bj ,

dBj

dx1
); O(D̂2)

7 if supp(Hj) ̸= d then return FAIL end
8 end
9 return [monic(H1), . . . ,monic(Hemax)].

Subroutine 2: BMStep
Inputs: A list of points P = [Pj ∈ Zp : 1 ≤ j ≤ i and i is even] , a generator

α for Z∗
p, a random shift ŝ ∈ [0, p− 2] and r ∈ Zm−1 which defines

the Kronecker substitution Kr and the list of degrees Dy.
Output: A multivariate polynomial F̄ ∈ Zp[y1, y2, . . . , ym] or FAIL.

1 Run the Berlekamp-Massey algorithm [1] on P to obtain λ(z) ∈ Zp[z]; . O(i2)
2 if deg(λ, z) = i

2
then return FAIL end // More images are needed

3 Compute the roots of λ in Zp[z] to obtain the monomial evaluations m̂i. Let
m̂ ⊂ Zp be the set of monomial evaluations m̂i and let t = |m̂|; . . O(t2 log p)

4 if t ̸= deg(λ, z) then return FAIL end // λ(z) is wrong.
5 Solve αei = m̂i for ei with ei ∈ [0, p− 2] // The exponents are found here.
6 Let M = [K−1

r (yei) : 1 ≤ i ≤ t]// Invert the Kronecker map Kr to get the
monomials Mi(y1, y2, . . . , ym).

7 if deg(Mj , yi) > Dyi for any 1 ≤ i ≤ m, 1 ≤ j ≤ t then return FAIL end
8 F ← VandermondeSolver(m̂, [P1, · · ·Pt], ŝ,M)// F ∈ Zp[y1, . . . , ym] . . . O(t2)
9 return F

Subroutine 3: VandermondeSolver
Inputs: Vectors m̂, v ∈ Zt

p, shift ŝ ∈ [0, p− 2], and M a list of t monomials.
Output: A polynomial in Zp[y1, y2, . . . , ym].

1 Let Wij = m̂j−1
i for 1 ≤ i, j ≤ t. // The transposed Vandermonde matrix

2 Solve Wc = v for c using Zippel’s [37] O(t2) algorithm. See Section 3.4.
3 Compute ai = cim̂

−ŝ
i for 1 ≤ i ≤ t.

4 return
∑t

i=1 aiMi

31

Subroutine 4: RemoveShift
Inputs: A non-zero polynomial Fk ∈ Zp[y1, . . . , ym], a basis shift β ∈ Zm

p , list
of degrees Efk , a random shift ŝ ∈ [0, p− 2], a generator α for Z∗

p, a
list of m-tuple evaluation points [Ŷj ∈ Zm

p : 1 ≤ j ≤ i], a list of
univariate polynomials [Nj ∈ Zp[z] : 1 ≤ j ≤ i] and r ∈ Zm which
defines the Kronecker substitution Kr and the list of degrees Dy.

Output: A polynomial fk ∈ Zp[y1, . . . , ym] where fk is as defined in (18) or
FAIL

1 (A, fk, d)← (Fk, Fk, deg(Fk))
2 Initialize Hj = 0 for 1 ≤ j ≤ i.
3 for d̄ ∈ Efk do
4 if β ̸= 0 then
5 Pick θ ∈ Zd+1

p at random.
6 for j = 1, 2, · · · , i do
7 for t = 1, 2, . . . , d+ 1 do
8 Let Zj,t = A(y1 = Ŷj,1θt + β1, . . . , ym = Ŷj,mθt + βm) be the

polynomial evaluations of A .O(md#A).
9 end

10 Interpolate W j ∈ Zp[z] using points (θt, Zj,t : 1 ≤ t ≤ d+1);O(d2)

11 Hj ← Hj +W j ; . O(d)

12 end
13 end
14 if d̄ ̸= 0 then
15 P ←

[
coeff(Nj , z

d̄ : 1 ≤ j ≤ i
]
.

16 if β ̸= 0 then
17 for j = 1, 2, · · · , i do
18 Pj ← Pj − coeff(Hj , z

d̄)
// Adjust Pj to remove the effect of the basis shift β.

19 end
20 end
21 if [Pj = 0 : 1 ≤ j ≤ i] then
22 A← 0 // There is no polynomial of total degree d̄.
23 else
24 A← BMStep([P1, . . . , Pi], α, ŝ, r); O(i2 +#A

2
log p)

25 if A = FAIL then return FAIL end // More Pj ’s are needed.
26 end
27 else
28 A← coeff(N1, z

0) // We get the constant term.
29 if β ̸= 0 then A← A− coeff(Γ1, z

0) end
30 end
31 (fk, d)← (fk +A, d− 1).

32 end
33 return fk

32

Algorithm 5: DixonRes

Inputs: The modular black box BB :
(
Zm+1
p , p

)
→ Zp for R with m ≥ 1 and

the list Ps containing smooth primes.
Output: S ∈ Q(y1, . . . , ym)[x1] of R where S is as defined in (17) or FAIL.

1 Compute d = {xd0
1 , . . . , xdT

1 } as defined in (17) and D̂ = deg(det(M), x1).
2 Compute deg(fk) and deg(gk) for 0 ≤ k ≤ T − 1 as defined in (17).
3 emax ← maxT−1

k=0 ek where ek = deg(fk) + deg(gk) + 2 and assume
e0 ≥ e1, · · · ≥ eT−1.

4 Compute Dy = [maxT−1
k=0 (max(deg(fk, yi),deg(gk, yi))) for 1 ≤ i ≤ m].

5 Compute Efk = [deg(fi,k) : 0 ≤ i ≤ deg(fk))] and
Egk = [deg(gi,k) : 0 ≤ i ≤ deg(gk))] for 0 ≤ k ≤ T − 1 where fi,k and gi,k are
as defined in (18).

6 Initialize ri = Dyi + 1 for 1 ≤ i ≤ m and let r = (r1, r2, . . . , rm−1).
7 Pick a random smooth prime p from Ps such that p >

∏m
j=1 rj . // p is the

input prime for BB.
8 Let β = (0, 0, . . . , 0) ∈ Zm

p be a basis shift.
9 Interpolate G = R(x1, β) using D̂ + 1 points for x1 via black box BB; O(D̂2)

10 while deg(G) < D̂ do
11 Choose a random basis shift β ∈ Zm

p .

12 Interpolate G = R(x1, β) using D̂ + 1 points for x1 via BB; O(D̂2)

13 end
14 Pick a random shift ŝ ∈ [0, p− 2] and any generator α for Z∗

p.
15 Pick θ ∈ Zemax

p at random with θi ̸= θj for i ̸= j and initialize k = 0.
16 for i = 1, 2, · · · while k ≤ T − 1

17 Ŷi ← (αŝ+i−1, α(ŝ+i−1)r1 , . . . , α(ŝ+i−1)(r1r2···rm−1)). // Implements Kr

18 Let Z = [Ŷiθj + β ∈ Zm
p : 1 ≤ j ≤ emax] be the evaluation points.

// Compute the monic univariate images Hi ∈ Zp[x1] where |Hi|= emax.

19 Hi ← PolyInterp
(
BB, (Z, p) , emax, d, D̂

)
. O(emaxD̂

2)

20 if Hi = FAIL then return FAIL end
21 if i /∈ {2, 4, 8, 16, 32, · · ·} then next end
22 for j = 1, 2, . . . , i do
23 Aj ← RatFun(Hj , θ, dk, ek, p) and set Nj

Dj
:= Aj ∈ Zp(z)

24 if deg(Nj , z) ̸= deg(fk) or deg(Dj , z) ̸= deg(gk) then
25 return FAIL // p is unlucky or β is a bad basis shift or αŝ+i−1 is

unlucky (See Definitions 35 and 36)
26 end
27 end
28 Fk ← BMStep([coeff(Nj , z

deg(fk)) : 1 ≤ j ≤ i], α, ŝ, r,Dy);

29 Gk ← BMStep([coeff(Dj , z
deg(gk)) : 1 ≤ j ≤ i], α, ŝ, r,Dy;

//Fk = fdeg(fk),k mod p and Gk = gdeg(gk),k mod p)
30 if Fk ̸= FAIL and Gk ̸= FAIL then
31 fk ← RemoveShift(Fk, β, Efk , ŝ, α, [Ŷ1, . . . , Ŷi], [N1, . . . , Ni], r, ,Dy)

32 gk ← RemoveShift(Gk, β, Egk , ŝ, α, [Ŷ1, . . . , Ŷi], [D1, . . . , Di], r, ,Dy)
33 if fk ̸= FAIL and gk ̸= FAIL then k ← k + 1 end
34 end
35 end
36 Ŝ ← xdT

1 +
∑T−1

k=0
fk(y1,...,ym)
gk(y1,...,ym)

x
dk
1 // Ŝ = S mod p.

37 Apply rational number reconstruction on the coefficients of Ŝ mod p to get S

38 if S = FAIL then S ←NewPrime(BB, Ŝ, d, D̂, p) else return S end

Subroutine 6: GetTerms
Inputs: A multivariate polynomial Fk ∈ Zq[y1, . . . , ym], evaluation points

α ∈ (Zq \ {0})m, β ∈ Zm
q , a random shift ŝ ∈ [0, q − 2], list of lower

total degree polynomials B1 = [fdeg(fk)−1,k, . . . , f0,k] obtained using
the first prime from Algorithm 5, a list of m− tuple evaluation
points [Ŷj ∈ Zm

q : 1 ≤ j ≤ Nmax], a list of univariate polynomials
[Nj ∈ Zq[z] : 1 ≤ j ≤ Nmax] and a prime q.

Output: A polynomial fk = fk mod q where fk is as defined in (18) or
FAIL.

1 (A, fk, d)← (Fk, Fk,deg(Fk)).

2 Set H = (0, 0, , . . . , 0) ∈ ZNmax
q .

3 D ← [deg(e) : e ∈ B1], M̂ ← [supp(e) : e ∈ B1] // supp means support.
4 for h = 1, 2, . . . , |D| do
5 d̂← Dh

6 if β ̸= 0 then
7 Pick θ ∈ Zd+1

q at random.
8 for j = 1, 2, · · · , Nmax do
9 for t = 1, 2, . . . , d+ 1 do

10 Zj,t ← A(y1 = Ŷj,1θt + β1, . . . , ym = Ŷj,mθt + βm); . O(md#A)
11 end
12 Interpolate W j ∈ Zq[z] using points (θt, Zj,t : 1 ≤ t ≤ d+1);O(d2)

13 Hj ← Hj +W j ; . O(d)

14 end
15 end
16 if d̂ ̸= 0 then
17 P ←

[
coeff(Nj , z

d̂) : 1 ≤ j ≤ Nmax

]
18 if β ̸= 0 then
19 for j = 1, 2, . . . , Nmax do
20 Pj ← Pj − coeff(Hj , z

d̂)
21 end
22 end
23 m̂← [M̂i(α) : 1 ≤ i ≤ n̂] where n̂ = #M̂h; O(mn̂d)
24 if any monomial evaluations m̂i = m̂j then return FAIL end.
25 A← VandermondeSolver(m̂, P, ŝ, M̂h); . O(n̂2)

26 else
27 A← coeff(N1, z

0) // We use only one point to get the constant term
28 if β ̸= 0 then A← A− coeff(Γ1, z

0) end
29 (fk, d)← (fk +A, d− 1).

30 end
31 end
32 return fk.

34

Algorithm 8: NewPrime

Inputs: The black box BB :
(
Zm+1
q , q

)
→ Zq for R, the first image

Ŝ = xdT
1 +

∑T−1
k=0

fk(y1,y2,...,ym)
gk(y1,y2,...,ym)

x
dk
1 ∈ Zp(y1, . . . , ym)[x1] of S

obtained from Algorithm 5 and its prime p where S is as defined in
(17), the support d = {xd0

1 , . . . , xdT
1 } and D̂ = deg(R, x1) > 0.

Output: The monic square-free factor F̄ ∈ Q(y1, . . . , ym)[x1] of R or FAIL.
1 Let B1 = [fdeg(fk)−1,k, . . . , f0,k] and B2 = [gdeg(gk)−1,k, . . . , g0,k] where

fi,k, gi,k are as defined in (18).
2 ek ← deg(fk) + deg(gk) + 2 for 0 ≤ k ≤ T − 1.

3 Let emax = maxT−1
k=0 ek and let P ← p.

4 Let Nmax = maxT−1
k=0

{
max0≤i≤deg(fk){#fi,k},max0≤i≤deg(gk){#gi,k}}

}
.

5 do
6 Pick a new 62 bit prime q such that q ∤ P. // The black box BB uses q.
7 Let β = (0, 0, . . . , 0) ∈ Zm

q .

8 Interpolate G = R(x1, β) using D̂ + 1 points for x1 via BB; O(D̂2)

9 while deg(G) < D̂ do
10 Choose a random basis shift β ∈ Zm

q .

11 Interpolate G = R(x1, β) using D̂ + 1 points for x1 via BB; . . . O(D̂2)

12 end
13 Pick α ∈ (Zq \ {0})m, θ ∈ Zemax

q and shift ŝ ∈ [0, q − 2] at random.
14 for i = 1, 2, . . . , Nmax do
15 Let Ŷi = (αŝ+i−1

1 , αŝ+i−1
2 · · · , αŝ+i−1

m). // Implements Kr

16 Let Z = [θj Ŷi + β ∈ Zm
q : 1 ≤ j ≤ emax] be the evaluation points.

17 H ← PolyInterp
(
BB (Z, q) , d, emax, D̂

)
//|H|= emax; O(emaxD̂

2)

18 if H = FAIL then return FAIL end
19 end
20 for k = 0, 1, . . . , T − 1 do
21 (n̂, M̂)← (#fdeg(fk),k, supp(fdeg(fk),k))
22 (n̄, M̄)← (#gdeg(gk),k, supp(gdeg(gk),k))

23 m̂← [M̂i(α) : 1 ≤ i ≤ n̂]; . O(m(deg(fk)n̂)
24 m̄← [M̄i(α) : 1 ≤ i ≤ n̄]); . O(deg(gk)n̄))
25 if m̂i = m̂j or m̄i = m̄j then return FAIL end.
26 for j = 1, 2, . . . , Nmax do
27 Bj ← RatFun(Hj , θ, dk, ek, q) and set Nj

N̂j
:= Bj ∈ Zq(z).

28 if deg(Nj , z) ̸= deg(fk) or deg(N̂j , z) ̸= deg(gk) then
29 return FAIL
30 end
31 end
32 Let ai = LC(Nj , z) for 1 ≤ i ≤ n̂ and bi = LC(N̂j , z) for 1 ≤ i ≤ n̄.

33 Fk ←VandermondeSolver(m̂, [a1, . . . , an̂], ŝ, M̂); O(n̂2)
34 Gk ←VandermondeSolver(m̄, [b1, . . . , bn̄], ŝ, M̄); O(n̄2)

35 Fk ← GetTerms(Fk, α, β, ŝ, B1, [Ŷ1, . . . , ŶNmax], [N1, . . . , NNmax], q)

36 Gk ← GetTerms(Gk, α, β, ŝ, B2, [Ŷ1, . . . , ŶNmax], [N̂1, . . . , N̂Nmax], q)
37 if Fk = FAIL or Gk = FAIL then return FAIL end
38 end
39 T̂ ← xdT

1 +
∑T−1

k=0
Fk(y1,y2,...,ym)
Gk(y1,y2,...,ym)

x
dk
1 ∈ Zq(y1, . . . , ym)[x1]

40 Solve
{
F̂ ≡ Ŝ mod P and F̂ ≡ T̂ mod q

}
using Chinese remaindering.

41 Set P = P × q. // Product of primes
42 Apply rational number reconstruction to F̂ mod P to get F .

43 if F ̸= FAIL then return F else (Ŝ, p)← (F̂ , q) end
44 end

Subroutine 7: RatFun
Inputs: A prime p, a list of univariate polynomials

H = [Hj ∈ Zp[x1] : 1 ≤ j ≤ emax], an evaluation point θ ∈ Zemax
p ,

degrees dk and ek such that 2 ≤ ek ≤ emax.
Output: A univariate rational function A(z) ∈ Zp(z).

1 m(z)←
∏ek

i=1(z − θi) ∈ Zp[z]; . O(e2k)

2 Interpolate u ∈ Zp[z] using points (θi, coeff(Hi, x
dk
1) : 1 ≤ i ≤ ek); O(e2k)

3 A(z)← MQRFR(m,u, p) . O(e2k)

4 Let A(z) = N(z)
D(z)

∈ Zp(z). Normalize A(z) s.t. coeff(D(z), z0) = 1.
5 return A(z).

4.2. Probabilistic Test
We determine if the output of our Dixon resultant algorithm is correct using

Algorithm 9. It uses a probabilistic strategy to determine if the output returned
is correct with high probability.

Algorithm 9: CheckResultant

Inputs: The black box BB :
(
Zm+1
q , q

)
→ Zq for the Dixon resultant

R ∈ Zq[x1, y1, y2, . . . , ym], deg(R, x1) and the monic square-free
factor Ŝ = xdT

1 +
∑T−1

k=0
Fk(y1,...,ym)
Gk(y1,...,ym)

x
dk
1 from Algorithm 5.

Output: true (if Ŝ is correct) or false otherwise.
1 repeat
2 Pick a 62 bit prime q at random.
3 Pick α ∈ Zm

q at random.
4 Pick β ∈ Zdeg(R,x1)+1

q at random.
5 Compute δi = BB ((βi, α), q) for i = 1, 2, . . . , deg(R, x1) + 1.
6 Interpolate F ∈ Zq[x1] using the points ((βi, δi) : 1 ≤ i ≤ deg(R, x1) + 1).
7 J ← gcd(F, ∂F/∂x1)

8 Set S ← monic(F/J) the monic square-free part of F in Zq[x1].

9 until deg(F) = deg(R, x1) and deg(S, x1) = deg(Ŝ, x1) and q ∤ Gk and
Gk(α) ̸= 0 for all k.

10 if Ŝ(x1, α) ̸= S ∈ Zq[x1] then
11 return false
12 else
13 return true
14 end

Note that it is possible that the output of our Dixon resultant algorithm is
incorrect, but our probabilistic test fails to detect that it is incorrect. We give
the following example to illustrate this.

Example 21. Let p and q be 62 bit primes such that p ̸= q and let R =
(y1 + 1)x1 + (pq + y1 + 2). The correct monic square-free factor of R is

S = x1 +
(pq + y1 + 2)

y1 + 1
.

36

Let p be the first prime used in our Dixon resultant algorithm and suppose
that the rational number reconstruction process succeeds on the coefficient of the
returned answer with respect to prime p. Then our algorithm incorrectly outputs

Ŝ = x1 +
(y1 + 2)

y1 + 1

as the correct answer. Let H = S− Ŝ =
pq

y1 + 1
. Regardless of the random point

α selected in Line 3 of Algorithm 9, if the random prime picked in Line 2 of
Algorithm 9 is q then q|H =⇒ Ŝ(x1, α) = x1 + 2 = S ∈ Zq[x1] because p|pq.
Thus, Algorithm 9 will wrongly verify that we have the correct answer.

We will give a failure probability bound for Algorithm 9 in Theorem 51 when
we perform the failure probability analysis of our Dixon resultant algorithm.

4.3. Implementation Notes and Benchmarks
We have implemented our new Dixon resultant algorithm in Maple. To

improve the overall efficiency, we have implemented in C, major subroutines
such as evaluating a Dixon matrix at integer points modulo prime p, computing
the determinant of an integer matrix over Zp, solving a t×t shifted Vandermonde
system and performing dense rational function interpolation in Zp[x1] using the
MQRFR algorithm from [30]. Thus, each probe to the black box is computed
using C code. Our C code supports primes up to 63 bits in length.

4.3.1. Speeding up evaluation of the Dixon matrix
In our experiments, the most expensive step in our algorithm was, and still

is, evaluating the Dixon matrix M at α modulo a prime. Let p be a prime and
let M be a t × t matrix of polynomials in Z[z1, ..., zn]. We need to compute
det(M(α)) mod p for many α ∈ Zn

p . Often, over 80% of the time is spent
computing M(α) mod p. The Maple command

> Eval(M,{seq(z[i]=alpha[i],i=1..n}) mod p;

does what we want, however, because we use a Kronecker substitution for the
parameters y1, y2, . . . , ym and want our implementation to handle many pa-
rameters and fail with low probability, we want to use the largest primes the
hardware can support which are 63 bit primes if we use signed 64 bit inte-
gers. Unfortunately, Eval uses hardware arithmetic for p < 231, otherwise, it
uses software arithmetic which is relatively very slow. To speed up evaluations,
we have written a C program to compute M(α) for p < 263 using hardware
arithmetic. Since Maple has two representations for polynomials with integer
coefficients, the sum-of-products representation and the new POLY represen-
tation of Monagan and Pearce [31], and Dixon matrices usually involve both
representations, we had to allow for both cases. Also important for efficiency is
how to multiply in Zp. We do not use the hardware division instruction which is
very slow. Instead, we use Roman Pearce’s assembler implementation of Möller

37

and Granlund [16] which replaces division with two multiplications and other
cheap operations.

Table 1: CPU Timings showing improvements for Heron5d and Tot systems
System Eval Determinant Total C-Eval New Total
Heron5d 70.17s (66.2%) 9.74s (9.18%) 106.07s 18.02s (3.89x) 42.82s (2.48x)

Tot 635.75s (83.3%) 37.66s (4.9%) 763.2s 32.36s (19.64x) 150s (5.08x)

Table 1 shows the improvement obtained using our C code for evaluating
a Dixon matrix M at integer points modulo a prime for the Tot and Heron5d
systems. Column Eval contains the timings obtained using Maple’s Eval com-
mand, and column C-Eval represents the timings obtained when our C code was
used. Column Determinant indicates the amount of time spent computing the
determinant of integer matrices modulo a prime. Column Total contains the
total timings using Eval, and column New Total is the new total timings for
both systems when our C code for performing matrix evaluations was used.

4.3.2. Pre-computing deg(fi,k) and deg(gi,k)

We did not pre-compute the total degrees deg(fi,k) and deg(gi,k) of the
lower degree homogeneous polynomials fi,k, gi,k in our old benchmarks in our
previous work [19, 20]. Since then, we have re-designed our Dixon resultant
algorithm to pre-compute these degrees. The timings reported in Table 2 show
the improvement when these total degrees were not precomputed (row Before),
and the new timings (row After) obtained when deg(fi,k) and deg(gi,k) were
precomputed in our Dixon resultant algorithm.

Table 2: Improvements when deg(fi,k) and deg(gi,k) were pre-computed
Robot-t2 Robot-b1 Robot-b2 Tot Flex-v1 Flex-v2 Pose Perimeter

Before 316.99s 27.78s 241.61s 82.11s 201s 461.4s 461.4s 49.97s
After 222.60s 18.33s 171.97s 49.04s 100.99s 154.20s 243.88s 18.99s

4.3.3. Timings and Optimizations
We present two benchmark tables (Tables 3 and 5) for our Dixon resultant al-

gorithm. Table 3 contains the names of the real parametric polynomial systems
(in Column System) on which we tested our code, the number of equations in
each system (in column #Eq), the number of variables n and the number of pa-
rameters m (Column n/m), the dimension of the Dixon matrix D obtained, and
the rank of a sub-matrix M of D of maximal rank (in Column dim(D)/Rank).

Timings for comparing our new Dixon resultant algorithm with three other
methods for computing R are also reported in Table 3. We report the timings
for our new Dixon resultant algorithm in Column DixonRes, timings for our
Maple implementation of the Gentleman & Johnson minor expansion method in
Column Minor, timings for our implementation of Zippel’s sparse interpolation
algorithm in Column Zippel and timings of our Maple implementation of the
Dixon-EDF algorithm in Column EDF. Our implementation of the Dixon-EDF
algorithm sorts the matrix M by placing the sparsest columns at the left of the

38

matrix, removes the gcd of each row before starting the elimination and it has
a pivot selection algorithm.

To make the comparison between our Dixon resultant algorithm and Zippel’s
sparse interpolation algorithm for computing R fair, we have implemented the
most expensive part of Zippel’s algorithm, which is the routine that solves for
the coefficients of the Dixon resultant R in C (Subroutine VandermonderSolver).
We also use our C code for evaluating a matrix of polynomials at α modulo a
prime p. Table 3 also contains the number of terms in the product of all the monic
square-free factors in expanded form after clearing the denominators (Column
#S). Additionally, it includes the number of terms in the Dixon resultant R in
expanded form (Column #R). In Column 6 labelled tmax = max(#fjk,#gjk),
we report the number of terms present in the largest polynomial coefficient of an
Rj to be interpolated by our Dixon resultant algorithm. The number of monic
square-free factors with respect to each Dixon resultant R is reported in Column
of Rj’s. All our experiments were performed on a 24 core Intel Gold 6342
processor with 256 gigabytes of RAM using only 1 core (cecm maple server)
running at 2.8GHz (base) and 3.5GHz (turbo) and the first smooth prime used
in our code is the 62 bit prime p = (250)(61)(67) + 1.

As the reader can see in Columns 8, 10, 11 and 12, our new Dixon resul-
tant (DixonRes) algorithm outperforms Zippel’s sparse interpolation and the
Gentleman & Johnson algorithm on most of our benchmark systems. This was
expected because #R ≫ tmax. Another reason why this is the case is because
more primes are needed to recover integer coefficients of R compared to the Rj ’s.
Our algorithm is able to solve many parametric polynomial systems that other
methods cannot solve but is not always faster than the Dixon-EDF algorithm.
The evaluation cost of the Dixon matrix is still the bottleneck of our algorithm
while the determinant computation takes typically 10% of the total time.

The number of black box probes done to obtain all the needed degree bounds,
and the number of probes needed to get the first image of the Rj ’s by our
algorithm are reported in Columns degree and image-1 respectively. If the
rational number reconstruction process fails on the first image, then more primes
are needed. The number of black box probes used for each subsequent prime
is reported in Column image-2. The number of primes used to interpolate the
monic square-free factors is labelled as #pi. The reader can see that one 62 bit
prime is typically enough to recover the Rj ’s. In Table 5, the number of black
box probes used by Zippel’s algorithm to interpolate R is denoted by Z-probes.

In our experiments, we found out some Dixon matrices have a block diago-
nal form and often, the determinant of all the blocks produce the same Dixon
resultant R. For the timings recorded in Tables 3 and 5, we always compute the
determinant of the smallest block after confirming that all the blocks produce
the same Dixon resultant. Thus, the number of terms in S and R recorded in
Tables 3 and 5 are obtained using the smallest block obtained from the block
decomposition of a sub-matrix of maximal rank. Details about the block struc-
ture of all the Dixon matrices for our benchmark systems are provided in Table
5. These include the block sizes of each Dixon matrix and the number of black
box probes required by our algorithm to successfully interpolate the Rj ’s.

39

T
ab

le
3:

Sy
st

em
s

In
fo

rm
at

io
n

fo
r

ou
r

D
ix

on
m

at
ri

ce
s

an
d

ti
m

in
gs

fo
r

D
ix

on
R

es
ve

rs
us

M
in

or
E

xp
an

si
on

,
D

ix
on

-E
D

F
an

d
Zi

pp
el

’s
In

te
rp

ol
at

io
n

S
ys

te
m

#
E
q

n
/m

d
im

(D
)/

R
an

k
#
S

t m
a
x

#
R

#
of

R
j
’s

D
ix

on
R

es
M

in
or

Z
ip

p
el

E
D

F
R

ob
ot

-x
1

4
4/

7
(3
2
×

32
)/
16

45
0

14
6
92

47
15

3
3
.5
3
s

1
4
42

.4
5
s

>
10

5
s

96
2.

79
s

R
ob

ot
-x

2
4

4/
7

(3
2
×

48
)/
12

13
01

6
69

1
16

96
3
87

6
3

1
3
0
.9
0
s

!
>

10
5
s

>
10

5
s

R
ob

ot
-x

3
4

4/
7

(3
2
×

32
)/
16

33
4

85
6
38

52
05

2
10
.7
7
s

16
8
.8
8s

>
10

5
s

25
.6

0s
R

ob
ot

-x
4

4
4/

7
(3
2
×

48
)/
12

11
73

7
62

4
16

80
1
87

7
3

1
0
1
.2
8
s

!
>

10
5
s

>
10

5
s

T
ot

4
4/

5
(8
5
×

94
)/
56

8
93

0
34

8
52

98
2

2
26

.0
2s

!
28

4.
83

s
51

46
.3

5s
St

or
ti

6
5/

2
(2
4
×

11
3)
/
20

12
4

32
2

0.
0
74

s
75

.2
4s

0.
0
13

s
0.

09
8s

A
lli

e-
2

3
2/

2
(1
3
×

13
)/
13

40
3

20
4

2
0.

07
3s

1.
06

s
0.

02
8s

0.
08

9s
A

lli
e-

3
4

3/
2

(6
3
×

63
)/
55

22
2

7
49

23
4

3
.2
1
s

>
10

4
s

1
2.
0
6s

36
.0

6s
A

lli
e-

4
5

4/
2

(3
13
×

31
3)
/
23

7
61

4
8

-
9

36
7.

80
s

N
A

N
A

>
10

5
s

A
lli

e-
5

6
5/

2
(1
56

3
×

15
63

)/
96

7
21

00
10

-
12

46
91

4.
83

s
N

A
N

A
N

A
La

co
ne

lli
5

5/
6

(2
8
×

21
)/
11

20
5

91
2

2
0.

05
8s

8.
02

s
0.

28
5s

0.
07

2s
A

ut
o

5
5/

3
(3
2
×

18
)/
18

23
6

66
6

3
0.

06
3s

15
.9

9s
0.

57
8s

0.
13

5s
C

ir
cl

e
9

8/
5

(8
8
×

58
)/
43

18
00

85
37

31
12

29
66

28
6

33
59

.4
9s

>
1
05

s
10

5
s

23
72

4.
30

s
H

ai
re

r
11

11
/2

(9
6
×

85
)/
40

39
8

17
15

92
3

0.
19

5s
>

10
4
s

2.
10

s
2.

57
s

P
iz

za
-R

ol
l

7
6/

2
(2
88
×
10

08
)/
2
64

16
55

33
73

22
3

29
4.

96
s

N
A

54
7.

68
s

36
62

.4
0s

T
oo

th
y

7
6/

2
(7
98
×
20

92
)/
5
44

16
94

48
10

46
2

5
40

86
.3

3s
>

10
4
s

48
51

.6
0s

>
10

5
s

H
er

on
2d

3
3/

3
(3
×
3)
/3

7
6

7
1

0.
04

3s
0s

0.
00

5s
0.

26
s

H
er

on
3d

6
6/

6
(1
6
×

14
)/
13

23
22

23
1

0.
09

9s
0.

00
4s

0.
03

6s
0.

04
4s

H
er

on
4d

10
10
/
10

(1
03
×
75

)/
63

13
1

13
0

14
71

1
0.
5
48

s
2.

67
s

7.
90

s
0.

08
7s

H
er

on
5d

15
14
/
16

(4
14
×

70
7)
/
31

3
82

3
82

2
46

05
99

1
4
.4
9
s

!
>

10
5
s

0.
43

1s
H

er
on

6d
21

21
/
21

(4
98

1
×
25

73
)/
17

9
7

6
20

3
62

02
-

1
99
.2
9
s

N
A

N
A

32
.9

7s
H

er
on

7d
28

28
/
28

(3
54

6
1
×

16
30

6)
/1

0
34

3
52

55
3

52
55

2
-

1
67

1
5
.2
0
s

!
N

A
!

P
en

du
lu

m
3

2/
3

(4
0
×

40
)/
33

4
66

7
24

3
19

89
9

3
22
.5
5
s

11
95

.2
5s

36
.8

4s
2.

74
s

F
le

x-
v1

3
3
/1

5
(8
×
8)
/8

5
68

5
24

81
45

77
3

2
56
.8
5
s

2.
28

s
17

84
.2

7s
0.

75
1s

F
le

x-
v2

3
3
/1

5
(8
×
8)
/8

12
10

1
25

17
45

77
3

2
85

.0
8s

2.
29

s
31

56
.2

4s
0.

75
3s

P
er

im
et

er
6

6/
4

(1
6
×

16
)/
16

1
98

0
30

3
96

98
1

10
.5
0
s

8
.2
3
s

35
.5

3s
0.

1s
Le

e
4

3/
3

(2
8
×

28
)/
22

2
92

5
32

5
29

25
1

17
.1

4s
>

10
4
s

6.
28

s
1.

69
s

B
is

ec
to

r
3

3/
3

(1
2
×

11
)/
11

13
6

31
13

6
1

1.
29

s
0.

13
2s

0.
06

6s
0.

18
7s

Si
ft

-E
x

4
4
/1

1
(8
×
9)
/8

16
61

4
13

62
22

38
06

3
37

.6
8s

60
.3

2s
>

10
4
s

12
.4

0s
3d

co
ni

c
4

2
/1

3
(4
×
4)
/4

44
74

24
3

17
43

0
2

2.
35

s
0.

07
4s

11
5.

56
s

0.
02

0s
M

or
le

y
4

4/
4

(3
5
×

35
)/
35

17
9

23
17

9
1

2.
00

s
>

10
5
s

1.
31

s
0.

37
0s

G
ed

de
s2

4
3/

2
(3
6
×

34
)/
24

1
42

5
27

15
33

3
6.

18
s

>
10

5
s

0.
74

3s
1.

90
s

G
ed

de
s3

4
4/

8
(2
6
×

26
)/
22

2
41

5
30

2
45

01
2

5.
54

s
0.

00
9s

16
.4

4s
0.

04
2s

G
ed

de
s4

4
4/

8
(2
6
×

26
)/
22

57
25

2
55

40
87

24
4

3
45

7.
74

s
>

10
5
s

>
10

4
s

41
6.

40
s

!
=

ra
n

ou
t

of
m

em
or

y,
N

A
=

N
ot

A
tt

em
pt

ed

40

T
ab

le
3

C
on

ti
nu

ed
:

Sy
st

em
s

In
fo

rm
at

io
n

fo
r

ou
r

D
ix

on
m

at
ri

ce
s

an
d

ti
m

in
gs

fo
r

D
ix

on
R

es
ve

rs
us

M
in

or
E

xp
an

si
on

,
D

ix
on

-E
D

F
an

d
Zi

pp
el

’s
In

te
rp

ol
at

io
n

S
ys

te
m

#
E
q

n
/m

d
im

(D
)/

R
an

k
#
S

t m
a
x

#
R

#
of

R
j
’s

D
ix

on
R

es
M

in
or

Z
ip

p
el

E
D

F
H

aw
es

1
4

3/
2

(5
8
×

54
)/
46

7
8

3
2
3
0

2
1.

14
s

>
1
0
3
s

0.
59

1s
1.

91
s

H
aw

es
2

4
4/
5

(9
×
8)
/8

6
7
1

80
67

1
1

0.
91

0s
0.

01
8s

0.
29

4s
0.

07
2s

H
aw

es
4

6
6/
3

(1
17
×

15
4)
/6
0

2
6
8
9
4

19
74

37
30

1
2

25
4.

58
s

>
1
0
4
s

39
9.

72
s

15
33

.6
0

H
er

m
er

t
14

14
/1
2

(2
0
×

31
)/
14

11
2

8
59

76
2

0.
11

4s
1.

62
s

19
.2

5s
0.

08
8s

D
at

um
7

6/
19

(4
×
4)
/4

34
50

01
20

39
24

60
25

46
46

1
21

15
7.

34
s

10
52

.4
8s

>
1
0
5
s

>
1
0
5
s

E
lli

ps
e

7
6/
2

(8
00
×
21
84
)/
54
4

13
50

35
52

65
2

71
44

.5
9s

>
1
0
5
s

37
71

.8
1s

19
94

4.
01

s
Im

ag
e3

d
10

10
/9

(1
78
×

15
2)
/
13
0

1
3
0

84
14

56
1

0.
53

5s
0.

49
1s

1.
33

s
0.

10
2s

T
op

o
5

5/
6

(6
×
6)
/6

6
6

21
15

0
1

0.
33

s
0.

03
0.

13
s

0.
01

4s
E

nn
ep

er
3

3/
2

(1
1
×
11
)/
9

2
3

11
25

7
1

0.
08

9s
0.

02
5s

0.
00

7s
0.

01
3s

C
yc

lo
3

3/
3

(8
×
8)
/8

3
1
3

44
69

8
2

0.
70

5s
0.

05
4s

0.
10

4s
0.

02
5s

B
as

ep
oi

nt
3

3/
2

(1
2
×
12
)/
5

5
1

6
51

1
0.

09
7s

0.
00

2s
0.

00
6s

0.
00

7s
W

ol
fie

4
4/
8

(1
3
×

13
)/
12

24
06

8
54

82
24

06
8

1
13

9.
39

s
2.

10
s

24
4.

80
s

41
.0

2s
N

ac
ht

w
ey

6
6/
5

(1
1
×

18
)/
11

2
4
4

10
6

2
4
4

1
2.

14
s

0.
29

2s
0.

53
1s

0.
08

7s
P
av

el
le

4
4/
19

(5
×

5)
/
14

8
9

35
89

2
0.

49
2s

0.
00

2s
0.

04
1s

0.
02

7s
W

ei
n1

3
3/
18

(5
×
5)
/5

2
1
8
9
4

10
60

3
80

53
8

1
18

3.
22

s
0.

32
2s

37
92

.6
0s

1.
99

s
W

ei
n2

3
3/
18

(5
×
5)
/5

80
53

8
10

60
3

80
53

8
1

11
35

.6
8s

0.
30

7s
38

51
.4

0s
1.

99
s

V
an

au
be

l
9

9/
5

(2
8
×

28
)/
28

11
4

32
16

6
1

0.
18

7s
0.

81
6s

73
9.

20
s

0.
01

3s
St

or
ti

2
5

4/
2

(4
00
×

40
0)
/
27
2

13
50

35
52

65
2

26
58

.4
2s

>
1
0
5
s

93
7.

83
s

42
98

4.
92

s
C

on
ic

3
3/
12

(5
×
5)
/4

2
4
2
4

91
2

65
48

1
9.

44
s

0.
00

5s
14

.7
4s

0.
11

4s
B

ri
ca

rd
6

6/
11

(4
1
×

44
)/
29

31
27

83
38

98
6

11
11

77
5

2
54

91
.8

0s
22

6.
20

s
>

1
0
4
s

62
4.

60
s

!
=

ra
n

ou
t

of
m

em
or

y,
N

A
=

N
ot

A
tt

em
pt

ed

41

T
ab

le
5:

B
lo

ck
st

ru
ct

ur
e

an
d
#

of
pr

ob
es

us
ed

by
A

lg
or

it
hm

D
ix

on
R

es
an

d
Zi

pp
el

’s
in

te
rp

ol
at

io
n

S
ys

te
m

B
lo

ck
S
tr

u
ct

u
re

d
eg

re
e

im
ag

e-
1

im
ag

e-
2

#
p
i

Z-
pr

ob
es

R
ob

ot
-x

1
[8
,8
]

4
0
9
6

1
3
0
0
0

-
1

D
N

F
R

ob
ot

-x
2

[1
2]

6
2
2
4

7
0
5
7
9
6

-
1

D
N

F
R

ob
ot

-x
3

[8
,8
]

4
3
5
6

9
1
0
0
0

-
1

D
N

F
R

ob
ot

-x
4

[1
2]

6
0
2
8

5
2
9
9
8
4

-
1

D
N

F
H

er
on

3d
[6
,7
]

16
0

13
92

-
1

75
7

H
er

on
4d

[1
8,

17
,1

4,
14

]
24

4
93

60
-

1
10

44
65

H
er

on
5d

[3
5,

34
,4

7,
44

,3
3,

41
,3

6,
43

]
3
4
6

6
2
9
2
8

-
1

D
N

F
H

er
on

6d
”x

”
3
2
2

29
43

60
-

1
D

N
F

P
en

du
lu

m
[1
7
,1
6]

1
3
2
6
1

1
1
4
9
2
0

53
04

0
2

1
2
8
2
2
9

T
ot

[3
1
,2
5]

5
0
7
1

2
6
4
0
0
0

-
1

7
4
2
0
9
9

F
le

x-
v1

[8
]

2
0
4
4

6
3
7
6
3
2

-
1

2
0
0
5
0
2
3

F
le

x-
v2

[8
]

5
1
1
6

2
6
6
4
9
4
8

-
1

3
3
1
0
8
7
1

P
er

im
et

er
[1
6]

1
3
4
2

2
2
5
8
2
8

-
1

2
2
1
0
7
5

St
or

ti
[2
0]

4
2
6

8
1
6

-
1

2
7
9

A
lli

e-
2

[1
3]

4
7
6

9
0
0

-
1

8
5
1

A
lli

e-
3

[5
5]

4
4
4
1

8
6
5
8

-
1

38
72

3
A

lli
e-

4
[2
37
]

20
56

3
40

23
0

-
1

D
N

F
A

lie
-5

[9
67
]

84
47

7
16

55
04

27
58

4
2

D
N

F
M

an
oc

ha
[5
]

58
6

20
97

00
-

1
11

17
16

La
co

ne
lli

[1
1]

19
7

28
0

-
1

57
45

Le
e

[2
2]

2
6
2
6

3
7
7
0
0

16
25

0
11

52
37

8
H

aw
es

1
[4
6]

2
4
9
7

4
8
9
6

81
6

2
41

60
A

ut
o

[1
8]

4
7
7

9
5
2

-
1

13
28

0
H

er
m

er
t

[1
4]

44
9

12
80

-
1

14
11

23
V

an
ab

ue
l

[7
,7
,7
,7
]

90
0

17
40

-
1

12
26

66
5

St
or

ti
2

[2
72
]

12
68

72
25

31
64

42
19

4
11

26
14

63
C

ir
cl

e
[4
3]

58
41

1
45

83
59

2
17

62
92

0
2

D
N

F
C

on
ic

[5
]

58
6

20
97

00
-

1
11

17
16

E
lli

ps
e

[2
72

,2
72
]

12
64

33
25

22
88

42
04

8
6

30
86

98
”
x
”
=

[8
9
,9
3
,9
3
,9
4
,9
8
,1
0
0
,1
0
0
,1
0
7
,1
1
8
,1
2
3
,1
2
4
,1
2
4
,1
2
9
,1
3
1
,1
3
3
,1
4
1
]
an

d
D

N
F
=

D
id

N
ot

F
in

is
h

42

T
ab

le
5

C
on

ti
nu

ed
:B

lo
ck

st
ru

ct
ur

e
an

d
#

of
pr

ob
es

us
ed

by
A

lg
or

it
hm

D
ix

on
R

es
an

d
Zi

pp
el

’s
in

te
rp

ol
at

io
n

S
ys

te
m

B
lo

ck
S
tr

u
ct

u
re

d
eg

re
e

im
ag

e-
1

im
ag

e-
2

#
p
i

Z-
pr

ob
es

H
er

on
2d

[3
]

94
28

8
-

1
11

9
N

ac
ht

w
ey

[1
1]

6
1
1

3
9
7
8
0

1
8
0
2
0

2
12

73
9

C
yc

lo
[8
]

16
84

15
70

8
69

30
2

32
93

B
as

ep
oi

nt
[5
]

16
1

48
0

-
1

23
1

W
ol

fie
[1
2]

27
72

23
22

54
0

-
1

55
01

49
P
av

el
le

[5
]

9
0
1

1
2
7
6
8

-
1

17
31

W
ei

n1
[5
]

7
8
6

2
5
5
8
1
6
0

-
1

27
18

97
8

W
ei

n2
[5
]

1
0
5
1

1
1
9
0
6
6
7
6

-
1

27
40

21
8

D
at

um
[4
]

65
2

29
73

19
68

-
1

D
N

F
H

aw
es

2
[8
]

1
6
2
6

51
00

-
1

10
88

7
H

aw
es

4
[6
0]

92
26

29
50

00
11

80
00

4
47

34
70

Im
ag

e3
d

[1
3,

14
,1

4,
15

,1
8,

19
,1

8,
19

]
43

6
12

32
0

-
1

27
95

9
T
op

o
[6
]

61
0

73
92

-
1

45
47

E
nn

ep
er

[9
]

29
5

61
6

-
1

25
7

H
er

on
7d

”y
”

41
2

32
33

86
8

-
1

-
B

is
ec

to
r

[1
1]

1
4
2
0

3
6
7
8
4

-
1

22
55

Si
ft

-E
x

[8
]

1
5
2
5

8
1
9
9
8
4

-
1

D
N

F
T
oo

th
y

[2
72
,2
72
]

91
45

1
18

22
80

30
38

0
4

41
22

06
3d

co
ni

c
[4
]

14
18

48
67

2
-

1
D

N
F

M
or

le
y

[3
5]

38
37

20
60

8
90

16
2

16
35

1
G

ed
de

s2
[2
4]

13
60

1
27

03
0

45
05

2
70

18
G

ed
de

s3
[5
]

10
00

14
61

24
-

1
14

95
43

G
ed

de
s4

[2
2]

89
71

23
61

60
0

10
17

60
0

2
D

N
F

H
ai

re
r

[4
0]

55
2

15
20

-
1

22
10

7
P

iz
za

-R
ol

l
[1
32
,1
32
]

30
09

9
59

89
8

99
83

4
23

48
39

B
ri

ca
rd

[1
7,
12
]

30
91

16
04

66
40

-
1

D
N

F
D

N
F
=

D
id

N
ot

F
in

is
h

”
y
”
=

[2
8
7
,2
8
7
,2
9
9
,2
9
9
,3
0
2
,3
0
2
,3
0
3
,3
0
3
,3
0
5
,3
0
5
,3
1
5
,3
1
5
,3
1
8
,3
1
8
,3
1
9
,3
1
9
,3
2
0
,3
2
0
,3
2
4
,3
2
4
,3
2
9
,3
2
9
,3
3
8
,3
3
8
,3
4
2
,3
4
2
,3
4
3
,3
4
3
,3
5
3
,3
5
3
,3
7
4
,3
7
5
]

43

5. Failure Probability Analysis

5.1. Introduction
To simplify the failure probability analysis in this section, we make the fol-

lowing assumptions. Let F = {f̂1, f̂2, . . . , f̂n} ⊂ Z[y1, y2, . . . , ym][x1, x2, . . . , xn]
be a parametric polynomial system such that n ≥ 1 and m ≥ 1. Let M be a
s × s sub-matrix of the rectangular Dixon matrix D obtained from F , where
s = rank(D), and let the Dixon resultant

R = det(M) =

d̂∑
k=0

r̄k(y1, . . . , ym)xk
1 ∈ Z[y1, y2, . . . , ym][x1]

and suppose its monic square-free factors

Rj = x
dTj

1 +

Tj−1∑
k=0

fjk(y1, y2, . . . , ym)

gjk(y1, y2, . . . , ym)
x
djk
1 ∈ Z(y1, y2, . . . , ym)[x1]

for fjk, gjk ̸= 0 in Z[y1, y2, . . . , ym] where gcd(fjk, gjk) = 1 and d̂ > 0. Let the
monic square-free factor S be as defined in (17). Let H = maxf̂∈F∥f̂∥∞, dx =

maxni=1(maxf̂∈F deg(f̂ , xi)) and let Dy = maxmi=1(maxf̂∈F deg(f̂ , yk)). We also
note that FAIL in our analysis indicates that our algorithms have encountered
an error (or a problem) or that the returned monic square-free factor is incorrect.

5.2. Primes
Let ϕp : Z(y1, . . . , ym)[x1] → Zp(y1, . . . , ym)[x1] be the modular mapping

ϕp(Rj) = Rj mod p. For the rest of this paper, let Ps be the list of pre-computed
smooth primes to be used in Line 7 of Algorithm 5 where psmin

= min(Ps) and
let P be the list of pre-computed primes (not necessarily smooth) to be used in
Line 6 of Algorithm 8 and pmin = min(P) where |P|≥ |Ps| and pmin ≥ psmin

.

Generating random primes
For efficiency purposes, we used 62 bit primes in our Dixon resultant algo-

rithm because of our hybrid Maple+C implementation of our algorithm. Thus,
the list of primes P and Ps both contain 62 bit primes with pmin, psmin

> 261.
In order to obtain a low failure probability for our Dixon resultant algorithm,
we want |P|, |Ps|≥ 109. However, it is not efficient to generate these lists of
primes as this computation will take a very long time. We briefly discuss how
we generate a random prime from P and Ps without creating these lists.

A random 62 bit prime from [261, 262] can be generated by first choosing a
random integer c ∈ [261, 262] then picking the prime before or after c. Algorithm
RandomSmoothPrime which generates a random smooth prime (not uniformly)
[260, 263]. We estimate there are about 1010 smooth primes in this range.

Now we characterize the primes that must be avoided in our algorithm.

44

Algorithm RandomSmoothPrime
repeat

Pick qi ∈ [750, 2500] for 1 ≤ i ≤ 6 at random.
Set p = 1 +

∏6
i=1 qi.

until p ∈ (260, 263) and p is prime.

Definition 22. We say a prime p is bad if p divides LC(R, x1). If prime p is
not bad then we say p causes missing terms if p divides any integer coefficient
of Rj .

Example 23. Suppose the Dixon resultant R = 15y2x
2
1 + (7y1 − 49)x1 + 7. So

LC(R, x1) = 15y2 and its only monic square-free factor is

S = x2
1 +

(7y1 − 49)

15y2
x1 +

7

15y2
.

Clearly, the primes 3, 5 are bad, and the primes 3, 5, 7 cause missing terms.

Example 24. Suppose the Dixon resultant R = (3137y2+3)x2
1+(7y1+1)x1+7

and let
S = x2

1 +
(7y1 + 1)

3137y2 + 3
x1 +

7

3137y2 + 3
.

Notice that ϕ3137(LC(R, x1)) = 3 ̸= 0, which means the image

ϕ3137(S) = x2
1 + 1046(7y1 + 1)x1 + 1048.

Clearly, there are missing terms in the denominators of ϕ3137(S).

By design, our Dixon resultant algorithm returns an answer when the ratio-
nal number reconstruction process succeeds on S for the first prime (See Lines
37-38 of Algorithm 5). If the rational number reconstruction process does not
succeed with the first prime, then more primes are used. Our algorithm is de-
signed this way because we do not know the number of primes needed a priori
since R is represented by the black box BB, and we want to use the fewest
number of primes possible. Therefore, in Example 24, if ϕ3137(S) is the first
image obtained, the rational number reconstruction process will succeed with
the input prime p = 3137, and Algorithm 5 will return the incorrect answer

Ŝ = x2
1 +

(
7

3
y1 +

1

3

)
x1 +

7

3
.

Our probabilistically test (Algorithm 9) will catch this error with high proba-
bility. We now bound the failure probability of a prime p is bad or p causes
missing terms.

Proposition 25. If p is chosen at random from the list of pre-computed primes

45

P and pmin = min(P) then

Pr[p is bad or causes missing terms] ≤
logpmin

∥R∥∞+#Rj logpmin
∥Rj∥∞

|P|
.

Proof. Let c be an integer coefficient of an Rj . The number of primes p that
can divide c from the list of primes P is at most ⌊logpmin

c⌋. So

Pr[p divides c] ≤
logpmin

c

|P|
.

Clearly, p is bad ⇐⇒ p|LC(R, x1) =⇒ p divides one term in LC(R, x1). Thus,

Pr[p is bad] ≤ Pr[p divides one term in LC(R, x1)] ≤
logpmin

∥R∥∞
|P|

. (19)

Furthermore, the probability that p causes missing terms is at most

#Rj logpmin
(∥Rj∥∞)

|P|
. (20)

Adding (19) and (20) completes our proof.

5.3. Evaluation Points
After selecting a random smooth prime from Ps, the next major step in our

Dixon resultant algorithm is to interpolate many monic univariate polynomial
images of the Dixon resultant R in x1, and then we compute their monic square-
free factorization using Subroutine PolyInterp (Subroutine 1). To ensure that
our monic square-free factors are consistent from one image to the next with
high probability, it is important that we avoid using some evaluation points.

Definition 26. Let p be a prime that is not bad. Let α ∈ Zm
p be an evaluation

point. We say that α ∈ Zm
p is bad if LC(R, x1)(α) = 0. We also refer to α ∈ Zm

p

as an evaluation point that causes missing terms if any numerator coefficient
of an Rj vanishes. That is fjk(α) = 0 and gjk(α) ̸= 0 for some j and k.

Example 27. Let the Dixon resultant R = (y1− a)x2
1 + y2(y1− b)x1 +(c− y2).

Since R has only one monic square-free factor, we have

S := R1 = x2
1 +

y2(y1 − b)

y1 − a
x1 +

(c− y2)

y1 − a
.

Let p be any prime such that p ∤ a ⇒ p ∤ LC(R, x1) = (y1 − a). By inspection,
one sees that the evaluation points {(α1, α2) ∈ Z2

p : α1 = a, and α2 ∈ Zp} are
bad and {(α1, α2) ∈ Z2

p : α1 = b or α2 = c} cause missing terms.

Lemma 28. Suppose prime p is not bad. If α ∈ Zm
p is chosen at random then

Pr[α is bad or causes missing terms] ≤ nmsDy + n2s2mdxDy

p
. (21)

46

Proof. Using Lemma 2 and Theorem 14(ii), we have that

Pr[α is bad] = Pr[LC(R, x1)(α) = 0] ≤ deg(LC(R, x1))

p
≤ nmsDy

p
. (22)

Now we address the case when the evaluation point α causes missing terms. Let
N be the number of monic square-free factors Rj to be interpolated and let

∆(y1, . . . , ym) =

N∏
j=1

Tj−1∏
k=0

fjk.

Since Tj is the number of the rational function coefficients in each Rj , we have N∑
j=1

Tj

 ≤
 N∑

j=1

dTj

 ≤ N∑
j=1

deg(Rj , x1) ≤ deg(R, x1) ≤ nsdx.

Clearly, deg(∆) =
∑N

j=1

∑Tj−1
k=0 deg(fjk). Thus, using Theorem 14, we get

deg(∆) ≤
N∑
j=1

(
Tj

m∑
i=1

nsDy

)
≤ n2s2mdxDy.

Therefore, by Lemma 2,

Pr[α causes missing terms] = Pr[∆(α) = 0] ≤ deg(∆)

p
≤ n2s2mdxDy

p
. (23)

Adding (22) and (23) completes our proof.

5.4. Monic Univariate Polynomial Images of R
Recall that Subroutine 1 (Subroutine PolyInterp) interpolates monic poly-

nomial images of R in x1 with high probability for one monic square-free factor
S. The integer coefficients of these monic univariate polynomial images are what
we use to interpolate the monic square-free factor S. Therefore, we must avoid
evaluation points and primes that are bad. We must also avoid evaluation points
and primes that could cause these monic univariate polynomial images of R in
x1 to lose their support (the univariate monomials in x1 disappear).

A bad evaluation point can be detected in the same way as a bad prime.
This is detected with high probability in Subroutine 1 by checking that the
degree of the interpolated univariate monic polynomial images of R is the same
as the degree of R in x1. Line 5 of Subroutine 1 detects the occurrence of a bad
evaluation point or a bad prime.

Similarly, an evaluation point that causes the supports of the interpolated
monic polynomial images of R in x1 to disappear can be detected in the same
way as a prime that causes the supports of these images to vanish. If the degrees
[d0, . . . , dT] as defined in (17) are the same as the degrees of the support of the

47

interpolated monic polynomial images H in Subroutine 1, then we know we
have a correct univariate monic polynomial image of R with high probability.
We detect this in Line 7 of Subroutine 1. Otherwise, we interpolate a monic
square-free factor that have missing terms. We now find the probability that
Subroutine 1 returns FAIL.

Lemma 29. Assume the degrees [d0, . . . , dT] from {xd0 , . . . , xdT } as defined
in (17) are correct. Let emax = 2 + maxT−1

k=0 (deg(fk) + deg(gk)) . If prime p
is chosen at random from the list of primes P and pmin = min(P) then the
probability that Subroutine 1 returns FAIL is at most

emax

(
nmsDy + n2s2mdxDy

p
+

nsdx logpmin
(∥S∥∞∥R∥∞)

|P|

)
.

Proof. There are two sources of failure in Subroutine 1. First, if an input evalu-
ation point Zj ∈ Zm

p is bad for any 1 ≤ j ≤ emax or an input prime p is bad then
the degree of the interpolated monic polynomial images Bj of R in x1 denoted
by deg(Bj , x1) < deg(R, x1) in Line 5 of Subroutine 1. Thus,

Pr[prime p or evaluation pointZj is bad in Line 5 of Subroutine 1]
≤ Pr[p divides LC(R, x1)] + Pr[LC(R, x1)(Zj) = 0]

≤ Pr[p divides one term in LC(R, x1)] + Pr[LC(R, x1)(Zj) = 0]

≤
logpmin

∥LC(R, x1)∥∞
|P|

+
deg(LC(R, x1))

p
≤

logpmin
∥R∥∞

N
+

nmsDy

p︸ ︷︷ ︸
by (22)

. (24)

Now we assume that prime p and Zj are not bad. If Zj ∈ Zm
p or p causes

missing terms, then supp(Hj) ̸= {xd0 , . . . , xdT } in Line 7 of Subroutine 1 where
Hj is the monic square-free part of the univariate polynomial Bj . Since T is the
number of polynomials fk in S, we have that T ≤ deg(R, x1) ≤ nsdx. Thus

Pr[Zj or p causes missing terms in Line 7 of Subroutine 1]
≤ Pr[Any fk(Zj) = 0] + Pr[p divides any fk in S]

≤ Pr[Any fk(Zj) = 0] + Pr[p divides one term of fk in S]

≤ Pr[

T−1∏
k=0

fk(Zj) = 0] +
T logpmin

∥S∥∞
|P|

≤ n2s2mdxDy

p︸ ︷︷ ︸
by (23)

+
nsdx logpmin

∥S∥∞
|P|

. (25)

Hence Pr[Subroutine 1 returns FAIL] ≤ emax((24) + (25)).

Remark 30. If Algorithm 5 calls Subroutine 1 then the list of primes P is re-
placed with the list of smooth primes Ps, so the above theorem works accordingly.

48

5.5. Unlucky Content
Definition 31. Let the Dixon resultant R =

∑tr
i=1 r̄i(y1, . . . , ym)xei

1 with tr ≥ 2.
Let p be a prime such that ϕp(r̄i) ̸= 0 for all i. Let the polynomial content of R
be denoted by C = gcd(r̄1, r̄2 . . . , r̄tr). We say p causes unlucky content if

gcd
(
ϕp

(r̄1
C

)
, ϕp

(r̄2
C

)
, . . . , ϕp

(r̄tr
C

))
̸= 1.

Example 32. Let p ̸= 2 be a sufficiently large prime and let

R = (2y21 + 2y1 + 2py1)x1 + (2y21 + 2y1)

where r̄2 = (2y21 + 2y1 + 2py1) and r̄1 = (2y21 + 2y1). Notice that C = 2y1, but

gcd
(
ϕp

(r̄1
C

)
, ϕp

(r̄2
C

))
= y1 + 1 ̸= 1.

Thus, our algorithm will incorrectly output Ŝ = x1 + 1 instead of

S = x1 +
y1 + 1

y1 + p+ 1
,

which is the correct answer because p caused an unlucky content.

We cannot detect in advance the occurrence of an unlucky content in our
algorithm due to the black box representation of the Dixon resultant R. But
it can be detected after our algorithm terminates using our probabilistic test
(Algorithm 9) which was presented in Subsection 4.2.

Theorem 33. Suppose the Dixon resultant R =
∑tr

i=1 r̄i(y1, . . . , ym)xei
1 where

tr ≥ 2, Nt = maxtri=1(#r̄i). Let p be a prime chosen at random from the list of
pre-computed primes P and pmin = min(P). Suppose r̄i ∈ Z[y2, . . . , ym][y1]. If
ϕp(LC(r̄i, y1)) ̸= 0 for all i then the probability that p causes unlucky content

<
2nsDy logpmin

((2nsNtDy)∥R∥∞)

|P|
.

Proof. Observe that

deg
(
gcd

(
ϕp

(r̄1
C

)
, . . . , ϕp

(r̄tr
C

)))
> 0 =⇒ deg

(
gcd

(
ϕp

(r̄i
C

)
, ϕp

(r̄j
C

)))
> 0

for any 1 ≤ i ̸= j ≤ tr, which implies that

deg (gcd(ϕp(r̄i), ϕp(r̄j))) > 0 =⇒ deg (gcd(ϕp(r̄i), ϕp(r̄j)), yk) > 0

for at least one k, say k = 1. So prime p causes unlucky content if

deg
(
gcd

(
ϕp

(r̄1
C

)
, . . . , ϕp

(r̄tr
C

)))
> 0 =⇒ deg(gcd(ϕp(r̄i), ϕp(r̄j)), y1) > 0

49

=⇒ ϕp(Rs) = 0 where Rs is the Sylvester resultant of r̄i, r̄j in y1. Therefore,

Pr[deg

(
gcd

(
ϕp

(r̄0
C

)
, . . . , ϕp

(
r̄d̂
C

)))
> 0] ≤ Pr[ϕp(Rs) = 0] ≤

logpmin
∥Rs∥∞
|P|

.

To complete our proof, we obtain a bound for ∥Rs∥∞ as follows. Let Ŝ
be the Sylvester matrix whose entries are coefficients of r̄i and r̄j in y1. Thus,
Rs = det(Ŝ). Using Theorem 14, the dimension of Ŝ denoted by dim(Ŝ) ≤
deg(r̄i, y1) + deg(r̄j , y1) ≤ 2 deg(R, y1) ≤ 2nsDy. Thus,

∥Rs∥∞< (dim(Ŝ)
1
2 max

j,k
(#Ŝjk) ∥Ŝjk∥∞)2nsDy < (2nsDyNt∥R∥∞)2nsDy

by Theorem 4, and we are done.

Example 34. For the robot arms system from [26] listed in Appendix A we
have n = 4, s = 16, Dy = 2 so that 2nsDy = 256, Nt = 145185 and ∥R∥∞=
93296724912960039813120 = 9.33 × 1022. If P = {the set 62 bit primes}, since
|P|≈ 5.28 × 1016 it follows from Theorem 33 that the probability that p causes
unlucky content is < 8.06× 10−15 < 2−46.

5.6. Auxiliary Univariate Rational Functions
Using a Kronecker substitution, we remind the reader that the interpolation

of the multivariate rational function coefficients fk(y1,...,ym)
gk(y1,...,ym) of S where S is

as defined in (17) is reduced to a univariate rational function interpolation
modulo a prime in our Dixon resultant algorithm. Let r = (r1, r2, . . . , rm−1) ∈
Zm−1 where ri > 0 and let Kr : Zp(y1, y2, . . . , ym) → Zp(y) be the Kronecker
substitution

Kr(fk/gk) =
fk(y, y

r1 , yr1r2 , . . . , yr1r2···rm−1)

gk(y, yr1 , yr1r2 , . . . , yr1r2···rm−1)
∈ Zp(y)

where ri > max
(
maxT−1

k=0 (deg(fk, yi),deg(gk, yi))
)
, prime p >

∏m
i=1 ri and poly-

nomials fk and gk are as defined in (17). Let α be a generator for Z∗
p and let

β ∈ (Zp \ {0})m be a basis shift as described in Lines 8-13 of Algorithm 5. Let

Fk(y, z, β) :=
fβ
k (y, z)

gβk (y, z)
=

fk(zy + β1, zy
r1 + β2, . . . , zy

(r1r2···rm−1) + βm)

gk(zy + β1, zyr1 + β2, . . . , zy(r1r2···rm−1) + βm)
∈ Zp(y)(z).

Recall that the introduction of the basis shift β ensures that the functions
Fk(α

i, z, β) are normalized in Line 4 of Subroutine 7 using the constant term
produced by gβk (α

i, z). If gk has a constant term, then we use β = (0, . . . , 0) in
Line 8 of Algorithm 5.

Definition 35. A prime p is said to be unlucky if p|LC(fβ
k (y, z), z) or p|LC(gβk (y, z), z)

for any k.

50

Definition 36. Suppose p is not an unlucky prime. We say that α ∈ Zp \{0} is
an unlucky evaluation point if deg(fβ

k (α, z), z) < deg(fk, z) or deg(gβk (α, z), z) <
deg(gk, z) for any k. That is, LC(fβ

k , z)(α) = 0 or LC(gβk , z)(α) = 0. We say
that β ∈ (Zp \ {0})m is a bad basis shift if gcd(fk, gk) = 1 and α is not an
unlucky evaluation point but deg(gcd(fβ

k (α, z), g
β
k (α, z))) > 0 for any k.

Example 37. Let f1/g1 = (y1 + y2 + y3)/(qy
2
2 + y1 + y3). Let prime p > 10

and let r = (2, 3) where ri > max{deg(f1, yi),deg(g1, yi)}, so

Kr(f1/g1) =
f1(y, y

2, y6)

g1(y, y2, y6)
=

y6 + y2 + y

y6 + qy4 + y
∈ Zp(y).

The rational function f1/g1 does not have a constant term in the numerator or
denominator so we need a basis shift. Let β = (5, 2, 3). Then

F1(y, z, β) =
fβ
1 (y, z)

gβ1 (y, z)
=

10 +
(
y6 + y2 + y

)
z

qy4z2 + (y6 + y) z + 8 + 4q
∈ Zp[y](z).

If p|q then p|LC(gβ1 (y, z), z) = qy4. Thus, for α ∈ Zm
p , we have that p is an

unlucky prime since deg(gβ1 (α, z)) < deg(g1) = 2.

Example 38. Let f1/g1 = (2891y1+y2+y3)/(y
2
2+y1+y3). Notice gcd(f, g) = 1.

Let p = 3137 and let β = (5, 2, 3) ∈ Z3137 serve as the basis shift for f1/g1. Let
r = (2, 3) ri > max{deg(f1, yi),deg(g1, yi)}. Then

Kr(f1/g1) =
f1(y, y

2, y6)

g1(y, y2, y6)
=

y6 + y2 + 2891y

y6 + y4 + y
∈ Z3137(y).

Thus,

F1(y, z, β) =
fβ
1 (y, z)

gβ1 (y, z)
=

1912 + (y6 + y2 + 2891y)z

12 + y4z2 + (y6 + 4y2 + y)z
∈ Z3137[y](z),

LC(fβ
k (y, z), z) = y6 + y2 + 2891y and LC(gβk (y, z), z) = y6 + 4y2 + y. Clearly,

p = 3137 is not an unlucky prime. If α = 3 is chosen from Z∗
3137, then

F1(3, z, β) =
fβ
1 (3, z)

gβ1 (3, z)
=

1912

81z2 + 768z + 12
∈ Z3137(z).

Therefore, deg(f1(α, z)) < 1 because LC(fβ
1 (y, z), z)(3) = 9411 = 3 × 3137 ≡

0 (mod p) which implies that α = 3 is an unlucky evaluation point.

To avoid the occurrence of unlucky evaluation points with high probability
in Algorithm 5, we interpolate Fk(α

ŝ+i, z, β) for some random ŝ ∈ [0, p − 2]
instead of Fk(α

i, z, β) for i = 0, 1, 2, · · · . This is labelled as Aj in Line 23 of
Algorithm 5. Line 25 detects unlucky evaluation points, a bad basis shift and a
prime p that is unlucky.

51

Example 39. Let p be a prime and let f1/g1 = y1/(y1y2+y3y2) ∈ Zp(y1, y2, y3).
Let r = (2, 2) where ri > max{deg(f1, yi),deg(g1, yi)} = 1 for 1 ≤ i ≤ 3. Then

Kr(f1/g1) =
f1(y, y

2, y4)

g1(y, y2, y4)
=

y

(y + y4)y2
=

y

y3 + y6
.

Since g1 has no constant term, we need a non-zero basis shift β. To interpolate
Kr(f1/g1), we need to densely interpolate F1(α

j , z, β) for 1 ≤ j ≤ 4 = 2×#g1.
Computing F1(α, z, β) directly yields the univariate rational function

F1(α, z, β) =
fβ
1 (α, z)

gβ1 (α, z)
=

αz + β1

(zα4 + zα+ β1 + β3)(zα2 + β2)
.

The Sylvester resultant

R = res(fβ
1 (α, z), g

β
1 (α, z), z) = α2(α3β1 − β3)(αβ1 − β2) ̸= 0

since α ̸= 0 and β = (β1, β2, β3) ̸= (0, 0, 0). But, if β2 = αβ1 ̸= 0 or β3 =
α3β1 ̸= 0 then R(β) = 0 which implies that β is a bad basis shift.

Theorem 40. Let Na be the number of auxiliary rational functions needed
by Algorithm 5 to interpolate the monic square-free factor S of R. If a smooth
prime p is chosen at random from the list of pre-computed primes Ps and psmin

=
min(Ps) then the probability that Algorithm 5 returns FAIL in Line 25 is at most

2nsdx(1 + nsDy)
m

p− 1
+

Nan
3s3m2D2

ydx

p− 1
+

2Nansdx logpsmin
∥S∥∞

|Ps|
.

Proof. There are 3 causes of FAIL in Line 25 of Algorithm 5. They are unlucky
evaluation points, a bad basis shift and an unlucky prime p. We remark that
all 3 failure causes are direct consequence of attempting to interpolate auxiliary
rational functions Aj in Line 23 of Algorithm 5 when it calls Subroutine Ratfun.

1. Unlucky evaluation point case:. Let

∆(y) =

T−1∏
k=0

LC(fβ
k (y, z), z)LC(g

β
k (y, z), z) ∈ Zp[y].

For 0 ≤ j ≤ Na − 1, the evaluation point αŝ+j−1 in Line 17 is random on [1, p),
since ŝ ∈ [0, p − 2] is random. Since a basis shift β does not affect the degree
and the leading coefficients of auxiliary rational functions, we have that, αŝ+j−1

is an unlucky evaluation point ⇐⇒ ∆(αŝ+j−1) = 0. Since T is the number
of numerator polynomials fk in S, we have that T ≤ deg(R, x1) ≤ nsdx. Also,
recall that the ri’s from the Kronecker map Kr applied on fk and gk satisfy

ri = 1 +
T−1
max
k=0

(deg(fk, yi),deg(gk, yi)) ≤ 1 + deg(R, yi) ≤ 1 + nsDy.

52

Thus deg(∆(y)) = 2T
∏m

i=1 ri ≤ 2nsdx(1 + nsDy)
m. Therefore, the probability

that αŝ+j−1 is unlucky for 0 ≤ j ≤ Na − 1 is at most

Na deg(∆)

p− 1
≤ 2Nansdx(1 + nsDy)

m

p− 1
. (26)

2. Bad basis shift case:. Suppose θj := αŝ+j−1 is not unlucky for 1 ≤ j ≤ Na.
Let w1, w2, · · ·wm be new variables and let Gkj ∈ Zp(w1, w2, . . . , wm)(z) and

Gkj =
f̂kj (w1, . . . , wm)

ĝkj
(w1, . . . , wm)

=
fk(θjz + w1, . . . , zθ

(r1r2···rm−1)
j + wm)

gk(θjz + w1, . . . , zθ
(r1r2···rm−1)
j + wm)

.

Recall that a basis shift β ∈ (Zp \ {0})m does not affect the leading coefficients
of auxiliary functions, so LC(f̂kj

, z)(β) ̸= 0 and LC(ĝkj
, z)(β) ̸= 0. Let

Rkj = res(f̂kj , ĝkj , z) ∈ Zp[w1, w2, . . . , wm]

be the Sylvester resultant of f̂kj
and ĝkj

taken in z and let ∆(w1, w2, . . . , wm) =∏Na

j=1

∏T−1
k=0 Rkj . Clearly, β is a bad shift ⇐⇒ deg(gcd(f̂kj

(z, β), ĝkj
(z, β)) > 0

for any k and j ⇐⇒ ∆(β) = 0. Using the Bezout bound, we have

deg(Rkj) ≤ deg(f̂kj
) deg(ĝkj

) ≤ deg(fk) deg(gk) ≤

(
m∑

k=1

deg(R, yk)

)2

≤ n2m2s2D2
y.

Hence,

deg(∆) ≤
T−1∑
k=0

Na∑
j=1

deg(Rkj) ≤ NaT

(
m∑

k=1

deg(R, yk)

)2

≤ n3s3m2D2
ydxNa

since T ≤ nsdx and
∑m

k=1 deg(R, yk) ≤ nmsDy by Theorem 14. Therefore,

Pr [β is bad basis shift] = Pr[∆(β) = 0] ≤
n3s3m2D2

ydxNa

p− 1
. (27)

3. Unlucky Primes:. Finally, we handle the case when p is unlucky. That is,
prime p causes the degree of a numerator or denominator polynomial in the
rational function Aj in Line 23 of Algorithm 5 in z to drop lower than deg(fk)
or deg(gk). Since deg(fdeg(f),k) = deg(fk) and deg(gdeg(g),k) = deg(gk), we have

Pr[p is unlucky in Aj] ≤ Pr[p divides fk,deg(f) or gdeg(g),k in S for 0 ≤ k ≤ T − 1]

≤ Pr[p divides one integer coefficient of fk,deg(f) or gk,deg(g) in S for 0 ≤ k ≤ T − 1]

≤
2T logpsmin

(∥S∥∞)

Ns
≤

2nsdx logpsmin
∥S∥∞

Ns

53

since the number of polynomials fk and gk in S is T ≤ deg(R, x1) ≤ nsdx. Thus,

Pr[p is unlucky in Aj for 1 ≤ j ≤ Na] ≤
2Nansdx logpsmin

∥S∥∞
|Ps|

. (28)

Adding (26), (27) and (28) completes our proof.

Remark 41. The exponential factor (1+nsDy)
m in (26) is caused by the Kro-

necker substitution Kr. For the robot arms system from [26] listed in Appendix A
we have n = 4, m = 7 s = 16, Dy = 2, so (1+nsDy)

m = 594, 467, 302, 491, 009
which is large. This factor allows ∆(y) to have deg(∆(y)) roots in Zp. In prac-
tice, we do not encounter unlucky evaluation points because the average number
of roots of a random ∆(y) over Zp is 1 [36, Chapter 4]. Also, since the Dixon
resultant R has three square-free factors R1 = A1, R2 = A2 and R3 = A3A4 (see
Example 1), and the maximum partial degrees of R1, R2 and R3 in the parame-
ters y1, y2, . . . , y7 are 4, 2, 4, 2, 2, 2, 2 and 2, we use r = (5, 3, 5, 3, 3, 3, 3) for the
Kronecker substitution and the exponential factor becomes 35 × 52 = 6075.

5.7. Discovering the size and supports of the polynomials Kr(fi,k) and Kr(gi,k)

We now aim to obtain the probability of failure of finding the correct sup-
port for the univariate polynomials Kr(fi,k) ∈ Zp[y] and Kr(gi,k) ∈ Zp[y] where
Kr is the Kronecker substitution and fi,k and gi,k are as defined in (18). These
supports along with their sizes (number of terms) are used to determine the mul-
tivariate polynomials fi,k and gi,k in our Dixon resultant algorithm. Subroutine
BMStep (Subroutine 2) was designed to get these univariate polynomials when
it receives an input prime p, and an input array J containing a sequence of
coefficients from the univariate auxiliary rational functions in z such that |J |= i
and i is even. This subroutine uses the Berlekamp-Massey Algorithm (BMA) to
generate a feedback polynomial λ(z) ∈ Zp[z] in Line 2 when the degree condition

deg(λ) <
i

2
(29)

is satisfied, and the number of roots of λ(z) over Zp yields the number of terms
in Kr(fi,k) ∈ Zp[y] or Kr(gi,k) ∈ Zp[y] to be interpolated with high probability.
However, it is possible that an incorrect λ(z) is produced even if the condition
(29) is satisfied. Thus, the wrong number of terms, and consequently the wrong
polynomials fi,k or gi,k are obtained. To obtain a failure probability bound, we
state the following result proved in Hu [18].

Theorem 42. [18, Theorem 2.6] Let f be a univariate polynomial to be inter-
polated and let t = #f, p be a prime and p≫ deg(f). Let α be any generator of
Z∗
p. Then the number of shift ŝ which make the BMA encounter a zero discrep-

ancy on
[
f(αŝ), f(αŝ+1), . . . , f(αŝ+2t)

]
is at most t(t+1) deg(f)

2 . Therefore, if ŝ is
chosen uniformly at random from [0, p − 2], then the probability that the BMA

54

encounters a zero discrepancy for the first time at iteration 2t is at least

1− t(t+ 1) deg(f)

2(p− 1)
.

Following the definition of Kaltofen, Lee and Lobo in [24], a zero discrepancy
means that two consecutive feedback polynomials generated by the BMA would
be the same, implying that the correct term bound has been found with high
probability. That is, if we compute λ(z) for j = 2, 4, 6, · · · points, we will see
that deg(λ) = 1, 2, 3, . . . , t− 2, t− 1, t, t, t Thus, the above theorem assures
us of obtaining the correct feedback polynomial λ(z) and the correct number of
terms whenever we run the BMA on an input of length i containing a sequence
of points with i > 2t.

In practice, an input sequence of length 2t would yield a feedback polyno-
mial of degree t (which is also the number of terms in the polynomial f to be
interpolated). Therefore, our stopping condition (29) definitely obeys Theorem
42 because we are using at least two extra points to confirm that the correct
λ(z) is found each time the BMA is called in Line 2 of Subroutine 2. As we have
said earlier, the condition (29) may be satisfied, but still the wrong feedback
polynomial is obtained because a zero discrepancy is encountered when i < 2t.

We give the following example to illustrate this possible failure.

Example 43. Let f = y6 + 40y5 + 45y2 + 75y + 1 ∈ Z103[y]. Suppose we use
the generator α = 87. Since t = #f = 5, we need 10+2 points to determine the
correct feedback polynomial, with the extra 2 points used for confirmation. Let
ŝ = 0. By computing vj = f(αŝ+j) for 0 ≤ j ≤ 12, we obtain

v = [59, 84, 8, 0, 64, 0, 96, 64, 94, 76, 85, 88].

Define Wi := [v1, v2, . . . , vi]. Running the BMA on inputs Wi for points i =
2, 4, 6, 10, 12 yield the feedback polynomials λ(z) recorded in the following table.

i λ(z) Number of roots of λ(z) deg(λ) < i
2 i > 2t

2 30 + z 1 NO NO
4 z2 + 84z + 95 0 NO NO
6 z2 + 84z + 95 0 YES NO
10 z5 + 43z4 + 76z3 + 93z2 + 25z + 71 5 YES NO
12 z5 + 43z4 + 76z3 + 93z2 + 25z + 71 5 YES YES

By design, Line 2 of Subroutine 2 will be able to detect that there is a
problem by returning FAIL if deg(λ) ̸= tr where tr is the number of roots of λ.
But it will not be able to detect the case when the feedback polynomial stabilizes
too early and the number of roots obtained is equal to the degree of the feedback
polynomial. That is, deg(λ) = tr ̸= t. This case will only be discovered by our
algorithm at termination when we check if the returned answer is incorrect. Our
Dixon resultant algorithm also checks that # roots of λ(z) is equal to the degree
of λ(z) (see Line 4 of Subroutine 2).

55

Theorem 44. Let Na be the number of auxiliary rational functions needed by
Algorithm 5 to interpolate the monic square-free factor S. If prime p is chosen
at random from the list of pre-computed primes Ps and psmin

= min(Ps) then
the probability that Algorithm 5 returns FAIL or an incorrect answer in Lines
28 or 29 or 31 or 32 is at most

nmsdx(Na + 1)2(1 + nsDy)
m+1

p− 1
.

Proof. Since Na is the required number of auxiliary rational functions needed
by Algorithm 5, it follows that Line 2 of Subroutine 2 will never return FAIL.
However, the feedback polynomial λ(z) ∈ Zp[z] generated by the Berlekamp-
Massey Algorithm in Subroutine 2 to find Kr(fi,k) ∈ Zp[y] or Kr(gi,k) ∈ Zp[y]
might be wrong if the number of roots of λ(z) is not equal to deg(λ) or after
inverting the Kronecker substitution Kr, deg(fi,k, yj) or deg(gi,k, yj) is greater
than maxT−1

k=0 (deg(fk, yj),deg(gk, yj)) so Line 4 or Line 7 of Subroutine 2 will
return FAIL which causes Algorithm 5 to return FAIL in either Lines 28 or 29
or 31 or 32. Even if Line 4 or Line 7 of Subroutine 2 does not return FAIL, we
might still have a feedback polynomial that terminates too early, so an incorrect
Kr(fi,k) ∈ Zp[y] or Kr(gi,k) ∈ Zp[y] may be produced.

Using Theorem 42, the probability of getting FAIL or an incorrect Kr(fi,k)
or Kr(gi,k), for all i and k in Subroutine 2 is at most

T−1∑
k=0

∑deg(fk)
i=0 #fi,k(#fi,k + 1) deg(Kr(fi,k)) +

∑deg(gk)
i=0 #gi,k(#gi,k + 1) deg(Kr(gi,k))

2(p− 1)

≤
T−1∑
k=0

∑deg(fk)
i=0 Na(Na + 1)(1 + nsDy)

m

2(p− 1)
+

∑deg(gk)
i=0 Na(Na + 1)(1 + nsDy)

m

2(p− 1)

≤
(Na + 1)2(1 + nsDy)

m
∑T−1

k=0 (1 + deg(fk))

2(p− 1)
+

(Na + 1)2(1 + nsDy)
m
∑T−1

k=0 (1 + deg(gk))

2(p− 1)

≤ 2T (Na + 1)2(1 + nsDy)
m(1 + nmsDy)

2p− 1
≤ nmsdx(Na + 1)2(1 + nsDy)

m+1

p− 1

since Na ≥ #Kr(fi,k),#Kr(gi,k), and (1+nsDy)
m ≥ deg(Kr(fi,k)),deg(Kr(gi,k)),

and T ≤ deg(R, x1) ≤ nsdx by Theorem 14, and our result follows.

5.8. Monomial Evaluations
We have to solve for the coefficients of the polynomials fi,k and gi,k in

Algorithm 8, when more primes are required to interpolate the monic square-
free factor S. Algorithm 8 uses the support obtained from the first image to solve
for the coefficients of a new image of the monic square-free factor S. However,
it is possible that an evaluation point can cause two distinct monomials to
evaluate to the same value in Zp. Lines 25 and 37 of Algorithm 8 both detect
the occurrence of getting the same monomial evaluation. Thus, we need to
obtain a failure probability bound for this case.

56

Lemma 45. Let q be a prime chosen at random from the list of pre-computed
primes P to be used by Algorithm 8 in order to get a new image of the monic
square-free factor S. Let pmin = min(P). Let fi,k, gi,k, fk, gk be as defined in (17)
and (18). Let N̂max = maxT−1

k=0

(
max

deg(fk)
i=0 {#fi,k},max

deg(gk)
i=0 {#gi,k}

)
. Then

the probability that Algorithm 8 returns FAIL in Line 25 or 37 is at most

nsdxN̂
2
max(nmsDy + 1)2

(q − 1)
.

Proof. Let the support of fi,k be denoted by

supp(fi,k) = [Hj(y1, y2, . . . , ym) : 1 ≤ j ≤ #fi,k where deg(Hj) = i] .

Let J =
∏

1≤l ̸=j≤#fi,k
Hl(y1, y2, . . . , ym) −Hj(y1, y2, . . . , ym). Let m̂j = Hj(α)

be the j-th monomial evaluation where α ∈ (Zq \ {0})m is the evaluation point
picked at random in Line 13. By Lemma 2, we have

Pr[m̂l = m̂j : 1 ≤ l ̸= j ≤ #fi,k] = Pr[J(Ŷi) = 0] ≤
(
#fi,k

2

)
deg(fi,k)

q − 1
.

The same argument can be repeated for the gi,k polynomials. Thus, if the mono-
mial evaluations obtained in Line 25 of Algorithm 8 or the monomial evaluations
obtained in Line 24 of Subroutine 6 are not distinct, since deg(fi,k),deg(gi,k) ≤∑m

k=1 deg(R, yk) ≤ nmsDy and T ≤ deg(R, y1) ≤ nsdx by Theorem 14, we have

Pr[Algorithm 8 returns FAIL in Line 25 or 37]

≤
∑T−1

k=0

∑deg(fk)
i=0

(
#fi,k

2

)
deg(fi,k)

q − 1
+

∑T−1
k=0

∑deg(gk)
i=0

(
#gi,k

2

)
deg(gi,k)

q − 1

≤
∑T−1

k=0

∑deg(fk)
i=0 N̂2

maxnmsDy

2(q − 1)
+

∑T−1
k=0

∑deg(gk)
i=0 N̂2

maxnmsDy

2(q − 1)

≤ 2TN̂2
maxnmsDy(nmsDy + 1)

2(q − 1)
≤ nsdxN̂

2
max(nmsDy + 1)2

(q − 1)
.

5.9. Univariate Rational Functions without a Kronecker Substitution
We remind the reader that Algorithm 8 does not use a Kronecker substitution

Kr as it uses the support discovered by Algorithm 5.

Theorem 46. Let q be an additional prime chosen at random from the list
of pre-computed primes P to be used by Algorithm 8, in order to get a new
image of the monic square-free factor S. Let pmin = min(P) and let N̂max =
T−1
max
k=0

(
deg(fk)
max
i=0
{#fi,k},

deg(gk)
max
i=0
{#gi,k}) where fi,k, gi,k, fk, gk are as defined in (17)

57

and (18). The probability that Algorithm 8 returns FAIL in Line 29 is at most

2n2s2mdxDyN̂max

q − 1
+

n3s3m2D2
ydxN̂max

q − 1
+

2N̂maxnsdx logpmin
(∥S∥∞)

|P|
.

Proof. Similar to Theorem 40, we have three causes of FAIL in Line 29 of
Algorithm 8. The failure causes are the presence of unlucky evaluation points,
a bad basis shift and an unlucky prime q. We again remark that all three failure
causes are a direct consequence of our attempt to interpolate auxiliary rational
functions Bj in Line 27. Note that auxiliary rational functions Bj are different
from the Aj ’s interpolated in Algorithm 5 because a Kronecker substitution is
not used. Let ∆ =

∏T−1
k=0 LC(fβ

k , z)LC(g
β
k , z) ∈ Zq[y1, y2, . . . , ym] where

fβ
k (y1, y2, . . . , ym, z)

gβk (y1, y2, . . . , ym, z)
=

fk(y1z + β1, . . . , ymz + βm)

gk(y1z + β1, . . . , ymz + βm)
.

Observe that deg(∆) =
∑T−1

k=0 deg(fk) + deg(gk) ≤ 2T
∑m

k=1 deg(R, yk) ≤
2nsdx(nsmDy) ≤ 2n2s2mDydx. Recall that a basis shift β does not affect the
degree and the leading coefficients of auxiliary rational functions. Thus, for 0 ≤
j ≤ N̂max−1, the evaluation point Ŷj = (αŝ+j−1

1 , αŝ+j−1
2 , · · · , αŝ+j−1

m) in Line 15
is random since ŝ ∈ [0, q− 2] is random and α = (α1, α2, . . . , αm) ∈ (Zq \ {0})m
is picked at random in Line 13. Thus, Ŷj is unlucky ⇐⇒ ∆(Ŷj) = 0. Therefore,

Pr[Ŷj in Line 15 is unlucky for 0 ≤ j ≤ N̂max − 1] ≤ N̂max deg(∆)

q − 1
≤ 2N̂maxn

2s2mDydx
q − 1

.

Thus, using (27) and (28), we get

Pr[basis shift β picked at random in Line 10 is bad] ≤
n3s3m2D2

ydxN̂max

q − 1
,

and

Pr[prime q is unlucky for any Bj where 1 ≤ j ≤ N̂max] ≤
2N̂maxnsdx logpmin

∥S∥∞
|P|

.

Adding the above three probabilities completes our proof.

Remark 47. The error probability for the rational number reconstruction pro-
cess when applied on the coefficients of S to reconstruct its rational coefficients
using one prime by Algorithm 5 or many subsequent primes in Algorithm 8
will not be accounted for, because Monagan’s maximal quotient reconstruction
algorithm [30] is used in our implementation, and it will always succeed with
a probability of one when the input prime p or product of our input primes

p =
∏

q∈P q > 9h2 where h = maxT−1
k=0

(
maxnk1

dk1
∈fk and

nk2
dk2

∈gk
(|nkdk|)

)
.

58

5.10. Main Results
Our main technical results are presented in this section.

Theorem 48. Suppose Algorithm 5 only needs one prime p to interpolate the
monic square-free factor S. Let Na be the number of auxiliary rational functions
needed to interpolate S. If all the degrees pre-computed in Lines 1-6 are correct
and p is selected at random from the pre-computed list of primes Ps and psmin

=
min(Ps) then the probability that Algorithm 5 returns FAIL is at most

4Nan
2s2mDydx logpsmin

(∥S∥∞∥R∥∞) + 2Nansdx logpsmin
∥S∥∞

|Ps|

+
9Nan

3s3m2D2
ydx

psmin
− 1

+
nsdx(1 + nsDy)

m(2 +m(Na + 1)2(1 + nsDy))

psmin
− 1

.

Proof. In Lemma 29, the number of points needed to perform a univariate ra-
tional interpolation emax ≤ 4nsmDy. Thus, the probability that Algorithm 8
returns FAIL in Lines 20 or 25 or 30 or 33 is at most

8Nan
3s3m2D2

ydx

p
+

4Nan
2s2mdxDy logpsmin

(∥S∥∞∥R∥∞)

|Ps|︸ ︷︷ ︸
by Lemma 29

+
nmsdx(Na + 1)2(1 + nsDy)

m+1

p− 1︸ ︷︷ ︸
by Theorem 44

+
Nan

3s3m2D2
ydx

p− 1
+

2Nansdx logpsmin
∥S∥∞

|Ps|
+

2nsdx(1 + nsDy)
m

p− 1︸ ︷︷ ︸
by Theorem 40

.

Our result follows by simplifying the above bounds and using p ≥ psmin .

Theorem 49. Suppose Algorithm 5 needs more than one prime p to interpolate
the monic square-free factor S. Let q be a new prime selected at random from
the list of primes P to be used by Algorithm 8 and pmin = min(P). Let Na be
the number of auxiliary rational functions needed to interpolate S. Then the
probability that Algorithm 8 returns FAIL is at most

4Nan
2s2mDydx logpsmin

(∥S∥∞∥R∥∞) + 2Nansdx logpmin
∥S∥∞

|P|

+
9Nan

3s3m2D2
ydx

(pmin − 1)
+

nsdxN̂
2
a (nmsDy + 1)2 + 2n2s2mdxDyNa

(pmin − 1)
.

Proof. Recall that the number of points needed to perform univariate rational
interpolation is emax = 2+maxT−1

k=0 (deg(fk) + deg(gk)) ≤ 4nsmDy. Also, Na ≥
maxT−1

k=0 (max
deg(fk)
i=0 {#fi,k},max

deg(gk)
i=0 {#gi,k}). Thus, the probability that Al-

59

gorithm 8 returns FAIL in Lines 18 or 25 or 29 or 37

≤
8Nan

3s3m2D2
ydx

q
+

4Nan
2s2mdxDy logpsmin

(∥S∥∞∥R∥∞)

|P|︸ ︷︷ ︸
by Lemma 29

+
nsdxN̂

2
a (nmsDy + 1)2

(q − 1)︸ ︷︷ ︸
by Lemma 45

+
Nan

3s3m2D2
ydx

q − 1
+

2Nansdx logpmin
∥S∥∞

|P|
+

2n2s2mdxDyNa

q − 1︸ ︷︷ ︸
by Lemma 46

and our result follows using q ≥ pmin.

Lemma 50. Suppose Algorithms 5 and 8 are modified to interpolate N monic
square-free factors Rj of the Dixon resultant R. Let Na be the number of aux-
iliary rational functions needed to interpolate all the monic square-free factors
Rj . Suppose all primes needed by Algorithm 5 are selected from the list of smooth
primes Ps such that psmin

= min(Ps) and the (not necessarily smooth) primes
if needed by Algorithm 8 are selected at random from the list of pre-computed
primes P such that pmin = min(P) and pmin ≥ psmin

.

A. If Algorithm 5 only needs one prime to interpolate all the monic square-
free factors then the probability that Algorithm 5 returns FAIL is at most

4Nan
2s2mDydx logpsmin

(maxNj=1∥Rj∥∞∥R∥∞) + 2Nansdx logpsmin
maxNj=1∥Rj∥∞

|Ps|

+
9Nan

3s3m2D2
ydx

psmin
− 1

+
nsdx(1 + nsDy)

m(2 +m(Na + 1)2(1 + nsDy))

psmin
− 1

.

B. Suppose Algorithm 5 needs an additional prime to interpolate all the monic
square-free factors Rj . Then the probability that Algorithm 8 returns FAIL

≤
4Nan

2s2mDydx logpsmin
(maxNj=1∥Rj∥∞∥R∥∞) + 2Nansdx logpsmin

maxNj=1∥Rj∥∞
|Ps|

+
9Nan

3s3m2D2
ydx

psmin − 1
+

nsdxN̂
2
a (nmsDy + 1)2 + 2n2s2mdxDyNa

psmin − 1
.

Now, we give a failure probability bound for our probabilistic test, which
verifies the correctness of the output of our Dixon resultant algorithm.

Theorem 51. Let Hp be the product of all the primes needed by our Dixon
resultant algorithm (Algorithm 5) to reconstruct the coefficients of its returned
output using rational number reconstruction. If the prime used by our proba-
bilistic test (Algorithm 9) is selected at random from the list of primes P and

60

pmin = min(P) then the probability that our probabilistic test fails is at most

2n2s2mdxDy

pmin
+

nsdx logpmin

(
2||S||∞

√
Hp

3

)
|P|

.

Proof. Let S = xdT
1 +

∑T−1
k=0

fk(y1,...,ym)
gk(y1,...,ym)x

dk
1 ∈ Z(y1, y2, . . . , ym)[x1] defined in

(17) be the correct monic square-free factor of R with fk, gk ̸= 0. Let

Ŝ = xdT
1 +

T−1∑
k=0

Fk(y1, . . . , ym)

Gk(y1, . . . , ym)
xdk
1 ∈ Z(y1, y2, . . . , ym)[x1]

be the output of our Dixon resultant algorithm, and suppose S ̸= Ŝ. Since

deg(Fk, yi),deg(Gk, yi) ≤
T−1
max
k=0

(max(deg(fk, yi),deg(gk, yi)))

because of our check in Line 7 of Subroutine 2, using Theorem 14, we have

deg(Fk, yi),deg(Gk, yi) ≤ deg(R, yi) ≤ nsDy.

Let

H = S − Ŝ =

T−1∑
k=0

(fkGk − Fkgk)

gkGk
xdk
1 ∈ Z(y1, y2, . . . , ym)[x1].

Recall that our Dixon resultant algorithm uses Monagan’s maximal quotient
reconstruction algorithm which succeeds with a probability of one if Hp > 9h2

where h = maxT−1
k=0

(
maxnk1

dk1
∈Fk and

nk2
dk2

∈Gk
(|nkdk|)

)
. Therefore, h <

√
Hp

3 .

Let q be the random prime selected in Line 2 of Algorithm 9 and let α ∈ Zm
q

be the random point selected in Line 3. Notice that Algorithm 9 fails if S ̸= Ŝ
but H(α) = 0 or q|H. Let

E =

T−1∏
k=0

(fkGk − Fkgk) ∈ Z[y1, . . . , ym].

Observe that H(α) = 0 ⇐⇒ E(α) = 0 and gk(α) ̸= 0 and Gk(α) ̸= 0.
Furthermore, q|H ⇐⇒ q|(fkGk − Fkgk) and q ∤ gk and q ∤ Gk for all k.
We remind the reader that Line 9 of Algorithm 9 ensures that the conditions
gk(α) ̸= 0, Gk(α) ̸= 0, q ∤ gk and q ∤ Gk are met. Since T ≤ nsdx by Theorem
14, it follows that the probability that our probabilistic test fails is at most

61

Pr[E(α) = 0] + Pr[q divides any fkGk − Fkgk in H]

≤ deg(E)

q
+ Pr[q divides one term in any fkGk − Fkgk of H]

≤
∑T−1

k=0 deg(fkGk − Fkgk)

q
+

T logpmin
||fkGk − Fkgk||∞
|P|

≤
∑T−1

k=0

∑m
i=1 deg(fkGk − Fkgk, yi)

q
+

T logpmin
||fkGk − Fkgk||∞
|P|

≤ Tm(2nsDy)

q
+

T logpmin
(||fk||∞||Gk||∞+||Fk||∞||gk||∞)

|P|

≤ 2n2s2mdxDy

pmin
+

nsdx logpmin

(
2||S||∞

√
Hp

3

)
|P|

.

5.11. The cost and number of black box probes required by our algorithm
In this section, we estimate the cost of a black box probe and the total

number of black box probes required by our Dixon resultant algorithm. We
remark that no input primes caused our experiments to fail because the primes
used in our experiments are 62 bit primes and the support of the first image Ŝ
of S obtained using the first prime was always correct, i.e., supp(Ŝ) = supp(S).

Theorem 52. Let M be the non-singular s × s Dixon matrix obtained from a
parametric polynomial system F = {f̂1, f̂2, . . . , f̂n} ⊂ Z[y1, . . . , ym][x1, . . . , xn]
such that #Mij ≤ Tmax and ∥Mij∥∞≤ Bh. Let D̂ = max(dx, Dy). Let p be a
prime from the list of primes P satisfying B < p < 2B. Then a black box probe
costs O(s2hTmax + s2nmD̂Tmax + s3) arithmetic operations in Zp.

Proof. Let Mij =
∑Tmax

k=1 akMijk(x1, y1, . . . , ym). The cost of computing Mij mod
p is O(hTmax), so M mod p costs O(s2hTmax). Let α ∈ Zm+1

p be an evaluation
point. The number of multiplications performed to compute Mijk(α) is mnD̂

since the maximum partial degree of Mij is at most nD̂max. For 1 ≤ k ≤ Tmax,

all monomial evaluations Mijk(α) are computed using O(nmD̂Tmax) multipli-
cations and Tmax multiplications for the product akMijk(α). Hence the cost
of evaluating M is O(s2nmD̂Tmax). The cost of the determinant computation
using Gaussian elimination over Zp is O(s3). Thus one black box probe costs
O(s2Tmaxh+ s2mnD̂Tmax + s3).

Theorem 53. Let emax = 2 + maxT−1
k=0 {deg(fk) + deg(gk)} be the number

of points needed to perform univariate rational interpolation and let dx1
=

deg(R, x1). Let N̂max = maxT−1
k=0 (max

deg(fk)
i=0 {#fi,k},max

deg(gk)
i=0 {#gi,k}) where

62

fi,k, gi,k, fk, gk from the monic square-free factor S are as defined in (17), (18).
Let H be the number of primes needed by Algorithm 8 to reconstruct the co-
efficients of S using rational number reconstruction. The number of black box
probes required by our Dixon resultant algorithm is O(Hdx1

emaxN̂max).

Proof. We need dx1
+ 1 probes to the black box BB to interpolate a monic

univariate image of R in x1. In order to interpolate an auxiliary rational func-
tion Aj in Line 23 of Algorithm 5, we need to use emax coefficients from the
monic polynomial images of R in x1 obtained in Line 19 of Algorithm 5. The
size of the supports #fi,k and #gi,k are unknown, and they will be discovered
in Line 1 of Subroutine BMStep using the Berlekamp-Massey Algorithm. By
design, the size of the supports #fdeg(fk),k and #gdeg(fk),k are discovered first
using O(2max{#fdeg(fk),k, gdeg(gk),k}) coefficients from the computed auxiliary
rational functions. These coefficients from the Aj ’s may be enough to discover
#fi,k and #gj,k where 0 ≤ i < deg(f) and 0 ≤ j < deg(g). But in most cases,
they are not enough, so more auxiliary rational functions must be computed.

In the worst case, the maximum total number of auxiliary rational functions
that need to be interpolated for the first prime is O(4N̂max). Furthermore, using
the support obtained from the first prime, O(HN̂max) new auxiliary functions
are needed if additional primes are required to solve for the unknown coefficients
of the fi,k’s and gi,k’s. Therefore, the total number of black box probes required
by our Dixon resultant algorithm is O(Hdx1emaxN̂max).

6. Concluding Remarks

We have developed a new sparse rational function interpolation method
which uses a Kronecker substituion and a new set of randomized points in the
Cuyt and Lee’s method and the Ben-Or/Tiwari algorithm. We have designed a
new Dixon resultant algorithm that computes the monic square-free factors of
the Dixon resultant R of a parametric polynomial system using our new sparse
rational function interpolation method.

We have tested our new Dixon resultant code on many real parametric poly-
nomial systems that emerged from practical problems. Our benchmarks showed
that our new algorithm is much faster than other algorithms (Zippel’s sparse
interpolation, Gentleman & Johnson algorithm and Dixon-EDF method) for
computing the Dixon resultant R in expanded form whenever R is large while
it has relatively small square-free factors or a large polynomial content.

We have identified all the causes of failure in our new Dixon resultant algo-
rithm and presented a thorough analysis of failure probabilities.

Acknowledgements

This work was supported by the National Science and Engineering Research
Council of Canada.

63

References

[1] Atti, N. B. and Lombardi, H. and Diaz-Toca G. M.: The Berlekamp-Massey
algorithm revisited. AAECC 17, 4 (2006), pp. 75–82.

[2] Aubry, P., Lazard, D., Moreno Maza, M. On the Theories of Triangular
Sets. J. Symbolic Comp. 28:105–124, Springer, 1999.

[3] Bareiss, E.H.: Sylvesters’ identity and multistep integer preserving Gaus-
sian elimination. Math. Comp. 22(103):565–578, 1968.

[4] Ben-Or, M., and Tiwari, P.: A Deterministic Algorithm for Sparse Multi-
variate Polynomial Interpolation. Proceedings of STOC ’20 , pp. 301–309,
ACM, 1988.

[5] Berkowitz, S.J.: On computing the determinant in small parallel time using
a small number of processors. Inf. Process. Lett. 18(3):147–150, 1984.

[6] Cox, D., Little, J., and O’Shea, D. Ideals, Varieties and Algorithms 3rd
ed. Springer, 2007.

[7] Cuyt, A., and Lee, W.-S.: Sparse Interpolation of Multivariate Rational
Functions. J. Theoretical Comp. Sci. 412, pp. 1445–1456, Elsevier, 2011.

[8] Dixon, A.: On a form of the Eliminant of Two Quantics. Proceedings of
the London Mathematical Society 2, (1908), pp. 468–478.

[9] Dixon, A.: The eliminant of three Quantics in Two Independent Variables.
Proceedings of the London Mathematical Society 2, (1909), pp. 49–69.

[10] Edmonds, J.: Systems of Distinct Representatives and Linear Algebra J.
Research, Mathematics and Mathematical Physics 71B(4):241–245, 1967.

[11] Gelfond A.: Transcendental and Algebraic Numbers. GITTL, Moscow,
1952; English translation by Leo F. Boron, Dover, New York, 1960

[12] Gentleman, W. M., and Johnson, S. C.: The Evaluation of Determinants
by Expansion by Minors and the General Problem of Substitution. Math-
ematics of Computation 28(126):543–548, 1974.

[13] Kapur, D., Saxena, T., and Yang, L.: Algebraic and Geometric Reasoning
using Dixon Resultants. Proceedings of ISSAC ’94 , pp. 99–107, ACM, 1994.

[14] Kapur, D., and Saxena, T.: Comparison of Various Multivariate Resultant
formulations. Proceedings of ISSAC ’95 , pp. 187–194, ACM, 1995.

[15] Gerhard, J., and Von zur Gathen, J.: Modern Computer Algebra. Cam-
bridge University Press, 2013.

[16] Möller, N., and Grandlund T.: Improved Division by Invariant Integers.
Transactions on Computers 60(2):165–175, IEEE, 2011.

64

[17] Hu, J., and Monagan, M.: A fast parallel sparse polynomial GCD algo-
rithm. Journal of Symbolic Computation, 105(1):28–63, 2021

[18] Hu, J.: Computing polynomial greatest common divisors using sparse
interpolation. PhD Thesis, Simon Fraser University, 2018.

[19] Jinadu, A., and Monagan, M.: An Interpolation Algorithm for comput-
ing Dixon Resultants. Proceedings of CASC ’2022, LNCS 13366:185-205,
Springer, 2022.

[20] Jinadu, A., and Monagan, M.: A new interpolation algorithm for comput-
ing Dixon Resultants. Commun. in Computer Algebra 56(3):88-91, 2022.

[21] Jinadu, A.: Solving parametric systems using Dixon resultants and sparse
interpolation tools. PhD Thesis, Simon Fraser University, 2023.

[22] Kaltofen, E. Fifteen years after DSC and WLSS2. In Proc. of PASCO
2010, pp. 10–17, ACM, 2010.

[23] Kaltofen, E. , and Trager, B. Computing with polynomials given by black
boxes for their evaluations: greatest common divisors, factorization, sepa-
ration of numerators and denominators Journal of Symbolic Computation
9(3):301-320, Elsevier, 1990.

[24] Kaltofen, E. , Lee, W. , and Lobo, A.: Early termination in Ben-Or/Tiwari
sparse interpolation and a hybrid of Zippel’s algorithm. Proceedings of
ISSAC 2000, pp. 192–201, ACM, 2000.

[25] Lewis, R.: Comparison of the greatest common divisor (GCD) in several
systems, 2004. URL https://home.bway.net/lewis/fermat/gcdcomp.

[26] Lewis, R.: Dixon-EDF: The Premier Method for Solution of Parametric
Polynomial Systems. Special Sessions in ACA, pp. 237–256, Springer

[27] Lewis, R.: Resultants, Implicit Parameterizations, and Intersections of
Surfaces. Proceedings of ICMS 2018, LNCS 10931:310–318, Springer, 2018.

[28] Lewis, R.: Image Analysis: Identification of Objects via Polynomial Sys-
tems. Proceedings of ICMS 2018, LNCS 10931:305–309, Springer, 2018.

[29] Lewis, R.: Private Communication, 2018.

[30] Monagan, M.: Maximal Quotient Rational Reconstruction: An Almost
Optimal Algorithm for Rational Reconstruction. Proceedings of ISSAC
’2004 , pp. 243–249, ACM, 2004.

[31] Monagan, M. and Pearce R. The design of Maple’s sum-of-products and
POLY data structures for representing mathematical objects. Communi-
cations of Computer Algebra, 48(4):166–186, ACM, 2014.

65

[32] Minimair, M. Computing the Dixon Resultant with the Maple Package
DR. Applications of Computer Algebra. ACA 2015. Springer Proceedings
in Mathematics & Statistics, vol. 195, Springer.

[33] Schwartz, J: Fast probabilistic algorithms for verification of polynomial
identities. Journal of the ACM , 27:701–717 (1980)

[34] Shanks, D: Class number, a theory of factorization, and genera In Proc.
Symp. Math. Soc., 20:415–440, 1971.

[35] S. Pohlig and M. Hellman: An improved algorithm for computing log-
arithms over GF(p) and its cryptographic significance. IEEE Trans. on
Information Theory, 24:106–110, IEEE, 1978.

[36] Schmidt, W.: Equations over finite fields: an elementary approach. vol.
536. Springer, 2006.

[37] Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. Proceedings
of EUROSAM ’79 , pp. 216–226, Springer, 1979.

[38] Zippel, R.: Interpolating Polynomials from their Values. J. Symbolic Com-
putation 9:375–403, Springer, 1990.

Appendix A

The robot arms system from Lewis [26] in Maple and Magma input format.
There are four unknowns x1, x2, x3, x4 and seven parameters y1, y2, y3, y4, y5, y6, y7.

f1 := (x2^2+1)*(x1^2+1)*(x4^2+1)*(x3^2+1)*y1+2*y3*x1^2*x4^2*x3^2
-2*y3*x2^2*x4^2*x3^2+2*y4*x2^2*x1^2*x3^2-2*y4*x2^2*x1^2*x4^2+2*y3*x1^2*x3^2
-2*y3*x2^2*x3^2+2*y4*x1^2*x3^2+2*y4*x2^2*x3^2+2*y3*x1^2*x4^2-2*y3*x2^2*x4^2
-2*y4*x1^2*x4^2-2*y4*x2^2*x4^2+2*y4*x3^2-2*y4*x4^2+2*y3*x1^2-2*y3*x2^2;

f2 := 2*x1^2*x2^2*x3^2*x4*y4-2*x1^2*x2^2*x3*x4^2*y4+2*x1^2*x2*x3^2*x4^2*y3
-2*x1*x2^2*x3^2*x4^2*y3-2*x1^2*x2^2*x3*y4+2*x1^2*x2^2*x4*y4+2*x1^2*x2*x3^2*y3
+2*x1^2*x2*x4^2*y3+2*x1^2*x3^2*x4*y4-2*x1^2*x3*x4^2*y4-2*x1*x2^2*x3^2*y3
-2*x1*x2^2*x4^2*y3-2*x1*x3^2*x4^2*y3+2*x2^2*x3^2*x4*y4-2*x2^2*x3*x4^2*y4
+2*x2*x3^2*x4^2*y3+2*x1^2*x2*y3-2*x1^2*x3*y4+2*x1^2*x4*y4-2*x1*x2^2*y3
-2*x1*x3^2*y3-2*x1*x4^2*y3-2*x2^2*x3*y4+2*x2^2*x4*y4+2*x2*x3^2*y3+2*x2*x4^2*y3
+2*x3^2*x4*y4-2*x3*x4^2*y4-2*x1*y3+2*x2*y3-2*x3*y4+2*x4*y4;

f3 := y3+y4-y5-y5*y2^2*x1^2*x3^2-y4*y2^2*x1^2*x3^2-y3*y2^2*x1^2*x3^2
-4*y5*y2*x1^2*x3-(x1^2+1)*(x3^2+1)*(y2^2+1)*y6+y5*y2^2*x1^2-y4*y2^2*x3^2
-y5*y2^2*x3^2+y3*y2^2*x3^2-y3*y2^2*x1^2-4*y5*y2*x3+y5*x1^2*x3^2
-y4*x1^2*x3^2+y4*y2^2*x1^2-y3*x1^2*x3^2-y4*x3^2-y3*x1^2+y5*x3^2
+y3*x3^2-y5*x1^2+y4*x1^2+y5*y2^2+y4*y2^2+y3*y2^2;

f4 := -(x1^2+1)*(x3^2+1)*(y2^2+1)*y7+2*y3*y2^2*x1*x3^2+2*y4*y2^2*x1^2*x3
+2*y5*y2^2*x1^2*x3-2*y5*y2*x1^2*x3^2+2*y4*y2^2*x3+2*y5*y2^2*x3

66

+2*y3*y2^2*x1-2*y5*y2*x3^2+2*y5*y2*x1^2+2*y3*x1*x3^2+2*y4*x1^2*x3
-2*y5*x1^2*x3+2*y5*y2+2*y4*x3-2*y5*x3+2*y3*x1;

67

	Introduction
	Modular Black box model for R
	Overview of our Dixon resultant algorithm
	Some Useful Results

	Dixon Resultants
	Step 1: Constructing the Cancellation Matrix C.
	Step 2: Constructing the Dixon Matrix from the Dixon Polynomial
	Step 3: Extracting a sub-matrix M of maximal rank from the Dixon matrix
	Step 4: Computing (M) the Dixon resultant
	Height and Degree Bounds
	Failure Probability

	Modified Interpolation using Kronecker Substitution
	The algorithm of Cuyt and Lee
	The Ben-Or/Tiwari Algorithm
	A new sparse multivariate rational function interpolation method
	Kronecker substitution

	Randomizing the evaluation point sequence
	An illustrative example of our new method
	Our new sparse multivariate rational function interpolation algorithm

	The Dixon Resultant Algorithm
	Algorithm DixonRes
	Probabilistic Test
	Implementation Notes and Benchmarks
	Speeding up evaluation of the Dixon matrix
	Pre-computing (f_i,k) and (g_i,k)
	Timings and Optimizations

	Failure Probability Analysis
	Introduction
	Primes
	Evaluation Points
	Monic Univariate Polynomial Images of R
	Unlucky Content
	Auxiliary Univariate Rational Functions
	Discovering the size and supports of the polynomials K_r(f_i,k) and K_r(g_i,k)
	Monomial Evaluations
	Univariate Rational Functions without a Kronecker Substitution
	Main Results
	The cost and number of black box probes required by our algorithm

	Concluding Remarks

