
Using Sparse Interpolation in Hensel Lifting

Michael Monagan and Baris Tuncer

Department of Mathematics, Simon Fraser University
Burnaby, British Columbia, V5A 1S6, CANADA

mmonagan@sfu.ca, ytuncer@sfu.ca

Abstract. The standard approach to factor a multivariate polynomial
in Z[x1, x2, . . . , xn] is to factor a univariate image in Z[x1] then lift the
factors of the image one variable at a time using Hensel lifting to recover
the multivariate factors. At each step one must solve a multivariate poly-
nomial Diophantine equation. For polynomials in many variables with
many terms we find that solving these multivariate Diophantine equa-
tions dominates the factorization time. In this paper we explore the use
of sparse interpolation methods, originally introduced by Zippel, to speed
this up. We present experimental results in Maple showing that we are
able to dramatically speed this up and thereby achieve a good improve-
ment for multivariate polynomial factorization.

1 Introduction

Suppose that we seek to factor a multivariate polynomial a ∈ R = Z[x1, . . . , xn]
and a = fg with f, g in R and gcd(f, g) = 1. The multivariate Hensel lifting
algorithm (MHL) developed by Yun [11] and improved by Wang [9, 10] uses a
prime number p and an ideal I = 〈x2 − α2, . . . , xn − αn〉 of Zp[x1, . . . , xn] where
α2, α3, . . . , αn ∈ Zp is a random evaluation point chosen by the algorithm.

For a given polynomial h ∈ R, let us use the notation

hj := h(x1, . . . , xj , xj+1 = αj+1, . . . , xn = αn) mod p

so that a1 = a(x1, α2, . . . , αn) mod p. The input to MHL is a, I, f1, g1 and p such
that a1 = f1g1 and gcd(f1, g1) = 1 in Zp[x1]. The input factorization a1 = f1g1
is obtained by factoring a(x1, α2, . . . , αn) over the integers. See [2].

Let dj denote the total degree of aj with respect to the variables x2, . . . , xj
and Ij = 〈x2 − α2, . . . , xj − αj〉 with j ≤ n. Wang’s MHL lifts the factorization
a1 = f1g1 variable by variable to aj = fjgj ∈ Zp[x1, . . . , xj ]/I

dj+1
j . It turns

out that fn ≡ f mod p and gn ≡ gmod p. For sufficiently large p we recover the
factorization of a over Z.

We give a brief description of the jth step of the MHL (assuming that the
inputs are monic in the variable x1, for simplicity) in algorithm 1 for j > 1.
For details see [2]. There are two main sub-routines in the design of MHL. The
first one is the leading coefficient correction algorithm. The most well-known
is the Wang’s heuristic leading coefficient algorithm [9] which works well in



2. THE MULTIVARIATE DIOPHANTINE PROBLEM (MDP)

practice and is the one Maple currently uses. There are other approaches by
Kaltofen [3] and most recently by Lee [4]. In our implementation we use Wang’s
leading coefficient algorithm. The second main subroutine is the multivariate
Diophantine problem (MDP). In MHL, for each j with j ≤ n, Wang’s design of
MHL must solve many instances the MDP. In the Maple timings (see section 5),
for most of the examples 90% of the time is spent solving MDPs.

In this paper we propose various approaches of sparse interpolation to solve
MDP and present the results of our experiments. We will assume that a, f, g are
monic in x1 so as not to complicate the MHL algorithm with leading coefficient
correction. In section 2 we define the MDP in detail. In section 3 we show that
interpolation is an option to solve the MDP. If the factors to be computed are
sparse then the solutions to the MDP are also sparse. We show in section 3.1
how to use Zippel’s sparse interpolation to solve the MDP and we describe an
improvement to the solution proposed in section 3.2. We have observed that
often the evaluation cost is the most expensive part of these algorithms. In
section 3.3 we will propose an improvement to the evaluation method used in the
sparse interpolation process. Sparse Hensel Lifting (SHL) was first introduced
by Zippel [14] and then improved by Kaltofen [3]. In section 4 we show that
if we use Wang’s leading coefficient correction then Kaltofen’s SHL algorithm
can be simplified, improved and implemented efficiently. Based on Lemma 1 in
section 4 we will propose our SHL organization which is presented as algorithm
4. Finally in section 5 we will give some timing data to compare our factorization
algorithms with Wang’s algorithm, which is currently used by Maple.

2 The Multivariate Diophantine Problem (MDP)

Following the notation in section 1, let u,w, c ∈ Zp[x1, . . . , xj ] in which u and
w are monic polynomials with respect to the variable x1 with j > 1 and let
Ij = 〈x2 − α2, . . . , xj − αj〉 be an ideal of Zp[x1, . . . , xj ] with αi ∈ Zp. The MDP
consists of finding multivariate polynomials σ, τ ∈ Zp[x1, . . . , xj ] that satisfy

σu+ τw = c mod I
dj+1
j

with degx1
(σ) < degx1

(w) where dj is the maximal total degree of σ and τ with
respect to the variables x2, . . . , xj and it is given that

1. GCD(u,w) | c and
2. GCD (umod Ij , wmod Ij) = 1 inZp[x1].

It can be shown that the solution (σ, τ) exists and is unique provided the second
condition is satisfied and that the solution is independent of the choice of the
ideal Ij . For j = 1 the MDP is in Zp[x1] and can be solved with the extended
Euclidean algorithm (see Chapter 2 of [2]).

It can be seen from algorithm 1 that at step j, there are at most max(degxj
(fj),

degxj
(gj)) calls to MDP. To solve the MDP for j > 1, Wang uses the same ap-

proach as for Hensel Lifting, that is, an ideal-adic approach (see [2]). In general,

2



3. SOLUTION TO THE MDP VIA INTERPOLATION

Algorithm 1 jth step of Multivariate Hensel Lifting for j > 1.
Input : αj ∈ Zp, aj ∈ Zp[x1, . . . , xj ], fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] where aj , fj−1, gj−1

are monic in x1 and aj(xj = αj) = fj−1gj−1.
Output : fj , gj ∈ Zp[x1, . . . , xj ] such that aj = fjgj .

1: σj0 ← fj−1, τj0 ← gj−1, σj ← σj0, τj ← τj0, monomial ← 1
2: error ← aj − fj−1 gj−1

3: for i from 1 to deg(aj , xj) while error 6= 0 do
4: monomial ← monomial × (xj − αj)
5: c← coefficient of (xj−αj)i in the Taylor expansion of the error about xj = αj
6: if c 6= 0 then
7: Solve the MDP σjiτj0 + τjiσj0 = c in Zp[x1, . . . , xj−1] for σji and τji.
8: (σj , τj)← (σj + σji ×monomial, τj + τji ×monomial).
9: error ← aj − σj τj .
10: end if
11: end for
12: fj ← σj and gj ← τj

if αk 6= 0 for j ≤ k, then an 〈xk − αk〉-adic expansion of the solution is expensive
to compute. Since even a sparse solution turns out to be dense in an 〈xk − αk〉-
adic expansion, the number of MDP’s to be solved significantly increases and
hence the time complexity of MHL becomes expensive. In the following sections
we will present various approaches to solve the MDP.

3 Solution to the MDP via Interpolation

We consider whether we can interpolate x2, . . . , xj in σ. If β ∈ Zp with β 6= αj ,
then we have

σ(xj = β)u(xj = β) + τ(xj = β)w(xj = β) = c(xj = β) mod I
dj−1+1
j−1 .

ForKj = 〈x2 − α2, . . . , xj−1 − αj−1, xj − β〉 andGj = GCD(umodKj , wmodKj),
we obtain a unique solution σ(x1, . . . , xj−1, β) iff Gj = 1. However it is possible
that Gj 6= 1. Let R = resx1

(u,w) be the Sylvester resultant of u and v taken in
x1. Since u,w are monic in x1 one has

Gj 6= 1⇐⇒ resx1
(umodKj , wmodKj) = 0⇐⇒ RmodKj = 0.

Also deg(R) ≤ deg(u) deg(w) [1]. Then by the Schwartz-Zippel Lemma [8, 13]

Prob(Gj 6= 1) ≤ deg(u) deg(w)

p− 1
.

If β 6= αj is chosen at random and p is large, the probability that Gj = 1 is high
so interpolation is thus an option to solve the MDP. If Gj 6= 1, we could choose
another β but our implementation does not do this and simply returns FAIL.
The bound above for Prob(Gj 6= 1) is a worst case bound. We note that in [6]
we show that the average probability for Prob(Gj 6= 1) = 1/(p− 1).

3



3. SOLUTION TO THE MDP VIA INTERPOLATION

3.1 Solution to the MDP via Sparse Interpolation
Following the sparse interpolation idea of Zippel in [12], given a sub-solution
σj(x1, . . . , xj = αj) for αj ∈ Zp we use this information to create a sub-solution
form σf and compute σj(x1, . . . , xj = βj) for some other random βj ∈ Zp with
high probability if p is big. Suppose the form of σj is

σf =

m∑
i=1

ci(x2, ..., xj)x
ni
1 where ci =

ti∑
k=1

cikx
γ2k
2 · · ·xγjkj with cik ∈ Zp\{0}.

Let t = maxmi=1 ti be the maximum number of terms in the coefficients of σ. In
sparse interpolation we obtain each cik by solvingm linear systems of size at most
t× t. As explained in [12], each linear system can be solved in O(t2) arithmetic
operations in Zp. We then interpolate xj in σj from σj(x1, . . . , xj−1, βk) for
k = 0, . . . ,degxj

(σj). Finally we compute τj = (cj − σjuj)/wj .

3.2 First Improvement
The approach introduced in the preceding section solves the interpolation prob-
lem based on projection down to Zp[x1]. To reduce the cost we tried projecting
down to Zp[x1, x2] because this will likely reduce the number t of evaluation
points needed. Let the total degree of σ in x1, x2 be bounded by d and let

σf =
∑
i+k≤d

cik(x3, ..., xj)x
i
1x
k
2 where cik =

sik∑
l=0

ciklx
γ3l
3 · · ·x

γjl
j with cikl ∈ Zp\{0}.

Let s = max sik be the maximum number of terms in the coefficients of σf . Here
we solve O(d2) linear systems of size at most s× s. For s < t, the complexity of
solving the linear systems decreases by a factor of (t/s)2. We also save a factor
t/s in the evaluation cost.

To solve the MDP in Zp[x1, x2] we have implemented an efficient dense bi-
variate Diophantine solver (BDP) in C. The algorithm incrementally interpolates
x2 in both σ and τ from univariate images in Zp[x1]. When σ and τ stabilize
we test whether σ(x1, x2)u(x1, x2) + τ(x1, x2)w(x1, x2) = c(x1, x2) using suffi-
ciently many evaluations to prove the correctness of the solution. The cost is
O(d3) arithmetic operations in Zp where d bounds the total degree of c, u, w, σ
and τ in x1 and x2. We do not compute τ using division because that would cost
O(d4) arithmetic operations. This bivariate MDP solving algorithm is presented
as algorithm BSDiophant below.

3.3 The evaluation cost
In our experiments we found that the sparse interpolation approach we propose
reduces the time spent solving MDPs but evaluation becomes the most time
dominating part of the factoring algorithm.

Suppose f =
∑s
i=1 ciXiYi where Xi is a monomial in x1, x2, Yi is a monomial

in x3, . . . , xn, 0 6= ci ∈ Zp and we want to compute

fj := f(x1, x2, x3 = αj3, . . . , xn = αjn), for j = 1, . . . , t.

4



3. SOLUTION TO THE MDP VIA INTERPOLATION

Algorithm 2 BSDiophant
Input A big prime p and u,w, c ∈ Zp[x1, x2, . . . , xj ].
Output (σ, τ) ∈ Zp[x1, x2, . . . , xj ] such that σu+ τw = c ∈ Zp[x1, x2, . . . , xj ] or FAIL.
It returns FAIL if condition 2 (see section 2) is not satisfied for the choice of any β in
the algorithm. This is detected in subroutine BDP.
1: if n = 2 then call BDP to return (σ, τ) ∈ Zp[x1, x2]2 or FAIL end if .
2: Pick β1 ∈ Zp at random
3: (uβ1 , wβ1 , cβ1)← (u(x1, . . . , xj = β1), w(x1, . . . , xj = β1), c(x1, . . . , xj = β1).
4: (σ1, τ1)← BSDiophant(uβ1 , wβ1 , cβ1 , p).
5: if σ1 = FAIL then return FAIL end if
6: k ← 1, σ ← σ1, q ← (xj − β1) and σf ← skeleton of σ1.
7: repeat
8: h← σ
9: Set k ← k + 1 and pick βk ∈ Zp at random distinct from β1, . . . , βk−1

10: (uβk , wβk , cβk )← (u(x1, . . . , xj = βk), w(x1, . . . , xj = βk), c(x1, . . . , xj = βk).
11: Solve the MDP σkuβk + τkwβk = cβk using sparse interpolation with σf .
12: if σk = FAIL then return FAIL end if
13: Solve σ = h mod q and σ = σk mod (xj − βk) for σ ∈ Zp[x1, x2, . . . , xj ].
14: q ← q · (xj − βk)
15: until σ = h and w|(c− σu)
16: Set τ ← (c− σu)/w and return (σ, τ).

To compute fj efficiently, one way is to pre-compute the powers of αi’s in (n−2)
tables and then do the evaluation using tables. We implemented this first. Let
di = deg(f, xi) and d = max3≤i≤n di. For a fixed j, computing the n− 2 tables
of powers of αji ’s (i.e. 1, αji , α

2j
i , . . . , α

dij
i ) costs ≤ (n − 2)d multiplications. To

evaluate one term ciYi at (αj3, . . . , α
j
n) costs n−2 multiplications using the tables.

Then the cost of evaluating f at (αj3, . . . , α
j
n) is s(n− 2) multiplications. Hence

the total cost of t evaluations is bounded above by CT = s(n− 2)t+ (n− 2)dt =
t(n− 2)(s+ d) multiplications using tables.

However when we use sparse interpolation points of the form (αj3, . . . , α
j
n) for

j = 1, . . . , t we can reduce the evaluation cost by a factor of (n− 2) by a simple
organization. As an example suppose

f = x221 + 72x31x
4
2x4x5 + 37x1x

5
2x

2
3x4 − 92x1x

5
2x

2
5 + 6x1x

3
2x3x

2
4

and we want to compute fj := f(x1, x2, α
j
3, α

j
4, α

j
5) for 1 ≤ j ≤ t. Before com-

bining and sorting, we write the terms of each fj as

fj = x221 + 72αj4α
j
5x

3
1x

4
2 + 37(αj3)2αj4x1x

5
2 − 92(αj5)2x1x

5
2 + 6αj3(αj4)2x1x

3
2

= x221 + 72(α4α5)jx31x
4
2 + 37(α2

3α4)jx1x
5
2 − 92(α2

5)jx1x
5
2 + 6(α3α

2
4)jx1x

3
2.

Now let

c(0) := [1, 72, 37,−92, 6] and θ := [1, α4α5, α
2
3α4, α

2
5, α3α

2
4].

Then in a for loop j = 1, . . . , t we can update the coefficient array c(0) by the
monomial array θ by defining c(j)i = c

(j−1)
i θi for 1 ≤ i ≤ s so that each iteration

5



4. SPARSE HENSEL LIFTING

computes the coefficient array

c(j) = [1, 72(α4α5)j , 37(α2
3α4)j ,−92(α2

5)j , 6(α3α
2
4)j ]

using s = #f multiplications in the coefficient field to obtain

fj = x221 + 72(α4α5)jx31x
4
2 + 37(α2

3α4)jx1x
5
2 − 92(α2

5)jx1x
5
2 + 6(α3α

2
4)jx1x

3
2.

Then sorting the monomials and combining terms we get

fj = x221 + 72(α4α5)jx31x
4
2 + (37(α2

3α4)j − 92(α2
5)j)x1x

5
2 + 6(α3α

2
4)jx1x

3
2.

Note that sorting is time consuming so it should be done once at the beginning.
With the organization described above one evaluates Yi at (α3, . . . , αn) in

(n − 3) multiplications using tables. The cost of n − 2 tables of powers is ≤
(n − 2)d. Then at the first step the cost (of creating θ, the monomial array) is
≤ s(n − 3). After that the cost of each evaluation is s multiplications. Hence
the total cost is bounded above by CN = st + s(n − 3) + (n − 2)d. Compared
with CT = s(n − 2)t + (n − 2)dt the gain is a factor of (n − 2). Roman Pearce
implemented this improved evaluation algorithm in C for us in such a way that
from Maple, we can obtain the next evaluation using s multiplications.

4 Sparse Hensel Lifting

4.1 On Kaltofen’s SHL

Factoring multivariate polynomials via Sparse Hensel Lifting (SHL) uses the
same idea of the sparse interpolation [14]. Following the same notation intro-
duced in section 1, at (j − 1)th step we have fj−1 = xdf1 + cj1M1 + · · ·+ cjtjMtj

where tj is the number of non-zero terms that appear in fj−1, Mk’s are the
distinct monomials in x1, . . . , xj−1 and cjk ∈ Zp for 1 ≤ k ≤ tj . Then at the jth

step SHL assumes fj = xdf1 + Λj1M1 + · · ·+ ΛjtjMtj where for 1 ≤ k ≤ tj ,

Λjk = c
(0)
jk + c

(1)
jk (xj − αj) + c

(2)
jk (xj − αj)2 + · · ·+ c

(djk )

jk (xj − αj)djk

with c(0)jk := cjk and where df = degx1
(f), djk = degxn

(Λjk) with c(i)jk ∈ Zp for
0 ≤ i ≤ djk . The assumption is the same for the factor gj−1.

To recover fj from fj−1 and gj from gj−1, during the jth step of MHL
(see algorithm 1 above) one starts with σj0 = fj−1, τj0 = gj−1, then in a
for loop starting from i = 1 and incrementing it while the error term and
its ith Taylor coefficient is non-zero, by solving MDP’s σj0τji + τj0σji = e

(i)
j

for 1 ≤ i ≤ max(degxj
(fj),degxj

(gj)). After the loop terminates we have fj =∑degxj
(fj)

k=0 σjk(xj−αj)k. On the other hand if the assumption of SHL is true then
we have also fj = xdf1 +(

∑dj
i=0 c

(i)
j1 (xj−αj)i)M1 + · · ·+(

∑dj
i=0 c

(i)
jtj

(xj−αj)i)Mtj

= xdf1 +
∑dj
i=0(c

(i)
j1M1 + · · ·+ c

(i)
jtj
Mtj )(xj − αj)i. Similarly for gj .

6



4. SPARSE HENSEL LIFTING

Hence we see that if the assumption of SHL is true then the support of each
σjk will be a subset of support of fj−1. Therefore we can use fj−1 as the skeleton
of the solution of each σjk. The same is true for τjk. Although it is not stated
explicitly in [3], this is one of the underlying ideas of Kaltofen’s SHL (KHL).

In a classical implementation of MHL, at the jth step in the for loop (see
algorithm 1) one gets the monic factors and then after the loop one applies
leading coefficient correction. However in [3] leading coefficient correction is also
done in the for loop. If we do leading coefficient correction after the for loop,
Kaltofen’s SHL idea reduces to solve the MDP by assuming for each 1 ≤ i ≤ dj ,
σji = u1M1 + · · · + utjMtj and τji = utj+1N1 + · · · + utj+rjNrj for unknowns
uk and distinct monomials M1, . . . ,Mtj and N1, . . . , Nrj in x1, . . . , xj−1. Then
by equating coefficients of the monomials appearing on the LHS and the RHS
in the MDP equation one gets a linear system in the uk’s. By construction this
system is homogeneous.

At the jth step of MHL (see algorithm 1), throughout the loop σj0 and
τj0 remain the same. So, if the SHL assumption is true the assumed solution
structures of σji and τji will remain the same on the LHS and only the RHS of
the MDP will change. Hence just before the loop it is sufficient to find rj + tj
linearly independent equations among O(rjtj) linear equations while keeping
track of which monomials they correspond. We call this monomial set Mon,
construct the corresponding matrix L, and compute L−1. Then in the for loop,
for each i, one simply has to compute the Taylor coefficient of e(i)j of the error,
extract the coefficients from it corresponding to each monomial inMon, form the
related vector v, and then compute w = L−1v to recover uk’s. This improvement
makes the algorithm faster by a factor of deg(aj , xj).

We present the jth step of KHL in algorithm 3. We give an example to show
explicitly how it works in Appendix KHL.

Our organization of Kaltofen’s approach needs no forward translation to
xj 7→ xj + αj and not back translation xj + αj 7→ xj , and also does not need to
define the sets E(i)

j−1 defined in [3]. This simplifies the algorithm.
Let B = aj(x1, . . . , xj+αj , αj+1, . . . , αn). Note that if we proceed in the way

explained in [3] then for each i in the for loop we should compute

B −

(
f
(i−1)
j + (

tj∑
k=1

ukMk)xij

)(
g
(i−1)
j + (

rj+tj∑
k=1

ukNk)xij

)
(1)

where f (i−1)
j =

∑i−1
k=0 σjk(xj − αj)k, g(i−1)

j =
∑i−1
k=0 τjk(xj − αj)k and then by

expanding (1) we need to form a linearly independent system by equating it with
the error. Then we should apply back translation xj + αj 7→ xj .

We have implemented our improved KHL in Maple. The most time con-
suming step is the step 7 of algorithm 3 where one has to find rj + tj linearly
independent equations out of O(rjtj) linear equations and invert the correspond-
ing matrix. The most obvious way to get the linear system is to start with a set
of one equation then add new equations to the set, one at at time, until the
system has full rank rj + tj .

7



4. SPARSE HENSEL LIFTING

Algorithm 3 jth step of improved Kaltofen’s SHL for j > 2.
Input : aj ∈ Zp[x1, . . . , xj ], fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] and αj ∈ Zp where
aj , fj−1, gj−1 are monic in x1. Also, aj(x1, . . . , xj−1, xj = αj) = fj−1gj−1.
Let fj−1 = xdf1 + cj1M1 + · · ·+ cjtjMtj and gj−1 = xdg1 + sj1N1 + · · ·+ sjrjNrj where
M1, . . . ,Mtj , and N1, . . . , Nrj are monomials in x1, . . . , xj−1 and df = degx1 f and
dg = degx1 g.
Output : fj , gj ∈ Zp[x1, . . . , xj ] such that aj = fjgj
or FAIL (No such factorization exists.)
1: (σj0, τj0)← (fj−1, gj−1).
2: (σj , τj)← (σj0, τj0).
3: monomial ← 1.
4: Introduce unknowns u1, . . . , urj+tj and D ← σj0(u1N1 + · · · + urjNrj ) +
τj0(urj+1M1 + · · ·+ utjMtj )

5: Expand D and collect the coefficients of the monomials in x1, . . . , xj−1. Each co-
efficient is a homogeneous linear equation in uk’s.

6: Let S be the array of all these homogeneous equations and Mon be the array of
monomials such that Si is the coefficient of Moni in the expansion of D.

7: Find i1, . . . , irj+tj such that E = {Si1 , . . . , Sirj+tj
} is a linearly independent set.

Do this choosing equations of the form of c uk for some constant c first.
8: if no such E exists then return FAIL (SHL assumption is wrong) end if
9: Construct the (rj + tj)× (rj + tj) matrix L corresponding to the set E such that

the unknown ui corresponds to ith column of L
10: Compute L−1.
11: error ← aj − fj−1 gj−1

12: for i from 1 to deg(aj , xj) while error 6= 0 do
13: monomial ← monomial × (xj − αj)
14: c← coefficient of (xj−αj)i in the Taylor expansion of the error about xj = αj
15: if c 6= 0 then
16: for k from 1 to rj + tj do
17: vk ← the coefficient of Monik of the polynomial c
18: end for
19: w ← L−1v
20: σji ←

∑tj
k=1 wkMk and τji ←

∑rj
k=1 wk+tjNk.

21: (σj , τj)← (σj + σji ×monomial, τj + τji ×monomial).
22: error ← aj − σjτj .
23: end if
24: end for
25: if error 6= 0 then return FAIL else return (σj , τj) end if

8



4. SPARSE HENSEL LIFTING

To implement this we use Maple’s RowReduce function which performs in-
place Gauss elimination on the input mod p Matrix L. This function is imple-
mented in C and optimized. The time complexity is the time complexity of Gauss
elimination O((rj + tj)

3) plus the time for the failed cases, which, according to
our experiments, is not negligible. In our experiments we have observed that this
approach is effective only when the factors are very sparse. According to our ex-
periments in section 5.2, although our improved version of KHL is significantly
faster than that described in [3], it is still slower than Wang’s algorithm.

4.2 Our SHL organization

Before explaining our SHL organization we make the following observation:

Lemma 1. Let f ∈ Zp[x1, . . . , xn] and by Support(f) we denote the set of
monomials present in f. Let α be a randomly chosen element in Zp and f =∑dn
i=0 bi(x1, . . . , xn−1)(xn − α)i be the (xn − α)−adic expansion of f, where

dn = degxn
f. Then for a given j with 0 ≤ j < dn,

Prob(Support(bj+1) * Support(bj)) ≤ |Support(bj+1)| dn − j
p− dn + j + 1

.

Proof: For simplicity assume that p > j, otherwise we will need to introduce
Hasse derivatives but the idea will be the same. We have

bj(x1, . . . , xn−1) =
1

j!

∂

∂xjn
f(x1, . . . , xn−1, xn = α).

If we write f ∈ Zp[xn][x1, . . . , xn−1] as

f = c1(xn)M1 + c2(xn)M2 + · · ·+ ck(xn)Mk

whereM1,M2, . . . ,Mk are the distinct monomials in x1, . . . , xn−1 and we denote
∂

∂xj
n
ci(xn) = c

(j)
i (xn) then

bj =
∂

∂xjn
f(xn = α) = c

(j)
1 (α)M1 + c

(j)
2 (α)M2 + · · ·+ c

(j)
k (α)Mk.

bj+1 =
∂

∂xj+1
n

f(xn = α) = c
(j+1)
1 (α)M1 + c

(j+1)
2 (α)M2 + · · ·+ c

(j+1)
k (α)Mk.

For a given j > 0, if c(j+1)
i (α) 6= 0, but c(j)i (α) = 0 then Mi /∈ Support(bj).

We need to compute Prob(c
(j)
i (α) = 0 | c(j+1)

i (α) 6= 0). If A is the event that
c
(j)
i (α) = 0 and B is the event that c(j+1)

i (α) = 0 then

Prob(A |Bc) =
Prob(A)− Prob(B)Prob(A |B)

Prob(Bc)
≤ Prob(A)

Prob(Bc)
.

By the Schwartz-Zippel Lemma[13, 8]

Prob(A)

Prob(Bc)
≤

degxn
(c

(j)
i (y))/p

1− (degxn
(c

(j+1)
i (y))/p)

=
(dn − j)/p

1− (dn − j − 1)/p
=

dn − j
p− dn + j + 1

�

9



4. SPARSE HENSEL LIFTING

Lemma 1 shows that for the sparse case, if p is big enough then the probability
of Support(bj+1) ⊆ Support(bj) is high.

Following the notation of Lemma 1 above, for a given α ∈ Zp, let us call α
unlucky, if Support(bj+1) * Support(bj) for some 0 ≤ j < dn. So, for a given f ,
if c(j)i has a root but does not have a double root at xn = α, then α is unlucky for
bj+1, i.e. Support(bj+1) * Support(bj): Consider the following example where
Support(bj+1) * Support(bj) for j = 1, 2.

f := (x61 + x51 + x41)(x2 − 1)3 + (x51 + x41 + x31)(x2 − 1) + x71 + 1 ∈ Z509[x1, x2].

But if we choose another point 301 and compute the (x2− 301)−adic expansion
of f =

∑3
i=0 bi(x1)(x2 − 301)i we have

b0 = x71 + 95x61 + 395x51 + 395x41 + 300x31 + 1

b1 = 230x61 + 231x51 + 231x41 + x31

b2 = 391x61 + 391x51 + 391x41

b3 = x61 + x51 + x41

and we see that Support(bj+1) ⊆ Support(bj) for 0 ≤ j ≤ 2 . In fact for this ex-
ample α = 1, 209,−207 are the only unlucky points as can be seen by considering
f ∈ Z509[x2][x1], that is,

f = x71 + (x2 − 1)3x61 + (x2 − 209)(x2 − 1)(x2 + 207)x51

+ (x2 − 209)(x2 − 1)x41 + (x2 − 1)x31 + 1.

Note that these points are unlucky only for b2. Before we give an upper bound for
the number of unlucky points we consider the following example. Let p = 1021,

f = (x2 − 841)(x2 − 414)(x2 − 15)(x2 − 277)x91

+ (x2 − 339)(x2 − 761)(x2 − 752)(x2 − 345)x71

and f (i) = ∂
∂xi

2
f(x1, x2). Then

f (1) = 4(x2 − 384)(x2 − 230)(x2 − 291)x91 + 4(x2 − 441)(x2 + 127)(x2 + 453)x71

f (2) = 12(x2 − 89)(x2 − 174)x91 + 12(x2 − 473)(x2 − 115)x71

f (3) = (24x2 − 93)x91 + (24x2 + 91)x71 and

f (4) = 24x91 + 24x71.

So, the maximum number of unlucky points occurs if each c(j)i splits for dif-
ferent points, hence |Support(f)|dn(dn+1)

p is an upper bound for the probability
of hitting an unlucky point. For a sparse polynomial with 1000 terms, dn = 20,
for p = 231 − 1, this probability is 0.000097. This observation suggests that we
use σi,j−1 (or τi,j−1) as a form of the solution of σji (or τij).

Back to our discussion on SHL, based on the observation above the jthstep
(j > 1) of our SHL organization is summarized in algorithm 4. In Appendix SHL
we give a concrete example to show how it works.

10



4. SPARSE HENSEL LIFTING

Algorithm 4 jth step of Sparse Hensel Lifting for j > 1.
Input : aj ∈ Zp[x1, . . . , xj ], fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] and αj ∈ Zp where
aj , fj−1, gj−1 are monic in x1. Also, aj(x1, . . . , xj−1, xj = αj) = fj−1gj−1.
Output : fj , gj ∈ Zp[x1, . . . , xj ] such that aj = fjgj or FAIL (No such factorization
exists.)
1: if rj > tj then interchange fj−1 with gj−1 end if
2: (σj0, τj0)← (fj−1, gj−1).
3: (σj , τj)← (σj0, τj0).
4: monomial ← 1.
5: error ← aj − fj−1 gj−1

6: for i from 1 to deg(aj , xj) while error 6= 0 do
7: monomial ← monomial × (xj − αj)
8: c← coefficient of (xj−αj)i in the Taylor expansion of the error about xj = αj
9: if c 6= 0 then
10: σg ← skeleton of τj,i−1

11: Solve the MDP σj0 τji + τj0 σji = c for σji and τji in Zp[x1, . . . , xj−1]
12: using σg and our sparse interpolation from section 3.2.
13: if (σji, τji)=FAIL then
14: (σji, τji) ← BSDiophant(σj0, τj0, c, p)
15: if (σji, τji)=FAIL then restart the factorization with a different ideal
16: end if
17: end if
18: (σj , τj)← (σj + σji ×monomial, τj + τji ×monomial).
19: error ← aj − σjτj .
20: end if
21: end for
22: if error 6= 0 then return FAIL (No such factorization exists)
23: else return (σj , τj)
24: end if

4.3 Some remarks on algorithm 4

Step 8 in the for loop computes the ith Taylor coefficient of the error at xj = αj .
Maple used to compute this using the formula c = g(xj = αj)/i! where g is the
i’th derivative of error wrt xj . Instead, Maple now uses the more direct formula
c =

∑d
k=i coeff(error, xkj )αk−ij

(
k
i

)
where d = degxj

error which is three times
faster [7].

At step 10 algorithm 4 makes the assumption Support(τji) ⊆ Support(τj,i−1)
based on Lemma 1. Note that, if the minimum of the number of the terms of each
factor of aj is t = min(#fj ,#gj), then at step 11 the probability of the failure of
the assumption is≤ t dj−i

p−dj−(i−1) ≤
tdj

p−2dj
and its cost is the evaluation cost + cost

of a system of linear equation solving which is bounded above by O(t2). Another
costly operation is the cost of multivariate division, σji = (c−σj0τji)/τj0, which
is hidden in sparse interpolation. If the algorithm fails to compute (σji, τji) at
step 11 then it passes to a safe way at step 14.

11



5. SOME TIMING DATA

Another expensive operation in the algorithm 4 is the error computation,
error ← aj − σjτj , in the for loop. To decrease this cost, one of the ideas in

[5] can be generalized to MHL. Let σj =
∑degxj

σj

s=0 σj,s(xj − αj)
s and σ

(i)
j =∑i

s=0 σj,s(xj − αj)s (similarly for τ). One has

e
(i+1)
j = aj − σ(i)

j τ
(i)
j

= aj − (σ
(i−1)
j + σj,i(xj − αj)i)(τ (i−1)

j + τj,i(xj − αj)i)

= aj − σ(i−1)
j τ

(i−1)
j − (σ

(i−1)
j τj,i + τ

(i−1)
j σj,i)(xj − αj)i

= e
(i)
j − U

(i)(xj − αj)i

where U (i) := (σ
(i−1)
j τj,i+ τ

(i−1)
j σj,i). Hence in the for loop we have the relation

e
(i+1)
j = e

(i)
j −(xj−αj)iU (i) for a correction term U (i) ∈ O((xj−αj)i−1). Also for

i > 0 it is known that (xj−αj)i divides e(i)j . So if we define c(i)j := e
(i)
j /(xj−αj)i

then c(i)j can be computed efficiently using

c
(i+1)
j = (c

(i)
j − U

(i))/(xj − αj).

Hence we may compute c(i)j for i = 1, 2, . . . until it becomes zero instead of
computing e

(i)
j . According to our experiments, this observation decreases the

cost when the number of factors is 2. For more than 2 factors, the generalization
of it does not bring a significant advantage. So, in our implementations we only
use this update formula when the number of factors is 2.

Also note that, in our SHL organization (algorithm 4), we use only one of
the SHL assumptions and eliminate the recursive step in MHL to compute the
skeleton of the solution. In Kaltofen’s approach one cannot focus on some subset
of the uk’s as we do, since the system of equations are coupled.

5 Some Timing Data

To compare the result of our ideas with Wang’s, first we factored the determi-
nants of Toeplitz and Cyclic matrices of different sizes as concrete examples.
Note that the factors in these concrete examples are not sparse. Our results are
presented in section 5.1. Then we created sparse random polynomials A,B using

xd1 + randpoly([x2, .., xn], degree =d, terms =t)

in Maple and computed C = AB ∈ R. Note that we chose monic factors in x1
so as not to complicate the algorithm with leading coefficient correction and to
have a fair comparison with Maple’s factorization algorithm. We used p = 231−1
and two ideal types for factoring C: ideal type 1: I = 〈x2−0, x3−0, · · · , xn−0〉
and ideal type 2: I = 〈x2 − α1, x3 − α2, · · · , xn − αn〉 where the αi’s in practice
are small. However for sparse Hensel liftings, as explained in section 4, it is

12



5. SOME TIMING DATA

important that αi’s should be chosen from a large interval. For these we chose
αi’s randomly from Zq−{0} with q = 65521. Our results are presented in section
5.2. In section 5.2 we also included the ideal type 1 case since according to our
experiments it is the only case where Wang’s algorithm is faster. This is because
a sparse polynomial remains sparse for the ideal type 1 and hence the number
of MDP’s to be solved significantly decreases and the evaluation cost of sparse
interpolation becomes dominant which is not the case for Wang’s algorithm for
the ideal type 1 case. However it is not always possible to use ideal type 1. For
example, ideal type 1 cannot be used to factor Cyclic or Toeplitz determinants.

In the tables below all timings are in CPU seconds and are for the Hensel
liftings part of the polynomial factorization. They were obtained on an Intel
Core i5–4670 CPU running at 3.40GHz.

tW is the time for Wang’s algorithm which Maple currently uses (see[2]),
tUW is the time for Wang’s algorithm with the improved Hensel,

tS is the time for Zippel’s sparse interpolation from section 3.1,
tBS is the time for the improved sparse interpolation from section 3.2,

tKHL is the time for the Kaltofen’s sparse Hensel lifting from section 4.1,
tNBS is the time for the sparse Hensel lifting from section 4.2,

tX(tY) means factoring time tX with tY seconds spent solving MDPs.

5.1 Factoring the determinants of Cyclic and Toeplitz matrices

Let Cn denote the n × n cyclic matrix and let Tn denote the n × n symmetric
Toeplitz matrix below.

Cn =


x1 x2 . . . xn−1 xn
xn x1 . . . xn−2 xn−1

...
...

...
...

...
x3 x4 . . . x1 x2
x2 x3 . . . xn x1

 and Tn =


x1 x2 · · · xn−1 xn
x2 x1 · · · xn−2 xn−1

. . . . . . . . .
xn−1 xn−2 · · · x1 x2
xn xn−1 · · · x2 x1


The determinants of Cn and Tn are polynomials in n variables x1, x2, . . . , xn

which factor. For n > 1 det(Tn) has 2 factors and x1 + x2 + · · ·+ xn is a factor
of Cn. Table 1 presents timings for Hensel liftings in CPU seconds to factor
detCn. For n = 6, 10, 12 the number of factors is 3,4 and 6 respectively. For
n = 5, 7, 11, 13 the number of factors is 2. We didn’t implement KHL to factor
more than 2 factors. This is why we didn’t include the timing for KHL for the
case n = 6. As can be seen from the data below KHL is not effective for n ≥ 7.
Table 2 presents timings for Hensel liftings in CPU seconds to factor detTn.

5.2 Random data

Table 3 below presents timings for the random data where ideal type 1 is used.
For the ideal type 1 case SHL is not used, since the zero evaluation probability
is high for the sparse case. Table 4 below presents timings for the random data
where ideal type 2 is used. As can be seen KHL is effective only when the factors
have 100 terms or less.

13



6. CONCLUSION

Table 1. Timings (CPU seconds) for factoring determinants of n× n cyclic matrices.

n tW tUW tKHL tS tBS tNBS

5 0.004 (0.003) 0.014 (0.013) 0.07 (0.068) 0.014 (0.003) 0.015 (0.012) 0.014 (0.012)
7 0.057 (0.054) 0.054 (0.04) 1157.(1157.) 0.018 (0.006) 0.019 (0.014) 0.017 (0.014)
10 0.912 (0.666) - - 1.049 (0.823) 0.775 (0.549) 0.434 (0.179)
11 9.437 (8.785) 8.413 (8.107) ∞ 0.503 (0.23) 0.505 (0.226) 0.354 (0.071)
12 42.64 (38.38) - - 7.705 (4.35) 7.288 (3.913) 4.372 (1.047)
13 258.5 (208.9) 256.5 (208.9) ∞ 20.40 (8.936) 20.05 (8.408) 13.78 (1.697)

Table 2. Timings for factoring determinants of n× n symmetric Toeplitz matrices.

n tW tUW tKHL tS tBS tNBS

5 0.003 (0.002) 0.014 (0.001) 0.02 (0.018) 0.014 (0.014) 0.017 (0.017) 0.015 (0.012)
6 0.016 (0.013) 0.016 (0.005) 0.308 (0.306) 0.04 (0.026) 0.042 (0.031) 0.021 (0.008)
7 0.025 (0.012) 0.044 (0.029) 1157.5(1157.5) 0.031 (0.019) 0.032 (0.019) 0.045 (0.03)
8 0.057 (0.044) 0.072 (0.052) 119.88(119.86) 0.103 (0.086) 0.096 (0.087) 0.059 (0.026)
9 0.167 (0.126) 0.151 (0.123) 486.45(486.41) 0.279 (0.258) 0.194 (0.168) 0.088 (0.06)
10 0.654 (0.461) 0.629 (0.496) 25021.(25021.) 1.389 (1.245) 0.675 (0.531) 0.366 (0.222)
11 2.699 (2.06) 2.538 (2.11) ∞ 7.612 (7.109) 2.677 (1.751) 1.133 (0.589)
12 25.93 (18.68) 23.07 (17.95) ∞ 69.91 (65.8) 22.08 (15.72) 13.86 (7.579)
13 48.59 (37.43) 47.01 (37.73) ∞ 508.3 (495.8) 48.86 (36.11) 32.81 (20.36)

6 Conclusion

We have shown that solving the multivariate polynomial diophantine equations
in sparse Hensel lifting algorithm can be improved by using sparse interpolation.
This leads to an overall improvement in multivariate polynomial factorization.
Our experiments show that the improvement is practical.

Appendix KHL

Suppose we seek to factor a = fg where f = x1
5+3x1

2x2x3
2−7x1

4−4x1x3+1
and g = x1

5 +x1
2x2x3− 7x3

4− 6. Let α3 = 2 and p = 231− 1. Before lifting we
have a and

f (0) := f(x3 = 2) = x1
5 − 7x1

4 + 12x1
2x2 − 8x1 + 1

g(0) := g(x3 = 2) = x1
5 + 2x1

2x2 − 118.

If the assumption of SHL is true then we assume that f =
∑degx3

f

i=0 fi(x3 −
2)i and g =

∑degx3
g

i=0 gi(x3 − 2)i where each fi and gi are in the form

fi = c1x1
4 + c2x1

2x2 + c3x1 + c4 and gi = c5x1
2x2 + c6

for some unknowns C = {c1, c2, c3, c4, c5, c6}. First we construct

D =
(
x1

5 − 7x1
4 + 12x1

2x2 − 8x1 + 1
) (
c5x1

2x2 + c6
)

+
(
x1

5 + 2x1
2x2 − 118

) (
c1x1

4 + c2x1
2x2 + c3x1 + c4

)
.

14



6. CONCLUSION

Table 3. The timing table for random data with ideal type 1

n/d/t tW tUW tS tBS

3/35/100 0.11 (0.06) 0.10 (0.06) 0.17 (0.13) 0.07 (0.03)
3/35/500 0.39 (0.16) 0.44 (0.17) 0.60 (0.36) 0.31 (0.08)
5/35/100 0.183 (0.15) 0.18 (0.15) 0.46 (0.43) 0.72 (0.69)
5/35/500 1.42 (0.53) 2.61 (0.51) 5.25 (2.92) 5.05 (2.68)
7/35/100 0.18 (0.16) 0.18 (0.15) 0.79 (0.76) 1.05 (1.02)
7/35/500 1.48 (0.71) 2.36 (0.65) 12.44 (10.43) 7.77 (5.61)

Table 4. The timing table for random data with ideal type 2

n/d/t tW tUW tKHL tS tBS tNBS

3/35/100 2.87 (1.88) 2.14 (1.88) 0.401 (0.046) 0.65 (0.38) 0.38 (0.08) 0.32 (0.04)
3/35/500 5.77 (3.69) 4.30 (3.57) 1.957 (0.057) 1.36 (0.61) 0.90 (0.14) 0.81 (0.05)
5/35/100 88.10 (86.28) 86.45 (85.64) 3.337 (2.551) 6.12 (5.21) 5.04 (4.11) 1.16 (0.36)
5/35/500 472.1 (402.5) 392.2 (370.7) 3732. (3717.) 67.57 (45.98) 48.1 (25.5) 26.0 (4.86)
6/35/100 309.1 (306.3) 323.8 (322.6) 4.383 (3.409) 12.53 (11.42) 9.29 (7.11) 1.49 (0.46)
7/35/100 800.0 (797.0) 829.7 (828.5) 10.22 (9.134) 16.82 (15.15) 10.8 (9.77) 1.58 (0.59)

Expanding D we see the system of homogeneous linear equations as coefficients

D = c1x1
9 + (c2 + c5)x1

7x2 + (2 c1 − 7 c5)x1
6x2 + c3x1

6

+ (c4 + c6)x1
5 + (2 c2 + 12 c5)x1

4x2
2

+ (−118 c1 − 7 c6)x1
4 + (2 c3 − 8 c5)x1

3x2 + (−118 c2 + 2 c4 + c5 + 12 c6)x1
2x2

+ (−118 c3 − 8 c6)x1 − 118 c4 + c6

We need 6 linearly independent equations from these. First we check whether
there are single equations. In this example we see that c1 and c3 corresponding
to monomials x19, x16. Then we go over the equations one by one to get a
rank 6 system. In this example we see that equations corresponding to the set
Mon = {x19, x16, x17x2, x16x2, x15, x14} are linearly independent. We obtain

L =


1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 1 0
2 0 0 0 −7 0
0 0 0 1 0 1

−118 0 0 0 0 −7


and compute L−1. In the following e(k)3 denotes the coefficient of (x3 − 2)k in
the Taylor expansion of the error about x3 = 2. Let also f0 := f (0), g0 :=
g(0), f (k) :=

∑k
i=0 fi(x3 − 2)i, g(k) :=

∑k
i=0 gi(x3 − 2)i.

In algorithm 3 v is the vector constructed by extracting the coefficients of
e
(k)
3 corresponding to monomials inMon = {x19, x16, x17x2, x16x2, x15, x14} and
w = L−1v mod p. Now for the loop,

15



6. CONCLUSION

Step i = 1: error = a− f (0)g(0)

e
(1)
3 = 13x1

7x2 − 7x1
6x2 − 4x1

6 + 36x1
4x2

2 − 224x1
5

+1568x1
4 − 16x1

3x2 − 4103x1
2x2 + 2264x1 − 224

v =
[

0 −4 13 −7 −224 1568
]

w = L−1v =
[

0 12 −4 0 1 −224
]

f (1) = f (0) +
(
12x1

2x2 − 4x1
)

(x3 − 2)

= x1
5 − 7x1

4 + 12x1
2x2x3 − 12x1

2x2 − 4x1x3 + 1

g(1) = g(0) +
(
x1

2x2 − 224
)

(x3 − 2) = x1
5 + x1

2x2x3 − 224x3 + 330

Step i = 2 : error = a− f (1)g(1)

e
(2)
3 = 3x1

7x2 + 6x1
4x2

2 − 168x1
5 + 1176x1

4 − 2370x1
2x2 + 1344x1 − 168

v =
[

0 0 3 0 −168 1176
]

w = L−1v =
[

0 3 0 0 0 −168
]

f (2) = f (1) + 3x1
2x2(x3 − 2)2 = x1

5 + 3x1
2x2x3

2 − 7x1
4 − 4x1x3 + 1

g(2) = g(1) − 168(x3 − 2)2 = x1
5 + x1

2x2x3 − 168x3
2 + 448x3 − 342

Step i = 3 : error = a− f (2)g(2)

e
(3)
3 = −56x1

5 + 392x1
4 − 672x1

2x2 + 448x1 − 56

v =
[

0 0 0 0 −56 392
]

w = L−1v =
[

0 0 0 0 0 −56
]

f (3) = f (2) + 0 = x1
5 + 3x1

2x2x3
2 − 7x1

4 − 4x1x3 + 1

g(3) = g(2) − 56 (x3 − 2)
3

= x1
5 + x1

2x2x3 − 56x3
3 + 168x3

2 − 224x3 + 106

At the end of the 3rd iteration we have recovered f actually and so we could
obtain g = a/f via trial division and terminate. But let’s go further.

Step i = 4 : error = a− f (3)g(3)

e
(4)
3 = −7x1

5 + 49x1
4 − 84x1

2x2 + 56x1 − 7

v =
[

0 0 0 0 −7 49
]

w = L−1v =
[

0 0 0 0 0 −7
]

f (4) = f (3) + 0 = x1
5 + 3x1

2x2x3
2 − 7x1

4 − 4x1x3 + 1

g(4) = g(3) − 7 (x3 − 2)
4

= x1
5 + x1

2x2x3 − 7x3
4 − 6

for i = 5, error = a− f (4)g(4) = 0 and we have the factors!

16



6. CONCLUSION

Appendix SHL

We give an example of our SHL. Suppose we seek to factor a = fg where

f = x1
8 + 2x1x2

2x4
3x5 + 4x1x2

2x3
3 + 3x1x2

2x4x5
2 + x2

2x3x4 − 5

g = x1
8 + 3x1

2x2x3x4
2x5 + 5x1

2x2x3
2x4 − 3x4

2x5
2 + 4x5

Let α3 = 1, p = 231 − 1. Before lifting x5 we have

f (0) := f(x5 = 1) = x1
8 + 4x1x2

2x3
3 + 2x1x2

2x4
3 + 3x1x2

2x4 + x2
2x3x4 − 5

g(0) := g(x5 = 1) = x1
8 + 5x1

2x2x3
2x4 + 3x1

2x2x3x4
2 − 3x4

2 + 4

satisfying a(x5 = α5) = f (0)g(0). If the SHL assumption is true then at the first
step we assume f =

∑degx5
f

i=0 fi(x5 − 1)i and g =
∑degx5

g

i=0 gi(x5 − 1)i where f1
and g1 are in the form

f1 =
(
c1x3

3 + c2x4
3 + c3x4

)
x1x2

2 + c4x2
2x3x4 + c5

g1 =
(
c6x3

2x4 + c7x3x4
2
)
x1

2x2 + c8x4
2 + c9

for some unknowns C = {c1, . . . , c9}. In the following e(k)5 denotes the coefficient
of (x5−1)k in the Taylor expansion of the error about x5 = 1. Let also f0 := f (0),
g0 := g(0), f (k) :=

∑k
i=0 fi(x5 − 1)i and g(k) :=

∑k
i=0 gi(x5 − 1)i.

We start by computing the first error term e
(1)
5 = a− f (0)g(0). We obtain

e
(1)
5 = 3x1

10x2x3x4
2+2x1

9x2
2x4

3+6x1
9x2

2x4+12x1
3x2

3x3
4x4

2+10x1
3x2

3x3
2x4

4

+12x1
3x2

3x3x4
5−6x1

8x4
2+30x1

3x2
3x3

2x4
2+27x1

3x2
3x3x4

3+3x1
2x2

3x3
2x4

3

+ 4x1
8 − 24x1x2

2x3
3x4

2 − 18x1x2
2x4

5 − 15x1
2x2x3x4

2 + 16x1x2
2x3

3

− 20x1x2
2x4

3 − 6x2
2x3x4

3 + 36x1x2
2x4 + 4x2

2x3x4 + 30x4
2 − 20

The MDP to be solved is:

D := f0
((
c6x3

2x4 + c7x3x4
2
)
x1

2x2 + c8x4
2 + c9

)
+ g0

((
c1x3

3 + c2x4
3 + c3x4

)
x1x2

2 + c4x2
2x3x4 + c5

)
= e

(1)
5 .

Our aim is first to get
((
c6x3

2x4 + c7x3x4
2
)
x1

2x2 + c8x4
2 + c9

)
since it will

create a smaller matrix. For sparse interpolation we need 2 evaluations only: we
choose [x3 = 2, x4 = 3] and [x3 = 22, x4 = 32] and compute D([x3 = 2, x4 = 3]) :(

x1
8 + 95x1x2

2 + 6x2
2 − 5

) (
(12 c6 + 18 c7)x1

2x2 + 9 c8 + c9
)

+
(
x1

8 + 114x1
2x2 − 23

) (
(8 c1 + 27 c2 + 3 c3)x1x2

2 + 6 c4x2
2 + c5

)
= 54x1

10x2 + 72x1
9x2

2 − 50x1
8 + 13338x1

3x2
3 + 324x1

2x2
3 − 270x1

2x2

− 6406x1x2
2 − 300x2

2 + 250

17



6. CONCLUSION

and D([x3 = 4, x4 = 9]). Calling BDP to solve these bivariate Diophantine equa-
tions we obtain the solutions [σ1, τ1] = [54x1

2x2 − 50, 72x1x2
2] and [σ2, τ2] =

[972x1
2x2 − 482, 1512x1x2

2]. Hence we have

(12 c6 + 18 c7)x1
2x2 + 9 c8 + c9 = 54x1

2x2 − 50

(144 c6 + 324 c7)x1
2x2 + 81 c8 + c9 = 972x1

2x2 − 482

Then we solve the Vandermonde linear systems[
12 18
144 324

] [
c6
c7

]
=

[
54
972

]
and

[
9 1
81 1

] [
c8
c9

]
=

[
−50
−482

]
to obtain c6 = 0, c7 = 3, c8 = −6, c9 = 4. So g1 = 3x1

2x2x3x4
2 − 6x4

2 + 4.

Then by division we get f1 = (e
(1)
5 − f0g1)/g0 = 2x1x2x4

3 + 8x2x3
4. Hence

f (1) = f0+
(
2x1x2

2x4
3 + 6x1x2

2x4
)

(x5 − 1)

g(1) = g0+
(
3x1

2x2x3x4
2 − 6x4

2 + 4
)

(x5 − 1) .

Note that we use the division step above also as a check for the correctness of
the SHL assumption. Since the solution to the MDP is unique, we would have
g0 - (e

(1)
5 − f0g1), if the assumption was wrong.

Now following Lemma 1 by looking at the monomials of f1 and g1, we assume
that the form of the f2 and g2 are

f2 = c1x1x2
2x4

3 + c2x1x2
2x4 + c3

g2 = c4x1
2x2x3x4

2 + c5x4
2 + c6

for some unknowns C = {c1, . . . , c6}. After computing the next error a−f (1)g(1)

we compute e(2)5 and the MDP to be solved is:

D := f0
(
c4x1

2x2x3x4
2 + c5x4

2 + c6
)
+g0

(
c1x1x2

2x4
3 + c2x1x2

2x4 + c3
)

= e
(2)
5 .

We need 2 evaluations again: Choose [x3 = 5, x4 = 6] and [x3 = 52, x4 = 62] and
compute

D([x3 = 5, x4 = 6]) : =
(
x1

8 + 950x1x2
2 + 30x2

2 − 5
) (

180 c4x1
2x2 + 36 c5 + c6

)
+
(
x1

8 + 1290x1
2x2 − 104

) (
216 c1x1x2

2 + 6 c2x1x2
2 + c3

)
= 18x1

9x2
2 − 108x1

8 + 23220x1
3x2

3 − 104472x1x2
2 − 3240x2

2 + 540

and similarly for D([x3 = 25, x4 = 36]). Calling BDP we obtain the solutions to
these bivariate Diophantine equations [σ1, τ1] = [−108, 18x1x2

2] and [σ2, τ2] =
[−3888, 108x1x2

2] respectively. Hence we have 180 c4x1
2x2 + 36 c5 + c6 = −108

and 32400 c4x1
2x2 + 1296 c5 + c6 = −3888 respectively. Then we solve the Van-

dermonde linear systems

[180] [c4] = [0] and

[
36 1

1296 1

] [
c5
c6

]
=

[
−108
−3888

]

18



6. CONCLUSION

to obtain c4 = 0, c5 = −3, c6 = 0. So g2 = −3x4
2. Then by division we get

f2 = (e
(2)
5 − f0g2)/g0 = 3x1x2

2x4 (x5 − 1)
2. Hence

f (2) = f (1) + 3x1x2
2x4 (x5 − 1)

2

= x1
8 + 2x1x2

2x4
3x5 + 4x1x2

2x3
3 + 3x1x2

2x4x5
2 + x2

2x3x4 − 5

g(2) = g(1) +
(
−3x4

2
)

(x5 − 1)
2

= x1
8 + 3x1

2x2x3x4
2x5 + 5x1

2x2x3
2x4 − 3x4

2x5
2 + 4x5.

The next error e(3)5 = a− f (2)g(2) = 0 and we have the factors!
We used four evaluations and solved three (2 × 2) linear systems. For the

same problem KHL would need to find 9 linearly independent homogeneous
linear equations out of 28 equations first. A natural question is, is it possible for
KHL to focus on to some subset of the variables first? The answer is no. The
systems of equations constructed by KHL are coupled.

References

1. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 3rd ed. Springer,
Heidleberg (2007)

2. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra.
Kluwer (1992)

3. Kaltofen, E.: Sparse Hensel lifting. Proceedings of EUROCAL ’85, LNCS, vol 204,
pp. 4–17. Springer (1985)

4. Lee, M.M.: Factorization of multivariate polynomials. Ph.D. Thesis. (2013)
5. Miola, A., Yun, D.Y.Y.: Computational Aspects of Hensel-type Univariate Poly-

nomial Greatest Common Divisor Algorithms. Proceedings of EUROSAM ’74, pp.
46–54. ACM Press (1974)

6. Monagan, M.B., Tuncer, B.: Some results on counting roots of polynomials and
the Sylvester resultant. To appear in Proceedings of FPSAC 2016. DMTCS (2016)

7. Monagan, M.B., Pearce, R.: POLY: A New Polynomial Data Structure for Maple
17. Computer Mathematics, pp. 325–348. Springer (2014)

8. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27:701–717. ACM Press (1980)

9. Wang, P.S.: An improved Multivariate Polynomial Factoring Algorithm. Mathe-
matics of Computation, 32:1215–1231. AMS (1978)

10. Wang, P.S., Rothschild, L.P.: Factoring multivariate polynomials over the integers.
Mathematics of Computation, 29(131):935–950. AMS (1975)

11. Yun, D.Y.Y.: The Hensel Lemma in algebraic manipulation. Ph.D. Thesis. (1974)
12. Zippel, R.: Interpolating polynomials from their values. J. Symbolic Comput.,

9:375–403. Academic Press (1990)
13. Zippel, R.E.: Probabilistic algorithms for sparse polynomials. Proceedings of EU-

ROSAM ’79, LNCS vol. 72, pp. 216–226. Springer (1979)
14. Zippel, R.E.: Newton’s iteration and the sparse Hensel algorithm. Proceedings of

SYMSAC ’81, pp. 68–72. ACM Press (1981)

19


