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Abstract. Sparse multivariate Hensel lifting (SHL) algorithms are used
in multivariate polynomial factorization. They improve on Wang’s clas-
sical multivariate Hensel lifting which can be exponential in the number
of variables for sparse factors.

In this work, we present worst case complexity analyses and fail-
ure probability bounds for two recently developed SHL algorithms. One
of the algorithms solves the multivariate Diophantine equations using
sparse interpolation, and the other interpolates the factors directly from
bivariate images obtained using bivariate Hensel lifting.

We have observed that a linear expression swell occurs in both ap-
proaches. We have modified the second approach to eliminate the ex-
pression swell. Our improvement also injects more parallelism into the
sparse interpolation step.

We have made a high-performance parallel implementation of our
SHL algorithm in Cilk C. We present timing benchmarks comparing our
Cilk C implementation with the factorization algorithms in Maple and
Magma. We obtain good parallel speedup and our algorithm is much
faster than Maple and Magma on our benchmarks.
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1 Introduction

Polynomial factorization has been a central topic in computer algebra, and it
continues to play a critical role in other fields such as algebraic coding theory,
cryptography, number theory and algebraic geometry [4]. In this work, we focus
on the main tool used to factor multivariate polynomials, namely, multivariate
Hensel lifting (MHL). MHL was initially developed by Yun [18] and Wang [17] to
factor polynomials with integer coefficients, but it can be applied to polynomials
with coefficients in other domains, for example, finite fields [1, 3] and algebraic
number fields [14, 15, 22].

To factor a multivariate polynomial a ∈ Z[x1, x2, · · · , xn], Wang’s multivari-
ate Hensel lifting [17] first chooses integers α2, . . . , αn and factors the univariate



image a(x1, α2, . . . , αn) in Z[x1]. Then it recovers the multivariate factors from
their images one variable at a time. A key step in Wang’s MHL is the solu-
tion of a sequence of multivariate polynomial diophantine equations (MDPs).
Wang’s MHL has been implemented in many computer algebra systems including
Maple, Magma, Macsyma, Mathematica and Singular. For a detailed description
of Wang’s MHL we refer the reader to Chapter 6 of [4].

It is known that when factors are sparse and the evaluation points α2, . . . , αn
are mostly non-zero, Wang’s method for solving MDPs can be exponential in
the number of variables [8, 11]. To resolve this, Zippel [20] introduced the first
polynomial-time probabilistic algorithm in 1981 that takes advantage of sparsity.
Other sparse Hensel lifting (SHL) algorithms were developed by Kaltofen in 1985
[5] and Kaltofen and Trager in 1990 [6].

In 2016, Monagan and Tuncer [8] proposed a new sparse Hensel lifting algo-
rithm called MTSHL. The authors made a key observation which they call the
strong SHL assumption (see Lemma 1 of [8]) which is applied to solve the MDPs
that appear in Wang’s MHL in random polynomial time. A detailed complexity
analysis for MTSHL was completed for the average-case in [11]. MTSHL was
integrated into Maple 2019 [12].

In 2018, Monagan and Tuncer [10] introduced another approach [10] that
does not solve MDPs. Instead, at each Hensel lifting step, it interpolates the
factors from many bivariate images which are obtained using bivariate Hensel
lifting. Classical bivariate Hensel lifting (BHL) costs O(d4) where d = deg(a) is
the total degree of the input polynomial. The cost of BHL is improved to O(d3)
by Monagan in [13]. This approach is appropriate for multivariate Hensel lifting
because the degree of the factors is rarely 100, and often 10 or lower.

Our work is motivated by the following observation. In the main Hensel
lifting step (see Algorithm 1) which is used in MTSHL ([11]), in [10] and also
in Wang’s multivariate Hensel lifting [17], when the evaluation point αj is non-
zero, an expression swell occurs in each factor as it is recovered (in line 13). This
increases the cost of the error computation (in line 14).

Our first contribution is a new algorithm CMSHL which reorganizes the
sparse Hensel lifting algorithm in [10] to eliminate the expression swell. Our
second contribution is a worst case complexity analysis for CMSHL and for
MTSHL and bounds for the failure probability of both algorithms. Our third
contribution is a high-performance parallel implementation of CMSHL using
Cilk C [2] for multi-core computers.

Our paper is organized as follows. In Section 2, we present the two sparse
multivariate Hensel lifting algorithms from [8, 11] and [10]. We study the expres-
sion swell and give examples of it for the worst case and then we present our new
algorithm CMSHL which eliminates the expression swell. In Section 3 we give
worst case complexity analyses for MTSHL and CMSHL along with their failure
probabilities. In Section 4 we present timings comparing our Cilk C implementa-
tion of CMSHL with Maple and Magma’s factorization commands for a variety
of input problems. The timings (see Tables 3, 4 and 5) demonstrate good parallel
speedup. In Section 5 we give some details of our Cilk C implementation.
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2 Two algorithms of sparse multivariate Hensel lifting

Suppose we seek the factors of a multivariate polynomial a ∈ Z[x1, · · · , xn].
Similar to Wang’s multivariate Hensel lifting (MHL), a few preliminary steps
are done before sparse multivariate Hensel lifting [9]:

The first step is to compute and remove the content of a in a chosen main
variable, say x1. For example, let a =

∑d
i=0 ai(x2, · · · , xn)xi1. The content of a

is gcd(a0, · · · , ad), a polynomial with one fewer variables which can be factored
recursively. Let us assume this has already been done.

The second step is to identify any repeated factors in a by doing a square-
free factorization (see ch.8 in [4]). After this, we obtain the factorization a =
b1b

2
2 · · · bkk such that each factor bi is square-free and gcd(bi, bj) = 1 for i 6=

j. Suppose this has also been done and let a = f1f2 · · · fr be the irreducible
factorization of a over Z.

Next, an evaluation point α = (α2, · · · , αn) ∈ Zn−1 is chosen and then
a(x1, α) is factored over Z. The evaluation point α must satisfy the following
conditions: (i) L(α) 6= 0 where L is the leading coefficient of a in x1, (ii) a(x1, α)
must have no repeated factors in x1, and (iii) fi(x1, α) must be irreducible.
Conditions (i) and (ii) can be enforced in advance whereas (iii) can be ensured
with high probability by another evaluation point β to see whether the two
evaluations render the same degree patterns.

For simplicity, throughout this paper we only consider two irreducible factors
f and g both monic in x1. For multi-factor cases, we refer the reader to [9]. Let
a = fg where f and g are monic irreducible polynomials in Z[x1, · · · , xn]. We
define hj := h(x1, · · · , xj , αj+1, · · · , αn) for a polynomial h ∈ Z[x1, · · · , xn]. We
use the notation #h to be the number of non-zero terms of h. To factor a, the
image a1 is first factored over Z. From Hilbert’s irreducibility theorem (see e.g.
[7]), f(x1, α) and g(x1, α) are irreducible with high probability.

Now we start the process of sparse multivariate Hensel lifting to recover f and
g from a, f1, g1. The inputs are a, f1, g1, α and a prime p such that gcd(f1, g1) = 1
in Zp[x1]. The algorithm lifts (f1, g1) to (f2, g2), then lifts (f2, g2) to (f3, g3) etc.
until (fn, gn) is obtained. At each step, aj − fjgj mod p = 0 so that at the final
step, an−fngn mod p = 0. For sufficiently large p, the factorization a = fg over
Z is obtained.

2.1 MTSHL and CMSHL

The jth Hensel lifting step for both approaches of sparse multivariate Hensel
lifting in [8, 11] and [10] is presented. Our presentation includes worst case com-
plexity bounds for the main steps as an aid for the reader and for later reference.

The first approach (MTSHL [8, 11]) is presented in Algorithms 1 and 2. Al-
gorithm 2 is called from Algorithm 1 in a loop to solve the MDPs via sparse
interpolation. Note that in Algorithm 2, if max(ti) is much larger (or much
smaller) than max(si) then it will be faster to interpolate the smaller of σ and τ
only and obtain the larger of σ and τ using σu+ τw = c. The second approach
in [10] is shown in Algorithm 3.
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Algorithm 1 MTSHL: Hensel lift xj with MDPs via sparse interpolation.

1: Input: A prime p, αj ∈ Zp, aj ∈ Zp[x1, · · · , xj ] monic in x1, fj−1, gj−1 ∈
Zp[x1, · · · , xj−1] s.t. aj(x1, ..., xj−1, αj) = fj−1gj−1 with j > 2.

2: Output: fj , gj ∈ Zp[x1, · · · , xj ] s.t. aj = fjgj where fj(xj = αj) = fj−1 and
gj(xj =αj) = gj−1; Otherwise, return FAIL.

3: (σ0, τ0)← (fj−1, gj−1); (fj , gj)← (fj−1, gj−1).
4: error ← aj − fjgj ; monomial ← 1.
5: for i = 1, 2, · · · while error 6= 0 and deg(fj , xj) + deg(gj , xj) < deg(aj , xj) do
6: monomial ← monomial · (xj − αj).
7: ci ← coeff(error, (xj − αj)i).
8: if ci 6= 0 then
9: // Solve the MDP σigj−1 + τifj−1 = ci for σi, τi ∈ Zp[x1, · · · , xj−1].

10: σf ← σi−1; τf ← τi−1.
11: (σi, τi) ← SparseInterp(gj−1, fj−1, ci, σf , τf )
12: if (σi, τi) = FAIL then return FAIL(1) end if
13: (fj , gj) ← (fj + σi ·monomial, gj + τi ·monomial).
14: error← aj − fjgj .
15: end if
16: end for
17: if error = 0 then return (fj , gj) else return FAIL(2) end if

Algorithm 2 SparseInterp: solve an MDP using sparse interpolation.

1: Input: u,w, c, σf , τf ∈ Zp[x1, · · · , xj−1] where u,w are monic in x1.
2: Output: The solution (σ, τ) to the MDP σu+ τw = c ∈ Zp[x1, · · · , xj−1] or FAIL.
3: Let dσ = deg(σf , x1) and σ =

∑dσ
i=0 ζi(x2, · · · , xj−1)xi1 with ζi =

∑si
l=1 ailMil, and

let dτ = deg(τf , x1) and τ =
∑dτ
i=0 ηi(x2, · · · , xj−1)xi1 with ηi =

∑ti
l=1 bilNil, where

ail, bil are to be determined and xi1Mil, x
i
1Nil are monomials in σf , τf respectively.

4: Let s be the maximum of si and ti.
5: Pick (β2, · · · , βj−1) ∈ (Zp\{0})j−2 at random.
6: Compute monomial evaluations . . . . . . . . . . . . . . . . . . . O((j − 2))(#f + #g + dmax))
S = {Si = {mil = Mil(β2, · · · , βj−1) : 1 ≤ l ≤ si}, 0 ≤ i ≤ dσ} and
T = {Ti = {nil = Nil(β2, · · · , βj−1) : 1 ≤ l ≤ ti}, 0 ≤ i ≤ dτ}.

7: if any |Si| 6= si or |Ti| 6= ti then return FAIL(1) end if
8: for k from 1 to s in parallel do
9: Let Yk = (x2 = βk2 , · · · , xj−1 = βkj−1).

10: Evaluate u(x1, Yk), w(x1, Yk), c(x1, Yk). . . . . . . . . . . . . . . . . .O(s(#f + #g + #a))
11: if gcd(u(x1, Yk), w(x1, Yk)) 6= 1 then return FAIL(2) end if
12: Solve σk(x1)u(x1, Yk) + τk(x1)w(x1, Yk) = c(x1, Yk) ∈ Zp[x1]. . . . . . . . . .O(s d21)
13: end for
14: for i from 0 to dσ in parallel do
15: Construct and solve the si × si linear system for ail: . . . . . . . . . . . . . . . . . O(s#f){

si∑
l=1

ailm
k
il = coeff(σk(x1), xi1) for 1 ≤ k ≤ si

}
.

16: end for
17: Substitute the solution ail into σ.
18: Similarly, construct τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(s#g)
19: if σu+ τw = c then return (σ, τ) else return FAIL(3) // wrong σf or τf
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Algorithm 3 Hensel lift xj via bivariate Hensel lifting [10].

1: Input: A prime p, αj ∈ Zp, aj ∈ Zp[x1, · · · , xj ] monic in x1, fj−1, gj−1 ∈
Zp[x1, · · · , xj−1] s.t. aj(x1, ..., xj−1, αj) = fj−1gj−1 with j > 2.

2: Output: fj , gj ∈ Zp[x1, · · · , xj ] s.t. aj = fjgj where fj(xj = αj) = fj−1 and
gj(xj =αj) = gj−1; Otherwise, return FAIL.

3: Let fj =
∑dfj
h=0 σh(x1, ..., xj−1)(xj−αj)h with σh =

∑df
i=0

(∑si
l=1 chilMil

)
xi1, where

Milx
i
1 are monomials in σ0 = fj−1 and df = deg(fj−1, x1). dfj = deg(fj , xj) TBD.

Let gj =
∑dgj
h=0 τh(x1, ..., xj−1)(xj −αj)h with τh =

∑dg
i=0

(∑ti
l=1 dhilNil

)
xi1, where

Nilx
i
1 are monomials in τ0 = gj−1 and dg = deg(gj−1, x1). dgj = deg(gj , xj) TBD.

4: Pick (β2, · · · , βj−1) ∈ Zj−2
p at random.

5: Compute monomial evaluation sets . . . . . . . . . . . . . . . . .O((j − 2)(#f + #g + dmax))
S = {Si = {mil = Mil(β2, · · · , βj−1), 1 ≤ l ≤ si}, 0 ≤ i ≤ df − 1} and
T = {Ti = {nil = Nil(β2, · · · , βj−1), 1 ≤ l ≤ ti}, 0 ≤ i ≤ dg − 1}.

6: if any |Si| 6= si or any |Ti| 6= ti then return FAIL(1) end if
7: Let s be the maximum of si and ti.
8: for k from 1 to s in parallel do
9: Let Yk = (x2 = βk2 , · · · , xj−1 = βkj−1).

10: Ak, Fk, Gk ← aj(x1, Yk, xj), fj−1(x1, Yk), gj−1(x1, Yk). . .O(s(#f + #g + #a))
11: if gcd(Fk, Gk) 6= 1 then return FAIL(2) end if // unlucky evalution
12: Call BivariateHenselLift(Ak, Fk, Gk, αj , p) to compute σhk(x1) and τhk(x1) s.t.

Ak = fkgk where fk =
∑dfj
h=0 σhk(xj − αj)h and gk =

∑dgj
h=0 τhk(xj − αj)h.

13: end for
14: for h from 1 to dfj do
15: for i from 0 to df do
16: Construct and solve the si × si linear system for chil . . . . . . . . . . . .O(sdj#f){

si∑
l=1

chilm
k
il = coeff(σhk(x1), xi1) for 1 ≤ k ≤ si

}

17: end for
18: end for
19: Substitute the solution chil into σh and expand to get fj . . . . . . . . . . . . . .O(d2j#f)
20: Similarly to construct gj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(sdj#g)
21: if aj = fjgj then return (fj , gj) else return FAIL(3) end if

2.2 Intermediate expression swell

In Algorithm 1, an expression swell may occur in line 13 and 14. In Algorithm 3
an expression swell may occur at the final expansion step (line 19). To illustrate
the expression swell, we consider the partial sums of fj . Let

f
(i)
j =

i∑

k=0

σk(x1, · · · , xj−1)(xj − αj)k for 0 ≤ i ≤ dj , and

f
(i)
jH = (((σdj (xj − αj) + σdj−1)(xj − αj) + · · · )(xj − αj)) + σdj−i
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

#σi 925 737 584 459 352 268 196 134 94 64 48 24 13 7 3

#f
(i)
j 925 1512 1851 1999 2021 1934 1768 1628 1486 1411 1226 1130 1071 1028 989

#f
(i)
jH 3 10 23 47 95 159 253 387 583 851 1203 1662 2246 2983 989

Table 1. Number of terms in f
(i)
j and f

(i)
jH with a randomly generated polynomial.

i 0 1 2 3 4

#σi 7 7 7 7 7

#f
(i)
j 7 14 21 28 7

#f
(i)
jH 7 14 21 28 7

Table 2. Number of terms in f
(i)
j and f

(i)
jH in a worst case.

where f
(i)
jH is the expansion in Horner’s form and dj = deg(fj , xj). f

(i)
j and f

(i)
jH

correspond to the intermediate steps in line 13 of Algorithm 1 and in line 19 of

Algorithm 3 respectively. We are interested in #f
(i)
j and #f

(i)
jH for 0 ≤ i ≤ dj .

Table 1 shows an example of a randomly generated polynomial with p =
231 − 1, j = 5, dj = 14, d = 20 and #fj = 989. The density ratio #fj/

(
d+j
j

)
≈

0.0186. The ratios max(#f
(i)
j )/#fj and max(#f

(i)
jH)/#fj are 2.043 and 3.016

respectively. This example shows a typical trend in an average case where

max(#f
(i)
j )/#fj / 1 + d/j [11]. We observe that #σi decreases as i increases

from 0 to dj . #f
(i)
j increases to a peak in the first few expansions and gradually

shrinks back to #fj . #f
(i)
jH increases to a higher peak than max(#f

(i)
j ) and drops

down to #fj at the last iteration.

The following example illustrates the worst case where #f
(i)
j increases lin-

early to its maximum, dj#fj .

fj = (31x3 + 100x2
3 + (49 + 36x2

2 + (x4
1 + 44x2

1 + 28)x3
2)x3

3)x4
4,

with p = 101, j = 4 and #fj = 7. Table 2 shows the number of terms in f
(i)
j .

max(#f
(i)
j ) equals to dj#fj . This is because

σi =
1

i!

∂(i)fj
∂xij

(xj = αj) for 0 ≤ i ≤ dj

and in this example fj only contains the terms with x
dj
j . In this case, #σi is

never reduced as i increases from 0 to dj and we have max(#f
(i)
j )/#fj = dj .

2.3 Our new algorithm: CMSHL

We present a new approach which eliminates the expression swell in Algorithm
3. The idea is depicted in Fig. 1. Consider one of the factors fj at the jth Hensel
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fj(x1, xj) =
∑dfj

i=0 σi(x1)(xj − αj)
i

∑dfj
i=0 σ̄i(x1)x

i
j

fj(x1, · · · , xj) =
∑dfj

i=0 σi(x1, · · · , xj−1)(xj − αj)
i ∑dfj

i=0 σ̄i(x1, · · · , xj−1)x
i
j

Sparse Interpolation Sparse Interpolation

expansion

Fig. 1. Dashed arrows: Algorithm 3 [10], expression swell occurs at the expansion step.
Lined arrows: CMSHL (Algorithm 4).

lifting step:

fj(x1, · · · , xj) =

dfj∑

i=0

σi(x1, · · · , xj−1)(xj − αj)i =

dfj∑

i=0

σ̄i(x1, · · · , xj−1)xij , (1)

where dfj = deg(fj , xj). There are two routes to recover σ̄i(x1, · · · , xj−1) in (1)
from its bivariate image fj(x1, xj). One route is to first recover σi(x1, · · · , xj−1)
from σi(x1) using sparse interpolation and then expand to get σ̄i(x1, · · · , xj−1)
in (1) (through the dashed arrows in Fig. 1). This has been done previously in
[10]. In our new algorithm (CMSHL), bivariate images are expanded first and
then the coefficients σ̄i(x1, · · · , xj−1) are recovered directly from σ̄i(x1) to get
the final expanded form. This is through the lined arrows in Fig. 1. Multivariate
polynomial expansions are avoided where expression swells can occur.

Our solution is presented in Algorithm 4 (CMSHL). CMSHL also has a sig-
nificant advantage for parallelization, however, it only uses the weak SHL as-
sumption (defined in Section 3.2) during a sparse interpolation. It can not use
the strong SHL assumption (defined in Section 3.1) as in MTSHL to reduce the
number of terms in a loop for a typical average case.

3 Complexity Analyses

For both MTSHL and CMSHL, the number of arithmetic operations in Zp are
bounded for the worst-case, along with the failure probabilities. We first need
the Schwartz-Zippel Lemma [19, 16]:

Lemma 1. Let F be a field and f 6= 0 be a polynomial in F [x1, x2, · · · , xn] with
total degree d and let S ⊆ F . Then the number of roots of f in Sn is at most
d|S|n−1. Hence if β is chosen at random from Sn then Pr[f(β) = 0] ≤ d

|S| .

3.1 MTSHL

MTSHL uses the strong SHL assumption to solve the multivariate Diophantine
equations (MDPs) in a loop. The following lemma was proved in [8]:
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Algorithm 4 CMSHL: Hensel lifting xj via bivariate Hensel lifting.

1: Input: A prime p, αj ∈ Zp, aj ∈ Zp[x1, · · · , xj ] monic in x1, fj−1, gj−1 ∈
Zp[x1, · · · , xj−1] s.t. aj(x1, ..., xj−1, αj) = fj−1gj−1 with j > 2.

2: Output: fj , gj ∈ Zp[x1, · · · , xj ] s.t. aj = fjgj where fj(xj = αj) = fj−1 and
gj(xj =αj) = gj−1; Otherwise, return FAIL.

3: Let fj−1 = xdf1 +
∑df−1
i=0 σi(x2, ..., xj−1)xi1, σi =

∑si
k=1 cikMik

and gj−1 = xdg1 +
∑dg−1
i=0 τi(x2, ..., xj−1)xi1, τi =

∑ti
k=1 dikNik, where Mik,Nik are

the monomials in σi, τi respecitvely.
4: Pick (β2, · · · , βj−1) ∈ Zj−2

p at random.
5: Compute monomial evaluation sets . . . . . . . . . . . . . . . . .O((j − 2)(#f + #g + dmax))
S = {Si = {mik = Mik(β2, · · · , βj−1), 1 ≤ k ≤ si}, 0 ≤ i ≤ df − 1} and
T = {Ti = {nik = Nik(β2, · · · , βj−1), 1 ≤ k ≤ ti}, 0 ≤ i ≤ dg − 1}.

6: if any |Si| 6= si or any |Ti| 6= ti then return FAIL(1) end if
7: Let s be the maximum of si and ti.
8: for k from 1 to s in parallel do
9: Let Yk = (x2 = βk2 , · · · , xj−1 = βkj−1).

10: Ak, Fk, Gk ← aj(x1, Yk, xj), fj−1(x1, Yk), gj−1(x1, Yk). . .O(s(#f + #g + #a))
11: if gcd(Fk, Gk) 6= 1 then return FAIL(2) end if // unlucky evalution
12: fk, gk ← BivariateHenselLift(Ak, Fk, Gk, αj , p). . . . . . . . . . . . .O(s(d21dj + d1d

2
j ))

13: end for
14: Let fk = xdf1 +

∑µ
l=1 αklM̃l(x1, xj) for 1 ≤ k ≤ s, where µ ≤ d1dj .

15: for l from 1 to µ in parallel do
16: i← deg(M̃l, x1).
17: Solve the si × si linear system for clk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(sdj#f){

si∑
k=1

mn
ikclk = αnl for 1 ≤ n ≤ si

}

18: end for
19: Construct fj ← xdf1 +

∑µ
l=1

(∑si
k=1 clkMik(x2, ..., xj−1)

)
M̃l(x1, xj).

20: Similarly, construct gj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(sdj#g)
21: if aj = fjgj then return (fj , gj) else return FAIL(3) end if

Lemma 2. Let f ∈ Zp[x1, · · · , xn] and let α be a randomly chosen element in

Zp. Let f =
∑dn
i=0 σi(x1, · · · , xn−1)(xn − α)i where dn = deg(f, xn). Then,

Pr[Supp(σi+1) * Supp(σi)] ≤ |Supp(σi+1)| dn − i
p− dn + i+ 1

for 0 ≤ i < dn.

The assumption that Supp(σi) ⊆ Supp(σi−1) for 1 ≤ i ≤ dn is called the
strong SHL assumption in [8, 11]. In Section 3.2 our new algorithm will as-
sume Supp(σi) ⊆ Supp(σ0) for 1 ≤ i ≤ dn. This assumption is called the weak
SHL assumption in [8, 11].

Step 11 of Algorithm 1 applies the strong SHL assumption by using Supp(σf ) =
Supp(σi−1) and Supp(τf ) = Supp(τi−1) as the supports for σi and τi. There-
fore we only solve systems of linear equations for the coefficients. This is the
key feature to solve the MDPs via Algorithm 2, which we shall analyze in the
following.
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3.1.1 The failure probability of the MDPs

There are two places where Algorithm 2 can return FAIL intermediately: line 7
and line 11. The failuare probabilities are bounded as follows. Proofs follow [11].

Proposition 1. Let p be a large prime, d = deg(a) and s be the number de-
fined in line 4 of Algorithm 2. When Algorithm 1 calls Algorithm 2 with in-
puts (u,w, c, σf , τf ) = (gj−1,fj−1,ci,σi−1,τi−1), if Supp(σi) ⊆ Supp(σi−1) and
Supp(τi) ⊆ Supp(τi−1), for i = 1, 2, 3, · · · , then Algorithm 2 fails to compute
(σi, τi) for the MDP σigj−1 + τifj−1 = ci with a probability less than

d s(#fj−1 + #gj−1)

2(p− 1)︸ ︷︷ ︸
line 7

+
d2s2

p− 1︸ ︷︷ ︸
line 11

. (2)

Proof. For line 7, let ∆i =
∏

1≤l<k≤si(Mil−Mik), where Mil,Mik are monomials

in S defined in line 6. Let ∆ =
∏dσ
i=0∆i. Then ∆(β2, . . . , βj−1) = 0 implies

∆i(β2, . . . , βj−1) = 0 for some i so that not all monomial evaluations are distinct.
Also, deg(Mil) < d for each monomial in S. Thus,

deg(∆) <

dσ∑

i=0

d

(
si
2

)
≤ d s

2

dσ∑

i=0

(si − 1) <
ds#fj−1

2
.

By Lemma 1,

Pr[∆(β2, · · · , βj−1) = 0] ≤ deg(∆)

p− 1
<
ds#fj−1

2(p− 1)
.

Similarly, the monomial evaluations for τ are considered.
To solve the Diophantine equation in line 12, we need

gcd(u(x1, Yk), w(x1, Yk)) = gcd(gj−1(x1, Yk), fj−1(x1, Yk)) = 1.

Let R = res(gj−1, fj−1, x1) ∈ Zp[x2, · · · , xj−1]. Since fj−1 and gj−1 are monic
in x1, the univariate Diophantine solver returns FAIL if

gcd(gj−1(x1, Yk), fj−1(x1, Yk)) 6= 1 ⇐⇒ R(Yk) = 0.

Let S =
∏s
k=1R(xk2 , x

k
3 , · · · , xkj−1). Since deg(fj−1) < d and deg(gj−1) < d,

deg(R) < d2 and

deg(S) =

s∑

k=1

k deg(R) <

s∑

k=1

kd2 =
d2s(s+ 1)

2
.

By Lemma 1,

Pr[R(Yk) = 0 for some k] = Pr[S(β2, · · · , βj−1) = 0] ≤ deg(S)

p− 1
<

d2s2

p− 1
.

Adding the failure probabilities at line 7 and 11, we obtain the result. �
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At the end of Algorithm 2, σu+τw = c can be checked probabilistically with
a single evaluation point. If Algorithm 2 returns FAIL at line 19, the support in
either σ or τ was wrong (strong SHL assumption fails). By Lemma 2, Algorithm 1
fails at the jth Hensel lifting step due to a wrong support in σi with a probability
no more than

dj−1∑

i=0

|supp(σi+1)| dj − i
p− dj + i+ 1

≤ #fj−1

dj−1∑

i=0

dj − i
p− dj + i+ 1

<
dj(dj + 1)#fj−1

2(p− dj + 1)
,

where dj = deg(aj , xj).
Note that the number s in Proposition 1 varies since MDPs are called in a

loop from Algorithm 1. We denote sj,i as the maximum number of monomials
in the coefficients of σi−1 and τi−1 in x1 for the ith call of the MDP in the jth

Hensel lifting step. Let sj = maxi(sj,i) and Tfgj−1
= max(#fj−1,#gj−1). We

have dj ≤ d. Adding up the failure probabilities at line 7, 11 and 19, we obtain
the failure probability at the jth Hensel lifting step:

Proposition 2. Let p be a large prime, d = deg(a), sj = maxi(sj,i) and Tfgj−1
=

max(#fj−1,#gj−1). Algorithm 1 (MTSHL) fails to compute fj, gj from fj−1,
gj−1 at the jth Hensel lifting step (j > 2) via Algorithm 2 with a probability less
than

d2sj(Tfgj−1
+ d sj) + d2Tfgj−1

+ dTfgj−1

p− d+ 1
. (3)

For the whole MTSHL process (for 2 ≤ j ≤ n), we have #fj−1 ≤ #f ,
#gj−1 ≤ #g.

Proposition 3. Let p be a large prime, n be the number of variables in a, d =
deg(a), smax = max(sj) and Tfg = max(#f,#g). MTSHL (the jth Hensel lifting
step as in Algorithm 1) fails to solve the MDP via sparse interpolation (Algorithm
2) with a probability less than

(n− 2)
(
d2smax(Tfg + d smax) + d2Tfg + dTfg

)

p− d+ 1
. (4)

We illustrate the probability in Proposition 3 for a typical large factorization
problem. Let n = 10, d = 102, Tfg = 104 and smax = 102. If p is a 64-bit prime
≈ 1.8× 1019, then MTSHL fails with probability less than 8.72× 10−9. Thus for
p sufficiently large, the failure probability is low.

3.1.2 The complexity of the MDP
After discussing the failure probabilities, it remains to bound the number of
arithmetic operations in Zp. We have the complexity of the MDP as follows:
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Theorem 1. Let p be a large prime, s be the number defined in line 4 of Algo-
rithm 2, d1 = deg(a, x1) and aj (j > 2) be monic in x1. When Algorithm 1 calls
Algorithm 2, if the strong SHL assumption holds, then with a failure probability
less than in (2), the number of arithmetic operations in Zp for solving the MDP
σigj−1 + τifj−1 = ci for i = 1, 2, · · · in the worst case is

O(s(#aj + d2
1)). (5)

Proof. Appendix A.

3.1.3 The complexity of MTSHL
Now we return to the analysis of Algorithm 1 – Hensel lifting xj with multivariate
Diophantine equations. One bottleneck of Algorithm 1 is the error computation
step at line 14. There is an expression swell of fj and gj at line 13 of up to a
factor of dj = deg(a, xj). We have the complexity at the jth Hensel lifting step:

Theorem 2. Let p be a large prime, d1 = deg(a, x1), dj = deg(a, xj) and sj =
maxi sj,i. With a failure probability less than in (3), the number of arithmetic
operations in Zp for the jth Hensel lifting step (via Algorithm 1) in the worst
case is

O(d2
j#aj︸ ︷︷ ︸

line 7,13

+ djsj(#aj + d2
1)︸ ︷︷ ︸

MDP

+ d3
j#fj−1#gj−1︸ ︷︷ ︸

error comp.

). (6)

Proof. To compute coeff(error, (xj−αj)i) in step 7, using repeated differentiation
and evaluation costs O(i#error). The total cost is O(d2

j#aj).

The total cost of sparse interpolation in step 11 is O(djsj(#aj + d2
1)), from

Theorem 1.
The total cost of adding the factors in step 13 isO

(∑dj
i=1 i(#fj−1 + #gj−1)

)
,

which is O(d2
j (#fj−1 + #gj−1)).

The total cost of error computation in step 14 is O
(∑dj

k=1 #f
(k)
j #g

(k)
j

)
=

O
(∑dj

i=1(i#fj−1)(i#gj−1)
)
⊆ O(d3

j#fj−1#gj−1).

We assume #fj−1 ≤ #aj , #gj−1 ≤ #aj , the total cost for Algorithm 1 is

O(d2
j#aj︸ ︷︷ ︸

line 7,13

+ djsj(#aj + d2
1)︸ ︷︷ ︸

MDP

+ d3
j#fj−1#gj−1︸ ︷︷ ︸

error comp.

). �

In Theorem 2, the expression swell appears as the factor of d2
j . On average the

expression swell is much less. For sparse factors, we know that #fj−1 / #fj for
n/2 ≤ j ≤ n [11]. The complexity of the whole MTSHL process is given in the
following:

Theorem 3. Let p be a large prime, a ∈ Zp[x1, · · · , xn] monic in x1, α =
(α2, · · · , αn) ∈ Zpn−1 be a random evaluation point. Assume gcd(f1, g1) = 1.
Then with a failure probability less than in (4), the total number of arithmetic
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operations in Zp for lifting f1,g1 to fn,gn in n−1 steps using MTSHL (Algorithm
1) in the worst case is

O(d2
1d2 + d1d

2
2︸ ︷︷ ︸

first BHL

+(n− 2)(d2
max#a+ smaxdmax(#a+ d2

1) + d3
max#f#g︸ ︷︷ ︸

MTSHL

)). (7)

where di = deg(a, xi) for 1 ≤ i ≤ n, dmax = maxni=3(di) and smax = max(sj).

3.2 CMSHL

In Algorithm CMSHL, the weak SHL assumption is used instead of the strong
SHL assumption. Similar to Lemma 2, we have the following (proof follows [8]):

Lemma 3. Let f ∈ Zp[x1, · · · , xn] and let α be a randomly chosen element in

Zp. Let f =
∑dn
i=0 σi(x1, · · · , xn−1)(xn − α)i where dn = deg(f, xn). Then,

Pr[Supp(σi) * Supp(σ0)] ≤ |Supp(σi)|
dn

p− dn + i
for 1 ≤ i ≤ dn.

The assumption that Supp(σi) ⊆ Supp(σ0) for 1 ≤ i ≤ dn is called the weak
SHL assumption.

3.2.1 The failure probability of CMSHL
For the jth Hensel lifting step, by Lemma 3, the failure probability due to a
wrong support in either fj or gj (Algorithm 4 fails at line 21) is bounded by

(#fj−1 + #gj−1)

dj∑

i=1

dj
p− dj + i

≤
d2
j (#fj−1 + #gj−1)

p− dj + 1
.

The number s defined in line 7 of Algorithm 4 is equivalent to sj = max(sj,i)
in MTSHL. We denote sj as the number s in line 7 of Algorithm 4 at the jth

Hensel lifting step. Identical to MTSHL (Proposition 2), the failure probabilities
at line 6 and 11 are

d sj(#fj−1 + #gj−1)

2(p− 1)︸ ︷︷ ︸
line 6

+
d2s2

j

p− 1︸ ︷︷ ︸
line 11

.

Adding the failure probabilities at line 6, 11 and 21, we have the failure
probability at the jth Hensel lifting step for Algorithm 4 (CMSHL):

Proposition 4. Let p be a large prime, d = deg(a), Tfgj−1
= max(#fj−1,#gj−1)

and sj be the number s defined in line 7 of Algorithm 4 at the jth Hensel lifting
step. Then Algorithm 4 fails to compute fj,gj from fj−1,gj−1 at the jth Hensel
lifting step (j > 2) with a probability less than

d sj(Tfgj−1
+ d sj) + 2d2Tfgj−1

p− d+ 1
. (8)
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3.2.2 The complexity of CMSHL

Theorem 4. Let p be a large prime, d1 = deg(a, x1), dj = deg(a, xj) and sj
be the number s defined in line 7 of Algorithm 4 for the jth Hensel lifting step.
With a failure probability less than in (8), the number of arithmetic operations
in Zp for the jth Hensel lifting step (via Algorithm 4) in the worst case is

O(djsj(#fj−1 + #gj−1 + d2
1 + d1dj) + sj#aj). (9)

Proof. Appendix B.

For the whole process of CMSHL (for 2 ≤ j ≤ n), we have the following:

Theorem 5. Let p be a large prime, a ∈ Zp[x1, · · · , xn] monic in x1, α =
(α2, · · · , αn) be a randomly chosen evaluation point from Zn−1

p , f , g be the monic
irreducible factors of a, f1 = f(x1, α), g1 = g(x1, α) be the image polynomials
with gcd(f1, g1) = 1. With a failure probability less than

(n− 2)(d smax(Tfg + d smax) + 2d2Tfg)

p− d+ 1
, (10)

the number of arithmetic operations in Zp for lifting f1,g1 to fn,gn in n−1 steps
using CMSHL (Algorithm 4) in the worst case is

O(d2
1d2 + d1d

2
2︸ ︷︷ ︸

first BHL

+(n− 2) (smaxdmax(#f + #g + d2
1 + d1dmax) + smax#a)︸ ︷︷ ︸

CMSHL

), (11)

where d = deg(a), di = deg(a, xi) for 1 ≤ i ≤ n, dmax = maxni=3(di), smax =
max(sj) and Tfg = max(#f,#g).

4 Experimental Results

We have implemented our factorization algorithm in the C programming lan-
guage and parallelized parts of it for multi-core computers using Cilk C [2]. Cilk
uses the fork-join idiom for parallel programming. Our Cilk C software if freely
available on the web at http://www.cecm.sfu.ca/CAG/code/CASC2020

Following the recommendation in [11] we interpolate f(x1, . . . , xj) (using
sparse interpolation) from trivariate images f(x1, x2, β

i, xj) instead of from bi-
variate images f(x1, β

i, xj). To obtain a trivariate image we interpolate x2 using
dense interpolation from bivariate images f(x1, γk, β

i, xj) which we obtain using
bivariate Hensel lifting. Although this increases the cost of computing images
by a factor of deg(f, x2), using trivariate images typically reduces sj in equation
(9) which speeds up all other parts of our algorithm. We refer the reader to [11]
for an analysis of the expected reduction in sj .

We give three sets of timings for our factorization code. The first set (see
Table 3) is for factors with a low degree of 7 and an increasing number of terms
t (#f = #g = t). For this case evaluating a(x1, x2, β

i, xj) is the bottleneck of
our algorithm. The second set (see Table 4) is for factors with a fixed number
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New times (1 core) New times (16 cores) Maple Maple Magma
n d t s f × g total hensel eval total hensel eval 2019 2017 V2.25-5

6 7 500 17 0.025 0.084 0.012 0.029 0.081 0.016 0.007 1.897 33.77 43.21
6 7 1000 30 0.107 0.340 0.021 0.170 0.169 0.028 0.027 4.540 95.48 50.38
6 7 2000 47 0.451 1.199 0.033 0.768 0.321 0.044 0.114 97.21 186.7 195.6
6 7 4000 81 1.932 3.583 0.055 2.632 0.543 0.065 0.281 139.4 325.4 777.0
6 7 8000 144 8.249 8.778 0.101 7.107 1.248 0.125 0.830 201.1 470.5 1958.0

9 7 500 14 0.025 0.119 0.013 0.031 0.094 0.013 0.005 4.699 2794.2 849.2
9 7 1000 28 0.108 0.493 0.021 0.204 0.232 0.066 0.031 15.57 16094 915.8
9 7 2000 50 0.449 2.169 0.034 1.313 0.433 0.042 0.160 3597.7 >32GB 9082.8
9 7 4000 99 1.963 13.94 0.067 10.47 1.570 0.076 0.816 >32GB NA 15444
9 7 8000 178 8.244 88.39 0.121 74.14 8.313 0.138 5.575 NA NA >32GB

Table 3. Real timings in CPU seconds for low degree d and increasing terms t.

of terms and an increasing degree d. For these problems Hensel lifting becomes
the bottleneck. To address this we use Monagan’s O(d3) method [13] for Hensel
lifting in Zp[x, y]. The third set (see Table 5) is for polynomials where the fac-
tor f has a lot more terms than g. For these problems evaluation and solving
Vandermonde systems are the bottlenecks. To solve the Vandermonde systems
we use Zippel’s linear space quadratic time method in [21].

All experiments were performed on a server with two Intel E5-2660 8 core
CPUs running at 2.2GHz (base) and 3.0GHz (turbo) hence the maximum theo-
retical parallel speedup is a factor of 16× 2.2/3.0 = 11.7.

In Tables 3, 4 and 5 the factors f and g are of the form xd1+
∑t−1
i=2 ai

∏n
j=1 x

eji
j

with coefficients ai chosen randomly from [1, 999] and exponents eji chosen ran-
domly from [0, d− 1]. The time in column f × g is the time our C code takes to
multiply a = f × g using an algorithm with complexity O(#f #g + #a log #a).

Because the factors are monic and have many terms, almost all of the fac-
torization time is in multivariate Hensel lifting. The timings for our algorithm
are for Hensel lifting xn the last variable only, which is most of the time. The
quantity s in column 4 is the number of images needed to interpolate x3, . . . , xn.

For Maple we report timings for Maple 2017 and Maple 2019. Maple 2017
and Magma 2.25-5 are both using Wang’s organization of MHL as described
in Chapter 6 of [4]. Maple 2019 is using Monagan and Tuncer’s sparse Hensel
lifting from [8, 11]. These algorithms do many computations with multivariate
polynomials in Zp[x1, . . . , xj ] including many multiplications and divisions. In
contrast, our algorithm does no arithmetic with multivariate polynomials.

In Tables 3, 4 and 5 we report the total time of our new algorithm and the
time taken in three of the main steps, namely (i) evaluating a(x1, x2, β

i, xn) for
1 ≤ i ≤ d for β ∈ Zpn−3, (ii) the time in bivariate Hensel lifting, and, for Table
5, (iii) the time solving the Vandermonde systems. Timings are given for our
Cilk C code for 1 core and 16 cores.
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New times (1 core) New times (16 cores) Maple Maple Magma
n d t s f × g total hensel eval total hensel eval 2019 2017 v2.25-5

6 10 500 10 0.026 0.079 0.022 0.017 0.069 0.020 0.004 3.068 466.8 134.7
6 15 500 6 0.025 0.101 0.051 0.011 0.094 0.036 0.004 8.206 11002 610.1
6 20 500 5 0.025 0.168 0.117 0.012 0.101 0.036 0.004 18.77 51325 27317.
6 40 500 3 0.025 0.669 0.617 0.011 0.272 0.205 0.008 148.7 NA 29.04
6 60 500 3 0.025 2.083 2.025 0.014 0.583 0.519 0.010 545.2 NA 371.4
6 80 500 3 0.025 5.644 5.586 0.014 0.950 0.892 0.010 1210.9 NA 1242.1
6 100 500 2 0.025 7.740 7.687 0.008 1.375 1.303 0.008 NA NA NA

6 10 2000 30 0.455 1.434 0.070 0.737 0.258 0.043 0.056 675.11 1889.3 908.0
6 15 2000 18 0.455 1.327 0.168 0.488 0.341 0.100 0.060 3905.7 63082 9317.1
6 20 2000 12 0.455 1.336 0.329 0.332 0.335 0.136 0.042 4677.2 > 105 17339
6 40 2000 6 0.455 2.853 1.999 0.183 0.686 0.472 0.038 >32GB NA > 105

6 60 2000 6 0.455 8.940 8.071 0.203 1.313 1.106 0.052 NA NA NA
6 80 2000 4 0.455 15.17 14.34 0.158 2.565 2.279 0.084 NA NA NA
6 100 2000 3 0.455 21.77 20.92 0.173 2.644 2.357 0.086 NA NA NA

Table 4. Real timings in CPU seconds for increasing degree d and fixed t.

n d t #g s f × g total hensel eval solve total hensel eval solve

9 7 10000 20 212 0.043 0.871 0.156 0.340 0.287 0.350 0.155 0.060 0.039
9 7 20000 20 409 0.076 2.641 0.254 1.107 1.108 0.663 0.256 0.122 0.096
9 7 40000 20 789 0.135 9.465 0.475 4.243 4.175 1.917 0.477 0.480 0.361
9 7 80000 20 1503 0.258 34.16 0.920 15.68 16.33 4.782 0.913 1.362 1.373
9 7 160000 20 2984 0.499 132.3 1.791 62.13 64.37 13.67 1.844 5.586 5.244
Table 5. Real timings in CPU seconds for increasing #f = t and #g = 20.

Tables 3, 4 and 5 show we achieve good parallel speedup for evaluations
a(x1, x2, β

i, xn). Table 4 shows that for higher degree polynomials the Hensel
lifting dominates. To obtain the parallel speedups for the Hensel lifting in Table
4 we parallelize the evaluations of a(x1, x2, β

i, xn) at x2 = γk for different k as
well as the bivariate Hensel Lifts in Zp[x1, xn].

Table 5 shows that when one factor is much larger than the other, the time
solving Vandermonde systems becomes significant. The solving time is not re-
ported in Tables 3 and 4 because it is insignificant.

The timings in Tables 3, 4, and 5 agree with our analysis for CMSHL in
Theorem 4. In Table 3, for example, when n = 9 and t increases from 2000 to
4000, #aj is quadrupled and sj is doubled, we see the evaluation time for 1 core
increases by a factor of 10.47/1.313 = 7.97 ≈ 8. This agrees with the term sj#aj
in (9). In Table 4, when t = 2000 and d increases from 60 to 100, we expect the
time for Hensel lifting at d = 100 to be 1

2 (100/60)3 · 8.071 = 18.68 which is
close to the result 20.92. In Table 5, when t and s are doubled, both timings for
evaluations and solving Vandermonde systems are quadrupled as expected.
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5 Implementation Notes

To store the multivariate polynomial a =
∑t
i=1 aiMi(x1, . . . , xn) we encode the

monomials Mi in 64 bit integers mi. We store a as the triple (A,X, t) where

A = a1 a2 . . . at and X = m1 m2 . . . mt

are stored as arrays. Although monomial packing limits the degree and number
of variables that our software can handle it improves code performance.

One of the advantages of our algorithm is that there are no multivariate
polynomial multiplications and divisions. The most time consuming operation is
evaluation which is linear in the number of terms. We compute a(x1, x2, β

i, xn)
for β ∈ Zn−3

p for 1 ≤ i ≤ s. We have parallelized these evaluations. We parallelize

each evaluation a(x1, x2, β
i, xn) in blocks and do two evaluations at a time.

We also execute the bivariate Hensel lifts in parallel and we solve the Vander-
monde linear systems in parallel. To avoid memory bottlenecks, we use in-place
algorithms for all parallel tasks. A routine is in-place if it, and all the subroutines
it calls, allocate no memory. They work in the memory of the input and output.
This means that our Cilk tasks are not simultaneously trying to allocate and
de-allocate memory. We give an example of an in-place algorithm.

The following conversion occurs at the end of bivariate Hensel lifting. We
have polynomials a0(x), a1(x), . . . , ad(x) in Zp[x], a non-zero element α ∈ Zp,
and we want to expand the bivariate polynomial

f(x, y) =

d∑

i=0

ai(x)(y − α)i

that is, we want to compute new polynomials āi ∈ Zp[x] such that f(x, y) =∑d
i=0 āi(x)yi in Zp[x, y]. One way to expand f(x, y) is to use Horner’s rule

f(x, y) = a0(x) + (y − α) [a1(x) + (y − α) [a2(x) + · · ·+ (y − α)ad(x) . . . ]] .

Coding this in Maple or Magma will cause 2d pieces of memory to be allocated
for the intermediate products and sums. To code this in C we have to handle
the memory explicitly. How we do this depends the data structure we use for
storing polynomials in Zp[x, y].

Let f ∈ Zp[x, y], dx = deg(f, x), dy = deg(f, y) and di = deg(f, xi). We store
f as a pair (D,A) where D is an array of integers storing the degree information
[dy, d0, d1, . . . , ddy] and A is an array of arrays storing [a0(x), a1(x), . . . , ad(x)].
To do the conversion we use this version of Horner’s rule

for i = d− 1, d− 2, . . . , 0 do
for j = i, i+ 1, . . . , d− 1 do

aj(x) := aj(x)− α aj+1(x).

To implement this in-place we use the inplace routine polsubmul(a, da, b, db, α, p)
from our Zp[x] library which computes a(x) := a(x)−α b(x) in the memory of a
and returns the degree of the result. polsubmul assumes the size of the array a
is big enough to hold b. Assuming each array Ai has space for 1 +dx coefficients
in Zp, we can do the conversion in the memory of (D,A) with
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for( i=D[0]-1; i>=0; i-- )

for( j=i; j<d; j++ )

D[j+1] = polsubmul(A[j],D[j],A[j+1],D[j+1],alpha,p);

We have coded every subroutine in our bivariate Hensel lift to run in-place so
that our bivariate Hensel lift can also be made in-place. To do this we first coded
a library of in-place routines for arithmetic in Zp[x]. In this way, when we run the
bivariate Hensel lifts in parallel, they all run in their own pre-allocated memory.

6 Conclusion

Algorithm 1 is the basis for several polynomial factorization algorithms, includ-
ing Wang’s method from [17] which is used in most computer algebra systems
today, and Monagan and Tuncer’s method [8, 11] which is now used in Maple.
In this work we observed an expression swell in Algorithm 1 that is linear in
the worst case. We presented a new sparse Hensel lifting algorithm CMSHL that
avoids the expression swell. CMSHL, which is based on the method in [10], is
suited to parallelization because it reduces multivariate polynomial factorization
to many polynomial evaluations, many bivariate Hensel lifts, and solving many
Vandermonde systems.

Our Cilk C implementation of CMSHL shows good parallel speedup for these
three steps. The code is also much faster than the Maple and Magma factoriza-
tion algorithms for the large factorization problems we tested, mainly because it
does not do any multivariate polynomial arithmetic. We have also given a worst
case complexity analysis for CMSHL and have determined its failure probability.
For factors with many terms and not too high degree, as in Table 3, our experi-
ments show that evaluation is the bottleneck. This agrees with the term sj#aj
in equation (9) in our complexity analysis. Thus further improvement will need
to consider these evaluations.

For future work, we would like to use CMSHL to factor polynomials repre-
sented by black boxes in the spirit of Kaltofen and Trager [6].

Appendix A Proof of Theorem 1

We bound the total number of arithmetic operations in Zp for the worst case in

Algorithm 2. Let s be the number defined in line 4, dmax = maxj−1
i=2 deg(a, xi)

and dfmax = maxj−1
i=2 deg(f, xi).

For step 6, one way to evaluate the monomials is to create a table of powers
for each variable x2, · · · , xj−1, as shown in Fig. 2. It takes

∑j−1
i=2 (dσfi − 1) ≤

(j−2)(dfmax−1) multiplications to compute the table, where dσfi = deg(σf , xi).

After creating the table, it takes O
(

(j − 3)
∑dσ
i=0 si

)
= O((j − 3)#σf ) multi-

plications to evaluate monomials in S. Similarly for the evaluations in T . Thus,
the total cost is O((j − 2)(#σf + #τf + dmax)).
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Fig. 2. Evaluation table for variables x2, · · · , xj−1.

In step 7, it costs O
(∑dσ

i=0 si log(si) +
∑dτ
i=0 ti log(ti)

)
number of compar-

isons to sort the monomial evaluations and search for identical values along the
sorted arrays. This is O(log(s)(#σf + #τf )).

For step 10, monomial evaluations and its coefficients are stored in two ar-
rays, say M and C. At the first iteration, each entry in M is squared and
then multiplied by the corresponding coefficient in C to compute the sum.
Each iteration costs 3(#u + #w + #c) arithmetic operations. The total cost
is O(s(#fj−1 + #gj−1 + #aj)).

In step 12, each univariate Diophantine solver costs O(d2
1).

In step 14 to 16, the Vandermonde solver costs
∑dσ
i=0O(s2

i ) ⊆ O(s#σf ).
Assume j − 2 / s, #fj−1 ≤ #aj and #gj−1 ≤ #aj . We also have #σf ≤

#fj−1 and #τf ≤ #gj−1. The total cost of Algorithm 2 is

O(s(#fj−1 + #gj−1 + #aj)︸ ︷︷ ︸
Eval in line 10

+ s d2
1︸︷︷︸

line 12

+ s(#σf + #τf )︸ ︷︷ ︸
Solve in line 14−16

) ⊆ O(s(#aj + d2
1)). �

Appendix B Proof of Theorem 4

Similar to the analysis of Algorithm 2, we bound the total number of arithmetic
operations in Zp for the worst case in Algorithm 4. Let dmax = maxj−1

i=2 deg(a, xi).
The total cost of evaluations in step 5 is O((j − 2)(#fj−1 + #gj−1 + dmax)).

The if statement in step 6 costs O
(∑df−1

i=0 si log(si) +
∑dg−1
i=0 ti log(ti)

)
⊆

O(log(s)(#fj−1 + #gj−1)) comparisons to sort and search for identical values.
The total cost of step 10 is O(s(#fj−1 + #gj−1 + #aj)).
Each bivariate Hensel lift in line 12 costs Θ(d1d

2
j + djd

2
1) [13].

Using Zippel [21] the total cost of the Vandermonde solver in step 17 is∑df−1
i=0 djO(s2

i ) ⊆ O(djs#fj−1) for fj . Similarly, for gj , we have O(djs#gj−1).
Assume j − 2 / s, the total cost of Algorithm 4 is

O(s(#fj−1 + #gj−1 + #aj)︸ ︷︷ ︸
Eval in line 10

+ s(d2
1dj + d1d

2
j )︸ ︷︷ ︸

BHL in line 12

+ s dj(#fj−1 + #gj−1)︸ ︷︷ ︸
Solve in line 17

)

⊆ O(djs(#fj−1 + #gj−1 + d2
1 + d1dj) + s#aj). �
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