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ABSTRACT

Maple is a symbolic computation system under development at the
University of Waterloo. A primary goal of the system is to be compact
without sacrificing the functionality required for serious symbolic compu-
tation. The system has a modular design such that most of the
mathematical functions exist as external library functions to be loaded
only when they are invoked. The compiled kernel of the system is about
100K bytes in size. The library functions are interpreted. Efficiency is
achieved through techniques including the identification of critical func-
tions that are put into the compiled kernel, extensive use of hashing tech-
niques, and careful design of the mathematical algorithms. Timing com-
parisons with other symbolic computation systems show that time effi-
ciency is achieved as well as space efficiency.

1. Introduction

Maple is a language and system for symbolic mathematical computation which has
been under development at the University of Waterloo since December, 1680, The Ma-
ple system can be used interactively as a mathematical calculator, and computational
procedures can be written using the high-level Maple programming language.

The primary motivation for the design of Maple can be described as user accessi-
belity. This concept has several aspects. The state of the art in 1980 was such that in
order to have access to a powerful system such as Maesyma it was necessary to have a
large, relatively costly mainframe computer and then o dedicate it to a small number
of simultaneous users. In the university setting, it was not feasible to offer symbolic
computation to large classes for student computing. In a broader context, a large com-
munity of potential users of symbolic mathematical computation remained non-users.
The development of the Mumath{1] and Picomath[2] systems showed that a significant
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symbolic computation capability could be provided on low-cost, small-address-space
microcomputers. It seemed clear that it should be possible to design a symbolic system
with a full range of capabilities for symbolic mathematical computation which was nei-
ther restricted by the small address space of the early microcomputers nor “inaccessible
to the masses”” because of unreasonable demands on computing resources. In particu-
lar, it seemed possible to design a modular system whose demands on memory would
grow gracefully with the needs of the application program.

Portability was another of our earliest concerns, partly because we found ourselves
users of a computing environment in transition, and partly because it was clear that a
wide variety of computer systems would be coming onto the market in the decade of
the 1980’s.

Thus the primary design goals of the Maple system were: compaciness, modularity,
a powerful set of facilities for symbolic mathematical computation, portability, and a
good user inlerface.

2. Design Philosophy

2.1. Space versus time

Ore of the fundamental conflicts facing systems designers is the tradeoff between
space and time. In many circumstances, it is possible to improve speed by allowing
space consumption to expand, and conversely it is often possible to conserve space con-
sumption at the expense of speed. In the case of designing a symbolic computation sys-
tem, the potential amount of system code is extremely large because such a system is
inherently faced with the task of “‘mechanizing all of mathematics”. An early design
decision for the Maple system was that the system would have a relatively small kernel
(say, on the order of a hundred kilobytes as opposed to a few megabytes). The vast
bulk of system code for the various mathematical operations, such as ged computation,
factoring, integration, ete., exists as library codes to be loaded if and when they are
needed. Furthermore, given the current state of the art of symbolic computation, we
believe it is very important that the programs for these high-level mathematical opera-
tions should be readily accessible to, and modifiable by, the non-expert users of the sys-
tem. Therefore, the library programs for the Maple system are coded in the high-level
Maple programming language.

Since another design goal is to be portable across many different operating sys-
tems, the only practical implementation of the above model is that the library pro-
grams do not exist as compiled code but rather they are interpreted at run-time. Thus
a fundamental design criterion for the Maple system is that space is more erucial than
time. In order to keep the compiled kernel small, we are willing to saerifice some speed
of execution. This can be viewed as a means to satisfy one of MacLennan's[3] design
criteria, namely the principle of localized cost: users should only pay for what they use.

Given this model, there are several methods by which the time cost of the Maple
system is kept to a minimum. One factor is the use of a simple, efficient interpreter.
As one indication of the relative efficiency of Maple's interpreter, an experiment was
performed using the ‘“‘tak’ function[4] and it showed Maple’s interpreter to be about
four times faster than Macsyma’s interpreter on that particular benchmark. Conse-
quently, the tradeoff between interpreted library code and compiled kernel code is not
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as great in Maple as in other systems.

Another factor in minimizing time cost is the identification of critical functions
which are placed into the compiled kernel. This has been a dynamic process in the
development of the Maple system. Some of the functions that were once in the exter-
nal library but which have been identified to be critical and were moved to the kernel
are: indets (to extract the indeterminates from an expression), seq (to comstruct a se-
quence), subsop {to substitute for a particular operand, or subexpression), maz, min,
mod, and divide (for polynomial division). On the other hand, some functions that
were once in the kernel have been (or are being) moved to become external library
functions (for example, solve, sum, and int) and for some internal functions an external
library interface was developed to handle some of the higher-level cases ( diff, expand,
and taylor are examples of functions that have an external library interface).

Yet another very crucial factor in achieving minimal time eost is the use of effi-
cient algorithms. This is perhaps a “‘motherhood” issue. However, particularly in sym-
bolic computation, we have seen that some innocent-looking methods take exponential
space and/or time while it is often possible to find better approaches. It has been our
experience that most mathematical functions can be executed in the interpreted user
language, instead of being included in the compiled kernel, without significantly affect-
ing execution speed. Whereas the speed improvement that ean be achieved by placing
such a function into the compiled kernel is usually not more than 20-40%, we have in
many instances achieved an order of magnitude improvement in speed by improving
the algorithm. We note that the effort required to improve an algorithm once it is
coded in the internal system implementation language is far greater than the effort re-
quired to modify an algorithm coded in the high-level language. Indeed, many of the
contributors to the Maple system have never written code in the system implementa-
tion language, and would have been unlikely to make their contributions if coding in
the low-level language was necessary. (We believe that this is a property of all system
developments, not a special property of the Maple system and its particular system im-
plementation language).

The conflict between space and time is, of course, not only a matter relating to the
size of the compiled kernel. The run-time eonsumption of data space and processor
time is of equal importance. When an algorithm is being designed for a particular
function, there are usually variations of the algorithm which trade off space consump-
tion versus time consumption. We find it useful to consider a measure,

cost = (space)® (time),

that arose originally in theoretical studies of time-space trade-offs in sorting [5]. It
corresponds with our belief (which has also been expressed by others, such as Hearn [6])
that space is “‘scarcer’” than time in typical algebraic manipulation.
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2.2. Compact size as a design goal

The kernel of the Maple system (i.e., the only part of Maple that is written in the
system implementation language and compiled) occupies a little more than 100K bytes
on a VAX computer. The kernel system includes only the most basic facilities: the Ma-
ple programming language interpreter, numerical, polynomial, and series arithmetic,
basic simplification, facilities for handling tables and arrays, print routines, and some
fundamental functions such as coeff, degree, subs (substitute), map, iged (integer ged
computation), lcoeff (leading coefficient of an expression), op (to extract operands from
an expression), divide, mod, and a few others. Some of the fundamental functions have
a small core coded in the kernel and an interface to the Maple library for extensions.
The interface is general enough so that additional power, sueh as the ability to deal
with new mathematical functions of interest to a particular user, can be obtained by
user-defined Maple code. Some examples of functions which have such an internal core
and an external user interface are diff, ezpand, taylor, type, and evalf (for evaluation
to a floating-point number). Other functions supplied with the system are coded en-
tirely in the user-level Maple programming language and exist in the Maple library, in-
cluding ged, factor, normal (for normalization of rational expressions), limit, int, resul-
tant, det, and solve.

The compactness of a system is affected by many different design decisions. The
following points outline some of the design decisions which have contributed to the
compactness of the Maple system.

1. The use of appropriale data structures. We have designed into Maple a set of data
structures appropriate to the mathematical objects being manipulated, with a
direct mapping between these abstract structures and the machine-level “dynamic
vectors’'.

2. The use of a viable file system. By having an efficient interpreter and by placing
much of the code for system functions into the user-level library, Maple has the
property that “you only pay for what you use”. Writing functions in the user-level
Maple language has the additional advantages of readability, maintainability, and
portability.

3. Avoiding a large run-time support system. We view Maple as just one of many
software tools that a user may employ to solve problems, regardless of which sys-
tem it may be used on. We see no need to provide all of these tools within Maple
itself, not only because they consume space and greatly increase the problems of
porting without providing any greater algebraic computation power, but also be-
cause many computing environments will allow their native software tools to be
easily connected to Maple (say, as communicating processes).

4. A policy of treating main memory as a scarce resource. We believe that this point
of view is important if we are to achieve the goal of providing a symbolic compu-
tation system to “the masses’”. Because we have adopted such a point of view, we
are constantly concerned about which functions belong in the Maple kernel and
which functions can be supplied as user-level code in the Maple library.

5.  The choice of the BCPL family of system implementation languages. Implement-
ing Maple in system implementation languages from the BCPL family has helped
us to achieve the compactness goals outlined in the above points. The support of
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“dynamic vectors” in the implementation language allows the creation of compact
data structures for the higher-level objects. Furthermore, an implementation
language in the BCPL family typically has a run-time library that is small, selec-
tively included, and yet provides the desired functionality.

2.3. Data structures

Maple has about 40 different internal data structures designed into it. Approxi-
mately one-quarter of these data structures correspond to programming language
statements: assignment, ¢f, for, read, etc. The remaining data structures correspond to
the types of expressions including those formed using standard arithmetic and logical
operators, numbers (integer, rational, and floating-point), lists, sets, tables, (unevaluat-
ed) functions, procedure definitions, equations, ranges, and series. All of these strue-
tures are represented internally as dynamic vectors.

This approach using dynamic vectors at the machine level and a rich set of data
structures at the abstract level has significant advantages in improved compactness
and efficiency of the resulting system code. First, in Maple there is only one level of
abstraction above the system-level objects. We believe that the direct mapping
between the abstract objects and the system-level objects simplifies our code and
makes it more efficient than a scheme involving a less direct mapping. Secondly, we
believe that the design of data structures should be related, if possible, to the language
that describes the data objects. In our case we have a simple context-free language,
and it is natural to relate the data structures to the productions in the grammar. This
immediately suggests the need for many data structures since there are many produc-
tions in the language. Thirdly, dynamic vectors allow us, in many cases, to have direct
access to each of the components of the structure at about the same cost. This is more
desirable than the sequential access required when all objects are represented as lists.
Fourthly, dynamic vectors are more compact than structures linked by pointers. In
summary, an important part of the compactness and efficiency of Maple is due to the
use of appropriate data structures.

2.4. Computational power through libraries of functions

Another goal of the Maple system is to provide a powerful set of facilities for sym-
bolic mathematical computation. In other words, we are not willing to achieve com-
pactness by sacrificing the functionality of the system. Thus while the number of func-
tions provided in the kernel system is kept to a minimum, many more functions for
symbolic mathematics are provided in the system library, to be loaded as required.
The functions in the system library are written in the high-level Maple programming
language and are therefore readily accessible to all users of the Maple system. A load
module for each library procedure is stored in “Maple internal format’ which is a
quick-loading expression-tree representation of the procedure definition. When a li-
brary function is invoked, its load module is read into the Maple environment (if not al-
ready loaded) and the expression tree is interpreted by the Maple interpreter.



3. The Use of Hashing in Maple

Maple’s overall performance is in part achieved by the use of table based algo-
rithms for eritical functions. Tables are used within the Maple kernel in both evalua-
tion and simplification, as well as less crueial functions. For simplification, Maple
keeps a single copy of each expression or subexpression within an entire session. This is
achieved by keeping all objects in a table. In user-level procedures, the remember op-
tion provides a hint to the interpreter that the values returned are likely to be needed
again. These values are maintained in a table until a garbage collection is performed.
Finally, tables are available at the user level as one of Maple’s data types.

All of the table searching is done by hashing. The algorithm is an implementation
of direct chaining in which the hash chains are dynamic vectors instead of linked lists.
Fach table element is stored as a pair of consecutive entries in the hash chain vector.
The first entry of this pair is the hash key and the second is a pointer to the stored
value. Tor efficiency, the hash chain vectors are grown a number of entries at a time
and consequently some of the entries may not be filled.

3.1. Internal Use of Hash Tables

A computer algebra system spends most of its time evaluating and simplifying ex-
pressions. The Maple kernel manages two tables, the partial computation table and the
simpli fication table, in an effort to make evaluation and simplification efficient. Other
uses of hash tables in the kernel are the global symbol table and temporary tables used
in performing input/output.

3.1.1. The Simplification Table

By far, the most important table maintained by the Maple kernel is the simplifica-
tion table. All simplified expressions and subexpressions are stored in the simplification
table. The main purpose of this table is to ensure that simplified expressions have a
unique instance in memory. Every expression which is entered into maple or generated
internally is checked against the simplification table, and if found, the new expression is
discarded and the old one is used. This task is done by the simplifier which recursively
simplifies (applies all the basic simplification rules) and checks against the table. Gar-
bage collection deletes the entries in the simplification table which cannot be reached
from a global name.

The task of checking for equivalent expressions within thousands of subexpressions
would not be feasible if it was not done with the aid of hashing. Every expression is
entered in the simplification table using its signature as a key. The signature of an ex-
pression is a hashing function itself, with one very important attribute: signatures of
trivially equivalent expressions are equal [7]. For example, the signatures of the expres-
sions a+b+c and c+a+b are identical; the signatures of a*b and b*a are also identical,
If two expressions’ signatures disagree then the expressions cannot be equal at the basic
level of simplification.

Searching for an expression in the simplification table is done by:
— simplifying recursively all of its components;
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— applying the basic simplification rules;
— computing its signature and searching for this signature in the table.

If the signature is found then we perform a full comparison (taking into account that
additions and multiplications are commutative, etc.) to verify that it is the same ex-
pression. If the expression is found, the one in the table is used and the searched one is
discarded. We have to do a full comparison of expressions only when we have a “colli-
sion” of signatures. How often this occurs is machine dependent. On a VAX, which
has a 32-bit word, the signatures have 22 to 24 useful bits. An experiment we conduet-
ed measuring the collision rate during ‘“typical” Maple computation indicated that sig-
natures of inequivalent expressions coincide about once every 1500 comparisons for sig-
natures of this size. Thus, the time spent searching the simplification table is typically
negligible.

Since simplified expressions are guaranteed to have a unique occurrence, it is possi-
ble to test for equality of simplified expressions using a single pointer comparison.

3.1.2. The Partial Computation Table

Some functions tend to be called many times with the same arguments. Maple
takes advantage of this fact by maintaining a table of function results for these fune-
tions. This is called the partial computation teble. In it, function calls are used as the
keys and their results as the values. Searching the hash table is extremely efficient so
even for simple functions it is orders of magnitude faster than the actual evaluation of
the function. Since both the function call and function result are already existing as
simplified data structures, the only storage consumed by an entry in the partial compu-
tation table is a pair of pointers. The partial computation table is cleared by garbage
collection.

The original motivation for the partial computation table (which is still valid) was
the observation that certain operations reproduce subexpressions multiple times in their
results. As an example of this, consider the operation

taylor( exp{y/(1—x) + a}, x=0)

where every term in the result contains the expression exp(y+a). Any further operation
on this result (such as simplification, differentiation, ete.) will have to deal with this ar-
gument repeatedly.

There are four kernel functions that use the partial computation table: diff, tay-
lor, ezpand, and evalf. (The evalf function is used for floating-point evaluation).
External library functions and user-defined functions take advantage of the partial
computation table by specifying the remember option in the procedure body. This is
further discussed in a later section.

3.1.3. The Name Table

The simplest use of hashing in the Maple kernel is the name table. This is a sym-
bol table for all global names. Each key is computed from the name's character string
and the entry is a pointer to the data structure for the name. The name table is used
to locate global names formed by the lexical scanner or by name concatenation. It is
also used by functions that perform operations on all global names. These operations
include: (i} marking for garbage collection, (ii) the saving of a Maple session environ-
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ment in a file, and (i) the Maple functions anemes and uvnames which return all as-
signed global names and all unassigned global names, respectively.

3.1.4. Put Tables

It is possible to store Maple objects in a sequential file using a fast-loading internal
format. The pointers in a collection of Maple objects form a general directed graph.
The process of saving values in a file and later reading the values in from the file (usu-
ally in a different session) must preserve this graph, and in particular preserve shared
subexpressions. A hash table is temporarily created for each save or read statement
that uses internal format. These tables are known in Maple as put fables. The put
tables are used to keep track of which subexpressions have already been output to (or
input from) the file, and, in general, to perform the mapping from a directed graph
into a linear (labelled) structure.

3.2. Option Remember

Functions written in the user-level Maple programming language, including the
system-supplied external library functions, may use the partial computation table by
specifying option remember in the options list of the procedure body. This is best
viewed as a hint to the interpreter that the results of this function are likely to be used
again. It may also be advantageous to use option remember in a function that is ex-
tremely expensive to compute, even if the resuli does not have a large probability of
being re-used. It is important to note that remembered values disappear on garbage
collection. For functions without side effects, this causes no problem because the act of
remembering is an optimization; semantically it makes no difference whether the result
is remembered or recomputed. For functions with side effects, this may cause erratic
behaviour.

For many problems, remembering past results reduces the running time dramati-
cally. For example, the Fibonacei numbers computed with

fib := proc(n)
if n < 2 then n else fib(n—1) + fib(n—2) fi
end,;

take exponential time to compute, while

fib := proe(n) option remember;
if n < 2 then n else fib{n—1) + fib(n—2) fi
end;

takes only linear time. Although the effect is not as spectacular for most functions, it
is not unusual for typical programs to be made roughly 30% faster by the judicious use
of option remember. Of course this same factor could be obtained by recoding the eru-
cial functions to use tables explicitly. The main advantage of option remember is that
it achieves this performance factor without altering the function's code. The resulting
code is very easy to read since the algorithmic intent is not obscured by code for saving
intermediate results.

Sometimes the value of a function for some argument is known without actually
computing it explicitly. An example would be an idempotent function such as sqrfree,
which produces a square-free factorization of a polynomial. If the function uses option
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remember then this additional information may be entered in the partial computation
table directly, using the remember function. An example would be:

p = sqrfree(q, x);
remember(sqrfree(p,x) = p);

Here the result of sgrfree is remembered for both p and q. The remember function
evaluates its argument specially so that the function call is not executed.

Many library functions that use option remember have a front end that substitutes
the indeterminates of the arguments for generic names. This is an attempt to
remember a general result. This is done by the integrator, for example. All integra-
tions are done with respect to the special variable name @X. Once inifz"20%zp(z),x)
has been computed, then the integral int(y"20%zxp(y)y) is obtained from the partial
computation table.

3.3. Arrays and Tables in the Maple Language

Arrays and tables are provided as data types in the Maple language. An array is a
table for which the component indices must be integers lying within specified bounds.
Arrays and tables are implemented using Maple’s internal hash tables. Because of this,
sparse arrays are equally as efficient as dense arrays. Contrary to the belief that ar-
rays can be accessed quickly only by computing an element’'s address as an offset using
the indices, our experience has shown that, in the Maple context, handling arrays as
tables is at least as efficient while being more general.

A table object consists of (i) index bounds (for arrays only), (ii) a hash table of
components, and (iit) an indexing function. The components of a table T are accessed
using a subscript syntax, e.g., T[a,b*cos(x)]. Since a simplified expression is guaranteed
to have a unique instance in memory, we use the address of the simplified index as the
hash key for a component. If no component exists for a given index, then the indexed
expression is returned.

The semantics of indexing into a table are described by its indexing function. Us-
ing an indexing function, it is possible to do such things as efficiently store a symmetric
matrix or count how often each element of a table is referenced. Because each table
defines its own indexing method, generic programs can be written that do not need to
know about special data representations. Aside from the default, general indexing,
some indexing functions are provided by the Maple kernel. Other indexing functions
are loaded from the library or are supplied by the user.

Two typical system-supplied indexing functions are symmetric and sparse. The in-
dexing function symmetric is used for tables in which the value of a component is in-
dependent of the order of the expressions in the index. This indexing function works by
reordering the index expression sequence to produce a unique table reference. Thus, if
the table T uses symmetric, the expression T[i,j] — T[j,i] evaluates to zero regardless of
whether or not i, j or T[i,j] are assigned values. The indexing function sparse is used
with tables for which a component is assumed to have the value 0 if it has not been as-
signed.



4. Hybrid Algorithms

It is well understood that many problems in algebraic computation do not have a
single “best’” algorithm. In fact, for some problems there may be many algorithms to
choose from. Computing polynomial greatest common divisors is one such example.
At least four major classes of ged methods are in use in algebraic systems today.
These are polynomial remainder sequence based algorithms[8,9], Hensel based algo-
rithms[10, 11], the sparse modular algorithm(12], and an integer-ged based heuristic[13].
Comparison of their performance indicates that no one algorithm works best all the
time. Some ‘‘win’’ on sparser problems, others on dense problems. Some work well on
small problems and do poorly on problems of higher degree or numbers of variables.
Others have such overhead that they should only be used on large problems where their
asymptotic complexity begins to assert itself.

How then does a general purpose system organize the code to solve a problem
where several algorithms should be considered? Consider applying a predetermined,
fixed algorithm to all problems. Such a single algorithm must be robust. This rules
out the application of algorithms that will succeed, or succeed quickly, only on certain
classes of problems. The alternative to using a single algorithm is to automatically
select from several: a “hybrid”, or polyalgorithm. A pelyalgorithm could also possibly
use one method to partially solve the problem (for example, eliminating some of the
unknowns from a system of equations), and then switch over to another more general
and expensive algorithm when appropriate. This is not always possible but when it is,
it often makes a substantial overall improvement in efficiency.

Thus, a hybrid procedure can be viewed as automating not only the algebraic com-
putation, but also automating the expertise in selecting and combining algorithms for a
particular problem. If this is done well, it can relieve the user from the unwanted bur-
den of learning details of algorithms in areas that are not of direct interest to him or
her. In order to justify a hybrid approach in contrast with using a single algorithm, it
must be shown that the decisions about which algorithm to use, and when to start us-
ing it, can be automated without introducing undue overhead. It must also be shown
that the hybrid algorithm often performs much better than any single algorithm, and
rarely performs much worse.

We describe the Maple implementation of hybrid algorithms for several different
problem areas. These include the determinant code, the ged code, and the solve code
(for solving systems of equations). All of the eodes for these problems are implemented
in the user-level Maple language and therefore they are interpreted rather than com-
piled. Timing comparisons are presented to show the relative performance of Maple,
Macsyma, and Reduce on some sample problems. All timings (in seconds) were ob-
tained on a Vax 11/780 running Berkeley Unix 4.2, by calling the user-level routine for
solving the given problem.



4.1. Determinants

The two methods used are fraction-free Gaussian elimination and minor expansion.
Comparisons of these two methods are given by Gentleman and Johnson, and Horowitz
and Sahni [14,15]. Those authors’ comments, their timing results, and our own experi-
ence, suggest the following general guideline for ¢hoosing between Gaussian elimination
and minor expansion:

(1) for matrices with many numerical entries and/or larger dense matrices in only a
few variables, use gaussian elimination;

(2) for small matrices (of dimension =< 5 ), sparse matrices, and matrices with many
variables, use minor expansion.

We are also experimenting with the idea of running fraction-free elimination steps until
a small pivot is no longer available, then switching to minor expansion. We note that
the strengths and weaknesses of a particular computer algebra system must also be
taken into consideration in algorithm selection. For example, Maple is particularly well
suited to using minor expansion because of the facility provided by the partial compu-
tation table as described previously. By using option remember, we can implement the
standard recursive definition of a determinant in terms of its minors (see Figure 1).
Without the help of option remember {or some similar facility), this algorithm would be
extremely inefficient, as minors would be recomputed an exponential number of times.
In using option remember, the system avoids recomputation by automatically keeping
track of the minors’ determinants as it computes them. Gentleman and Johnson avoid
recomputation by computing the determinants of the minors “bottom up”. We helieve
that the use of cption remember in Maple leads to a more natural and simpler coding,
and furthermore avoids an exponential amount of work for the sparse cases.

The above discussion of determinant code organization is equally applicable to the
problem of computing matrix inverses. For this problem, there is a choice between
fraction-free Gaussian elimination and computing the inverse via the adjoint of the ma-
trix.

The timing results in Table 1 show that Maple's determinant code performs quite
well over a variety of different problems. For these (and subsequent) timing comparis-
ons, note that Maple’s code is executed by an interpreter while the Maesyma and
Reduce codes have been compiled. For a detailed listing of the test problems used in
Table 1, see appendix 1. We find that the overhead of algorithm selection is not unrea-
sonable compared to the cost of computing the determinant.



minor := proc¢ {A,r,e,n) locali, s, t; option remember;
# Compute the determirant of the n by n minor of the matrix A, whose row
# and column indices are given in the lists r and ¢, using minor expansion.

~if n =1 then A[r{1],c[1]]

elif n = 2 then A[r[1],e[1}]*A[r{2},c[2]] — A[r[1],c[2]]*Alr[2],c[1]]

elif n = 3 then
Alr{1],e[1]] * (A[r[2],c[2]]*A[r[3],c[3]] = A[r[2],c[3]]*A[r[3],c[2]]) —
Alr(2],c[1]] * (Alr[1],c[2]*Alr{3],e[3]] ~ Alr[L],c[3]]*A[[3].c[2]]) +

| Alr[3l,e[1]] * (Alr{1],c[2]*Afr[2],[3]] — Alr[1]c[3]]*Alr[2],¢[2]])

else
t := subsop(1=NULL,¢c);
s:=0;
for i to n do if Afr[i],c[1]] <> 0 then

s = s + Alrfif,¢[1]] * (—1)"(i+1) * minor(A,subsop(i=NULL,t),t,n—1)

fi od

fi;

i; type(“, "+") then expand(“) else “ fi

end

Figure I: Maple library code for computation of a minor’s determinant.

Matrix description Maple  Maecsyma (1) Reduce (1)
5 by 5 Vandermonde 6.5 10.5 0.8
5 by 5 Dense univariate Bezout 19.9 19.8 17.5
6 by 6 Bezout (from Sigsam #7) 133.6 271.6 132.9
12 by 12 Eigenvalue problem (band matrix) 42.5 719.5 10.8
10 by 10 Hilbert 13.5 236.0 300.7
10 by 10 Univariate Sylvester 40.2 1414.0 264.9
11 by 11 Tridiagonal (univariate) 4.8 95.1 0.9
14 by 14 Eigenvalue problem {bivariate) 279.7 >1500 >1500

Table 1: Timings for determinant problems.

Notes: (1) The default algorithm for both Macsyma and Reduce on our system is minor
expansion. Also, in collecting the Macsyma times, ratexpand was applied to the result
from deferminant where necessary.




4.2. Greatest Common Divisors of Polynomials

Maple’s ged code makes use of two algorithms. Initially, a heuristic, gedheu,[13] is
tried. Gedheu computes polynomial geds via polynomial evaluation, an integer ged
computation, and single-point polynomial interpolation. This method was motivated
by the fact that the hardware provides support for integer arithmetic, and consequently
even multiple-precision integer arithmetic is fast, whereas there is no hardware support
for polynomial arithmetic. Therefore although the complexity of an integer ged based
computation is exponential in the number of variables, such a method performs very
well on a significant class of practical problems. Roughly speaking, for most problems
in three or fewer variables we find that gedheu is the algorithm of choice. On the other
hand, there are many problems that gedheu would be extremely slow to solve. For-
tunately, it is easy for gcdheu to detect its bad cases by estimating the size of the in-
teger ged problem before generating it. When the integer ged problem about to be
generated would be larger than a pre-specified size (currently set at 3000 digits),
gcedheu gives up. Control is passed back to the main code, which then sets up the prob-
lem for the second algorithm. The second algorithm is a2 Hensel-based ged algorithm
(EEZGCD).*

Another important feature of gedheu is that its code size is tiny, relative to
Hensel-based codes or the sparse modular code. For most sessions we expect that the
gedheu algorithm will be sufficient and consequently the larger codes will not be load-
ed. This organization helps to maintain Maple’s goal of compactness.

In Table 2 we present timings for some ged problems. These problems were gen-
erated at random. All problems are non-trivial in either the number of variables, their
degrees, the number of terms, or the size of the coefficients. Seven of the problems are
sparse, three are dense; five of the problems have a non-trivial ged, and in the other
five the ged is one. For a detailed listing of the test problems used in Table 2, see ap-
pendix 2. The timings illustrate both the power of gedheu as an algorithm in its own
right, and the robustness of the overall code organization since the timings for larger
problems are also very reasonable.

Problem Maple Macsyma (1}  Reduce (2)
1 2.2 67.8 >1500
2 5.8 42.7 1472
3 6.3 17.5 >1500
4 10.7 31.3 >1500
5 5.1 4.8 >1500
6 29.5 69.4 >1500
7 7.3 2.4 >1500
8 25.7 24.9 11.6
9 92.5 34.8 >1500
10 34.5 24.6 >1500

Table 2: Timings for some ged problems.

* Code for the sparse modular algorithm has been written for Maple[16] but it is not yet determined how this will be in-
corporated into the ged polyalgorithm.



Notes: (1) Using the default Macsyma ged algorithm, spmod. (2) Using a PRS algo-
rithm with trial-division[17].

4.3. Solving Systems of Equations

The first method to be tried in solve on a system of equations is gensys. At each
step, gensys selects the “easiest” equation to be solved for a particular unknown. That
unknown is then eliminated from the other equations of the system via a substitution.
Both under- and over-determined systems of both linear and nonlinear equations can be
solved in this way. Gensys spends a considerable amount of time evaluating the com-
plexities of each equation. Ideally, all unknowns will be found and eliminated from
“simple” equations, preserving sparsity where possible. What is considered a simple
equation in gensys is any equation containing an unknown that when eliminated, will
most likely produce a simpler, smaller system. This elimination procedure is repeated
until either the system has been reduced to a single equation, in which case back-
substitution is employed to obtain the solution, or else further progress is blocked be-
cause proceeding would generate, for example, new quotients of polynomials.

At this point, control is passed to a second method, a modified fraction-free Gaus-
sian elimination algorithm for solving rectangular linear systems. This algorithm
solves the remaining linear problems for which gensys would be too expensive. If the
system is found to be nonlinear then control is passed back to gensys, which continues
the elimination. A resultant based algorithm is called for the general case when gensys
cannot proceed.

This organization of the solve code has several advantages. Simple linear and non-
linear equations are eliminated quickly. Gensys preserves sparsity for as long as is
practical. Since gensys is by nature a sparse algorithm, we are interested in how it per-
forms on dense systems (its worse case) where much of the time will be spent in looking
al the equations. The first problem in Table 3 shows that the cost of using gensys
rather than immediately using Gaussian elimination is not unreasonable. (Our time for
directly applying Gaussian elimination on the first problem is 23 seconds). For large
sparse systems, the hybrid algorithm performs much better than Macsyma's default al-
gorithm. The first four times reported in Table 3 are for linear systems and the last
two are for nonlinear systems. I'or a detailed listing of the test problems used in Table
3, see appendix 3.



Problem description Maple Maecsyma Reduce
10 equations, 10 unknowns

dense with integer coefficients 50.8 22.5 21.5
30 equations, 29 unknowns

integer coefficients 55.6 122.9 {1)
50 equations, 50 unknowns

sparse band system 138.6 1180 1162
147 equations, 49 unknowns

very sparse with trivariate coefficients 96.5 1078.3 {2) {1)
19 equations, 17 unknowns

sparse system with 4 solutions 88.5 >1500 (1)
22 equations, 17 unknowns

sparse system with no solution 179  >1500 (1)

Table & Timings for solving systems of equations.

Notes: (1) Reduce’s solver was not programmed to solve over-determined systems. {2)
This time reported for Macsyma was obtained by Prof. Stanly Steinberg of the Univer-
sity of New Mexico, using special purpose code developed for the problem. Macsyma's
default algorithm could not solve this problem in under 1500 seconds.

5. Further Comparisons of Space and Time

Table 4 presents some timing comparisons for a variety of symbolic computation
problems which are summarized below. More details about these test problems can be
found in appendix 4. All times are in seconds in the form wuser time + system time
obtained from the Unix time command on a Vax 11/780 running Berkeley Unix version
4.2. The Maple space column indicates the total number of bytes of memory required
by Maple (compiled kernel plus data space) for the problem. Note that automatie gar-
bage collection is not yet operational in Maple and therefore the space consumption in-
creases monotonically with execution time. Note also that the initial size of code plus
data space for Reduce is over one megabyte and for Macsyma is over three megabytes,
in contrast with Maple’s initial size of 104K bytes.



Problem  Maple space
1 139K
2 145K
3 222K
4 777K
5 169K
6 432K
7 251K
8 169K
9 185K

10 603K
11 181K
12 247K
13 302K
14 152K
15 414K

Maple time

104 + 0.8
143+ 1.8
48 + 1.0
187 + 2.5
1.5+ 0.4
326 + 4.0
236 + 2.4
20+0.4
2.2 4+ 0.5
272428
2.6 4+ 0.5
5.7+ 11
124+ 1.5
1.2 + 1.2
168 + 2.4

Macsyma time

233 + 84
404 + 13.6
46.1 + 21.0

180.8 + 11.2

26.2 + 9.7
689 + 11.7
88.5 + 18.3
93.3 + 14.2

183.3 + 22.1
101.2 ++ 20.4
33+ 5.4
3.0+ 6.0
36.7 + 14.8
29449
46.9 + 13.5

Reduce time

134.0 4+ 29.7
180.0 4+ 26.6
43.5 + 10.0
88.6 + 4.9
47+ 1.4
371478
>1000.0

Not attempted

Not attempted
335+79

Not attempted
7.5+ 34
11.5 + 3.0
1.3 416

Not attempted

Table 4: Space and time statistics for a variety of problems.

Description of Problems in Table 4

1
2
3

4

Compute and print 1000!.

Compute a ‘“‘big” rationsl number: 131000 / 14960

Compute arcsin{.7102633504 6985192786 3258652083 7914203194

9324761436) to 50 digits.

Read in a random polynomial but do not print it. It has 396 terms, 5

variables, each of degree 6, and 4-digit coefficients.
Do 1000 assignments in a for loop without printing:
for i to 1000 do a :=1i od.

Solve a sparse linear system of equations {20 by 20, 3 terms per equation,

random 4-digit integer coefficients).
Compute and print —diff(u,z) from [18,p. 510]
Factor 16254399361 (= 89137 * 182353 ).

Taylor series of sin(x"5— 3*x"8+7*x"29+13*x"59) up to the term in x"64.

Compute and print the f and g series to order 16.{19]
Compute and print the indefinite summation: sum(i"12,i==0..n—1).
Find f2% ¢ dz.
Expand (a+b+c+d+e+f+g+h)"4 and print it.
Recursion test: f := proc(n) if n=0 then 1 else f{n—1) fi end; f(100).

SIGSAM Problem #3: Reversion of a double series[20], solved to order 4

by Hall's 2nd method[21] (includes print time).




6. Future Development

The Maple project is an ongoing activity of the Symbolic Computation Group at
the University of Waterloo. We mention here some of the developments that are anti-
cipated for future versions.

6.1. Algorithm improvements

Some of the existing mathematical packages are being improved. For example, the
ged package is largely completed but its multivariate Hensel-based (EEZGCD) algo-
rithm will have Wang’s coefficient pre-determination added to it for improved perfor-
mance on sparse problems. The factor package similarly needs to exploit coefficient
pre-determination (this is currently implemented only for the leading coefficient) in the
multivariate Hensel lifting stage. Maple’s univariate factorizer is a heuristic algorithm
based on single-point evaluation and integer factorization [22), which performs well on
problems with reasonably small integer coefficients, but we have yet to complete imple-
mentation of the Berlekamp/Hensel algorithm for univariate factorization. Another
package to be completed is the integration package, which currently includes only a
“front end” of heuristics. Eventually the Risch procedure will be included as part of
int (work is in progress). The method of resultants is being added to the solve package
for solving systems of polynomial equations.

There are numerous mathematical packages yet to be introduced into the Maple Ii-
brary. For example, a differential equations package and a tensor package have yet to
be implemented.

8.2. Language facilities
The following are some of the language facilities awaiting implementation.

(1) Automatic garbage collection (currently the user must issue a ge() function eall).
(2) Pattern matching simplification.

{3) User-specified simplification rules.

{4) Operators, including an operator algebra facility.

{5) Foreign function interface (some work has been done on am interface to Fortran

and an interface to Prolog).

(6) Language conversion (some work has been done on converting Maple output to
Fortran syntax).

6.3. Porting Maple

The Maple system is designed to be portable to various operating systems, usually
in the C language. The main restriction is that the host system must support a large
address space {e.g., Maple is not designed to work with 16-bit addresses) and must have
enough physical memory (we recommend a minimum of one megabyte) to be capable of
handling typical symbolic computations. To date, Maple has been fully ported between
C under Berkeley Unix on a VAX 11, B under GCOS-8 on a Honeywell DPS-8, C under
Xenix on a Speectrix S-1¢ (M68000-based microcomputer) and C under TOPS-20 on a
DEC20. The VAX/Unix and DEC20 versions are currently in distribution. Work is
well underway to port Maple to the IBM VM/CMS operating system and to the



WICAT operating system. Planned for the near future is a version for DEC’s
VAX/VMS operating system {see below).

6.4. Maple in undergraduate teaching

We are particularly excited about the introduction of Maple into the mainstream
of the undergraduate mathematics curriculum. Current plans include experimenting
with Maple as a laboratory tool to be used by first- and second-year calculus and linear
algebra students at the University of Waterloo. A pilot project is scheduled for the
term beginning in January 1985, probably using a VAX 11/785 running VMS, to ser-
vice approximately 300 students. To increase the capacity beyond the size of a pilot
project, we expect to move to a network of microprocessors connected to a file-server
VAX, with the bulk of the symbolic computation being done on the microprocessors.

7. Availability of the Maple System

Maple version 3.2 is currently being distributed for VAX/4.2 BSD Unix, and for
DEC20 systems running TOPS-20. During the latter part of 1984 we plan to begin dis-
tribution of the Maple system (version 3.3 and beyond) through the facilities of Wat-
soft, an institution within the University of Waterloo which is responsible for the distri-
bution of several other software products (WATFOR, WATFIV, WPaseal, etc.). We
expect that the Waltsoft distribution will initially include TBM mainframes (VM/CMS),
and eventually VAX/VMS and M68000-based systems.

Licensing and distribution information, and copies of Maple documenta-
tion[23, 24, 25], are available by writing to:

Maple Lab

Symbolie Computation Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario

Canada N2L 3G1
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Appendix 1: Determinant problems
The timings in Table 1 of section 4 are for computing the determinants of the following matrices.

Problem 1.

[[u"4, w3, u"2, u, 1,
V4, v'3,v'2, v, 1],
[w 4, w3, w2, w, 1],
[x"4, x"3,x"2, x, 1],
4,53, y°2¥, 1]];

Problem 2.

[-135%y " 9+142%y " 7-238%y " 5-51*y "4+ 193%y "8+ 50*y "3+ 126*y " 2+32*y+39-+43*y "6,
54%y 8+112%y 6-54%y "5-22%y " 448%y "3+11%y "T+72%y " 2+12%y-75,

18*y"7-29%y " 5+53%y "4-13%y " 34+1T*y " 2-31*y "6-49*y 425,
18%y"6-+40*y " 4-67*y "3+66*y  2-64*y-72%y "5+-86,
-63%y"5+35%y " 3-8%y "2-41*y-34+10*y" 4],

[54%y "8-+112%y " 6-54%y " 5-22%y "4+ 8%y "3+ 1%y "T472%y " 24+12%y-75,

45%y " 7-163%y "6+86*y " 5+251%y " 4-5%y " 3-92*y " 2-223*y 428,

-13%y 64+ 27%y " 5-40%y *4-51*y "3+ 10%y" 24y 485,

56*y"5-249%y "4+4+76%y "3-38*y " 2+107*y-39, 26*y " 4-36%y"3-37*y" 2-36%y+31},

{54y " 8+112*%y"6-54%y " 5-22%y " 44+ 8%y 34 11%y " T+72%y " 2+ 12*y-T5,

45%y " 7-163%y "64+86*y "5+251*y " 4-5%y *3-02%y " 2.023%y + 28

~13%y 64+ 27%y " 5-40%y " 4-51%y " 34+ 10%y " 2-+y+85,
56*y"5-249%y " 4+76%y"3-38%y " 2+107*y-39, 26%y"4-36*y " 3-37%y " 2-36*y+31],

[18*y " 6+40*y "4-67*y " 3+66*y " 2-64%y-T2*y " 5486,
56%y " 5-240%y " 4+76%y " 3-38%y " 24+ 107*y-39,

18%y " 4.37*5 " 3-85%y " 0+-64%y 434,
-43%y"3+106%y " 2-58-66%y, 11%y"2-22*y+19],

[-63%y " 5+35%y " 3-8*y " 2-41%y-34+10%y" 4,

26%y " 4-36%y"3-37%y " 2-36%y+31,
-23%y " 3+43%y"2-23%y-57, 11%y"2-22*y+19, -59*y+64]];

Problem 3.



[[-262144*b " 5-4202496*b" 4-14307840*b " 3-30279744*b " 2-33224904*b-20194758,
335872%h" 4-+4045824*h " 3+10881216*b " 2+15933024*b+ 7335198,

-109056*b " 3-872640%b " 2-1854576*b-953532,

12352*h" 2+59616*b+51516, -520*b-990, 6],

[ 24159493029888*b " 8-122023549458432*b " 7-422619549401088*b" 6
-972345450479616*%b " 5-1638856429323264*b " 4-18760527817309008*h "3
-1482004245617568*b " 2-562515953844528*b-92072028892806
-68710476736%b " 10-2203318222848%b "9, 12004664279040%h T+
56009033515008*b "6+ 168071344052736*b " 5-+333659796507648%b " 4
+452483118521856*b " 3+-401871636745344%b " 24-190742086993608*b
+33019848277470+44023114784%h " 9+1236044611584%b"8,
-1867713085440*b"6-7724358402048*h" 5-19550454782976%h " 4-
31926231627264*b"3-33528078321408*b " 2-19821235756032%b-4201187782716
-9529458688*h " 8-229021581312*b "7,
108640051200%b"5+356168918016*b " 4+722550647808*b " 3+917502417216%b"2
+693874878768*b+217472034492+809500672*%b " 7-+16884301824*h "6,

- 2302193664%b " 4-5961890304*h " 3-9309061728*h * 2-8602258320*b-3740281758
-27262076%b"6-488964096%b "5,
262144*b" 5+4202496%b" 44 14307840%b " 34302797 44*b " 2+33224904*b+20194758],

[12004664279040*b"7+56009033515008*b" 6+ 168071944052736*b "5
+333659796507648*b " 4+452483118521856%b" 3+401871636745344%b"2
+190742086993608*b-+33019848277470+44023414784%h"9+1236044611584*b "8,
-37346082816%b"8-000835835904%b " 7-7992966905856*b " 6-33267707707392*h" 5
-85087902000240%b" 4-133979017863168*b " 3-132161911016832%h "2
-67559398861248*b-11847404647062,
9781116928*b"7+194119335936%b " 6+1447905632256*b " 5+ 5264857875456%h "4
+10683785433600*b " 3+12569289182784*b " 2+7377106833648*b+ 1508567554476,
-928120832%b"6-15543484416%h " 5-88927497216%b " 4-239532650496%b " 3
-362311227072%b"2-279733536288*b-78217486380,

33619968*b " 5-+466255872%b " 4+1861180416*b"3+-3660116544%b " 2+3751474824*b
+1351395414, -335872*b" 4-4045824*b " 3-10881216*h " 2-15933024*b- 7335198],

[-1867713085440*b"6-7724358402048*b " 5-19550454782076*h " 4-31926231627264*b "3
-33528978321408*b" 2-19821235756032*b-4201187782716-9529458688*h " 8-229021 581312*b "7,
9781116928*b"7+194119335936%h "6+1447905632256*h " 5+ 5264857875456%b" 4
+10683785433600%h " 3+12569289182784*b " 2+7377106833648*b+1508567 554476,
-2818179072*b"6-43989221376*h " 5-281144411136*h " 4-860814397440%b"3
-1263009926016%h" 2-820614830400*b-192351881304,

283058176%b" 5+3568167936*b "4+ 17166670848*b " 3435055166464 *h " 2+32054001696%b
+10001011032, -10670030*b"4-104256000*b " 3-343896192*b " 2-434507328*b-174128940,
109056*h"3+872640*b " 2+1854576*b+953532],

[108640051200*b" 5+356168918016*b" 4+722550647808%h " 3+917502417216%h "2
+693874878768*b+217472034492+809500672*b " 7+16884301824*h "6,
-928120832%b"6-15543484416%b " 5-88027497216*b " 4-239532650496¥b "3
-362311227072%b" 2-279733536288*b-78217486380,

283058176%b " 5+3568167936%h " 4+17166670848*b"3+4-35055166464*b " 2+32054001696%h
+10001011032, -29910016%h " 4-285198336%b " 3-941144832*h " 2-1192807296*b-522937944
1175552*b"3+7773120%b " 2+15307056*b+9246636, -12352*b “2-59616*b-51516],

[-2302193664*b " 4-5961890304*h"3- 9309061728*b " 2-8602258320*b-3740281758
-27262976*b"6-488964096*h "5,



33619968*b" 5+466255872*b" 4+1861180416*b " 3+3660116544%b" 2+3751474824*b
+1351395414, -10670080*h " 4-104256000%b"3-343896192%b " 2-434507328*b-174128940,
1175552%b"3+7T73120*b " 2+15307056*b+9246636,

-47904%b"2-176112%b-170262, 520%b-+990]};

Problem 4.

[[a-1, 24, -11, -1/7, 0,0, 0, 0, 0, 0, 0, 0],

24, a-l, 24, -11, -1/7,0, 0, 0,0, 0, 0, 0],
-11, 24, a-l, 24, -11, -1/7, 0, 0, 0, 0, 0, 0],
-1/7, -11, 24, a-l, 24, -11,-1/7, 0,0, 0, 0, 0},
0,-1/7, -11, 24, a-], 24, -11,-1/7, 0, 0, 0, 0},
0,0, -1/7,-11, 24, a-}, 24, -11, -1/7, 0, 0, 0},
0,0,0,-1/7, -11, 24, a-l, 24, -11, -1/7, 0, O},
, 0, 0, -1/7, 11, 24, a-l, 24, -11, -1/7, 0},
,0,0,0,-1/7, -11, 24, a-l, 24, -11, -1/7],
,0,0,0,-1/7, -11, 24, a-l, 24, -11],
0,0,0,0,-1/7, -11, 24, a-l, 24],
0,0,0,0,0,-1/7,-11, 24, a-]};

il

]

]

il
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Problem 5.

11, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10],

1/2, 173, 1/4, 1/5, 176, 1/7, 1/8, 1/9, 1/10, 1/11],
1/3,1/4, 15, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12],

1/4, 1/5, 1/6, 147, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13],
1/5,1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14],

1/6, 1/7, 18, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15],
1/7,1/8, 1/9, 1/10, 1{11, 1/12, 1/13, 1/14, 1/15, 1/16],
1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 114, 1/15, 1/16, 1/17],
19, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1{16, 1/17, 1/18},
1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19]]

Problem 8.



[[2, -9%y+10, y"2-2%y+3, -5*y " 3+5%y "2-T¥y-9,

By 4-10%y"3-9%y "2-10%y +5, -9*y"5+5*y"3-4%7°2-7%y-8, 0, 0, 0, 0,

[0, 2, -9*y+10, y"2-2%y+3, -5*y"3+-5%y "2-T*y-9, 8%y 4-10%y*3-9*y " 2-10*y+5,
9%y 545y 3-4%y"2-7%y-8, 0, 9, 0],

[0, 0, 2, -9*y+10, y"2-2¥y+3, -5*y " 3+5*y " 2-T*y-9, 8%y " 4-10%y"3-9%y" 2-10*y +5,

-G%y " 5+5¥y 34ty " 2.7¥y-8, 0, 0],

IO, 0,0, 2, -9*y+10, y*2-2%y+3, -5¥y " 3+5%y " 2-Ty.9,

8%y 4-10%y " 3-9*y " 2-10%y+5, -9*y " 5+5%y " 3-4*y " 2-T*y-8, U},

[0, 0,0, 0, 2, 9*y+10, y"2-2*y+3, -5%y " 3+5%y " 2-T*y-9,
8%y"4-10*y"3-9%y " 2-10*y+5, -9*y "5+5%y " 3-4*y"2-T*y-8|,

[5, T*y-T, 3%y "246%y-2, -y "3-0*y "2-6*y+6, T*y " 4-T*y 3-4%y"2-T*y-3,

9%y 5-5%y " 4-5%y " 3-6%y " 2+3%y-3, 0, 0, 0, 0],

[0, 5, T*y-7, -3*y " 2+6*y-2, -y "3-9*y " 2-6%y+6, T¥y 4-T*¥y " 3-4%y " 2-T*y-3,
9*y"5-5%y"4-5%y"3-6%y " 2+3%y-3, 0, 0, 0],

[0, 0, 5, T¥y-7, -3%y " 246%y-2, -y 3-0*y " 2-6%y--6, T*y 4-T*y"3-4*y " 2-T*y.3,
9%y 5-5*y 4-5%y"3-6%y 2+3%y.3, 0, 0,

[0, 0,0, 5, T*¥y-7, -3%y " 2+46%y-2, -y " 3-9%y " 2-6*y+6, T¥y " 4-T*y " 3-4*y " 2-T*y-3,
9%y 5-5%y " 4-5%y " 3-6%y " 2+3*y-3, 0],

[0,0,0,0,5, 7¥y-7, -3%y" 2+6*y-2, -y"3-9%y " 2-6*y+6,

Ty 4-T¥y 3-4%y " 2-T*y-3, 9*y“5-5*y”4-5*y“3-6*y‘2+3*y~3|]

Problem 7.

[1+x°2,%,0,0,0,0,0,0,0,0, 0],
x, 1+x°2,x,0,0,0,0, 0,0, 0, 0],
0, x, 1+x"2,x,0,0,0,0, 0, 6, 0],
0,0,x, 14+x"°2,x,0,0,0,0,0, 0],
0,0,0,x,1+x"2,x%,0,0,0,0, 0],
0,0,0,0,x,14x"2,x,0,0,0, 0],
0,0,0,00,x, 14x°2, x,0, 0, 0],
0,0,0,0,0,0,x, 14x"°2,x, 0, 0],
0,0,0,0,0,0,0,x, 1+x"2, x, 0],
0,0,0,0,0,0,0,0,x, 1+x"2, x],
0,0,0,0,0,0,0,0,0, x, 14+x"2]|;

Problem 8,

[[3%e+15%b, 0, 0,0, 0, 0,0, -6, -3, 6, 3, 3, 0, 0],
0, 2*c+4*b, 0, 0,0, 0, 0, 0, 6, -4, 2, -4, 2, 0],
0,0, e+b, 0,0,0,0,6,-3, 2, -1, 2, -4, 3],
,0,0,eb,0,0,0,0,0,2,-1,-1, 2, 3],

0,0, 0, 2*e-4¥b, 0, 0, 0, -6, 2, 2, 2, -4, 6],
0,0, 0,0, 3%-12*b, 0, 0, -3, -6, 0, -3, 6, -3],
0,0,0, 0,0, 3*-12*b, 3, 0, 0, 0, 6, 0, -6,
-6, 0, 6, 0, 0, 0, 3, 3*e+12*b, 0,0, 0, 0, 0, 0],
6
-4

X

CA)Q

,6,-3,0,-6,-3, 0, 0, 3*+12*, 0, 0, 0, 0, 0},
6, -4, 2,2,2, - 0, 2*e+4*b, 0, 0, 0, 0],
3,2,-1,-1,2,0,0,0,0,0, e+h, 0, 0, 0],
3,-4,2,-1,2,-3,6,0,0,0,0, e-b, 0, 0],
0,2,-4,2,-4,6,0,0,0,0,0,0, 2*-4*h, 0},
0,0,3,3,6,-3,-6,0,0,0,0,0,0, 3*-15*b]|;




Appendix 2: GCD problems

The timings in Table 2 of section 4 are for computing the greatest common divisors of the following
polynomials.

Problem 1.

ged{34¥x"80-91*x"99+70%x"31-25%x " 52+ 20*x " 76-86%x " 44-17*x " 33-6*x " 80-56%x " 54-17,
91¥x"40+64%x"10-21%x"52-88%x " 74-38%x"76-46%x"84-16%x"95-81*x " 72+ 96%x " 25-20)

Problem 2.

g = 34*x719-91*x+70%x"7-25%x " 16+20*x"3-86
ged(g * (64%x"34-21%x"47-126%x "8-46*x"5-16*x " 60-81),
g ¥ (72*x760-26%x " 25-19%x " 23-22%x "39-83%x"52+54*x " 10+81) )

Problem 3.

ged(3427088418+8032938293%x-9181159474*x " 2-0955210536*x " 347049846077 *x " 4
-3120124818%x"5-2517523455%x " 6+5255435973*x "7+ 2020369281 *x " 8-7T604863368*x "9
-8685841867*x" 10-+4432745169%x " 11-1746773680*x " 12-3351440965%x " 13
-580106705%x "14+8923168914*x " 15-5660404998*x " 16-+5441358149*x " 17
-1741572352%x " 18+9148191435%x " 19-4040173788*x " 20+6420433154*x " 21
+980100567*x " 22-212845568%*x " 23+ 526691107 2*x " 24-8800333073*x " 25
-T425750422%x " 26-3801290114%x " 27-7680051202*x " 28-4652194273%x " 29
-8472655390%x " 30-1656540766%x "31+9577718075%x "32-8137446394*x "33
+7232922578%x " 34-+9601468396*x " 35-2497427781%x " 36-2047603127*x 37
-1893414455%x " 38-2508354375%x " 39-2231932228*x " 40,

2503247071-8324774912*x+6797341645%x " 24 5418887080*x " 3-6779305784*x "4

+8113537696%x " 5+2229288956*x " 6+2732713505%x " T+9659962054*x "8-1514449131%x "9
+7981583323%x " 10+3729868918%x " 11-2849544385%x " 12-5246360984*x " 13
+2570821160%x"14-5533328063*x " 15-274185102*x " 16+-8312755945%x " 17
-2941669352*x " 18-4320254985%x ~ 19+9331460166*x " 20-2006491973*x " 21
-7780292310%x"22-4971715970%x " 23-6474871482%x " 24-6832431522%x " 25

-5016229128*x " 26-6422216875%x " 27-471583252%x " 28+3073673916%x " 29

+2297139923*x " 3049034797416*x " 31-+6247010865*x " 32+5965858387*x "33
-4612062748*x " 34+-5837579849%x " 35-2820832810*x " 36-7450648226*x " 37
+2849150856*x " 38+2109912954%x " 39+2914906138*x " 40)

Problem 4.

g == 34271480330%x-91812%x"2-99553*x “3+70499*x "4
-31201*x"5-25175%x " 6-+52555%x " 7+20204*x " 8-76049%x " 9-86859*x " 10
ged{g * (44328-17468%x-33515%x " 2-5801*x " 3+80232*x " 4-56604*x " 5+ 54414*x"6
-17416%x " 74+91482%x " 8-490402%x "0+64205*x " 10+9801*x " 11-21285%x " 12
+52669%x"13-88004%x " 14-74258%x " 15-38013*x " 16-76801 *x " 17-46522*x " 18
-84727%x"19-16565%x " 204+95778*x " 21-81375%x " 22+72330*x " 23+96015%x " 24
-24974*x"25-20476%x " 26-18934*x " 27-25084*x " 28-22319*x * 29+25033*x " 30),

*

(-83248+67974%*x+54189%x " 2-67793%x " 3+81136%x " 4+22293*x " 5+27327*x"6
+96600*x"7-15145%x"8+79816*x " 9+37299%*x " 10-28496%x " 11-52464*x"12
+25708%x"13-55334*x " 14-2742*x " 15+83128%x " 16-29417%x " 17-43203*x " 18
+93315%x"19-29065%x " 20-77803*x " 21-497 17*x " 22-64749%x " 23-68325*x " 24
-50163%x"25-64222%x " 26-4716%x " 27+30737*x " 28+-22072%x “20+90348*x"30) )



Problem 5.

ged(-8472*x" 4%y "10-8137*x" 9%y " 10-2497*x " 4*y " 4-2508*x " 4*y " 6-8324%x " 9*y "8
-6779%x 0%y "6-+2733%x " 10*y "4+7981%x " T*y "3-5246%x 6%y " 2-274*x " 10%y " 3-4320,
15168*x "3*y-4971*x*y-2283%x*y " 5+3074*x "6*y " 10+6247*x " 8*y " 24+-2849%x " 6*y " 7-2039*x"7
-2626%x" 2%y "7+9220%x" 6%y " 5+2404%y "5+ 1387*x " 4*y "8+5602%x " 5*y " 2-6212*x " 3%y "7-8561)

Problem 6.

g = -19%x 4%y " 44+25%y "9+ 54 x*y "04-22%x " T*y " 10-15%x " 0%y " 7-28
ged( g * (91%x" 2%y 94+10%x"4*y"8-88*x*y "3-T6%x " 2-16%x " 10*y +72%x " 10*y "4-20),
g * (34%x79-09%x 9%y "3-25%x " 8%y "6-T6%y *7-1T*x"3¥y " 5+89%x" 2%y "8-17) )

Problem 7.

ged( 6713544209*x"9-+8524023038*x " 3%y "3*2 " T+6010184640*x*2*7
+4126613160%x" 3%y " 4%2°9+2169797500*x " 7*y " 4*2"0-+2520013106%x 8%y "5*z"3
+7633455535%y*2 " 3+ 1159974309%x" 2%z " 4+9788850037%y *8%2" 9+3751286109*x 3%y~ 4*2"3,
3884033886%x " 6%2"8+7700443539*x*y " 9% 6+6366356752*x " 9%y “4%4°8
+6864934459%x " 3%y " 2%2°6+2233335968*x "4 ¥y "0%2 " 3+ 2839872507 *x 9%y 3%z
+2514142015*x*y¥2 241788891562 x " 4¥y "6%2°6-+9517308707*x 8%y "T*2"2
+7918789924*x " 3*y*2" 6-+6054956477*x 6%y 3*2°6)

Problem 8.

g = u 3%(x"2-y)*z" 2+ (u-3%0" ¥ x )ty *zou 4 ¥xty +3

ged(g * ({y " 2+x)*2" 24w 6% (x*y+x"2)*2-y+5), g * ([y"2-x)* 2" 2+u"5¥(x*y-x"2)*2+y+9) )
Problem 9.

g = 34%u 2%y 2%2-25%u " 2*v¥r " 2-18%vEx " 2*2° 2-18*%u" 2¥x " 2¥y* 2+ 53+x"3

ged( g * (-85%urv 2%y 2%y 2.25%u*vExtyy

-B4*uT 2%y 2%y ¥4 2T 2Ry 2%y " 2%-53 utx*y " 2% +34%x " 3),
g ¥ 48%x"3-90%u*x" 2%y " 2¥-60*x*y¥2-Th utvix*y ¥1 " 2-43%u  2¥v 491 U 2%V 2%y " 2%;) );

Problem 10.



ged( -9955* v 9*x " 3%y "4*2"8+2020%v*y “T*z " 4-3351%v" 5*x” 10%y"2%2°8
~1741%v " 10%x " 2%y " 0%z 6-2128%y " 8%y %1 3-T680*v " 2%y " 4%2" 10-8137*v " 9*x " 10%y "4*7" 4
-1893%v 4% x 4%y "6+6TOT* v 8¥x*y "0%2 "6+ 2733*v " 10%x " 4*y "0%2"7-2849%v " 2¥x 6%y 2%2°5
+8312%v"3*x " 3%y " 10%2"3-7780%v * 2¥x*y*z" 2-6422*y" 5¥x"T*y"6%2°10
+6247* v 8¥x 2%y 8%z "3-T450%v " T¥x 6%y 7¥2" 4+3625%x " £*y " 2%1" T+9229%v 6%x" 5%y 6
-112%v 6% %" 4%y "8¥ 2 T-7867*v " 5*x"B*y " 5%z " 2-6212%v " 3*¥x "T¥2" 5+8699%v “8*x" 2%y 2%z°5
+4442%y 10X " 5%y 4*2+1965%v " 10%y " 3%2 " 3-8006*v " 6¥x*y " 4%z 54+-5552%x " 10%y "4
+3055%v " 5*x" 3%y 6% 2" 2+6658%v " T*x " 10*2"6+3721%v"8*x " 0%y " 4¥2"8+9511 *v*x 6%y
+5437*y " 3¥x 0%y 0*2 T-1957 v "6¥x "4¥y*¥1 " 349214%y 3¥x 9%y 3%z T
+7273%v " 2¥x" 8%y 4%2" 10+ 1701%x " 10¥%y " 7*2" 24 4944%v " 5*x "5y "8*1"8
-1935%v 3% X" 6%y 10%2 " 7+4029%x 6%y " 10%2" 3+9462%v " 6*x" 5%y " 4*2°8-3633*v " 4*x*y " T¥1"5-1876,

-5830%v " T¥x 8%y *2 2-1217%v " 8¥x¥y " 2%2 " 5-1510%v " 0*x "3*y" 10%2" 1047036y 6*x"8*y “3%2"3
+1022% 0%y "3%2" 8+3791%v " 8*x " 3%y " T4+6906*v “6*x*y*1" 104+ 117*v " T*x " 2*y "4¥1°4
+6654%v " 6*x " 5*y " 2%z 3-7302*v" 10*x 8%y " 3-5343%v " 8*x "5y " 0%;.2244*y "9*x"3*y 8%z°9
-3719%v " 5*x" 10*y " 6%z 8-+2629%x " 3%y " 2*3" 10+8517*x " 9*y " 6%z 7-9551%v “B5¥x"6*y 6%1"2
-7750%x"10%y " 7¥2"4-5035%v " 5¥*x " 2%y " 5*z-5067*v " 9*x " 5%y 9% 5-851T*v " 3*x " 2*y " T*2°6
-2668%v"10%y " 9%z 4+ 1630%v " 5*x " 5¥y*2 "8+ 0000%v " T*x 0%y " 4%3" 3-5358*y " 0¥ " 5¥y 6% 2
+5766%y " b*y " 3*2"4-3624*v*x " 4*y " 10*2" 10+ 8839*v "6¥x"9¥y " 10%z"4+-3378*x"T*y "2%2"5
+T582%v " T*x*y 8%y 7-85%v*x "2y 9%z 6-0495% v 0¥x " 10%y "6*z " 3+1983*v " 0*x " 3*y
-4613%v" 10¥x 4%y "T¥2"64+5520%y " 10¥x*y 6+ 5030%y " 4¥x" 5%y " 4%z 0.9202%x ¥y "3%2" 9
-4988*y " 2*x 2%y 10*z "4-8572%v 9% x " T*y " 10%z" 10+4080%v "4¥*x" 8%7°8-382%v " 9*x 9%y 2¥z" 2-7326)



Appendix 3: Solve problems

The timings in Table 3 of section 4 are for solving the following systems of equations.
Problem 1.

solve({-22319*x0+25032*x1-83247*x2+67973*x3+54189*x4
-67793*x5-+81135*x6+22293*x7+27327*x8+96590*x0-15144,
79815*x0+37200*x1-28495*x2-52463*x3+25708*x4
-55333*x5-2742*x6+83127*x7-2041T*x8-43202*x9+ 93314,
-29065*x0-77803*x1-497 17T*x2-64748*x3-68324*x4
-50162*x5-64222%x6-4716*x7+30737*x8+22971*x9+90348,
62470*x0+59658%x1-46120*x2+58376*x3-28208*x4
-74506%x5+28491*x6+ 21099*x7+29149*x8-20387 *x9+36254,
-98233%x0-26263*x1-6322T*x2+34307*x3+92204*x4
+10148*x5+3192*x6+24044*x7-83764¥x8-1121¥x9+13871,
-20427*x0462666*x1+27330*x2-78670*x3+9036*x4
+56024*x5-4525%x6-50589*x7-62127*x8-32846*x9+ 38466,
-85609*x0+5424*x1+-86992*x2+50651*x3-60850* x4
-55084%x5-6061%x6+44417*x7+92421*x8+6701*x9-9459,
-68255*x0-+19652*x1+92650*x2-93032*x3-30191*x4
-31075%x5-89060*x6+12150*x7-78089*x8-12462%x9+1027,
55526%x0-91202*x1-+91329*x2-25919*x3-98215*x4
+30554*x54-913*x6-35751*x7+17948*x8-58850*x9+66583,
40612%x0+84364*x1-83317*x2+10658*x3+37213%x4
+50489%x5472040%x6-21227*x7 +60772*x8+95114*x9-68533});

Problem 2.

solve({B 1¥x30-96*x21-45, -36*x4+59*x29+26, -59*x26+5%x3-33, -81*x19-92*x23-21*¥x17-9,
-16%x20-13%x22422%x24 483, 47*x4-4T*x14-1 5%%26-40, 83*x30+70*x17+56%x10-31,
10*x27-90*x0+52*x21+52, -33*x20-97*x26+-20*x6-76, 97*x16+41*x8-13*x1 2466,
16*x16-52%x10-73*x28+49, -28*x1-53*x24-x27-67, -22*x26-20%x24 +73*x1048,
88*x18+61%x19-98¥x9-55, 99*x28-01*x26+26*x21-95, -6%x18+25%x7-77T*x2+99,
28*x13-50¥x17-52%x14-64, -50*x20+26*x114+93%x2+77, -T0*x8+74*x19-94*x26+86,
~-18*x18-2%x16-79¥x23+91, 36*x26-13*x11-53*x25-5, 10*x7+57*x16-85%x10-14,
-3¥x27+44%x4+52%x22-1, 21*x1 1+20*x25-30%x4-83, 70*)&2—97*){19—41*){26—5@,
-51*x8+95%x12-85*x26+45, 83*x30+41*x12+50*x2+53, -4%x26+69*x8-58*x5-95,
59%x27-78*x30-66*x23+16, -10*x20-36*x1 1-60*)(1-59}];

Problem 3.



solve({115%x40+566*x41-378*x42+11401086415/6899901, 560*x0-45*x1-506*x2-11143386403 /8309444,
-621*x1-328*x2+384*x3-+1041841 /64675, -856*x2+54*x3+869%x4-41430291/24700,
596*x3-608%x4-560*x5-10773384 /11075, -61*x4+444*x5-+924*x6+4185100079/11278780,
67¥x5-95%x6-682*x7+903866812/6618863, 196*x6+926*x7-930*x8-2051864151/2031976,
-302*x7-311*x8-890%x9-14210414139/27719792, 121¥x8-781*x9-125*x10-4747129093/39901584,
10*x9+555*x10-912*x11+32476047 /3471829, -151¥x38+732*x39- 307*x40+327281689/173242,
013*x10-259*x11-982*x12-18080663 /5014020, 305%x11+9*x12-357%x13+1500752933 /1780680,
179*x12-588*x13+665%x14+-8128189/51832, 406*x13+843*x14-833*x15+201925713/97774,
107*x14+372*x15+506*x16-5161192791 /3486415, 720*x15-212%x16+607*x17-31529295571 /7197760,
951*x16-685*x17+148*x18+ 1034546543 /711104, -654*x17-809*x18+543*x19+1942961717 / 1646560,
-448¥x18+673*x19+702*x20+856422818/1286375, 306¥x19-196*x20+218*x21-4386267866,21303625,
-233*x20-796*x21-373%x22-85246365829 /57545250, 921*x21-368*x22+730%x23-93446707622/ 51330363,
-424%x224-378¥x23+727*x24-6673617931 /3477462, -633*x23+565*x24-208*x25+-8607636805 4092942,
971*x24+170%x25-865*x26-25224505 /18354, 937*x25+333*¥x26-463%x27-339307103 /1025430,
494*x26-8*x27-50%x28+57395804/34695, 530*x27+631*x28-193*x20-8424597157 /680022,
-435%x28+252%x29+916*x30+ 196828511 /19593, 327*x20+403*x30-845*x31+8458823325 /5927971,
246*x30-+881*x31-394*x324 13624765321 /156546826, 946*x31+169*x32-43*x33-53594199271/126093183,
-146*x32+503*x33-363*x34+66802797635 /156234909, -132*x33-686*x34+376*x35+8167530636/902635,
-38*x34-188*x35-583*x36+1814153743/1124240, 380*x35-+562%x36-688*x37-12251043951 /5513560,
-T69*x37-474%x38-89%x39-2725415872/1235019, -625*x36-122*x37+468*x38+7725682775 4506736,
839*x39-+936*x40+703*x41 41912091857 /1000749, -314*x41+102*x42+700*x43+7290073150,/8132873,
-005*x42-454¥x434-524%x44-10110944527 /4538233, 379*x43+518*x44-328%x45-2071620692 /519645,
284*x44-979%x45+690*x46-915987532/16665, 108*x45-650*x46-763*x47+ 548801657 /11220,
974*x46+12*x47+410%x48-3831097561 /51051, -498*x47-135*x48-230*x49-18920705/9282,
665*x48+156*x49+34¥x0-27714736 /156585, -519*x49-366*x0-730*x1-2958446681 /708985});

Problem 4.



solve({ -b*k8/a+c*k8/a, -b*k11/a+c*k1l/a, -b*k10/a+c*k10/a+k2,
-k3-b*k9/a+c*k9/fa, -b¥k14/a+c¥k14/a, -b*k15/a+c*k15/a,
-b*k18/a-+c*k18/a-k2, -b*k17/a+c*k17[a, -b*k16/a+c*k16/a+k4,
-b*k13/a+c*k13/a-b¥*k21 fa+c¥k21 /a+b*k5/a-c*k5 [a,
b*k44/a-c*k44/fa, -b*k45 /a+c*k45/a, -b*k20/a+c*k20/a,
-b*k4d/a+c*kad/fa, b*k46/a-c*k46/a,
b"2¥k47/a" 2-2¥b¥c*k4T fa" 2+e 2¥k4AT 272,
k3, -k4, -b*k12/a+c*k12/2-2*k6/b+c*k6/b,
-b*k19/a+c*k19/a+a*k7/c-b*kT [c, b*k45/a-c*k45/a,
-b*k46/a+c*k46/a, -k48+c*k48/a+c*k48/b-c* 2*k48/(a*b),
-k49+b*k49/a+b*k49/c-b"2*k49/(a*c), a*k1/b-c*k1/b,
a*k4/b-c*kd /b, a*k3/b-c*k3/b+k9, -k10+a*k2/b-c*k2/b,
a*K7/b-c*k7 /b, -k9, k11, b*k12/a-c*k12/a+a*k6/b-c*k6/b,
a*k15/b-c*k15/b, k10+a*k18/b-c*k18/b,
-k11+2*k17/b-c*k17 /b, a*k16/b-c*k16/b,
-a*k13/b+c*k13/b+a*k21 /b-c*k21 /b+a*k5 /b-c*k5 /b,
-a*kd4/b+c*ka4/b, a*k45/b-c*k45/b,
a*k14/c-b*k14/c+a*k20/b-c*k20/b, a*k44/b-c*k44/b,
-a*k46/b-+c*ka6 /b, -KAT-+*k4T [a+c*kaT [b-c” 24KAT [(a*D),
a*k19/b-c*k19/b, -a*k45 /b+c*k45/b, a*k46/b-c*k46/b,
a"2¥k48 /b 2-2%a*c*k48 /b 2+ 2%k48/b2,
-k49-+2*k49/b+2*k49/c-a"2%k49/(b*c), k16, -k17,
-a*klfe+b¥k1fc, -k16-a*k4/c+b*k4/fe, -a*k3/c+b*k3 /¢,
k18-a*k2/e+b*k2/c, b*k19/a-c*k19/a-a*k7 [c+b*kT7 [c,
-a*k6/c+b¥k6 [c, -a*k8 c+b*k8/c, -a*k11fe+b*k11/c+k17,
-a¥k10/c+b*k10/c-k18, -a*k9/c+b*k0 /e,
-a*k14/c+b*k14/c-a*k20/b+c*k20/b,
-a*k13/c+b*k13 fc+2*k21 fe-b*k21 fc-a*k5/c+b*k5/c,
a*k44/c-b*kddfe, -a*k45 fc+b*k45 fc, -a*kd4/c+b*k44/c,
a*k46/c-b*k46/c, -k47+b*k47 [a+b*kd47 fc-b"2¥k4T f(a*c),
-a*k12/c+b*k12/c, a*k45 c-b*k45/c, ~a*k46/c+b*kd6/c,
-k48+a*k48/b+a*k48/c-a"2¥k48 f(h*c),
a"2%k49/c"2-2*a*b*k49/c" 2+b"2*k49/c" 2, k8, k11, -k15,
k10-k18, -k17, k9, -k16, -k29, k14-k32, -k21+k23-k31,
-k24-k30, -k35, k44, -k45, k36, k13-k23+k39, -k20+k38,
k25+k37, b*k26/a-c*k26/a-k34+k42, -2*k44, k45, k46,
b*k47 /a-c*k47 [a, kdl, kdd, -kd6, -b*k47/a+c*kAT/a,
k12+k24, -k19-k25, -a*k27 /b+c*k27/b-k33, k45, -k46,
-a*k48/b+c*k48 /b, a*k28/c-b*k28/c+k40, -k45, k46,
a*k48/b-c*k48/b, a*k49/c-b*k49/c, ~a*k49/c+b*k49/c,
-k1, -k4, -k3, k15, k18-k2, k17, k16, k22, k25-k7,
k24+k30, k21+k23-k31, k28, -k44, k45, -k30-k6, k20+k32,
k27+b*k33/a-c¥*k33/a, k44, -k46, -b*k47/a+c*k47/a, -k36,
k31-k39-k5, -k32-k38, k19-k37, k26—a‘k34/b+c*k34/b—k42,
k44, -2*k45, k46, a*k48/b-c*k48/b, a*k35c-b*k35/c-k41,
-k44, k46, b*Kk47 [a-c*k47 [a, -a*k49/c+b*k49/c, -k40, k45,
k46, -a*k48/b-+c*k48/b, a*k49/e-b*k49/ec, k1, k4, k3, -k8,
-k11, -k10+k2, -k9, k37+k7, -k14-k38, -k22, -k25-k37, -k24+k6,
-k13-k23+k39, -k28+h*k40/a-c*k40/a, k44, -k45, -k27, -k44,
k46, b*k47 fa-c¥k47 fa, k29, k32+k38, k31-k39+k5, -k12+k30,
k35-a*k41/b-+e*k4l /b, -kdd, k45, -k26-+k34+a*k42/c-b*k42/c,
k44, k45, -2*k46, -b*k47 [a+c*k47 2, -a*k48[b+c*k48/b,
a*k49/c-b*k49/c, k33, -k45, k46, 2*k48/b-c*k48/b,
-a*k49/c+b*k49/c },



{ k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15,
k16, k17, k18, k19, k20, k21, k22, k23, k24, k25, k26, k27, k28, k29,
k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k40, k41, k42, k43,
k44, k45, k46, k47, k48, k49 } };

Problem 5.

solve {{2*a3*b3+a5*b3+a3*b5, a5*b3+2*a5%*b5+a3*b5, a5*b5, a2*h2, ad*bd,
a5*b1+b5+a4*b3+a3%b4, a5%b3+a5*b5+23*b5+a3*b3, a0*b2+b2+a4*b2+a2*bd+c2+22*b0+22*b1,
a0*b0+20*b1+a0¥b4+23*b2+b0+bl+bd+24*b0+a4*bl+a2*b5+a4*bd+cl+cd+ab*b2422*h3+0,
-14+a3*b0+a0%b3+a0*b5+2a5*b0+b3+b5+a5*bd+a4*b3+a4*b5+a3*hd +25*b1+a3*b1+c3+cb,
b4+a4*b1, a5*b3+a3*b5, a2*b1+b2, a4*b5+a5*b4, a2%¥b4+ad*b2,
a0*b5+a5*b0+a3*b4+42%a5%b4+a5%b14+b5+24*b3+2*a4*b5+c5,
a4¥b0+2%a4*b4+a2*b5+b4+a4*b1+a5¥b24+20*bd+c4,
€3+20*b3+2*b3+b5+24*b3+a3*b0+2*a3*b1+a5*b1+a3*h4,
¢1+a0*b1+2*b1+24*b1+a2¥b3+b0+a3*b2+b4});

Problem 8.

solve({2*a3*b3+a5*b3+a3*b5, ab*b3+2*a5*b5+a3*b5, a4*b4, a5*b3+ab*b5+a3*b5+a3*b3,

b1, a3*b3, a2¥b2, ab*b5, 25%¥b1+b5+a4*h3+a3*b4, a0*b2+b2+2a4*b2+2a2*h4+c2+22¥b0+a2*b1,
b4+a4*bl, b3+a3*bl, a5*b3+a3*b5, a2¥b1+b2, a4*b5+a5*b4, a2*bd-+ad*b2,
20%b0+a0*b1+20%b4+2a3*b2+4b0+b1+b4+a4*b0+ad*b1+a2%b5+a4*ba+c1+c4+ab*hb2+a2¥b3+c0,
-1423*b0+a0%b3-+a0¥b5+a5*b0+b3+b5+a5*b4d+a4*b3+a4*b5+a3*b4+a5%b1+a3*bl+c3+c5,
a0*b5+a5*b0+a3*b4+2%a5*b4+a5*b1+b5+a4*b3+2*a4*b5+c5,
24*b0+2%a4*b4+2a2*b5+b4+a4*b1+425*b2+420*bd+c4,
¢3+20*b3+2*b3+b5+24*b3+a3%b0+2*a3*b1+ab*bl+a3*b4,
¢1+a0*b1+42¥b1-+a4*b1+a2*b3+h0+a3*b2+b4});



Appendix 4: Various problems.

The timings presented in Table 4 of section 5 are for computing various problems. The problems are
presented here as they were coded in maple. Timings include print time as well execution time unless oth-
erwise stated.

Problem 1.

1000%;
quit

Problem 2.

a:==13"1000;
b:=14"960;
c:=a/b;

quit

Problem 3.

# evaluate an arcsin to 50 digits
evalf( arcsin(.71l]263350469851927863258652083‘79142031949324761436], 50);
quit

Problem 4.

# Read in a 400 term random polynomial generated by the following program

¢ ;= rand{-10"4..10"4): # this produces random coefficients in the range given
e ;== rand(0..6): # this produces random exponents in the range given

a = sum(‘c(if*u"e{i)*v"e(i)*x"e(i}*y "e(i)*z "e(i) ,i=1..400}):

save a,poly400;

quit

Problem 5.

# do 1000 assignments in a for loop
forito 1000 do a :=i od:
quit

Problem 6.

# Solve a sparse linear system.

solve({-7781*x6-11491*x4-472, 3427*x18-0182*x1+7050*x7-2518,
5256*x13-7605%x2+4433*x9-3352, -580%x19-5661*x16- 1742*%x20-4940,
6421*x11-2129%x16-8801*x3-3801, -7680*x6-8473*x04-9578%x2+7233,
~8325%x17+5419%x4+8114*x13+2733, T094*x8-2048*x9+-2503,
9660*x9-+7982*x14-2850%x5+2571, -5534*x 10+8313*x8-4320*x20-2007,
3074*x13+9035*x17+5966*x6+5838, -2821*x3+2849%x13+2015*x8+3626
-0824*x8-6323*x14+9230*x124-319, 2405%x2-112*x12-2043*x17+2733,
-7867*x11+5603*x10-5059%x4-3285, 3847*x2+4542*x19-+5965%x4-5599,
-606%x15+9243%*x11-946*x4-+1965, 9266*x1-30 19*x7-8906*x12-7809,
-1246%x11-+5553*x1+9133*x8-9822, 3056*x11-3575*x12-5885*x17+ 4[161});
quit

i

Problem 7.



# Find -diff(u,z), from page 510, Lecture Notes in Computer Science Vol. 72,
# “Symbolic and Algebraic Computation®, edited by Edward W. Ng,
# Symbolic Computing with Compression of data structures: General Observations
# and a case study, by J.A. Campbell and Simon
# a=alpha
# b=beta
# c=chi
# g=gamma
# h=phi
# I=lambda
# n=eta
# p=rho
# r=(x"2+y 2+2°2)"(1/2);
# s=sigma
# t=theta
# where u is:
h := arctan(y/x) - arctan{n/x} + arctan(x*r*sin(t)/(x"2*cos(t)+y*n));
1:= y*sin{t)-z*cos(t);
= y*sin(t)+z*cos(t);
-y*cos(t}-z¥sin(t);
y*cos(t}-z*sin(t);
(x"2+y 2+272)"(1/2);
b3*(-x*sin(t)*In(r-¢)+z*h);
-b2*cos(t)/sin{t)” 2*( 2*(1-s}*x*cos(t)* Infr-z)
- (1-2*s+cos(t) 2)*x*In(r-c) - h¥(y*cos(t) + (1-2*s)}*n));
a 1= b1*cot(t)*(c*In(r-c)+2*(L-s)*r-+(1-2*s)*z*In(r-z)
+2*(1-s)*(n*In(r-c)-y *In(r-z)-x*h}*cot(t));
u i= 1/(4*Pi*(1-s))*(b1*(1-s)* (arctan(n/x)-arctan(b/x)+arctan(x*r*sin(2*t) /
{n*p-x"2*cos(2*t))))
+ 1/2*b1*(x*n/(r*(r-c}) - x*p/(r*(e-1))) + z*diff(a,x,2) + (1-2*s)*diff(a,x)
+ 1/2¥b2%cos{t)*(-x"2/(r* (r-c))x "2/ (r* (r-1))+(1-2%s) *In((1-¢)*{r-1}))
+ (1-2%s)*diff(b,x) + z*diff(b,x,2)
+ 1/2*b3*sin(t)*(-x"2/{r*(r-c)}x"2/{r*(r-1)) + (1-2*s)*In((r-c)*(r-1)))
+ 2*b3*y*(1-s)/(r-2) + 2*diff(g,x,z) + (1-2%s)*diff(g,x));
uz 1= -diff{u,z);
quit

=m = mw o
g

Problem 8.

# Factor the integer 16254399361 (89137 * 182353).
ifactor(16254399361);
quit

Problem 9.

# Compute a sparse series to order x"64
taylor(sin(x"5-3*x "8-+7*x"20+13%x"59),x,64);
quit

Problem 10.



# Compute and print the f and g series to order 16.
# f and g series to order N

# m=mu s=sigma e=eps

printlevel:=-1;

N = 16;

fi=1;g:=0;

print(f0={); print(g0=g);

ui=-3*m¥s; v:i= e-2%:"2; w 1= -s*m-2*s%e;
for n to N do

expand (w¥diff(f,m)+v*ditf(f,s)+w*diff(f,e}-m*g);
g = expand{u*diff{g,m)+v*diff(g,s)+w*diff(g,e}+);
fi= 5
print(f.n=f); print{g.n==g)
od;

quit

Problem 11.

# An indefinite summation
sum(i*12,i="0..0-1);
quit

Problem 12.

# Find an indefinite integral
int(x"30*exp{x),x);
quit

Problem 13.
expand( (a+b+c+d+e+f+g+h) * 4);
quit

Problem 14,

f := proe(n) if n=0 then 1 else f(n-1) fi end;
£(100);
quit

Problem 15.



# SIGSAM Problem #3: Reversion of a double series, solved to
# order 4 by Hall’s second method.
# N is the maximum order
printlevel := -1;
N :=4;
v0 = 1; vg0 =1,
for n to N do
v =0; vgn: =70,
0
for k to n do
for s from 0 to k do
“+1[k-s,5]*x"s*y " (k-5)*subs(g=b*s-+2* (k-s5),vg.(n-k)}
od
od;
v.n =
0;
forito n do
“+({g+1)*i-n)*v.i*vg.(n-i)
od;
vg.n = “/n;
c.n := mapf{taylor,taylor(expand(subs(g=-2*b,vg.n}),y,n),x,n);
print(evaln(c.n)=c.n)
od;

quit



	

