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This paper describes two fundamental aspects of the solution of systems of algebraic
equations: the use of substitution and the use of a complexity function to determine, at
each step, which of several methods / equations / unknowns to use. These techniques, which
have received little attention in the past, can be viewed as in the interface between
mathematics and software. An implementation of these techniques in MapleCha83 jg
described. Timing results comparing the Maple, MacsymaM74 and Reducef®27! symbolic
algebra systems on a range of sample problems are presented. The proposed method proves
to be superior to other techniques.

1. Introduction

Solving large systems of algebraic equations is, in general, an almost hopeless task for
most symbolic algebra systems. Even modest system of equations, which can be expressed in
a very few lines, simply cannot be handled by most systems.Rim84 Gon83,Stes4

Most annoying is the fact, that in some cases, manipulation by a human produces a
solution with little difficulty. What is going wrong? Without suggesting that we plunge into
artificial intelligence, what we can say is that most present day algorithms are not poly-
algorithmsCh284 hut somewhat general algorithms that will attack any type of problem with
the same technique.

Let us use as an example the system of equationsGon83

asby = 0, aghy = 0, azby =0
agh;+bs+asbsz+azb, = 0,
agbotbytabotagh+cotagbgtash; = 0
agbotaghitagbtaszbotby+b+btabotasdtaghs+ab+eiteytashstagbstcy = 0
asbotaghstagbs+aghg+bs+bstasbyt+abstasbs+asb+ashi+azbi+ces+cy = 1
agbstagbstasbs+azhs = 0
agbs+2aghs+azbs; = 0
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agbstagbotasb+2agb+ash+bs+abs+2a,bs+cs = 0
agbo+2a b tasbsg+bytad +ashbotaghytcy, = 0
asbytadby = 0, agbgtaghy, = 0, 2azbztazbst+azby = 0
c3tagbs+2b3+bs+abstazbg+2asb +ash;+ashy, = 0
c1t+agh+2b14+ab+asbs+bo+aszhb,+by = 0
agby+by = 0, aghstazby = 0, bytab;y = 0
by = 0, azhy = 0, bgtagh; = 0

This system' is not linear, and it is overdetermined. Applying the standard resultant
method is hopeless (MacsymaM©s74 had not finished after 10 hours CPU). Yet, by inspection,
we find the sequence of simple substitutions b;=0, b,=0, b3=0, b,=0, bz;=0, c;=—b, which
lead to the system:

asbgtcy = 0
agbgtagbytcstcg = 1
agbotcs = 0, cgtagzhy = O
agbotasbogtcytcy = 0
cotaghy = 0

which can now be solved directly, or still more substitutions can be tried. Even better would
be to observe that the 2nd, 3rd and 4th equation cannot be solved simultaneously, and hence
the system has no solution. One of the goals of this paper is to exploit the method suggested
by this example, namely solving systems of equations by substitution. The challenging part
is of course to decide what substitutions to make, and in which order to make them.

The following two equations come from of a polynomial system (Allaway) with 21 equa-
tions in 18 unknowns and two free parameters z and y.

oo x 1 a3

2t33 - 2t22 * 6x 6t44

7 3y 8z 3ty 9ty f39

=0

2z 2z tgy | 2tgy | 20g 2l

The remaining equations are defined in Appendix 2. They are similar in structure to the
above but range in size up to 110 terms. This system is much too difficult to solve by hand,
yet our method of substitution can be employed to solve it relatively quickly. We believe
that no other system is able to handle this particular problem at this time.

t These kinds of polynomial systems arise in numerous places. This example is part of the
proof that there is no method for approximating the inverse of a number that uses only two
multiplications and achieves third degree or higher. Many complexity theorems of the form
“There is no formula using ... to do ...” give rise to similar systems.



2. A Repertoire of Actions.

The first proposal in this paper is to attack a given system of equations with a large
repertoire of solving techniques, not just a single method. The second proposal is to perform
the selection of the technique to apply with the aid of a complexity function and an ordering
of all the applicable techniques. The complexity function will, at each step, select the sim-
plest equation/unknown to attack. Whilst further considerations about the complexity func-
tion itself, about the size of the repertoire or about the relative ordering of the techniques
may be made, we are completely convinced about the usefulness of this general approach.

The main repertoire of actions is:

(a) solving an equation for an unknown then eliminating that unknown by substitution into
the remaining equations.

—
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solving systems of linear equations.

factoring the equations to split the system into one or more simpler subsystems.
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solving systems of polynomial equations.

(4]
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global considerations for invalid or unwanted solutions.

This classification can be subdivided further.

Solving one equation in a single unknown and substituting the solution for that unknown into
the remaining equations.

(al) solving the equation z = 0.

(a2) solving the equation z = k, where k does not contain any unknowns being solved for,
that is, for the solving function k is to be considered a ‘“‘constant’ expression.

(a3) solving the equation ax = expr, where a is a rational and expr is any expression (possi-
bly involving unknowns).

(a4) solving the equation kz = expr, where k is a constant expression and expr is any
expression (possibly involving unknowns).

(a5) solving the equation expr; z = expr,, where expr; and expr, are any expression (possi-
bly involving unknowns).

(ab) solving other non-linear equations

For systems of linear equations (possibly sparse) we consider three cases. These are dis-
cussed in detail in a later section:

(b1) solving a system of linear equations with coefficients polynomials over the rationals. A
primaitive fraction-free method is used here.

(b2) solving a system of linear equations with floating point coefficientst .

(b3) solving a general system of linear equations by Gaussian elimination.

Equations may be factored by:
(c1) being factored on input

t Linear systems with floating point coefficients necessitate a separate algorithm because of
numerical stability considerations. This is not discussed further here.



(¢2) by an explicit factorization
(c3) by the (implicit) content computation in z for case (a5)
(c4) when eliminating common geds with the inequalities

The purpose of factoring equations is to split the system of equations into one or more
simpler subsystems. Although we may generate an exponentially large number of subsys-
tems, this is still desirable for two reasons: the total number of solutions remains the same,
but the subsystems will be considerably simpler to solve and secondly, the user may only be
interested in obtaining only one (or only a few) solution, and after obtaining the desired solu-
tions, we can stop.

For systems of polynomial equations we currently use

(d1) a Grébner basis algorithm using the pure lexicographical ordering.Buc84,Cza86 The puyre
lexicographical ordering is used because generally it separates the variables. This
greatly simplifies the back-substitution process.

(d2) the elimination method based on resultants K08l We use the resultant method for sys-
tems of two equations and when we can guarantee that it will not introduce spurious
solutions.

3. A Complexity Function.

The job of the complexity function is to select at each step the best technique to apply.
We compute for each unknown in each equation a complexity value and, select the equation
/ unknown with lowest complexity. Of the techniques mentioned above, there are three gen-
eral criteria that yield a good ordering for the complexity function:

(1) a linear dependence is preferred over higher degree dependences.

(2) the number of other unknowns involved, number of other parameters involved and
total size of the expression. The higher these quantities the more “complex” is likely to
be the substitution. The relative weight of these should be as given. For example the
current complexity of expressions for many types of equations is computed as

500X #unknowns + 50X #parameters + Size
For example, the equation
r=ay +c
will be preferred over
z=ay +bz+c

Note that the number of other unknowns involved is kept as low as possible to preserve
sparsity (when the system is sparse).

(3) a non-splitting substitution is preferred over a splitting substitution. A splitting sub-
stitution is one that generates two or more systems to solve. For example,
expr x = expry generates a split, that is, x =eapr, /eaxpr,, expr;#0 and expr,=0,
exproy=0. Equations which are products of terms involving unknowns will also generate
a split. Splitting may cause an exponential explosion on the number of systems of equa-
tions to be solved.

The splitting of systems of equations poses two problems: firstly, repeated solutions could be
generated; if the solutions are identical there is no difficulty, but typically the duplication is
more subtle or it becomes a duplication of a special case of a more general solution.
Secondly, how do we order splits according to their type and branching factor?
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The first problem is solved by the introduction of inequalities together with the equa-
tions. In other words, the objective of the solver becomes: determine an assignment for the
unknowns that satisfies all the equations but none of the inequalities. The use of inequalities
provided an additional feature at the external user interface, namely the ability to pose sys-
tems of equations and inequalities. The user may pose inequalities to reflect constraints on
the problem, to avoid singularities or to reduce the complexity of solving by eliminating
trivial solutions. Internally the solver generates inequalities to avoid repeated computation
for equations that split and for denominators that contain unknowns.

Splits are ordered by the complexity of their simplest factor for products of equations.
For example, the equation xy2 = 0 is preferred over (z+z2)(z+y) = 0.

The first counterintuitive situation occurs with factors which have similar complexities
but different branching factors. For example, which equation is preferred between ryz =0
and vw =0 ? Assuming some uniformity, in the sense that substituting any of the vari-
ables for 0 will give equally-complex systems, it can be shown that the highest order branch-
ing factor is preferred over the lower order branching. This is mostly a consequence of the
use of inequalities.

4. The Maple Solve Function.

The function solve in Maple solves systems of algebraic equations. Other solvers exist
such as dsolve for solving differential equations, rsolve for solving recurrences, msolve for
solving equations over finite fields, etc. Here we discuss the syntax, code organization, cru-
cial implementation considerations and some global considerations with regard to dealing
with unwanted and invalid solutions of the solve function.

A call to solve consists of the system of equations followed optionally by the unknowns
to be solved for. The system of equations is specified as a set of equations, inequalities or
expressions. If an expression is specified, it is assumed that the expression must be equated
to zero. If no unknowns are specified, it is assumed that all indeterminates occurring in the
equations are the unknowns. A further optional third argument of the form MaxSols = n
may be used to limit the number of solutions computed.

For example, a typical call might be
solve( {x"2-y"2=a, x+y+a=23%b, x <> 3*b}, {x,y});
which yields:

a’*—6ab+9b’—a a’—6ab+9b%+a
{y = - T = — }
2a—6b ’ 2a—6b

The three main components of solve are, scalar, linear and gensys. A single equation
in a single unknown is solved by the scalar solver (includes solutions to irreducible polynomi-
als up to degree four). For systems of linear equations, the linear solver is called. For sys-
tems of non-linear equations, the gensys (general systems) routine is called. The gensys rou-
tine embodies all of the techniques mentioned in the previous section, and makes use of the
function complexity to decide which of the techniques to apply at each step. Internally, the
notzero set contains expressions which must not be zero. Inequalities are initially placed in
this set by solve.

The gensys routine performs the following steps (in the order given).

(1) If any expression in the notzero set is zero, then the NULL expression is returned (indi-
cating that there are no solutions).
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(2) The routine cleanup is used to put the equations in normal form, and make a modest
attempt to simplify them. For example, factors independent of the unknowns are dis-
carded, etc.

(3) Equations of the form z = 0 are eliminated by simultaneous substitution.

(4) Complexities are computed for each equation/unknown by the routine complezxity. The
equation/unknown with the minimum complexity is selected.

(5) If the complexity indicates an unknown with a linear occurrence, that unknown is elim-
inated by substitution into the equations which are then solved recursively.

(6) If the complexity indicates an equation in a single unknown, the scalar solver is
invoked. If it succeeds, the solution(s) are substituted into the system which is solved
recursively. Note: a non-linear equation in a single unknown is solved at this point.

(7) If the complexity indicates a product, the system is split into two or more simpler sub-
systems, which are then solved recursively.

(8) The equations are factored in an attempt to split the system. If any of the equations
factor, the new system is solved recursively.

(9) If the equations are all polynomials, a Grébner basis or resulant is computed using the
pure lexicographical ordering. The Grobner basis is solved recursively.

(10) The scalar solver is invoked on the simplest of the equations/unknowns, and if it
succeeds, a substitution is made.

(11) At this point, the gensys routine gives up. The user is informed that some solutions
may have been lost and the NULL expression is returned.

A crucial aspect of this organization is in realizing that computing complexity values, clean-
ing up the equations and factoring the equations are not cheap operations. In order to avoid
redoing these calculations, we make use of Maple’s remember facility. Briefly, if the
remember option is specified in a Maple procedure, a table of function results indexed by the
function’s arguments is maintained. Any function with option remember is computed only
once for each set of arguments.

How does this method compare to other methods, like resultants, or purely Grébner
bases? Note that any correct system solver, whether by substitutions, by resultants, etc.
should produce the same answers, so the only issue here is an issue of efficiency. There are
three important advantages in this method with respect to the others, even in their optimal
coded forms:

(i) The solution of a system by substitutions allows to eliminate, at each step, the
most convenient unknown. At every step, it is easy to predict which is the best unknown to
substitute for next. This is not possible (at least at present) with Grébner bases where the
ordering is defined at the beginning of the computation. Bad orderings are known to be
disastrous for some problems.

(ii) The substitution method allows to split the system into two or more sub-systems
whenever an equation can be factored (at any stage) or for linear equations when the leading
coefficient depends on other unknowns. This is a fundamental advantage, given that the
complexity of most methods is at least as large as the size of the final answer, and that the
final answer will contain a polynomial of degree equal to the number of solutions and that
this polynomial alone can be (and often is) of exponential size in its degree.

(iii) Our implementation of the substitution method does not generate spurious solu-
tions, as the resultant method may generate. These spurious solutions are very difficult to
identify. Their presence can greatly increase the time taken to obtain the solutions.



5. Linear Systems.

Although solving linear systems is better understood than polynomial systems, it has
nevertheless been our experience that computer algebra systems are poor at dealing with
sparse linear systems. Yet in our experience, almost all the larger systems of linear equa-
tions that we have encountered in practice are sparse. Furthermore, for systems with mul-
tivariate polynomial coefficients, the coefficients are also sparse. Thus in designing an algo-
rithm for solving linear equations, we believe that the methods used should definitely con-
template such classes of systems. In this section, we present a "primitive" version of the
basic fraction-free method of Gaussian Elimination which is geared toward solving sparse
systems. The basic underlying idea is the same as that presented in the previous section: use
a complexity criteria to select the best equation / unknown to eliminate at each step. To
justify our choice of algorithm, we briefly mention previous work done in the area, identify-
ing the known methods, and the classes of problems for which they do well. Next we
describe our algorithm in broad detail, and discuss the advantages of this approach over the
other methods. Finally, we present some example problems comparing our implementation
in Maple with that in Reduce and Macsyma, illustrating the improvements achieved.

Early work by BareissB2T8 and LipsonliP®8 saw the development of fraction-free algo-
rithms that avoid the quotient field, thus require no greatest common divisor computations,
except to reduce the final solutions to lowest terms. The coefficient growth that occurs is
reduced by inclusion of divisions that are known to be exact. Later work by McClellan
MeC73 exploited modular and evaluation homomorphisms to map the problem domain down
to solving linear systems over GF(q). This significantly improved the theoretical running
time over the fraction-free algorithm. However, this approach assumes that the coefficients
are uniformly dense, which as we have observed, is rarely the case in practice. The running
time (which is exponential in the number of variables and their degreesé): is essentially the
same regardless of the sparsity of the coefficients. Gentleman & Johnson©®276 and Horowitz
and Sahnito'”® considered computing the determinant of the coefficient matrix using the
method of minor expansion (this approach can be applied to solving systems of linear equa-
tions by using Cramer’s rule). Although minor expansion is inherently exponential, they
demonstrated that for matrices with sparse polynomial coefficients, that minor expansion
can be much faster than the fraction free algorithm. More recently, KaltofenkKa!85 has
presented a probabilistic approach which runs in polynomial time in the total degree and
number of non-zero terms of the equations. However, early experience with this approach
indicates that the intermediate expressions that arise can be quite large. Of all the algo-
rithms available, it is fair to say that no particular algorithm is a clear winner. Which algo-
rithm will do best depends on the domain of the computation, the structure of the system
being solved and also, the particular strengths and weaknesses of the system in which the
algorithm in being implemented.

5.1. The Primitive Fraction-Free Method.

From a general point of view, the major problem with the fraction-free algorithm is
that is suffers from coefficient growth. In the primitive fraction-free method, we minimize

this coefficient growth as follows. Consider the two equations ¢ = ¢ 21+ - - - +a,z, and b
= byxy+ -+ +b,, x,, where a and b are linear in z; and suppose we wish to eliminate x,.
In the fraction-free algorithm of Bareiss, z, is eliminated by computing ¢ = (b;a —a;b)/d

where d is the previous pivot. In the primitive fraction-free algorithm, we first compute
g = gcd(ay,by) then eliminate z; by computing ¢ = (b;/g)a—(a,/g)b. Next we compute and
divide out the content of ¢ with respect to the unknowns. By dividing by the content, we
minimize the coefficient growth. A number of further improvements are possible. We
include a trial division by the previous pivot. This heuristic works well in the dense case,
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where the algorithm effectively reduces to the fraction-free algorithm of Bareiss. The con-
tent (the ged of the coefficients of a polynomial), can be computed as one ged with high pro-
bability by computing the gcd of two random linear combinations of the coefficients. We
note that the ged’s computed are often 1, which is the best case for the modular based ged
algorithms. On the other hand, if a ged is non-trivial, then this represents a gain because we
have succeeded in reducing the size of the coefficients.

5.2. Improvements for Sparse systems.

A system of equations is represented and manipulated as a set of polynomials (a sparse
representation is used) which are linear in the unknowns. Our main goal here is to reduce
the coefficient growth that occurs by taking advantage of the sparsity present. We can do
this in two ways. First, at each step we can select an unknown to eliminate whose coeffi-
cient is smallest in "size". Alternatively, we can try to minimize the "fill-in" that occurs.
The purpose of minimizing fill-in is that later elimination steps will involve fewer equations.
We have tried two strategies. The simpler is, at each step, choose the equation which is
smallest in size, and from that equation, eliminate the unknown whose coefficient is smallest
in size. We have found, however, that preserving sparsity in large systems seems to be more
effective in limiting the coefficient growth. The second strategy we tried is to apply the
"minimal degree algorithm" a well known heuristic from Numerical Analysis. In the minimal
degree algorithm, at each step the unknown which occurs in the fewest number of equations
is eliminated. Where there is a choice, we select the unknown whose coefficient is smallest in
size. As a final consideration, before we use the primitive fraction-free algorithm, trivial
equations (of the form x +% where k is independent of the unknowns being solved for), are
eliminated in one step by simultaneous substitution.

An analysis of the running time of the primitive fraction free algorithm thus presented
would show that it is no better in general than the fraction free algorithm of Bareiss. In
fact, it will be somewhat worse because of the extra work done in computing ged’s. How-
ever, for systems of equations that arise in practice, the extra work done in trying to minim-
ize the coefficient growth will generally pay off by greatly reducing the running time.
Clearly, the extent to which this approach succeeds can only be determined from experience.
Roughly speaking, we find that whereas sometimes the gain, if anything, is insignificant,
quite often there is a huge improvement. An important advantage of the primitive fraction-
free algorithm over the fraction free algorithm of Bareiss, McClellan’s modular algorithm, or
the algorithms based on minor expansion and Cramer’s rule, is that the determinant of the
coefficient matrix need not explicitly be computed. The determinant may be too big to be
computed, and yet because of the structure of the system, the solutions can be computed.

6. Sample Problems.

In this section, we compare the Maple, Macsyma and Reduce solvers on some sample
problems. A description of these problems is given in the Appendix. Times reported (in
CPU seconds) were obtained from a Vax 11/785 running the Berkeley Unix 4.2 BSD operat-

ing system.

Examples of Linear Systems.



Problem  Dimension Domain Maple 4.2  Macsyma 308 Reduce 3.1

1 20 by 20 Z 150 157 219

2 81 by 81 Z 25 2,045 344

3 147 by 147 Q 282 10,000 >10,000

4 289 by 289 Q 654 >10,000 (1)

5 5by 5 Z[al,a2,a3,a4,25]  77.0 79.2 22.5

6 147 by 49 Q(a,b,c) 21.0 1,596 (2)

7 21 by 21 Z[8,,B0.B5.8.085 384 6,281 (3)

Examples of Polynomial Systems.

For the sample problems in our second table, we note that Reduce is currently not pro-
grammed to handle non-linear systems. Also, we found that Macsyma' was unable to solve
any of the problems given 10,000 seconds of CPU time.

Problem Description Domain  Time
8 3 by 3 with 8 solutions V/ 23.4
9 19 by 17 with 3 solutions Z 72.7
10 22 by 17 with no solutions Z 9.1
11 21 by 18 with 3 solutions Z[x,y] 815
12 52 by 16 with 79 solutions Z 880
13 104 by 36 with 2 solutions Z 287

7. Conclusion.

Maple, even in its present state, can solve general systems of algebraic equations which
are far beyond the grasp of other systems. This alone should be a strong indication of power
of the presented scheme. Furthermore, we believe that this approach is similar to the
approach taken by a mathematician when solving difficult problems: looking for the easiest
part and attacking it with the most suitable tool. These problems are all exponential space
hard in their most general form, so an exponential behaviour for the general case is unavoid-
able. Yet, sometimes we can either afford the exponential behaviour or be confident that
the solver will be “clever” enough to find a shortcut.

(1) Reduce Crashed with an "Ilegal Instruction” error.

(2) Reduce is not programmed to handle non-square linear systems.

(3) Reduce ran out of heap space.

1 Macsyma obtained floating point approximations to the solutions for problem 8 after 138
seconds. Macsyma does not attempt to find the exact symbolic solutions when irreducible
polynomials which are not linear, quadratic or bi-quadratic are encountered.
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8. Appendix 1.

The following are descriptions of the sample problems. A complete listing of the problems,
which are too lengthy for publication here, will be made available at the conference and via
electronic mail.

1
2

10
11

12

13

A dense 20 by 20 linear system with random 10 digit integer coefficients.

A moderately sparse linear system of 81 equations in 81 unknowns with integer coeffi-
cients. The solution defines the degree 8 uniformly spaced knots B-Spline.

A sparse system of 147 equations in 147 unknowns with rational coefficientsZV82 from
the third order analysis of 2-3 trees.

A sparse system of 289 equations in 289 unknowns with rational coefficients.F1288 This
system is extremely ill-conditioned.

A dense linear system of 5 equations in 5 unknowns with polynomial coefficients in five
parameters.Dev85

A very sparse linear system of 147 equations in 49 unknowns with small rational func-
tion coefficients in three parameters.St¢84 This solves a truncated power series solution
of a particular differential equation.

A sparse 21 by 21 linear system in 5 parameters. The solution defines a general cubic
Beta-Spline Dev8sa

Pav85 which has two

A homogeneous polynomial system of 3 equations in 3 unknowns
real and six complex solutions.

A sparse polynomial system of 19 equations in 17 unknowns®on83 with three solutions.

This problem and the next one arise in the study of iterative formulas to compute the
inverse of a number.

A sparse polynomial system of 22 equations in 17 unknowns®°183 with no solution.

A sparse polynomial system of 21 equations in 18 unknowns and two free
parameters.AlI85 See Appendix 2.

A sparse polynomial system of 52 equations in 16 unknownsCG°"86 with 79 solutions.
Note: two inequalities were specified to avoid symmetric solutions.

A very sparse polynomial system of 104 equations in 36 unknowns.Sha86

Appendix 2.

The system is defined as follows. Let m(k,a), a real, be defined recursively by:

(1+a)f _ kZ_)l tyim(i,a)

k =
m(k.a) Lk i=0  Lkk

(1)

where m(0,a) =1 and (1+a)’:=(1+a)(2+a) -+ +(k+a), is the ascending factorial. Thus
m(k,a) has the following properties:

a) it is a polynomial of degree k in a,
b) it is linear in ¢,; for 0<y<i <k,
c) it is linear in 1/%;; for 1<¢<k.

Also we know that
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L_(D4e) &
,Eo k!(n—k)!(1+a)’?,§0t'” (+ie) =0 ®

for n=234,..., 1<5<n.

Equation (1) can be used to eliminate m(i+j,a) from equation (2) thus obtaining
a polynomial in a of degree n+j7, which is identically equal to zero. By setting the coeffi-
cients of the left-hand-side of (2) equal to zero for n=2,j=1; n=3,7=1,2; n=4,5=1; we
obtain 21 non-linear equations in the 21 unknowns ¢;; 0<7<¢<5. Now let tgo=1, t;p=y and
t11=:1:.

Solve the 21 equations in the 18 remaining unknowns ¢;; in terms of z and y.
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9. Appendix 3.
Appendix 3 contains a listing of examples 1 through 10, 12 and 13.

# Example 1 : a dense system of 20 linear equations
¢ := rand(-10"10..10"10):

for i to 20 do eqnsli] ;== sum(’c()*x.k-c()’,k=1..20) od:
eqns :— {eqns[k] $§ k=1..20};

vars = {"x.k’ $ k=1..20};

# Example 2 : 81 linear equations in 81 unknowns

eqns = {5040*c47+40320%c48-5040*c57, 5040*c87+40320*c88-5040*c97, 5040*c77+
40320*c78-5040%c87, 720%c16, 5040*c67+40320%c68-5040*c77, 720*c96+5040*c97+
20160*c98, ¢c10, c11, 5040%c57+40320*%c58-5040*¢67, ¢10+cll+cl12-+c13+cld+cl15+cl6+
c17+¢18-¢20, ¢11+2*c12+3*c13+4%c14+5%c15+6%c16-+7*c17+8%c18-c21, 2%c124+6%c13+
12*%c14+4-20*%c15+30%c16+42*c17+56*c18-2%c22, 5040*c17+40320%c18-5040%¢27, 6*c13+
24%c14+60*c15+120%c16+210*c17+336*c18-6*¢c23, 24*c14+120%c15+360*c16+840%c17+
1680*c18-24*c24, 120*c15+720%c16+2520*c17+6720%c18-120*c25, 720*c16+5040%c17+
20160*c18-720%c26, c20+c21+c22-+c23+c24+¢25-+¢c264-c274+¢28-¢30, c21+2%c22+3%c 23+
4*c24-+5%c25+6%c26+T7*c27+8%c28-c31, 2¥c22+6*c234-12%c24+20*c25+30%¢c264+-42*c27+
56%¢28-2%c32, 6%¢23+24*c24+60%c25+120%c26+210%c27+336*c28-6*%c33, 24*c24+120*c25+
360%c26+840*c27+1680*c28-24%c34, 120*c25+720%c26+2520%c274+6720%¢28-120%c35,
5040*%c27-+40320*c28-5040%c37, 5040*c37+4-40320%c38-5040*%c47, 720*c26+5040%c27+
20160*c28-720%¢36, ¢30+c31+¢32+¢33+c34+¢35-+¢36-+c37+c38-¢40, ¢31+2%c32-+3*c33+
4*c34+5%c35+-6%c36+7*c37+8%c38-c41, 2*c324+6%c33+12%c34+20*c354+30%c36+42%¢37+
56*c38-2*c42, 6*c33+24*c34+60*c35+120%c36+210*c37+336*c38-6%c43, 24*c344+-120%c35+
360*c36+840*c37+1680%c38-24%c44, 120%c35+720*c36--2520%¢37+6720*c38-120*c45,
720%c36+5040*c37+-20160*c38-720%c46, c40+c41-+c424-c43+c44+c45+c46-+c47+c48-¢50,
c41+2%c42+-3*%c43+4*c44+5%c45+6%c46+7*c47+8*%c48-¢51, 2%c42+6*c43+12%c44+20*c45+
30*c46-+42%c47+-56%c48-2%c52, 6*c43+-24%c44+60*c45-+-120%c46+210*%c47+336%c48-6*c53,
24%c44-+120*c45+360%c46+840*c47+1680%c48-24*c54, 120*c45+720%c46+2520%c47+
6720%c48-120%c55, 720*c46+5040*c47+20160%c48-720%c56, ¢50+-c51+c52-+c534-c54+c55+
¢56+¢57+¢58-¢60, ¢51+2%c52+3%c53-+4%c54+-5%c55+4+-6*c56+-T*c574+8%c58-c61, 2¥c52-+6%c53+
12*c54420%c55+30%c564-42*c57+56*c58-2*c62, 6*c53-+24*c544+-60*c55+120*%c564+-210%¢57+
336*c58-6%c63, 24*c54+120%c55+-360%*c56-4-840%c57+1680*c58-24*c64, 120*c554-720*c56+
2520%c57+6720%c58-120*c65, 720*c56+5040%c574-20160*c58-720*%c66, c60-+-c61+c62+c63+
c64-+c65+c66+c67+c68-c70, c61+2%c62+3*c63+4%c64+5%c65-+6%c66+-7*c6748%c68-cT1,
2*c62+6*c63+12%c64+20*c65-+30%c66-+42%*c67+56*c68-2*c72, 6*c63+24*c644+-60%c65+
120*c66+210%c67+336%c68-6*c73, 24*c64+120*c65+360*c66+840%c67+1680*c68-24*c74,
120%¢65+720*c66+2520%c67+-6720%c68-120*c75, 720*c66+5040%c67-+20160*c68-720*c76,
c704+c71+¢72+4c73+cT4+cT754c76+c77+c78-¢80, c71+2%cT72+3%c73+4*cT4+5%c75+6%c76+
T*cTT+8%c78-c81, 2%c72+6*c73+12%c74+20%c75+-30%c764-42*c77+56*c78-2%c82, 6*c73+
24%c74-+60*c75+120%c76-+210%c774-336*c78-6%c83, 24%c744+120%c754-360*c76+840*c77+
1680*c78-24%c84, 120%c75+720%c76+2520%c77+6720%c78-120*c85, 720*c76+5040*c77+
20160*c78-720%c86, c80+c81+-c82+c83-+c84+c85-+c86+c87+c88-c90, c81+2*%c82+3%c83+
4*c84+5%c85+6%c86+7*c874-8%c88-c91, 2¥c82+6*c83+12*c84+20*c85+30*c86+42%c87+
56%c88-2%c92, 6*c83+24%c84+60%c85+120*c86+210*c87+336*c88-6%c93, 24*c844+120* ¢85+
360*c86-+840*c87+1680*c88-24*c94, 120*c85+720*c86-+2520*c87+6720*c88-120*c95,
720%c86-+5040*c87+20160%c88-720%c96, 24*c14, 5040*c97+40320%c98, 2*c12, 120%c15,
6*c13, 5040*c17, c91+2*c92+3*c93+4%c94+5%c95--6%c96+7*c97+-8*c98, 2*c92+6%c93+
12*¢94+20*c95+30%c96+42%c97+56*c98, 6*c93+24%c94-+60%c95+4-120*c96-+210*c974-336%c98,
24*c94-+120*c95+360*c96-+840%c97+1680%c98, 120*c95+720*c964-2520*c97+6720*c98,
€90+¢91+¢92+4-¢c93+4-c94+¢95+¢96+4-¢97+¢98, c10+4-¢20+c30+c40+¢50+¢60+¢70+¢80-+¢90-1}:
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# Example 3 : 147 linear equations in 148 unknowns.
# The solutions represent probabilities and hence should sum to 1
for i from 4 to 9 do for j from i to 9 do
eq.ji:=0;
eq.ij := - (i+j+1) * p.i.j od od;
for i from 4 to 9 do
for j from 4 to 9 do
for k from i to 9 do
eq.k.ji:=0;
eq.i.j.k := - (i+j+k+1) * p.i.j.k od od od;

nnl4] := [[[5],4]]:

nn[5] := [[[6],5]]:

nn[6] := [[[7],6]]:

nn[7] := [[[4,4],3],[[8] 4]]:

nn(8] := [[[4,5],3],[[5,4],3],([9],2]]:
nn[g] = [[[5’5]’3];[[476]:3]’[[6’4]»3”:

for i from 4 to 9 do for j from i to 9 do
n ;= i+j;
# leftmost component
for 1 to nops(nn(i]) do
transf := nnli][l];
p := p.i.j * transf[2]/n;
if nops(transf[1])=1 then
eq.(i+1).j == eq.(i+1).j + p*(i+j+1)
else il := transf[1][1];
i2 := transf[1][2];
eq.il.i2.j = eq.il.i2.j + p*(i+j+1);
fi

e}

od;
# rightmost component
for 1 to nops(nnlj]) do
transf := nnlj][l];
p = p.ij * transf[2|/n;
if nops(transf[1])=1 then
eqi(j+1) == eq.i.(j+1) + p*(i+j+1)
else jl := transf[1][1];
j2 = transf[1][2];
eq.i.jl.j2 = eqi.j1.j2 + p*(i+j+1);
‘ fi
od;
od od;
for i from 4 to 9 do
for j from 4 to 9 do
for k from i to 9 do
n == i+j+k;
# leftmost component
for 1 to nops(nnli]) do
transf := nnli][l};
p :== p.i.j.k * transf[2]/n;
if nops(transf[1])==1 then
eq.(i+1).j.k = eq.i+1).j.k + p*(i+j+k+1)
else il := transf[1][1];
i2 = transf[1][2];
eq.il.i2 := eq.il.i2 + p*(i1+i2);
eq.j.k := eq.j.k + p*(j+k)
fi
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od;
# central component
for 1 to nops(nn[j]) do
transf := nnlj]{l];
p := p.i.j.k * transf[2]/n;
if nops(transf[1])=1 then

eq.i.(j+1).k := eqi(j+1).k + p*(i+j+k+1)

else j1 := transf[1][1];
j2 = transf[1][2];
eq.ijl := eqijl + p*(i+jl);

eq.j2.k := eq.j2.k + p*(j2+k)

fi
od;
# rightmost component
for 1 to nops(nn[k]) do
transf := nnk]|[l];
p = p.i.jk * transf[2]/n;
if nops(transf[1])=1 then

eq.ij.(k+1) := eqij.(k+1) + p*(i+j+k+1)

else k1 := transf[1][1];
k2 := transf[1][2];
eqij := eqij + p*(i+j);

eq.k1.k2 := eq.kl1.k2 + p*(k1+k2)

fi
od;
od od od;

for i from 4 to 9 do for j from i+1 to 9 do eq.i.j == eq.i.j + eq.j.i od od:

for i from 4 to 9 do
for j from 4 to 9 do
for k from i+1 to 9 do
eqi.j.k := eqi.jk + eqk.j.i od od od;
tot := 0:
eqns := {}:
for i from 4 to 9 do for j from i to 9 do
tot := tot + p.ij;
eqns :== eqns union {eq.i.j} od od;
for i from 4 to 9 do
for ) from 4 to 9 do
for k from 1 to 9 do
tot ;= tot + p.a.j.k;
eqns = eqns union {eq.i.j.k} od od od;
vars := map(op,map(indets,eqns)):
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# Example 4 : 289 linear equations in 289 unknowns, sparse
# m is the number of memory cells

m = 32;
= 1/86;
q = 1/2-p;

for i from 0 to m do
for j from 0 to m-i do
eq.i.ww.j := -p.i.ww.j od od;
#  Add p contributions
for i to m do
for j from O to m-i do
eqlww.j := eqiww.j + p * p.(i-1).ww.j;
eq.j.wwi = eq.jwwi+ p * pjoww.(i-1);
od od;
#  Add q contributions
for i from 0 to m-2 do
for j from 0 to m-2-i do
eqiww.j := eqiww.j + q*p.(i+1).ww.j + q*p.iww.(j+1) od od;
# Do side contributions
for i from 0 to m-1 do

eqlww.0 ;= eqiww.0 + q*p.iww.0;
eq.0.ww.i == eq.0.ww.l + q*p.0.ww.i
od;

#  Equation for sink/link

eqs :== -ps;

for i from 0 to m do eqs := eqs + p.(m-1).ww.i od;

eq.0.ww.0 := eq.0.ww.0 + ps;
# Equate symmetric variables
for i to m do
for j from 0 to i-1 do
pj-wwi ;= p.ilww.j od od;
# Set of all indeterminates and equations
eqns = {}:
vars (= {};
for i from 0 to m do
eqns := eqns union {eqiww.(0..m-i)};
vars := vars union {p.i.ww.(0..m-i)};
od;
ps = 1;
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# Example 5 : a dense linear system with free parameters al,a2,a3,a4,a5

eqnl :== (a4"4 -4*a4"2%a3 + 4*a4*a2 + 2*a3"2 -4*al) *x4 + (-a4"3 + 3*ad*al
- 3*a2)*x3 + (a4"2 - 2*%a3)*x2 - a4*x1 + 5*x0 = O:

eqn2 = (a4"3*a3 - a4"2%a2 - 3%a4*a3"2 + 5*a3*a2 + ad*al - 5*a0) *x4 +
(-a4"2*a3 4 2*a3"2 + ad4*a2 - 4*al) *x3 + (ad4*ad -3*a2)*x2 - 2*a3*x1 +
4*a4*x0 = 0:

eqn3 = (a4"3*a2 -a4"2*al -3*ad4*a3*a2 +3%a2"2 + 2%¥a3*al + ad*a0) *x4 +
(-a4"2%a2 + 2*a3*a2 + a4*al - 5*a0)*x3 + (ad*a2 - 4*al)*x2 - 3*a2*x1
+ 3%*a3*x0 = 0:

eqnd = (a4"3*al - a4"2%a0 - 3*a4*a3*al + 3*a2*al + 2*a3*a0)*x4 +
(-a4"2*al + 2*a3*al + a4*a0)*x3 + (ad4*al -5*a0)*x2 - 4*al*x1 + 2*a2*x0 = 0:

eqnb = (a4"3*a0 - 3*a4*a3*a0 + 3*a2*a0)*x4 + (-a4°2%¥a0 + 2*a3*a0)*x3 +
a4*a0*x2 - 5*a0*x1 + al*x0 = I:

eqns == {eqn.(1..5)};

vars = {x.(0..4)};

# Example 6 : A very sparse linear system of 147 equations in 49 unknowns
eqns:=={
-b*k8/a+c*k8/a, -b*k11/a+c*k11/a, -b*k10/a+c*k10/a+k2,
-k3-b*k9/a+c*k9/a, -b*k14/a+c*k14/a, -b*k15/a+c*k15/a,
-b*k18/a+c*k18/a-k2, -b*k17/a+c*k17/a, -b*k16/a+c*k16/a+k4,
-b*k13/a+¢*k13/a-b*k21/a+c*k21/a+b*k5/a-c*k5/a,
b*k44/a-c*k44/a, -b*k45 /a+c*k45/a, -b*k20/a+c*k20/a,
-b*k44/a+c*k44/a, b*k46/a-c*k46/a,
b"2%¥k47/a"2-2¥b*c*k47 /a"2+c"2%k47 /2”2,
k3, -k4, -b*k12/a+c*k12/a-a*k6/b+c*k6 /b,
-b*k19/a+c*k19/a+a*k7 /c-b*k7 /c, b*k45/a-c*k45/a,
-b*k46/a+c*k46/a, -k48+c*k48/a+c*k48/b-c"2*¥k48/(a*D),
-k49+b*k49/a+b*k49/c-b"2*k49/(a*c), a*k1/b-c*k1/b,
a*k4/b-c*k4/b, a*k3/b-c*k3/b+k9, -k10+a*k2/b-c*k2/b,
a*k7/b-c*k7/b, -k9, k11, b*k12/a-c*k12/a+a*k6/b-c*k6 /b,
a*k15/b-c*k15/b, k10+a*k18/b-c*k18/b,
~k114+2*k17/b-c*k17/b, a*k16/b-c*k16/b,
-a*k13/b+c*k13/b+a*k21 /b-c*k21/b+a*k5/b-c*k5 /b,
-a*k44/b+c*k44/b, a*k45/b-c*k45 /b,
a*k14/c-b*k14/c+a*k20/b-c*k20/b, a*k44/b-c*k44/b,
-a*k46 /b+c*k46 /b, -k47+c*k47 /a+c*k47 /b-c"2*k47 /(a*Db),
a*k19/b-c*k19/b, -a*k45/b+c*k45 /b, a*kd6 /b-c*k46 /b,
a*2*k48/b"2-2*a*c*k48/b"2-+¢*2*kd8/b 2,
-k49-+a*k49/b-+a*k49/c-a"2*k49/(b*c), k16, -k17,
-a*kl/c+b*kl/c, -k16-a*k4/c+b*k4/c, -a*k3/c+b*k3/c,
ki8-a*k2/c+b*k2/c, b*k19/a-c*k19/a-a*k7/c+b*k7/c,
-a*k6/c+b*k6/c, -a*k8/c+b*k8/¢, -a*k11/c+b*k11/c+k17,
-a*k10/c+b*k10/c-k18, -a*k9/c+b*k9/c,
-a*k14/c+b*k14/c-a*k20/b+c*k20/b,
-a*k13/c+b*k13/c+a*k21/c-b*k21 /c-a*k5/c+b*k5 /¢,
a*k44/c-b*k44/c, -a*k45/c+b*k45/c, -a*k44/c+b*kd4/c,
a*k46/c-b*kd6/c, -k47+b*kd7/a+b*kd7 /c-b"2*k47 /(a*c),
-a*k12/c+b*k12/c, a*k45/c-b*k45 /¢, -a*k46 /c+b*k46/c,
-k48+a*k48/b+a*k48/c-a"2*k48/(b*c),
a"2¥k49/c"2-2*a*b*k49/c*2+b"2*k49/c"2, k8, k11, -k15,
k10-k18, -k17, k9, -k16, -k29, k14-k32, -k21+k23-k31,
-k24-k30, -k35, k44, -k45, k36, k13-k23+k39, -k20+k38,
k25-+k37, b*k26/a-c*k26 /a-k34+k42, -2%k44, k45, k46,
b*k47/a-c*k47/a, k41, k44, -k46, -b*kd7 /a+c*kd7 /a,
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k12-+k24, -k19-k25, -a*k27 /b+c*k27 /b-k33, k45, -k46,
-a*k48/b+c*k48/b, a*k28/c-b*k28/c+k40, -k45, k46,
a*k48/b-c*k48/b, a*k49/c-b*k49/c, -a*k49/c+b*k49/c,

k1, -k4, -k3, k15, k18-k2, k17, k16, k22, k25-k7,

k24+k30, k21 +k23-k31, k28, -k44, k45, -k30-k6, k20-+k32,
k27-+b*k33/a-c*k33/a, k44, -k46, -b*k47/a+c*k47/a, -k36,
k31-k39-k5, -k32-k38, k19-k37, k26-a*k34/b-+c*k34/b-k42,
k44, -2*k45, k46, a*k48/b-c*k48/b, a*k35/c-b*k35/c-k41,
-k44, k46, b*kd7 /a-c*k47/a, -a*k49/c+b*kd9/c, -k40, k45,
-k46, -a*k48/b+c*k48/b, a*k49/c-b*k49/¢, k1, k4, k3, -k8,
k11, -k10-+k2, -k9, k37+k7, -k14-k38, -k22, -k25-k37, -k24+k6,
k13-k23+k39, -k28-+b*k40/a-c*kd0/a, k44, -k45, -k27, -kd4,
k46, b*k47 /a-c*k47 /a, k29, k32+k38, k31-k39-+k5, -k12+k30,
k35-a*k41/b+c*k4l/b, -k44, k45, -k26+k34+a*k42/c-b*k42/c,
k44, k45, -2*k46, -b*k47 /a+c*k47 /a, -a*k48 /b+c*k48/b,
a*k49/c-b*k49/c, k33, -k45, k46, a*k48/b-c*k48/b,
-a*k49/c+b*k49/c }:

vars := {k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15,
k16, k17, k18, k19, k20, k21, k22, k23, k24, k25, k26, k27, k28, k29,
k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k40, k41, k42, k43,
k44, k45, k46, k47, k48, k49}:
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# Example 7 : A system of 21 linear equations which arising in the study

# of modelling curves using cubic Beta-Splines in Computer Graphics.

eqns := {C15+4C22-1, C14+C21-1, C06+C13+C20-1, 2*b5"2*¥(024-4*h5"2*C25+-
2*b5°2*C26-2*C26, b2*C10+C10-C11, 2¥b3"2*C20-2*C20+4*C21-2*¥C22, b3*C20-+C20-
021, -b2*C02+b2*C03+C03-C04, b1*C00+C00-C01, 2*b2"2*C10-2*C10+4*C11-2*C12,
2*b1°2*C00-2*C00+4*C01-2*¥C02, -b4*C15+b4*C16-+C16, 2¥b3"2*¥*C04-4*b3*2*C05+
2*b3"2*C06-2*C06, b5*C25-b5*C26-C26, -b4*C22+b4*C23-+C23-C24, 4*C24-2*C25-2*C23+
2*b4°2¥C21+2%b4"2*(C23-4*b4 " 2* (22, -b3*C12+b3*C13+C13-C14, 2¥b4"2*C14-
4*b4"2*C15+-2*b4"2*C16-2*C16, -b3*C05+b3*C064C06, 4*C14-2%C13-2¥C15+2%b3°2*C11+
2*b3°2*C13-4*b3"2*C12, -2*C03+4*C04-2*C05+2%b2"2*C01-4*¥b2" 2*C02+2*b2" 2*C03};
vars := {C14, 021, C24, 025, C26, C06, C22, C13, C20, C10, C11, C03, C04, COO,

Co01, C12, C05, C15, C02, C23, C16};

# Example 8 : A system of 3 equations in the unknowns a,b and ¢
eqns ;= {b"2+(a-1)"2=3, ¢"2+(b-1)"2=3, a"2+(c-1)"2=3};
vars ;= {a,b,c};

# Example 9, 19 equations in 17 unknowns with three solutions
eqns:—{2*a3*b3+a5*b3+a3*b5,a5*¥b3+2*a5*b5+a3*b5,a5*b5,a2*b2,a4*b4,a5*b1+b5
+24*b3+a3*b4,a5*b3+a5*b5+a3*b5+a3*b3,a0*b2+b2+a4*b2-+a2*b4+c2+a2*b0+a2*bl,
a0*b0+-a0*b14a0*b4+2a3*b2+b0+bl+b4+a4*b0+a4*bl+a2*b5+a4*bd+cl+c4+a5*¥b2+a2*b3+c0,
-1+a3*b0+2a0*b3-+a0*b5+a5*b0+b3+b5+a5*b4+ad*b3+ad*b5+ad3*bd+as*b1+a3*bl+c3+c5,
b4+a4*b1,a5*b3+a3*b5,a2*b1+b2,a4*b5+a5*b4,a2*b4+a4*b2,a0*b5+a5*b0+a3*b4+
2*a5*b4+a5*b1+b5+a4*b3+2%a4*b5+c5,a4*b0+2*a4*b4+a2*b5-+bd+ad4*bl+a5*b2+a0*ba+c4,
¢3+2a0*b3+2*b3+b5+2a4*b3+a3*b0+2*a3*b1+a5*b1+a3*b4,c1+a0*b1l+2%¥b1+a4*b1+
a2*b3+b0+a3*b2+b4};

# Example 10 : 22 equations in 17 unknowns with no solutions

eqns = {2*a3*b3+a5*b3+a3*b5,a5*b3+2*a5*b5+a3*b5,a4*b4,a5*b3+a5*b5+a3*b5+-a3*b3,
b1,a3*b3,a2*b2,a5%*b5,a5*b1+b5+a4*b3+a3*b4,a0*b2+b2+a4*b2+-a2*b4+c2+a2*¥b0+a2*b1,
b4+a4*b1,b3+a3*b1,a5*b3-+a3*b5,a2*b1+b2,a4*b5+a5%b4,22*b4+a4*b2,
a0*b0+a0*b142a0*b4+a3*b2+b0+b1+b4+2a4*b0+ad4*bl+a2*b5+ad*bd+cl+cd4+a5*b2+a2*¥b3+c0,
-1+a3*b0+20*b3+2a0*b5+a5*b0+b3+b5+a5*b4+a4*b3+a4*b5+a3*bd+a5*bl4-a3*b1+c3+c5,
a0*b5+a5*b0+a3*b4+2%*a5¥b4+a5*b1+b5+ad4*b3+2*a4*b5+¢5,
a4*b0+2*a4*b4+2a2¥b5+b4+a4*b1+a5*b2+a0*b4-+c4,
¢3+a0*b3+2*b3+b5+a4*b3+a3*b0-+2%a3*b1+a5*b1+4-a3*b4,
c14+a0*b1+2*b1+2a4*b1+a2*b3+b0+a3*b2-+b4};
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# Example 12 : 52 equations in 16 unknowns with 79 solutions
eqns:=={-a7+ab*a7+a7*b7,-a6+a6"24-a7*b6,a7*b4-25*b6,a7*b1-23*b6,a7*b0-
a2*b6,a2*a3-a1*a3,a3*b4-25*b2,a3*b1-a3*b2,a3*b0-22*b2,21*b4-a5*b0,a1*b1-
a3*b0,a1*b0-a2*b0,a5*b6-a7*b4,a3*b6-27*b1,a2*¥b6-27*H0,a6*a5+a7*b5-a4*a7-
ab*b7,a6*a3+a7*b3-al*a7-a3*b7,a5-a4*a5-a5*b5,a6*a2+a7*bh2-a0*a7-a2*b7 -al* a5+
a3*b7+a2%a7-a3*b5,a6*a2+a3*b6-a0*a5-a2*b5,a2%a5+23*b5-a4%*a3-a5*b3,22" 2+
a3*b2-a2*b3-a0*a3,a4-a5*b4-a4"2,-b7+b7"2+2a7*b6 -b6-+b6*26-+b7*b6,-a1" 24
a0*a3+al*b3-a3*b1,a0*ab+al*b6-a0%ad-a2*b4,a0*a2+al1*b2-a0*al-a2*b1,a0*a7+
al*b7-al*a4-a3*b4,a1*b5-a5*b1+a0*a5-a1*a4,-b4*a6+-b6*a4+b7*b4-b5*b6,a1*b6+
b7*b1-b1*a6-b3*b6 b6*a0-+b7*b0-b0*ab-b2*b6,a7*b2-a5*b1-+b3*b7-b3*b5 b5-a5*b4-
b5°2,b4-b5*b4-b4*a4,a5*b2-23*b4,b2*a6-+b3*b6-2a5*b0-b2*b5 -a3*b1+a3*b2,
a2*b2-a3*b0,a5*b0-21*b4,a3*b0-a1*b1,a2*¥b0-21*b0,b1*b0-b2*b0,b2*a4+b3*b4-
a2*b4-b2*b5,a1 *b2+b3*b1-22*b1-b3*b2 -b2"2-22*b0+b2*a0+b3*b0, b1 *b6-b2*b4 4
b0*a6-b0*a4 -b1*a4+b7*b1+a7*b0-b3*b4,b1*b4-b5*b0+b0*a4-b4*a0,b1"24-21*b0-
b1*a0-b3*b0,al*aal*bb2+a2*aa2*bbl+ad4*aal+a5*aa2+ab*bbl+a7*bb2-a1*bbl*aa2-
a2*bb2*aal-a4*bb1-a5*bb2-a6*aal-a7*aa2 < >0,a0*aal*bbl+al*aal*bb2+a2*aa2*bbl+
a3*aa2*bb2+-ad*aal+ab5*aa2+a6*bbl+a7*bb2-b0*aal*bbl-bl1*aal*bb2-b2*aa2*bb1-
b3*aa2*bb2-b4*aal-b5*aa2-b6*bb1-b7*bb2 < >0};
vars:=={a0,a1,a2,23,a4,a5,a6,a7,b0,b1,b2,b3 b4 ,b5,b6,b7};

# Example 13 : 104 equation in 36 unknowns with two solutions
vars:={a2,a0,ep,a9,a3,a12,a6,a18,a33,a34,a5,a16,a32,a11,a31,
a30,a7,a1,a19,a8,a28,a17,a29,a15,a27,226,a13,a23,a14,a25,a24,

a21,a210,a22,a20,a4};
eqns:=={-1/2%a2+1/2*ep-3*a0*ep=0,-1/2*a9-1/2*a3%*ep==0,2*ab*ep-1/2*a18==0,
9/2*al12%ep-1/2%a33=0,7*a34%ep==0,-4-5%ep"2-a5-22%ep==0,3 /2*a9*ep-216=0,
-a32+4*al18*ep=0,13/2*a33%ep=0,10*ep+a5*ep-3/2*al1==0,-3/2*%ad31+7/
2¥216%ep==0,6*a32*ep=0,-2*a30+3*all*ep==0,11/2%a31*ep==0,5*a30*ep=0,
4*a3-1/2*a7-3/2*al*ep=0,-1/2%a19+a8%ep+8*ab+15*ep=0,12%a12-1/2%a28+7/
2*al7*ep=—0,16*a34+6*a29%ep=0,-a15-10*a3*ep+1/2*a7*ep+4*a9=0,8%a18-227+
3*al9*ep-20*ab*ep=—0,-30*al2*ep+12*a33+11/2%*a28*ep=0,-40*a34*ep=0,8+
4*a8-1/2%a13+12%*ep"2-3*a2%*ep=0,5/2*al5%ep-3/2*a26+4*a16-10*ag*ep=0,
-20*a18*ep+8*a32+5*a27*ep=0,-30*a33*ep=0,9/2*a26*ep-10*al6*ep+4*a31=0,
-20*a32*ep=0,-10*a31*ep=0,-3*a9%ep+5/2*al4*ep+8*al7-1/2*a23=0,5%a25* ep+
12*a29-3*a18%ep=0,-3*a33*ep=0,2*a13*ep-10*a8*ep-6*ab*ep-38*ep+4*al9-a24=
0,9/2*a23*ep+8*a28-20*al7*ep-6*al6*ep=0,-30*a29*ep-6*a32*ep=0,4*a27-
10*al19%*ep-9*all*ep+4*a24*ep=>0,-9*a31*ep-20*a28*ep=0,-10*a27*ep-12*a30*ep
=0,4%al14-1/2%a21+3/2*a10*ep+6*ad3*ep-3*a7*ep=0,-3*a19*ep+12*ab*ep+4*a22*ep+
8*a25=0,-3*a28%ep+18*al2*ep=0,24*a34*ep=0,6*a9*ep-6*al5*ep-10*ald*ep-+
4*223+7/2%a21*ep=0,-6*a27*ep-20*a25*ep+12*al8*ep=0,18*a33*ep=0,
-9*a26*ep-10*a23*ep+6*al6*ep=0,12*¥a32*ep==0,6*a31*¥ep=0,-3*al3*ep+
3*a20*ep+12¥ep+4*a22+6*a8*ep=>0,12*a17*ep-3*a23*ep=0,18*a29*ep=0,
6*a19*ep-10*a22*ep-6*a24*ep=0,12*a28%ep=0,6*a27*ep=0,-3*a21 *ep+
6*al4*ep=0,12%¥a25%ep=0,6*a23*ep=0,ep"2=1,6*a22*ep=0,-1/2%a3-1/
2*al*ep=0,-a6-1/2*a8%ep-15/2%ep=0,-3/2%¥a12-1/2*a17*ep=0,-1/2*a29*ep-
2*a34=0,5%a3%ep-1/2%a9-1/2*a7*ep=0,-1/2%*a19*ep+10*a6*ep-218—=0,-3/2*a33+
15*%al2%ep-1/2*a28*ep=0,20*a34*ep=0,-1/2*a16-1/2*al5%ep+5*a9*ep—=0,-232-
1/2*a27*ep+10*al8*ep=0,15*a33%*ep=0,-1/2*a26*ep-1/2*a31+5%a16*ep=0,
10*a32*ep=0,5%a31*ep==0,-1/2%a8-11/2-a4*ep+3*a2*ep=0,-a17+3*a9*ep-
al4*ep=0,3*al8*ep-a25*ep-3/2*a29=0,3*a33*ep=0,49%ep-+6*a5*ep-1/2*a19-+
5*a8*ep-al3*ep=0,-a23*ep-a28+10*al17*ep+6*al6*ep=0,15*a29%ep+-6*a32*ep=0,
-1/2%a27-a24%ep+5*al9¥ep+9*all*ep=0,9*a31*ep+10*a28*ep=0,5%a27*ep+
12*a30*ep=0,-1/2*a14-3/2*a10*ep-12*a3*ep+3*aT*ep=>0,3*al9*ep-24*ab*ep-3/
2%a22%ep-a25=—0,3*a28%ep-36*al12*ep=0,-48*a34*ep=0,-12*a9*ep-+6*al5*ep-+
5*ald*ep-1/2%¥a23-3/2*a21*ep==0,6*a27*ep+10*a25*ep-24*al8*ep==0,-36*a33*ep=
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0,9*a26*ep+5*a23*ep-12*al6*ep=0,-24*a32*ep=0,-12*a31*ep=0,-12*a8*ep-
42%ep+3*al3*ep-1/2*a22-2*a20%ep=0,3*223*ep-24*al7*ep=0,-36*a29*ep=0,
5*a22%ep-12*al9*ep+6*a24*ep=0,-24*a28*ep=0,-12*a27*ep—0,3%a21 *ep-
12*al4%ep=0,-24*a25*ep=—0,-12*a23*ep==0,-12*222*ep—0};
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