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Introduction

There are many interesting optimization problems asso-
ciated with the packing and covering of objects in a closed
volume or bounded surface. Typical examples can be found
in classical physics or chemistry where questions arise of the
kind “What does the densest packing of atoms or molecules
look like when a crystal or macro-molecule is formed with
the lowest energy?” Also engineering and information sci-
ence confront us with extremal problems associated with the
packing and covering of objects. One of the most prominent
examples arises from the study and design of spherical codes
which have important applications in information processing.
A spherical code is a set of real vectors on the unit sphere’s
surface in n-dimensional Euclidean space. In this case, one
searches for an arrangement so that the minimum separating
angle between the vectors becomes as large as possible.

However, it was another closely related problem, the op-
timal packing of n circles in a square, which has fascinated
mathematicians over the last few years. The circle packing
problem is equivalent to the problem of scattering n points in
a unit square, such that the minimum distance mn between any
two of them becomes as large as possible. The relation be-
tween the maximum radius 7 of the circles and the scattering
distance m between the points is then given by r = 75
It is very surprising that such a problem, which at first looks
rather simple, has brought to us a series of interesting papers
with a continuous improvement of the results.

In this article we give a review on the packing problem of
up to n = 20 equal circles in a square. We report briefly how
the optimal solutions were found by an elimination procedure
and we sketch the proof of uniqueness. In addition we present
the closed form solutions for all packings. The role Maple
played in this work was to obtain these exact formulae for
the optimal scattering diameter m. More precisely, we were
able to compute the minimal polynomial corresponding to the
optimal solution. We describe how these polynomials can be
computed in Maple by explicitly showing the computation
for n = 10,
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Figure 1: Cases n=2-9

History of the Packing Problem

Cases n = 2 — 9: The situation for packing of up to 9
circles in a square was already solved in 1964. Here, the cases
n =2, 3,4, and 5 are solved easily. For n = 6 it was R.L.
Graham, mentioned in [1], who found the optimal solution.
The proofs for n = 7 and n = 8 were done by J. Schaer [1],
and the one for n =9 by J. Schaer and A. Meir [2]. Of interest
in the optimal packing of 7 circles is the fact that one circle
can be moved freely within a bounded region.

Case n = 10: This problem has a long history, begin-
ning in 1970 when M. Goldberg [3] proposed a symmetric
arrangement consisting of 4 rows of 3-2-3-2 circles which
have a radius of  ~ 0.14706. In 1971, J. Schaer [4] in-
creased the radius to r ~ 0.14777 (Fig. 2a), even though
his packing contains two free circles in opposite corners of
the square. Sixteen years later, R. Milano [5] proved that his
packing with » ~ 0.14792 (Fig. 2b) is the best symmetric
one. But in 1989, G. Valette [6] found a better chaotic solu-
tion without any symmetry in the arrangement of the circles
in the square. The radius now increased to r ~ 0.14818 (Fig.
2c¢). His solution also did not survive very long. Later, in the
Zbl. Marh. [7], we find the note that “this packing has been
improved, in 1989, by B. Griinbaum . [8]” to r ~ 0.148197.
However, this was not the end of the story.
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Figure 2: Cases n=10-a, b, ¢, d

We [9] [10] found an even better packing with a radius of
r ~ 0.148204 (Fig. 2d) and showed that it was the optimal
one. Furthermore, we are able to give the exact result for
the optimal scattering distance m. It is the smallest positive
zero of this irreducible polynomial of degree 18 with integer
coefficients,

1180129 m™® — 11436428 m!” + 98015844 m'® — 462103584 m"*+

1145811528 m' — 1398966480 ' + 227573920 m %+
1526909568 m'! — 1038261808 m'® — 2960321792 m’+
7803109440 m® — 9722063488 m” + 7918461504 m®—
4564076288 m® + 1899131648 m* — 563649536 m’+
114038784 m* — 14172160 m + 819200

Later, we also made public the work of K. Schliiter [11] from
1979, in which this solution could be found. The paper of K.
Schliiter was written in German, and this may be the reason
that it was not known in the scientific community. Schliiter’s
solution was also found by M. Grannell [12], by J. Petris and
N. Hungerbiihler' [13], and by M. Mollard and C. Payan [14].
None of them proved optimality, but Schliiter already conjec-

tured that his solution may be the optimal one. Now we know
from our investigations [10] that his conjecture was true. cq‘*r, 2

i

Cases n = 11 — 13: We [15] have also presented the opti-
mal solutions for 11, 12, and 13 circles. For Hrtircles the op-
timal solution with a scattering diameter m k- 0.42128() was
only about 0.05% larger compared to the-~ ously
known result of Goldberg [3]. The case n = 12 shows a
diamond structure leading to an m value of 0.388730. And
indeed it is this highly symmetric structure which is the op-
timal one. When considering one more circle, the situation
becomes much more complicated. How to arrange an addi-
tional circle in the highly compact configuration of 12?7 There
must be a complete rearrangement leading to a highly chaotic
structure with an optimal scattering diameter m ~ 0.366096.

Figure 3: Cases n=11-20

The solution is difficult to find, since there exist two narrow
gaps between two circles of the order 10~ times the scat-
tering distance. The optimal solution of Peikert et al. [15]
is more than 3.5% better than the regular 3-2-3-2-3 structure
proposed by M. Goldberg [3] with m ~ 0.35355. Indepen-
dently of Peikert ef al., M. Mollard and C. Payan [14] found
the optimal packings for n = 11, 13 (and also for 14) without
proving optimality. In all three cases we [15] obtained the ex-
act result as the smallest positive zero of a polynomial. The
most difficult case was n = 13, resulting in a polynomial of
degree 40.

Cases: n = 14 — 20: Furthermore, we [15] have also
investigated numerically the problem for n = 14 to n = 22.
However, with an increasing number of circles, it becomes
more and more difficult to converge to the global optimum.
For even larger n, we become more likely to get trapped in
local optima containing hexagonal clusters. Nevertheless, all
solutions found by Peikert ez al. [15] were better or at least as
good as those already known from the work of M. Goldberg
[3]. One of the cases where we did not find the global opti-
mum by optimization methods alone was for n. = 14. J. Petris
and N. Hungerbiihler [16] showed that their packing could be
improved by performing a few rearrangements. After this,
Peikert et al. [15] improved their method which could now
be applied for the range n = 14..20. In the case of n = 17,
they found two degenerated optimal packings, one of which
is axially symmetric. The packing for n = 19 is not symmet-
ric. However, the lower 13 circles are invariant under a 180
degree rotation.

36



Packing Circles

How to Find the Optimal Solutions

In the following, we briefly describe the method of Peik-
ert et al. [15]. First let us start with same notations and def-
initions. Let us denote the closed unit square [0, 1] x [0, 1]
by S. Then by A, we denote the set of arrangements of n
points in .S with minimal distance m, i.e.,

Anm = {((mliyl):"' 3 ($n,yn)) & Snl
(@i — ;)" + (g — ;)" >m’ forall 1 <i < j <n}

A,m consists of one or more connected components
which we call packings of n circles of diameter m. Hence, a
packing P is a sequence {Py,- - -, P,), where F; is the set of
possible center points of the i-th circle. Two packings P and
P’ are considered identical if P’ is obtained from P by a sym-
metry transformation and/or an index permutation. The i-th
circle is called a fixed circle if FP; consists of a single point. It
is called a free circle if P; includes an open neighborhood.

For a given number n, let m,, denote the maximal dia-
meter max{m | A,m # 0}. As optimal packings we can then
define the packings P C A,.,,. Given the number n, our
problem consists now in finding 7, and a member of each
optimal packing. For a fixed n, the following procedure has
been used by Peikert et al. [15] to find m,, and to prove its
maximality: 1) Find a good lower bound m for m., by stan-
dard and Monte-Carlo optimization methods. 2) For each op-
timal packing, find a small 2n-dimensional interval bounding
the center points. Prove that every packing with a diameter
> m is contained in one of the intervals. 3) Knowing the
centers of the fixed circles up to a small tolerance, guess the
optimal packing. That means: guess the connectivity graph
and derive the diameter m,, from it.

Step 1) Finding sharp lower bounds: The search for the
best radius was inspired by considering the problem as a typ-
ical numerical optimization task. Applying a standard BFGS
quasi-Newton algorithm [17] and starting from a random ini-
tial position for the centers of the circles a local minimum
of the objective function was found. Within about a dozen
trials we found for n = 10 in typically 30% of the solutions
the optimal one. However, for larger numbers of circles the
solutions got stuck in local, hexagonal substructures. Using
a (stochastic) Langevin equation formalism, as described in
[18] we were able to find near optimal or even optimal solu-
tions.

Step 2) The elimination procedure: Assume that we
have a lower bound m. This rational number m is used to
decompose S into a set of rectangular #iles in such a way that
the diameter of any tile is < m. If we denote by ¢ the number
of “empty” tiles and by n the “full” tiles which do contain a
center point Cj, there are () combinations for distributing
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Figure 4: Rectangular Tiling

Co,*++,Cpn_1 among ¢ tiles. Tiles are numbered as shown
in Fig. 4. Combinations are first assigned a binary number,
whose i bit is set iff the 7" tile is full. Then, combinations
are ordered with increasing binary numbers, skipping those
combinations which have a symmetric image. For each com-
bination, we will now try to show individually that it cannot
be assumed by a packing P C A,,,,,. We start with partition-
ing S into a grid of quadratic cells. It is advantageous to have
cells contained in single tiles. We will call active cells those
cells which are still candidates for containing a center point.
Since we assumed a fixed combination, we can immediately
reduce the set of active cells to those not completely covered
by one or more empty tiles.

As an example, Fig. 5 shows the active cells (unshaded)
at this stage forn = 10, m = 4212795, a4 by 4 tiling, a 32 by
32 grid, and for the 500** combination. Figs. 6 and 7 show
what the elimination process does. One of the cells of tile 0
(shown at the left in Fig. 6) contains a C; (drawn in black).
Then the shaded area of tile 1 cannot contain a C;. When re-
peating this for all active cells of tile 0, some cells of tile 1 lie
in the shaded area each time. That means, these cells cannot
contain a C; and can therefore be made inactive, as shown
in Fig. 7. The procedure is easily generalized and iterated
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Figure 6: Elimination Process—I

as long as cells can be removed. If active cells remain, then
the grid is refined. Each cell is replaced by 4 smaller cells,
which are active or not by inheritance. Of course the matrix
is stored using run-length encoding, so computing time grows
only with the number of active cells, not with the total num-
ber of cells. For a few combinations however, the number of
active cells grows fast enough to make further computation
infeasible.

To overcome this difficulty, two heuristics can be intro-
duced. (i) Because free circles lead to large areas of active
cells, remove them after a certain number of grid refinements.
This is legitimate because to remove constraints for one of the
centers means to generalize the problem. (ii) Split a problem
(for a particular combination) into two sub-problems by se-
lecting a coordinate variable z; ory; (1 < i < m)anda
threshold value k. Then the two cases z; < kand z; > k

> <

25 R T WS e

e

0 2D 5 Yo

Figure 7: Elimination Process—2

(y; £ kand y; > k, respectively) are treated separately.

If k is well chosen, the number of active cells can be better
reduced in the two sub-problems.

Step 3) Guessing optimal packings: The previous steps
gave us the packings in Fig. 1 — 3. Whenever two circles
touch or one circle touches a square side this is indicated by a
solid line. It must be verified that these arrangements repre-
sent a packing as defined. First of all, algebraic solvability has
to be checked. But we must also check that distances m
not declared to be m are greater than m and that the positions *
of any free circle center form a non-empty and connected set.
For our range of n, these verifications are immediate.

Proof of Uniqueness

The proof of uniqueness done by Peikert ef al. [15] is
similar to their elimination procedure. The main difference
is that we don’t work with sets of cells anymore but use in-
stead convex regions bounded by lines and/or arcs. At the
beginning, these regions R; are error circles around the C; of
the guessed packing. The radii r; are such that at least the 2n-
dimensional interval obtained in step 2 is contained. If C; lies
on a square side, R; is a half circle only (or a quarter circle
if C; is a corner of the square). The cutting process shown in
Figs. 6 and 7 is now used in a modified form. The basic idea
is again that a region R; is being used to exclude parts of a
second region R;. Instead of cutting off a set of cells, we re-
move everything lying outside a straight line. The endpoints
of the line are found on the boundary of R; by inspecting all
“critical” points on the boundary of R;. The goal is to reduce
all regions belonging to fixed circles to polygons lying strictly
inside the error circle.

If this can be achieved, we have managed to reduce the
error radii by a (common) factor 0 < ¢ < 1. The trick is
now that, scaled down by g, the same sequence of cuts can be
performed again. That means we get sequences of concentric
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13

Figure 8: Unigueness Proof

Figure 9: Error Radii

error circles which converge to the guessed optimal packing.

Fig. 9 shows why iteration is legitimate: Assume that
the point B in the region R; is determined by the point A
in R;. Then, the distances C;C; and AB are both equal to
m. If A’ and B’ are chosen such that C; A’ = ¢C;A and
C;B’ = qC;B, then A’/B’ < m. This is true even if the
quadrilateral is concave or a “bowtie”.

Again, this proof was carried out on a computer. A strat-
egy was implemented to ensure that relatively wide segments
are cut off at each step. In contrast to Fig. 8, for other values
of 7 it may be necessary to use more than once each pair C;
and C; of neighbors before a polygon is obtained. The high-
est number of cuts needed was 141, namely for n = 13.

4 b
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Figure 10: Coordinates P for n=10

)

Finding the Closed Form Solution for m

The packings in Fig. 1 — 3 tell us which circles touch
which other circles and which circles touch the boundary of
the square. From this information, we apply Pythagoras’ The-
orem for right angle triangles to write down equations relating
centers of circles to other circles. Including boundary condi-
tions, we obtain a system of quadratic equations to solve. Let
us show how to do this for the case n = 10,

Let m be the diameter of the circles and let the circle with
center P; have co-ordinates (z;,%;). See Figure 10. Thus
there are 21 unknowns: Zg, ¥, - - - , £9, Yo, and m. Applying
Pythagoras’ Theorem to the line connecting Py to Pg we ob-
tain the equation (zg — x)? + (yg — ¥o)> = m? . Let the inner
square have unit co-ordinates. Hence zg = 1 and 3o = 0 so
the equation simplifies to (1 — z0)? + y# = m?. Applying
Pythagoras’ Theorem to all the heavy lines except the ones
on the boundary, we obtain the following equations.

> pythagoras := {

> (x[9]-x[8])"2+(y[9]-y([8])"2 = m"2,

> (x[81-x[01)"2+(y[B]-y[0])"2 = m"2,

> (x[2]1-%[1]1)"2+(y(2]1-y[1])"2 = m"2,

> (x[9]1-x[1]1)"2+(y[9]-y[1])"2 = m"2,

> (x[5]1-x[3]1)"2+(y[5]-y[3])"2 = m"2,

> (x[4]1-x[5])"2+(y[4]-¥[5])"2 = m"2,

> (x[6]1-x[5])"2+(y[6]-y[5]})"2 = m"2,

> (x[9]1-%[51)"2+(vy[9]-v¥[5]1)"2 = m"2,

> (x[7]-x[6]1)"2+(y[7]-y[6])"2 = m*2 }:

By inspection, we have the following boundary conditions.

> pboundary := { y[0)=0, x[0]=x[1]1+m, y[1]=0,
> x[2]1=0, x[3]1=0, y[3]l=y[2]+m, x[4]=0,

> vi{4)=1, yi6]l=1, x[7]1=1, y(7]1=y[8B]+m,

> x{81=1 1}:
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Substituting the boundary conditions into the equations we
obtain the following 9 equations in 9 unknowns.

> equations := subs(boundary,pythagoras)
> minus {m*2 = m"2};

equations := {(mg —25)% + (9 — ys5)? = m?,
(1 — z6)* + (yg +m — 1)2 = m?,

(@s — z5)" + (1 — ys)” = m2, 252 + (1 — ys)* = m?,

zs* + (ys — yo — m)* =m?, (29 — 21)* + 4o = m?,

2 9_ 9 2 2_ .2

17+ =mS (1 —z; —m)* +y3” =m”,

(o9 — 1 + (9o — ) = m?}

Now, in principle, we can solve for m by solving the equa-
tions. However, it is very difficult to solve this system of
polynomial equations algebraically. We can help the solver
if we can find any other equations which will simplify the
computation. We note that from symmetry zs = x4/2 and
ys = (1+y3)/2 = (14y2+m)/2 . Also the points Py, Py, By, P
form a parallelogram; hence, we obtain the equations y9 = yg
and zg = 1 —m . Substituting these conditions into our equa-
tions, we obtain the following system of 5 quadratic equations
in {y2, z¢, T3, Yz, M} to solve.

> symmetry := { x[5] = x[6]/2, yI[5] =

> (1+y[2]+m) /2, y[9]1=yI[8], x[%9]=1-m }:
> equations := subs(symmetry, equations)
> minus {m"2 = m"2};

equations = {(1 —z6)’ + (yg +m— 1) = m?,

2 2 2 2 2 -2
17+ =m5 (1 -z —m) + 3" =m",

1 lm 2+ —1 I Em 2—*m2
m ) 6 Us 2 2?!2 2 - y

1$2+l l _lm 2_m2
g% T\27 2% 73 =

Now, can Maple solve these equations? It turns out that
there is an effective approach to solving polynomial equations
based on the theory of Grébner bases. Roughly speaking,
given a set of polynomials, a Grobner basis is an equivalent
set of polynomials in a standard form which is more conve-
nient for computational purposes. Equivalence here means
that any zero of the input set of polynomials will be a zero
of the Gribner basis, and vice-versa. How does the Grébner
basis help use to solve for m? If the set of input polynomials
has a finite number of solutions, the Grisbner basis will be a
triangularized set of polynomials. Itis then straight forward to
solve using back substitution. We refer the reader to [19] and

[20] for futher information about Grébner bases. We com-
pute a Grébner basis in Maple using the gbasis command in
the grobner package as follows. Note: the gbasis function
expects its input to be polynomials, not equations. Hence

> polynomials := [seg(lhs(e)-rhs(e),
> e=equations)]:

> GB := grobner[gbasis] (polynomials,
> [x[1].,y[2].,x[6],y(8],m], plex):

The Grobner basis obtained is too big to present here. It also
took over 20 minutes on our computer to compute it. It con-
tains 9 polynomials whose coefficients are larger than 60 dig-
its in length. The option plex specifies a lexicographical or-
dering on the variables (i.e., z; > 1 > zg > yg > m)is to
be used. By specifying m to be the last variable in the order-
ing, we obain the polynomial in m that we want. We select it
and factor it.

> a := select(type, GB, polynom(rational,m)):
> a := sort( factor( all] ) );

a = (1180129 m'® — 11436428 m!” + 98015844 m !
— 462103584 m'> + 1145811528 m!*
— 1398966480 m!? + 227573920 m 2
+ 1526909568 m!! — 1038261808 m!°
—2960321792m° + 7803109440 m®
— 9722063488 m’ + 7918461504 mS
— 4564076288 m° + 1899131648 m*
— 563649536 m* + 114038784 m? — 14172160 m
+819200)m

The optimal solution for m is therefore the smallest pos-
itive real root of this polynomial. The factor m corresponds
to the uninteresting solution m = 0, a square with zero width,
It turns out that the degree 18 polynomial cannot be solved
exactly in terms of radicals. We can however solve for m
numerically as follows,

> Digits := 20:
> fsolve(a,m,0..1);

42127954398390343277, .58863320774543513596,
.85329426491606600846,
.85990342812346032974,
.95225192338964487310,
.97654789054414157453,0

Thus the value of m is .4212795440 to 10 significant dig-
its. The grobner package in Maple contains another func-
tion, finduni, that computes this polynomial in m directly
for us. This function will often be somewhat faster in gen-
eral. Thus the best approach in Maple is to do finduni (m,
polynomials) ;.
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The minimal polynomials for the circles problems forn =
10..20 are given in the table below. The cases n = 12, 14, 16
are trivial. They are not included. The optimal solution for
m is the smallest positive real root of these polynomials. An
approximation is given. We note that we were not able to
find the solution for n = 13 using the Grébner basis method.
Maple was not able to solve 7 quadratic equations. We found
the solution using an elimination method based on computing
polynomial resultants and greatest common divisors.

Forn =10, m ~ 0.421279 from

1180129 m'® — 11436428 m'” + 98015844 m'® —

462103584 m"® + 1145811528 m'* — 1398966480 m >+
227573920 m'? + 1526909568 m' — 1038261808 m'*—
2960321792 m’ + 7803109440 m® — 9722063488 m+
7918461504 m® — 4564076288 m® + 1899131648 m* —
563649536 > + 114038784 m” — 14172160 m + 819200

Forn =11, m =~ 0.398297 from
mP+8m’ —22m® +20m’ + 18m* — 24m’—
24m’ +32m — 8

For n = 13, m = 0.366096 from

5322808420171924937409 m**+
586773959338049886173232 m™+

2960075719794736758784 m?—
174103532094609162240 m+
4756927106410086400

Forn =15, m = 0.341081 from

2mt —dmd—2mP +dm —1

For n = 17,m = 0.306154 from

mt—am’ +6mf — 4m’ +22m*—

20m> +36mr —26m+5

For n = 18, m ~ 0.300463 from

13 — 144 m?

Forn =19, m = 0.289542 from

484m" — 2376 m'® — 19320 ' + 102620 m !

31387 m'% — 221444 m® + 159246 m® + 169172 m ~
70723 m® — 105660 m® + 89292 m* — 26000 >+
2704 m?

For n = 20, m == 0.286612 from

128m% —96m + 17
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