
In-place Arithmetic for Polynomials over Zn

Michael Monagan

Institut ffir Wissenschaftliches Rechnen
ETH-Zentrum, CH-8092 Zfirich, Switzerland

monagan~inf.ethz.ch

Abstract . We present space and time efficient algorithms for univariate
polynomial arithmetic operations over Z mod n where the modulus n does
not necessarily fit into is not a machine word. These algorithms provide the
key tools for the efficient implementation of polynomial resultant gcd and
factorization computation over Z, without having to write large amounts of
code in a systems implementation language.

1 B a c k g r o u n d

This paper reports a solution to a dilema we faced during the design and imple-
mentation of certain crucial operations in the Maple system [15] namely, computing
polynomial resultants, greatest common divisors and factorization in Z[x].

The efficient implementation of polynomial greatest common divisors (Gcds) is
perhaps the most single important part of a general purpose computer algebra sys-
tem. Gcd computation is the bottleneck of many operations. This is because any
calculations which involve rational operations will require God computations in or-
der to reduce fractions to lowest terms. For example, in solving a system of equations
with polynomial coefficients, polynomial Gcd calculations will be needed to simplify
the solutions. WhEreas we can use Euclids algorithm to compute integer Gcds rel-
atively efficiently, compared with integer multiplication and division, the efficient
computation of polynomial Gcds is much more difficult. And although the classical
algorithms for multiplying and dividing polynomials are fine for most practical cal-
culations, the use of Euclidean based Gcd algorithms results in a phenomenon known
as "intermediate expression swell" which causes many intermediate calculations to
"blow up". Research on Gcd computations in the 1970's and 1980's [9, 19, 21, 7, 12]
led to efficient algorithms for the computation of polynomial Gcds. However, the
efficient implementation of these algorithms is quite difficult. The modular based
algorithms require efficient computation over the integers rood n. Efficiency is lost
in a systems implementation language like C and Lisp, and even more so in an
interpreted language.

The efficient implementation of polynomial resultants is not as important as
polynomial Gcds. And it has become less important since one of the main applica-
tions of resultants, namely in solving systems of polynomial equations, has largely
been superceded with the Grobner basis approach [5, 10]. However, it has been our
experience that some hard problems can only be solved by clever application of re-
sultants [16]. Thus it is still useful to have an efficient implementation of polynomial
resultants. The most efficient algorithms for resultants for dense polynomials are
those based on modular methods [9, 4].

23

Polynomial factorization is another important facility in a computer algebra sys-
tem. Various algorithms require polynomial factorization, such as computing with
algebraic numbers. But also, factorization is one way the user can try to "simplify"
an expression. Factored polynomials are usually smaller in size than expanded poly-
nomials.

In 1986, in Maple version 4.2, these operations were implemented as follows. Re-
sultants were computed using the sub-resultant algorithm [9, 4]. Gcds were computed
using the Heuristic algorithm GCDHEU [7]. And polynomial factorization over Z
was done using the Berlekamp-Hensel procedure [13, 10].

For dense polynomials, it had been known for some time that the modular meth-
ods of Collins [9] were superior to the sub-resultant algorithm for polynomial Resul-
tant and Gcd computation. However, an efficient implementation requires an efficient
implementation of polynomial arithmetic in Zp [x] where p will be a machine word size
prime, and an efficient implementation of the Chinese remainder algorithm for com-
bining images. Maple did not use this approach because firstly, the implementation
in Maple would be completely interpreted, and secondly, Maples implementation of
the sub-resultant algorithm for computing Resultants and the GCDHEU algorithm
for Gcds was quite competitive for many problems. Essentially, Maple was able to
"piggy back" off its efficient implementation of multi-precision integer arithmetic and
univariate polynomial arithmetic over Z. But the implementation of the Berlekamp-
Hensel procedure for factorization requires polynomial arithmetic and linear algebra
over Zp and polynomial arithmetic over Zpk. This was all implemented in Maple.
Maple was very slow at factoring over finite fields and consequently also slow at
factoring over Z. For some time this was not seem as a serious problem because the
competition, namely REDUCE and MACSYMA, also had and still have relatively
slow univariate polynomial factorization packages. However, just how slow Maple
was, and REDUCE and MACSYMA for that matter, became apparent when SMP
timings were reported. To give one comparison, the landmark SIGSAM problem No.
7 [11], which includes a factorizaton of a polynomial of degree 40 with over 40 digit
coefficients could be done in about a minute on a Vax 11/780 using SMP but took
Maple well over an hour.

So, how do we improve the performance of factorization in Z[z] in Maple? We
recognize that Maple is too slow because it is interpreted. Thus what we have to
do is to implement the polynomial factorization package and the tools it requires
in C. There will be some economy of code since many of the same tools needed for
factorization can also used to implement Gcds and resultants efficiently. However,
anyone who has implemented a polynomial factorization package knows that this is
a formidable task. The amount of coding is considerable. For instance, it is said that
when Arthur Normal first implemented polynomial factorization in REDUCE, the
overall size of the whole system doubled! I have seen the the SMP implementation. I
do not know how many lines of code it was but it was a stack of paper about 1 inch
think. This solution presents us with a major dilema in Maple. We have for years
tried to avoid coding in C and instead to code in the Maple programming language.
The advantage is clear. Maple code is easier to write, read, debug and maintain. We
also wanted to keep the Maple kernel, that is, the part of the Maple system that
is written in C, as small as possible. This was done primarily so that there would
be more storage available for data. However, there are other clear advantages in

24

maintenance and portability. But, Maple is interpreted and hence some operations
will execute slowly. Operations with small integers and floating point numbers excute
particularly slowly in Maple compared with compiled C. Hence also polynomial
arithmetic and linear algebra over Zn executes slowly. One is tempted to simply
code all these operations in C. Thus the dilema we faced was, how do we get an
efficient polynomial factorization package without writing tens of thousands of lines
of C code.

To summarize our finding here, the answer appears to be that one can have
an efficient implementation of polynomial resultants, Gcds and factorizaton over
Z if the system supports efficient arithmetic in Zn Ix]. It is not necessary to code
everything in C. Specifically, only addition, subtraction, multiplication, division,
quotient, remainder, evaluation, interpolation Gcd and resultant in Zn[~] need to
be coded in C. Factorization over Zp, and resultants, Gcds and factorization over Z
can then be coded efficiently in terms of these primitives.

Our other major finding is that if we focus on coding these primitives for Zn[z]
carefully, in particular, multiplication quotient and remainder, we can get modest
improvements of factors of 3 to 5 by being careful about the way we handle storage
and reduce modulo Zn. The result is a package which is partially written in C and
mostly written in Maple. That amount of C code that we wrote is 1200 lines. This
investment gives us fast implementations of the three key operations mentioned
previously, and also factorization over Zp.

Since then we have used these primitives to improve the performance of other
operations. We have implemented the multiple modular method of Collins [9] for
bivariate polynomial resultants and Gcds. Also we have used the fast arithmetic
for Zp[x] to represent large finite fields GF(p k) = Zp[x]/(a) where a E Zp[x] is irre-
ducible. One then obtains a fast implementation of univariate polynomial arithmetic,
including Gcds, resultants and factorization over GF(p~).

We note that the computationally intensive steps of the two fast Gcd algorithms
compared by Smedley [18] for computing Gcds of univariate polynomials over an
algebraic number field which is a simple algebraic extension of Q also use our codes.
The first method [17] is a heuristic method that reduces the problem to a single Gcd
computation over Zn for a large possibly composite modulus n. The second method
[14] is a multiple modular method. Gcds are computed over Zp, [x]/(a) for word size
prime moduli pi and combined by application of the Chinese remainder theorem.

2 I n t r o d u c t i o n

How does one implement efficient univariate polynomial arithmetic over Z, in par-
ticulax the operations Gcd, resultant, and factorization? The fastest known practical
method for computing Gcds and resultants is the dense modular method. For a full
description of this method we refer the reader to [9, 10]. Briefly, given a, b E Z[x],
one computes the Gcd(a, b) (the resultant(a, b)) modulo primes P l , . . . , P n and then
combines the images using the Chinese remainder theorem. There are many details
but this is the basic idea. In order to do this most efficiently, one chooses the primes
P l , . . . , P n to be the biggest primes that fit into a machine word, so that one can
use machine arithmetic directly for calculations in Zp~. One also needs an efficient
implementation of Chinese remaindering for combining the image Gcds or resultants.

25

This can be implemented efficiently by representing the polynomials over Zp~ as
arrays of machine integers and using the Euclidean algorithm for computing the Gcd
and resultant. However, an implementation in C will lose efficiency because in order
to multiply in Zp with remainder, one can only use half a machine word as otherwise
the product will overflow and the leading bits will be lost. Even though almost all
hardware has instructions for multiplying two full word numbers and getting the
two word result, these instructions are not accessible from C. Lisp implementations
lose efficiency because their representation of integers is special. Some bits may be
used for special purposes and there is an overhead for arithmetic operations. Note,
in AXIOM there is the additional overhead of function calls. Basically, for various
reasons, machine efficiency is lost.

Note: if one wants to handle multivariate polynomials, one will also need efficient
implementations in C of polynomial evaluation and interpolation. The implementa-
tion of the Gcd and resultant computation over Z can be implemented in the high
level language, and even if interpreted, the overhead be relatively insignificant.

Polynomial factorization is considerably more difficult. Given an efficient imple-
mentation of polynomial addition, multiplication, quotient and remainder, Gcd, over
Zp one can write an efficient procedure for factorization of univariate polynomials
over Zp using the Cantor-Zassenhaus distinct degree factorization algorithm [6]. The
bottleneck of this computation is computing the remainder of a n divided b for large
n where a, b E Zp[z]. This can be done efficiently using binary powering with remain-
der and requires only multiplication and remainder operations in Zp[z]. Note, the
efficiency of this procedure can be improved slightly if one can square a polynomial
efficiencly. This is worth doing. We found that it saves about 15% overall. The next
part of the Berlekamp-Hensel procedure for factorization is to lift the image factors
using P-adic lifting (Hensel lifting) from Zp to Zpk until p~ bounds twice the largest
coefficient that could appear in any factor over Z. The details of Hensel lifting can be
found in [10, 13]. From our view in this paper, what this means is that one must be
able to do polynomial arithmetic over Zpk efficiently. In particular, multiplication,
quotient and remainder. During the lifting, the modulus pi will eventually exceed
the word size and one is forced to use multi-precision arithmetic. How can we effi-
ciently multiply and divide over Zpk? The next section of this paper addresses this
problem. The factorization problem is then completed by trying combinations of the
lifted factors to see if they divide the original input. Again, the details are many.
Good references include the texts [10, 13].

3 I n P l a c e A l g o r i t h m s

In this section we design an efficient environment for computing with univariate
polynomials over the finite rings Zn where n is too large to fit in a machine word, and
Zp [x]/(a) where a E Zp [z] and p here is word size prime. Let R denote either of these
finite rings. Our implementation uses classical algorithms for arithmetic in R, since,
in almost all cases, the size of the rings will not be large enough to warrant the use
of asymptotically fast algorithms. Our implementation also uses classical algorithms
for R [z] , since again, for most cases, the degree of the polynomials will not be large
enough for asymptotically fast algorithms to win out. We are going to optimize the
implementation at the level of storage management and data representation.

26

In a generic implementation of univariate polynomial arithmetic over R (as one
would find in AXIOM for example) each arithmetic operation in R implies the
creation of a new objects. Each new object created means storage management
overhead. For example, to multiply a, b in Zn we would first compute c = a x b
then the result c mod n. In doing so several pieces of storage will be allocated which
will later have to be garbage collected. We describe a more efficient strategy for
computing in R[x] which eliminates this overhead. The idea is to exploit the fact that
unlike arithmetic over an arbitrary ring e.g. Q, the storage required for arithmetic
operations over R is bounded a priori since R is a finite ring.

We exploit this by coding arithmetic to run in-place. For arithmetic operations in
R[z] we will either pre-allocate the storage needed for the entire operation or, write
out the answer as we go using an on-line algorithm. The algorithms given for R[x] all
allocate linear total storage in the size of the inputs, assuming the inputs are dense,
which they usually are. In the case of polynomial multiplication and division, we
can do this in the space required to write down the answer plus a constant number
of scratch registers for arithmetic in R. Thus our algorithms are space optimal up
to lower order terms. Another significant improvement can be obtained by allowing
values to accumulate before reducing modulo n (or a) hence eliminating expensive
operations.

The assumption here is that storage management; that is the overhead of allocat-
ing storage for each operation, and garbage collection is significant compared with
the arithmetic operations involved. The overhead of storage management is surely
the main reason why numerical software systems are inherently faster than symbolic
algebra systems. This is simply because the primitive objects being manipulated in
numerical software systems, namely floating point numbers, have fixed size. Because
of this, immediate storage structures can be used for vectors and matrices of float-
ing point numbers. Storage management is trivial in comparison. Now the size of
objects in Zn and Zp[z]/(a) is not fixed. It is parameterized by n, p and deg(a).
However, unlike Q, the size depends only on the domain, not on the values of the
domain. The difference is significant. For operations over Q the size 0f the result
will depend on additional parameters such as the degree of a polynomial. Although
it may be possible to bound the storage needed for arithmetic over Q and design
in-place algorithms, it is so much more difficult that we consider it to be pointless.

3.1 In-place Multiplication

Let a, b E R[x]. The algorithm for in-place polynomial multiplication (IUPMUL)
computes the product c = ab using the Cauchy product rule

ck = ~ aibk-i for k = 0 . .da+ kb
max(O,k-db)~i~min(k,da)

where da = deg(a) and db = deg(b). The reason for this choice over the more familiar
iteration

ci+j = aibj for i = O..da for j = O..db

27

is that we can sequentially write down the product with additional space for only
two scratch registers. The size of the scratch registers depends on R and is given
below.

A l g o r i t h m I U P M U L : In-p lace U n i v a r i a t e P o l y n o m i a l M u l t i p l i c a -

t i o n

IPUPMUL((a,b,c):Array R, (da,db):Z, (tl , t2):R, m:R): Z
- Inputs: univariate polynomials a, b over R of degree da and db

- working storage registers t l , t2 and space for the product in c
- and the modulus m in R

- Outputs: degree of the product and the product in c
if da=- I or db=- I then return -1
dc := da + db
for k in 0 .. dc repeat

copyinto(0n,t 1)
for i in max(0,k-db) .. min(k,da) repeat

InPlaceMul(a[i],b[k-i],t2)
InPlaceAdd(t2,tl , t l)

InPlaceRem(tl,m)
copyinto(t 1 ,c[k])

- compute the degree of the product
while dc > 0 and c(dc) = On repeat dc := d c - 1
return dc

Note that the algorithm allows values to accumulate hence removing the remain-
der operation from the inner loop which often saves over half the work in practice.
In the case of Zn integer division is relatively expensive for small n compared with
integer multiplication. In Maple, integer multiplication is about 3 times faster than
integer division.

We also implemented a non-in-place version of the Karatsuba multiplication al-
gorithm for Z,~ for comparison. Note that the break even point will depend on the
size of n as well as the degree of the polynomials. For a 20 digit prime we found the
break even point to be around degree 64 indicating that IUPMUL is indeed quite
efficient.

I m p l e m e n t a t i o n No tes We assume the following functions in R. The utility oper-
ation copyinto(~, y) copies the value pointed to by x into the space pointed to by y.
The function InPlaceMul(~, y, z) computes the product xy in the space pointed to by
z. Likewise InPlaceAdd(x, y, z) and InPlaceSub(x, y, z) compute the sum and differ-
ence respectively ofx and y in the space pointed to by z. The function InPlaceRem(x, y)
computes the remainder of x divided y in the space pointed to by x. A note about
the representation.

The arrays a, b, c are arrays of pointers to pieces of storage which must be large
enough to hold the largest possible values in R. When R is Zn the temporaries t l , t2
need to be large enough to be able to accumulate at most min(da, db) + 1 integers

28

of magnitude at most (n - 1) 2. When R is Zp[x]/(a) where a is a polynomial of
degree k > 0, p is a word size prime modulus and elements of R are represented as
dense arrays of coefficients, then, the temporaries t l , t 2 need to be able to store a
polynomial of degree 2k - 2 hence 2k - 1 words.

3.2 I n - p l a c e Div i s ion w i t h R e m a i n d e r

In the in-place algorithm for polynomial division over R we again employ an on-line
algorithm to compute the coefficients of first the quotient q then the remainder r of
a divided b requiring additional space for two scratch registers. As was the case for
multiplication we can remove the remainder operation from the inner loop allowing
values to accumulate.

A l g o r i t h m I U P D I V : I n - p l a c e U n i v a r i a t e P o l y n o m i a l Div i s ion

IUPDIV((a,b):Array R, (da,db):Z, (t l , t2):R, (lb,m):R): Z = =
- Inputs: univariate polynomials a, b ~ 0 over R of degree da and db,

- working storage t l , t2, the inverse lb of the leading coefficient of b,
- and the modulus m in R
- Outputs: the degree of the remainder dr where the quotient of a

- divided b is in a[da - dq..da] and the remainder is in a[O..dr]
if da < db then return da
dq := da-db
dr := db-1
for k in da..0 by -1 repeat

copyinto(a[k],tl)
for j in max(0,k-dq).:min(dr,k) repeat

InPlaceMul(b[j],a[k-j+db],t2)
InPlaceSub(t 1 ,t2,t 1)

InPlaceRem(t 1,m)
if t l < OR then InPlaceAdd(m,t l , t l)
if k > db then

InPlaceMul(lb,t l , t l)
InPlaceRem(t 1,m)

copyinto(t 1,a[k])
- now compute the degree of the remainder
while dr > 0 and a[dr] = 0 repeat dr := dr - 1
return dr

An additional advantage of this on-line algorithm is that if one only needs the quo-
tient then the algorithm (modified to count from da down to the db computes the
quotient without computing the remainder hence saving half the work for the case
da = 2db:

3.3 I n - p l a c e G c d

The functionality of algorithm IUPDIV yields a simple in-place algorithm (IUPGCD)
for computing Gcd's over R. Note: algorithm IUPGCD returns an unnormalized Gcd.

29

A l g o r i t h m I U P G C D : I n - p l a c e U n i v m ' i a t e P o l y n o m i a l G C D

I U P G C D ((a,b):Array R, (da,db):Z, (tl ,t2,t3,t4):R, m:R): (Array R, Z)
- Inputs: univariate polynomials a and b over R of degree da and db

- additional working storage t l , t2, t3, t4 and modulus m in R
- Outputs: the degree of the Gcd and a or b which contains the Gcd

if da < db return IUPGCD(b,a,db,da,t l , t2, t3,t4,m)
if db = -1 return(b,db)
while db > 0 repeat

copyinto(b[db],t3)
copyinto(m,t 1)
InvInPlaceR(t3,tl,t2,t4) - t3 contains the inverse
dr := IUPDIV(a,b,da,db,tl , t2,t3,m)
(a,b) := (b,a) - interchange pointers only
da := db
db := dr

return(a,da)

In this case additional scratch registers are needed by InvInPlace to compute the
inverse (if it exists) of an element of R using the half extended Euclidean algorithm
see [10] in-place. That is given a, b in R we solve sa + t m = g for s. If g = 1 then
s is the inverse of a modulo m. We have implemented the half extended Euclidean
algorithm for the Euclidean domains Z and Zp[z] where p is a word size prime in-
place. Note also with slight modifications, algorithm IUPGCD can be extended to
compute univariate polynomial resultants over R.

4 T h e m o d p l F u n c t i o n in M a p l e

In this section we give further details about the Maple implementation, for arithmetic
in Zn[x]. Note, we have not implemented the case R = Zp[x]/(a) internally. Our first
at tempt at implementing fast arithmetic in Zp[x] began with the idea that we should
write the key functions (multiplication, quotient and remainder, Gcd and resultants)
in the rnod package in C. That is, the data representation for Zn[x] would be a
Maple general sum of products data structure. The interface would be via the mod
function and the coding would require conversions from the Maple representation
to an internal dense array representation. However, it became clear early on that
the conversion overhead, was very expensive. Or, correctly put, the real work being
done could be done very fast. Even for polynomials of degree 100, the time spent
converting took much longer than any of multiplication, quotient and remainder, or
Gcds.

The modpl function in Maple does univariate polynomial arithmetic over Zn
using special data representations. Modpl handles both the case of a word size
modulus n separately from the case where the modulus n is large. The case of n = 2
is also treated specially. The actual data representation used depends on the size of
n. If

30

n < prevprime L~/MAXINTJ
where MAXINT is the largest positive integer representable by the hardware, e.g.
on 32 bit machines using signed integers, MAXINT = 231 - 1, then a polynomial
is represented internally as a dense array of machine integers. Classical algorithms
are used with tricks to speed up various cases. For example, for the case n = 2
bit operations are used. For otherwise a small modulus additions in polynomial
multiplication and division are allowed to accumulate if they cannot overflow. Note
the prime here is used for a random number generator. If the modulus n is greater
then this number, the a polynomial is represented as a dense array of pointers to
Maple integers (multi-precision integers). And the in-place algorithms described in
the previous section are used. A example of usage for a large modulus follows

> p := provprimo(10"10);
p := 9999999967

�9 a :3 modp l (Randpo l y (4) , p) ;

a :3 [1110694326, 3633074819, 4256145114, 8458720791, 7419670467]

This r ep re sen t s the polynomial
�9 modpl (Convor tOut (a ,x) , p);

4 3
7419670467 x + 8458720791 x

2
+ 4256145114 x + 3633074819 x + 1110694326

�9 b := modpl(Randpoly(4) , p) ;

b := [2062222184, 2974124144, 4305615901, 5580039851, 6753832980]

�9 g :3 modpl (Ran 'dpr imo(4) , p) ;

8 : 3 [4685305298, 2712797428, 1717237881, 3687530853, 1]

�9 ag :3 m o d p l (M u l t i p l y (a , g) , p) :
�9 bg := m o d p l (M u l t i p l y (b , g) , p) :
�9 m o d p l (G c d (a g , b g) , p) ;

[4685305298, 2712797428, 1717237881, 3687530853, 1]

�9 m o d p l (F a c t o r s (a g) , p) ;

[7419670467, [[[3203615647, 1], 1], [[7211058641, 1284247953, 9477941733, 1], 1],

[[4685305298, 2712797428, 1717237881, 3687530853, 1] , 1]]]

Where note the output format of the Factors function is

[u , [[f l , e l] , . . . [f n , e n]]] = u X f~ l • e"

Note, the rood function in Maple provides a nicer interface for the user to these
facilities. For example, in the following, the Maple polynomials will be automati-
cally converted into the modpl representation where the computation is done, then

31

converted back on output. The evalgfl package uses the modpl facility to imple-
ment efficient univariate polynomial arithmetic over finite rings and fields Ze[x]/(a).
Polynomials are represented as dense arrays of modpl polynomials. This facility is
also accessed via the raod function with conversions taking place automatically. For
example

> f := x'8+x'4+x'3+x+l;

> Factor(f) mod 2;

8 4 3

f :" x + x + x + x + I

8 4 3

X + X + X + X + 1

> alias(a=RootOf(f,x)):

Factor f over GF(2"8) - Z2[x]/(f)

> Factor(f,a) mod 2;

6 3 2 6 4 3 2 7 6 5 2

(X + a + a + a + 1) (x + a + a + a + a + a) (x + a) (x + a + a + a + a)

2 4 4 3 7 6 5 4 3

(x + a) (x + a) (x + a + a + a + 1) (x + a + a + a + a + a + a)

> Expand(") rood 2;

8 4 3

X + X + X +:(+I

We make some comments about the efficiency gain compared with Maple 4.2 where
most of these operations were interpreted. Polynomial multiplication over Z , is
about 15-30 times faster for a small modulus and polynomial quotient and remainder,
Gcd and resultant, and factorization, are all 100 - 400 times faster. For the case of a
large modulus, the improvement is typically a factor of 3 - 15 where the larger the
modulus, the less the improvement. We will not present here any timing comparisons
with other systems. We refer the reader to [20] for timing comparisons for polynomial
factorizations over Zp and Z. We do mention that Maple V can compute the resultant
in SIGSAM problem ~ 7 [11] in 26 seconds on a Vax 11/85 and factor it in a further
20 seconds.

We list here a summary of which functions ill the modpl package we have coded in
C and which we have coded in Maple. Note this depends on whether the modulus
is small or large. And that all operations coded in C run in linear space.

32

Operation Small Large
i Degree Y Y
[Ldegree N N
Coeff Y Y
Diff Y N
Shift Y Y
Add Y Y
Sub Y Y
Multiply Y Y
Power N N
Rem Y Y
Quo Y Y
Divide N N
Gcd Y Y
Resultant Y N
Gcdex Y N
Eval Y Y
Interp Y N
Powmod Y N
Randpoly Y N
Sqrfree N N
Roots N N
Irreduc N N
Factors N N

Desc r ip t i on

The degree of the first non-zero term
The coefficient of x i
The derivative
Shift a polynomial by x n where n E Z
+

Polynomial remainder (optionally computes the quotient
Polynomial quotient (optionally computes the remainder
Polynomial exact division
Polynomial greatest common divisor
Polynomial resultant
The extended Euclidean algorithm
Polynomial evaluation
Polynomial interpolation
Compute Rem(a",b) using binary powering
Generate a polynomial with random coefficients
Square-free factorization
Compute the roots of a polynomial
Irreducibility test
Factorization (Cantor-Zassenhaus distinct degree)

5 Conclus ion

We found that by implementing the primitive operations addition and subtraction,
multiplication, quotient and remainder, Gcd and resultant, evaluation and interpo-
lation in Zn[x] in C, one is able to then write efficient code for factorization over
Zp and polynomial resultants, Gcds, and factorization over Z in a high level lan-
guage. Even if the high level language is interpreted, the efficiency lost is negligible
because the bulk of the work done is the primitive operations. This investment in
systems code can also be used to implement several other important algorithms
efficiently. Firstly, Collins modular method for Gcds and resultants [9] of dense mul-
tivariate polynomials over Z which we have implemented for bivariate polynomials
in Maple. Secondly, efficient polynomial arithmetic over finite fields and rings given
by Z p [x] / (a) : a e Zp[x] including resultants, Gcds and factorization. Thirdly, ef-
ficient univariate polynomial Gcd computation over a simple algebraic extension of
Q, [17, 18, 14].

We also found that the careful use of in-place arithmetic for the key operations
multiplication, quotient and remainder over Zn results in a significant overall effi-
ciency gain. The gains made by using in-place arithmetic are first that we are able
to essentially eliminate the overhead of storage management. Second, we save oper-
ations by allowing values to accumulate temporarily. Our implementation in Maple
typically results in improvements of factors of 3 to 5 depending on the size of the
modulus n.

33

If computer algebra systems are to get the most efficiency out of the systems
hardware for basic a r i thmet ic domains Z, Zn and Zp[x] / (a) , then we believe tha t
this will happen only given careful a t tent ion to the funct ional i ty provided so tha t
we can bui ld polynomial , vector and ma t r ix a r i thmet ic over these domains with-
out interact ion with storage management at every operat ion. This issue of s torage
management is even more acute in parallel systems.

Finally, what about l inear a lgebra over Zn ? Al though we have not considered
vector and ma t r ix operat ions, it is not difficult to imagine s imilar schemes whereby
one is able to perform vector and ma t r ix ar i thmet ic , such as de terminants , in-place.
We expect tha t one would see comparable improvements in performance. Thus i t
would seem tha t the next thing to do is to implement a s imilar facil i ty to the modpl
facili ty for vector and linear a lgebra where the key routines will be ma t r ix mult ipl i-
cation and Gaussian el iminat ion.

References

1. Berlekamp E.R. Factoring Polynomials over Finite Fields. Bell System Technical Jour-
nal, No 46 1853-1859, 1967.

2. Berlekamp E.R. Factoring Polynomials over Large Finite Fields. Mathematics o] Com-
putation, 24 713-715, 1970.

3. Brown W.S. On Euclid's Algorithm and the Computation of Polyngmial Greatest Com-
mon Divisors. JACM, 18, 478-504, 1971.

4. Brown W.S., Traub J.F. On Euclid's Algorithm and the Theory of Subresultants.
JACM, 18, 505-514, 1971.

5. B. Buchberger, A Theoretical Basis for the Reduction of Polynomials to Canonical
Forms, ACM SIGSAM Bulletin, 9, (4), November 1976.

6. Cantor D.G., Zassenhaus H. A New Algorithm for Factoring Polynomials over a Finite
Field. Mathematics of Computation, 36, 587-592, 1981.

7. Char, B.W., Geddes K.O., Gonnet, G.H. GCDHEU: Heuristic Polynomial GCD Al-
gorithm Based On Integer GCD Computation. Proceedings of Eurosam 84. Springer-
Verlag Lecture Notes in Computer Science, 174, 285-296, 1984.

8. Collins G.E. Subresultants and Reduced Polynomial Remainder Sequences. JACM, 14,
128-142, 1967.

9. Collins G.E. The Calculation of Multivariate Polynomial Resultants. JACM, 18, 515-
532, 1971.

10. Geddes K.O., Labahn G., Czapor S.R. Algorithms for Computer Algebra. To appear
1992.

11. Johnson S.C., Graham R.L. Problem #7 SIGSAM Bulletin issue number 29, 8 (1),
February 1974.

12. Kaltofen E. Computing with Polynomials Given by Straight-Line Programs: I Greatest
Common Divisors. Proceedings of the 17th Annual ACM Symposium on the Theory of
Computing, 131-142, 1985.

13. Knuth, D.E. The Art of Computer Programming Vol. 2: Seminumerical Algorithms
(Second Edition). Addison-Wesley, Reading Massachusetts, 1981.

14. Langemyr, L., McCallum, S. The Computation of Polynomial Greatest Common Divi-
sors. Proceedings of EUROCAL, 1987.

15. Maple V Language Reference Manual Springer-Verlag, 1991.

34

16. R. Peikert, D. Wuertz, M. Monagan, C. de Groot Packing Circles in a Squaxe: A Review
and New Results. IPS Research Report No. 91-17, September 1991 ETH-Zentrum, CH-
8092 Zurich, Switzerland.

17. Geddes K.O., Gonnet G.H., Smedley T.J. Heuristic Methods for Operations with Al-
gebraic Numbers. Proceedings of the A CM-SIGSA M 1988 International Symposium on
Symbolic and Algebraic Computation, ISSAC '88, 1988.

18. Smedley T.J. A New Modulax Algorithm for Computation of Algebraic Number Poly-
nomial Gcds. Proceedings of the A CM-SIGSA M 1988 International Symposium on Sym-
bolic and Algebraic Computation, ISSAC '89, 91-94, 1989.

19. David Yun, The Hensel Lemma in Algebraic Manipulation, Ph.D. Thesis, Mas-
sachusetts Institute of Technology.

20. Paul Zimmerman, A comparison of Maple V, Mathematica 1.2 and Macsyma 3.09 on
a Sun 3/60. mathPAD newsletter 1 (2), April 1991. Gruppe mathPAD, Universit~t
P~derborn.

21. Zippel R. Probabilistic Algorithms for Sparse Polynomials. Proceedings of Eurosam 79.
Springer-Verlag Lecture Notes in Computer Science, No 72, 216-226, 1979.

