
Sparse multivariate polynomial factorization: a
high-performance design and implementation.

Michael Monagan1 and Baris Tuncer1

Department of Mathematics, Simon Fraser University, Vancouver, Canada
mmonagan@sfu.ca and tuncer@sfu.ca,

Abstract. Our goal is to develop a high-performance code for factor-
ing a multivariate polynomial in n variables with integer coefficients
which is polynomial time in the sparse case and efficient in the dense
case. Maple, Magma, Macsyma, Singular and Mathematica all imple-
ment Wang’s multivariate Hensel lifting, which, for sparse polynomials,
can be exponential in n. Wang’s algorithm is also highly sequential.
In this work we reorganize multivariate Hensel lifting to facilitate a high-
performance parallel implementation. We identify multivariate polyno-
mial evaluation and bivariate Hensel lifting as two core components. We
have also developed a library of algorithms for polynomial arithmetic
which allow us to assign each core an independent task with all the
memory it needs in advance so that memory management is eliminated
and all important operations operate on dense arrays of 64 bit integers.
We have implemented our algorithm and library using Cilk C for the
case of two monic factors. We discuss details of the implementation and
present experimental timing results.

Keywords: Hensel Lifting, Polynomial Factorization, Cilk C

1 Introduction

Let a = fg where f and g are two irreducible polynomials in Z[x1, x2, . . . , xn].
Let α := (α2, α3, . . . , αn) ∈ Zn−1 be an evaluation point. For a given polynomial
h ∈ Z[x1, x2, . . . , xn] let us use the notation hj = h(x1, . . . , xj , αj+1, . . . , αn) so
that a1 = a(x1, α2, . . . , αn). To factor a we first factor the image a1 over Z. With
high probability f(x1, α) and g(x1, α) will be irreducible so we obtain f1 and g1.
Next we use a process known as Multivariate Hensel Lifting (MHL) to recover
f and g from a, f1, g1. Maple, Magma, Macsyma, Singular and Mathematica all
implement Wang’s MHL from [7, 8]. A complete description of Wang’s MHL may
be found in Ch 6 of Geddes et. al. [2].

The input to Wang’s MHL is a, α, f1, g1 and a lifting prime p. The evaluation
point α and prime p must satisfy gcd(f1, g1) = 1 in Zp[x1]. The algorithm lifts
the factors f1, g1 to f2, g2 then f2, g2 to f3, g3 etc. until we obtain fn, gn. At the
j’th step we have aj − fjgj mod p = 0. At the end of this iteration we have
a − fngn mod p = 0. Thus for sufficiently large p we obtain the factorization
a = fg over Z. The reason Hensel lifting is done modulo a prime p is to avoid
an expression swell that would otherwise occur over Q.

2 Monagan-Tuncer

Algorithm 1 below shows the j’th step of MHL. Throughout the paper we
restrict our presentation to f and g monic in x1. We refer the reader to [2] for
how to modify MHL for the non-monic case.

Algorithm 1 jth step of Multivariate Hensel Lifting for j > 1: Monic Case.

Input : p, αj ∈ Zp, aj ∈ Zp[x1, . . . , xj], fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] where
aj , fj−1, gj−1 are monic in x1 and aj(xj = αj) = fj−1gj−1.
Output : fj , gj ∈ Zp[x1, . . . , xj] such that aj = fjgj or FAIL.

1: fj ← fj−1; gj ← gj−1.
2: error ← aj − fj gj .
3: for i from 1 while error 6= 0 and deg(fj , xj) + deg(gj , xj) < deg(aj , xj) do
4: ci ← Taylor coefficient of (xj − αj)

i of error
5: if ci 6= 0 then
6: Solve the MDP σigj−1 + τifj−1 = ci in Zp[x1, . . . , xj−1] for σi and τi.
7: (fj , gj)← (fj + σi × (xj − αj)

i, gj + τi × (xj − αj)
i)

8: error ← aj − fj gj
9: end if

10: end for
11: if error = 0 then return fj , gj else return FAIL end if

There are two main computations in Algorithm 1, namely, the multivariate
polynomial diophantine equation (MDP) in Step 6, which typically dominates
the cost, and the multivariate multiplication of fj × gj in Steps 2 and 8. Wang’s
method for solving an MDP resembles his Hensel lifting. He first solves the
univariate polynomial diophantine equation

σi1 gj−1(x1, α2, . . . , αj−1) + τi1 fj−1(x1, α2, . . . , αj−1) = ci(x1, α2, . . . , αj−1)

using the Euclidean algorithm then recovers x2 then x3 etc. in σi and τi. For
each xj there is an iteration on the degree of xj similar to Algorithm 1. This
results in a highly serial algorithm which precludes a parallel implementation.

Wang’s solution to the MDP is exponential in j − 1 when the evaluation
points αi are non-zero. This makes the whole Hensel lifting process exponential
for sparse f and g. Polynomial time algorithms were developed by Zippel in 1981
[9], Kaltofen in 1985 [5], and Monagan and Tuncer in 2016 [6].

Let us use the notation supp(h) to denote the set of monomials appearing
in the polynomial h. Monagan and Tuncer [6] solved this exponential problem
by observing that if αj in Algorithm 1 is chosen at random from a sufficiently
large set then with high probability the monomials in σi for i ≥ 1 will be
contained in the monomials in fj−1, that is supp(σi) ⊆ supp(fj−1). Similarly,
supp(τi) ⊆ supp(gj−1) with high probability. They interpolate σi and τi by
picking β2, . . . , βj−1 at random from Zp, computing sufficiently many images of
σik = σi(x1, β

k
2 , β

k
3 , . . . , β

k
j−1) and τik = τi(x1, β

k
2 , . . . , β

k
j−1) for 1 ≤ k by solving

univariate diophantine equations

σik gj−1(x1, β
k
2 , . . . , β

k
j−1) + τik fj−1(x1, β

k
2 , . . . , β

k
j−1) = ci(x1, β

k
2 , . . . , β

k
j−1)

HPC for Hensel Lifting 3

for σik and τik in Zp[x1]. Equating coefficients we obtain linear systems. The lin-
ear systems are Vandermonde systems which can be solved efficiently in quadratic
time and linear space – see Zippel [10]. This improves on Kaltofen’s solution to
the MDP which results in large unstructured linear systems. The second author
has installed this new approach in Maple. It will be available in Maple 2019.

2 High performance considerations

As a first step we reorganize the computation of ci in Algorithm 1 to avoid
recomputing the entire product fj × gj . At the i′th iteration of the loop we have

fj = fj−1 +
∑i−1

k=1 σk(xj − αj)
k and gj = gj−1 +

∑i−1
k=1 τk(xj − αj)

k and

ci = coeff(aj − fjgj , (xj − αj)
i) =

aj
(i)(αj)

i!
−

i−1∑
k=1

σkτi−k

where a(i) is the i’th derivative of aj wrt xj . So we may write the loop in
Algorithm 1 as follows.

1: fj ← fj−1; gj ← gj−1; ap← aj ; df ← 0; dg ← 0.
2: for i from 1 while df + dg < deg(aj , xj) do
3: ap← i−1∂ap/∂xj
4: ci ← ap(αj)−

∑i−1
k=1 σk τi−k

5: Solve the MDP σigj−1 + τifj−1 = ci in Zp[x1, . . . , xj−1] for σi and τi.
6: if σi 6= 0 set df ← i. if τi 6= 0 set dg ← i.
7: end for
8: fj ← fj−1 +

∑i−1
k=1 σk × (xj − αj)

k

9: gj ← gj−1 +
∑i−1

k=1 τk × (xj − αj)
k

How can we parallelize this for a multi-core computer? We are using Cilk C, a
parallel extension of C available with the gcc compiler. See [1, 3]. Because of the
time needed to start a Cilk process, the units of work should be of size at least 104

clock cycles, equivalently, at least 103 multiplications in Zp. Also, small units
of work must require no memory allocations, otherwise memory management
will become a parallel bottleneck. We propose to reduce the multivariate Hensel
lifting in Zp[x1, . . . , xj] to Hensel lift bivariate images in Zp[x1, xj]. That is we
will Hensel lift xj in

aj(x1, β
k
2 , . . . , β

k
j−1, xj), fj−1(x1, β

k
2 , . . . , β

k
j−1), and gj−1(x1, β

k
2 , . . . , β

k
j−1).

Algorithm 2 is our main unit of work. The complexity estimates on the right
count arithmetic operations in Zp. Here d1 = deg(a, x1), dj = deg(a, xj)).

In Algorithm 2 the loop runs to either df = deg(fj , xj) or dg = deg(gj , xj),
whichever is greater. Now since df + dg = dj the most expensive step is the

sum of products Σ =
∑i−1

k=1 σi(x1) τk−i(x1) in Step 5 which costs
∑dj

i=1O(id21) ∈
O(d2jd

2
1) in total. To reduce this we evaluate and interpolate x1 in Σ. We first

4 Monagan-Tuncer

Algorithm 2 HenselLift1: Bivariate Hensel Lift of xj for j > 1.

Input: p, αj ∈ Zp, a ∈ Zp[x1, xj], f0, g0 ∈ Zp[x1] where a, f0, g0 are monic in x1,
a(x1, αj)=f0 g0 and gcd(f0, g0)=1.
Output : fj , gj ∈ Zp[x1, xj] such that aj = fj gj .

1: df ← 0; dg ← 0; da← deg(a, xj)
2: Solve sg0 + tf0 = 1 for s, t ∈ Zp[x1] using the EEA .O(d21)
3: for i from 1 while df + dg < da do
4: a← i−1∂a/∂xj .O(d1dj)
5: ci ← a(x1, xj = αj)−

∑i−1
k=1 σk(x1) τi−k(x1)O(d1dj) +O(id21)

6: Solve σig0 + τif0 = ci for σi, τi ∈ Zp[x1] as follows .O(d21)
7: σi ← (cis) rem f0; τi ← (ci − σig0) quo f0
8: if σi 6= 0 then df ← i end if
9: if τi 6= 0 then dg ← i end if

10: end for
11: We have fj = f0 +

∑df
i=1 σi(x1)(xj − αj)

i and gj = g0 +
∑dg

i=1 τi(x1)(xj − αj)
i.

12: return [f0, σ1, . . . , σdf] and [g0, τ1, . . . , τdg]

tried Horner evaluation at x1 = 0, 1, 2, . . . , dj and Newton interpolation which
are both O(d2j) but this didn’t really help until dj > 100 so we instead tried an
FFT which worked better. We give details here for clarity. Let ω be a primitive
n’th root of unity in Zp with 2k−1 ≤ dj < n ≤ 2k. Replace Step 5 with

5 Evaluate σil ← σi−1(ωl) and τil ← τi−1(ωl) for 0 ≤ l < n using an FFT.

for l = 0 to n− 1 do cil ←
∑i−1

k=1 σkl × τ(i−k)l end forO(i)

Interpolate Σ(x1) from values {(ωl, cil) : 0 ≤ l < n} using an inverse FFT.
ci(x1)← a(x1, xj = αj)−Σ(x1).

This reduces the cost of Step 5 to O(d1 log d1)+O(id1)+O(d1 log d1)+O(djd1).
The total cost of Algorithm 2 is reduced to O(d21dj + d1d

2
j).

2.1 Implementation of HenselLift1

In Algorithm 2 there are univariate operations in Zp[x1] in steps 2, 5 and 7,
bivariate operations in Zp[x1, xj] in Steps 4 and 5 and FFTs in Step 5. For
a high performance implementation we have designed a library of polynomial
arithmetic for Zp[x1] and Zp[x1, . . . , xn]. The data structure for Zp[x1] is just a
dense array of coefficients. For Zp[x1, . . . , xn] we use a sparse representation. We

encode, e.g., the trivariate polynomial
∑t

i=1 aiMi(x1, x2, x3) as a two arrays of
integers A = [a1|a2| . . . |at] and the monomials X = [M1|M2| . . . |Mt] also stored

as an array of integers, that is, each monomial xi1x
j
2x

k
3 in X is stored as the 64

bit integer 242i+ 221j + k. Each subroutine in our library has inputs which are
either integers or arrays of integers or arrays of arrays of integers. The arrays
may be for inputs, outputs, and, if needed, temporary storage. For example, in
Step 7 the multiplications cis and σig0 are done using the C routine

define LONG long long int // 64 bit signed C integer

int polmul64s(LONG *A, LONG *B, LONG *C, int da, int db, LONG p);

HPC for Hensel Lifting 5

Here da = deg(a, x), db = deg(b, x), the coefficients of a(x) and b(x) are
stored in the arrays A and B. The product c(x) = a(x)b(x) mod p is computed
in the array C which must be an array of size at least da+ db+ 1.

As a second example, in Step 4 we differentiate a(x1, xj) with respect to xj by
calling the routine poldiff64s(A,X, t, 2, 2, p) below. Here a(x1, xj) is input in
the arrays (A,X) and the routine overwrites (A,X) with the derivative ∂a/∂xj .

int poldiff64s(LONG *A, LONG *X, int t, int n, int j, LONG p) {

// diff(a,x[j]): a is stored as pair (A,X) with t terms in n variables

// compute result in (A,X) and return the number of terms

To implement Algorithm 2 we first coded it by allocating space for the poly-
nomials in Algorithm 2, so including space for σ1, . . . , σdf for example. Then we
make all polynomials parameters of HenselLift1 so that Algorithm 2 does not
allocate any new memory. This is possible because all polynomials have bounded
degree. The resulting code �HenselLift1 will be called on many inputs in parallel
and the temporary space can be reused.

2.2 Reduction from multivariate to bivariate Hensel lifting.

Algorithm 3 describes how we reduce Hensel lifting of xj in fj−1, gj−1 to many
bivariate Hensel lifts of xj . When we implemented Algorithm 3 we tested it on
polynomials f and g with 100−8000 terms in n = 6−15 variables of degree 7. We
observed that almost all the time was spent evaluating aj at Yk in step 8. In the
next section we discuss how we implement evaluation and how we parallelized it.
Here we point out that if instead of evaluating out x2, . . . , xj−1 we evaluate out
x3, . . . , xj−1, and thus interpolate the σi and τi from bivariate images in x1, x2,
then we we likely reduce the number of evaluations s thus leading to a speedup.
We describe what we have implemented using a homomorphism diagram.

aj(x1, x2, . . . , xj) fj(x1, x2, x3, . . . , xj)
fj−1(x1, x2, . . . , xj−1) gj(x1, x2, x3, . . . , xj)

evaluate x3, . . . , xj−1 for 1 ≤ k ≤ s ↑
↓ sparse interpolate x3, . . . , xj−1

aj(x1, x2, β
k
3 , . . . , β

k
j−1, xj) Hensel fj(x1, x2, β

k
3 , . . . , β

k
j−1, xj)

fj−1(x1, x2, β
k
3 , . . . , β

k
j−1)

lift xj−−−−−→ gj(x1, x2, β
k
3 , . . . , β

k
j−1, xj)

evaluate x2 for 1 ≤ l ≤ deg(aj , x2) ↑
↓ dense interpolate x2

aj(x1, γl, β
k
3 , . . . , β

k
j−1, xj) Hensel fj(x1, γl, β

k
3 , . . . , β

k
j−1, xj)

fj−1(x1, γl, β
k
3 , . . . , β

k
j−1)

lift xj−−−−−→ gj(x1, γl, β
k
3 , . . . , β

k
j−1, xj)

Fig. 1. Homomorphism diagram depicting our evaluation/interpolation strategy

In Figure 1 the reader will see two Hensel lifting steps which represent two
possible ways of computing fj(x1, x2, β

k, xj) and gj(x1, x2, β
k, xj). In the first

6 Monagan-Tuncer

Algorithm 3 Hensel Lift xj

Input: Prime p, αj ∈ Zp, Monic polynomials aj ∈ Zp[x1, . . . , xj] fj−1, gj−1 ∈
Zp[x1, . . . , xj−1] with j > 2, s.t. aj(x1, . . . , xj−1, αj) = fj−1gj−1.

1: Let fj =
∑df

i=0 σi(x2, ..., xj−1)xi1 where σi =
∑si

k=1 aikMik where xi1Mik are the
monomials in supp(fj−1) and df = deg(fj−1, x1).

2: Let gj =
∑dg

i=0 τi(x2, ..., xj−1)xi1 where τi =
∑ti

k=1 bikNik where xi1Nik are the
monomials in supp(gj−1) and dg = deg(gj−1, x1).

3: Set s = max(si, ti).
4: Pick (β2, . . . βj−1) ∈ Zp at random.
5: Compute monomial evaluation sets

{Si = {mik = Mik(β2, . . . , βj−1) : 1 ≤ k ≤ si} : 0 ≤ i ≤ df} and
{Ti = {nik = Nik(β2, . . . , βj−1) : 1 ≤ k ≤ ti} : 0 ≤ i ≤ dg}.
If any |Si| 6= si or any |Ti| 6= ti try a different choice for (β2, . . . , βj−1).
If this fails return FAIL(1). (p is not big enough)

6: for k from 1 to s in parallel do (Compute univariate images of σi and τi)
7: Let Yk = (x2 = βk

2 , . . . , xj−1 = βk
j−1).

8: Evaluate: ak, f0, g0 ← aj(x1, Yk, xj), fj−1(x1, Yk), gj−1(x1, Yk).
9: if gcd(f0, g0) 6= 1 return FAIL(2) (an unlucky evaluation)

10: Call HenselLift1(p, αj , ak, f0, g0) to compute σik(x1) and τik(x1) such that
ak − fkgk = 0 where fk =

∑df
i=0 σik(xj − αj)

i and gk =
∑dg

i=0 τik(xj − αj)
i.

11: end for
12: for i = 0 to df do
13: Construct and solve the si × si linear system{

si∑
k=1

aikm
n
ik = coefficient of xi1 in σin(x1) for 1 ≤ n ≤ si

}

for the coefficients aik of σi(x2, . . . , xj−1). Because it is a Vandermonde system in
mik which are distinct by Step 5 it has a unique solution.

14: end for
15: Do the same for the ti × ti linear systems to solve for the coefficients bik of the τi.
16: Substitute the solutions for aik into fj and bik into gj and return(fj , gj).

way (the top Hensel lift) the diophantine equations σig0 + τif0 = ci in Step 6
of Algorithm 2 are in Zp[x1, x2] thus bivariate. One can solve these using dense
evaluation and interpolation of x2 in O(d21d2 +d1d

2
2) arithmetic operations in Zp

where d2 = deg(aj , x2). See Monagan and Tuncer [6].

We coded this approach in Maple as an experiment and found that the most
expensive computation is the sum of products Σ =

∑i−1
k=1 σk(x1, x2)τi−k(x1, x2)

in Step 5 of Algorithm 2 which are now bivariate multiplications which cost
O(id21d

2
2). To reduce this cost, we experimented with evaluating and interpolating

x2 which is described by the bottom Hensel lift in Figure 1. So the number of
univariate images fj(x1, γl, β

k, xj), gj(x1, γl, β
k, xj) needed to interpolate x2 is

max(deg(fj , x2),deg(gj , x2)) < deg(aj , x2) = d2. In our current implementation
we have parallelized the computation of the Hensel lifts of these images.

HPC for Hensel Lifting 7

2.3 Parallelizing Evaluation

We describe how we parallelize the evaluations in Step 8 of Algorithm 3. Let
aj = (A,X) where the monomials in X are sorted in lexicographical order with
x1>x2>. . .>xj . We first sort the monomials into x1>xj>x2>. . .>xj−1. Now
when we evaluate aj(x1, xj , β

k
2 , . . . , β

k
j−1) the remaining monomials will be sorted

on x1>xj . Let aj =
∑t

i=1 aix
di
1 x

ei
j Mi(x2, . . . , xj−1). Let A = [a1, a2, . . . , at]

be the array of coefficients, mi = Mi(β2, . . . , βj−1) and B = [m1,m2, . . . ,mt]
be the array of monomial evaluations and let Y be the array of monomials
[xd1

1 x
e1
j , . . . , x

dt
1 x

ej
j]. If we initialize C0 := A = [a1, . . . , at] and define Ck =

[a1m
k
1 , . . . , atm

k
t] then we have

aj(x1, xj , β
k
2 , . . . , β

k
j−1) =

t∑
i=1

aim
k
i x

di
1 x

ei
2 =

t∑
i=1

CkiYi

and we can compute Ck+1 using t multiplications with

Ck+1 ← [B1 × Ck1, . . . , Bt × Ckt] = [a1m
k+1
1 , . . . , atm

k+1
t]

Then we assemble the result from
∑t

i=1 Ck+1,iYi which requires adding coeffi-
cients of equal monomials in x1, xj . Since the monomials in Yi are already sorted
on x1 > xj this is O(t). Thus the total number of multiplications needed is st
plus those needed to compute m1, . . . ,mt.

Our first attempt to parallelize this for N cores was to do N evaluations at a
time as done by Hu and Monagan in [4]. First compute C1, C2, . . . , CN and the ar-
ray Γ = [mN

1 ,m
N
2 , . . . ,m

N
t]. To obtain the next N evaluations in parallel, on the

k’th core compute Ck+N ← [Ck1 × Γ1, . . . , Ckt × Γt] = [a1m
k+N
1 , . . . , atm

k+N
1].

One problem with this approach is that we require #a words of memory for each
C1, . . . , CN . For one of our benchmark problems where #a = 64, 000, 000 this is
about a half a gigabyte per core. Another problem is that we did not obtain full
parallel speedup on our 16 core computer as the computation becomes memory
bound when #a is this large. The following works.

Split aj = (A,X) into N blocks of size t/N terms. Each core evaluates a block
of aj at βk+1 which must be combined later. Numbering the cores 0, 1, . . . , N−1
core c computes Ckl×Bl for c(t/N) < l ≤ c(t/N+1). We found that we obtained
a 20% improvement by also computing the evaluation βk+2 at the same time so
that we compute two evaluations at a time.

3 Experimental Results

We give two sets of experimental results. The first set (see Table 1) is for poly-
nomials in many variables with relatively low degree. Here, evaluation of aj is
the bottleneck in our method – the time spent Hensel lifting images is negligible.
The second set (see Table 2) is for polynomials with higher degree where Hensel
lifting becomes the bottleneck. All experiments were performed on a server with

8 Monagan-Tuncer

two Intel E5-2660 8 core CPUs running at 2.2GHz (base) and 3.0GHz (turbo)
hence the maximum theoretical parallel speedup is a factor of 16.2/3.0 = 11.7.

In Tables 1 and 2 the factors f and g are of the form xd1 +
∑t

i=2 ai
∏n

j=1 x
eji
j

where the coefficients ai are chosen randomly from [1, 999] and the exponents eji
randomly from [0, d− 1]. The timings are for Hensel lifting xn the last variable
only, which is always most of the time. The quantity s in column 4 is the number
of images needed to interpolate x3, . . . , xn in Figure 1. Table 1 shows we achieve
very good parallel speedup for evaluations. We are still working on improving
the parallel speedup for our Hensel lifting (Table 2).

For Maple we report two timings. The first is the best case of Wang’s method
where the evaluation points α2, . . . , αn are all 0. To obtain this timing we forced
Maple to use x1 as the main variable (by default, it chooses a variable of least
degree) and we added a constant to f and g as Maple requires that the leading
and trailing coefficient in x1 not vanish at α. The second timing is the worst
case for Wang’s method where all evaluation points are non-zero. It is the actual
timing for Maple on these inputs.

New times (1 core) New times (16 cores) Maple 2018
n d t s total (hensel) (eval) total (hensel) (eval) best worst

6 7 500 18 0.100 (0.016) (0.042) 0.084 (0.023) (0.010 – 4.2x) 0.411 28.84
6 7 1000 30 0.387 (0.026) (0.221) 0.219 (0.033) (0.026 – 8.5x) 1.140 58.46
6 7 2000 47 1.470 (0.041) (1.102) 0.285 (0.036) (0.082 – 13.4x) 3.066 99.88
6 7 4000 81 4.694 (0.074) (3.661) 0.702 (0.060) (0.293 – 12.5x) 7.173 162.49
6 7 8000 145 11.53 (0.130) (9.765) 1.710 (0.107) (0.793 – 12.3x) 15.61

9 7 500 16 0.100 (0.014) (0.035) 0.081 (0.016) (0.007 – 5.0x) 1.171 7564.9
9 7 1000 29 0.490 (0.025) (0.267) 0.219 (0.024) (0.028 – 9.5x) 3.704 10010.4
9 7 2000 50 2.625 (0.044) (1.777) 0.426 (0.038) (0.148 – 12.0x) 13.43
9 7 4000 93 16.71 (0.082) (13.33) 2.125 (0.070) (1.199 – 11.1x) 51.77
9 7 8000 164 106.2 (0.145) (92.45) 10.68 (0.121) (7.247 – 12.8x)

Table 1: Timings (real time in seconds) for increasing n and t. NA = not attempted.

New time (1 core) New time (16 cores) Maple 2018
n d t s total (hensel) (eval) total (hensel) (eval) best worst

6 10 500 10 0.101 (0.031) (0.025) 0.075 (0.020 – 1.5x) (0.005) 0.571 92.49
6 15 500 6 0.139 (0.075) (0.016) 0.094 (0.034 – 2.2x) (0.004) 0.751 7956.5
6 20 500 5 0.249 (0.181) (0.017) 0.115 (0.052 – 3.5x) (0.005) 0.919 48610.1
6 40 500 3 1.292 (1.214) (0.015) 0.335 (0.253 – 5.0x) (0.011) 1.615 NA
6 60 500 3 4.932 (4.838) (0.015) 1.161 (1.059 – 4.6x) (0.011) 3.343 NA
6 80 500 3 14.81 (14.70) (0.016) 3.436 (3.315 – 4.4x) (0.012) 4.485 NA

6 10 2000 30 1.785 (0.097) (1.068) 0.384 (0.048 – 2.0x) (0.087) 5.237 976.94
6 15 2000 18 1.635 (0.238) (0.707) 0.409 (0.080 – 3.0x) (0.055) 7.166 23128.5
6 20 2000 12 1.670 (0.484) (0.480) 0.456 (0.116 – 4.2x) (0.040) 9.195 NA
6 40 2000 6 4.237 (3.217) (0.260) 1.005 (0.607 – 5.3x) (0.033) 15.98 NA
6 60 2000 6 15.26 (14.15) (0.292) 3.030 (2.540 – 5.6x) (0.053) 42.32 NA
6 80 2000 4 28.37 (27.27) (0.217) 5.735 (5.181 – 5.3x) (0.054) 57.33 NA

Table 2: Timings (real time in seconds) for increasing degree.

HPC for Hensel Lifting 9

4 Implementation notes and Cilk C

We end with some comments about programming in Cilk C. Cilk has a very
simple task model. One starts a new task using the spawn directive. Typically
one creates several tasks in a C for loop inside a C function. One may wait for all
the tasks started inside the function to complete using the Cilk sync; directive.
And that’s essentially it! We had few problems with Cilk. But

Coding in Cilk C basically means we are coding in C where we must man-
age the memory needed for every polynomial operation. Naively calling malloc

and free in every subroutine will ruin parallel performance and degrade serial
performance. Having to manage memory greatly increases coding effort. To re-
duce this difficulty we spent time designing many in-place algorithms, that is,
algorithms requiring no additional memory.

It was very hard work getting an algorithm that took about two days to code
in Maple to work in Cilk C. In C there is no array bounds checking. Incorrect
memory references result in corrupted data which is difficult to track down.
Maintaining an identical version of the code in Maple is helpful here. What we
would find helpful is to code in C++ using the array data type, which does
not support bounds checking, but have some tool for automatically converting
arrays to C++ vectors where array bounds checking is available.

The data structure we use for multivariate polynomials assumes monomials
can be packed into a 64 bit integer which limits the degree and number of
variables that our software can handle. To accommodate more variables we plan
to use the 128 bit integer type available in gcc, thus doubling the number of
variables of a given degree that we can handle, and redesign our library to allow
32 bit, 64 bit and 128 bit monomials.

References

1. Matteo Frigo, Charles E. Leiserson and Keith H. Randall. The Implementation of
the Cilk-5 Multithreaded Language. Proc. PLDI 1988, ACM, 212–223, 1998.

2. K.O. Geddes, S.R. Czapor, G. Labahn, Algorithms for Computer Algebra, Kluwer
Acad. Publ. (1992).

3. The Cilk Project, http://supertech.csail.mit.edu/cilk/ .
4. Jiaxiong Hu and Michael Monagan. A fast parallel sparse polynomial GCD algo-

rithm. In Proceedings of ISSAC 2016, ACM Press, pp. 271–278, 2016.
5. Kaltofen, E., Sparse Hensel lifting. Proc. EUROCAL ’85, Springer Verlag LNCS,

vol 204, pp. 4–17, (1985).
6. Michael Monagan and Baris Tuncer, Using Sparse Interpolation in Hensel Lifting.

Proceedings of CASC 2016, Springer-Verlag LNCS 9890, pp. 381–400, 2016.
7. Wang, P.S., Rothschild, L.P. Factoring multivariate polynomials over the integers.

Mathematics of Computation, vol 29, NUMBER 131, pp. 935–950, (1975).
8. Wang, P.S. An improved Multivariate Polynomial Factoring Algorithm, Mathe-

matics of Computation, 32, (1978).
9. Zippel, R.E. Newton’s iteration and the sparse Hensel algorithm. Proc. ACM Symp.

Symbolic Algebraic Comp., 68–72, (1981).
10. Zippel, R.E. Interpolating polynomials from their values. J. Symbolic Comput.,

9(3):375–403, (1990).

