2D and 3D Graphical Routines for Teaching Linear Algebra

M. B. Monagan
Department of Mathematics, Simon Fraser University,
Burnaby, British Columbia, V5A 1S6 Canada.
E-mail: monagan@cecm.sfu.ca

Abstract

We present a collection of Maple graphics routines writ-
ten primarily for teaching Linear Algebra. The package
includes routines for visualizing vectors, planes, linear
systems, linear transformations, subspaces, eigenvectors,
singular vectors, projections and least squares approxi-
mations in R? and R3.

1 Introduction

Many authors have written on the use of computers to
teach Linear Algebra. An early Maple reference is Linear
Algebra with Maple V by Johnson [2]. This laboratory
manual is intended to serve as a supplement to a regular
text. Ideally, the material in it would be taught in a
weekly computer laboratory. One focus of the manual is
on using Maple commands to do the steps required to
perform calculations in Linear Algebra. For example, to
reduce a matrix to row Echelon form, students would use
the Maple routines addrow, swaprow, mulrow from the
linalg package to do elementary row operations on a
matrix instead of doing it by hand.

A similar approach is taken by Nicholson where he sup-
plements his text Elementary Linear Algebra [6] with a
numerical calculator written specifically for doing Linear
Algebra but made accessible over the internet. Students
may use the website to practice calculations, to check an-
swers, and to solve larger problems not doable by hand.

In [3], Kneppers reports on his use of Maple in teaching
Linear Algebra to systems engineers where he has given
a weekly lab using Maple. Most of the Maple exercises
he cites in his paper are of an exploratory flavor. For
example, students are given some 3 by 3 matrices and
asked to us Maple to compute their powers and figure
out what is going on. A second example asks students
to use Maple to work through several examples to check
that a theorem holds before proving it.

A different approach is taken by the authors of the text
Linear Algebra: Modules for Interactive Learning Using
Maple 6 [4] developed by the Linear Algebra Modules
Project (LAMP). The text is a printout of a collection

of Maple worksheets which are Maple tutorials with ex-
ercises. An accompanying CD contains an electronic ver-
sion of the Maple worksheets and a library of support rou-
tines. Students can work through the tutorials on their
own. The authors have placed a stronger focus on visual-
ization. For example, the movie subroutine permits the
student to visualize a linear transformation by animating
what happens when it is applied to a given object. This
invites a more experimental approach to the subject. The
student can be asked to construct a linear transformation
to accomplish a certain task. Motivated by the desire to
see the animation work, the student will keep trying until
it works correctly visually. It also makes, in this example,
the computer graphics application obvious to the student.

There are some good uses of the computer in the ref-
erences cited. However, in all four cases, the instructor
does not “teach” with the computer; rather the student
uses the computer as an aid to practice calculations, do
assignment problems, learn material on their own and do
exploratory computations. This is not “teaching” Linear
Algebra with the computer, because the instructor may
not be using the computer at all. Rather, it is “learning”
Linear Algebra with the computer.

Inspired by the visualization routines in the LAMP
modules and ideas exchanged with participants of the
Maple course [5] that the author has given in the summers
of 1998-2001, we have attempted in this paper to provide
a systematic and more complete coverage of graphical aids
aimed at teaching this foundational subject.

Before starting, let us pose a question to the reader. Is
the subject of Linear Algebra primarily algebraic or geo-
metric? Let me restate the question to get to the heart
of the matter: Did the authors of the theorems of Linear
Algebra find these theorems by thinking algebraically or
by thinking geometrically? we suspect that in many cases
they “saw” and “understood” the theorems geometrically
but proved them algebraically. Yet when we look at most
texts in Linear Algebra we do not find a systematic at-
tempt to present the subject geometrically. The subject
is presented by definitions, examples and theorems which
are to be understood algebraically. The texts we use at
SFU, Fraleigh and Beauregard [1] and Nicholson [6], are

typical in this regard. The development of geometric in-
tuition is largely absent. This is partly because of time
pressure. There isn’t enough time to discover and see the
theorem; there is only time to give one example, state the
theorem, and maybe give a proof of the theorem. This
will not lead the students to a deep understanding of the
material for it is possible to understand each step in an
algebraic proof yet not “see” why the theorem is true nor
what it is saying.

One new text which does place an emphasis on vectors
and geometry throughout the text is Poole’s text [7]. I
quote: “In keeping with the philosophy that linear algebra
is primarily about vectors (where matrices are seen as
agents of change), this book stresses geometric intuition.”
It is our goal in this paper to present a set of Maple
subroutines that would enable geometric intuition to be
developed rapidly with the computer. These tools should
be helpful to instructors in the lecture as well as to the
student in the lab.

2 Visuals for Linear Algebra

In this section we present the visuals we have developed.
The order of presentation follows a traditional presenta-
tion of Linear Algebra as in [1] where one covers

1. vectors, matrices, and linear systems,

2. bases, subspaces, and linear transformations,
3. determinants, eigenvalues and eigenvectors,
4. projection and orthogonality.

The visuals have been designed so that the relevant nu-
merical information is also displayed in the graphic. For
example, if the instructor wants to produce a handout or
an overhead showing a visual of the eigenvectors of a ma-
trix, we will want the matrix and the numerical values of
the eigenvalues and eigenvectors there too.

2.1 Vectors and Planes

Most of our visuals contain one or more vectors and/or
planes. Hence we describe these utility routines first. The
planeplot routine will draw a plane in R®. The plane
may be specified by giving (i) the equation of the plane,
(ii) a basis for the plane and a point on the plane, or (iii)
parametrically in the form (x(s,t),y(s,t),2(s,t)). By de-
fault, the plane is centered on the point on the lane which
is closest to the origin and is labelled with its equation
which is computed if not explicitly given. Several styles
for drawing the plane are provided including a circular
shape as well as the traditional rectangular shape.

pl := planeplot(z=-1):

p2 := planeplot({<1,0,0>,<0,1,0>},
shape=circular,style=grid):

p3 := planeplot(<0,s,t>,
shape=circular,color=blue):

plots[display] ({p1,p2,p3});

vV V V V V VvV

The vectorplot3d command will draw a solid vector in
R3. Several styles of vectors are available - best described
by looking at some pictures.

pl := planeplot(z=0,
planestyle=grid,length=2.5,width=3):

vl := vectorplot3d(<0,0,2>,label="u"):

v2 := vectorplot3d(<1,0,0>,
thickness=thick,color=green):

v3 := vectorplot3d(<-1,0,2>,
arrowstyle=arrow,color=cyan) :

plots[display]l ({p1,v1,v2,v3});

VvV V V V V V V VvV

2.2 Linear Systems

The treatment of linear systems in R? can be done quite
easily by an intructor with sketches on a board or pre-
pared in advance on an overhead transparency. For this

reason we will only show examples from R® where the
computer is necessary; we need be able to move and ro-
tate the graphic so that the orientation of the objects
becomes clear.

Given a linear system in R® input either as a set of
equations or a matrix A and right-hand-side vector b the
linsysplot3d command will, for each equation, draw the
plane and label it with its equation. Thus the solutions
will be seen as the point(s) where all planes intersect.
Also displayed is a parametric description of the solu-
tion(s). We will illustrate the functionality by solving
three systems each with three equations, one system with
a single solution, one with a line of solutions, and one
with no solution.

> linsysplot3d({x+y+z=0, x-y+z=1, y-z=2});

x=3,y=-1/2,z=-5/2

X+y+z= 0

Figure 1: A linear system with one solution.

v

linsysplot3d({x+y+z=0, x-y+z=1, 2%x+2%z=1 },
planeshape=rectangular, planestyle=mesh,
planelabel=false, colors=[cyan,red,green]);

Vv Vv

Y
=
n

Matrix([[1,1,1],[1,-1,1]1,[1,0,111);

v
o
n

<0,1,2>;

> linsysplot3d(4,b);

x=12-t,y=—-12,z=1t

Figure 2: A linear system with a line of solutions.

Figure 3: A linear system with no solutions.

One aspect of the Fraleigh and Beauregard text [1]
that we particularly like is the True/False exercises which
are mathematical statements which force the student to
think. For example, consider the following statements:

(i) A linear system over R with more equations than
unknowns has no solution.

(ii) A linear system over R with fewer equations than
unknowns has one or more solutions.

Generally, students find such questions more difficult than
calculations. To answer these questions by thinking about
what can happen when one row reduces an augmented
matrix is not easy. It is our contention that being able to
visualize linear systems in two and three dimensions will
readily yield answers to these questions, moreover, with a
picture in mind, stating counter examples follows easily.

The most difficult part of the 1insysplot3d command
is deciding what region of R® to show if the user does
not explicitly give us a region, a viewing box, in the form

T = a1..b1,y = as..b2, 2z = az..bs. We compute the view-
ing box as follows. We include the origin in the viewing
box. For each plane we compute the point on the plane
closest to the origin and ensure this point is inside the
viewing box. This ensures that each plane will be seen
in the final graphic. For each pair of planes we compute
their line of intersection, if any, and ensure that the point
on this line closest to the origin is in the viewing box. We
display all lines of intersection in heavy black so that the
intersections of the planes are clearly visible. For each
three planes we compute their common point of intersec-
tion, if any, and ensure that this point is in the viewing
box. Thus all useful geometric information about the lin-
ear system will be inside the viewing box. For example,
here is a plot of a system of four equations.

> linsysplot3d({z=-4,z=+4,x=2,x=8}) ;

2.3 Linear Transformations

Linear transformations in texts are usually introduced al-
gebraically rather than geometrically. The geometry if
given is usually depicted by showing what happens to the
unit square under the linear transformation given by the
2 by 2 matrix A. What is usually not explained is how
this is actually showing what happens to all points in R2.
Given A € R?, the lintransplot command will show
what happens to the unit circle under the linear transfor-
mation T : R2 — R? where Tx = Az. We draw the unit
circle on the left and the result of applying T to it on the
right. If the rank of A is 2 then the result is an ellipse
and if the rank of A is 1 then the result is a line. Sim-
ilarly, given A € R® the lintransplot3d command will
show what happens to the unit sphere under the linear
transformation implied by A. If the rank of A is 3 then
the result is an ellipsoid, if 2 an ellipse, and if 1 a line.
In order that one can see rotations and reflections we en-
code points on the perimeter of the unit circle and the
surface of the unit sphere in color. We draw the singular

vectors as black lines and the real eigenvectors as arrows.
We also compute and display the numerical values of the
determinant, singular values, and the eigenvalues of A.

> A := Matrix([[1,11,[1,011);

1 1
ey
> lintransplot(A);
[1 1] determinant = -1
[1 0] sigma = 1.62, .620 lambda = 1.62, -.618
In this example, det(4) = —1 tells us that the area

of the ellipse on the right is equal to that of the unit
circle on the left. Recall that the singular vectors are
the principal axes of the resulting ellipse and the singular
values 1.62 and 0.62 tell us the relative sizes of the axes
compared with those in the unit circle. In this example
the singular vectors are the same as the eigenvectors. The
next example shows that this need not be the case.

> A := Matrix([[-1,1],[0,1]1]):
> lintransplot(A);

[-1 1]
[01]

determinant = -1
sigma = 1.62, .620 lambda = -1, 1

Looking at this picture for a moment, suppose we
change the linear transformation to be Sz = RAx for
some rotation matrix R € R?*2. Obviously this will re-
sult in rotating the ellipse on the right. Obviously (i) the
singular vectors will rotate but their lengths will remain
the same hence the singular values will not change and
(ii) the area of the ellipse on the right will not change
hence the magnitude of the determinant will not change.

This third example is an example where the matrix is
singular. The kernel of A is displayed visually and a basis
for the kernel is given numerically.

> A := Matrix([[1,-1],[-1,1]1]1):
> lintransplot(A);

[1 -1] kernel = <1,1>
[-1 1] sigma = 0, 2 lambda = 0, 2

The lintransplot3d command does the same but in
three dimensions. We draw the surface of the unit sphere
and the result of the linear transformation as wireframe
objects so that we can the singular vectors and real eigen-
vectors inside them. Note the plots do not have a 1:1 scal-
ing (so that the plot is not too small) and consequently
the unit sphere does not look like a unit sphere.

> F := Matrix([[0,1.2,2],
> [.60,0,0]1,[0,0.81,0.8111);

0 12 2
F:=]60 0 0
0 .81 .81

> lintransplot3d(F,digits=2);

[01.2 2] determinant = .39
[.60 O 0] 1lambda = 1.5, -.33+.39%I, -.33-.39%I
[0 .81 .81] sigma = 2.6, .60, .25

=

4
/

\
\1
)
/

3

A

T

Y
'(‘..

W
S
s
\)

U

AN

This next example shows the kernel visually as a plane
inside the unit sphere as a subspace of R®. Also displayed
is a basis for the kernel. The two zero singular values also
confirm numerically that the range of the linear transfor-
mation really is a line, and not just a very thin ellipsoid.

> A := Matrix([[0,1,1]1$3]);

A=

OO O
—
—

> lintransplot3d(A);

[0 1 1] kernel = {<0.,.707,-.707>,<-1.,0.,0.>}
[0 1 1] 1lambda 0., 2., 0.
[0 1 1] sigma = 2.45, 0., 0.

/

Linear transformations can also be visualized by ani-
mating them. The applintrans command applies a lin-
ear transformation in R? to an ojbect. The ojbect may
be unit square or unit circle, a user defined object given
by a list of points specifying the boundary of the object,
or a Maple two-dimensional plot object. For example, to
show what happens to the unit circle we may do

> A := Matrix([[1,0.2],[0.2,111):
> applintrans(A,unitcircle,animated=false) ;

1.5+

2.4 Eigenvalues and Eigenvectors

On input of A € R?, the eigenplot command computes
and displays the eigenvectors and, implicitly, the eigen-
values of A as arrows in red and blue and also their nu-
merical values as text. This example shows a matrix with
two real eigenvectors.

> A := Matrix([[1,1],[1,0]11):

1 1
a=[1 5]
> eigenplot(A);
[1 1] 1lambda[1] = 1.62, v[1] = <1.62,1>
[1 0] 1lambda[2] = -.620, v[2] = <-.620,1>

For m unit vectors u;,¢ = 1,...,m equally spaced
around the unit circle, the eigenplot command com-
putes v; = Au; and displays each v; as a yellow arrow
with its tail at w;. This gives a visualization of the linear
transformation implied by A. Visually, if m is sufficiently
large, we will be able to see where the eigenvectors are.
This gives a visual interpretation of the definition: A non-
zero vector v is an eigenvector of A if Av = lv for some
eigenvalue A € R In this next example the eigenvectors
are not explicitly drawn so that the instructor may ask
students to estimate their numerical values.

> A := Matrix([[-1,1],[0,111):

-1 1
01

> eigenplot (A,eigenvectors=false) ;

|

[-1 1]
[01]

lambda[1]
lambda[2]

-1, v[1] = <1,0>
1, v[2] = <1,2>

The most difficult cases to understand are the degener-
ate cases, namely, (i) a matrix with one zero eigenvalue,
(ii) a matrix with two equal eigenvalues but with one
eigenvector, and (iii) a matrix with two equal eigenvalues
(where the eigenvectors change from real to complex).
For example

> A := Matrix([[1,-11,[-1,111);

N

> eigenplot (A);

-1]

[1 lambdal[1]
[-1 1]

lambda[2]

=2, v[1]
0, v[2]

<-1,1>
<1,1>

N

\‘ ' N\
N

Figure 4: A matrix with a zero eigenvector.

> A := Matrix([[1,1],[0,111):
1 1
[
> eigenplot(A);
[1 1] 1lambda[1] =1, v[1] = <1,0>
[0 1] 1lambda[2] = 1 with geometric multiplicity 1

These static pictures do not reveal everything. In fact,
we cannot illustrate case (iii) with a static plot easily. The
animate command in Maple 8 will permit us to animate a
plot on one parameter. Hence by animating the following
matrices as e passes through zero we can get a better
picture of these degenerate cases. Notice the difference
between cases (ii) and (iii).

A := Matrix([[1,-1],[-1,1+epsilon]]);
animate (eigenplot, [A] ,epsilon=-1..1);
A := Matrix([[1,1],[0,1+epsilon]]);
animate (eigenplot, [A],epsilon=-1..1);
A := Matrix([[1,1], [epsilon,1]]);

>
>
>
>
>
> animate (eigenplot, [A] ,epsilon=-1..1);

On input of A € R®, the eigenplot3d command com-
putes and displays the eigenvectors and eigenvalues of A
as arrows in black and also their numerical values as text.
This example shows a matrix with three real eigenvectors.
Eigenvectors with negative eigenvalues are indicated by
arrows pointing towards the surface of the unit sphere
instead of away from it.

> A := Matrix([[1,1.5,2],[1.5,1,1.5]1,[2,1.5,1]11);

> eigenplot3d(A,digits=2);

[11.5 2] 1lambda[1]=4.4 v[1]=<.60,.54,.60>
[1.5 1 1.5] 1lambda[2]=-.35 v[2]=<-.38,.85,-.38>
[21.5 1] lambda[3]=-1. v[3]=<.71,.26e-15,-.71>

For m € {20, 80,320, ...} unit vectors u;,i = 0,1,...,m
approximately equally spaced around the unit sphere, the
eigenplot3d command computes v; = Au; and displays
each v; as an arrow with its tail at position u; with RGB
color values given by the absolute value of the zyz co-
ordinates of the vector. This color assignment has the
nice property that vectors pointing in opposite directions
will have the same color.

In this second example, which is an example of a Leslie
matrix, the dominant eigenvector is in the positive quad-
rant. In order to see more clearly what is happening in
the positive quadrant we use the region option. We have
also rotated the plot so that the dominant eigenvector is
pointing at us; it is the black blob in the figure.

> F := Matrix([[0,1.2,2],[.60,0,0],[0,.81,.82]11); > projectionplot3d(b,W);

b =<2,1,1>, u=<1,1,0>, v =<0,1,1>
= <4/3,5/3,1/3>, = <2/3,-2/3,2/3>, = 1.15
0 12 2 P /3,5/3,1/ q / /3,2/ [lqll
F:=1 .60 0 0
0 .81 .82

> eigenplot3d(F,region=posoct) ;

N L T T
[01.2 2] 1lambda[1]=1.48 v[1]=... =- ===
[.60 0 0] lambda[2]=-.330+.3861 v[2]=... S T
[0 .81 .82] lambda[3]=-.330-.386I v[3]=... i::! _=--
B—
s ==
N e
N I O A 2-0
I — -
- —

We can use this picture to explain the steps of the Gram
Schmidt orthogonalization procedure for computing an
orthogonal basis for {b,u,v}. We will do this in Maple
for illustration. We first project v onto u to obtain an or-
thogonal basis for W. Next we compute p the projection
of b onto W and ¢ = b—p and then we plot b,p,q and W.

> with(LinearAlgebra) :
> Project := proc(b,u) (u.b)/(u.u)*u end:
>u,v := <1,1,0>,<0,1,1>:

> v := v-Project(v,u);
-1
The matrix F' has one real and two complex eigenvectors. 5
The effect of the complex eigenvectors on unit vectors _ 1
near the real eigenvector is to cause a rotation or twist U= =
around the real eigenvector. It can be shown that for a i

Leslie matrix L, if u € R™ satisfies u; > 0, then the limit
of the sequence Lu, L?u, L3u, ... is the dominant eigen-
vector of L. Visually, this is seen by observing that all
vectors close to the boundary of the positive quadrant
point into the positive quadrant.

>b :=<2,1,1>:
> p := Project(b,u)+Project(b,v);

2.5 Projection

Given a vector b € R® and a basis {u,v} for a plane

W C R3, the projectionplot3d command displays the

vectors u, v, b, the plane W, the projection vector p of b

onto W, and the vector ¢ = p — b which is the normal > 4 := b=P;
vector to W. Note that in the following example, the

vector —u, not u is what is displayed. When p is too

close to u or v we display —u, respectively, —v instead.

Displayed also are the numerical values of b, u, v, p,q and

|lg|| the distance from b to the closest point on W.

Wl WOt Wl

(Y
Il
|
o:alwoa|mmlw

> b,W := <2,1,1>,{<1,1,0>,<0,1,1>}:

:= vectorplot3d(b,label="b",color=red) :
:= vectorplot3d(p,label="p",color=blue):
vectorplot3d(q,label="q",color=blue):
:= planeplot({u,v},shape=rectangular,

style=grid,radius=2):
plots[display] ({B,P,Q,W});

=0 9w
n

XNz 7 O

We construct the projection matrix P by projecting
the elementary vectors onto W. We display the linear
transformation Tzt = Pxz. The kernel of T, the set of
points mapped by T to the origin, a line in this example,
is depicted by the triangle in the plot below. Now since
the kernel is a line we know that the dimension of the
nullspace of P is 1 hence the dimension of the range of
T is 2 hence, although in the plot the range looks like
an ellipsoid, it really has no volume. This is easily con-
firmed by rotating the plot. Notice also that one of the
eigenvectors appears to be equal to the kernel. Indeed
any non-zero vector in the nullspace of a matrix is an
eigenvector of the matrix with eigenvalue 0, a fact which
is confirmed in this plot.

i,j,k :=<1,0,0>,<0,1,0>,<0,0,1>:

P := Matrix([
Project(i,u)+Project(i,v),
Project(j,u)+Project(j,v),
Project(k,u)+Project(k,v) 1);

vV V V V VvV

2 1 -1
3 3 3
p=| 1 21
3 3 3
-1 1 2
3 3 3

> lintransplot3d(P);

[2/3 1/3 -1/3] kernel = {<.577,-.577,.577>}
[1/3 2/3 1/3] 1lambda = .100e-9, 1., 1.00
[-1/3 1/3 2/3] sigma = 1.00, 1., .100e-9

2.6 Least Squares

On input of n data points in R?, by default, the
leastsqrsplot command by fits the data with the best
linear function f(z) = az + b in the least squares sense.
It displays the data points, line of best fit, and indicates
the error of the fit visually by drawing squares. It also
displays in text the best fit and the numerical value of
the residual, that is, the area of the squares in the plot.
In the example below we fit a line and a quadratic to the
given data.

> X := [2,4,5,6]:
>Y := [6.5,8.5,11.5,12.5]:
> leastsqrsplot(X,Y,x=1..7);

fit = 3.07+1.57*x
error~2 = 1.142857

14

124

10+

> leastsqrsplot(X,Y,basis=[1,x,x72]);

fit = 4.86+.500%x+.136%x"2
error”2 = .909091

14

12+

104

Similarly, on input of n data points in R3, the
leastsqrsplot3d command fits the data with a plane
f(z,y) = ax + by + ¢ using least squares. It displays the
data points, plane of best fit, indicates the error by draw-
ing cubes, and displays the fit information in text. The
user may specify a different basis for the fit.

> X := [0,0,1,1,1,2,2]:
>Y := [0,1,1,2,1,1,3]:
> Z :=[1,1,2,2,3,3,3]:

leastsqrsplot3d(X,Y,Z,x=0..2,y=0..3,
scaling=constrained);

fit =
error~2 =

1.19+1.07%x-.899%e-1%y
.831461

3 Conclusion

In this paper we have suggested one place where the com-
puter will be appropriate in a lecture on Linear Algebra,
namely, visualizing basic concepts in R? and R®. Linear
Algebra in R” is a geometric subject. Even if textbooks
develop the subject primarily by stating and proving the-
orems algebraically, we contend that many concepts are
more easily understood, and will be more easily recreated
later, by thinking geometrically, and thus we think time
should be spent in developing geometric intuition and un-
derstanding. In this paper we have presented a package
of visualization routines being developed by the author
for Maple for this purpose and have mentioned some the-
orems and conclusions that can be made from the visuals.

A cknowledgement

We are grateful to Allan Gold of the University of Wind-
sor, Ontario, for sharing the idea for visualizing eigenvec-
tors in R? with us. We also acknowledge Larry Weldon of
Simon Fraser University, British Columbia, for showing
us a Java applet for least squares approximation.

References

[1] J.B. Fraleigh and R.A. Beauregard, Linear Algebra,
3rd edition, Addison-Wesley, 1995.

[2] E-W. Johnson, it Linear Algebra with Maple V,
Brooks/Cole Pub. Com., 1993.

[3] H.AA.W.M. Kneppers, The Influence of Maple on a
Linear Algebra Course at the Delft University of Tech-
nology, Proceedings of the 1994 Maple Summer Work-
shop, R.J. Lopez editor, Birkh&user, pp. 57-62, 1994.

[4] E.A. Herman, M.D. Pepe, R.T. Moore, J.R. King,
Linear Algebra: Modules for Interactive Learning Us-
ing Maple 6 1st edition, Addison-Wesley, 2001.

[5] M.B. Monagan, Teaching and Doing Mathemat-
ics with Maple, Maple Course brochure (2001) at:
http://www.cecm.sfu/MapleBrochure.pdf

[6] W.K. Nicholson, Elementary Linear Algebra, 1st edi-
tion, McGraw-Hill Ryerson, 2001.

[7] D. Poole, Linear Algebra, A Modern Introduction,
Brooks/Cole publishers, 2003.

