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Abstract. Leslie matrices may be used to model the age distribution of
a population as well as population growth. The dominant eigenvalue tells
us the long term population growth and the corresponding eigenvector
tells us the long term age distribution. Because the model is so simple,
and it does not require any knowledge of physics or chemistry or biology,
it’s ideal for presenting in a first course on Linear Algebra as the main
application of eigenvalues and eigenvectors.
In this paper we present the Leslie age distribution model and provide
accompanying exercises suitable for students. We use Maple for both
numerical calculations and symbolic calculations. We include some data
for real populations that instructors may use for classroom presentation
or for assignments.

1 Introduction

Linear algebra is my favourite subject to teach. Like most lower division math-
ematics courses, it is packed with topics that someone wants to be covered. So
there’s not much room for applications and certainly no room for applications
that require additional mathematics to be introduced first. An application needs
to fit in one lecture or less. For linear systems, I like to use Markov matrices
as the application as they also introduce a family of matrices. What applica-
tion should we use to illustrate eigenvalues and eigenvectors? I have 19 linear
algebra texts on my office shelf. The most common application for eigenvalues
and eigenvectors is to solving linear systems of first order differential equations.
A problem with this application is that many students will not yet have seen
first order linear systems of differential equations. And for those who have, their
understanding will likely be superficial. So this is not a good choice.

We need an application where the model is simple to understand and there
are interesting questions that the student can easily explore. I propose that we
use Leslie matrices and the Leslie age distribution model. This model is popu-
lar in ecology and demographics. It takes 10 to 15 minutes to understand the
model and see how to express it as a linear transformation. It takes 15 to 20
minutes to compute the dominant eigenvalue λ+ and corresponding eigenvector
v+ for an example and give a physical interpretation of what λ+ and v+ mean



for the population. That leaves time to pose some interesting questions and ex-
ercises. For the reader, a dominant eigenvalue is an eigenvalue, possibly complex,
of largest magnitude. Leslie matrices are non-negative matrices with a unique
positive dominant eigenvalue λ+.

Four of my texts, Anton and Rorres [1], Poole [8], Lay et. al. [5], Boyd and
Vandenberghe [2] use Leslie matrices as an application of eigenvalues and eigen-
vectors. The latter two do so under the label “linear dynamical systems”. Anton
and Rorres give a longer theoretical treatment, data from actual populations,
and study what happens when we harvest from the population.

In section 2 I develop the Leslie age distribution model, calculate the dom-
inant eigenvalue and eigenvector for an example in Maple and give a physical
interpretation of them. In section 3 I explore the Leslie matrix from an algebraic
viewpoint using Maple to do some of calculations. In section 4 I explore some
questions about controlling the growth of a population. For sections 2–4, I have
included some exercises that can be used for student assignments. I have also
gathered some data from real populations from the literature in the Appendix.

2 The Leslie Population Distribution Model

Leslie matrices model the age distribution of a population over time. They model
births, the aging process and deaths of a human or animal population. I think
the best way to introduce this subject is to present an actual example and show
how the model leads to a matrix times a vector before presenting the general
case. A real example will focus the attention of the students. I use the example of
the grey seal population on Sable island, an island off the coast of Nova Scotia.
The data for the example is taken from [7]. The model is presented in Figure 1.

G1

seal pups

0 − 4 yrs

G2

young adults

4 − 8 yrs

G3

mature adults

> 8 yrs

s3 = 0.808
f2 = 1.26

f1 = 0

f3 = 2.0

s1 = 0.614 s2 = 0.808

Fig. 1. Leslie model for grey seal population. The Gk are age groups, fk are fertility
rates and sk are survival probabilities.



We divide the females of the population into n age groups G1, G2, . . . , Gn.
In Figure 1 we have divided the seal population into three age groups: G1, seal
pups, ages 0− 4 years, G2, young seal adults, ages 4− 8 years, and G3, mature
seal adults aged over 8 years. We model the fertility rates f1, f2, . . . , fn which
are the average number of female births per female in the time period. In our
seal population we have f1 = 0 which means seal pups are not mature enough to
reproduce, f2 = 1.26 for young adult female seals and f3 = 2.0 for mature female
seals which means each seal has on average two female seal pups in 4 years, so
one seal pup per year until they die. We also model average survival rates for
each age group. In our seal population these are s1 = 0.614, s2 = s3 = 0.808
meaning over 60% of seal pups survive to be 4 years old. These numbers (see [7])
are estimates based on that has been gathered by scientists over a long period.

In [5] Lay et. al. study the northern spotted owl population. They also divide
the owl population into three age groups with fertility rates f1 = 0.0, f2 =
0.0, f3 = 0.33 and survival rates s1 = 0.18, s2 = 0.71, s3 = 0.94.

Let pti be the number of females in age group i at time t. So the population
vector at time t is P (t) = [pt1, p

t
2, . . . , p

t
n]. It is the female population at time t.

According to the model the population at time t+ 1 is given by

P (t+1) =


f1p

t
1 + f2p

t
2 + f3p

t
3

s1p
t
1

s2p
t
2 + s3p

t
3


The key observation is that the model is a linear transformation so we may write
P (t+1) = LP (t) for some n×n matrix L, a Leslie matrix. One should spend some
time constructing the matrix L here so the student can see where the matrix
comes from and why Linear Algebra is involved.

p
(t+1)
1

p
(t+1)
2

p
(t+1)
3

 =


f1 f2 f3

s1 0 0

0 s2 s3



pt1

pt2

pt3


The Leslie matrices for the grey seal population and northern spotted owl popu-
lation are given below in Figure 2. For the reader, what we will eventually find is
that both matrices have a dominant eigenvalue λ+. For the grey seals λ+ = 1.49
which means the seal population is growing rapidly (it is exploding) and because


0 1.26 2.0

0.614 0 0

0 0.808 0.808




0 0 0.33

0.18 0 0

0 0.71 0.94



Fig. 2. Leslie matrices for the grey seals (left) and northern spotted owls (right)



of this there is an effort to stop the population growing. For the owl population
λ+ = 0.91 which means the owl population is dying and there is a concerted
effort to save it. For teaching we proceed as follows.

We are interested in the distribution of the population among the n age
groups. Let us define population distribution vector D(t) to be P (t)/pt where
pt =

∑n
i=1 p

t
i is the total female population at time t.

Suppose the current seal population is P (0) = [1, 1, 1] thousands. We calculate
P (1) using Maple as follows.

> L := Matrix([[0.0,1.26,2.00],[0.614,0,0],[0,0.808,0.808]]);

L :=


0.0 1.26 2.0

0.614 0 0

0 0.808 0.808


> P[0] := <1,1,1>: P[1] := L.P[0];

P1 :=


3.260000000

0.6140000000

1.616000000


After 16 time periods (64 years) we get the following data.

P 16 D16 P 15 D15
1115.126895

459.0148362

542.5083059




0.5268357429

0.2168591067

0.2563051504




747.5811664

307.7235768

363.6975940




0.5268357541

0.2168591050

0.2563051409


Maple code to compute these vectors is

> local D; # by default D is the differential operator in Maple

> t := 15;

> pop := proc(v) local i; add(v[i],i=1..numelems(v)) end;

> for i to t do P[t] := L.P[t-1]; D[t] := P[t]/pop(P[t]); od;

Now we connect what has happened to the seal population with the eigen-
values and eigenvectors of L. First, the seal population has exploded! It has
increased from 3 thousand to 2,116 thousand. Second, comparing D(15) and
D(16), the population age distribution has stabilized at 52.7% seal pups, 21.7%
young adults, and 25.6% mature adults. Consider the quantities

P 16
1

P 15
1

= 1.491646586,
P 16
2

P 15
2

= 1.491646630, and
P 16
3

P 15
3

= 1.491646673.

This means λ = 1.4916466 and v = D15 satisfy Lv = λv to 7 decimal places.
Thus the sequence D1, D2, D3, . . . is converging to an eigenvector of L. We state
the following Theorem for a Leslie matrix L.



Theorem 1. For any non-zero initial population P 0 = [p01, p
0
1, . . . , p

0
n], if at

least one fertility rate fi is positive, the Leslie matrix L has a unique positive
eigenvalue λ+. If v+ is the corresponding eigenvector and at least two consecutive
fertility rates are positive, λ+ is dominant and the population distribution will
converge to an eigenvector of L, that is limt→∞D(t) exists and is a multiple of
v+.

We also have the following physical interpretation for λ+.

λ+ < 1 means the population will decline exponentially.

λ+ > 1 means the population will grow exponentially.

λ+ = 1 means the population is stable, it does not change.

Below we calculate the eigenvalues of L and the dominant eigenvector of
L using Maple. This is too difficult to do by hand. In exercise 3 below, I’ve
constructed a Leslie matrix L with λ+ = 7/6 so that a hand calculation is easy.

> with(LinearAlgebra):

> E := Eigenvalues(L);

E :=


−0.341823317441679 + 0.359549749028222 i

−0.341823317441679− 0.359549749028222 i

1.49164663488336 + 0. i


> lambda := Re(E[3]);

> I3 := IdentityMatrix(3):

> v := NullSpace(L-lambda*I3)[1]:

> v/pop(v); 
0.526835747502870

0.216859101480196

0.256305151016934


Exercises

1 For a population with two age groups with f1 = 1, f2 = 1, s1 = 0.75
and s2 = 0. Write down the Leslie matrix. Calculate the eigenvalues and
eigenvectors. Is the population growing or declining? What is the long term
population distribution?

2 Calculate the positive eigenvalue of L for the spotted owl population. See
Figure 2. Is the population growing or dying?

3 For the Leslie matrix L below, what does L22 = 0.5 mean? Calculate the
eigenvalues by hand. For the positive eigenvalue, determine the correspond-
ing eigenvector. What is the long term population distribution vector?

L =

[
0.5 0.75

0.5 0.75

]



4 For the Leslie matrix below calculate the eigenvalues. You should find that
one is 0 and one is positive. For the positive eigenvalue, determine the corre-
sponding eigenvector. What is the long term population distribution vector?

L =


0 7/6 7/6

1/2 0 0

0 2/3 2/3


5 For the northern spotted owl population (see Figure 2), starting with P 0 =

[0.2, 0.1, 0.7], calculate P 4 = L4P 0 and P 5 = L5P 0 and determine the age
distribution. To how may decimal places has the population distribution
converged. Estimate the corresponding eigenvalue.

6 This exercise is taken from Poole [8]. Woodland caribou are found primarily
in western Canada and the American northwest. The fertility rates and sur-
vival rates are given in the table below. The data shows that caribou cows do
not give birth during their first two years and the survival rate for caribou
calves is low.

Age 0–2 2–4 4–6 6–8 8–10 10–12 12–14

fi 0.0 0.2 0.9 0.9 0.9 0.8 0.3

si 0.3 0.7 0.9 0.9 0.9 0.6 0.0

P
(0)
i 10 2 8 5 12 0 1

Construct the Leslie matrix. Shown also in the last row is the female caribou
population in Jasper National park in 1990. Predict the female population
in 1992, 1994, 1996, 1998 and 2000. What do you conclude will happen to
the population in the long term? Use a computer to compute the eigenvalues
of L. What is λ+? What does this tell you about the population?

3 The Leslie Matrix

A Leslie matrix is an n by n matrix of the form

L =



f1 f2 · · · fn−1 fn

s1 0 · · · 0 0

0 s2 · · · 0 0

...
...

...
...

0 0 · · · sn−1 0


(1)

where n ≥ 2, the survival rates si > 0 and fertility rates fi ≥ 0 with at least one
fi > 0. Thus the Fibonacci matrix [[1, 1], [1, 0]] is a Leslie matrix. Notice that
we have sn = Lnn = 0. If sn > 0, as was the case for the grey seals and spotted



owls, we say L is a generalized Leslie matrix. Here we assume sn = 0. One of
the exercises in [1] is to show that the characteristic polynomial of L is

c(x) = xn − f1xn−1 − s1f2xn−2 − s2s1f3xn−3 − · · · − sn−1 . . . s3s2s1fn (2)

The difficulty is that the matrix has an arbitrary dimension. To do this we
would suggest that the student first calculate c(x) for n = 2 and n = 3. Using
Maple it is easy to do this. We will do it first for n = 3 then for n = 4.

> with(LinearAlgebra):

> L := Matrix([[f[1],f[2],f[3]],[s[1],0,0],[0,s[2],0]]);
f1 f2 f3

s1 0 0

0 s2 0


> CharacteristicPolynomial(L,x);

x3 − x2f1 − xf2s1 − s2s1f3

> L := Matrix([[f[1],f[2],f[3],f[4]],[s[1],0,0,0],

[0,s[2],0,0],[0,0,s[3],0]]):

> C := CharacteristicMatrix(L,x);

C :=


x− f1 −f2 −f3 −f4
−s1 x 0 0

0 −s2 x 0

0 0 −s3 x


> Determinant(C);

x4 − f1x3 − s1f2x2 − s2s1f3x− s3s2s1f4
Anton and Rorres [1] give the following formula for the eigenvector of L where
λ is an eigenvalue.

v =
[

1
s1
λ

s1s2
λ2

s1s2s3
λ3

· · · s1s2 . . . sn−1
λn−1

]T
(3)

How would we check this? The right way is simply to calculate Lv and λv and
try to show Lv = λv. Another not so clever way, which I confess to trying at
first, is to try to calculate the eigenvector, that is, solve (L − λI)z = 0 for z in
terms of λ and try to show that v = sz for some scalar s. Again, using Maple,
we can only do this for a fixed n. Let us try the first way for n = 4.

> v := <1,s[1]/x,s[1]*s[2]/x^2,s[1]*s[2]*s[3]/x^3> :

> y := L.v:

> y, x*v;





f1 +
s1f2
x

+
s2s1f3
x2

+
s3s2s1f4

x3

s1
s2s1
x

s3s2s1
x2


,


x

s1
s2s1
x

s3s2s1
x2


It seems that all I have to do is check that y1 = x. It is tempting to try to
manipulate y1 to get x. It is better to show y1 − x equals zero, that is, to show
that y1−x mod c(x) = 0. Simplifying to zero is always the best approach if you
are using a computer algebra system. It is also often true for a hand calculation.
How do we tell Maple to simplify y1−x using the constraint c(x) = 0? One way
to do this is to use the simplify command directly as follows

> simplify(y[1]-x,{c = 0});

0

If the second input to the simplify command is a set of algebraic equations, they
are treated as constraints. Alternatively one could use division. First multiply
y1 − x by x3 to clear the denominators so that x3(y1 − x) is a polynomial in x
then and divide x3(y1 − x) by c(x) to get the remainder.

> zero := numer(y[1]-x);

f1x
3 + f2s1x

2 + f3s1s2x+ f4s1s2s3f4 − x4

This is just the negative of the characteristic polynomial.

> rem(zero,c,x);

0

The remainder command treats the inputs as polynomials in x.
Another way is tell Maple that c(x) = 0 directly. I will use a Maple RootOf

to do this. The way to read the following command is that λ is one of the roots
of c(x) = 0 and λ is how this root will be displayed. Then we use Maple’s evala
facility to evaluate algebraic expressions.

> alias( lambda=RootOf(c,x) ) ;

> evala( lambda^4-f[1]*lambda^3 );

s1
(
f2 λ

2 + f3 λ s2 + f4 s2 s3
)

> evala( subs(x=lambda,y[1]) );

λ

Now for the not so smart way. We’ve just told Maple that λ is a root of the
characteristic polynomial. Let’s calculate the eigenvector the way we teach a
student to do it by solving (L− λI)u = 0 for u in terms of the fi and si. Since
the system is homogeneous it should have a free parameter. In the Maple code
below I tell Maple to use t for the parameter and, to save space, I print uT .



> I4 := IdentityMatrix(4):

> u := LinearSolve(L-lambda*I4,<0,0,0,0>,free=t):

> Transpose(u); [
λ3t4
s3s2s1

λ2t4
s3s2

λ t4
s3

t4

]
Let’s try t = v4 = s1s2s3/λ

3.

> u := subs( t[4]=v[4], u ):

> Transpose(u); [
1

s1
λ

s1s2
λ2

s1s2s3
λ3

]
Well that worked with no further simplification required.

To show that the Leslie matrix L has one positive eigenvalue λ1 we introduce

q(x) =
f1
x

+
f2s1
x2

+
f3s1s2
x3

+ · · ·+ fns1s2 · · · sn−1
xn

(4)

and claim q(λ) = 1 where λ is a non-zero eigenvalue of L. We leave this as
an exercise. Now since fi ≥ 0 and si > 0 the function q(x) is monotonically
decreasing and limx→∞ q(x) = 0. Consequently there is only one λ, say λ = λ+

such that q(λ+) = 1. That is, L has a unique positive eigenvalue λ+. Exercise 3
below shows that λ+ has multiplicity 1.

Exercises

1 Show that characteristic polynomial for an n by n Leslie matrix given by
equation (1) is (2).

2 Show that q(λ) = 1.
3 Show that the positive eigenvalue λ1 of a Leslie matrix has algebraic multi-

plicity 1. Hint: a root λ1 of a polynomial q(x) has multiplicity 1 if and only
if q′(λ1) 6= 0.

4 For a generalized Leslie matrix

L =

 f1 f2 f3

s2 0 0

0 s2 s3


use Maple to calculate the characteristic polynomial c(x). Now try to find a
formula for the c(x) for an n by n generalized Leslie matrix.

5 The net reproduction rate of a population is defined as

r = f1 + f2s1 + f3s1s2 + · · ·+ fns1s2 . . . sn−1.

Explain why r can be interpreted as the average number of daughters born
to a female over her lifetime. It follows that if r > 1 the population will grow
but if r < 1 it will decline. Calculate r for caribou population in Section 2
Exercise 5.



4 Population stabilization and harvesting

Consider the Leslie matrix for the grey seal population.
0 1.26 2.0

0.614 0 0

0 0.808 0.808


We have determined that the dominant eigenvalue λ+ = 1.49 which means the
seal population is growing by almost 50% every four years. How can we stabilize
the population so that it is neither growing nor declining? The idea is to change
the fertility rates f1, f2, f3 or the survival rates s1, s2, s3 to force λ+ = 1. We
consider two possibilities.

1 Reduce s1 by culling the seal pups every 4 years.
2 Reduce all fi by shooting all seals with infertility darts.

I do the first option in class by hand and leave the second as an exercise. Here
I will run the both experiments using Maple. These calculations can easily be
be done by hand but one will worry about errors. I use Maple here to check my
calculations.

> L := Matrix([[0.0,1.26,2.0],[s[1],0,0],[0,0.808,0.808]]);

L :=


0 1.26 2.0

s1 0 0

0 0.808 0.808


Now force the eigenvalue λ = 1 and solve for s1.

> I3 := IdentityMatrix(3):

> C := L - 1*I; # lambda=1

C :=


−1. 1.26 2.0

s1 −1. 0

0 0.808 −0.192


> c := Determinant(C);

c := −0.192 + 1.85792 s1

> s[1] = solve( c=0, s[1] );

s1 = 0.1033413710

So we must reduce s1 from 61% to 10% to stop the population growing. Such
a huge reduction indicates how healthy the population is. Continuing with the
second option.



> L := Matrix([[0,s*1.26,s*2.0],[0.614,0,0],[0,0.808,0.808]]);

L :=


0 1.26 s 2.0 s

0.614 0 0

0 0.808 0.808


> c := Determinant(L-I3);

c := −0.192 + 1.14076288 s

> s = solve(c=0,s);

s = 0.1683084218

Again, a drastic reduction in the fertility rates is needed to stabilize the popu-
lation.

Another kind of question that one can ask is, what is the maximal sustainable
harvest rate h. That is what value of h can we use such that the matrix

L =


0 1.26(1− h) 2.0(1− h)

0.614(1− h) 0 0

0 0.808(1− h) 0.808(1− h)


has an eigenvalue 1? The answer below is one third.

> L := Matrix([[0,1.26,2.0],[0.614,0,0],[0,0.808,0.808]]):

> c := Determinant( (1-h)*L - I3 );

c := 0.94876288− 3.45664864h+ 1.87500864h2 − 0.36712288h3

> h = fsolve( c=0, h );

h = 0.3295999357

Exercises

1 Consider the following Leslie matrix

L =

[
0.5 f

0.75 0

]
For f = 0.25 is the population growing or declining? What must f be to
stabilize the population?

2 For the grey seal population in Figure 2, what is the maximum sustainable
harvesting rate assuming we do not harvest seal pups. Why might it be risky
to harvest at this rate?

3 For the northern spotted owl population in Figure 2, what must s1 be so that
the owl population stabilizes? Comment on the stability of the population.

4 If the government tries to eradicate northern owl predators so that all s1, s2, s3
increase, what rate must they increase by to stabilize the population?



5 Conclusion

I am indebted to Carl Schwarz of Simon Fraser University for introducing me
to Leslie matrices and the Leslie age distribution model and showing me the
Sable island grey seal data in [7]. I have taught Linear Algebra at Simon Fraser
University many times. I now use Leslie matrices as the sole application for
eigenvalues and eigenvectors in the course. The main advantage is that one does
not require any new mathematics nor any understanding of physics, chemistry
or biology to understand the model.

One difficulty with using data from real applications is that the characteristic
polynomials will not have a simple real root. Students would need a computer to
compute λ+. Furthermore, calculating the corresponding eigenvector by solving
(L− λ+I)v+ = 0 for v+ is also difficult to do correctly by hand.

One can obtain a good estimate for the dominant eigenvalue λ+ and corre-
sponding eigenvector v+ using the power method. If you teach the power method,
then that is a reasonable approach. It will require only a few matrix multiplica-
tions and the Leslie matrices are sparse. If not, then one needs Leslie matrices
which are suitable for hand calculations. I’ve provided some in the exercises in
this paper.

References

1. Howard Anton and Chris Rorres. Elementary Linear Algebra with Applications
Wiley, 1987.

2. Stephen Boyd and Lieven Vanderberghe. Introduction to Applied Linear Algebra
Cambridge University Press, 2018.

3. G. Caughley. Parameters for Seasonally Breeding Populations. Ecology 48: 834–
839, 1967.

4. R.H. Laberson, R. McKelvey, B.R. Noon, and C. Voss. A Dynamic Analysis of the
Viability of the Northern Spotted Owl in a Fragmented Forest Environment. J.
Conservation Biology 6: 505–512 (1992).

5. David C. Lay, Stephen R. Lay and Judy J. McDonald. Linear Algebra and its
Applications, 5th ed, Pearson, 2016.

6. Patrick H. Leslie. The use of matrices in certain population mathematics.
Biometrika 33(3): 183–212, 1945.

7. Micheline Manske, Carl J. Schwarz and Wayne T. Stobo. The Estimation of the
rate of population change of Grey Seals (Halichoerus grypus) on Sable Island using
a Leslie projection matrix with Capture-Recapture data. Unpublished manuscript.

8. David Poole. Linear Algebra, a Modern Introduction. Brooks/Cole, 2003.
9. A.E. York and J.R. Hartley. Pup production following harvest of female northern

fur seals. Canadian Journal of Fisheries and Aquatic Science 38, 84–90, 1981.

Appendix

The following data is taken from [3, 1]. It is for a sheep population. The sheep
have a lifespan of 12 years so the age groups are 1 year each. The dominant
eigenvalue is 1.176.



Age 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12

fi .000 .045 .391 .472 .484 .546 .543 .502 .468 .459 .433 .421

si .845 .975 .965 .950 .926 .895 .850 .786 .691 .561 .370 .000

The following data is taken from [1]. The data is for Canadian females in
1965. Because few women over 50 bear children, we ignore those older than 50.
The age groups are 5 years each so 10 age groups. The dominant eigenvalue is
1.076.

Age 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–45 45–50

fi .0000 .00024 .0586 .2861 .4479 .3640 .2226 .1046 .0283 .0024

si .9965 .9982 .9980 .9973 .9969 .9962 .9946 .9918 .9780 –

The following data is taken from [7]. The data is for the grey seal population
on Sable island, an island in the Atlantic off Nova Scotia. If one expands the
first age group to 4 age groups of 1 year each with si = 4

√
0.614 = 0.8852 and

fi = 0.0, I get λ+ = 1.114. To compress the model into three 4 year age groups,
for G2 (4–8 yrs) use f2 = .142 + .948(.347 + .948(.436 + .948(.468))) = 1.26 and
s2 = .9484 = 0.808.

Age 0–4 4–5 5–6 6–7 7–8 8–9 9–

fi 0.000 0.142 0.347 0.436 0.468 0.491 0.500

si 0.614 0.948 0.948 0.948 0.948 0.948 0.948

The following data it taken from [9]. The data is for northern fur seals. The
birth rates include female and male seal pups. I calculate λ+ = 1.333.

Age 0–2 2–4 4–6 6–8 8–10 10–12 12–14

fi 0.00 0.02 0.70 1.53 1.67 1.65 1.56

si 0.91 0.88 0.85 0.80 0.74 0.67 0.59

Age 14–16 16–18 18–20 20–22 22–24 24–26

fi 1.45 1.22 0.91 0.70 0.22 0.00

si 0.49 0.38 0.27 0.17 0.15 0.00


