
Sparse Polynomial Multiplication and Division in Maple 14

Michael Monagan and Roman Pearce
Department of Mathematics, Simon Fraser University

Burnaby B.C. V5A 1S6, Canada

Abstract

We demonstrate new routines for sparse multivariate polynomial multiplication and division over the integers
that we have integrated into Maple 14 through the expand and divide commands. These routines are currently
the fastest available, and the multiplication routine is parallelized with superlinear speedup. The performance of
Maple is significantly improved. We describe our polynomial data structure and compare it with Maple’s. Then
we present benchmarks comparing Maple 14 with Maple 13, Magma, Mathematica, Singular, Pari, and Trip.

This work was supported by the MITACS NCE of Canada and Maplesoft.

1 Introduction

There are two polynomial representations that computer algebra systems mainly use: the distributed representation
and the recursive representation. In the distributed representation a polynomial is stored as a sum of terms, e.g.:

f = 9 xy3z − 4 y3z2 − 6 xy2z + 8 x3 + 5 xy2.

The terms are often sorted. They are sorted above in the graded lexicographical ordering with x > y > z, so the
terms of highest total degree come first and ties are broken by lexicographical (alphabetical) order. Computer algebra
systems that use the distributed representation by default include Maple, Mathematica, Magma, and Singular.

In the recursive representation polynomials are stored as univariate polynomials in one variable with coefficients
that are (recursive) polynomials in the remaining variables. For example,

f = 8 x3 +
(
(9 z)y3 + (−6 z + 5) y2

)
x + (−4 z2)y3.

Polynomial arithmetic uses univariate algorithms (in x) with coefficient arithmetic (in Z[y, z]) performed recursively.
Computer algebra systems that use the recursive representation by default include Maxima, Reduce, Pari, and Trip.

It is widely believed that the recursive representation is generally more efficient than the distributed representation
for multiplying and dividing sparse polynomials. See, for example, the work of Stoutemyer (15) and Fateman (3).
However, in (10) we found that algorithms based on heaps together with efficient monomial representations can make
the distributed representation faster than the recursive representation. Heap based algorithms can run in the CPU
cache without accessing memory heavily or generating any intermediate “garbage”. This lends them to efficient
parallelization on multicore processors.

In 1975 Johnson (8) presented an algorithm for multiplying two polynomials in the distributed representation.
Let f = f1 + f2 + · · ·+ fm and g = g1 + g2 + · · ·+ gn. Johnson’s algorithm uses a binary heap to merge the partial
products {f1 ·g, f2 ·g, . . . , fm ·g} in O(mn log min(m, n)) monomial comparisons. We show in (9) how to modify the
heap so that for dense polynomials only O(mn) comparisons are done. This is needed to have good performance on
both sparse and dense problems. In (10) we present an algorithm to divide sparse polynomials that uses a heap and
has the same complexity as multiplication. And in (11) and (12) we present parallel algorithms for sparse polynomial
multiplication and division that achieve superlinear speedup often, a factor of 5 on a 4 core machine.

2 Polynomial Data Structures

The performance of any algorithm also depends on the data structure that is used to represent polynomials. Here we
describe sdmp, our data structure, and compare it with the distributed representation used by Maple and Singular.
The following figures show how the polynomial 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5 is represented in Maple and in
Singular. Magma uses a representation similar to Singular’s. Mathematica’s representation is similar to Maple’s.

1

Sparse Polynomial Multiplication and Division in Maple 14 TBA

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Maple’s sum-of-products representation
uses ∼ 9 words per term.

−4

3

2

0

POLY

−6

1

2

1

−8

3

0

0

−5

0

0

0

x

y

z

1

3

1

9

Singular’s distributed representation
uses ∼ 5 words per term.

The main reason why Maple is slow is that multiplying and comparing monomials is slow. For example, to
multiply xy3z by yz2, Maple allocates an array long enough to store the product x1y4z3 and computes it in a loop
with a merge. Since exponents can be integers, rational numbers, or floating point constants, exponent addition
involves a function call and a dispatch. Next Maple hashes the resulting monomial to determine if this monomial
already exists in memory. All of this requires many function calls and many loops. Singular does much less work
but still uses many machine cycles. How fast can one multiply and compare monomials?

In the graded lexicographical ordering with x > y > z, we can encode monomials xiyjzk in 64-bit machine words
as the integer (i + j + k)248 + 232i + 216j + k, that is, storing the 4 integers (i + j + k, i, j, k) using 16 bits each. A
monomial comparison becomes one machine integer comparison and a monomial multiplication becomes one machine
integer addition provided the degrees are not too large to cause overflow. The figure below shows how our system
sdmp represents the polynomial

9 xy3z − 4 y3z2 − 6 xy2z + 8 x3 − 5

in the above graded monomial ordering.

x y z

−4 −6 −8 −5

packing

POLY 5

9

dxyz dxyz dxyz dxyz dxyz

5032 4121 3300 00005131

d = total degree

sdmp’s packed array representation using 2 words per term.

An integer coefficient x is stored in place as 2x + 1 if |x| < 2B−2, where B = 64 is the word size of the machine.
For larger coefficients we store pointers to GMP integers (see (5)) which we distinguish by their least significant bit.

This idea of packing multiple exponents into a word dates back to the Altran computer algebra system (7) in 1971.
This was a period when RAM memory was very limited. Few general purpose computer algebra systems developed
since Altran have used this idea, presumably because they did not want to limit the degrees of polynomials or the
number of variables. Today, however, CPUs and operating systems have moved to 64-bits decisively. This allows
us to pack monomials in many variables with high degrees into one word. In 1998 (1), Bachmann and Schönemann
experimented with packings for different monomial orderings to speed up polynomial divisions in the distributed
representation for Gröbner basis computations. Our software supports several monomial orderings including graded
and pure lexicographical order and the ability to pack monomials into multiple machine words.

3 Maple 14 Integration

In Maple, the expand and divide commands perform multiplication and exact division of multivariate polynomials
with integer and rational coefficients. When the polynomials involved have few terms, multiplication or division is
done directly in the Maple kernel which is programmed in C. Otherwise, a library routine ‘expand/bigprod‘ or
‘expand/bigdiv‘ is invoked which allows for more sophisticated algorithms to be used. For example, in Maple 13,
for dense multivariate polynomials, Maple switches to using a recursive representation in one of the variables and
then expands (divides) resursively the coefficients in the remaining variables. These two routines are programmed
in Maple’s interpreted language.

2

Monagan and Pearce

Our approach has been to modify these routines. For polynomials with integer coefficients, we convert them
to our sdmp data structure, automatically packing monomials into as few words as possible. Since Maple’s sum-of-
products representation is not sorted in a monomial ordering, we next sort terms. Then we multiply (divide) using
our C library and convert the product (quotient) back to Maple’s sum-of-products representation. For polynomial
multiplication we pack monomials using pure lexicographical order to minimize the number of machine words needed
to encode the monomials in the product. For polynomial division, however, we use the graded monomial ordering
because no exponent overflow in a multivariate division can occur in this ordering.

Although the conversions are programmed in C, for sparse multiplications where the product has O(#f · #g)
terms, e.g., for f(x) = anxn + · · · a1x + a0 and g(y) = bmym + . . . b1y + b0, the conversion of the product to Maple’s
sum-of-products representation can account for over 80% of the time. Partly for this reason, we are working with
Maplesoft to make our sdmp data representation the new default representation in Maple. Maple will support two
main representations. If all monomials of a polynomial in one or more variables can be packed into one machine
word in the graded monomial ordering, Maple would will use our sdmp representation. Otherwise the polynomial
will be stored in Maple’s existing sum-of-products representation. Our thinking is that on a 64 bit computer, many
(most?) multivariate polynomials encountered in practice will be stored using our representation. This will not only
eliminate conversion overhead but also reduce significantly the space Maple needs to store polynomials.

4 Benchmarks

The following table illustrates the gains in performance that are obtained from using our routines in Maple 14 when
compared with Maple 13. We used an Intel Core i7 920 CPU running at 2.66GHz with hyperthreading disabled.
This is a 64 bit machine with 4 cores. All times reported are real times, not cpu times, in seconds. The Maple 13
and 14 timings are for excecuting the expand(f1*g1), divide(p1,f1,’q1’) and factor(p1) commands, that is,
they include conversion overhead. For Maple 14, we report two timings, firstly, the time for Maple 14 running with
1 core, and secondly, with 4 cores. Also shown is the %age of the real time spent in conversion and other overhead.

Our closest competitor is Trip (4), a computer algebra system for celestial mechanics. We report two times for
Trip. The first (RS) is for Trip’s recursive sparse polynomial data structure, the second (RD) is for Trip’s recursive
dense polynomial data structure. Like Maple 14, polynomial multiplication in Trip is parallelized. Both timings
reported for Trip are for 4 cores.

Maple 13 Maple 14 Magma Singular Mathematica Pari Trip 1.0
(1 core) (4 cores) 2.16-8 3.1 7.0 2.3 (RS) (RD)

multiply
p1 := f1(f1 + 1) 1.60 0.062 0.028 (50%) 0.30 0.58 4.79 0.45 0.043 0.035
p2 := f2(f2 + 1) 1.55 0.062 0.028 (50%) 0.30 0.57 5.06 1.86 0.047 0.048
p3 := f3(f3 + 1) 26.76 0.532 0.166 (28%) 4.09 6.96 50.36 3.96 0.376 0.314
p4 := f4(f4 + 1) 95.97 2.293 0.675 (24%) 13.25 30.64 273.01 39.15 1.648 1.309

divide
q1 := p1/f1 1.53 0.09 0.09 (11%) 0.36 0.42 6.09 0.27 0.216 0.202
q2 := p2/f2 1.53 0.09 0.09 (11%) 0.36 0.43 6.53 0.77 0.221 0.254
q3 := p3/f3 24.74 0.73 0.74 (5%) 4.31 3.98 46.39 2.88 1.880 1.722
q4 := p4/f4 93.42 3.17 3.17 (7%) 20.23 15.91 242.87 17.67 8.071 7.286

factor
p1 = 12341 terms 31.10 2.80 2.66 6.15 12.28 11.82
p2 = 12341 terms 296.32 20.80 20.00 6.81 23.67 64.31
p3 = 38711 terms 391.44 17.15 15.59 117.53 97.10 164.50
p4 = 135751 terms 2953.54 66.35 54.73 332.86 404.86 655.49

f1 = (1 + x + y + z)20 + 1
1771 terms

f2 = (1 + x2 + y2 + z2)20 + 1
1771 terms

f3 = (1 + x + y + z)30 + 1
5456 terms

f4 = (1 + x + y + z + t)20 + 1
10626 terms

We also see a substantial gain in performance on polynomial factorization from the improvements to polynomial
multiplication and division. This is because the algorithm for factoring f(x, y, z) starts by factoring the univariate
polynomial f(x, y = a, z = b), where {a, b} are small integers, and it recovers {y, z} in the factors of f(x, y = a, z = b)
using a process called “Hensel lifting”. Hensel lifting consists of a sequence of polynomial multiplications and some
divisions. Most of the time spent factoring f(x, y, z) is in the polynomial multiplications in the Hensel lifting.

The parallel multiplication algorithm in Maple 14 generally uses fewer CPU cycles in total than the sequential
algorithm, due to its efficient use of extra cache from each core – see (11). We obtain some parallel speedup on

3

Sparse Polynomial Multiplication and Division in Maple 14 TBA

the factorization benchmarks “for free”, however the speedup is not as large as one would hope. This is because
for smaller polynomial multiplications, the conversions to and from Maple’s data structure are sequential and incur
substantial overhead.

One can see that for the sparse benchmark, p2 = f2(f2+1), the systems which use a recursive dense representation
(Pari and Trip) take longer but multiplication and division in the other systems is essentially the same as for the first
benchmark. Note Magma (see (14)) factors p2 in 6.81 seconds by substituting x2 = u, y2 = v, z2 = w and factoring
p2(u, v, w) = f2(u, v, w)(f2(u, v, w) + 1) then verifying that f2(x, y, z) and f2(x, y, z) + 1 are irreducible.

5 What we presented at ISSAC

1. Picture of the data structures used in Maple 13, Singular, Pari, Trip, with our new data structure indicating
why Maple is slow and showing the monomial encoding we use.

2. A slide summarizing our heap based algorithms for multiplication and division with complexity results and the
main advantages.

3. A slide giving a visual picture of our parallel multiplication algorithm to indicate that this is now in Maple 14.

4. A slide detailing how the integration of our code and data structure into Maple 14 has been done and indicating
that the monomial encoding is automatic.

5. A benchmark slide detailing the improvements obtained.

6. A demo of our software package sdmp used from inside Maple showing different monomial packings and our
parallel multiplication speedup.

7. A demo of a polynomial factorization in Maple showing our multiplication and division software being called.

References
[1] Bachmann, O., Schönemann, H., 1998. Monomial representations for Gröbner bases computations. Proc. ISSAC ’98, pp.

309–316.

[2] Bosma, W., Cannon, J., Playoust, C., 1997. The Magma algebra system I: The user language. J. Symb. Comput. 24 (3-4),
235–265. See also http://magma.maths.usyd.edu.au/magma

[3] Fateman, R., 2003. Comparing the speed of programs for sparse polynomial multiplication. ACM SIGSAM Bulletin 37
(1), pp. 4–15.

[4] Gastineau, M., Laskar, J., 2006. Development of TRIP: Fast Sparse Multivariate Polynomial Multiplication Using Burst
Tries. In: Proc. ICCS 2006, Springer LNCS 3992, pp. 446–453. http://www.imcce.fr/Equipes/ASD/trip

[5] Granlund, T., 2008. The GNU Multiple Precision Arithmetic Library, version 4.2.2. http://www.gmplib.org/

[6] Greuel, G.-M., Pfister, G., Schönemann, H., 2005. Singular 3.0: A Computer Algebra System for Polynomial Computa-
tions. Centre for Computer Algebra, University of Kaiserslautern. http://www.singular.uni-kl.de

[7] Hall, A.D. Jr., The ALTRAN System for Rational Function Manipulation – A Survey. Communications of the ACM, 14,
517–521, ACM Press, 1971.

[8] Johnson, S.C., 1974. Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8 (3), pp. 63–71.

[9] Monagan, M., Pearce, R., 2007. Polynomial Division Using Dynamic Arrays, Heaps, and Packed Exponent Vectors. Proc.
of CASC ’07, Springer Verlag LNCS 4770, 295–315.

[10] Monagan, M., Pearce, R., 2008. Sparse Polynomial Division using Heaps. Accepted September 2009 for J. Symb. Comp.,
Preprint: http://www.cecm.sfu.ca/CAG/papers/MonHeaps.pdf

[11] M. Monagan, R. Pearce., 2009. Parallel Sparse Polynomial Multiplication Using Heaps. Proc. of ISSAC 2009, 295–315.

[12] M. Monagan, R. Pearce., 2010. Parallel Sparse Polynomial Division Using Heaps. Accepted for PASCO 2010, June 2010.
Preprint: http://www.cecm.sfu.ca/CAG/papers/ParHeapDiv.pdf

[13] PARI/GP, version 2.3.4, Bordeaux, 2008. http://pari.math.u-bordeaux.fr/

[14] Allan Steel, private communication, May 2010.

[15] Stoutemyer, D., 1984. Which Polynomial Representation is Best? Proc. of the 1984 Macsyma Users Conference, Sch-
enectedy, N.Y., pp. 221–244.

4

