
Speeding up polynomial GCD, a crucial operation in

Maple

Michael Monagan, Simon Fraser University
Email: mmonagan@sfu.ca

Abstract

Given two multivariate polynomials A and B with integer coefficients we present
a new GCD algorithm which computes G = gcd(A,B). Our algorithm is based on
the Hu/Monagan GCD algorithm. If A = GĀ and B = GB̄ we have modified the
Hu/Monagan so that it can interpolate the smaller of G and Ā.

We have implemented the new GCD algorithm in Maple with several subroutines
coded in C for efficiency. Maple currently uses Zippel’s sparse modular GCD algorithm.
We present timing results comparing Maple’s implementation of Zippel’s algorithm
with our new algorithm. The new algorithm is much faster on our benchmarks.

1 Introduction

Let A,B ∈ Z[x0, x1, . . . , xn]. That is, A and B are polynomials in n + 1 variables with
integer coefficients. In this work we present a Maple implementation of a new algorithm
that computes G the greatest common divisor (GCD) of A and B, that is, G = gcd(A,B).
Let Ā = A/G and B̄ = B/G. We refer to the polynomials Ā and B̄ as the cofactors of A
and B respectively. The Maple command

> simplify(A/B);

computes G = gcd(A,B) then outputs the simplified fraction

A/G

B/G
=
Ā

B̄
.

How important is the GCD operation for a computer algebra system like Maple? We
argue that the speed of the algorithm used to compute G is critical to the overall speed of
Maple. If Maple is computing with fractions of polynomials Maple will do many polynomial
additions, multiplications, divisions and GCDs. Because GCD is by far the most expensive
of these four operations, it will be the bottleneck of the computation in general. What makes
GCD computation difficult is that the Euclidean algorithm blows up when it is applied to
multivariate polynomials; it is exponential in the number of variables.

In practice, because polynomials in many variables are usually sparse, we want our GCD
algorithm to be efficient for sparse polynomials.

Definition 1 (Sparse Polynomial). Let f be a polynomial in n variables with total degree
d = deg(f). Let #f denote the number of non-zero terms of f . The maximum number of
terms in f is D =

(
n+d
d

)
. We say f is sparse if #f � D.

1

This standard definition for sparse polynomials is imprecise. We prefer the definition f
is sparse if #f ≤

√
D.

Example 1. The polynomial f = x41x2 + x42x3 + x43x4 + x44x5 + x45x1 + 1 is sparse. Here
#f = 6, d = 5, n = 5,

(
n+d
d

)
=
(
10
5

)
= 252 and

√
252 = 15.9

The GCD problem for A,B ∈ Z[x0, x1, . . . , xn] has a long history. The first breakthrough
was Brown’s modular GCD algorithm from [3]. It solves the problem of the blowup in
the Euclidean algorithm but it is a dense algorithm. In [19] Moses and Yun developed
a multivariate GCD algorithm based on multivariate Hensel lifting (see Ch. 6 in [5]).
They called their algorithm the EZ-GCD algorithm. In [23] Wang improved the EZ-GCD
algorithm for sparse polynomials. Wang dubbed his algorithm the EEZ-GCD algorithm.
Wang’s algorithm was implemented in Maple by Keith Geddes in the 1980s and used as
Maple’s principle GCD algorithm for polynomials with 3 or more variables until 2005.

Since 2005 Maple has been using Zippel’s sparse modular GCD algorithm from [24].
The Maple implementation of Zippel’s algorithm is described in [9]. Zippel’s algorithm was
one of the first probabilistic algorithms. Other computer algebra systems that use Zippel’s
algorithm include Fermat, Magma, and Mathematica. The algorithm presented in this work
is based on Hu and Monagan’s GCD algorithm in [7, 8].

Brown’s GCD algorithm, Zippel’s GCD algorithm, and the Hu/Monagan GCD algorithm
all work by interpolating G from univariate images. They all compute gcd(A,B) modulo a
sequence of primes p1, p2, ... then apply the Chinese remainder theorem to reconstruct the
integer coefficients in G. The algorithms differ in how they compute G = gcd(A,B) mod p
for a prime p. They use different interpolation algorithms to interpolate G1 from univariate
images gj = G(x0, βj) for βj ∈ Znp .

Let di = deg(G, xi), D = d1+d2+ · · ·+dn, and P = (d1+1)(d2+1) . . . (dn+1). Brown’s
algorithm needs O(P) images gj to interpolate G mod each prime. The number of images
that Zippel’s algorithm and the Hu/Monagan algorithm need to interpolate G depends on

the largest coefficient of G. Let G =
∑d0
i=1 ai(x1, . . . , xn)xi0 where the coefficients ai are

polynomials in Z[x1, . . . , xn]. Let t = max(#ai). Zippel’s algorithm needs O(Dt) images.
The Hu/Monagan algorithm [7] needs only O(t) images. For the first prime p1 Hu/Monagan
apply a Kronecker substitution to map the GCD computation from Zp1 [x0, x1, . . . , xn] into
Zp1 [x, y] then use a modified Ben-Or/Tiwari sparse interpolation to interpolate y.

In Section 2 we present the original Ben-Or/Tiwari interpolation algorithm from [2] and
we explain why it must be modified for the GCD problem. We then present the modified
Ben-Or/Tiwari interpolation from [7]. In Section 3 we describe our GCD algorithm. It
modifies the Hu/Monagan algorithm so that it stops when it has interpolated the smaller
of G and one of the cofactors Ā and B̄. This leads to a big performance improvement
when min(#Ā,#B̄)� #G. To further improve the speed of our implementation, we have
coded several sub-algorithms in the C language. In particular, we explain how we evaluate
the input polynomials A and B which is usually the bottleneck of our algorithm. These
implementation details and how we call our C routines from Maple are presented in Section
4. In Section 5 we show how much faster our new GCD algorithm is compared with Maple’s
implementation of Zippel’s algorithm. We end with a short conclusion. We plan to intall
our new GCD algorithm into Maple.

1If the leading coefficient of G in x0 is not a constant, they interpolate a multiple of G. See Section 3.2

2

2 Sparse Polynomial Interpolation

Let f(x1, . . . , xn) =
∑t
i=1 aiMi(x1, . . . , xn) where t = #f is the number of terms of f and

ai ∈ Z and Mi are monomials. Suppose t, ai and Mi are unknown. The Ben-Or/Tiwari
algorithm [2] assumes a term bound T ≥ t is given. It interpolates f from the 2T values

bj = f(2j , 3j , 5j , . . . , pjn) for 0 ≤ j ≤ 2T − 1

where pn denotes the n’th prime. Let mi = Mi(2, 3, 5, . . . , pn) be the monomial evaluations
and let λ(z) =

∏t
i=1(z −mi).

Algorithm BTinterpolation

Input b ∈ Z2T where bj = f(2j , 3j , 5j , . . . , pjn) for 0 ≤ j ≤ 2T − 1.

Output f =
∑t
i=1 aiMi(x1, . . . , xn) ∈ Z[x1, . . . , xn]

1 Compute t and λ(z) from b using the Berlekamp-Massey algorithm [10] or
using the Euclidean algorithm [1, 22].

2 Factor λ(z) ∈ Z[z] to get the integer roots mi.

3 Factor the integers mi using trial division by 2, 3, . . . , pn to get Mi.
E.g. if mi = 45000 = 233254 then Mi = x1

3x2
2x3

4.

4 Let Vij = mj−1
i for 1 ≤ i ≤ t, 1 ≤ j ≤ t and let b = [b0, . . . , bt−1].

Solve the t× t Vandermonde system V a = b for the coefficients ai.

5 Output
∑t
i=1 aiMi.

The evaluations at prime powers ensure that the monomial evaluations Mi(2, 3, . . . , pn)
are distinct. This ensures that the monomials can be uniquely recovered in step 3 and the
Vandermonde matrix V in step 4 is non singular. However there is a problem with the prime
power choice. When T is not small, the evaluations bj = f(2j , 3j , . . . , pjn) are very large
integers. This ruins the efficiency of the algorithm in practice. A staple of Computer Algebra
to avoid large intermediate integers is to compute modulo a prime p. The first modification
is to evaluate f(2j , 3j , . . . , pjn) modulo p and do steps 1,2, and 4 modulo p. Provided p > mi

the monomials will be distinct. If di ≥ deg(f, xi) one may use mi ≤ 2d13d2 . . . pdnn for this
purpose. However, such a prime may be too big for us to use machine arithmetic.

In the GCD problem some evaluation points cannot be used.

Definition 2 (Unlucky Evaluation Point). Let A,B ∈ Zp[x0, x1, . . . , xn], G = gcd(A,B)
and Ā = A/G and B̄ = B/G. Then gcd(Ā, B̄) = 1. An evaluation point α ∈ Znp is unlucky

if deg(gcd(Ā(x0, α), B̄(x0, α)), x0) > 0.

Example 2. Let Ā = x2 + (y− 1)(z− 9)x+ 3zy, B̄ = x2 + 3zy and G = x+ y+ z. Here the
evaluation points y = 1 and z = 9 are unlucky as the cofactors are no longer relatively prime
at these points. Notice that y = 1 and z = 9 occur at j = 0 and j = 2 in the Ben-Or/Tiwari
evaluation point sequence (y = 2j , z = 3j).

Since we cannot use unlucky evaluation points to interpolate G and any integer could be
unlucky, we must use random evaluation points on [0, p) to avoid unlucky evaluation points.

Another problem is the term bound T ≥ t. If t were known then the Ben-Or/Tiwari
algorithm interpolates f using the 2t points (2j , 3j , . . . , pjn) for 0 ≤ j < 2t. But it is
highly unlikely that such information is available. Moreover, good term bounds are not

3

known. Hu and Monagan adopt the solution of Kaltofen, Lee and Lobo in [11]. For p
sufficiently large, if we compute λ(z) after j = 2, 4, 6, . . . points, we will see deg(λ, z) =
1, 2, . . . , t − 2, t − 1, t, t, t, . . . with high probability. Thus we wait until the degree of λ(z)
does not change.

2.1 Modified Ben-Or/Tiwari Interpolation

Let A,B ∈ Z[x0, . . . , xn] and G = gcd(A,B). Hu and Monagan [7] use an invertible Kro-
necker substitution Kr : Z[x0, x1, . . . , xn]→ Z[x, y] to map the GCD computation into one
in Z[x, y]. Let f ∈ Z[x0, x1, . . . , xn] and

Kr(f) = f(x, y, yr1 , yr1r2 , . . . , yr1r2...rn−1)

This mapping is invertible iff ri > deg(f, xi).

Example 3. Let f(x) = 2x20x2 + 3x0x
3
1x

2
2 + 5x0x

4
2 + 7x1x

2
2 Here d0 = 3, d1 = 3, d2 = 4.

Using r1 = 4, r2 = 5 we have Kr(f) = f(x, y, y4) = 2x2y4 + (3y11 + 5y8)x+ 7y9.

Let G =
∑d0
i=0 ci(x1, . . . , xn)xi0. Hu and Monagan interpolate the coefficients Kr(ci)(y)

modulo a prime p using the following modified Ben-Or/Tiwari interpolation. The ideas
behind it are due to Murao and Fujise [20] and Kaltofen [12].

Let C(x1, . . . , xn) be one of the coefficients and let f = Kr(C) =
∑t
i=1 aiy

ei . We first
pick a prime p > ei that is smooth, that is, p − 1 has no large prime factors. Next we
choose a random generator α for Zp. Now for some L > 0 we compute the values f(αj)
for 1 ≤ j ≤ 2L. The following algorithm interpolates f for L ≥ t + 1. Here the monomial
evaluations mi = αei and λ(z) =

∏t
i=1(z −mi).

Algorithm ModifiedBT
Input b ∈ Z2L

p where bj = f(αj) for 1 ≤ j ≤ 2L and α a generator for Z∗p.
Output f =

∑t
i=1 aiy

ei ∈ Zp[y] with t < L.

1 Compute λ(z) from bj using the Berlekamp-Massey algorithm or the Eu-
clidean algorithm and let t = deg(λ, z).
If t = L return FAIL. // t < L means λ(z) is correct with high probability
[11]

2 Factor λ(z) over Zp to get the roots mi.
If #m 6= t return FAIL. // as λ(z) is incorrect

3 Solve αei = mi in Zp for ei with 0 ≤ ei < p− 1.

4 Let Wij = mj
i for 1 ≤ i ≤ t, 1 ≤ j ≤ t and let b = [b1, . . . , bt].

Solve the t× t shifted Vandermonde system W a = b for the coefficients ai.

5 Output
∑t
i=1 aiy

ei .

The Berlekamp-Massey algorithm and the Euclidean algorithm both do O(L2) arithmetic
operations in Zp. The Cantor-Zassenhaus algorithm from [4] can be used to do the factor-
ization in step 2. Maple uses this algorithm. The Maple implementation does O(t2 log p)
arithmetic operations in Zp. Usually step 2 dominates the cost.

Step 3 is a discrete logarithm problem. We need to compute logαmi in the finite field
Zp. No polynomial time algorithm is known for this problem in general. Let p − 1 =∏k
i=1 pi be prime factorization of p − 1. The discrete logarithm can be computed using

4

O(
∑k
i=1(log p+

√
pi)) arithmetic operations using the Pohlig/Hellman algorithm [21]. Thus

if p− 1 has only small prime factors pi then computing discrete logarithms is feasible. The
numtheory[mlog](m,alpha,p) command in Maple computes logαm in Zp.

Step 4 is a shifted transposed Vandermonde system. Let

W =


m1 m2 . . . mt

m1
2 m2

2 . . . mt
2

...
...

...
...

m1
t m2

t . . . mt
t

 and V =


m0

1 m0
2 . . . m0

t

m1
1 m2

1 . . . mt
1

...
...

...
...

m1
t−1 m2

t−1 . . . mt−1
t

 .
Observe that W = V D where D is the diagonal matrix with Dii = mi for 1 ≤ i ≤ t. To solve
Wa = b we first solve V c = b for c. The linear system V c = b is a transposed Vandermonde
system. In [25] Zippel solves it in O(t2) arithmetic operations in Zp and space for O(t)
elements of Zp. Now W = V D and Wa = b implies V (Da) = b so c = Da. Hence ci = miai
so ai = m−1i ci. We can compute a from c using t multiplications and t inverses.

Hu and Monagan uses an alternative way to randomize the evaluations. They pick
a generator α for Zp and a random shift s from [1, p − 2] and evaluate at y = αj for

j = s, s+ 1, . . . , s+ 2L− 1. Then Wij = ms+j
i , Dii = ms

i and one obtains ai = m−si ci.
We return to the problem of the size of the prime p needed in in the Ben-Or/Tiwari

interpolation algorithm. Let n = 8 and di = deg(f, xi) = 10. Algorithm BTinterpolation
requires p > 210310 . . . 1910 = 7.4 × 1069 in general. Such a prime is too big for a 64 bit
computer. Algorithm ModifiedBT requires p > ei. Since ei < r1r2 . . . rn where ri = di + 1,
we need p > 118 = 214, 358, 881. Our Maple code has a table of 62, 128, 256, 512, and 1024
bit smooth primes. The first 62 bit prime in our table is the smooth prime

p = 4, 601, 552, 919, 265, 804, 289 = 61× 67× 250 + 1 = 261.99.

3 The GCD Algorithm

As in Zippel’s GCD algorithm, the Hu/Monagan GCD algorithm first computes and removes
the content from the input polynomials A and B.

Definition 3 (Content). Let f ∈ Z[x0, x1, ..., xn], d = deg(f, x0 and f =
∑d
i=0 ai(x1, . . . , xn)xi0

where ai ∈ Z[x1, . . . , xn]. Define cont(f, x0) = gcd(a0, a1, . . . , ad) to be the content of f . If
cont(f, x0) = 1 we say f is primitive.

Example 4. If f = (6x31−6)x0+(9x21−9) then cont(f, x0) = gcd(6x31−6, 9x21−9) = 3x1−3.

The GCD computations that occur in the contents are in Z[x1, . . . , xn], that is, in one
less variable, so they can be done recursively. Note, the Maple command content(f,x0)
computes the content. We now give an overview of our GCD algorithm which handles the
content of the GCD.

Algorithm GCD
Input non-zero polynomials A,B ∈ Z[x0, x1, . . . , xn].
Output G = gcd(A,B).
1: ca, cb← cont(A, x0), cont(B, x0).
2: A,B ← A/ca,B/cb. // Now A and B are primitive.
3: repeat

5

4: H ← MGCD(A,B)
5: until H 6= FAIL and H|A and H|B.
6: return H × gcd(ca, cb).

Algorithm MGCD computes a multiple H of G. See Section 3.2. Algorithm MGCD first
calls algorithm PGCD which chooses a Kronecker substitution Kr, then the first prime p1,
computes Kr(H1) = Kr(H) mod p1 then inverts Kr to obtain H1. Then MGCD chooses
primes p2, p3, . . . , computes Ak = Amod pk, Bk = Bmod pk and calls Zippel’s algorithm
SGCD with inputs Ak, Bk, H1 and computes Hk = H mod pk. SGCD assumes supp(H1) =
supp(H), that is, SGCD assumes the monomials in H1 and in H are the same. This will
not be the case if p1 divides any integer coefficient of H. After computing H1, H2, H3, . . .
algorithm MGCD applies the Chinese remainder theorem to recover the integer coefficients
of H. Finally it divides H by cont(H,x0) to get G.

During the algorithm several types of failure can occur. The basic strategy is to choose
primes and evaluation points so that they occur with low probability and detect the failures.
If a failure is detected, we restart the algorithm with a new Kronecker substitution and new
primes p1, p2, We give an example of a failure that goes undetected in MGCD.

Example 5. Let G = 1, Ā = x20 + p1p2x0 + x1x2 and B̄ = x20 + x1x2 where p1 is the
prime chosen by PGCD and p2 is the first prime chosen by MGCD. PGCD will compute
H1 = GB̄ = Bmod p1 and SGCD will compute H2 = GB̄ = Bmod p2. After Chinese
remaindering MGCD will have H = B. Then since cont(B, x0) = 1 MGCD outputs B not
G.

All cases of undetected failure are caught in Algorithm GCD by the trial divisions H|A
and H|B. Algorithm PGCD guarantees deg(H1, x0) ≥ deg(G, x0). Since the inputs A and
B to MGCD are primitive and the output H of MGCD is primitive, if H|A and H|B over
Z, these conditions imply H = ±G.

Let us focus on the key algorithm PGCD where most of the work occurs. PGCD chooses
a Kronecker substitution Kr and a smooth prime p to map the computation of gcd(A,B)
into Zp[x, y]. Then PGCD chooses a random generator α for Z∗p and computes

gj = gcd(Kr(A)(x, αj),Kr(B)(x, αj) for j = 1, 2, . . .

using the Euclidean algorithm for GCD computations in Zp[x]. It is possible that αj is
unlucky, that is, deg(gj , x) > deg(Kr(G), x). If any αj is unlucky we cannot interpolate
Kr(G) using algorithm ModifiedBT. Also, in Zp[x], because Zp is a field, these univariate
images gj are unique up to a non-zero scalar in Zp. To interpolate Kr(G) using polynomial
interpolation we need LC(gj , x) = LC(Kr(G), x)(αj). But we do not know LC(Kr(G), x)
because we do not know G! This is called the leading coefficient problem.

3.1 Detecting Unlucky Evaluation Points

In [3] Brown applies Theorems 1 and 2 below to detect unlucky evaluation points in Zp.

Definition 4 (Leading Coefficient). Let f =
∑d
i=0 ai(y)xi be a polynomial in R[x, y] with

ad 6= 0. The leading coefficient of f , denoted LC(f, x), is ad(y).

Theorem 1. LetA,B ∈ Zp[x, y] and α ∈ Zp. LetG = gcd(A,B) and g = gcd(A(x, α), B(x, α)).
If LC(A, x)(α) 6= 0 then (1) deg(g, x) ≥ deg(G, x) and (2) g|G(x, α).

6

Theorem 2. Let A,B be non-zero polynomials in Zp[x, y] and α ∈ Zp. Let R = res(A,B, x)
be the Sylvester resultant ofA andB. Then (1)R ∈ Zp[y] and (2) α is unlucky =⇒R(α) = 0.

For a proof of Theorem 1 see Lemma 7.3 in [5]. Theorem 1 says, provided αj sat-
isfies LC(Kr(A), x)(αj) 6= 0 then gj satisfies either deg(gj , x) > deg(Kr(G), x) or gj =
Kr(G)(x, αj) upto multiplication by a unit in Zp. Brown’s strategy is to use the gj of least
degree to interpolate Kr(G). Since we need all gj to be lucky for Algorithm ModifiedT we
stop if any αj is unlucky or LC(Kr(A), x)(αj) = 0 and restart MGCD.

For a proof of Theorem 2 see Lemma 4 in [8]. Theorem 2 tells us that the number of
unlucky evaluation points is finite since deg(R, y) ≤ deg(A) deg(B) by the Bezout bound.
Provided we choose p � deg(A) deg(B) then most evaluation points are lucky and we will
detect any unlucky evaluation point with high probability. It is possible, however, that all
αj are unlucky in which case we interpolate a polynomial H with deg(H,x0) > deg(G, x0).

It is possible that Kr is unlucky, that is, deg(gcd(Kr(A),Kr(B)), x) > deg(G, x0). It is
also possible that a prime p is unlucky, that is, deg(gcd(Amod p,Bmod p), x0) > deg(G, x0).
Our design of algorithm MGCD will detect most failures.

3.2 Leading Coefficient Correction

Let gj = gcd(Kr(A)(x, αj),Kr(B)(x, αj)) in Zp[x]. Suppose deg(gj , x) = deg(G, x0). Then
by Theorem 1 gj equals Kr(G)(x, αj) mod p up to multiplication by a unit in Zp. For a
GCD computation in Zp[x] we normally output monic(gj), the monic associate of gj . Thus

gj = Kr(G)(x, αj)/LC(Kr(G), x)(αj) =

[
Kr(G)

LC(Kr(G), x)

]
(αj).

Thus if LC(Kr(G), x) is a non-constant polynomial in y then the images gj are images of a
rational function in Zp(y)[x] and we cannot use polynomial interpolation to interpolate y.
The solution adopted by Zippel [24] and Hu/Monagan [7] is to use the fact that

A = GĀ =⇒ LC(Kr(A), x) = LC(Kr(G), x)× LC(Kr(Ā), x)

and multiply gj by LC(Kr(A), x)(αj) so that we interpolate the polynomial Kr(H) =
LC(Kr(Ā), x) × Kr(G) which is a multiple of Kr(G). The polynomial H can have more
terms than G.

Example 6. Let G = x1x
2
0 + (x21x2 + 3)x0 + 3x2x1 Ā = (x1 + x2)x0 + 3x1x2. We have

LC(G, x0) = x1,LC(Ā, x0) = x1 + x2, H = (x1 + x2)G, #G = 4 and #H = 8.

In MGCD, after Chinese remaindering we have H. To recover G from H we compute
cont(H,x0) = ±LC(Ā, x0) and output H/cont(H,x0) = ±G. Note, we could multiply gj by
LC(Kr(B), x)(αj) instead if LC(Kr(B), x) has fewer terms than LC(Kr(A), x).

3.3 Interpolating G and Ā simultaneously

In our experiments we observed that with #A and #B fixed, as #G increases, the time
for our GCD algorithm increases – see column MGCD1 in Table 1. This is simply because
we need more images gj to interpolate H. We noticed that when #G � Ā that Maple’s
factorization command factor was faster than our new GCD code – see column factor in
Table 1. Why bother with a complicated GCD algorithm if we can simply factor A and B

7

to get G instead? This motivated us to redesign our GCD algorithm to try to interpolate the
smaller of G, Ā, B̄. Interchanging the inputs A and B if necessary, let us assume #A ≤ #B.
Let H = LC(Ā, x0)G and C = LC(G, x0)Ā. Let

Kr(H) =

deg(Kr(H),x)∑
i=0

hi(y)xi and Kr(C) =

deg(Kr(C),x)∑
i=0

ci(y)xi.

The number of images gj needed to interpolate the smaller of Kr(H) and Kr(C) depends
on t = min(max #hi,max #ci).

Algorithm PGCD
Input A,B,∈ Z[x0, x1, . . . , xn].
Output (false, H, p) or (true, C, p) or FAIL.
Assert LC(H,x0) = LC(A, x0) mod p, LC(C, x0) = LC(A, x0) mod p.

1 Pick a new Kronecker substitution Kr with ri ≥ deg(A, xi) for 1 ≤ i ≤ n.
2 Pick a new smooth prime p >

∏n
i=1 ri.

3 Pick a generator α for Zp at random.
4 Ap, Bp ← Amod p,Bmod p.
5 for j = 1, 2, 3, . . . do
6 aj , bj ← Kr(Ap)(x, α

j),Kr(Bp)(x, α
j).

7 if deg(aj , x) < deg(A, x0) return FAIL.
8 gj ← monic(gcd(aj , bj))
9 if j > 1 and deg(gj , x) 6= deg(g1, x) return FAIL.
10 dj ← aj/gj .
11 gj ← LC(aj , x)× gj
12 if j ∈ {4, 6, 8, 10, . . . } // Try to interpolate Kr(H) or Kr(C)
13 f ← SparseInterpolate([gi : 1 ≤ i ≤ j], α).
14 if f 6= FAIL return (false,Kr−1(f), p).
15 f ← SparseInterpolate([di : 1 ≤ i ≤ j], α).
16 if f 6= FAIL return (true,Kr−1(f), p).
17 end if
18 end for

The requirement ri > deg(A, xi) guarantees we can invert Kr(H) and Kr(C). Lines 7
and 9 apply Theorem 1 to detect unlucky αj . To interpolate Kr(H) from gj and Kr(C)
from dj simultaneously we could try the Algorithm ModifiedBT for j ∈ {4, 6, 8, 10, . . . } until
we succeed. We use it to interpolate each hi(y) using coeff(gj , x

i) and each ci(y) using
coeff(dj , x

i). Algorithm PGCD will stop when j > 2t where t = min(max(#hi),max(#ci)).
In practice, we found this strategy does too much work in step 1 of Algorithm ModifiedBT.
So we try when j ∈ {4, 6, 10, 16, . . . , 2Fn, . . . } instead.

Subroutine SparseInterpolate is presented below. It applies Algorithm ModifiedBT to
interpolate each hi(y) using the coeff(gj , x

i) then each ci(y) using the coeff(dj , x
i).

Subroutine SparseInterpolate
Input g1, g2, . . . , g2L ∈ Zp[x] and α ∈ Zp.
Output FAIL or f ∈ Zp[x, y].
Assert f(x, αj) = gj for 1 ≤ j ≤ 2L and #coeff(f, xi) < L for 0 ≤ i ≤ d = deg(f, x).

8

1 d← deg(g1, x)
2 for i = 0, 1, . . . , d do
3 b← [coeff(gj , x

i) : 1 ≤ j ≤ 2L]
4 fi ← ModifiedBT(b, α)
5 if fi = FAIL return FAIL. // else #fi < L.
6 end for
7 return

∑d
i=0 fix

i.

3.4 Algorithms SGCD and MGCD

Algorithm SGCD applies Zippel’s sparse interpolation to interpolate H mod p using the sup-
port of H1.

Algorithm SGCD
Input A,B,H1 ∈ Zp[x0, x1, . . . , xn].
Output H with LC(H,x0) = LC(A, x0) or FAIL.

1 d← deg(H1, x0).

2 Let H1 =
∑d
i=0

∑ti
j=1 hijMij(x1, . . . , xn)xi0 where hij ∈ Zp\{0}.

3 Pick β from Znp at random.
4 for i = 0, 1, 2, . . . , d do
5 mi ← {Mij(β) mod p : 1 ≤ j ≤ ti}.
6 if |mi| < ti return FAIL.
7 end for
8 Set t← max ti.
9 for j = 1, 2, 3, . . . , t do
10 aj , bj ← A(x0, β

j), B(x0, β
j).

11 if deg(aj , x0) 6= deg(A, x0) return FAIL.
12 gj ← monic(gcd(aj , bj)).
13 if deg(gj , x0) 6= d return FAIL.
14 gj ← LC(aj , x0) · gj .
15 end for
16 for i = 0, 1, 2, . . . , d do
17 Wkj ← mj

ik for 1 ≤ k, j ≤ ti.
18 b← [coeff(gj , x

i
0) : 1 ≤ j ≤ ti].

19 Solve the shifted Vandermonde system Wai = b for ai ∈ Ztip .
20 end for
21 return H =

∑d
i=0

∑ti
j=1 aijMijx

i.

Algorithm SCOF interpolates C mod p using the support of C1. It is the same as SGCD
with line 13 replaced with cj ← aj/gj , and line 17 using cj instead of gj .

Line 5 of Algorithm SGCD requires the monomial evaluations in each set mi to be distinct
so that in line 16 det(W) 6= 0. This is a birthday problem: |mi| = ti with high probability
if p� t2i .

Repeated use of Algorithm SGCD will identify if deg(H1, x0) > deg(G, x0) thus identify-
ing unlucky Kr, p1, or αj . Similarly for SCOF. It is also possible that supp(H1) 6= supp(H).
For example, if p1 divides any integer coefficient of H. In MGCD, after each call to SGCD,
we use an additional evaluation point to check if supp(H1) is correct. We present MGCD.

9

Algorithm MGCD
Input A,B ∈ Z[x0, x1, . . . , xn].
Output G or FAIL.

2 cof,H1, p1 ← PGCD(A,B).
3 H,M ← H1, p1.
4 for k = 2, 3, . . . do
5 H ′ ← H
6 Pick a new prime pk such that LC(A, x0) mod pk 6= 0.
7 Ak, Bk ← Amod pk, Bmod pk.
8 Hk ← if cof then SCOF(Ak, Bk, H1) else SGCD(Ak, Bk, H1) end if
9 if Hk = FAIL return FAIL.
10 if cof and not CheckCof(Ak, Bk, Hk) return FAIL.
11 if not cof and not CheckGcd(Ak, Bk, Hk) return FAIL.
12 ∆←M−1(Hk −H) mod pk, H ← H + ∆M , M ← pkM .
13 H ← mods(H,M). // use the symmetric range for ZM
14 if H = H ′ then
15 H ← H/cont(H,x0).
16 if not cof return H.
17 if H|A return A/H else return FAIL end if
18 end if
19 end for

Subroutine CheckGcd
Input Ak, Bk, Hk ∈ Zp[x0, x1, . . . , xn] with LC(Ak, x0) = LC(Hk, x0).
Output false =⇒ Hk 6= LC(Ā, x0)Gmod p.

1 Pick β ∈ Zp at random until LC(Ak, x0)(β) 6= 0.
2 Set a, b = Ak(x, β), Bk(x, β), g ← gcd(a, b) and h← Hk(x, β).
3 if g|h and h|g in Zp[x] return true return false.

Subroutine CheckCof
Input Ak, Bk, Hk ∈ Zp[x0, x1, . . . , xn] with LC(Ak, x0) = LC(Hk, x0).
Output false =⇒ Hk 6= LC(G, x0)Āmod p.

1 Pick β ∈ Zp at random until LC(Ak, x0)(β) 6= 0.
2 Set a, b = Ak(x, β), Bk(x, β), g ← gcd(a, b), c = a/g and h← Hk(x, β).
3 if c|h and h|c in Zp[x] return true return false.

All failures that go undetected in MGCD are caught by the trial divisions H|A and H|B
in Algorithm GCD. When any failure is detected we restart MGCD which chooses a new
Kronecker substitution Kr and new smooth prime p1. Although it is possible to recover
from some failures, doing so complicates the code. For example, in Algorithm SGCD the
reader may have asked, if |mi| < ti, why don’t you simply choose a new β ∈ Znp and try
again. Indeed one could do that. But each attempt to recover from a failure complicates the
code. We think it is better to keep the code simple and choose large primes in Algorithms
PGCD and SGCD so that the probability of failure is very low. For this reason we use 62 bit
primes or larger as needed in PGCD and 62 bit primes in SGCD.

10

4 Implementation Notes

We’ve coded the following routines in C to speed up our implementation. Our C code
supports primes p < 263. The complexities of our subroutines are given in blue. They give
the number of arithmetic operations in Zp done by those subroutines.

1 Evaluations Kr(A)(x, αj) and Kr(B)(x, αj) .O(D + ns+ st)

2 Finding λ(z) (step 1 of Alg. ModifiedBT) .O(t2)

3 Factoring λ(z) (step 2 of Alg. ModifiedBT) . O(t2 log p)

4 Solving t× t shifted Vandermonde systems . O(t2)

Here D =
∑n
i=1 max(deg(A, xi),deg(B, xi)), s = #A + #B is the number of terms in

the input, and t is the number of terms in the largest polynomial we interpolate. Recall
that we interpolate Kr(H) = LC(Kr(Ā), x)Kr(G) and Kr(C) = LC(Kr(G), x)Kr(Ā)
simultaneously. Let Kr(H) =

∑
i=0 hi(y)xi and Kr(C) =

∑
i=0 ci(y)xi for hi and ci in

Z[y]. We must interpolate either all hi or all ci. Thus t = min(max(#hi),max(#ci)). Note,
in Table 1 the values of t are given for each experiment.

4.1 Maple’s data representation for polynomials

We digress to detail how Maple represents polynomials because we want to evaluate them
using C code. Maple uses two data structures for polynomials, the SUM-OF-PROD data
structure and the POLY data structure. POLY was added to Maple in 2013 by Monagan
and Pearce [14, 15] to speed up polynomial arithmetic. Figure 1 shows the POLY data
structure for the polynomial f = 9xy3z − 4 y3z2 − 6xy2z − 8x3 − 5. If M = xd11 x

d2
2 . . . xdnn

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

Figure 1: Maple’s representation for f = 9xy3z − 4 y3z2 − 6xy2z − 8x3 − 5.

is a monomial in f , and d = d1 + d2 + . . . dn is the degree of M then M is encoded as the
integer

dBn + d1B
n−1 + · · ·+ dn where B = b64/(n+ 1)c.

For example, in Figure 1 the first monomial xy3z with total degree 5 is encoded as the
integer 5 · 248 + 232 + 3 · 216 + 1. This is depicted as 5131 in Figure 1.

When does Maple use POLY instead of SUM-OF-PROD? If a polynomial f has (i) all
integer coefficients, (ii) more than one term, (iii) is not linear, and (iv) all monomials in f
can be encoded in a 64 bit integer using B bits for di and 64 − nB bits for d, then it is
encoded using POLY otherwise the SUM-OF-PROD data structure is used.

What is the advantage of POLY? One can compare monomials in POLY using a 64
bit integer comparison and one can multiply monomials in POLY using a 64 bit integer
addition. This is much faster than comparing and multiplying two monomials in the PROD
representation. Also, the monomial representation is more compact. The monomial xy2z3

in POLY uses one 64 bit word whereas in the SUM-OF-PROD representation it uses 7
words.

11

4.2 Evaluating sparse polynomials

The most expensive part of our GCD algorithm is usually the evaluations of Kr(A)(x, y)
and Kr(B)(x, y) at y = αj . This is because we interpolate the smaller of H and C it will
almost always be the case that t � #A + #B, that is, what we interpolate (H or C) is
much smaller than the size of the input polynomials A and B. How can we speed up the
evaluations Kr(A)(x, αj) and Kr(B)(x, αj)?

We first note that we do not need to explicitly apply the Kronecker map Kr. Instead,
given A(x0, x1, . . . , xn), with Kr(A) = A(x, y, yr1 , . . . , yr1r2...rn−1) we compute

β1 = α, β2 = βr11 , . . . , βn = β
rn−1

n−1

and then we use
Kr(A)(x, αj) = A(x, βj1, β

j
2, . . . , β

j
n).

We could use Maple’s Eval command to compute A(x, βj1, . . . , β
j
n) mod p. Although Eval is

coded in C, because Maple would do each evaluation independently, it cannot take advantage
of the geometric point sequence βj1, β

j
2, . . . , β

j
n. Suppose A =

∑s
i=1 aix

ei
0 Mi where s = #A

and Mi are monomials in x1, . . . , xn. If we pre-compute the monomial evaluations mi =
Mi(β1, . . . , βn), then we can exploit

Mi(β
j
1, . . . , β

j
n) = Mi(β1, . . . , βn)j = mj

i

to speed up evaluation of A by a factor of n as follows. Initializing C = [c1, . . . , cs] we
compute

1 for j = 1, 2, . . . , t do
2 Ci ← Ci ×mi for 1 ≤ i ≤ s.
3 g ←

∑s
i=1 Cix

ei . // g = Kr(A)(x, αj).
4 end for

This algorithm does st multiplications in step 2 plus some additions in step 3 plus the
work to compute the monomial evaluations mi. Our first implementation was the following
Maple code. The coeffs command creates outputs the sequence a1, . . . , as and assigns M
the sequence M1, . . . ,Ms.

> a := coeffs(A,indets(A),’M’);

> a := [a]; M := [M]; s := nops(a);

> C := Array(1..s,a,datatype=integer[8]);

> m := Eval(M,{seq(x[i]=beta[i],i=1..n)}) mod p;

> e := [seq(degree(m[i],x[0]), i=1..s)];

> e := Array(1..s,e,datatype=integer[4]);

> m := Array(1..s,subs(x[0]=1,m),datatype=integer[8]);

Now, for j = 1, 2, . . . , t we call two C programs from Maple. The first has inputs C, m and
the prime p. It computes Ci ← Ci ×mi for 1 ≤ i ≤ s. The second has inputs C, e, g and
p. It assembles the polynomial

∑s
i=1 Cix

ei in the array g.
It turned out that the setup cost was expensive. In particular for large benchmarks

where our input polynomials A and B have a million terms or more, creating and evaluating
the monomials Mi(x1, . . . , xn) in Maple is expensive. Why? If A is stored in the POLY
representation, the Maple command coeffs(A,indets(A),’M’); creates a sequence of monomials
in M in the SUM-OF-PROD representation. For example, in Figure 1 the monomial xy3z
which is encoded as the integer 5 · 248 + 232 + 3 · 216 + 1 is extracted as the 7 word array

12

PROD 7 x 1 y 3 z 1

We have implemented a C subroutine getsupp64s(A, s, β, n, x, d, C, e,m, p) that on input of
the arrays A and β computes the arrays C, e and m. Note, the input x allows us to use
any of the variables xi as the main variable (instead of x0) and the input d = deg(A, x).
Subroutine getsupport64s constructs arrays of the powers [1, βi, . . . , β

di
i] for 1 ≤ i ≤ n where

di = deg(f, xi) then uses these to compute the monomial evaluation mi. It then uses C bit
operators to unpack the monomial encodings.

Note, Maple’s C interface does not directly allow us to pass a Maple polynomial to a C
subroutine. To circumvent this we pass a pointer to the Maple polynomial to our C routine
getsupp64s. The following Maple code, courtesy of Paul DeMarco of Maplesoft, computes a
pointer to a Maple object f .

> MapleMaxint := 2^63-1;

> pointer := addressof(f)-4*MapleMaxint;

If A and B are represented as POLYs, we use getsupport64s to compute the arrays C, e,
and m directly. Otherwise we use the Maple code to compute C, e and m.

We mention one further important efficiency consideration. For the multiplications in
Zp needed to compute the monomial evaluations mi and to compute Ci = mi×Ci, for a 63
bit prime p, we do not use the hardware division instruction because it is very expensive.
Instead we use Roman Pearce’s implementation of the Möller/Granlund algorithm [13] which
multiplies by an integer inverse of p instead.

5 Timing Benchmarks

We have benchmarked our code on an 8 core Intel Xeon E5 2660 processor with 64 gigabytes
of RAM. In Table 5 we compare Maple’s GCD algorithm (column gcd) with our new GCD
algorithm (columns MGCD1 and MGCD2). The input polynomials A = GĀ and B = GB̄
were created by first creating G, Ā, B̄ in Z[x1, . . . , x8] with #G, #Ā, #B̄ non-zero terms then
multiplying G× Ā and G× B̄. Each term in G, Ā, B̄ was created randomly. The monomials
M = xe11 x

e2
2 · · ·x

e8
8 were chosen uniformly at random from those with total degree at most

30 and the integer coefficients were chosen uniformly at random from [0, 2100). To create
such a polynomial with T terms we used Maple’s randpoly command as follows.

> X := [x1,x2,x3,x4,x5,x6,x7,x8];

> C := rand(2^100);

> f := randpoly(X,degree=30,terms=T,coeffs=C);

Table 5 has four sets of timings. In each set of timings the number of terms in G increases
by a factor of 10 and the number of terms of the cofactors Ā and B̄ decreases by a factor of
10 so that the number of terms of the inputs A and B is held constant.

The time reported in column gcd is for Maple’s gcd command. Maple is using Zippel’s
algorithm [24]. The Maple implementation of Zippel’s algorithm is described in [9]. The
time reported in column factor is the time for Maple’s factor command to factor both A
and B. The factor code Maple has been using since Maple2019 is the work of Monagan and
Tuncer [16, 17, 18].

The timings in column MGCD1 are for our Maple implementation of the Hu/Monagan
GCD algorithm from [7]. The timings in column MGCD2 are for our improved algorithm
which interpolates the smaller of Kr(H) and Kr(C). The timings in column eval are are

13

the total time in MGCD2 spent evaluating polynomials in line 6 of PGCD and line 10 of
SGCD.

Maple timings New GCD timings

#G #Ā,#B̄ factor gcd MGCD1 t MGCD2 t eval

101 103 3.312s 1.77s 0.078s 3 0.113s 3 0.075s

102 102 5.161s 4.32s 0.190s 26 0.164s 19 0.086s

103 101 3.467s 40.83s 1.412s 213 0.114s 3 0.023s

101 104 11.81s 21.59s 0.661s 5 0.395s 3 0.059s

102 103 19.63s 47.74s 0.731s 18 0.707s 19 0.321s

103 102 23.33s 295.4s 3.852s 201 1.262s 22 0.447s

104 101 14.36s 11084.s 45.00s 2112 1.450s 2 0.058s

101 105 135.6s 331.1s 7.32s 5 5.35s 3 0.382s

102 104 148.6s 2413.s 10.95s 19 6.90s 24 2.636s

103 103 325.2s 31952.s 30.49s 198 25.56s 197 20.36s

104 102 138.2s NA 238.2s 2063 13.15s 23 3.517s

105 101 97.1s NA 3511.s 21037 10.47s 3 0.596s

101 106 12876.6s 5740.s 179.4s 5 180.6s 3 4.21s

102 105 17723.3s NA 317.9s 17 94.5s 17 18.26s

103 104 9985.4s NA 585.9s 186 260.2s 201 191.6s

104 103 8460.3s NA 3128.7s 2132 397.2s 204 289.5s

105 102 8292.8s NA 25612.s 21043 125.6s 22 34.15s

106 101 16537.7s NA NA – 109.9s 2 4.22s

Table 1: Timings in CPU seconds for sparse GCD problems in 8 variables

The timing data shows that as #G increases the cost of Maple’s GCD algorithm and
our new algorithm (column MGCD1) increase.

For #G = #Ā = 103 Maple took 31,952s and MGCD2 took 25.56s for a speedup of a
factor of over 1000. For #G = 104 and #Ā = 10 Maple took 11,084s and MGCD2 took
1.45s for a speedup of a factor of over 7000. The two columns labelled t are the number of
terms in the largest polynomial in y interpolated by Algorithm ModifiedBT. There is some
irregularity in the timings which is caused by Maple spending too much time (over 80%
of the time) in garbage collection. For example, the time of 180.6s for MGCD2 in row 13
includes 148.2s of garbage collection time. This problem is being addressed by Maplesoft.

We included timings for Maple’s factor command as a “sanity check”. If the time for
gcd is slower than factor then something is wrong as we could simply use the factorization
of A and B to determine the gcd G. As the reader can see Maple’s factor command is faster
than our MGCD1 timings when the size of Ā and B̄ is smaller than #G. This observation
is what forced us to redesign the Hu/Monagan gcd algorithm to interpolate the smaller of
G, Ā, B̄. We are pleased to see that the timings for MGCD2 are always faster than the
timings for factor.

14

6 Conclusion

We have developed and implemented a new polynomial GCD algorithm which improves on
the Hu/Monagan GCD algorithm from [7, 8] by interpolating simultaneously a multiple H
of G and a multiple C of Ā. This reduces the cost dramatically when #Ā� #G.

Our Maple implementation, with several sub-algorithms coded in C for increased speed,
performs well; it is much faster than Maple’s current GCD algorithm which is an implemen-
tation of Zippel’s sparse modular GCD algorithm. Will it always be faster than Zippel’s
algorithm?

In order to invert the Kronecker substitution Kr we need the prime p1 chosen by Algo-
rithm PGCD to satisfy p1 >

∏n
i=1 ri. If n = 20 and di = deg(A, xi) = 20 then ri > di forces

p1 > 2120 = 287.8 which is too big for us to use the 64 bit integer arithmetic available on
our computers to do the modular arithmetic in Zp. Our GCD algorithm will use a 128 bit
prime so all arithmetic will be done in software leading to a large slow down. In [6] Lecerf
and van der Hoeven investigate methods for using smaller ri. We will explore this.

References

[1] N. B. Atti, G. M. Diaz-Toca, and H. Lombardi. The Berlekamp-Massey algorithm
revisited. AAECC 17:75–82, 2006.

[2] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proc. of STOC ’20, pp. 301–309, ACM, 1988.

[3] W. S. Brown. On Euclid’s Algorithm and the Computation of Polynomial Greatest
Common Divisors. J. ACM 18:478–504, 1971.

[4] G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite
fields. Math. Comp. 36(154):587–592, 1981.

[5] K.O. Geddes, G. Labahn, S. Czapor. Algorithms for Computer Algebra Kluwer Aca-
demic, 1992.

[6] Joris van der Hoeven and Grégoire Lecerf. Sparse Polynomial Interpolation in Practice.
Communications in Computer Algebra 48(4):187–191, 2015.

[7] Jiaxiong Hu and Michael Monagan. A fast parallel sparse polynomial GCD algorithm.
In Proc. of ISSAC 2016, pp. 271–278, ACM, 2016.

[8] Jiaxiong Hu and Michael Monagan. A Fast Parallel Sparse Polynomial GCD Algorithm.
J. Symb. Cmpt. 105:(1) 28–63, Springer, July 2021.

[9] J. de Kleine, M. Monagan, A. Wittkopf. Algorithms for the non-monic case of the
Sparse Modular GCD Algorithm. Proc. of ISSAC ’2005, pp. 124–131, ACM, 2005.

[10] J. L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. on Information
Theory, 15:122–127, 1969.

[11] E. Kaltofen, W. Lee, and A. Lobo. Early Termination in Ben-Or/Tiwari Sparse Inter-
polation and a Hybrid of Zippel’s algorithm. In Proc. ISSAC 2000, pp. 192–201, ACM,
2000.

15

[12] E. Kaltofen. Fifteen years after DSC and WLSS2. In Proc. of PASCO 2010, pp. 10–17,
ACM, 2010.

[13] Niels Möller and Torbjorn Grandlund. Improved Division by Invariant Integers. Trans-
actions on Computers 60(2):165–175, IEEE, 2011.

[14] Michael Monagan and Roman Pearce. POLY: A new polynomial data structure for
Maple 17. In Computer Mathematics, pp. 325–348, Springer, 2014. Ruyong Feng,
Wen-shin Lee, Yosuke Sato editors.

[15] Michael Monagan and Roman Pearce. The design of Maple’s sum-of-products and
POLY data structures for representing mathematical objects. Communications in Com-
puter Algebra, 48(4):166–186, ACM, 2014.

[16] Michael Monagan and Baris Tuncer. Using Sparse Interpolation in Hensel Lifting. Proc.
of CASC 2016, LNCS 9890:381–400, Springer, 2016.

[17] Michael Monagan and Baris Tuncer. Factoring multivariate polynomials with many
factors and huge coefficients. Proc. of CASC 2018, LNCS 11077:319–334, Springer,
2018.

[18] Michael Monagan and Baris Tuncer. Polynomial Factorization in Maple 2019. In Proc.
of the 2019 Maple Conference. Maple in Mathematics Education and Research. CCIS
1125:341–345, Springer, 2020.

[19] Joel Moses and David Y.Y. Yun. The EZ GCD algorithm. Proc. ACM ’73, 159–166.
ACM, 1973.

[20] Hirokazu Murao and Tetsuro Fujise. Modular Algorithm for Sparse Multivariate Poly-
nomial Interpolation and its Parallel Implementation. J. Symb. Cmpt. 21:377–396,
1996.

[21] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. Trans. on Information Theory, 24:106–110,
IEEE, 1978.

[22] Y. Sugiyama, M. Kashara, S. Hirashawa and T. Namekawa. A Method for Solving Key
Equation for Decoding Goppa Codes. Information and Control 27:87–99, 1975.

[23] Paul S. Wang. The EEZ-GCD algorithm. ACM SIGSAM Bulletin 14(2):50–60, 1980.

[24] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proc. of EUROSAM
’79, pp. 216–226, Springer, 1979.

[25] Richard Zippel. Interpolating Polynomials from their Values. J. Symb Cmpt. 9:375–403,
Springer, 1990.

16

