
The complexity of sparse Hensel lifting and

sparse polynomial factorization

Michael Monagan

Department of Mathematics,
Simon Fraser University,

Burnaby, British Columbia, V5A 1S6, CANADA

Baris Tuncer

Department of Mathematics,
Simon Fraser University,

Burnaby, British Columbia, V5A 1S6, CANADA

Abstract

The standard approach to factor a multivariate polynomial in Z[x1, x2, . . . , xn] is to factor a
univariate image in Z[x1] then recover the multivariate factors from their images using a process
known as multivariate Hensel lifting. Wang’s approach, which recovers the variables one at a
time, is currently implemented in many computer algebra systems, including Maple, Magma
and Singular.

For the case when the factors are expected to be sparse, sparse Hensel lifting was first in-
troduced by Zippel and then improved by Kaltofen. Recently, Monagan & Tuncer introduced a
new approach which uses sparse polynomial interpolation to solve the multivariate polynomial
diophantine equations that arise inside Hensel lifting. This approach is shown to be practical
and faster than Wang’s, Zippel’s and Kaltofen’s algorithms for the non-zero ideal case.

In this work we study what happens to the sparsity of multivariate polynomials when the
variables are successively evaluated at numbers. We determine the expected number of remaining
terms and the variance. We use these results to revisit and correct the complexity analysis of
Zippel’s original sparse interpolation. Next we present an average case complexity analysis of the
sparse Hensel lifting introduced by Monagan & Tuncer. Finally we present some experimental
data comparing our sparse method with Wang’s method.

Key words: Polynomial Factorization, Sparse Polynomial Interpolation, Multiviarate Hensel
Lifting, Polynomial Diophantine Equations.

Email addresses: mmonagan@cecm.sfu.ca (Michael Monagan), ytuncer@sfu.ca (Baris Tuncer).

Preprint submitted to Journal of Symbolic Computation December 26, 2017

1. Introduction

Suppose we seek to factor a multivariate polynomial a ∈ R = Z[x1, . . . , xn]. The first step
chooses a main variable, say x1, then computes the content of a in x1 and removes it from
a. Here, if a =

∑d
i=0 ai(x2, . . . , xn)xi1, the content of a is gcd(a0, a1, . . . , an), a polynomial

in one fewer variables which is factored recursively. Let us assume this has been done.
The second step identifies any repeated factors in a by doing a square-free factorization.

See Ch. 8 of (GCL). In this step one obtains the factorization a = b1b
2
2b

3
3 · · · bkk such that

each factor bi has no repeated factors and gcd(bi, bj) = 1. Let us assume this has also been
done. So let a = f1f2 . . . fm be the irreducible factorization of a over Z

The multivariate Hensel lifting algorithm (MHL) developed by Yun (Yun74) and improved
by Wang (Wan78; Wan75) chooses an evaluation point α = (α2, α3, . . . , αn) ∈ Zn−1 and
factors a(x1, α2, . . . , αn) over Z. The evaluation point α must satisfy

(i) L(α2, . . . , αn) 6= 0 where L is the leading coefficient of a in x1,
(ii) a(x1, α2, . . . , αn) must have no repeated factors in x1 and
(iii) fi(x1, α2, . . . , αn) must be irreducible over Q.

If any condition is not satisfied the algorithm must restart with a new evaluation point.
Conditions (i) and (ii) may be imposed in advance of the next step. To ensure that condition
(iii) is true with high probability Maple picks a second evaluation point β = (β2, . . . , βn) ∈
Zn−1, factor a(x1, β2, . . . , βn) over Z and check that the two factorizations have the same
degree pattern before proceeding.

For simplicity let us assume a = fg where f, g in R and a is monic in x1. Suppose we
have obtained the monic factors f(x1, α2, . . . , αn) and g(x1, α2, . . . , αn) in Z[x1]. Next the
algorithm picks a prime p for Hensel lifting. 1 For a given polynomial h ∈ R, let us use the
notation

hj := h(x1, . . . , xj , xj+1 = αj+1, . . . , xn = αn) mod p

so that a1 = a(x1, α2, . . . , αn) mod p. The input to MHL is a, α, f1, g1 and p such that
a1 = f1g1 and gcd(f1, g1) = 1 in Zp[x1]. If the condition gcd(f1, g1) = 1 is not satisfied, the
algorithm chooses a new prime p until it is.

Wang’s MHL lifts the factors f1, g1 to f2, g2 then to f3, g3, until we obtain fn, gn. After
MHL we have fn = f mod p and gn = gmod p. Therefore, for p sufficiently large, we recover
the factorization of a over Z.

We give a brief description of the jth step of the MHL (see Algorithm 1) for j > 1. Here
the input is aj , fj−1, gj−1 and the output is fj , gj satisfying aj = fjgj . There are two main
subroutines in the design of MHL. For details see Ch. 6 of (GCL). The first one is the leading
coefficient correction algorithm (LCC). The most well-known is the Wang’s heuristic LCC
(Wan75) which works well in practice and is the one Maple currently uses. There are other
approaches by Kaltofen (Kal85) and most recently by Lee (Lee13). In our implementation
we use Wang’s LCC.

In a typical application of Wang’s LCC, one first factors the leading coefficient of a,
a polynomial in Z[x2, . . . , xn], then one applies LCC before the jth step of MHL. Then
the total cost of the factorization is given by the cost of LCC + the cost of factoring
a(x1, α2, . . . , αn) over Z + the cost of MHL. One can easily construct examples where LCC

1 One may also perform Hensel lifting modulo a power of a prime instead of a large prime – see Ch. 6 of

(GCL). Our methods may also be done modulo a power of a prime but we omit the details here.

2

or factoring a(x1, α2, . . . , αn) dominates the cost. However this is not typical. Typically,
MHL dominates the cost.

The second main subroutine solves a multivariate polynomial diophantine problem (MDP).
In MHL, for each j with 2 ≤ j ≤ n, Wang’s design of MHL must solve many instances of
MDP in Zp[x1, . . . , xj−1]. In the Maple timings in section 8, often 80% or more is spent
solving MDPs. Wang’s method for solving an MDP (see Algorithm 2) is recursive. It is
exponential in n for sparse factors when the evaluation points α2, . . . , αn are non-zero. See
Tables 10 and 11. To solve this problem, Sparse Hensel Lifting (SHL) was first introduced
by Zippel (Zip81) and then improved by Kaltofen (Kal85). In (MT16b) we proposed various
approaches of sparse interpolation to solve MDP and presented our version of SHL. We also
compared our SHL with Kaltofen’s SHL in (Kal85).

In this paper we assume a, f, g are monic in x1 so as not to complicate the presentation
of SHL algorithm with LCC. In section 2 we define the MDP in detail and show that
interpolation is an option to solve the MDP. If the factors to be computed are sparse
then the solutions to the MDP are also sparse. Then we show how to use Zippel’s sparse
interpolation from (Zip79) to solve the MDP. Section 2 also describes the multivariate
polynomial evaluation method that we use because evaluation is often the most expensive
part of our SHL.

In Section 3 we will give the idea of SHL and our organization of SHL which is presented
as Algorithm 5 MTSHL. In Appendix A we give a concrete example of how the jth step of
MTSHL works.

The cost of the j′th step of MHL (Algorithm 1) depends on the degree and number of
terms of aj and the factors fj and gj being computed. Let us use #h for the number of terms
of a polynomial h. In Section 4 we study what happens to a when we successively evaluate
it at non-zero numbers, that is, we are interested in the sequence #an,#an−1, . . . ,#a1. A
simple experiment will show what happens when a is sparse. The Maple command randpoly

below constructs a polynomial with 10,000 terms where the monomials are chosen uniformly
at random from the set of all monomials in (x1, . . . , x12) with total degree at most 15 and
with integer coefficients chosen from [1, 99] uniformly at random.

> X := [x1,x2,x3,x4,x,x6,x7,x8,x9,x10,x11,x12];

> a := randpoly(X,degree=15,terms=10000,coeffs=rand(1..99)):

We obtain the following data using (α2, α3, . . . , α12) = (3, 5, 2, 7, 9, 1, 6, 2, 4, 5, 7).

j 12 11 10 9 8 7 6 5 4 3 2 1

#aj 10000 9996 9954 9802 9207 7550 4837 2478 978 304 68 12

The reader should observe that the number of terms does not drop significantly un-
til we have evaluated about half of the variables. This means that the cost of recovering
x7, x8, . . . , x11 with Hensel lifting is not significantly cheaper than recovering x12. In Section
4 we determine the expected value and variance of #ai and make this observation precise.
The observations in Section 4 show that one of the assumptions made by Zippel in his com-
plexity analysis of sparse interpolation in (Zip79) is false. We will revise this assumption
and correct his analysis.

In the j’th step of MHL we recover xj in fj and gj . Let us write the factors fj and gj as

fj =

degxj
fj∑

i=0

σi(xj − αj)i and gj =

degxj
gj∑

i=0

τi(xj − αj)i

3

where σi, τi ∈ Zp[x1, . . . , xj−1]. These are just the Taylor series for fj and gj expanded about

xj = αj . Let us use Supp(f) to denote the support of f , that is, the set of monomials of f .

Algorithm 1 (MHL) and Algorithm 5 first compute σ0 := fj−1 = f(x1, . . . , xn−1, αn) and

τ0 := gj−1 = g(x1, . . . , xn−1, αn) recursively. Then they compute (σk, τk) for k = 1, 2, . . . by

solving the MDP σkgj−1 + τkfj−1 = ck where ck is the Taylor coefficient of the polynomial

aj −

(
k−1∑
i=0

σi(xj − αj)i
)(

k−1∑
i=0

τi(xj − αj)i
)

of (xj − αj)
k. We make three observations about the coefficients σi and τi. The Taylor

coefficient σi = f
(i)
j (αj)/i! where f

(i)
j is the i’th derivative of fj in xj . Since #f

(i)
j ≤ #fj it

follows that #σi ≤ #fj ≤ #f . This means that if the factors f and g are sparse, then the

σi and τi computed during Hensel lifting remain sparse. The second observation is that if

αj 6= 0, normally Supp(σi) ⊇ Supp(σi+1) for 0 ≤ i < degxj
fj . In Section 5 we show that

this is the case for most αj (see Lemma 1). Algorithm 5 (MTSHL) exploits this property

by using Supp(σi−1) as the support for σi to construct a linear system to solve for the

coefficients of σi.

Because the cost of MHL depends on the size of Supp(σi) we are interested in the sequence

#σi for i = 0, 1, 2, To see what happens, let f be the polynomial a above with 10,000

terms and let f =
∑11
i=0 σi(x12 − 7)i. We obtain the following data for #σi.

i 0 1 2 3 4 5 6 7 8 9 10 11

#σi 9996 5526 2988 1504 760 343 158 60 28 8 3 1

What is immediately apparent is that the #σi are decreasing rapidly and therefore it will

be advantageous if the cost of our algorithm depends on #σi and not #σ0. In section 5 we

will determine the expected value and variance of #σi from which we are able to determine

the expected cost of Algorithm 5 (MTSHL) in sections 6 and 7.

Finally in section 8 we give some timing data to compare our factorization algorithms

with Wang’s factorization algorithm as it is implemented in Maple. We also include some

timings for Magma and Singular’s factorization codes which also use Wang’s algorithm to

provide some perspective. See Tables 6 and 7.

We end our introduction by explaining why Hensel lifting is done modulo a prime p. If it is

run over Z, an expression swell occurs when univariate diophantine equations σA+ τB = C

are solved in Z[x1] by first solving SA + TB = gcd(A,B) = 1 for S, T ∈ Q[x1] using the

Euclidean algorithm. The denominators in S and T may be as large as the resultant of A

and B which is an integer of length approximately max(degA,degB) times longer than the

integers in A and B. Working modulo a prime p trivially eliminates this expression swell.

Let || · || denote the height (maximum of the absolute value of the coefficients) of a

polynomial. If f is any factor of a over Z, not necessarily irreducible, then the prime p used

in MHL must satisfy p > 2||f || so that MHL recovers the integer (positive and negative)

coefficients of f . It is possible that ||f || > ||a||. For example, the polynomial x105 − y105

has height 1 but it has a degree 60 factor with height 74. For this purpose the following

bound may be derived from Lemma II on page 135 of (Gel52): ||f || < ed1+d2+···+dn ||a|| where

e = 2.7818 and di = degxi
a.

4

2. The Multivariate Diophantine Problem (MDP)

Following the notation in section 1, let u,w, c ∈ Zp[x1, . . . , xj] with u and w monic with
respect to the variable x1 and let Ij = 〈x2 − α2, . . . , xj − αj〉 be an ideal of Zp[x1, . . . , xj]
with αi ∈ Z. The MDP is to find multivariate polynomials σ, τ ∈ Zp[x1, . . . , xj] that satisfy

σu+ τw = c mod I
dj+1
j (1)

with degx1
(σ) < degx1

(w) where dj is the maximal degree of σ and τ with respect to the
variables x2, . . . , xj and it is given that

GCD (umod Ij , wmod Ij) = 1 inZp[x1].

It can be shown that the solution (σ, τ) exists and is unique and independent of the choice of
the ideal Ij . For j = 1 the MDP is in Zp[x1] and can be solved with the extended Euclidean
algorithm (see Chapter 2 of (GCL)).

Algorithm 1 jth step of Multivariate Hensel Lifting for j > 1.

Input : αj ∈ Zp, aj ∈ Zp[x1, . . . , xj], fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] where aj , fj−1, gj−1 are
monic in x1 and aj(xj = αj) = fj−1gj−1.
Output : fj , gj ∈ Zp[x1, . . . , xj] such that aj = fjgj or FAIL.

1: fj ← fj−1; gj ← gj−1.
2: error ← aj − fj−1 gj−1.
3: for i from 1 while error 6= 0 and degxj

fj + degxj
gj < degxj

aj do

4: ci ← Taylor coefficient of (xj − αj)i of error at xj = αj
5: if c 6= 0 then
6: Solve the MDP σigj−1 + τifj−1 = ci in Zp[x1, . . . , xj−1] for σi and τi.
7: (fj , gj)← (fj + σi × (xj − αj)i, gj ← fj + τi×, (xj − αj)i)
8: error ← aj − fj gj
9: end if

10: end for
11: if error = 0 then return fj , gj else return FAIL end if

To solve the MDP in Algorithm 1, for j > 1, Wang uses the same approach as for Hensel
Lifting, that is, an ideal-adic approach which we present as Algorithm 2.

In general, if αj 6= 0 then the Taylor series expansion of σ and τ about xj = αj in
Algorithm 2 is dense so the ci 6= 0. If we let dj = degxj

aj and M(xj) be the number of
calls to the Euclidean algorithm in Step 1 of Algorithm 2, then M(x1) = 1 and M(xj) ≤
(dj − 1)M(xj−1) thus M(xn−1) ≤

∏n−1
i=2 (di − 1). If all αj 6= 0 for 2 ≤ j ≤ n − 1 then

M(xn−1) becomes exponential in n. It is this exponential behaviour that sparse multivariate
diophantine solvers eliminate. On the other hand, if MHL can choose some αj to be 0, for
example, if the input polynomial a(x1, . . . , xn) is monic in x1 then this exponential behaviour
may not occur for sparse factors f and g.

2.1. Solution to the MDP via Interpolation

We consider whether we can interpolate x2, . . . , xj in σ and τ in (1) using sparse inter-
polation methods. If β ∈ Zp with β 6= αj , then

σ(xj = β)u(xj = β) + τ(xj = β)w(xj = β) = c(xj = β) mod I
dj−1+1
j−1 .

5

Algorithm 2 WMDS (Wang’s multivariate diophantine solver)

Input Polynomials u,w, c ∈ Zp[x1, . . . , xj] and an ideal I = 〈x2 − α2, . . . , xn − αn〉 with
n ≥ j where gcd(u mod I, w mod I) = 1 in Zp[x1] and degree bounds d2, . . . , dn satisfying
di ≥ max(degxi

σ, degxi
τ) for 2 ≤ i ≤ n. (One may use di = degxi

ai)
Output (σ, τ) ∈ Zp[x1, . . . , xj] satisfying σu+ τw = c and degx1

σ < degx1
w or FAIL if no

such solution exists.

1: if j = 1 then use the extended Euclidean algorithm end if
2: (σ0, τ0)←WMDS(u(xj = αj), w(xj = αj), c(xj = αj), I)
3: if WMDS output FAIL then return FAIL end if
4: (σ, τ)← (σ0, τ0); error ← c− σu− τw
5: for i = 1, 2, . . . , dj while error 6= 0 do
6: ci ← Taylor coeff(error, (xj − αj)i)
7: if ci 6= 0 then
8: (s, t)←WMDS(σ0, τ0, ci, I)
9: if WMDS output FAIL then output FAIL end if

10: (s, t)← (s× (xj − αj)i, t× (xj − αj)i))
11: (σ, τ)← (σ + s, τ + t)
12: error ← error − su− tw
13: end if
14: end for
15: if error = 0 then return (σ, τ) else return FAIL end if

For Kj = 〈x2 − α2, . . . , xj−1 − αj−1, xj − β〉 and Gj = GCD(umodKj , wmodKj), we ob-
tain a unique solution σ(xj = β) iff Gj = 1. However Gj 6= 1 is possible. Let R = resx1(u,w)
be the Sylvester resultant of u and w taken in x1. Since u,w are monic in x1 one has

Gj 6= 1⇐⇒ resx1
(umodKj , wmodKj) = 0⇐⇒ R(α2, . . . , αj−1, β) = 0. 2

Let r = R(α2, . . . , αj−1, xj) ∈ Zp[xj] so that R(α2, . . . , αj−1, β) = 0 ⇐⇒ r(β) = 0. Also
deg(R) ≤ deg(u) deg(w) (CLO). Now if β is chosen at random from Zp and β 6= αj then

Pr[Gj 6= 1] = Pr[r(β) = 0] ≤ deg(r, xj)

p− 1
≤ deg(u) deg(w)

p− 1
.

This bound for Pr(Gj 6= 1) is a worst case bound. In (MT16a) we show that the average
probability for Pr[Gj 6= 1] = 1/(p − 1). Thus if p is large, the probability that Gj = 1 is
high. Interpolation is thus an option to solve the MDP. If Gj 6= 1, we could choose another
β but our implementation simply returns FAIL and restarts by choosing new α2, . . . , αn.

2.2. Solution to the MDP via Sparse Interpolation

Following the sparse interpolation idea of Zippel in (Zip90), given a sub-solution σj(xj =
αj) we use this information to create a sub-solution form σf and compute σj(xj = βj) for
other random β′js ∈ Zp with high probability if p is big. We could interpolate x2, . . . , xj−1 in
σj(xj = βj) from univariate images in Zp[x1]. Instead we use bivariate images in Zp[x1, x2]
because for polynomials in many variables with many terms bivariate images will likely be

2 This argument also works for the non-monic case if the leading coefficients of u and w w.r.t. x1 do not

vanish at (α2, . . . , αn) modulo p, conditions which we note are imposed by Wang’s LCC.

6

dense so it makes sense to use a dense solver for the bivariate case. This improvement likely
reduces the number of images required which reduces the size of the linear systems and the
evaluation cost (see (MT16b)).

Suppose the form of σj is

σf =
∑
i+k≤d

cik(x3, ..., xj)x
i
1x
k
2 where cik =

sik∑
l=0

ciklx
γ3l
3 · · ·x

γjl
j with cikl ∈ Zp\{0}

where the total degree of σj in x1, x2 is bounded by d. Let s = max sik be the maximum
number of terms in the coefficients of σf . We obtain each cik by solving O(d2) linear systems
of size at most s × s. As explained in (Zip90), each linear system can be solved in O(s2)
arithmetic operations in Zp and using O(s) space. We then interpolate xj in σj from σj(xj =
βk) for k = 0, . . . ,degxj

(σj). Finally we compute τj = (cj − σjuj)/wj . If this division fails
it means that σf is wrong; we must restart the factorization with a new α2, . . . , αn.

To solve the MDP in Zp[x1, x2] we have implemented an efficient dense bivariate Diophan-
tine solver (BDP) in C. The algorithm incrementally interpolates x2 in both σ and τ from
univariate images in Zp[x1]. When σ and τ stabilize we test whether σ(x1, x2)u(x1, x2) +
τ(x1, x2)w(x1, x2) = c(x1, x2) using sufficiently many evaluations to prove the correctness of
the solution. The cost is O(d3) arithmetic operations in Zp where d bounds the total degree
of c, u, w, σ and τ in x1 and x2. We do not compute τ using division because that would
cost O(d4) arithmetic operations.

This multivariate MDP solving algorithm is presented as Algorithm MDSolver (Multi-
variateDiophantSolver) below. Following this we present the sparse interpolation algorithm
used in Step 11.

Algorithm 3 MDSolver

Input A big prime p and u,w, c ∈ Zp[x1, x2, . . . , xj] where the MDP conditions (see section
1) are satisfied.
Output (σ, τ) ∈ Zp[x1, x2, . . . , xj] such that σu+ τw = c ∈ Zp[x1, x2, . . . , xj].

1: if n = 2 then call BDP to return (σ, τ) ∈ Zp[x1, x2]2 or FAIL end if .
2: Pick β1 ∈ Zp at random
3: (uβ1

, wβ1
, cβ1

)← (u(xj = β1), w(xj = β1), c(xj = β1).
4: (σ1, τ1)←MDSolver(uβ1

, wβ1
, cβ1

, p).
5: if σ1 = FAIL then return FAIL end if
6: k ← 1, σ ← σ1, q ← (xj − β1) and σf ← σ1.
7: repeat
8: h← σ
9: Set k ← k + 1 and pick βk ∈ Zp at random distinct from β1, . . . , βk−1

10: (uβk
, wβk

, cβk
)← (u(xj = βk), w(xj = βk), c(xj = βk).

11: (σk, τk)←SparseInt(uβk
, wβk

, cβk
, σf) (Algorithm 4)

12: if σk = FAIL then return FAIL end if
13: Solve {σ = h mod q and σ = σk mod (xj − βk)} for σ ∈ Zp[x1, x2, . . . , xj].
14: q ← q · (xj − βk)
15: until σ = h and w|(c− σu)
16: Set τ ← (c− σu)/w and return (σ, τ).

7

Algorithm 4 SparseInt : solve an MDP using a sparse interpolation

Input: Polynomials u,w, c, σf ∈ Zp[x1, x2, . . . , xj] for u,w monic in x1 and p a prime.
Output: The solution (σ, τ) to the MDP σu+ τw = c ∈ Zp[x1, x2, . . . , xj] or FAIL

1: Let σ =
∑
i,k cik(x3, ..., xj)x

i
1x
k
2 where cik =

∑sik
l=1 ciklMikl with cikl unknown coeffi-

cients to be solved for and xi1x
j
2Mikl are the monomials in Supp(σf).

2: Let s = max sik = max #cik .
3: Pick (α3, . . . αj) ∈ (Zp\{0})j−2 at random.
4: Compute monomial evaluation sets

{Sik = {mikl = Mikl(α3, . . . , αj) : 1 ≤ l ≤ sik} for each i, k} .

If |Sik| 6= sik for some ik try a different choice for (α3, . . . , αj). If this fails repeatedly,
return FAIL. (p is not big enough)

5: for i from 1 to s do (Compute the bivariate images of σ)
6: Let Yi = (x3 = αi3, . . . , xj = αij).
7: Evaluate u(x1, x2, Yi), w(x1, x2, Yi), c(x1, x2, Yi) by the method in section 2.3.
8: Solve σi(x1, x2)u(x1, x2, Yi) + τi(x1, x2)w(x1, x2, Yi) = c(x1, x2, Yi) in Zp[x1, x2] for
σi(x1, x2) using BDP (see section 2.2).

9: if BDP returns FAIL then
10: return FAIL (Yi is unlucky or there is no solution to the BDP).
11: end if
12: end for
13: for each i, k do
14: Construct and solve the sik × sik linear system{

sik∑
l=1

ciklm
n
ikl = coefficient of xi1x

k
2 in σn(x1, x2) for 1 ≤ n ≤ sik

}
for the coefficients cikl of cik(x3, . . . , xj). Because it is a Vandermonde system in mikl

which are distinct by Step 4 it has a unique solution.
15: end for
16: Substitute the solutions for cikl into σ
17: if w | (c− σu) then
18: Set τ = (c− σu)/w and return (σ, τ)
19: else
20: return FAIL (σf is wrong)
21: end if

Algorithm SparseInt interpolates σ only and obtains τ by division in Step 18. The division
also detects an incorrect σf . An alternative organization of SparseInt could interpolate both
σ and τ and then test if c − σu − τw = 0. The reason we interpolate only σ is that this is
faster if σ is significantly smaller than τ , more precisely if s the number of bivariate images
needed to interpolate σ is significantly fewer than the number needed to interpolate τ .

2.3. The evaluation cost

Suppose f =
∑s
i=1 ciXiYi where Xi is a monomial in x1, x2 and Yi is a monomial in

x3, . . . , xn and 0 6= ci ∈ Zp. In sparse interpolation we want to compute

fj := f(x1, x2, x3 = αj3, . . . , xn = αjn), for j = 1, . . . , t.

8

We can take advantage of the form of the evaluation points. As an example suppose that

f = x221 + 72x31x
4
2x4x5 + 37x1x

5
2x

2
3x4 − 92x1x

5
2x

2
5 + 6x1x

3
2x3x

2
4.

Before combining and sorting, we write the terms of each fj as

fj = x221 + 72(α4α5)jx31x
4
2 + 37(α2

3α4)jx1x
5
2 − 92(α2

5)jx1x
5
2 + 6(α3α

2
4)jx1x

3
2.

Now let
c(0) := [1, 72, 37,−92, 6] and θ := [1, α4α5, α

2
3α4, α

2
5, α3α

2
4].

Then in a for loop j = 1, . . . , t we can update the coefficient array c(0) by the monomial array

θ by defining c
(j)
i = c

(j−1)
i θi for i = 1, . . . , t so that each iteration computes the coefficient

array
c(j) = [1, 72(α4α5)j , 37(α2

3α4)j ,−92(α2
5)j , 6(α3α

2
4)j].

of the unsorted fj using #f multiplications in the coefficient field. Then combining and
sorting the monomials to get

fj = x221 + 74αj3(αj4)5x31x
4
2 +

(
37(αj3)2αj4 − 92(αj5)2

)
x1x

5
2 + 6αj3(αj4)2x1x

3
2.

Note that the sorting is a time consuming step too. So we should do the sorting once at the
beginning. Then compute the arrays c(j) and then combine according to the sorting rule. In
the example above by looking at the terms of f we know that after the evaluation first and
the second, also the third and the forth terms of f will collide. Hence after computing each
c(j) we know that the sum of the first and the second, also the third and the fourth terms
of each array will correspond to the coefficients of fj , so we won’t spend time to sort the
terms of each unsorted fj .

With the organization described above one evaluates Yi at (α3, . . . , αn) in (n− 3) multi-
plications using tables. The cost of n−2 tables of powers is ≤ (n−2)d. Then at the first step
cost of (creating monomial array) is ≤ s(n−3)+(n−2)d. After that cost of each t evaluations
is st multiplications. Hence the total cost is bounded above by CN = st+s(n−3)+(n−2)d.

3. Sparse Hensel Lifting

3.1. The main Idea of SHL

Factoring multivariate polynomials via Sparse Hensel Lifting (SHL) uses the same idea
of the sparse interpolation. Following the same notation introduced in section 1, at (j−1)th

step we have
fj−1 = xdf1 + cj1M1 + · · ·+ cjtjMtj

where tj is the number of non-zero terms that appear in fj−1, Mk’s are the distinct mono-
mials in x1, . . . , xj−1 and cjk ∈ Zp for 1 ≤ k ≤ tj . Then at the jth step SHL assumes

fj = xdf1 + Λj1M1 + · · ·+ ΛjtjMtj

where for 1 ≤ k ≤ tj ,

Λjk = c
(0)
jk + c

(1)
jk (xj − αj) + c

(2)
jk (xj − αj)2 + · · ·+ c

(djk)

jk (xj − αj)djk

with c
(0)
jk := cjk and where df = degx1

(f), djk = degxn
(Λjk) with c

(i)
jk ∈ Zp for 0 ≤ i ≤ djk .

We will call this assumption the weak SHL assumption. The assumption is the same for the
factor gj−1.

9

To recover fj from fj−1 and gj from gj−1, during the jth step of MHL (see Algorithm
1) one starts with σ0 = fj−1, τ0 = gj−1, then in a for loop starting from i = 1 and
incrementing it while the error term and its ith Taylor coefficient is non-zero, by solving
MDPs σiτ0 + τiσ0 = ei for 1 ≤ i ≤ max(degxj

(fj),degxj
(gj)). After the loop terminates we

have fj =
∑dj
k=0 σk(xj − αj)k. On the other hand if the weak SHL assumption is true then

we also have

fj = xdf1 + (

dj∑
i=0

c
(i)
j1 (xj − αj)i)M1 + · · ·+ (

dj∑
i=0

c
(i)
jtj

(xj − αj)i)Mtj

= xdf1 +

dj∑
i=0

(c
(i)
j1M1 + · · ·+ c

(i)
jtj
Mtj)(xj − αj)i.

Similarly for gj . Hence if the weak SHL assumption is true then the support of each σk will
be a subset of support of fj−1. Therefore we can use fj−1 as a skeleton of the solution of
each σk. The same is true for τk. Although it is not stated explicitly in (Kal85), this is one
of the underlying ideas of Kaltofen’s SHL.

3.2. Our SHL organization

Before explaining our SHL organization (MTSHL), we make the following observation
which has been proven in (MT16b):

Lemma 1. Let f ∈ Zp[x1, . . . , xn] and let α be a randomly chosen element in Zp and

f =
∑dn
i=0 bi(x1, . . . , xn−1)(xn − α)i where dn = degxn

f. Then

Pr[Supp(bj+1) * Supp(bj)] ≤ |Supp(bj+1)| dn − j
p− dn + j + 1

for 0 ≤ j < dn.

Lemma 1 shows that for the sparse case, if p is big enough then the probability of
Supp(bj+1) ⊆ Supp(bj) is high. This observation suggests we use σi−1 (or τi−1) as a form of
the solution of σi (or τi). We call this assumption Supp(σi) ⊆ Supp(σi−1) for all i > 0 the
strong SHL assumption. Based on this observation the jth step of our SHL organization is
summarized in Algorithm 5. See Appendix A for a concrete example.

4. The expected number of terms after evaluation

The complexity of MTSHL depends on the number of terms in the factors, and the number
of terms of each factor is expected to decrease from the step j + 1 to j after evaluation. To
make our complexity analysis as precise as possible, we need to give an upper bound for the
expected sizes of the factors in each step j. In this section we will compute these bounds
and confirm our theoretical bounds with experimental data.

Let p be a big prime and f ∈ Zp[x1, . . . , xn] be a randomly chosen multivariate polynomial

of degree ≤ d that has T non-zero terms. Let s =
(
n+d
n

)
be the number of all possible

monomials of degree ≤ d. An upper bound for T is then given by T ≤ s. By randomly
chosen we mean that the probability of occurrence of each monomial is the same and equal
to 1/s. So we think of choosing a random polynomial of degree ≤ d that has T terms

10

Algorithm 5 jth step of MTSHL for j > 1.

Input : aj ∈ Zp[x1, . . . , xj], fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] and αj ∈ Zp where aj , fj−1, gj−1
are monic in x1. Also, aj(x1, . . . , xj−1, xj = αj) = fj−1gj−1.
Output : fj , gj ∈ Zp[x1, . . . , xj] such that aj = fjgj or FAIL

1: if #fj−1 > #gj−1 then interchange fj−1 with gj−1 end if
2: (σ0, τ0)← (fj−1, gj−1).
3: (fj , gj)← (fj−1, gj−1).
4: error ← aj − fj gj ; monomial← 1.
5: for i = 1, 2, 3, . . . while error 6= 0 and deg(fj , xj) + deg(gj , xj) < deg(aj , xj) do
6: monomial← monomial × (xj − αj).
7: c← Taylor coefficient of (xj − αj)i of error at xj = αj
8: if c 6= 0 then
9: Solve the MDP σi gj−1 + τi fj−1 = c for σi and τi in Zp[x1, . . . , xj−1]:

10: σg ← σi−1. (assume Supp(σi) ⊆ Supp(σi−1))
11: (σi, τi)← SparseInt(gj−1, fj−1, c, σg) (see Algorithm 4)
12: if (σi, τi)=FAIL then (σi, τi) ← MDSolver(fj−1, gj−1, c, p) end if
13: if (σi, τi)=FAIL then restart SHL with a different evaluation point α end if
14: (fj , gj)← (fj + σi ×monomial, gj + τi ×monomial).
15: error ← aj − fj gj .
16: end if
17: end for
18: if error = 0 return (fj , gj) end if
19: return FAIL (No such factorization exists)

as choosing T distinct monomials out of s choices and choosing coefficients uniformly at

random from [1, p− 1].

Let also g = f(xn = αn) for a randomly chosen non-zero element αn ∈ Zp. Before

evaluation let f =
∑t
i=1 mici(xn) where mi are monomials in the variables x1, . . . , xn−1.

Then T =
∑t
i=1 #ci(xn) and g =

∑t
i=1 mici(αn). One has

Pr[ci(αn) = 0] ≤ deg ci(xn)

p− 1
≤ d

p− 1

for each i. If p is much bigger than d and αn is random, we expect ci(αn) 6= 0 for 1 ≤ i ≤ t.
In the following first we will assume that ci(αn) 6= 0 for 1 ≤ i ≤ t and compute the expected

value of number of terms Tg of g, in terms of T, d and n. Then the upper bounds on the

expected value of Tg will be valid even for the case in which some of the ci(αn) = 0.

Let Yk be a random variable that counts the number of terms of the kth homogeneous

component fk of f which is homogeneous of degree k in the variables x1, . . . , xn−1. Then

f =
∑d
k=0 fk and degxn

fk ≤ d− k for 0 ≤ k ≤ d.

Example 2. Let n = 3, d = 6 and let

f = 1 + x53︸ ︷︷ ︸
f0

+ 2x1x
4
3︸ ︷︷ ︸

f1

+x1x
2
2(3x3 + 4x23) + 5x21x2x

3
3︸ ︷︷ ︸

f3

+x21x
2
2(6x3 + 7x23)︸ ︷︷ ︸

f4

+ 8x31x
3
2︸ ︷︷ ︸

f6

with f2 = f5 = 0. Then Y0 = 2, Y1 = 1, Y3 = 3, Y4 = 2, Y6 = 1, and Y2 = Y5 = 0.

11

Let sk be the number of all possible monomials in the variables x1, . . . , xn−1 with homo-
geneous degree k, i.e. sk =

(
n−2+k
n−2

)
and let dk = d− k + 1 for 0 ≤ k ≤ d. Since the number

of all possible monomials in x1, . . . , xn up to degree d which are homogeneous of degree k
in the variables x1, . . . , xn−1 is skdk, we have

∑d
k=0 skdk =

(
n+d
n

)
= s and

Pr[Yk = j] =
1(
s
T

)(skdk
j

)(
s− skdk
T − j

)
.

This is a hypergeometric distribution with expected value and variance (see 26.1.21 in (AS72)
with n = T and p = skdk/s) where

E[Yk] = T
skdk
s

and Var[Yk] =
(s− skdk)(s− T)Tskdk

s2(s− 1)
.

Let Xk be a random variable that counts the number of terms of the kth homogeneous
component gk of g which is homogeneous of degree k in the variables x1, . . . , xn−1. Let us

define the random variable X =
∑d
k=0Xk which counts the number of terms Tg of g.

Example 3. Let n = 3, d = 6 and α3 = 1. Below g = f(x3 = 1).

f = 1 + x53︸ ︷︷ ︸
Y0=2

+ 2x1x
4
3︸ ︷︷ ︸

Y1=1

+x1x
2
2(3x3 + 4x23) + 5x21x2x

3
3︸ ︷︷ ︸

Y3=3

+x21x
2
2(6x3 + 7x23)︸ ︷︷ ︸
Y4=2

+ 8x31x
3
2︸ ︷︷ ︸

Y6=1

↓ ↓ ↓ ↓ ↓
g = 2︸︷︷︸

X0=1

+ 2x1︸︷︷︸
X1=1

+ 7x1x
2
2 + 5x21x2︸ ︷︷ ︸
X3=2

+ 13x21x
2
2︸ ︷︷ ︸

X4=1

+ 8x31x
3
2︸ ︷︷ ︸

X6=1

So Y =
∑6
k=0 Yk = 9 and X =

∑6
k=0Xk = 6.

The expected number of terms of g is E[X] =
∑d
k=0E[Xk]. We have

E[Xk] =

sk∑
i=0

iPr[Xk = i] =

sk∑
i=0

i

skdk∑
j=0

Pr[Xk = i |Yk = j] Pr[Yk = j]

=

skdk∑
j=0

Pr[Yk = j]

sk∑
i=0

iPr[Xk = i |Yk = j].

Our first aim is to find the conditional expectation

E[Xk |Yk = j] =

sk∑
i=0

iPr[Xk = i |Yk = j].

To this end, let Mk = {m1, . . . ,msk} be the set of all monomials in x1, . . . , xn−1 with
homogeneous degree k. We have |Mk| = sk. For 1 ≤ i ≤ sk and j > 0, let Ai be the set of all
non-zero polynomials in Zp[x1, . . . , xn] with j terms that are homogenous of total degree k
in the variables x1, . . . , xn−1, have degree < dk in the variable xn and do not include a term
of the form cmix

r
n for any 0 ≤ r < dk for some non-zero c ∈ Zp. So using the table below,

Ai is the set of all non-zero polynomials whose support does not contain any monomial from
the ith row. Note that if fk ∈ Ai then #f(xn = αn) ≤ sk − 1.

12

1 xn . . . xdk−1n

m1 m1 m1xn . . . m1x
dk−1
n

m2 m2 m2xn . . . m2x
dk−1
n

...
...

...
...

...

msk msk mskxn . . . mskx
dk−1
n

If fk is the kth homogeneous component of f in the first n− 1 variables, then if no zero
evaluation occurs in the coefficients of fk in the variables xn (as was assumed), we have

fk ∈
sk⋃
i=1

Ai ⇐⇒ #fk(x1, . . . , xn−1, α) ≤ sk − 1.

Example 4. Let n = 3, k = 3, d3 = 3, j = 4. We have

Mk = {m1 = x31,m2 = x21x2,m3 = x1x
2
2,m4 = x32}.

with sk = 4. Consider the polynomials

F = x1x
2
2 + x32x

2
3 + x31(x3 + x23) ∈ A2 , G = x1x

2
2x

2
3 + x31(1 + x3 + x23) ∈ A2 ∩A4.

So, #F (xn = αn) ≤ 4− 1 = 3 and #G(xn = αn) ≤ 4− 2 = 2.

Let us define

Cl :=
⋃

i1<···<il

(Ai1 ∩Ai2 · · · ∩Ail) and Bl := Cl − Cl+1

for 1 ≤ l ≤ sk − 1. Then Cl is the union of all possible intersections of the l−subsets of
the collection Γ = {Ai, i = 1, . . . , sk}. Observe that Cl ⊇ Cl+1, so |Bl| = |Cl| − |Cl+1|. (See
Figure 1) Let us also define Bsk = Csk =

⋂sk
i=1Ai and

bl := |Bl| and ml :=
∑

i1<···<il |Ai1 ∩Ai2 · · · ∩Ail | for 1 ≤ l ≤ sk.

so that m1 =
∑sk
i=1 |Ai| and m2 =

∑
1≤i<j≤sk |Ai ∩Aj |.

A1

A2 A3

C2

A1

A2 A3

C3

A1

A2 A3

B2

Figure 1. Show sets C2, C3, B2 for three sets A1, A2, A3

With this notation we have

fk ∈ Bl ⇐⇒ #fk(x1, . . . , xn−1, α) = sk − l.

Let vj :=
(
skdk
j

)
and q := (p− 1). Assuming that no zero evaluation occurs, we have

Pr[Xk = sk − l |Yk = j] =
|Bl|
qjvj

. (2)

13

It can be seen by counting that

Pr[Xk = l |Yk = j] = v−1j

l∑
i=0

(−1)i
(
sk−(l−i)

i

)(
sk
l−i
)(
dk(l−i)

j

)
.

But this formula is not easy to manipulate. So, to compute the expected value and the

variance of X, we will follow the easier way described in (MT16a).

We have |Ai| = (p − q)j
(
(sk−1)dk

j

)
and |Ai ∩ Al| = qj

(
(sk−2)dk

j

)
for 1 ≤ i, l ≤ sk where

i 6= l. It has been proven in (MT16a) that
∑sk
i=1 i|Bi| = m1 and

∑sk
i=1 i

2|Bi| = m1 + 2m2.

To find the expected value and the variance of X, let us first define wj :=
(
(sk−1)dk

j

)
and the

random variable Zk := sk −Xk. Then Zk = i ⇐⇒ Xk = sk − i. Recall that vj :=
(
skdk
j

)
.

Then we have
sk∑
i=1

iPr[Zk = i |Yk = j]
(1)
=

sk∑
i=1

i
|Bl|
qjvj

=

∑sk
i=1 i|Bl|
qjvj

=

∑sk
i=1 |Ai|
qjvj

= sk
wj
vj
.

Since E[Xk |Yk = j] = E[sk − Zk |Yk = j] = sk − E[Zk |Yk = j], we have

E[Xk |Yk = j] =

sk∑
i=0

iPr[Xk = i |Yk = j] = sk(1− wj
vj

).

To save some space let ykj := Pr[Yk = j]. Then

E[X] =

d∑
k=0

E[Xk] =

d∑
k=0

skdk∑
j=0

ykj

sk∑
i=0

iPr[Xk = i |Yk = j]

=

d∑
k=0

skdk∑
j=0

ykjsk(1− wj
vj

) =

d∑
k=0

skdk∑
j=0

ykjsk −
d∑
k=0

skdk∑
j=0

ykjsk
wj
vj

=

d∑
k=0

sk

skdk∑
j=0

ykj −
d∑
k=0

skdk∑
j=0

1(
s
T

)(skdk
j

)(
s− skdk
T − j

)
sk

(
(sk−1)dk

j

)(
skdk
j

)
=

d∑
k=0

sk −
1(
s
T

) d∑
k=0

sk

skdk∑
j=0

(
s− skdk
T − j

)(
(sk − 1)dk

j

)

=
d∑
k=0

sk −
d∑
k=0

sk

(
s−dk
T

)(
s
T

) =
d∑
k=0

sk

(
1−

(
s−dk
T

)(
s
T

))
.

Note that what we have done so far can easily be generalized when the number of evaluation

points m > 1 and redefining sk and dk. For 0 < m < n let

g = f(x1, . . . xn−m, xn−m+1 = αn−m+1, . . . , xn = αn)

for m randomly chosen non-zero elements αn−m+1, . . . , αn ∈ Zp and s =
(
n+d
n

)
, sk =(

n−m−1+k
n−m−1

)
and dk =

(
d−k+m
m

)
. If no zero evaluation occurs at the coefficients of f and we

define the random variable Y =
∑d
k=0 Yk which counts the number of terms of f , then what

14

we get is the conditional expectation

E[X |Y = T] =

d∑
k=0

sk

(
1−

(
s−dk
T

)(
s
T

))
. (3)

From now on, to save some space, when it is clear from the context, we will use the

notation E[X] instead of E[X |Y = T]. Although it is not difficult to compute, this formula

is not useful. In order to have a smooth formulation in our complexity analysis, we want a

good approximation. First, we observe(
s− dk
T

)
/

(
s

T

)
= (1− T

s
)(1− T

s− 1
) · · · (1− T

s− dk + 1
).

For 0 ≤ i < dk we have (1− T
s)− (1− T

s−i) = iT
s(s−i) <

dkT
s(s−dk) . Let γi := iT/s

s−i . Then

dk−1∏
i=0

(1− T

s− i
) =

dk−1∏
i=0

(1− T

s
− γi) = (1− T

s
)dk + Er

where

Er =

dk∑
l=1

(−1)l

 ∑
0≤i1<···<il≤dk−1

l∏
j=1

γij

 (1− T

s
)dk−l.

Since
l∏
i=1

γi <

(
dkT/s

s− d

)l
=

(
dk
s

)l(
T/s

1− dk/s

)l
→ 0 as

dk
s
→ 0

we see that Er → 0 and hence the ratio
(
s−dk
T

)
/
(
s
T

)
→ (1− T

s
)dk as dk

s → 0.

Remark 5. From now on, unless indicated, whenever we use the symbol ≈ or > we mean

that in the calculation the approximation(
s−dk
T

)
/
(
s
T

)
≈ (1− tf)dk (4)

is used (with error Er) where tf = T/s is the density ratio of f . When m is not close to n,

since s ∈ O(nd) and in the sparse case tf is relatively small, the error Er is very close to

zero not only asymptotically but also for practical values for n and d (see example 6).

For a single evaluation, that is, m = 1, we expect

E[X] ≈
d∑
k=0

sk
(
1− (1− tf)dk

)
. (5)

So, in the dense case where tf is very close to 1, we expect approximately
∑d
k=0 sk many

terms, i.e. most of the possible monomials in the variables x1, . . . , xn−1 up to degree d. In the

very sparse case where tf is very close to zero, using the approximation (1−tf)dk ≈ 1−dktf ,

we expect approximately tf
∑d
k=0 skdk = tfs = T terms as we intuitively expect.

Eqn (2) above is the expected number of terms E[Tg] of g. Let γ be the number of

all possible monomials in the variables x1, . . . , xn−1 up to degree d − 1, i.e. γ =
(
n+d−1
n−1

)
.

15

Dividing the both sides of the equation (2) by γ we get the expected density ratio

E[Tg]/γ = E[Tg/γ]⇒ E[tg] = 1− γ−1
d∑
k=0

sk

(
s−dk
stf

)(
s
stf

) . (6)

So, we have an induced function et : tf 7→ E[tg]. Using eqn (4)

E[tg] ≈ 1− γ−1
d∑
k=0

sk(1− tf)dk . (7)

Example 6. Table 1 below presents the results of experiments with 4 random polynomials

f1, f2, f3, f4 with n = 7 variables and degree d = 15. Tgi and tgi are the actual number

of terms and the density ratio of each gi = fi(xn = αi). E[tgi] and eTgi are the expected

number of terms of gi based on Eqns (3) and (5) resp. E[tgi] and etgi are the expected

density ratio of gi based on Eqns (6) and (7) resp.

Tfi tfi Tgi E[Tgi] eTgi tgi E[tgi] etgi

f1 17161 .100625 14356 14370.47 14370.36 .264558 .264825 .264823

f2 19887 .116609 16196 16221.84 16221.73 .298466 .298943 .298941

f3 29845 .174998 22303 22211.09 22210.96 .411009 .409315 .409313

f4 39823 .233505 27244 27199.53 27199.41 .502063 .501244 .501242

Table 1. Expected number of terms after evaluation

Note that the polynomial function et(y) = 1−γ−1
∑d
k=0 sk(1− y)dk is strictly increasing

on the interval [0, 1], since e′t(y) > 0 on the interval [0,1]. Also et(0) = 0 and et(1) = 1. For

a given 0 ≤ y0 ≤ 1, consider the function h(y) := et(y)− y0. We have h(0) ≤ 0 and h′ > 0

on [0,1]. Hence h(y) has only 1 real root in [0, 1]. This helps us to estimate Tf when we’re

given only Tg. Here is one example in the reverse direction:

Example 7. We call Maple’s randpoly command to give a random sparse polynomial of

degree 15 in 7 variables. It gives us a polynomial f with Tf = 25050. Suppose we don’t

know Tf . Then we choose a random point α and evaluate g = f(xn = α). We compute

Tg = 19395. Then we compute tg = 19395/
(
7−1+15

15

)
≈ 0.3574192835 and γ =

(
7+15−1

15

)
.

Using (6.6) we seek for the solutions of the polynomial equation

0.3574192835 = 1− γ−1
15∑
k=0

(
5 + k

k

)
(1− y)16−k.

This polynomial equation has only one real root y = 0.1461603065 in [0,1]. So we guess

E[tf] ≈ 0.1461603065. The actual density ratio is tf = 25050/
(
7+15
15

)
= 0.1461089220. Our

guess implies E[Tf] ≈ tf
(
7+15

7

)
= 24926, whereas Tf = 25050. We repeated this example

with 4 random polynomials fi where gi = fi(xn = αi). The results of the experiments are

in Table 2.

16

Tgi tgi E[tfi] tfi E[Tfi] Tfi

f1 14967 .2758182220 .1056824733 .1052983394 18023 17958

f2 14597 .2689997051 .1025359262 .1020792288 17486 17409

f3 14439 .2660880142 .1012024458 .1008713294 17259 17203

f4 14375 .2649085950 .1006640188 .1005605592 17167 17150

Table 2. Expected number of terms before evaluation

Finally, following the notation in the beginning of the section, if some of the ci(αn) = 0

for 1 ≤ i ≤ t, then we consider f̃ =
∑tik
k=0 cik(xn)mik where Supp(f̃) ⊆ Supp(f) and

cik(αn) = 0. Then

E[Tf] = E[Tf−f̃] >
d∑
k=0

sk
(
1− (1− tf)dk

)
So what we have found is an upper bound for E[X]. On the other hand since we choose αn 6=
0 a non-zero monomial does not evaluate to zero, that is, if #ci(xn) = 1 then mici(αn) 6=
0. So we should apply the zero evaluation probability only to the terms mici(xn) with
#ci(xn) ≥ 2. Then, for given f ∈ Zp[x1, . . . , xn] of degree ≤ d with T terms, the probability
that zero evaluation occurs for a randomly chosen non-zero αn ∈ Zp is ≤ dT

2(p−1) . Note that

this is also true when the number of evaluations are more than one by using the Swartz-
Zippel Lemma.

To see how spread out the distribution from the mean is, we must compute the variance.
First consider the sum A =

∑sk
i=0 i

2 Pr[Zk = i |Yk = j]

A=

sk∑
i=0

(sk − i)2 Pr[Zk = sk − i |Yk = j]

= s2k − 2sk

sk∑
i=0

iPr[Xk = i |Yk = j] +

sk∑
i=0

i2 Pr[Xk = i |Yk = j]

= s2k − 2sk(sk − sk
wj
vj

) +

sk∑
i=0

i2 Pr[Xk = i |Yk = j]

=−s2k(1− 2
wj
vj

) +

sk∑
i=0

i2 Pr[Xk = i |Yk = j]

Then
sk∑
i=0

i2 Pr[Xk = i |Yk = j] =

sk∑
i=0

i2 Pr[Zk = i |Yk = j] + s2k(1− 2
wj
vj

).

Let rj :=
(
(sk−2)dk

j

)
. Recall that q = p− 1, |Ai| = qjwj and |Ai ∩Al| = qjvj for i 6= l. So

sk∑
i=1

i2Pr[Zk = i |Yk = j] =

sk∑
i=1

i2
|Bl|
qjvj

=

∑sk
i=1 i

2|Bl|
qjvj

=

∑sk
i=1 |Ai|
qjvj

+ 2

∑
1≤i,l≤sk |Ai ∩Al|

qjvj
= sk

wj
vj

+ 2

(
sk
2

)
rj
vj
.

17

Then
sk∑
i=0

i2 Pr[Xk = i |Yk = j] = sk
wj
vj

+ 2

(
sk
2

)
rj
vj

+ s2k(1− 2
wj
vj

).

Hence

Var[Xk] =E[X2
k]− E[Xk]2 = sk

wj
vj

+ 2

(
sk
2

)
rj
vj

+ s2k(1− 2
wj
vj

)− s2k(1− wj
vj

)2

= sk
wj
vj

+ sk(sk − 1)
rj
vj
−
(
sk
wj
vj

)2

.

It follows that

d∑
k=0

Var[Xk]≈
d∑
k=0

sk(1− tf)dk +

d∑
k=0

sk(sk − 1)(1− tf)2dk −
d∑
k=0

s2k(1− tf)2dk

=

d∑
k=0

sk
(
(1− tf)dk − (1− tf)2dk

)
.

Note that
∑d
k=0 Var[Xk] is not not equal to Var[X] =

∑d
k=0 Var[Xk] +

∑d
k 6=l Covar[Xk, Xl].

For the sparse case where tf is close to zero, using the approximation (1− tf)dk ≈ 1− dktf ,
we expect

d∑
k=0

sk
(
(1− tf)dk − (1− tf)2dk

)
≈

d∑
k=0

sk ((1− dktf)− (1− 2dktf))

= tf

d∑
k=0

skdk = tfs = Tf .

So, the sum of the squares of the deviations of each Xk from E[Xk] is Tf . As an experiment,
for n = 7, d = 15 we generated 1000 random polynomials with Tf = 1716 for each of them.
So each has density ratio tf = 0.01. Then the expected number of terms after evaluation at

a random non-zero point is 1684.14 and
∑d
k=0 Var[Xk] = 1606.30 which is close to Tf .

Lemma 8. Let p be a big prime and f ∈ Zp[x1, . . . , xn] be a random multivariate polynomial
of degree of at most d that has Tf non-zero terms. Also let 0 < m < n and

g = f(x1, . . . xn−m, xn−m+1 = αn−m+1, . . . , xn = αn)

for m randomly chosen non-zero elements αn−m+1, . . . , αn ∈ Zp. Let Tg be the expected
number of terms of g and Tgk be the number of monomials in g that are homogeneous of

degree k in the variables x1, . . . xn−m. Also let s =
(
n+d
n

)
, sk =

(
n−m−1+k
n−m−1

)
, γ =

(
n−m+d
n−m

)
and dk =

(
d−k+m
m

)
. Then

E[Tg] ≤
d∑
k=0

sk

(
1−

(
s−dk
Tf

)(
s
Tf

)) . (8)

18

Let the density of f , tf = Tf/s. Equation (7) implies that if dk
s → 0, then with probability

≥ 1− dTf

2(p−1) one has

E[Tg] ≈
d∑
k=0

sk
(
1− (1− tf)dk

)
. (9)

Equation (8) implies that with probability ≥ 1− dTf

2(p−1)

E[tg] ≈ 1− γ−1
d∑
k=0

sk(1− tf)dk (10)

and Var[Tgk] ≈ sk
(
(1− tf)dk − (1− tf)2dk

)
. (11)

4.1. On Zippel’s assumption

The sparse interpolation idea and the first gcd algorithm to use sparse interpolation
were introduced and analyzed by Zippel in his research paper (Zip79). The goal polynomial
(the gcd) is P (x1, . . . , xn) and the starting point is ~a = (a1, . . . , an). According to our
notation, Tfn−i

denotes the number of terms of the polynomial P (x1, . . . , xi, ai+1, . . . , an).
In subsection 3.2 of (Zip79) after computing a sum which depends on the values Tfn−i ,
Zippel claims “We need to make some assumptions about the structure of Tfn−i to get
anything meaningful out of this. We will assume that the ratio of the terms Tfn−i

/Tfn−i+1

is a constant k.” 3

Our observations in this section show that this assumption is wrong. To see a more
accurate bound on the expected ratio of the subsequent number of terms, let us denote by

d
(i)
k =

(
d−k+i
d−k

)
, s(i) =

(
n−i+d
n−i

)
, s

(i)
k =

(
n−i+k−1
n−i−1

)
, r

(i)
k =

(s−d(i)
k

T

)
/
(
s
T

)
and β

(i)
k = 1− r(i)k . Let

fi = f(x1, . . . xn−i, xn−i+1 = αn−i+1, . . . , xn = αn)

be the polynomial in n − i variables after i random evaluations. According to Lemma 8

E[Tfi] =
∑d
k=0 s

(i)
k β

(i)
k . Our aim is to find an upper and lower bound for

E[Tfi]

E[Tfi+1]
=

∑d
k=0 s

(i)
k β

(i)
k∑d

k=0 s
(i+1)
k β

(i+1)
k

.

Observe that

d
(i+1)
k > d

(i)
k ⇒ s− d(i+1)

k < s− d(i)k ⇒ r
(i+1)
k < r

(i)
k ⇒ β

(i+1)
k > β

(i)
k .

Then
E[Tfi]

E[Tfi+1
]

=

∑d
k=0 s

(i)
k β

(i)
k∑d

k=0 s
(i+1)
k β

(i+1)
k

<

∑d
k=0 s

(i)
k β

(i)
k∑d

k=0 s
(i+1)
k β

(i)
k

≤ max
k

{
s
(i)
k

s
(i+1)
k

}
.

We have
s
(i)
k

s
(i+1)
k

=
n− i+ k − 1

n− i− 1
= 1 +

k

n− i− 1
≤ 1 +

d

n− i− 1
.

3 In (Zip79) Zippel uses the notation ti for Tfn−i
. Since we use the symbol t for the density, we use our

notation as to not confuse the reader.

19

Our next aim is to show that E[tfi+1] ≥ E[tfi]: we have

E[tfi] = 1−
d∑
k=0

s
(i)
k

s(i)
r
(i)
k = 1−

d∑
k=0

(
n−i+k−1
n−i−1

)(
n−i+d
n−i

) (s−d(i)
k

T

)(
s
T

) = 1−
d∑
k=0

(
n−i+k−1
n−i−1

)(
s
T

) (s−d(i)
k

T

)(
n−i+d
n−i

)
Let v

(i)
k =

(
n−i+k−1
n−i−1

)
/
(
s
T

)
and w

(i)
k =

(s−d(i)
k

T

)
/
(
n−i+d
n−i

)
. Then v

(i+1)
k /v

(i)
k < 1 and w

(i+1)
k /w

(i)
k <

1. So
∑d
k=0 v

(i)
k w

(i)
k decreases and hence E[tfi] increases as i increases, i.e., we expect an

increase in the density ratio after each evaluation. On the other hand,

E[Tfi] = E[tfi]
(
n−i+d
n−i

)
= E[tfi]

n−i+d
n−i

(
n−(i+1)+d
n−(i+1)

)
≥ E[tfi]

n−i+d
n−i E[Tfi+1

].

It follows that
E[Tfi

]

E[Tfi+1
] ≥ E[tfi]

(
1 + d

n−i

)
.

Hence
E[tfi]

(
1 + d

n−i

)
≤ E[Tfi

]

E[Tfi+1
] ≤ 1 + d

n−i−1 .

Now, since each of E[tfi], 1 + d
n−i , 1 + d

n−i−1 increases as i increases we expect an increase
in the ratio E[Tfi]/E[Tfi+1

].
This means we expect that the ratio Tfn−i

/Tfn−i+1
increases as i decreases, i.e., after each

evaluation we expect an increase in the ratio of subsequent number of terms. See Example
9 for a sparse case and Example 10 for a (relatively) dense case.

Example 9. (Sparse case with tf = 0.000044). Table 3 below shows the result of a ran-
dom experiment where p = 231 − 1, n = 12, d = 20, Tf = 104, tf = 0.000044 and
fi := fi−1(xn−i+1 = αn−i+1) with f0 = f, for randomly chosen non-zero αi’s in Zp. Observe
that when we evaluate the first 4 variables the number of terms didn’t drop significantly.

i Tfi E[Tfi] tfi tfi(1 + d
n−i

) Tfi/Tfi+1 1 + d
n−i−1

0 10000 10000 0.00004 0.00012 1.0000 2.8182

1 10000 9999.32 0.00012 0.00033 1.0006 3.0000

2 9994 9995.19 0.00033 0.00100 1.0025 3.2222

3 9969 9971.08 0.00100 0.00321 1.0135 3.5000

4 9836 9837.31 0.00316 0.01108 1.0686 3.8571

5 9205 9200.70 0.01037 0.03998 1.2767 4.3333

6 7210 7219.37 0.03132 0.13570 1.7470 5.0000

7 4127 4144.61 0.09710 0.48548 2.4435 6.0000

8 1689 1690.52 0.23090 1.38540 3.3512 7.6667

9 504 497.93 0.37895 2.90530 4.8932 11.000

10 103 104.50 0.54210 5.96310 7.3571 21.000

Table 3. The ratio of subsequent number of terms (sparse case): Tfi decreases slowly until i = 5.

Example 10. (Dense case with tf = 0.1). Table 4 below shows the result of a random
experiment where p = 231−1, n = 7, d = 13, Tf = 7752, tf = 0.1 where fi := fi−1(xn−i+1 =
αn−i+1) with f0 = f, for randomly chosen non-zero αi’s in Zp. Observe that the number of
terms dropped by about 10% after the first evaluation.

20

i Tfi E[Tfi] tfi tfi(1 + d
n−i

) Tfi/Tfi+1 1 + d
n−i−1

0 7752 7752 0.10 0.28 1.17 3.16

1 6670 6643.44 0.24 0.77 1.76 3.60

2 3774 3800.14 0.44 1.58 2.70 4.25

3 1398 1409.83 0.58 2.49 3.65 5.33

4 383 394.03 0.68 3.64 4.78 7.50

5 80 81.14 0.76 5.71 6.66 14

Table 4. The ratio of subsequent number of terms (dense case): Tfi decreases immediately.

The dominating term of the complexity analysis of Zippel is
∑n
i=1 c1dT

3
fn−i+1

where c1 is

a constant. He assumes Tfn−i
/Tfn−i+1

= k ⇒ Tfn−i
= Tfnk

i. It follows that

n∑
i=1

c1dT
3
fn−i+1

= c1d

n∑
i=1

T 3
fn−i+1

= c1dT
3
fn

n∑
i=1

k3i = c1dk
3

(k3n − 1)T 3
fn

k3 − 1
.

Since Tf = Tf0 = Tfnk
n, if k is large in comparison to 1 then this sum approaches c1dT

3
f

but if k is very close to 1 then this sum approaches to c1ndT
3
f . Then he concludes that if

Tf � d or n, the dominant behaviour is O(T 3
f).

The case where k is very close to 1 (where Zippel has a very sparse case in mind) is the
worst case analysis. One can construct such an example. More precisely, Zippel’s analysis
shows that the complexity for the worst case is O(ndT 3

f) and for the average case (where

he assumes that “k is large in comparison to 1”) the complexity is O(dT 3
f). Below we will

show that this is not true and prove that even for the average case the expected complexity
is O(ndT 3

f) for the sparse gcd computation.
Example 9 (the sparse case) shows that after 5 evaluations the number of terms is still 90%

of Tf (See column Tf). This means the cost of each interpolation of the last few variables in
Zippel’s algorithm is the same and equal to O(dT 3

f). However in Example 10 (the relatively
dense case) the number of terms starts to drop right away. Proposition 11 below qualifies
this behaviour and makes the observation of Example 9 more precise.

Proposition 11. Following the notation above, let I =
{
i ∈ N | tf ≤ 1/

(
i+d
d

)
and i ≤ n

}
.

Then with probability ≥ 1− dTf

2(p−1) , one has

(i)
E[Tfi

]

Tf
≥ 1− t2f for i ∈ I,

(ii) if n ≤ d, then |I| ≥ max{1, dn− logr Tfe} where r = 1 + d
n .

Proof. To save some space we will use the notation T = Tf . With probability ≥ 1− dT
2(p−1) ,

one has

E[Tfi] =

d∑
k=0

s
(i)
k (1−

(
s−d(i)

k
s

)(
s
T

))

where d
(i)
k =

(
d−k+i
i

)
. Note that

tf ≤
1(
i+d
d

) ≤ 1

d
(i)
k

⇒ tfd
(i)
k ≤ 1. (12)

21

It follows that

d
(i)
k

s
=
d
(i)
k tf
T
≤ 1

T
. (13)

We have (
s−d(i)

k
s

)(
s
T

) ≤ (1− tf)d
(i)

k . (14)

Then

E[Tfi] =

d∑
k=0

s
(i)
k (1−

(
s−d(i)

k
s

)(
s
T

))

by (14)︷︸︸︷
≥

d∑
k=0

s
(i)
k (1− (1− tf)d

(i)

k)

=

d∑
k=0

s
(i)
k

1−
d
(i)

k∑
j=0

(−1)j
(
d
(i)
k

j

)
tjf


=

d∑
k=0

s
(i)
k

1− 1 + d
(i)
k tf −

d
(i)

k∑
j=2

(−1)j
(
d
(i)
k

j

)
tjf


=

d∑
k=0

s
(i)
k d

(i)
k tf −

d∑
k=0

d
(i)

k∑
j=2

(−1)js
(i)
k

(
d
(i)
k

j

)
tjf

= tfs− t2f
d∑
k=0

d
(i)

k∑
j=2

(−1)js
(i)
k

(
d
(i)
k

j

)
tj−2f

= T − t2f
d∑
k=0

d
(i)

k∑
j=2

(−1)js
(i)
k

(
d
(i)
k

j

)
tj−2f .

The expected decrease in the number of terms is determined by the quantity

A = t2f

d∑
k=0

d
(i)

k∑
j=2

(−1)js
(i)
k

(
d
(i)
k

j

)
tj−2f .

We have

s
(i)
k

(
d
(i)
k

j

)
tj−2f < s

(i)
k

(
d
(i)
k

)j
j!

tj−2f

by (12)︷︸︸︷
≤

s
(i)
k

(
d
(i)
k

)2
j!

.

Then the absolute value of A is

|A| ≤ t2f
d∑
k=0

d
(i)

k∑
j=2

s
(i)
k

(
d
(i)
k

)2
j!

= t2f

d∑
k=0

s
(i)
k

(
d
(i)
k

)2 d(i)k∑
j=2

1

j!︸ ︷︷ ︸
≤1

≤ t2f
d∑
k=0

s
(i)
k

(
d
(i)
k

)2
.

22

So we see that

|A|
T
≤
t2f
∑d
k=0 s

(i)
k

(
d
(i)
k

)2
tfs

= tf

d∑
k=0

s
(i)
k d

(i)
k

d
(i)
k

s

by (13)︷︸︸︷
≤ tf

1

T
s = t2f . (15)

Then

E[Tfi]

T
≥ T −A

T
≥ T − |A|

T
= 1− |A|

T

by(15)︷︸︸︷
≥ 1− t2f .

This proves the first part. For the second part, note that

tf ≤
1(
i+d
d

) ⇐⇒ T ≤
(
n+d
d

)(
i+d
d

) ⇐⇒ 1

T
≥
(
i+d
d

)(
n+d
d

)
and that n−i

n+d = n
n+d −

i
n+d = 1

1+d/n −
i

n+d . So if n ≤ d then n−i
n+d is small and the following

bound is useful (
i+d
d

)(
n+d
d

) =

(
n+d−(n−i)

d

)(
n+d
d

) ≤
(

1− d

n+ d

)n−i
.

Now if

T ≤
(

1− d

n+ d

)i−n
⇐⇒ 1

T
≥
(

1− d

n+ d

)n−i
⇒ i ∈ I

and if we define w = n
n+d , then wnT ≤ wi ⇒ i ≥ n+ logw T . Finally, if r = 1

w = 1 + d
n , we

have i ≥ n− logr T . Hence if n ≤ d, then |I| ≥ dn− logr T e. 2

For Example 9, max{1, dn − logr Tfe} = max{1, d12 − log2.6 104e} = max{1, 3} = 3
whereas |I| = 5. For Example 10, |I| = 1 whereas max{1, dn − logr Tfe} = max{1, d7 −
log2.86 7752e} = max{1,−1} = 1.

Corollary 12. Following the notation above, the average complexity of the sparse gcd al-
gorithm of Zippel is Ω(|I|dT 3). If n ≤ d then the average complexity is in Ω(max{1, dn −
logr T e}dT 3) where r = 1 + d

n .

Remark 13. According to Proposition 11 (i), when tf is small, on average we expect that
Tfi ≈ Tf for i ∈ I, i.e. for at least |I| many steps, we don’t expect a significant decrease
in the number of terms. Note that as tf gets smaller, i.e., the inputs gets sparser, |I| gets
closer to n. Also, in practice n ≤ d and as Tf get smaller logr Tf gets smaller and according
to Proposition (ii) |I| ≥ dn − logr Tfe gets closer to n. This means for the sparse case
the average complexity is in O(ndT 3

f). Thus, the common perception that in the sparse
interpolation most of the work is done when recovering the last variable xn is not true: For
most sparse examples, the work done to recover xn/2, xn/2+1, . . . , xn−1 is the same as xn.

5. The expected number of terms of Taylor coefficients

Consider the Taylor series expansion of fj , gj , ej ∈ Zp[x1, . . . , xn] about xn = αn for 0 6=
αn ∈ Zp. Let fj =

∑dn
i=0 fji(xn−αn)i, gj =

∑dn
i=0 gji(xn−αn)i and ej =

∑dn
i=0 cji(xn−αn)i

where fji, gji, cji ∈ Zp[x1, . . . , xn−1]. In the ith iteration of the for loop of the jth step of
MTSHL (Algorithm 5) one solves the MDP fjigj0 + gjifj0 = cji to compute fji and gji for
1 ≤ i ≤ dn. The cost of MDP depends on the sizes of the polynomials fji, gji and cji.

23

To make our complexity analysis as precise as possible, in this section we will compute
theoretical estimations for the expected sizes of the Taylor coefficients fj and the upper

bounds for E[Tfj] of a randomly chosen f ∈ Zp[x1, . . . , xn] where f =
∑dn
i=0 fj(xn − αn)j

for a randomly chosen non-zero element αn ∈ Zp and p is a big prime. We will confirm our
theoretical estimations by experimental data.

In the sequel we will use the notation #f and Tf interchangeably. For a random non-zero

αn ∈ Zp, consider f =
∑dn
j=0 fj(xn − αn)j where each fj ∈ Zp[x1, . . . , xn−1]. We expect

Tfj+1 ≤ Tfj , that is, the size of the Taylor coefficients fj decrease as j increases.
As a first step to find a upper bound on E[Tfj], we have the following Lemma.

Lemma 14. Let 0 < d < p and n > 0. Then following the notation above, the probability
of occurrence of each monomial in the support of f ′ = ∂

∂xn
f is the same.

Proof. Let m′ = cxβ1

1 · · ·xβn
n ∈ Supp(f ′) where β1 + · · ·+ βn ≤ d− 1. Then any monomial

of the form m = (βn + 1)−1cxβ1

1 · · ·xβn+1
n + n where n is a monomial of degree ≤ d which

does not contain the variable xn lies over m′. We have β1 + · · · + (βn + 1) ≤ d. On the

other hand, for m = cxβ1

1 · · ·xβn
n ∈ Supp(f), one has ∂

∂xn
m = cβnx

β1

1 · · ·xβn−1
n = 0 ⇐⇒

p | cβn ⇐⇒ p |βn. So if d < p we have ∂
∂xn

m = 0 ⇐⇒m does not contain the variable xn,
i.e., βn = 0. Therefore the number of monomials lying over each distinct monomial in the
support of f ′ is the same and equal to (p− 1)γ + 1 where γ =

(
n+d−1
n

)
. Since f is random,

this implies that the probability of occurrence of each monomial in the support of f ′ is the
same. 2

After differentiation, monomials which do not contain the variable xn in f will disappear.
Since the expected number of them is = tf

(
n−1+d
n−1

)
, we expect

E[#f ′] = Tf − tf
(
n− 1 + d

n− 1

)
.

What about the density ratio tf ′ of f ′? We have

Lemma 15. Following the notation above E[tf ′] = tf .

Proof.

E[tf ′] =
(
Tf − tf

(
n−1+d
n−1

))
/
(
n+d−1
n

)
= tf

((
n+d
n

)
−
(
n−1+d
n−1

))
/
(
n+d−1
n

)
= tf

(
n+d
n

(
n+d−1
n−1

)
−
(
n−1+d
n−1

))
/
(
n+d−1
n

)
= tf

(
n+d−1
n−1

)
/nd
(
n+d−1
d−1

)
= tf

(
n+d−1
n−1

)
/
(
n+d−1
n−1

)
= tf .

2

For simplicity let us assume that p > j, otherwise we will need to introduce Hasse
derivatives, but the idea will be the same. We have fj = 1

j!
∂

∂xj
n
f(xn = α). Also f (j) := ∂

∂xj
n
f

is of degree ≤ dj := d− j. Using Lemma 14 and 15 repeatedly,

E[fj] ≤ E[#f (j)] = E[tf(j)]
(
n+d−j
n

)
= tf

(
n+d−j
n

)
.

24

It follows that

E[tfj] = E[fj]/
(
n+d−j
n

)
≤ tf .

We sum up the observations of this section in such a way that it will be helpful for the next
sections.

Lemma 16. Let p be a big prime and fj ∈ Zp[x1, . . . , xj] be a multivariate polynomial
of total degree ≤ dj that has Tfj non-zero terms. For a randomly chosen non-zero element

αj ∈ Zp, consider fj =
∑dj
i=0 fji(xj−αj)i where fji ∈ Zp[x1, . . . , xj−1]. Let tfj = Tfj/

(
j+dj
j

)
.

Then

E[Tfji] > tfj
(
j+dj−i

j

)
andE[tfji] > tfj

j+dj−i
j . (16)

Example 17. Table 5 below shows the result of a random experiment where p = 231 − 1,
j = 7, dj = 13, Tfj = 7752. In the Table 5, Tfji , tfji and t

f
(i)
j

are the actual values. Also the

expected number of terms E[Tfji] of fji, the bound bTfji on the expected number of terms
of fji, and the bound btfji on the density ratio of fji, are based on (5) and (16) resp.

i Tfji

Tfji−1

Tfji

E[Tfji] bTfji t
f
(i)
j

tfji btfji

0 6651 − 6643.345 7752 0.09 0.085 0.285

1 4343 1.53 4366.828 5038.8 0.1 0.086 0.271

2 2773 1.57 2789.364 3182.4 0.09 0.088 0.257

3 1722 1.61 1724.183 1944.8 0.10 0.088 0.242

4 977 1.76 1025.981 1144.0 0.10 0.092 0.228

5 564 1.73 583.867 643.5 0.10 0.093 0.214

6 306 1.84 315.075 343.2 0.10 0.094 0.200

7 150 2.04 159.417 171.6 0.10 0.103 0.185

8 68 2.21 74.463 79.2 0.10 0.104 0.171

9 26 2.62 31.403 33.0 0.10 0.127 0.157

10 12 2.17 11.559 12.0 0.05 0.125 0.142

11 3 4.00 3.511 3.6 0.12 0.111 0.128

12 1 3.00 0.790 0.8 1 0.112 0.114

Table 5. The bounds on the expected number of terms and the density ratio.

6. The complexity of the MDP

Let p be a big prime and u,w, h ∈ Zp[x1, . . . , xn] where u,w are monic in x1. Suppose
we are trying to solve the MDP (which satisfies the MDP conditions)

D := fu+ gw = h (17)

to find the unique solution pair (f, g) via sparse interpolation as described in section 2. Let
d be a total degree bound for f, g, u, w, h. Our aim in this section is to estimate the expected
complexity of solving (17). Since the calculations of the complexity evaluation in the next
section are somewhat tedious, this section is intended to help the reader follow it easily.

25

Suppose the solution-form of f is

σf =
∑
i+j≤d

cij(x3, ..., xn)xi1x
j
2 where cij =

mij∑
l=1

cijlx
γ3l
3 · · ·x

γjl
n with cijl ∈ Zp\{0}.

Let m = max mij . Then in sparse interpolation the first step is to choose a random

(β3, . . . , βn) ∈ (Zp\{0})n−2 and solve bivariate MDP’s

Dr := f̃ · u(x1, x2, β
r
3 , . . . , β

r
n) + g̃ · w(x1, x2, β

r
3 , . . . , β

r
n) = h(x1, x2, β

r
3 , . . . , β

r
n)

for r = 1, . . . ,m where (f̃ , g̃) ∈ Zp[x1, x2]2 is to be solved.

As before let s =
(
n+d
n

)
, r = n

n+d , sk =
(
n−2+k
n−2

)
and dk = d − k + 1 for 0 ≤ k ≤ d.

Suppose that the solution form σf of f is correct. Then the expected number of monomials

of the form xα3
3 · · ·xαn

n xi1x
j
2 in Supp(f) is tf

(
n−2+d−k
n−2

)
= tfsd−k when i + j = k. So we

expect #cij = tfsd−k. When i = j = 0, i.e. the number of monomials that are in the
variables x3, . . . , xn in Supp(f) is expected to be greatest, therefore the expected number
of evaluations is m = tfsd. At this point we remark that

tfsd = Tf
n(n− 1)

(n+ d)(n+ d− 1)
≤ Tf

(
n

n+ d

)2

.

So, if Tf

(
n
n+d

)2
< 1, our theoretical expectation of m = tfsd will be less than 1, which in

practice means that there won’t be any evaluation. If d is big and Tf is small, this inequality
may occur, however the algorithm makes at least one evaluation and hence calls BDP at
least once, so we should have m = dtfsde.

Let T = (Tf + Tu + Tw + Th). (We are evaluating σf too, to get the linear system of
equations in cijl). Then according to subsection 2.3, the total cost CE of the consecutive
evaluations is bounded above by

CE ≤#of terms× (#of evaluations + n− 3) + (n− 2)d

≈ (Tf + Tu + Tw + Th) (Tf
sd
s

+ 1 + n− 3) + (n− 2)d

≤ T (dTfr2e+ n) + nd

If d is huge and Tf is small so that Tfr
2 < n then nT or nd can dominate the sum above.

So we obtain

CE ∈ O(T dTfr2e+ nT + nd). (18)

After evaluation, the sparse interpolation routine calls BDP to solve the bivariate dio-
phantine equations Dr. For a given Dr, BDP solves it in O(d32) arithmetic operations in
Zp via dense interpolation where d2 is a bound for the total degrees of f, g, u, w, h in x1, x2
above. In our case d2 ≤ d. Hence the expected cost CB of solving Dr’s is

CB ∈ #of evaluations×O(d3) = O(dTfr2ed3). (19)

BDP gives the unique solution for Dr iff the MDP conditions for Dr are satisfied. To have
a unique solution for Dr, for 1 ≤ t ≤ m, the first condition is

gcd
(
u(x1, x2, β

t
3, . . . , β

t
n), w(x1, x2, β

t
3, . . . , β

t
n)
)
|h(x1, x2, β

t
3, . . . , β

t
n).

26

which is the case if D has a solution. The second condition is, when BDP chooses a random
γ ∈ Zp while it is interpolating, it must be the case that

gcd
(
u(x1, γ, β

t
3, . . . , β

t
n), w(x1, γ, β

t
3, . . . , β

t
n)
)

= 1 inZp[x1].

The probability that the second condition fails is ≤ m deg(u) deg(w)/p ≤ md2/p (MT16b).
This is a worst case upper bound. On average, the expected number of failures is only m
out of p trials (MT16a). In this case then the expected probability of failure is ≤ dTfr2e/p.

As we have seen in Section 4, we expect that the density ratio increases after each evalu-
ation of f . Hence after evaluations, we expect dense polynomials over Zp[x1, x2] and this is
why BDP uses the dense interpolation to solve bivariate MDP’s. While solving the bivariate
MDP’s, BDP chooses a random γ ∈ Zp and solves the univariate MDP over Zp. This is done
by using the Euclidean algorithm (see (GCL)). To do that it computes the univariate gcd
and if it is not equal to 1 it detects it. So if such an unlucky evaluation occurs then BDP
detects it and the algorithm terminates.

If i + j = k, then to recover cijl’s one needs to solve a linear system which corre-
sponds to a Vandermonde matrix of expected size tfsd−k. The cost of this operation is

O
(
t2fs

2
d−k

)
(Zip90). We have k + 1 monomials of the form xi1x

j
2 with i + j = k. So, the

expected total cost CV for the solution is in

CV ∈ O

(
d∑
k=0

(k + 1)t2fs
2
d−k

)
= O

(
T 2
f

d∑
k=0

(k + 1)
(sd−k

s

)2)
.

First, note that

s =

(
n+ d

n

)
=

(n+ d)(n+ d− 1)

n(n− 1)

(
n+ d− 2

n− 2

)
> r−2

(
n+ d− 2

n− 2

)
= r−2sd−2.

Then, as we did in the first section, we obtain

sd−k
s

< r2
sd−k
sd−2

< r2
(

1− n−2
n+d−2

)k
= r2(1− θ)k

where θ := n−2
n+d−2 . Then, we get

T 2
f

d∑
k=0

(k + 1)
(sd−k

s

)2
< T 2

f r
4

d∑
k=0

(k + 1)(1− θ)2k.

By using the summation formula, a straightforward (but a bit tedious) calculation shows
that if n > 2 (which is infact the case),

r4
d∑
k=0

(k + 1)(1− θ)2k ≤ r4 (n+ d− 2)4

(n− 2)2(n+ 2d− 2)2
< r2

(
n

n− 2

)2

≤ 9r2.

Hence we see that the expected cost of solving linear systems is (r = n/(n+ d))

CV ∈ O(T 2
f r

2). (20)

After computing f , the next step is the multivariate division (h − fu)/w to get g. The
expected cost CM of the sparse multiplication and sparse multivariate division CD is

CM ∈ O (TfTu) andCD ∈ O (TwTg) (21)

27

arithmetic operations in Zp ignoring the sorting cost.
Combining equations (18), (19), (20) and (21) above wee see that the expected cost of

solving the MDP is in

O(T dTfr2e+ nT + nd︸ ︷︷ ︸
CE

+ dTfr2ed3︸ ︷︷ ︸
CB

+T 2
f r

2︸ ︷︷ ︸
CV

+

︸ ︷︷ ︸
to recover f

TfTu︸ ︷︷ ︸
CM

+TwTg︸ ︷︷ ︸
CD︸ ︷︷ ︸

to recover g

)

with the failure probability ≤ dTfr2ed3/p where r = n
n+d and T = (Tf + Tu + Tw + Th) .

Finally suppose that the guessed solution-form σf of f is wrong. Then the solution to
f that the sparse interpolation routine computes will be wrong. Since the solution to the
MDP is unique as long as the MDP conditions are satisfied, then we will have w - h− fu.
So, in the sparse interpolation a possible failure, i.e. a possible false assumption is detected.
In this case the cost of sparse division may increase (we don’t consider this).

Theorem 18. Let p be a big prime and u,w, h ∈ Zp[x1, . . . , xn] where u,w are monic in x1.
If the solution-form σf is true, then the number of arithmetic operations in Zp for solving
the MDP fu+ gw = h (which satisfies the MDP conditions) to find the unique solution pair
(f, g) via sparse interpolation as described in section 2 is in

O
(
T dTfr2e+ nT + nd+ dTfr2ed3 + T 2

f r
2 + TfTu + TwTg

)
where d is a total degree bound for f, g, u, w, h, r = n

n+d , and T = Tf + Tu + Tw + Th.

Moreover the probability of success is > 1− dTfr2ed3/p.

7. The Complexity of MTSHL

For j ≥ 3, during the jth step of the MTSHL, one aims to reach the factorization aj =
fjgj ∈ Zp[x1, . . . , xj] from the knowledge of aj , fj−1, gj−1 ∈ Zp[x1, . . . , xj−1] satisfying

aj−1 = fj−1gj−1. Let fj =
∑dj
i=0 fji(xj − αj)

i, gj =
∑dj
i=0 gji(xj − αj)

i for a randomly
chosen non-zero element αj in Zp and where fj0 = fj−1, gj0 = gj−1 and degxj

(aj) = dj .
For 1 ≤ i ≤ dj one recovers each fji, gji by solving the MDP problems

fjigj0 + gjifj0 = cji in Zp[x1, . . . , xj−1]

via sparse interpolation in a for loop where cji is the ith Taylor coefficient of error. Our aim
in this section is first to estimate the complexity of this lifting process at the jth step of the
MTSHL algorithm, that is, finding fj and gj , and then estimate the expected complexity of
the multivariate factorization via MTSHL. To this end, let th, Th denote the expected density
ratio and the expected number of non-zero elements of a polynomial h ∈ Zp[x1, . . . , xj]. By
(#k) we will refer to the kth line in Algorithm 5. Before continuing, we suggest the reader
read the concrete example in the Appendix A to be able to follow the rest of discussion
below easily.

7.1. Before we go into the details

Before we go into the details of tedious calculations, we want to make a guess what we
will get, based on our observations from Section 6:

28

Suppose that the smallest factor is f and Tf � max{n, d}. Based on Theorem 18 we may
guess that the evaluation cost will be the most expensive part. Now, at the jth step of MT-
SHL, suppose that Tfj−1

≤ Tgj−1
. Then based on Lemma 8, MTSHL makes a probabilistic

guess (#1) that Tfj will be smaller than Tgj and (in the for loop), for 1 ≤ i ≤ dj , in the
sparse interpolation routine, it first computes fji and then recovers gji via the multivariate
division. Since we expect Tfji ≤ Tfj the expected number of evaluations for each i in the loop

will be ≤ Tfj
(

j
j+dj

)2
(see Section 6). So at the jth step the expected evaluation cost will be

in djO(TajTfj

(
j

j+dj

)2
) = djO(TajTfj

(
j
dj

)2
) = O(j

2

dj
TajTfj). Then, running j from 1 to

n, based on our observations in section 4.1, we expect that the average complexity will be

close to or less than nO(n
2

d TaTf) = O(n
3

d TaTf). Finally, since Tf ≤ Tg and Ta ∈ O(TfTg),

our guess is that the average complexity will be close to or less than O(n
3

d T
3
g).

In the following we will make this guess more precise and prove that if Tf ≤ Tg and

Tg > nd2 the expected cost of MTSHL is in fact quadratic in n and is in O(n
2

d T
3
g).

7.2. In detail

Suppose that Tfj−1
≤ Tgj−1

. Then based on Lemma 8, MTSHL makes a probabilistic guess
(#1) that Tfj will be smaller than Tgj and for 1 ≤ i ≤ dj , in the sparse interpolation routine,
it first computes fji and then recovers gji via the multivariate division (cji − gj0fji)/fj0.

The cost of (#4) is the cost of subtraction since we are given aj−1 = fj−1gj−1. In the
sparse case, this cost is for sorting the monomials, which we will ignore for the rest of the
discussion.

In the ith iteration, updating the monomial (#6) has cost linear in i which is negligible.
Then, the algorithm computes the ith Taylor coefficient cji of the error at xj = αj (#7).
Since this is linear in #error and thus dominated by the computation of the error in (#4)
and (#15), it can be ignored.

Then to solve the MDP, it comes to the sparse interpolation (#11). Suppose that fji =∑
cjiklx

k
1x

l
2 ∈ Zp[x3, . . . , xj−1][x1, x2]. Let dji := dj − i and evji := tfji

(
j−1−2+dji
j−1−2

)
. We

have deg(fji) ≤ dji and, as explained in Section 6, we expect that #cji00 = evji. Then by
Lemma 16, we expect

evji := tfji

(
j − 3 + dji
j − 3

)
≤ tfj

j + dji
j

(
j − 3 + dji
j − 3

)
.

Based on the Lemma 1, Algorithm 5 makes a probabilistic guess (#10) and assumes that
in sparse interpolation the solution form σfji = fj,i−1, so the expected number of evaluations
at the ith step is devj,i−1e. According to subsection 2.3 (see also Section 6), the expected
cost CEvji of evaluation at the ith step is bounded above by

CEvji <
(
Tgj0 + Tfj0 + Tfj,i−1

+ Tcji
)

(devj,i−1e+ j − 4) + (j − 3) dj,i

After evaluation, the sparse interpolation routine calls BDP. For a given bivariate diophan-
tine equation the cost is O(d3ji). Hence the expected cost CBji

of solving the bivariate

diophantine equations via BDP in the ith iteration is

CBji
∈ O

(
devj,i−1ed3ji

)
.

29

Note again that the sparse interpolation routine first computes fji and then recovers gji
via a multivariate division. The linear systems to be solved to recover fji corresponds to

Vandermonde matrices and they are constructed by the unknown coefficients of the solution

form σfji of fji. Hence, if we define rji = j−1
j−1+dji , then the expected cost CVji

of solving

the linear system in the ith iteration is (see section 6 equation (19))

CVji
∈ O

(
T 2
fj,i−1

r2j,i−1

)
.

By Lemma 16, E[#gj0] ≤ tgj
(
j+dj
j

)
and E[#fji] ≤ tfj

(
j+dji
j

)
. So, after computing fji, the

expected cost CMji
of sparse multiplication gj0fji and the expected cost CDji

of sparse

division (cji − gj0fji)/fj0 are both in

CMji and CDji ∈ O
(
tfj tgj

(
j + dj
j

)(
j + dji
j

))
.

So far we have covered the (dominating) costs in sparse interpolation at the ith iteration.

Next we consider (#14). The cost of updating, CUji
, i.e computing fji(xj−αj)i and gji(xj−

αj)
i is in

CUji ∈ O
(
i(tfj + tgj)

(
j + dji
j

))
.

Finally, (#15) the cost of updating error is in

CErji ∈ O
(
TfjTgj

)
.

Let CEvj be the expected total evaluation cost (in sparse interpolation) at the jth step.

Then CEvj =
∑dj
i=1 CEvji . To compute it we’ll split the sum

dj∑
i=1

(
Tgj0 + Tfj0 + Tfj,i−1

+ Tcji
)

(devj,i−1e+ j − 4) + (j − 3) dj,i−1

and consider the parts separately: We first consider the sum

dj∑
i=1

devj,i−1e=

dj−1∑
i=0

devjie ≤
dj∑
i=0

dtfj
j + dji
j

(
j − 3 + dji
j − 3

)
e

≤
dj∑
i=0

(
tfj
j + dji
j

(
j − 3 + dji
j − 3

)
+ 1

)
=

dj∑
i=0

tfj
j + dji
j

(
j − 3 + dji
j − 3

)
+

dj∑
i=0

1

≤ tfj
j + dj
j

dj∑
i=0

(
j − 3 + dji
j − 3

)
+ dj = tfj

j + dj
j

(
j − 2 + dj
j − 2

)
+ dj

= tfj
j + dj
j

j − 1

j − 1 + dj

(
j − 1 + dj
j − 1

)
+ dj ≤ tfj

(
j − 1 + dj
j − 1

)
+ dj

= tfj
j

j + dj

(
j + dj
j

)
+ dj =

j

j + dj
Tfj + dj .

30

As a next step, since we expect Tfj ≤ Tgj , Tfj0 ≤ Tfj and Tgj0 ≤ Tgj ,

dj∑
i=1

(
Tgj0 + Tfj0

)
devj,i−1e ≤ (Tfj + Tgj)

(
j

j + dj
Tfj + dj

)
∈ O

(
j

j + dj
TfjTgj + djTgj

)
.

(22)

On the other hand, we expect Tcji ≤ Taj−1 ≤ Taj . Then

dj∑
i=1

Tcjidevj,i−1e ≤ Taj
dj∑
i=1

devj,i−1e ≤
j

j + dj
TfjTaj + djTaj .

So, since we expect Tfj,i−1
≤ Tfj0 , we see that

dj∑
i=1

(
Tgj0 + Tfj0 + Tfj,i−1

+ Tcji
)

(devj,i−1e) ∈ O(
j

j + dj
(TfjTgj + TfjTaj) + dj(Tgj + Taj)).

(23)

Also,
dj−1∑
i=0

(j − 3)dj,i ∈ O(jd2j). (24)

Now we need to consider the sum

dj∑
i=0

Tcjij ≤
dj∑
i=0

taj j

(
j + dji
j

)
=

dj∑
i=0

taj j
j + dji
j

(
j − 1 + dji
j − 1

)

≤ taj (j + dj)

dj∑
i=0

(
j − 1 + dji
j − 1

)
= taj (j + dj)

(
j + dj
j

)
= (j + dj)Taj .

Using the same idea we see that
∑dj
i=0 Tfj,i−1j ≤ (j + dj)Tfj .

dj∑
i=0

(Tcji + Tfj,i−1)j ≤ (j + dj)(Tfj + Taj).

Also,
dj−1∑
i=1

(
Tgj0 + Tfj0

)
j ≤ (Tfj + Tgj)

dj−1∑
i=1

j ≤ (Tfj + Tgj)jdj .

So we get

dj−1∑
i=1

(
Tgj0 + Tfj0 + Tfj,i−1 + Tcji

)
j ∈ O

(
jdj(Tfj + Tgj) + (j + dj)(Tfj + Taj)

)
. (25)

Let us consider the terms appearing in Eqns (23), (24) and (25),

j

j + dj
(TfjTgj + TfjTaj) + dj(Tgj + Taj)︸ ︷︷ ︸

(22)

+ jd2j︸︷︷︸
(23)

+ jdj(Tfj + Tgj) + (j + dj)(Tfj + Taj)︸ ︷︷ ︸
(24)

.

31

We have djTgj ≤ jdjTgj and, since Tfj ≤ Tgj , we get jdj(Tfj + Tgj) ∈ O(jdjTgj). So by

Eqns (23), (24) and (25) the expected cost CEvj =
∑dj
i=1 CEvji of evaluation at the jth step

is in

CEvj ∈ O
(

j

j + dj
TajTfj +

j

j + dj
TfjTgj + jdjTgj + (j + dj)(Tfj + Taj) + jd2j

)
. (26)

Let CBj
be the expected cost of BDP at the jth step. Then CBj

=
∑dj
i=1 CBji

=
∑dj
i=1O

(
devj,i−1ed3ji

)
.

First, we consider

dj−1∑
i=1

devj,i−1ed3ji ≤ d3j (dj +
j

j + dj
Tfj) ≤ d4j + jd2jTfj .

Hence
CBj

∈ O
(
d4j + jd2jTfj

)
. (27)

Let CVj be the expected cost of solving linear systems (in sparse interpolation) at the jth

step. Then CVj
=
∑dj
i=1 CVji

=
∑dj
i=1O

(
T 2
fj,i−1

r2j,i−1

)
. We consider

dj−1∑
i=0

T 2
fjir

2
ji =

dj−1∑
i=0

(
tfj

(
j + dji
j

)
j − 1

j − 1 + dji

)2

=

dj−1∑
i=0

(
tfj

j − 1

j − 1 + dji

j + dji
j

(
j − 1 + dji
j − 1

))2

≤ t2fj
dj∑
i=0

(
j − 1 + dji
j − 1

)2

≤ t2fj

 dj∑
i=0

(
j − 1 + dji
j − 1

)2

= t2fj

(
j + dj
j

)2

= T 2
fj .

Hence, the expected cost CVj is in

CVj
∈ O

(
T 2
fj

)
. (28)

Let the expected cost of multiplication and division at the jth step be CDj
and CMj

resp.

Then CMj =
∑dj
i=1 CMji =

∑dj
i=1O

(
tfj tgj

(
j+dj
j

)(
j+dji
j

))
, and similarly for CDj . Note that

dj−1∑
i=1

tfj tgj

(
j + dj
j

)(
j + dji
j

)
= tfj tgj

(
j + dj
j

) dj−1∑
i=1

(
j − 1 + dji
j − 1

)

≤ tgj tfj
(
j + dj
j

)2

= TfjTgj .

So, the expected cost CMj
of sparse multiplication and CDj

of sparse division (in sparse
interpolation) at the jth step is

CMj
∈ O

(
TfjTgj

)
andCDj

∈ O
(
TfjTgj

)
. (29)

32

Let CUj
be the cost of updating the factors at the the jth step. Then CUj

=
∑dj
i=1 CUji

=∑dj
i=1O

(
i(tfj + tgj)

(
j+dji
j

))
. We have

dj∑
i=1

itgj

(
j + dji
j

)
= tgj

dj∑
i=1

i

(
j + dji
j

)
= tgj

dj(j + dj + 1)

(j + 1)(j + 2)

(
j + dj
j

)

≤

(
dj(j + 1) + d2j

j2

)
tgj

(
j + dj
j

)
=

(
dj(j + 1) + d2j

j2

)
Tgj

Since Tfj ≤ Tgj , we get

CUj
∈ O

(
dj
j
Tgj +

d2j
j2
Tgj

)
. (30)

Let CErj be the cost of updating error at the jth step. Then CErj =
∑dj
i=1 CErji =∑dj

i=1O
(
TfjTgj

)
satisfies

CErj ∈ O
(
djTfjTgj

)
(31)

According to equations (26) to (31), we shall consider the dominating terms

j

j + dj
TajTfj +

j

j + dj
TfjTgj + jdjTgj + (j + dj)(Tfj + Taj) + jd2j︸ ︷︷ ︸

CEvj

d4j + jd2jTfj︸ ︷︷ ︸
CBj

+ T 2
fj︸︷︷︸

CVj

+ TfjTgj︸ ︷︷ ︸
CMj

andCDj

+ (
dj
j

+
d2j
j2

)Tgj︸ ︷︷ ︸
CUj

+ djTfjTgj︸ ︷︷ ︸
CErj

.

The terms T 2
fj
,

j

j + dj
TfjTgj ,

dj
j
Tgj , TfjTgj are dominated by the term djTfjTgj . The term

jd2j is dominated by jd2jTfj . Hence the expected complexity at the jth step is in

O(
j

j + dj
TajTfj + jdjTgj + (j + dj)(Taj + Tfj)︸ ︷︷ ︸

CEvj

+ d4j + jd2jTfj︸ ︷︷ ︸
CBj

+
d2j
j2
Tgj︸ ︷︷ ︸

CUj

+ djTfjTgj︸ ︷︷ ︸
CErj

).

Recall that fj := f(x1, . . . , xj , xj+1 = αj+1, . . . , xn = αn) mod p. Similarly for a and g. Let

J =
{
j ∈ N | max{ta, tf , tg} ≤ 1/

(
n−j+d
d

)}
. Then as it was explained in Section 4.1, we

expect Tfj , Tgj ,Taj to be very close to Tf , Tg, Ta resp. for j ∈ J . Then

n∑
j=3

TajTfj ∈ Ω(|J |TaTf).

According to Remark 13, in the sparse examples |J | ∈ O(n). Then

n∑
j=3

j

j + dj
TajTfj <

n∑
j=3

j

dj
TajTfj <

n

d

n∑
j=3

TajTfj ∈ O(
n2

d
TaTf)

33

On the other hand, we have
∑n
j=3 jdjTgj ≤ dTg

∑n
j=3 j ∈ O(n2dTg),

∑n
j=3(j+dj)(Taj +

Tfj) ≤ (Ta + Tf)
∑n
j=3(j + dj) ≤ (Ta + Tf)(n2 + nd).

So assuming that the inputs are sparse while running the index j from 3 to n, the expected
complexity of MTSHL is in

O(
n2

d
TaTf + n2dTg + (n2 + nd)(Ta + Tf)︸ ︷︷ ︸

Evaluation

+nd4 + n2d2Tf︸ ︷︷ ︸
BDP

+ d2Tg︸︷︷︸
Update

+ndTfTg︸ ︷︷ ︸
Er

).

Since Tf ≤ Tg, the expected complexity is in

O
(
n2

d
TaTg + n2dTg + (n2 + nd)(Ta + Tg) + nd4 + n2d2Tg + ndT 2

g

)
.

= O
(
n2

d
TaTg + n2Ta + ndTa + n2d2Tg + ndT 2

g + nd4
)
. (32)

Finally since Ta ∈ O(TfTg), we have Ta ∈ O(T 2
g), and hence the expected complexity is in

O
(
n2

d
T 3
g + n2T 2

g + n2d2Tg + ndT 2
g + nd4

)
. (33)

Note that if T is big enough, for example Tg > nd2 (which is the case for the most our
experiments in the final section), then

ndT 2
g > n2d3Tg > n2d2Tg and n2d2Tg > n3d4 > nd4, and

ndT 2
g < nd2T 2

g < T 3
g and nT 3

g > n2d2T 2
g > n2T 2

g

Hence the expected complexity is in

O
(
n2

d
T 3
g

)
.

The cubic term is coming from evaluation and suggests the evaluation is the most time
dominating step. This is what we have expected and will confirm by experimental data.
Now according to Lemma 1

Pr[Supp(fj,i+1) * Supp(fji)] ≤ Tfj,i+1

dji
p− dji + 1

≤ Tfj
d− i

p− 2d+ 1
.

Then the probability that there is a fallacy on one of the assumptions of (#10) at the jth

step is ≤
∑dj−1
i=0 Tfj,i+1

dji
p−dji+1 ≤

d2

2(p−2d+1)Tfj . Hence throughout the whole MHL process

the probability of failure of MHL because of a false assumption at (#10) is ≤ (n−2)d2
2(p−2d+1)Tfj .

Also note that at the jth step the algorithm used ≤ djTfj many evaluations and made an
assumption on the gcd of univariate polynomials in BDP based on Schwartz-Zippel’s lemma.
Then the probability of a failure because of a false assumption on the gcd of polynomials

in BDP is then ≤ d
p−1

∑n
j=3 djTfj ≤

(n−2)(Tfd
2)

p−1 . This implies the probability of failure of
MTSHL is

≤ (n− 2)d2Tf

(
1

p− 1
+

1

2(p− 2d+ 1)

)
.

This is a very generous bound. In our experiments to construct the data in the final section,
we have used p = 231 − 1 and MTSHL has never failed.

34

As a final note, we consider the probabilistic assumption in Step 4 of the sparse interpo-
lation routine described in detail in Algorithm 4.

In the notation of Algorithm 4, consider the polynomials

∆ik =
∏

1≤a<b≤sik

(Mika −Mikb) ∈ Zp[x3, . . . , xj].

In Step 4, |Sik| = sik means the monomial evaluations are distinct, and if this is not the case,
then at least one of the Vandermonde matrices constructed in Step 14 is not invertible. In
that case, ∆ik(α3, . . . , αj) = 0. We want to bound the probability that this may happen for
any ∆ik. Let ∆ =

∏
∆ik. Then ∆(α3, . . . , αj) = 0 means one or more monomial sets are not

distinct. Since α3, . . . , αj were chosen at random from [1, p−1], we have by Schwartz-Zippel

Pr[∆(α3, . . . , αj) = 0] ≤ deg(∆)

p− 1
.

We have degMikl ≤ d and deg ∆ ≤
∑

0≤i+k≤d d
(
sik
2

)
. Note that

∑
sik = Tfj and deg ∆

is maximized when one of the coefficients has all Tfj terms, that is, some sik = Tfj ≤ Tf .

Thus, deg ∆ ≤ d
(
Tf

2

)
and we obtain

Pr[∆(α3, . . . , αj) = 0] ≤
dT 2

f

2(p− 1)
.

So for p � 1 + dT 2
f /2, we expect that a different choice of (α3, . . . , αj) will satisfy the

condition. This is again a very generous bound. In our experiments we have used p = 231−1
and Algorithm SparseInt has never failed at Step 4.

Theorem 19. Let a = fg ∈ Zp[x1, . . . , xn] with f, g monic in x1 and Tf ≤ Tg. Let d =
deg(a), r = n

n+d , and p be a big prime with p � d. Then with the probability of failure

≤ (n − 2)d2Tf

(
1
p−1 + 1

2(p−2d+1)

)
, the expected complexity of MHL to recover the factors

f, g via MTSHL algorithm is in

O
(
n2

d
T 3
g + n2T 2

g + n2d2Tg + ndT 2
g + nd4

)
.

8. Some Timing Data

To compare our algorithms to Wang’s, we first factored the determinants of Toeplitz and
Cyclic matrices of different sizes as concrete examples. These are dense problems where
Wang’s algorithm should fare well in comparison with our sparse algorithm. Then we gen-
erated random sparse examples.

We have also included a comparison of Maple’s factorization timings with Singular and
Magma to be sure that the main gain by MTSHL is independent of implementation of Wang’s
algorithm. For multivariate factorization Maple, Singular and Magma all use Wang’s MHL
following the presentation in (GCL).

In the tables that follow all timings are in CPU seconds and were obtained on an Intel
Core i5–4670 CPU running at 3.40GHz with 16 gigabytes of RAM. For all Maple timings,
we set kernelopts(numcpus=1); to restrict Maple to use only one core as otherwise it will
do polynomial multiplications and divisions in parallel whereas Singular and Magma have
only serial codes.

35

8.1. Factoring determinants of Toeplitz and Cyclic matrices

Let Cn denote the n× n cyclic matrix and let Tn denote the n× n symmetric Toeplitz.

See Figure 2.

Cn =



x1 x2 . . . xn−1 xn

xn x1 . . . xn−2 xn−1
...

...
...

...
...

x3 x4 . . . x1 x2

x2 x3 . . . xn x1

 and Tn =



x1 x2 · · · xn−1 xn

x2 x1 · · · xn−2 xn−1
. . .

. . .
. . .

xn−1 xn−2 · · · x1 x2

xn xn−1 · · · x2 x1


Figure 2. The determinants of Cn and Tn are homogeneous polynomials in x1, x2, . . . , xn.

We implemented MTSHL in Maple with two key parts: BDP (see Section 2.2) and the

evaluation routine (see Section 2.3) coded in C. The data in Tables 6 and 7 are for factoring

the determinants of Cn and Tn. It compares Maple 2017 with Magma 2.22–5 and Singular

3–1–6. detTn and detCn are homogeneous. Maple, Magma, Singular all check for the ho-

mogeneity before factorization and if it is the case they first de-homogenize the polynomial

to be factored. After factoring the de-homogenized polynomial, they homogenize the factors

to obtain the actual factors.

To have a fair comparison, we de-homogenized the determinants by fixing xn = 1 for all

three systems. That is, for the determinant detTn (or detCn), we time the factorization of

dn = detTn(xn = 1). In this way, we eliminate the de-homogenization and homogenization

time which can be significant, as the determinants and the factors to be computed are huge

for large n. Also dn is monic in x1, so we eliminate the leading coefficient correction timing

for MTSHL. Finally by any choice of ideal, the univariate factorization time of the projection

of dn into Z[x1] is negligible, that is, the timings simply represent multivariate Hensel lifting

time for all three systems.

The column (MDP) shows the number of calls (including recursive calls) to Maple’s MDP

algorithm and the percentage of time in Hensel lifting spent solving MDPs. Data for the

number of terms of detTn and detCn and the number of terms of their factors is also given

in Tables 6 and 7. In Table 7 notice that the second factor for n = 7, 11, 13 has more

terms than detCn. Also in Table 7 NA means we could neither compute the determinant in

Singular using Singular’s determinant command nor read the determinant nor it’s factors

into Singular to time Singular’s factorize command.

The data confirms the data from (MP14) that Maple’s multivariate factorization code is

relatively fast. This is mainly because the underlying polynomial arithmetic is fast (MP14).

We note here that Maple, Magma (see (Ste)) and Singular (see (Lee13)) are all doing Hensel

lifting one variable at a time (see Algorithm 6.4 of (GCL)) and lifting solutions to MDP

equations one variable at a time (see Algorithm 6.2 of (GCL)). All coefficient arithmetic

is done modulo a prime p or prime power pl which bounds the size the coefficients of any

factors of the input. Singular (see (Lee13)) differs from Maple and Magma in that it first

factors a bivariate image f(x1, x2, α3, . . . , αn) over Z then starts the Hensel lifting from

bivariate images of the factors.

36

n #dn #factors Maple (MDP) Magma Singular

7 427 30,56 0.035 161,30% 0.01 0.02

8 1628 167,167 0.065 383,43% 0.04 0.05

9 6090 153,294 0.166 1034,73% 0.10 0.28

10 23797 931,931 0.610 2338,76% 0.89 1.77

11 90296 849,1730 2.570 6508,74% 1.96 8.01

12 350726 5579,5579 19.45 15902,80% 72.17 84.04

13 1338076 4983,10611 84.08 45094,84% 181.0 607.99

14 5165957 34937,34937 637.8 103591,77% 6039.0 20333.45

15 19732508 30458,66684 4153.2 286979,84% 12899.2 –

Table 6. Factorization timings in CPU seconds for factoring dn = det(Tn)(xn = 1), the determi-
nant of the n by n Toeplitz matrix Tn evaluated at xn = 1

n #dn #factors Maple (MDP) Magma Singular

7 246 7,924 0.045 330,90% 0.01 0.02

8 810 8,8,20,86 0.059 218,46% 0.07 0.06

9 2704 9,45,1005 0.225 1810,74% 0.74 0.24

10 7492 10,10,715,715 0.853 1284,62% 8.44 2.02

11 32066 11,184756 7.160 75582,91% 104.3 11.39

12 86500 12,12,42,78,78,621 19.76 1884,76% 7575.1 30.27

13 400024 13, 2704156 263.4 1790701,92% 30871.90 NA

14 1366500 14,14,27132,27132 1664.4 50381,77% > 106 288463.17

15 4614524 15,120,3060,303645 18432. 477882,82% – NA

Table 7. Factorization data and timings in CPU seconds for factoring dn = det(Cn)(xn = 1), the
determinant of the n by n Cyclic matrix Cn evaluated at xn = 1

8.2. Factoring Toeplitz and Cyclic matrices with MTSHL

For MTSHL, it is important that αi’s in the ideal I = 〈x2 − α1, x3 − α2, · · · , xn − αn〉
are chosen from a large interval. For these we chose αi’s randomly from [1, 65520]. On the
other hand, note that when we factored dn with Maple, Magma and Singular to form tables
6 and 7, Wang’s algorithm chose its own ideal. It can include some zeros, although it is not
possible to choose all zero for these examples.

Tables 8 and 9 presents timings for Hensel lifting to factor dn, the de-homogenized detTn
and detCn with MTSHL. The column notation used in the tables is explained in Figure 3.

The density ratio of factors of dn can be seen in Table 8. For example, the de-homogenization
of dn is of total degree 15 which has 2 factors. The first factor computed is in 14 variables
of total degree 8, has 66684 terms and density ratio 0.208537. The second factor is in 14
variables of total degree 7, has 30458 terms and density ratio 0.261937.

Factoring dn is a challenging problem. They are huge and can be considered as dense
polynomials. The factors have total degree small and less than their total number of vari-
ables. Our natural expectation in this case is that Wang’s approach is preferable to sparse
approaches.

37

tW is the time for Wang’s algorithm which Maple currently uses (see(GCL)),

tBS is the time for the factoring algorithm based on Algorithm 3;
it uses Zippel’s variable at a time sparse interpolation,

tMTSHL is the time where factoring algorithm is based on Algorithm 5 ,
tX(tY) means factoring time tX with tY seconds spent on solving MDP,
tmul means time spent on multiplication in MTSHL,
teval means time spent on evaluation in MTSHL,
Tfi denotes the number of terms of a factor
tfi denotes the density ratio of a factor

Figure 3. Notation for Tables 8–12

As can be seen from Table 6, if we factor d14 and d15 using Maple that uses Wang’s
algorithm for multivariate factorization, the calculation will take 637 s. and 4153 s. resp.
MTSHL factors d14 and d15 in 250s. and 1650 s. resp.

Table 9 presents timings for Hensel liftings to factor dn = detCn with MTSHL. For Cn
the density ratio is 1 for all factors except for n = 12, in which out of 6 factors one has
tf = 0.53 and one has tf = 0.45 and for n = 15, one of the 4 factors has density ratio 0.95.

The timings in the columns tW and tMTSHL show that in general the most time dom-
inating step of MHL is solving MDP and it confirms that even for complicated examples
MTSHL is quicker than Wang’s algorithm, because it spends less time to solve MDP. Also,
the values in the columns tmul and teval confirm the theoretical complexity analysis that
evaluation and multiplication are the most time dominating operations in MTSHL. We have
not reported the time spent solving Vandermonde systems because it was always < 10%.
Also, except for C15 the time spent in trial divisions is < 10%. For C15 it was 3362 seconds.

n tf1 tf2 tW tMTSHL tmul teval

7 0.27 0.36 0.035 (0.015) 0.046 (0.037) 0.001 0.003

8 0.50 0.50 0.065 (0.028) 0.073 (0.059) 0.007 0.005

9 0.31 0.23 0.166 (0.121) 0.122 (0.075) 0.018 0.001

10 0.47 0.47 0.610 (0.467) 0.418 (0.251) 0.099 0.024

11 0.22 0.28 2.570 (1.902) 1.138 (0.458) 0.339 0.053

12 0.45 0.45 19.45 (15.56) 13.165 (5.445) 3.779 0.897

13 0.27 0.21 84.08 (70.623) 21.769 (11.064) 6.904 4.361

14 0.45 0.45 637.8 (491.106) 249.961 (160.04) 71.351 102.918

15 0.21 0.26 4153.2 (1771.54) 1651.68 (689.634) 674.356 405.016

Table 8. Timings for factoring det(Tn)(xn = 1).

8.3. Factoring random sparse polynomials with MTSHL

To compare MTSHL with Wang’s algorithm on randomly generated examples, we created
random sparse multivariate polynomials A,B in Maple and computed C = AB. We used
p = 231 − 1 and two ideal types to factor C:

ideal type 1: I = 〈x2 − 0, x3 − 0, · · · , xn − 0〉 and

ideal type 2: I = 〈x2 − α1, x3 − α2, · · · , xn − αn〉

38

n tW tMTSHL tmul teval

7 0.041 (0.012) 0.026 (0.015) 0.002 0.001

8 0.057 (0.025) 0.063 (0.046) 0.010 0.003

9 0.209 (0.152) 0.12 (0.042) 0.024 0.002

10 0.845 (0.642) 0.5 (0.22) 0.20 0.01

11 6.6 (4.884) 0.945 (0.094) 0.386 0.003

12 19.76 (15.808) 5.121 (1.385) 3.108 0.048

13 252.2 (211.848) 27.689 (1.474) 9.362 0.093

14 1861.8 (1563.912) 523.073 (85.326) 346.067 38.399

15 18432.0 (14929.2) 7496.94 (426.014) 3602.739 19.231

Table 9. Timings for factoring det(Cn)(xn = 1).

For Wang’s algorithm, the first attempt should be to try an ideal of type 1, because a
sparse polynomial remains sparse in this case and hence the number of MDP to be solved
significantly decreases. If it does not work, for ideal type 2 , the αi’s are chosen from a small
interval including zero.

As noted it is not always possible to use ideal type 1 because the leading coefficient of
C must not vanish at α2, . . . , αn and also, the factors A and B must be relatively prime at
α2, . . . , αn. To generate random examples where ideal type 1 cannot be used, we chose A
and B of the form

(i) xd1 + (

n∏
i=1

xi) · randpoly([x1, .., xn], degree =d− n, terms =T, coeffs = rand(1..99))

(ii) (

n∑
i=1

xi · randpoly([x1, .., xn], degree =d− 1, terms =T/n, coeffs = rand(1..99)) + c

where c is small positive integer and the Maple command randpoly again is used to generate
random polynomials. So, for (i), one must choose all ideal points to be non-zero and for (ii)
one cannot choose ideal type 1 but one can choose some of the evaluation points to be zero
for Wang’s algorithm.

Tables 10 and 11 present timings for the randomly generated data of the form (i) and (ii).
They show that for the both cases MTSHL is significantly faster than Wang’s algorithm.

We also included the timings for ideal type 1 case, as according to our experiments it is
the only case where Wang’s algorithm is quicker. In this case, the evaluation cost of sparse
interpolation becomes dominant which is not the case for Wang’s algorithm for the ideal
type 1. To generate random examples where ideal type 1 can be used, we chose A and B in
the form

xd1 + randpoly([x1, .., xn], degree =d− 1, terms =T) + c

where c is a small positive integer.
Table 12 presents timings for the random data for which ideal type 1 is used. For the ideal

type 1 case MTSHL was not used, since the zero evaluation probability is large for the sparse
case. According to our experiments Wang’s algorithm is faster for tf < 0.2. For tf ≥ 0.2 the
performance of Wang’s algorithm and Algorithm 2 (which uses sparse interpolation without
SHL assumption) are almost the same.

39

n/d/T tW tMTSHL n/d/T tW tMTSHL

3/35/100 1.846 (1.343) 0.724 (0.043) 7/35/100 567.965 (566.607) 2.269 (0.527)

3/35/500 3.359 (1.796) 1.704 (0.056) 7/35/500 > 3000. stopped 43.139 (6.839)

5/35/100 50.900 (49.594) 2.102 (0.308) 8/35/100 1859.862 (1858.204) 2.309 (0.547)

5/35/500 237.844 (217.310) 32.121 (2.882) 8/35/500 > 3000. stopped 47.446 (7.385)

6/35/100 174.220 (174.205) 2.031 (0.415) 9/35/100 > 3000. stopped 2.937 (0.558)

6/35/500 923.003 (897.277) 38.997 (5.096) 9/35/500 > 3000. stopped 79.585 (9.715)

Table 10. The timing table for random data with ideal type 2, (i)

n/d/T tW tMTSHL

3/20/100 0.264 (0.204) 0.15 (0.007)

3/20/500 0.443 (0.247) 0.288 (0.01)

5/20/100 4.131 (3.682) 0.581 (0.126)

5/20/500 21.922 (17.635) 5.028 (1.009)

7/20/100 30.442 (29.654) 0.958 (0.29)

7/20/500 138.128 (129.054) 14.285 (3.081)

9/20/100 113.421 (112.632) 1.09 (0.359)

9/20/500 1088.882 (1073.387) 20.528 (5.6)

Table 11. The timing table for random data with ideal type 2, (ii)

n/d/T tf tW tBS

5/20/5000 0.1 7.08 (2.605) 11.804 (7.376)

5/15/3000 0.2 4.25 (1.554) 4.963 (2.29)

5/15/5000 0.3 6.882 (2.988) 6.471 (2.99)

4/20/5000 0.4 2.709 (1.211) 2.704 (1.267)

5/20/30000 0.56 86.224 (18.394) 90.111 (21.134)

Table 12. The timing table for random data with ideal type 1

9. Conclusion

We have shown that solving the multivariate polynomial diophantine equations that arise
in Wang’s multivarite Hensel lifting algorithm can be improved by using sparse interpola-
tion. This leads to an overall improvement in multivariate polynomial factorization. Our
experiments show that the improvement is practical.

In the paper we have attempted an average case complexity analysis for our sparse Hensel
lifting algorithm. In order to do this we needed to know how many terms appear in a
sparse polynomial f(x1, . . . , xn) when we successively evaluate its variables at integers one
at a time. We also needed to know how many terms appear in the coefficients of a Taylor
series expansion of a sparse polynomial expanded about a non-zero point. These results
(Proposition 11 and Lemma 16) may be useful elsewhere.

We only presented algorithms for the case when a(x1, . . . , xn) has two irreducible factors f
and g. Let aj−1 = f1f2 · · · fm with m ≥ 2 be the factorization of a(x1, . . . , xj−1, αj , . . . , αn)
from step j − 1. At the j’th step of Hensel lifting, Algorithm 5 must solve multivariate

40

polynomial diophantine equations of the form

σ1
aj−1
f1

+ σ2
aj−1
f2

+ · · ·+ σm
aj−1
fm

= c

for σi ∈ Zp[x1, . . . , xj−1] with deg(σi, x1) < deg(fi, x1) for 1 ≤ i ≤ m. Currently our
implementation follows (GCL) and solves this m term MDP by solving m − 1 two term
MDPs. It first solves σ1

aj−1

f1
+ τ1f1 = c for σ1 and τ1 where τ1 =

∑m
i=2 σi

aj
f1fi

. Then it

solves
∑m
i=2 σi

aj
f1fi

= τ1 for the σi recursively. We are experimenting with using sparse
interpolation to simultaneously interpolate all σi from bivariate images.

References

[AS72] Milton Abramowitz and Irene Stegun. Handbook of Mathematical Functions. 9th
printing, Dover, New York. (1970).

[CLO] David Cox, John Little, Donal O’Shea. Ideals, Varieties and Algorithms. Springer-
Verlag, 3rd ed., (2007).

[GCL] K.O. Geddes, S.R. Czapor, G. Labahn, Algorithms for Computer Algebra, Kluwer
Acad. Publ. (1992).

[Gel52] A.O. Gelfond, Transcendental and Algebraic Numbers, GITTL, Moscow, 1952; En-
glish translation by Leo F. Boron, Dover, New York, 1960.

[Kal85] Kaltofen, E., Sparse Hensel lifting. Proc. EUROCAL ’85, Springer Verlag LNCS,
vol 204, pp. 4–17, (1985).

[Lee13] Martin M. Lee. Factorization of multivariate polynomials. Ph.D. Thesis. (2013).
[MY74] Miola A., Yun D. Y. Y. Computational Aspects of Hensel-type Univariate Poly-

nomial Greatest Common Divisor Algorithms. Proceedings of EUROSAM ’74, ACM,
pp. 46–54, (1974).

[MT16a] Michael Monagan and Baris Tuncer. Some results on counting roots of polynomi-
als and the Sylvester resultant. Proceedings of FPSAC 2016, DMTCS. pp. 887–898,
(2016).

[MT16b] Michael Monagan and Baris Tuncer. Using Sparse Interpolation in Hensel Lifting.
Proceedings of CASC 2016, Springer-Verlag LNCS 9890, 381–400 (2016).

[MP14] Michael Monagan and Roman Pearce. POLY. A New Polynomial Data Structure
for Maple 17. Computer Mathematics, Springer Verlag, 325–348, (2014).

[Sch80] Schwartz, Jack . Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the ACM 27:701–717, (1980).

[Ste] Steel, Allan. Private Communication.
[TE51] F.G. Tricomi, A. Erdelyi, The asymptotic expansion of a ratio of gamma functions,

Pacific Journal of Mathematics, Nov 1951, Vol:1, No:1.
[Wan78] Wang, P.S. An improved Multivariate Polynomial Factoring Algorithm, Mathe-

matics of Computation, 32, (1978).
[Wan75] Wang, P.S., Rothschild, L.P. Factoring multivariate polynomials over the integers.

Mathematics of Computation, vol 29, NUMBER 131, pp. 935–950, (1975).
[Yun74] Yun, D.Y.Y. The Hensel Lemma in algebraic manipulation. Ph.D. Thesis. (1974)
[Zip79] Zippel, R.E. Probabilistic algorithms for sparse polynomials. Proc. EUROSAM ’79,

Springer Lec. Notes Comp. Sci., vol. 72, pp. 216–226, (1979).
[Zip81] Zippel, R.E. Newton’s iteration and the sparse Hensel algorithm. Proc. ACM Symp.

Symbolic Algebraic Comp., 68–72, (1981).
[Zip90] Zippel, R.E. Interpolating polynomials from their values. J. Symbolic Comput.,

9(3):375–403, (1990).

41

Appendix MTSHL

We give an example of our SHL. Suppose we seek to factor a = fg where

f = x1
8 + 2x1x2

2x4
3x5 + 4x1x2

2x3
3 + 3x1x2

2x4x5
2 + x2

2x3x4 − 5

g = x1
8 + 3x1

2x2x3x4
2x5 + 5x1

2x2x3
2x4 − 3x4

2x5
2 + 4x5

Let α3 = 1 and p = 231 − 1. Before lifting x5 we have

f (0) := f(x5 = 1) = x1
8 + 4x1x2

2x3
3 + 2x1x2

2x4
3 + 3x1x2

2x4 + x2
2x3x4 − 5

g(0) := g(x5 = 1) = x1
8 + 5x1

2x2x3
2x4 + 3x1

2x2x3x4
2 − 3x4

2 + 4

satisfying a(x5 = α5) = f (0)g(0). If the SHL assumption is true then at the first step we

assume f =
∑degx5

f

i=0 fi(x5 − 1)i and g =
∑degx5

g

i=0 gi(x5 − 1)i where f1 and g1 are in the
form

f1 =
(
c1x3

3 + c2x4
3 + c3x4

)
x1x2

2 + c4x2
2x3x4 + c5

g1 =
(
c6x3

2x4 + c7x3x4
2
)
x1

2x2 + c8x4
2 + c9

for unknowns {c1, . . . , c9}. In the following e
(k)
5 denotes the coefficient of (x5 − 1)k in the

Taylor expansion of the error about x5 = 1. Let also f0 := f (0), g0 := g(0), f (k) :=∑k
i=0 fi(x5 − 1)i and g(k) :=

∑k
i=0 gi(x5 − 1)i. We start by computing the first error term

e
(1)
5 = a− f (0)g(0). We obtain

e
(1)
5 = 3x1

10x2x3x4
2 + 2x1

9x2
2x4

3 + 6x1
9x2

2x4 + 12x1
3x2

3x3
4x4

2 + 10x1
3x2

3x3
2x4

4

+ 12x1
3x2

3x3x4
5 − 6x1

8x4
2 + 30x1

3x2
3x3

2x4
2 + 27x1

3x2
3x3x4

3 + 3x1
2x2

3x3
2x4

3

+ 4x1
8 − 24x1x2

2x3
3x4

2 − 18x1x2
2x4

5 − 15x1
2x2x3x4

2 + 16x1x2
2x3

3

− 20x1x2
2x4

3 − 6x2
2x3x4

3 + 36x1x2
2x4 + 4x2

2x3x4 + 30x4
2 − 20

The MDP to be solved is D := g1f0 + f1g0 = e
(1)
5 . Since f1 has three terms in x1x

2
2 and g1

has two terms in x21x2 we will interpolate g1 using two evaluations then obtain f1 by division.
We choose (x3 = 2, x4 = 3) and (x3 = 22, x4 = 32) and compute D(x3 = 2, x4 = 3) :(

x1
8 + 95x1x2

2 + 6x2
2 − 5

) (
(12 c6 + 18 c7)x1

2x2 + 9 c8 + c9
)

+
(
x1

8 + 114x1
2x2 − 23

) (
(8 c1 + 27 c2 + 3 c3)x1x2

2 + 6 c4x2
2 + c5

)
= 54x1

10x2 + 72x1
9x2

2 − 50x1
8 + 13338x1

3x2
3 + 324x1

2x2
3 − 270x1

2x2

− 6406x1x2
2 − 300x2

2 + 250

and similarly D(x3 = 4, x4 = 9). Calling BDP to solve these bivariate Diophantine equa-
tions we obtain the solutions [σ1, τ1] = [54x1

2x2 − 50, 72x1x2
2] and [σ2, τ2] = [972x1

2x2 −
482, 1512x1x2

2]. Hence we have

(12 c6 + 18 c7)x1
2x2 + 9 c8 + c9 = 54x1

2x2 − 50

(144 c6 + 324 c7)x1
2x2 + 81 c8 + c9 = 972x1

2x2 − 482

42

Then we solve the Vandermonde linear systems[
12 18

144 324

][
c6

c7

]
=

[
54

972

]
and

[
9 1

81 1

][
c8

c9

]
=

[
−50

−482

]
to obtain c6 = 0, c7 = 3, c8 = −6, c9 = 4. So g1 = 3x1

2x2x3x4
2 − 6x4

2 + 4.

Then by division we get f1 = (e
(1)
5 − f0g1)/g0 = 2x1x2x4

3 + 8x2x3
4. Hence

f (1) = f0+
(
2x1x2

2x4
3 + 6x1x2

2x4
)

(x5 − 1)

g(1) = g0+
(
3x1

2x2x3x4
2 − 6x4

2 + 4
)

(x5 − 1) .

Note that we use the division step above also as a check for the correctness of the SHL
assumption that Support(g1) ⊆ Support(g0). Since the solution to the MDP is unique, we

would have g0 - (e
(1)
5 − f0g1), if this assumption were wrong.

Now following Lemma 1 by looking at the monomials of f1 and g1, we assume that the
form of the f2 and g2 are

f2 = c1x1x2
2x4

3 + c2x1x2
2x4 + c3

g2 = c4x1
2x2x3x4

2 + c5x4
2 + c6

for some unknowns {c1, . . . , c6}. After computing the next error a − f (1)g(1) we compute

e
(2)
5 and the MDP to be solved is D := f0g2 + g0f2 = e

(2)
5 . We need 2 evaluations again to

solve for g2. Choose (x3 = 5, x4 = 6) and (x3 = 52, x4 = 62) and compute

D(x3 = 5, x4 = 6) : =
(
x1

8 + 950x1x2
2 + 30x2

2 − 5
) (

180 c4x1
2x2 + 36 c5 + c6

)
+
(
x1

8 + 1290x1
2x2 − 104

) (
216 c1x1x2

2 + 6 c2x1x2
2 + c3

)
= 18x1

9x2
2 − 108x1

8 + 23220x1
3x2

3 − 104472x1x2
2 − 3240x2

2 + 540

and similarly for D(x3 = 25, x4 = 36). Calling BDP we obtain the solutions to these
bivariate Diophantine equations [σ1, τ1] = [−108, 18x1x2

2] and [σ2, τ2] = [−3888, 108x1x2
2]

respectively. Hence we have 180 c4x1
2x2+36 c5+c6 = −108 and 32400 c4x1

2x2+1296 c5+c6 =
−3888 respectively. Then we solve the Vandermonde linear systems

[180] [c4] = [0] and

[
36 1

1296 1

][
c5

c6

]
=

[
−108

−3888

]

to obtain c4 = 0, c5 = −3, c6 = 0. So g2 = −3x4
2. Then by division we get f2 = (e

(2)
5 −

f0g2)/g0 = 3x1x2
2x4 (x5 − 1)

2
. Hence

f (2) = f (1) + 3x1x2
2x4 (x5 − 1)

2

= x1
8 + 2x1x2

2x4
3x5 + 4x1x2

2x3
3 + 3x1x2

2x4x5
2 + x2

2x3x4 − 5

g(2) = g(1) +
(
−3x4

2
)

(x5 − 1)
2

= x1
8 + 3x1

2x2x3x4
2x5 + 5x1

2x2x3
2x4 − 3x4

2x5
2 + 4x5.

Since the next error a− f (2)g(2) = 0 we have found the factors of a.

43

