
>  >  
>  >  

>  >  

Internet Page Ranking Algorithms
Michael Monagan
Department of Mathematics
Simon Fraser University
mmonagan@sfu.ca

In the Fall of 2014 Cedric Chauve, a colleague of mine in mathematics at SFU showed me 
how google ranks the pages it presents to you when you use google to search for a page on 
the internet. Cedric is using this example in teaching our Linear Algebra class at SFU. He, 
and two others who have taught the course think that this is such a wonderful example 
that we have decided to include this in all our Linear Algebra offerings. I have also used it 
in teaching MACM 204 Computing with Calculus, a second year course for teaching 
students how to use Maple for doing Calculus. MACM 204 is a 2 credit course with one 
hour of lecture and one hour of lab each week. In this course, unlike the linear algebra 
course, I get the students to simulate the "web surfer" described below. This requires some 
programming on the part of the student. The problem is nice because it introduces some 
graph theory, stochastic matrices, and some ideas from computation, namely using the 
power method to compute a steady state vector.

The Page Ranking Problem.
Suppose you type "Gaussian Elimination" or "How do I factor a polynomial" into google. 
Google will first identify which pages on the internet are of interest. Let's label them pages 

 and denote this set of pages by . Usually there will be a lot of possible 
pages, thousands of them, maybe hundreds of thousands of them, so  is large. How does 
google order them from most likely useful to least likely useful? And if you click on the

  I'm Feeling Lucky 
search button, how does google choose the best page to show you? The answer (ignoring 
embellishments) is that it uses the hyperlinks between the pages  to rank them. 
Let's consider an example.
Suppose we have five pages  and suppose there are hyperlinks from page

 to pages  and
 to pages and 
 to pages  and
 to page  and from
 to pages  .

The best way to picture this is to look at it as a network, that is, a directed acyclic graph. I'll
use Maple's GraphTheory package to draw this

restar t ;  w i th (GraphTheory) :
G :=  Graph(d i rected, [P1 ,P2,P3,P4,P5] ,
 { [ P 1 , P 2 ] , [ P 2 , P 4 ] , [ P 2 , P 1 ] , [ P 2 , P 3 ] , [ P 3 , P 4 ] ,
   [ P 3 , P 5 ] , [ P 4 , P 5 ] , [ P 5 , P 1 ] , [ P 5 , P 4 ] } ) ;

DrawGraph(G);



>  >  

>  >  

Looking at the graph we can see that page P4 has hyperlinks to it from pages P2, P3 and P5.
It's the only page with three hyperlinks pointing to it. We say page P4 is an authority 
meaning that because many other web pages reference it, it must be useful. So one possible
way to rank the pages would be simply to order them by the number of hyperlinks pointing
to them. Let us define for each page  is the number of hyperlinks to page . In
Maple the Arrivals command gives, for each vertex  a list of vertices with directed 
edges to .

A r r i v a l s ( G ) ;

Authori ty := map(numelems,Arr ivals(G));

So we would rank them  . There are two problems with this crude ranking
algorithm. First, there will probably be a lot of pages with the same number of hyperlinks 
pointing to them so this does not rank them sufficiently. Second, although page  has 
authority 2, since the only hyperlink on page  is to  we might argue that  also has high
authority, implicitly, because of . Somehow, we need to transfer the authority of  to 

The way google does this and ranks the pages is as follows. Imagine you are surfing the 
web and you restrict your surfing to the pages in . At each step you are on some page  
f o r  and you randomly choose a hyperlink to one of the other pages in  and go to 
that page. Let's assume we pick the hyperlinks with equal probability. If you surf in this 
way indefinitely you will land on certain pages more often than others. We can associate 
with each page  the probability  that we are on that page. Now order the pages by 
decreasing probability. That's the ranking.

One way we could compute the probabilities  would be to start on page  and simulate 



>  >  

>  >  

>  >  

>  >  

the random web surfer going through the pages in , and calculate the number of times  

we are on page  . If we do this for sufficiently large number of steps  then   . This 

simulatation is a wonderful exercise for the students to undertake. I will show how to do 
this later. For now I want to develop an approach to compute the   using linear algebra. 

A Linear Algebra Approach

Let  be the graph representing the hyperlinks between the pages. Let  be the 
probability of going from page  to  assuming we take each hyperlink on page  with 

equal probability. For example, in our graph  because we can go from page  to 

pages  or  each with probability  . I will construct the matrix  from our graph  

starting with the adjacency matrix for  . 
A := AdjacencyMatr ix(G);

DP := Departures(G);

n  : =  5 :
f o r  i  t o  n  d o
    s  : =  n u m e l e m s ( D P [ i ] ) ;
    f o r  j  t o  n  d o  A [ i , j ]  : =  A [ i , j ] / s  o d ;
od:
A ;

Now the matrix  is a stochastic matrix or Markov matrix because the values are 
probabilities and the columns of  sum to 1. The key property is that if we have a 



>  >  

>  >  
>  >  
>  >  

probability vector  where  is the current probability of being on page  , then the vector 

, given by  , is a probability vector where  is the probability of being on page   
after taking one hyperlink at random. Since this is not obvious, the reader may wish to 

check this. We will check this for one value. We'll start with the vector  ,

which  assumes we are initially on each page with equal probability.
with(L inearAlgebra) :
Q [ 0 ]  : =  < 1 / 5 , 1 / 5 , 1 / 5 , 1 / 5 , 1 / 5 > :
Q[1]  :=  Transpose(A) .Q[0 ] ;

The probability of being on page  after one time step is 1/6. This came from the dot 
product of the two vectors

A [ 1 . . 5 , 1 ] ,  Q [ 0 ] ;

So the dot product of these two vectors represents the probability of being on page  after 
one hyperlink from each page is taken at random. Now we can only get to page 1 from page
2 and 5 with probability 1/3 and 1/2 respectively. Hence after taking one hyperlink we are 

on page  with probability . Letting  for convenience we can now 

determine the probabilities of being on each page after taking  random hyperlinks by 
multiplying  by . Here is what happens for  



>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

B := Transpose(A);

f o r  k  t o  5  d o  Q [ k ]  : =  B . Q [ k - 1 ]  o d :  
e v a l f ( Q [ 5 ] ) ;

Now because our particular graph is strongly connected, that is, you can get from every 
page  to every other page  , this means the matrix  is a regular matrix. It follows from 
the Peron-Frobenius theorem that the sequence  will converge to a steady state 

vector   that satisfies . From the latter identity we have  

which gives us a direct way to solve for the steady state vector . The vector V is in the 
nullspace of  . The equation  also means that  is an eigenvector of  with 
eigenvalue 1. Let us try to solve for  using . 
Now, one thing I would like to do is use the letter I for the identity matrix. In Maple, by 

default, I is the complex unit, that is . 
I ^ 2 ;

To disable this we can do the following which makes  the complex unit and frees up the 
letter  for general usage.

i n te r face ( imag inaryun i t=_ i ) ;
I

with(L inearAlgebra) :
I  : =  I d e n t i t y M a t r i x ( 5 ) ;



>  >  

>  >  

>  >  

>  >  

V  : =  N u l l S p a c e ( B - I ) ;

This is a basis for the nullspace (a set of vectors) so we need to pick the probability vector 
in  and impose that the entries are probabilities which sum to 1.

V  : =  V [ 1 ] :
s  : =  a d d ( V [ i ] , i = 1 . . 5 ) ;
V  : =  V / s ;

So these are the probabilities the  . We can see how close  is to .

e v a l f (  V - Q [ 5 ]  ) ;



>  >  

>  >  

Now the matrix  is very large but very sparse. Most of the entries in it are zero. This is 
simply because each web page typically has only a few hyperlinks to pages in . This direct 
method of solving for  using Gaussian elimination on the matrix    leads to fill-in 
which makes the direct approach very slow for large . For this reason, google does not 
solve for  directly but instead generates the sequence   using the matrix vector 

multiplication  which, because the matrix is sparse, this matrix-vector 
multiplication is efficient. Typically the sequence will have converged in 100 steps. Let's try
i t

f o r  k  f r o m  6  t o  1 0 0  d o  Q [ k ]  : =  B . Q [ k - 1 ]  o d :
e v a l f ( Q [ 1 0 0 ] ) , e v a l f ( V ) ;

We can see that the sequence has converged to 6 decimal places. Thus we rank the pages
. So page  is the first page.

Non Regular Markov Chains

We have assumed that the Markov matrix  is regular, that is the graph  is strongly 
connected. There's no reason why this would be the case in practice. In fact, we can readily 
see that there will be many web pages with no hyperlinks to them - perhaps the majority. 
The existence of the steady state vector depends on this property of . One simple 
solution is to connect every vertex in  with every other vertex and take those hyperlinks 

with low probability .  Let  be the matrix with  for some small value of .  

Now adjust  the columns of the matrix   so that  is a Markov (stochastic) matrix. 
This is a practical solution.

Simulating the web surfer.

I ask my students to do the following. Starting on page  simulate a web surfer who takes 
hyperlinks at random. Calculate the frequencies  of being on page   and use 



>  >  
>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

these to estimate . Now to see the convergence, periodically, after every 100 hyperlinks 
taken, calculate the estimates for the probabilities and graph them so we can see how fast 
this converges. The graph below will clarify what I want the students to display. Here is my 
solution.

 DP :=  Depar tures(G) ;

To take random hyperlinks, for page  here we need to generate one of  at 
random. I will use a random number generator to generate 1, 2, or 3 at random 
(uniformly) and then select one of those pages. I will also need random number generators 
for 1 page and 2 pages. Hence

R [ 1 ]  : =  r a n d ( 1 . . 1 ) :
R [ 2 ]  : =  r a n d ( 1 . . 2 ) :
R [ 3 ]  : =  r a n d ( 1 . . 3 ) :
D P [ 2 ] [ R [ 3 ] ( ) ] ;

P1

D P [ 2 ] [ R [ 3 ] ( ) ] ;
P4

Now I have labelled the pages  and in my Maple code I need to determine 
f rom , the index .

P a g e  : =  t a b l e ( ) :
f o r  i  t o  5  d o  P a g e [ P | | i ]  : =  i  o d :
Page[P3];

3

x  : =  P 1 ;   #  x  i s  t h e  c u r r e n t  p a g e
N :=  10000;  #  number of  steps
F  : =  A r r a y ( 1 . . 5 ) ;  #  f r e q u e n c i e s
V  : =  A r r a y ( 1 . . i q u o ( N , 1 0 0 ) ) :  #  s n a p s h o t s  o f  p r o b a b i l i t i e s
f o r  i  t o  N  d o
    N x  : =  D P [ P a g e [ x ] ] ;
    r  : =  R [ n o p s ( N x ) ] ( ) ;
    x  : =  N x [ r ] ;  #  g o  t o  t h e  n e x t  p a g e
    F [ P a g e [ x ] ]  : =  F [ P a g e [ x ] ]  +  1 ;
    i f  i  m o d  1 0 0  =  0  t h e n
       V [ i / 1 0 0 ]  : =  e v a l f (  [ s e q (  F [ j ] / i ,  j = 1 . . 5  ) ]  ) ;
    f i ;  
o d :  

d a t a  : =  [ s e q (  [ s e q ( [ 1 0 0 * i , V [ i ] [ j ] ] , i = 1 . . i / 1 0 0 ) ] , j = 1 . . 5  ) ] :
c o l s  : =  [ r e d , g r e e n , b l u e , b l a c k , y e l l o w ] ;
p l o t (  d a t a ,  s t y l e = l i n e ,  c o l o r = c o l s ,  v i e w = [ 0 . . N , 0 . . 0 . 4 ] ,  l a b e l s =
["#s teps" , "Prob" ] ,
      l e g e n d = [ " P a g e  1 " ,  " P a g e  2 " ,  " P a g e  3 " ,  " P a g e  4 " ,  " P a g e  5 " ]  ) ;



>  >  

So the vertical axis is the probability of being on one of the pages. You can see that it 
converges quite slowly, slower than the sequence . The value of generating this 
plot is that the student learns how to do a simulation, assemble data and display it in a 
meaningful way. Incidentally, if you right click on the plot you will get a menu of options. 
One of them is the probe option, which if selected, causes Maple to display (when you 
move the cursor over the plot) the  co-ordinates of the cursor position. This is a very 
useful feature. Here, I can see what probability each of the above curves is converging to.


