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Abstract

In 1974, Johnson showed how to multiply and divide sparse polynomials using a binary heap.
This paper introduces a new algorithm that uses a heap to divide with the same complexity as
multiplication. It is a fraction-free method that also reduces the number of integer operations
for divisions of polynomials with integer coefficients over the rationals. Heap-based algorithms
use very little memory and do not generate garbage. They can run in the cpu cache and achieve
high performance. We compare our C implementation of sparse polynomial multiplication and
division with integer coefficients to the routines of the Magma, Maple, Pari, Singular and Trip
computer algebra systems.
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1. Introduction

In this paper we consider how to multiply and divide sparse multivariate polynomials
with integer coefficients. There are two polynomial representations that computer algebra
systems mainly use, namely the distributed representation and the recursive representa-
tion, e.g.

f = 9 xy3z − 4 y3z2 − 6 xy2z − 8 x3 − 5 xy2

f = −8 x3 +
(
9 y3z + (−6 z − 5) y2

)
x− 4 y3z2.
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In the distributed representation a polynomial is represented as a sum of terms often
sorted by a monomial ordering. Users enter polynomials in this format and they write
programs for it. Algorithms for distributed polynomial arithmetic have a classical feel
– their performance depends on how you sort terms and perform coefficient arithmetic.
Computer algebra systems that use the distributed representation by default include
Maple, Mathematica, Magma, and Singular.

In the recursive representation polynomials are represented as univariate polynomials
in a main variable with coefficients that are univariate polynomials in the next variable,
and so on. Polynomial arithmetic uses univariate algorithms with coefficient arithmetic
performed recursively. Computer algebra systems that use the recursive representation
by default include Maxima, Derive, Reduce, Pari, and Trip.

In 1984, Stoutemyer in [18] compared different polynomial representations. He found
that the recursive representation was generally better than the distributed representation,
and surprisingly, that the recursive dense representation was clearly the best overall.
This finding was confirmed by Fateman in 2003 [4], who tested implementations of sparse
polynomial multiplication in Lisp and conducted benchmarks of various computer algebra
systems.

This paper reconsiders the distributed representation. Let f and g be polynomials
with #f = n terms f1, f2, . . . , fn and #g = m terms g1, g2, . . . , gm which are sorted by a
monomial ordering. Monomials are often represented as arrays of machine integers. For
example, Figure 1 shows how a polynomial is represented in Maple and in Singular.
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Fig. 1. Maple and Singular’s representation for f = 9 xy3z − 4 y3z2 − 6 xy2z − 8 x3 − 5 xy2.

One can see that monomial comparisons and multiplications cost many cycles, more
in Maple than in Singular. This is one reason why these distributed representations are
slower than recursive representations. The monomial overhead can be largely eliminated
by packing multiple exponents into a machine word so that monomial comparisons and
multiplications are reduced to machine integer comparisons and additions, which cost 1
cycle. This is done in the older ALTRAN system [9], and in Singular for Gröbner basis
computations [1]. Our monomial packing is described in Section 5.1.

The classical algorithm for multiplication computes the product of f and g as a se-
quence of polynomial additions

h =
∑

fig = ((((f1g + f2g) + f3g) + f4g) + · · ·+ fng)

which are done by merging. Similarly, to divide h by g and compute the quotient f , the
classical algorithm uses a sequence of subtractions

h−
∑

fig = ((((h− f1g)− f2g)− f3g)− · · · − fng).

2



For dense polynomials in one variable these algorithms perform Θ(#f #g) monomial
comparisons but for sparse polynomials they can do Θ(#f2#g) monomial comparisons.
An example where this can occur is f = x + x2 + · · · + xn and g = y + y2 + · · · + ym.
Maple and Singular address this problem by using a divide-and-conquer algorithm for
multiplication and by switching to the recursive representation for division.

Our earliest reference for sparse polynomial arithmetic is the paper of Johnson from
1974 [13]. He uses a binary heap to multiply f and g using O(#f#g log(min(#f, #g)))
monomial comparisons, and to divide f by g with quotient q in O(#f + #q#g log(#q))
comparisons. These algorithms were implemented in ALTRAN, but as far as we can tell
no other system has used them. They were tested by neither Stoutemyer in 1984 [18] nor
Fateman in 2003 [4].

Notice that Johnson’s division algorithm is more expensive than multiplication when
#q � #g, that is, when the quotient is much larger than the divisor. Such divisions often
occur in the trial divisions of polynomial gcd computations. Our first contribution is a new
division algorithm that uses a heap and performs only O(#f + #q#g log(min(#q, #g)))
comparisons, which is the cost to multiply the quotient and the divisor and merge their
product with the dividend.

Our second contribution is to modify the division algorithm to make it fraction-free.
Using a heap delays all coefficient arithmetic, so we scale each term once to avoid doing
operations with fractions. Our algorithm adds factors to the denominator only as nec-
essary and for divisions that succeed over the integers it does no additional work. The
coefficient arithmetic can still blow up, but this is not something we can avoid in a direct
method. Our strategy handles sparse problems with small fractions well.

Our third contribution is a careful implementation of the heap based algorithms for
polynomial multiplication and division over Z, with monomial packing, and a comparison
of their performance with the corresponding routines in Maple, Magma, Singular, Pari
and Trip.

Our paper is organized as follows. In Section 2 we discuss the work implicit in sparse
distributed polynomial division, namely, the sorting of terms and the number of integer
operations needed to divide over the rationals. We give a measure of sparsity and show
how fraction-free merging can do an order of magnitude too many integer operations
if the computation is sparse. In Section 3 we present Johnson’s algorithms followed by
our new fraction-free division algorithm. In Section 4 we compare our implementation
of Johnson’s multiplication algorithm and our division algorithm to the routines used
by Maple, Magma, Singular, Pari, and Trip. The benchmarks show that systems that
use a recursive representation (Pari and Trip) are generally faster than those with a
distributed representation (Maple, Magma, and Singular). However the heap algorithms
are the fastest of all, even for dense problems. The main reason is cache locality. Heap
algorithms use very little “working storage,” that is, the amount of memory that is
randomly accessed is small. For problems that multiply n by m terms the product or
dividend could be Θ(nm) space but the working storage for the heap is only O(min(n, m))
space. In Section 5 we describe our implementation in detail and measure the effects of
various optimizations.
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2. Sparse Polynomial Division

Consider the problem of dividing f ∈ Z[x1, . . . , xn] by g ∈ Z[x1, . . . , xn], producing a
quotient q and remainder r in Q[x1, . . . , xn]. We assume the polynomials are stored in
a sparse distributed format that is sorted with respect to a monomial order ≺, so that
this is a multivariate division in the sense of Gröbner bases.

Starting with q = r = 0, each step of the division examines the next non-zero term of
f − qg − r in descending order by ≺. Call this current term t. When t is divisible by g1

we add a new term t/g1 to the quotient q, otherwise we move t to the remainder r.
How we compute t has no effect on the result of the algorithm, but it does determine

the performance. There are two tasks to perform: we must sort the terms of f − qg − r,
and we must add the coefficients of any equal monomials.

2.1. Monomial Comparisons

First consider how to sort the terms of f − qg − r that are generated in the division.
There are #f + #q(#g − 1) terms to sort in total, since −qg1 is constructed to cancel
the current term and the terms of r come from f − qg. We assume a comparison-based
sort however a trie-based digital sort could be used instead [6].

The naive approach is to merge the partial products into an ordered linear structure
such as a linked list or a dynamic array. The classical algorithm creates an intermediate
polynomial p := f, and when a new term qi of the quotient is computed it subtracts qig

from p using a merge. Unfortunately each merge is Θ(#p + #g), which means an exact
division with #q = #g = 1000 and #f = 106 could do Θ(109) comparisons.

For multiplication we can use the divide-and-conquer strategy to limit the number of
monomial comparisons. For division we mention the beautiful geobucket data structure
of Yan [19], which has a similar complexity but uses less memory [14]. They are used in
Singular for multiplication and division with remainder so we briefly describe them here.
A polynomial f is represented as a sum of buckets f = b1 + b2 + · · ·+ bk with #bi ≤ 2i,
that is, bucket bi has at most 2i terms. To subtract a polynomial g from f , we subtract
g from the bucket bj with 2j−1 < #g ≤ 2j using a merge. If the result has more than 2j

terms then it is merged into the next bucket, and so on, until the bucket size constraint
is satisfied. The idea is to always merge polynomials of approximately equal size.

Yan showed that geobuckets perform O(N log N) comparisons for sparse polynomials
and O(N) comparisons for dense polynomials, where N = #f + #q(#g − 1) is the total
number of terms merged. In 2007 [14] we found that geobuckets used fewer comparisons
than heap-based algorithms but ran slower on sparse problems due to cache effects.

Surprisingly, the minimum number of monomial comparisons needed to multiply two
sparse polynomials is not known. The literature calls this problem “X+Y sorting” [10],
and the fastest methods are Θ(nm log(min(n, m))) where n = |X| and m = |Y |. This is
the complexity of Johnson’s multiplication algorithm, divide-and-conquer merging, and
our division algorithm when it multiplies the quotient and the divisor. We also mention
Horowitz’s algorithm [12], which further exploits structure to reduce the actual number
of monomial comparisons performed.
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2.2. Measuring Sparsity

When we say a polynomial is sparse or dense we usually refer to its representation in
memory. But for the benchmarks it will be important to test both “sparse” and “dense”
problems. What does this mean?

The question is closely connected to the cost of sorting monomials. For example, the
classical algorithm uses Θ(n2) comparisons to multiply two dense univariate polynomials
of degree n. It sorts and merges the Θ(n2) products in linear time. This occurs because
many of the monomials are equal, so as terms are added together the number of terms
is reduced and the sorting task becomes easier. We propose to measure the density of a
multiplication by dividing the number of products by the number of distinct monomials.

Definition 1. Let f and g be polynomials. We define the work per term of f × g to be
W (f, g) = (#f#g)/|S| where S = {ab : a ∈ support(f), b ∈ support(g)}.

The work measures the number of multiplications done to produce each term of the
result. For example, let f = (x + y + z + t + 1)20 and g = f + 1. Then #f = #g = 10626
terms and #(fg) = 135751 terms, so the work per term is W (f, g) = 106262/135751 =
831.76. This large value of W indicates that the problem is very dense.

Now consider F = (x2 + y2 + z2 + t2 + 1)20 and G = F + 1. These polynomials are
more sparse, their product is more sparse, but the problem of multiplying F and G is
equivalent. We multiply and add the same coefficients and sort the same monomials but
with each exponent doubled. The work per term is also the same: W (F,G) = W (f, g).

Let f and g be polynomials in n variables of total degree d. Since f and g can have
at most

(
n+d

n

)
terms, 1 ≤W (f, g) ≤ B(n, d) =

(
n+d

n

)2
/
(
n+2 d

n

)
. For large d we have

B(n, d) ≈ dn

n! 2 n
+ o(dn).

Finally, let f = a1X1 + · · · + amXm and g = b1Y1 + · · · + bnYn with X1 > · · · > Xm

and Y1 > · · · > Yn. If we put the monomial products into a matrix Aij = XiYj its rows
and columns strictly decrease so the number of distinct monomials is at least n + m− 1.
Then 1 ≤W (f, g) ≤ (nm)/(n + m− 1).

2.3. Coefficient Arithmetic

Next we count the coefficient operations that are performed in a sparse polynomial
division. Multiplying polynomials with n and m terms does nm multiplications, but the
number of additions depends on the number of distinct monomials generated, which is
at least n + m− 1. Then up to nm− n−m + 1 additions are performed.

Now consider a division of f by g with quotient q and remainder r. Coefficients of q
each require one division to construct, and we do at most #f additions to merge f with
−q(g − LT (g)). In total there are #q(#g − 1) multiplications, #q divisions, and up to
#f + (#q − 1)(#g − 2) additions, which is comparable to a polynomial multiplication.

In counting the number of operations, we hope to show how different formulations of
the division algorithm over a fraction field have different costs. Our main interest is the
division of polynomials with small integer coefficients over Q, but our analysis holds for
sparse polynomial divisions over any fraction field.

Suppose that we are dividing polynomials with integer coefficients over the rationals.
For an exact division we can apply Gauss’ lemma to remove content and divide over the
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integers, but that does not work for divisions with a remainder. So let each coefficient of
q be a fraction and suppose rational arithmetic is used. The #q(#g − 1) multiplications
are now a fraction times an integer, which we would implement as follows:

# compute (a/b) · c
mulqz(integer a, integer b, integer c)

g := gcd(b, c);
B := b/g;
C := c/g;
return (a · C, B); # 1 gcd, 2 div, 1 mul

end;

To construct a term of the quotient we divide a fraction by an integer, which we can
do by calling mulqz with the numerator and denominator swapped. To add fractions we
simply use the grade-school method: a/b + c/d = (ad + bc)/(bd) followed by a gcd and
two exact divisions. Henrici’s algorithm [11] could also be used, however it is not clear if
there would be a gain. For word-sized integers, gcd is a program whereas multiplication
and division are machine instructions. For multiprecision integers, if asymptotically fast
algorithms are used this also favors doing fewer operations. Whichever method is faster,
for counting arithmetic operations the grade-school method is preferred. We computed
the number of integer operations for a division that uses rational arithmetic below.

Table 1. Integer operations for a sparse polynomial division with rational arithmetic.

multiplications 3f + 3(q − 1)(g − 1) + qg

divisions 2f + 2(q − 1)(g − 1) + 2qg

gcds f + (q − 1)(g − 1) + qg

additions f + (q − 1)(g − 1)

Counting only multiplications, divisions, and gcds as the most expensive operations,
about ten times more work is required to divide polynomials using rational arithmetic
(10qg versus qg). When #f ≈ #q#g it is sixteen times more. The extra cost is mostly
due to adding fractions. The cost of multiplying the coefficients of q and g using mulqz
is only qg multiplications, 2qg divisions, and qg gcds, or about four times more work.

Fraction-free algorithms were developed to avoid the high cost of rational arithmetic.
In a division, fractions can be scaled to a common denominator that is updated as each
new term of the quotient is computed. The cost is one extra division and multiplication
per product qigj , and one multiplication per term of f .

For example, suppose we are computing the next term of sf − sq(g − LT (g)), where
s is a common denominator. Terms of f are multiplied by s and added into a sum, and
for products qigj we compute and subtract (s/denominator(qi)) · numerator(qi) · gj .

When all like terms have been added up and the coefficient c/s of the current term is
known, if c 6= 0 we test if the current monomial is divisible by LM(g). When it is, we
divide c/s by LC(g) by calling (s, q) := mulqz(s, c, LC(g)). This updates the common
denominator s and the coefficient of the new quotient term is q/s. In practice we test if
LC(g) | c first to avoid gcds in polynomial divisions that succeed over the integers.

The cost of this scheme is shown in Table 2. It does three times more multiplications
and divisions than a division over the integers, and four times more when #f = #q#g.
However that is the worst case, where the denominator is updated with every new term
of the quotient. In practice this is rare, so we check (using a word comparison) whether
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the denominator of qi is equal to s before scaling qigj . For divisions that succeed over Z
we use precisely the same operations as the division algorithm that runs over Z.

Table 2. Integer operations for fraction-free sparse polynomial division (worst case).

multiplications f + 2q(g − 1) + q

divisions q(g − 1) + 3q

gcds q

additions f + (q − 1)(g − 2)

A critical feature of the approach is that all coefficient arithmetic is delayed in order
to scale each term only once. That is, we do not multiply a term by anything until it is
actually needed to compute the next term of sf − sq(g − LT (g)). In our algorithm this
is accomplished by using a heap. Without delayed arithmetic the fraction-free approach
can do an order of magnitude more work. To see why, consider the following algorithm
which divides f by g using merging.

ffdivide(polynomial f, polynomial g)
p, q, r, S := f, 0, 0, 1;
while p 6= 0 do

if (LM(g) |LM(p)) then
G := gcd(LC(p), LC(g));
A := LC(p)/G;
B := LC(g)/G;
S := S ·B; # update denominator
t := LM(p)/LM(g); # monomial quotient
p := B · p− (A · t) · g; # cancel LT(p)
q := q + (A/S) · t;

else
r := r + LT (p);
p := p− LT (p);

end while;
return (q, r/S);

end;

Consider an exact division f ÷ g = q, where #f = #q#g and the denominators of qi

increase in size. In iteration i of this division, p has (#q − i + 1)#g terms and we need
(#q− i + 2)#g integer multiplications to compute B · p− (A · t) · g. The total number of
integer multiplications performed in all merge steps is

#q∑
i=1

(#q − i + 2)#g =
(#q + 3)#q#g

2
∈ Θ(#q2#g).

For sparse divisions, fraction-free merging can be an order of magnitude slower than
merging with rational arithmetic. It can be made arbitrarily worse by adding terms to f

that are only moved to the remainder at the end of the computation. In general we can
perform Θ(qf + q2g) integer multiplications. That is a disaster!

Note that for dense univariate polynomials fraction-free merging is not quite as bad.
For an exact division with #f = #q + #g − 1, each iteration cancels one term of p and
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the total number of integer multiplications is
#q∑
i=1

(#q + 2#g − i) =
#q(#q + 4#g − 1)

2
∈ Θ(#q2 + #q#g).

3. Multiplication and Division Using a Heap

In 1974, Johnson [13] presented the following algorithm to multiply sparse distributed
polynomials. Let f = a1X1 + a2X2 + · · ·+ anXn and let g = b1Y1 + b2Y2 + · · ·+ bmYm

with X1 > · · · > Xn and Y1 > · · · > Ym. The idea is to compute
∑n

i=1 fig by merging
all the partial products simultaneously using a binary heap.

We store the first unmerged term from each fig in the heap. In each iteration of the
algorithm we extract all the maximal terms and add them up to produce the next term
of the result. Then we insert the next term from each partial product that was merged,
setting up the next iteration of the algorithm.

Fig. 2. Multiplication Using a Heap of Pointers (Johnson, 1974).

2f 2g6x

6x 3f 1g 7 g5 x 35x x2Result O(#fg)

7x 1f 2g

Heap O(#f)

fx2 4 3 3x x4

732x x x1089 ...

We use a structure (m, fi, gj) to represent the next term of each fig, where fi and gj

are pointers into f and g and m = XiYj is the monomial of figj . The pointer fi is fixed
while the pointer gj increments through the terms of g.

When (m, fi, gj) is extracted from the heap we multiply the coefficients of fi and gj

and add them to a sum of like terms. When all of the maximal terms have been added,
for each term with j < #g we update its structure to (XiYj , fi, gj+1) and insert it back
into the heap. The algorithm is depicted in Figure 2.

In the example above, we extract (x7, f1, g2) = 10x7 from the heap and it add to the
end of the result. We then insert (x5, f1, g3). In the next iteration we extract (x6, f2, g2)
and (x6, f3, g1) and compute 15x6 + 4x6 = 19x6. This is added to the end of the result
and we insert (x4, f2, g3) and (x4, f3, g2) for the next iteration.

The advantages of this algorithm are numerous. First, the heap has #f elements so
O(log #f) comparisons are used to insert and extract each term, and O(#f#g log #f)
comparisons are performed in total. We can order f and g so that #f ≤ #g to obtain
the best known complexity for sparse problems. For dense problems, classical algorithms
use Θ(#f#g) comparisons. In Section 5.2 we show how to obtain that complexity for
the heap as well.

Second, the algorithm uses only Θ(#f) “work space” to sort terms. This is an order
magnitude less memory than merging, geobuckets, divide-and-conquer, or a hash table,
all of which use memory that is proportional to the size of the result. As a consequence
the algorithm can run in the cache and stream the result to main memory.
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Third, if multiprecision integers are present, the algorithm needs storage for only one
multiprecision integer to add up all the products for the current term. It can then copy
this integer to the result and thereby avoid generating O(#f#g) pieces of garbage from
multiprecision integers.

The algorithm also generates terms of the product one at a time in descending order.
If we use a heap in the division algorithm to multiply the quotient and the divisor then
we can subtract the result from the dividend term by term as the quotient is generated,
which avoids storing any intermediate terms. The resulting algorithm uses an order of
magnitude less memory to divide.

Whereas Johnson’s multiplication algorithm computes f · g =
∑#f

i=1 fig, his division
algorithm computes f −

∑#q
i=1 qig. That is, the heap elements multiply by a term of the

quotient and increment along the divisor. We call this a “quotient heap” division since
the size of the heap is #q. It performs O(#f + #q#g log #q) monomial comparisons.

Johnson’s algorithm is inefficient when the quotient is large and the divisor is small.
The quotient heap imposes a factor of log(#q) on the number of comparisons, but a far
worse problem is that the heap can outgrow the cache. The O(#q#g log #q) monomial
comparisons that take place in the heap are random memory accesses, all of which may
produce cache misses which would slow down the algorithm significantly.

The divisor heap algorithm of Monagan and Pearce [14] solves this problem by using
a heap to compute f −

∑#g
i=1 giq. That is, the size of the heap is #g and heap elements

multiply by a term of the divisor and increment along the quotient. An important issue
is that we may need to extract giqj from the heap and merge it before computing qj+1.
Then we can not immediately insert giqj+1. Our solution is to set a bit for each gi that
has a term in the heap. After extracting giqj from the heap we insert giqj+1 if possible,
and if gi+1 has no term in the heap we insert the next product for gi+1 if possible.

We illustrate the quotient and divisor heap algorithms below. In the figure terms are
merged in descending order and at most one term from each row is present in the heap
at any time. A grey box denotes where the sum of like terms is canceled by computing
a new term of the quotient. We divide f = 2x9 + 3x8 + 10x7 by g = x5 + 5x3 + 7 with
quotient q = 2x4 + 3x3 − 15x and remainder r = 61x4 − 21x3 + 105x.

step 1 2 3 4 5 6 7

f 2x9 3x8 10x7

−q1g −2x9 −10x7 −14x4

−q2g −3x8 −15x6 −21x3q. heap

(
−q3g 15x6 75x4 105x

r 61x4 −21x3 105x

step 1 2 3 4 5 6 7

f 2x9 3x8 10x7

−g1q −2x9 −3x8 15x6

−g2q −10x7 −15x6 75x4

d. heap


−g3q −14x4 −21x3 105x

r 61x4 −21x3 105x
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3.1. The Minimal Heap Division Algorithm

We now have two algorithms to divide f ÷ g = (q, r) using a heap with #q elements
or a heap with #g − 1 elements. However we do not know which algorithm to run since
the size of the quotient q is a priori unknown. Our new division algorithm starts with a
quotient heap and switches to a divisor heap when the number of terms in the quotient
equals the number of terms in the divisor. In short, we compute

f −
#g−1∑
i=1

qi · g

︸ ︷︷ ︸
quotient heap

−
#g∑
i=1

gi · (q#g + · · · )

︸ ︷︷ ︸
divisor heap

.

Our heap contains elements that behave like either a quotient heap or a divisor heap.
We say a product qigj “moves along g” if the next term inserted into the heap is qigj+1.
Likewise, a product qigj “moves along q” if the next term inserted is qi+1gj .

The algorithm starts by adding a product qig2 that moves along g for each new term
of the quotient that it computes. The heap is enlarged as necessary during this phase to
accommodate the growing quotient. When #q = #g, the heap is enlarged to 2(#g − 1)
elements and products gjq#g that move along q are initialized for 2 ≤ j ≤ #g. Then
g2q#g is inserted into the heap and the algorithm continues to run with a divisor heap.

The size of the heap is at most 2(#g−1), which is double the size of a divisor heap when
#q ≥ #g. There is one extra level in the heap and therefore one more comparison per
heap operation. This does not affect its asymptotic complexity. We present the algorithm
on the next page. Its cost in comparisons and arithmetic operations is given by Theorem
2.

Theorem 2. Algorithm 1 divides f by g with quotient q and remainder r and performs
O(#f + #q(#g − 1) log(min(#q, #g − 1))) monomial comparisons. If the denominator
s = 1 it does #q(#g − 1) integer multiplications and #q integer divisions. Otherwise it
does at most the number of integer operations given in Table 2.

Proof. When #q < #g the size of the heap is #q, otherwise it is 2(#g− 1). We always
use O(log(min(#q, #g−1))) comparisons to insert and extract the #q(#g−1) products
of q(g−LT (g)), and at most #f +#q(#g−1) comparisons to merge f with those terms.
In total we perform O(#f + #q(#g − 1) log(min(#q, #g − 1))) monomial comparisons.

When s = 1 all denominator(qi) = s and we don’t scale terms of f . LC(g) | c always
succeeds so #q(#g − 1) integer multiplications and #q integer divisions are performed.

When s > 1 the strategy is described in Section 2.3. The #q(#g− 1) terms extracted
from the heap are scaled by at most one division and two multiplications, and terms of
f are scaled with one multiplication. There are #q divisions to test LC(g) | c and mulqz
performs one gcd, two divisions, and a multiplication for each term of q. 2

4. Benchmarks

To benchmark the computer algebra systems we used one core of an Intel Xeon 5160
(Core2) 3.0 GHz with 4 MB of L2 cache, 16 GB of RAM, 64-bit Linux, and GMP 4.2.1.
We give two times for our library (sdmp). In the slow time (unpacked) each exponent is
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Algorithm 1: Fraction-Free Minimal Heap Division.

Input: f, g ∈ Z[x1, ..., xn], g 6= 0, a monomial order ≺.
Output: q, r ∈ Q[x1, ...xn] with f = qg + r and no term of r divisible by LT (g).

(q, r, s, k) := (0, 0, 1, 1).
H := empty heap ordered by ≺ with max element H1.
while |H| > 0 or k ≤ #f do

if (k ≤ #f and (|H| = 0 or LM(fk) ≥ LM(H1)))
m := LM(fk).
if s = 1 then c := LC(fk) else c := s ∗ LC(fk).
k := k + 1.

else
m := LM(H1).
c := 0.

while |H| > 0 and LM(H1) = m do
extract H1 = qigj from the heap.
if (denominator(qi) = s)

c := c− LC(numerator(qi)) ∗ LC(gj).
else

c := c− (s/denominator(qi)) ∗ LC(numerator(qi)) ∗ LC(gj).
if (qigj moves along g and j < #g) // quotient heap product

insert qigj+1 into H moving along g.
else if (qigj moves along q and i < #q) // divisor heap product

set the index of gj into q to be i + 1.
insert qi+1gj into H moving along q.
if (j < #g and bit says gj+1 6∈ H)

t := the last index of gj+1 into q.
if (t ≤ #q)

set bit for gj ∈ H.
insert qtgj+1 into H moving along q.

else if (qigj moves along q and i = #q) // ran out of quotient
set the index of gj into q to be i + 1.
set bit for gj 6∈ H.

end while.
if (c 6= 0 and LM(g) |m)

if LC(g) | c then c := c/LC(g) else (s, c) := mulqz(s, c, LC(g)).
q := q + (c/s) ∗ (m/LM(g)).
if (#q < #g) // using quotient heap

insert q(#q)g2 into H moving along g.
else if (#q > #g) // using divisor heap

if (bit says g2 6∈ H)
set bit for g2 ∈ H
insert q(#q)g2 into H moving along q.

else // switching to divisor heap
set the index of each gj into q to be #q.
set bits for g2 ∈ H and all other gj 6∈ H.
insert q(#q)g2 into H moving along q.

else if (c 6= 0)
r := r + (c/s) ∗m.

end while.
return (q, r)

11



stored as a 64 bit integer. For the fast time we pack all of the exponents into one 64 bit
integer and use word operations to compare and multiply monomials.

We tested Pari/GP 2.3.3, Magma 2.14-7 (see [3]), Maple 12, Singular 3-0-4 (see [8]),
and Trip 0.99 (see [6]). Recall that Maple and Singular use distributed representations
to multiply polynomials and recursive representations to divide, Magma and sdmp use
distributed representations, Pari uses recursive dense, and Trip uses recursive sparse.

For each benchmark, we report the time (in CPU seconds) taken and, where we could
measure it, the total memory (in megabytes) each system used.

4.1. Fateman’s Benchmark

Our first problem is due to Fateman [4]. Let f = (1 + x + y + z + t)20 and g = f + 1.
We multiply p = f · g and divide q = p/f . The coefficients of f and g are 39 bit integers
and the coefficients of p are 83 bit integers.

Table 3. Dense multiplication and division over Z, W (f, g) = 831.76.

10626× 10626 = 135751 terms p = f · g q = p/f

sdmp (1 word monomial) 2.26 s (4.9 MB) 2.77 s (1.7 MB)
sdmp (4 word monomial) 5.18 s (8.4 MB) 5.44 s (2.6 MB)
Trip v0.99 (floating point) 2.50 s (8.0 MB) -
Trip v0.99 (rationals) 5.93 s (15.3 MB) -
Pari/GP 2.3.3 32.43 s 14.76 s
Magma V2.14-7 23.02 s (32.2 MB) 22.76 s (12.7 MB)
Singular 3-0-4 62.00 s (21.0 MB) 20.00 s (15.5 MB)
Maple 12 289.23 s (200.4 MB) 187.72 s (48.2 MB)

Fateman’s benchmark is a dense computation. The
(
n+d

d

)
monomials in n variables of

degree ≤ d are multiplied to produce
(
n+2d

2d

)
terms. Maple and Singular can both divide

faster than they can multiply because they use recursive algorithms. In sdmp division is
slightly slower than multiplication because the code is more complex.

4.2. Sparse 10 Variables

Now let f =
(∑9

i=1 xi(xi+1 + 1) + x10(x1 + 1) + 1
)4 and g =

(∑10
i=1(x2

i + xi) + 1
)4.

We multiply p = f · g and divide q = p/f . All coefficients are less than 20 bits long.

Table 4. Sparse multiplication and division over Z, W (f, g) = 17.86.

6746× 8361 = 3157883 terms p = f · g q = p/f

sdmp (1 word monomial) 2.46 s (54.8 MB) 2.61 s (1.0 MB)
sdmp (10 word monomial) 11.12 s (300.8 MB) 10.37 s (3.6 MB)
Trip v0.99 (floating point) 4.10 s (206.3 MB) -
Trip v0.99 (rationals) 8.13 s (351.9 MB) -
Pari/GP 2.3.3 7.06 s 7.05 s
Magma V2.14-7 17.43 s (413.2 MB) 197.72 s (94.5 MB)
Singular 3-0-4 31.00 s (200.1 MB) 18.00 s (236.0 MB)
Maple 12 305.76 s (973.9 MB) 280.65 s (485.0 MB)

This benchmark clearly demonstrates the value of packing exponents. Pari’s recursive
dense algorithms perform well on many variables of low degree, while Magma’s division
(ExactQuotient) seems to sort terms inefficiently. It may be using repeated subtraction.
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4.3. Very Sparse 5 Variables

We multiply f = (1 + x + y2 + z3 + t5 + u7)12 and g = (1 + u + t2 + z3 + y5 + x7)12

and divide the product by f . The coefficients of f , g, and p are 23, 23, and 47 bits long.

Table 5. Very sparse multiplication and division over Z, W (f, g) = 2.9.

6188× 6188 = 13209653 terms p = f · g q = p/f

sdmp (1 word monomial) 2.12 s (202.2 MB) 2.60 s (1.0 MB)
sdmp (5 word monomial) 5.74 s (606.6 MB) 7.41 s (2.0 MB)
Trip v0.99 (floating point) 2.54 s (648.4 MB) -
Trip v0.99 (rationals) 5.63 s (1255.1 MB) -
Pari/GP 2.3.3 284.19 s 134.87 s
Magma V2.14-7 36.30 s (4155.5 MB) 276.45 s (405.2 MB)
Singular 3-0-4 44.00 s (1197.2 MB) 84.00 s (1013.3 MB)
Maple 12 250.24 s (2350.2 MB) 277.65 s (1522.0 MB)

On sparse problems the advantages of heaps are substantial. The product p = f · g
may be hundreds of megabytes but that data is written to memory sequentially. The
heap is less than half a megabyte. For division the heap is larger but the total memory
required is still only one or two megabytes which easily fits in the cache.

4.4. Sparse Unbalanced Divisions

We multiply f = (1 + x + y2 + z3 + t5 + u7)n and g = (1 + u + t2 + z3 + y5 + x7)m

and divide the result by f , using n and m to vary the sizes of the quotient and divisor.
The work W (f, g) < 3 implies that these problems are very sparse.

The column Hreal is the actual size of the heap during the division, which is less than
Hmax = min(#q, 2(#f − 1)) due to the chaining optimization discussed in Section 5.2.
Chaining is also used for multiplication but the size of the heap remained min(#f, #g).
We conclude that our division algorithm sorts terms as efficiently as a multiplication.

Table 6. Varying the quotient and the divisor.

n m #f #g, #q #p W (f, g) p = f · g q = p/f Hmax Hreal

30 4 324632 126 17691345 2.31 2.48 s 2.60 s 126 126
18 8 33649 1287 15143968 2.86 2.86 s 2.93 s 1287 1035
12 12 6188 6188 13209665 2.90 2.12 s 2.60 s 12374 2366
8 18 1287 33649 15143968 2.86 2.30 s 2.27 s 2572 1035
4 30 126 324632 17691345 2.31 2.10 s 2.10 s 250 70

n m Pari/GP 2.3.3 Magma V2.14-7 Singular 3-0-4 Maple 12

30 4 201.34 s 65.94 s 41.27 s 27.46 s 28.00 s 124.00 s 329.89 s 357.18 s
18 8 511.26 s 157.00 s 45.26 s 108.86 s 46.00 s 99.00 s 302.30 s 349.15 s
12 12 284.19 s 134.87 s 36.30 s 276.45 s 44.00 s 84.00 s 250.24 s 277.65 s
8 18 97.17 s 94.08 s 42.06 s 1462.25 s 44.00 s 107.00 s 293.23 s 387.99 s
4 30 19.25 s 17.48 s 39.49 s 15690.64 s 26.00 s 2990.00 s 308.30 s 479.35 s
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4.5. Division with Remainder

Finally, to test the effectiveness of our fraction-free strategy, we divide f = (xyztu)36

by g =
(
(x9 − y − 1)(2y9 − z − 2)(3z9 − t− 3)(4t9 − u− 4)(5u9 − x− 5)

)2, computing a
quotient q and remainder r using graded lexicographical order with x > y > z > t > u.

The divisor g has 19 bit coefficients and its leading coefficient is 14400. The quotient
q and remainder r have 22 and 39 bit numerators over a 26 bit common denominator.
For Magma we timed the NormalForm command and in Singular we timed reduce(f, g).
Pari and Trip lack this functionality and Maple’s interpreted algorithm did not finish in
reasonable time. We also performed the division over Z32003 for comparison.
Table 7. Sparse division with remainder, W (q, g) = 79.6.

1÷ 7776 = (7776, 99999) terms f ÷ g = (q, r) over Q f ÷ g = (q, r) over Zp

sdmp (1 word monomial) 3.02 s (4.8 MB) 2.69 s (2.5 MB)
sdmp (6 word monomial) 8.35 s (14.1 MB) 7.84 s (13.3 MB)
Magma V2.14-7 120.90 s (62.7 MB) 112.60 s (38.5 MB)
Singular 3-0-4 447.00 s (120.1 MB) 249.00 s (29.5 MB)

The fraction-free strategy of Section 2.3 holds up very well. Provided the coefficients
remain small, it imposes only a small cost in overhead versus a computation modulo p.
Magma also has a good strategy but we do not know what it is. Singular uses too much
coefficient arithmetic to do the division over the rationals.

5. Optimizations

5.1. Polynomial Data Structure

In selecting a data structure, we assumed that polynomials could become very large.
Because the heap algorithms access terms sequentially, we sought to minimize the cost
in machine cycles of accessing the next term.

The natural approach is to store the terms in an array, but multiprecision coefficients
posed a problem. We wanted to be able to seek to arbitrary terms of the polynomial in
constant time. Our solution was to adopt Maple’s integer format. An integer coefficient
x is stored in place as 2x + 1 when |x| < 2B−2 where B = 64 is the base of the machine.
For multiprecision coefficients we store pointers, which we distinguish by the lowest bit.
We store all multiprecision coefficients in a second array as shown in Figure 3.

The benchmarks show the significant benefit of packing exponents. We pack multiple
exponents into a word and store extra information so that monomials can be compared
using word operations (see [1, 14]). For example in graded lexicographical order x2y3z4

is stored as [9, 2, 3, 4], where 9 is the total degree. This can be packed into the machine
integer 9 · 23B/4 + 2 · 2B/2 + 3 · 2B/4 + 4 and compared with one instruction.

To multiply or divide monomials we add or subtract unsigned machine integers. The
detection of exponent underflow in division is done using a bit mask, which requires the
top bit of each exponent to be zero. For example, the trial division of x2y3z4 by xy4z4

in 32 bits computes [9, 2, 3, 4]− [9, 1, 4, 4] = 00000000 00000000 11111111 00000000, and
then a bitwise OR with 10000000 10000000 10000000 10000000 detects underflow in the
third exponent. The top bit of every exponent in every monomial must be zero in order
to run the division algorithm. A big advantage of the heap method is that this test can
be performed once per distinct monomial at the beginning of the main loop, instead of
once per product. The #q(#g − 1) monomial multiplications do not test for overflow.
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Fig. 3. Packed representation for graded lex order with x > y > z.

Axy3z + By3z2 + Cxy2z − 8x3 − 5

x y z

GMP data  A GMP data  B GMP data  C

−8 −5

packing

POLY 5

dxyz dxyz dxyz dxyz dxyz

5032 4121 3300 00005131

d = total degree

5.2. Heap Chaining

We developed a number of optimizations that dramatically improve the performance
of the heap. The most important is chaining. When a product is inserted into the heap
we first compare it to the top element and if they are not equal we compare bottom-up
to find its position in the heap. If a comparison returns equality we insert the product
at the head of a linked list to form a chain of like terms, as shown below for x6.

Fig. 4. Chaining Products in the Heap.

Result O(#fg)

732x x x1089 ...

7 g5x 35x x2

fx2 4 3 3x x4

Heap O(#f) O(#f)Products

1f 2g

2f 2g

3f 1g

7x

6x

Notice that by storing {fi, gj} outside of the heap, we allow the heap comparisons to
access as little memory as possible (two words). The pointers for {fi, gj} and chains are
needed less often, to add up products. This organization of data by frequency of access
further improves cache performance.

Two more optimizations increase the effectiveness of chaining. In the main loop of the
algorithm we extract all equal terms before inserting their successors to ensure that the
largest new terms are chained together at the top of the heap. Second, at the beginning
of a multiplication f · g we insert only f1g1 into the heap, and after extracting each fig1

we insert both fig2 and fi+1g1 if they exist. This approach is also used in Algorithm 1.
In [14] we show that for dense univariate polynomials the size of the heap is always one
so a multiplication f · g does Θ(#f#g) monomial comparisons and a division f ÷ g = q
does Θ(#f + #g#g) monomial comparisons.

Table 8 measures the effectiveness of chaining. In an n×m multiplication, nm terms
are inserted and removed from the heap, but we do only one heap extraction to remove
all the elements of a chain. In Table 8 we report the total number of heap extractions,
the number of products nm, and the percentage of heap extractions saved by chaining.

On Fateman’s problem a typical term of the result came from one large chain with
2690 terms, 29 chains of length 1, and additional chains of length 9, 12, 15, 20, 27, 27,
29, 32, 33, 37, 38, and 40.
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Table 8. The percentage of heap extractions saved by chaining.

W (f, g) extractions nm % saved

Fateman 831.76 3194958 112911876 97.2%
sparse10 17.86 17087173 56403306 69.7%
vsparse5 2.90 14720559 38291344 61.5%

5.3. Immediate Monomials and Assembly Code

Two more optimizations warrant brief discussion. We store the monomials directly in
the heap if they are only one word long to improve the locality and performance of heap
operations. We call these immediate monomials. Multi-word monomials are stored in a
separate array so that heap operations do not have to move the monomial data.

We use two different algorithms to extract the maximal element from the heap. For
one word monomials we insert the last element into the empty spot at the root and sift
it down towards the bottom using two comparisons per level. This method best utilizes
the cache. For multi-word monomials we promote the largest child into the empty spot
using one comparison per level until the empty spot reaches the bottom, then we insert
the last heap element into this spot and promote it if necessary. This method uses fewer
monomial comparisons on average. For more details see [14].

We also implemented coefficient arithmetic for word-sized integers in assembly code.
When the coefficients of fi and gj are both stored in place (see Section 5.1) we multiply
them in assembly and add the double word result to a three word array. Other products
involve multiprecision integers and are computed using GMP [7]. Finally, when all the
products for the current term have been added, we add the three word array to the sum
for general multiprecision products to obtain the next coefficient. This integer is copied
to the result and we reuse the storage in the next iteration of the algorithm.

5.4. Performance Assessment

Table 9 compares our times for packed and unpacked multiplication (first line) to the
cost of sorting products without any coefficient arithmetic (second line). Thus, the time
spent doing arithmetic on Fateman’s benchmark is roughly 2.26 − 1.60 = 0.66 seconds.
Heap chaining (third line) is by far the most important optimization. This is followed by
assembly code on dense problems or immediate monomials on sparse problems.

Table 9. The cost of sorting terms and the effect of disabling optimizations.

p = f · g Fateman sparse10 vsparse5

sdmp multiplication 2.26 s 5.18 s 2.46 s 11.12 s 2.12 s 5.74 s
no coefficient arithmetic 1.60 s 4.47 s 2.10 s 10.39 s 1.65 s 5.15 s
no heap chaining 9.76 s 31.43 s 4.56 s 22.98 s 3.92 s 11.00 s
no immediate monomials 3.09 s - 3.97 s - 2.96 s -
alternate heap extract 2.28 s 5.23 s 2.68 s 11.30 s 2.36 s 5.52 s
no assembly (uses GMP) 4.12 s 7.09 s 3.34 s 11.87 s 2.49 s 6.01 s

6. Conclusion and Final Remarks

We analyzed sparse polynomial division and presented a new algorithm which uses a
chained heap of pointers to divide. It sorts terms as efficiently as a multiplication and it
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uses few extra arithmetic operations to divide polynomials over the rationals. Its space
requirement is linear in the size of the input and the quotient so it can often run in
cache. Our implementation of Johnson’s algorithm for multiplication and our division
algorithm achieve high performance. Table 6 shows that we can divide as fast as we can
multiply. The other benchmarks show that the distributed representation is competitive
with recursive representations when good algorithms and monomial packings are used.

Since we submitted this paper, we parallelized Johnson’s heap based multiplication
in [15] and our division algorithm in [16]. We also integrated our parallel multiplication
routine into the expand command of Maple 14 and the sequential division algorithm
presented here into the divide command of Maple 14. For multiplication, we found that
the conversions of our data structure to Maple’s data structure (see Figure 1) incur
substantial overhead when the multiplication is sparse. New objects are created for every
monomial of the product, and these must be simplified, hashed, and sorted by Maple’s
kernel. We plan to address this issue in the future by modifying the Maple kernel to
use our data structure (see Figure 3) by default for polynomials with sufficiently few
variables and low enough total degree.

Finally, we mention that Fateman in 2008 [5] found the following method to be com-
petitive for multiplying moderately sparse polynomials in a few variables. Biscani in
2010 [2] also advocates it for multiplying moderately sparse multivariate Laurent se-
ries. The approach is to map f(x1, . . . , xk) and g(x1, . . . , xk) to univariate polynomi-
als using the Kronecker substitution {x1 = z, x2 = zd+1, . . . , xk = z((d+1)k−1)} where
d = deg(f) + deg(g). A tighter packing of the exponents is possible if the variables occur
to different degrees. Now allocate an array A large enough to store the dense univariate
product and initialize all entries of A to 0. This array will be of size O((d + 1)n). Even
when (d + 1)n is 100 times larger than the size of the product f × g, this can be feasible
since today’s computers have gigabytes of memory. Next we multiply the sparse inputs
using the classical algorithm and add the resulting coefficients to A. We do a sequential
pass through A afterwards to extract the non-zero entries and undo the Kronecker map.
The cost of initializing the entries of A to 0 and testing for zero entries is relatively low,
and the output is automatically sorted in lexicographical order. Fateman found that the
approach was not only faster for dense polynomials but also competitive for moderately
sparse polynomials in a few variables.

For division, Fateman’s tradeoff is harder to justify because the extra storage needed
can be two orders of magnitude: O((d + 1)n) versus O(#q + min(#q, #g)) for the heap.
It should be competitive for divisions with large remainders, however we see no way to
adapt the fraction free technique of Section 2.3. That significant improvement was only
possible because the heap does not store an intermediate result.
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