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ABSTRACT
We present a parallel implementation in Cilk C of a mod-
ular algorithm for multiplying two polynomials in Zq[x] for
integer q > 1, for multi-core computers. Our algorithm uses
Chinese remaindering. It multiplies modulo primes p1, p2, ...
in parallel and uses a parallel FFT for each prime. Our soft-
ware multiplies two polynomials of degree 109 modulo a 32
bit integer q in 83 seconds on a 20 core computer.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computation of
transforms, Computations on polynomials; I.1.2 [Symbolic
and Algebraic Manipulation]: Algebraic Algorithms

Keywords
Fast Fourier Transform, Parallel Algorithms

1. INTRODUCTION
We are building a parallel library for arithmetic in Zq[x].

The new library will be used by Maple for polynomial fac-
torization in Z[x] and Zq[x] for prime q and for multivariate
polynomial GCD computation over Z where modular algo-
rithms are used. It will replace an older C library, the modp1

library, that was developed by Monagan in [16] to improve
Maple’s polynomial factorization performance.

The parallel library will need to support a range of mod-
ulus sizes. The algorithm used for factorization in Z[x] uses
small primes, as small as q = 3. The primes needed for mul-
tivariate polynomial GCD computation in [10] include 32
bit primes, 64 bit primes and also 128 bit primes. The tar-
get architecture for the new library is multi-core computers
because that is what most Maple users are using.

A core routine for the library is multiplication in Zq[x]
because asymptotically fast algorithms for division, poly-
nomial interpolation, the Euclidean algorithm, etc., can be
reduced to fast multiplication. The question we address in
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this paper is how should we multiply in Zq[x] on a multi-core
computer for a range of prime sizes?

Let us fix notation. Let a(x) =
∑da

i=0 aix
i and b(x) =∑db

i=0 bix
i be polynomials in Zq[x] for an integer q > 1. Let

c(x) = a(x)× b(x) =
∑da+db

i=0 cix
i be their product.

Let u(x) = a(x)× b(x) without reduction mod q, that is,
treating the coefficients of a(x) and b(x) as integers. Let
‖u(x)‖∞ denote the magnitude of the largest coefficient of
u(x). Then ‖u(x)‖∞ < q2 min(da+ 1, db+ 1).

Kronecker substitution
We outline two approaches for computing c(x) fast. Both are
described in [6]. Currently, Maple and Magma both reduce
multiplication in Zq[x] to multiplication of two long integers.
Both use the GMP integer arithmetic package [7] and hence
exploit GMP’s asymptotically fast integer multiplication al-
gorithm. Let B be the base of the integer representation. In
GMP B = 264 on a 64 bit machine. The algorithm is

1 Pick the smallest integer k with Bk > ‖u(x)‖∞.

2 Construct long integers a(B) and b(B).

3 Multiply them: c(B) := a(B)× b(B).

4 Write c(B) =
∑da+db

i=0 c̄iB
ik for 0 ≤ c̄i < Bk.

Compute ci := c̄i mod q for i = 0 to da+ db.

5 Output c(x) =
∑da+db

i=0 cix
i.

For fixed q, steps 2, 4 and 5 take time almost linear in
da+ db. Step 3 is a large integer multiplication of size k da
by k db words. Maple and Magma both use GMP 5.0 for
integer arithmetic. GMP is using the Schönhage-Strassen
algorithm [18] for long integer multiplication which has com-
plexity O(n logn log log n) where n = k da+ k db.

This method is easy to implement. It utilizes the GMP
implementation of the Schönhage Strassen algorithm which
has been optimized over many years and it scales well for
different sizes of q, but, it is not parallelized.

Chinese remaindering
Another approach to fast multiplication in Zq[x] (also in
Z[x]) is to multiply u(x) = a(x)× b(x) in Z[x] using Chinese
remaindering then reduce the coefficients in the product u
modulo q. Let n = 2k be the first power of 2 greater than
deg a+ deg b. Pick m primes p1, p2, ..., pm which satisfy

(i) M = Πm
i=1pi > ‖u(x)‖∞,

(ii) n|(pi − 1) for 1 ≤ i ≤ m, and

(iii) pi is a word size prime, small enough so that arithmetic
in Zpi can be done using the hardware of the machine.



The modular multiplication algorithm is simple.

1 Multiply ci(x) := a(x)× b(x) mod pi for each prime.

2 Letting ci(x) =
∑da+db

j=0 cijx
j , for each j find uj ∈ Z

using Chinese remaindering such that 0 ≤ uj < M and
uj ≡ cij mod pi for 1 ≤ i ≤ m.

3 Recover the coefficients of c(x) from cj = uj mod q.

Condition (ii) means the FFT can be used in step 1 to
multiply a(x)× b(x) inside Zpi using O(n logn) multiplica-
tions. We chose this approach to parallelize because there is
an easy factor of m in parallel speedup available; multiply
modulo each prime in parallel. Also, the Chinese remain-
dering is easily parallelized. Our C implementation uses the
following 31 bit primes

p1 = 2013265921 = 15× 227 + 1
p2 = 1811939329 = 9× 226 + 1
p3 = 469762049 = 7× 226 + 1
p4 = 2113929217 = 63× 225 + 1
p5 = 1711276033 = 51× 225 + 1.

If q is at most 32 bits, we can multiply polynomials whose
product c(x) has deg c < 226 using the first three primes.
We have M = p1p2p3 is 90.5 bits which is large enough to
recover c(x) as ‖u(x)‖∞ < 226q2 < 290. If q is 63 bits and
the c(x) has degree deg c < 225 then we use all five 31 bit
primes. Otherwise our C implementation uses sufficiently
many 63 bit primes to satisfy conditions (i) and (ii). For
63 bit primes we need to code multiplication and division
by p in assembler. One advantage of using 31 bit integer
primes instead of 63 bit primes is that we get more (easy)
parallelism. Another reason is that a 32 bit integer multi-
plication in Zp is more than twice as fast as 64 bits.

Outline of paper
Throughout the paper p will refer to one of the primes
p1, p2, . . . , pm. To implement multiplication in Zp[x] we need
to implement the discrete FFT. And to parallelize multipli-
cation in Zq[x] we need also to parallelize the FFT since
otherwise parallel speedup is limited to a factor of m.

In Section 2 we will give details of our implementation of
the FFT and how we parallelized it. We are using Cilk C
which allows us to program a serial algorithm in C then add
Cilk directives to parallelize the code. This is easy when the
parallel tasks are data independent.

When we implemented the modular algorithm we hoped
that our code would come close to the speed of GMP on one
core so that we could beat GMP by at least a factor of two on
a quad-core desktop. The data in Section 4 shows that for a
31 bit prime q we are about 3 times faster than GMP on one
core. With parallelization we are about 9 times faster on a
quad-core desktop. To achieve this we implemented many
optimizations, most of which are not new. We present the
most useful ones in Section 3.

In Section 4 we compare our multiplication to the Kro-
necker substitution in Maple and Magma and measure the
effect of turning each optimization off and the parallel speedup
that we get on a 20 core machine. Space becomes an issue for
polynomials of very large degree. Our software can compute
the product of two polynomials of degree one billion modulo
a 32 prime on a machine with 128 gigabytes of RAM which
we think is a size record. We conclude by describing two ap-
plications where we need to multiply polynomials of degree
one million or more.

Related work
The general literature on the FFT is very large. The reader
may find the text [3] by Chu and George helpful. There are
many floating point implementations for FFTs over R and
C. We found the paper [5] by Frigo and Johnson helpful. It
gives implementation details of the algorithms used in the
popular FFTW library (see http::/www.fftw.org).

In 1993 Shoup [19] implemented the Chinese remainder-
ing approach using the FFT to factor polynomials in Zq[x].
Shoup’s 1995 paper [20] includes many details that we found
helpful. In [2] Chmielowiec parallelized the modular algo-
rithm (on the primes only) for multiplication in Z[x] us-
ing Open MP. His experiments on quad-core machines have
polynomials with 512 bit coefficients so m is large enough
so that no parallelization of the FFT is needed.

Several Computer Algebra systems use an FFT based im-
plementation to multiply polynomials in Zq[x], for example,
Victor Shoup’s NTL package [21]. We note that Shoup has
put parallelizing the modular algorithm (on the primes) on
his wish list for NTL in late 2014.
See http://www.shoup.net/ntl/doc/tour-changes.html.

The Maple library modpn developed by Xi, Moreno Maza,
Rasheed, and Schost [12] includes a serial FFT for 32 bit
primes. It was developed to multiply polynomials modulo a
triangular set. Moreno Maza and Xie in [14] claim to be the
first to implement a parallel FFT for multi-core computers
for multiplication in Zp[x]. They used Cilk C++. The goal
of their work is to apply FFT techniques to fast normal form
computation modulo a triangular set.

The Spiral project [17] has developed libraries for the
discrete FFT for various architectures including multi-core
computers. The paper [4] gives an overview of many vari-
ants of the FFT and optimizations and discusses floating
point codes which use vector instruction sets. The codes
that are generated are large. One goal of the Spiral project
(see http://www.spiral.net) is to automate the creation and
tuning of FFT libraries [11].

In [9] van der Hoeven developed a truncated FFT that
saves up to a factor of 2 in the number of multiplications
done by the FFT when 2k−1 ≤ deg a + deg b � 2k. In [8]
Harvey presents a new serial FFT algorithm which combines
van der Hoeven’s truncated FFT with David Bailey’s cache-
friendly FFT [1]. Meng and Johnson [13] improve on Har-
vey’s work by incorporating vector instructions and multi-
threading into the truncated FFT. The implementation is
derived and tuned using the Spiral system for code gener-
ation. This library currently uses 16 bit primes because of
the limitation of integer SSE vector instructions. We have
not implemented the truncated FFT.

2. A PARALLEL FFT
Let a(x) =

∑d
i=0 aix

i be a polynomial with coefficients
ai ∈ Zp and let ω be a primitive n’th root of unity in Zp

with n = 2k and n > d. Figure 1 is an in-place recursive
Radix 2 discrete FFT that outputs

F = [a(1), a(ω), a(ω2), . . . , a(ωn−1)]

the discrete Fourier transform of a(x). The input A =
[a0, a1, ..., ad, 0, 0, ..., 0] is an array of size n of the coefficients

of a(x) padded with zeroes, W = [1, ω, ω2, . . . , ωn/2−1] is an
array of size n/2, and T is an array of size n of working
memory.



void fft1( int *A, int n, int stride,

int *W, int p, int *T )

{ int i,n2,t;

if( n==1 ) return;

n2 = n/2;

// Step 1 : permutation

for( i=0; i<n2; i++ ) {

T[ i] = A[2*i];

T[n2+i] = A[2*i+1]; }

// Step 2 : recursive calls

fft1( T, n2, stride+1, W, p, A );

fft1( T+n2, n2, stride+1, W, p, A+n2 );

// Step 3 : arithmetic (butterfly)

for( i=0; i<n2; i++ ) {

t = mulmod(W[i<<stride],T[n2+i],p);

A[ i] = addmod(T[i],t,p);

A[n2+i] = submod(T[i],t,p); }

return;

}

Figure 1: C code for the FFT

Step 1 moves the even coefficients of a(x) to the first half
of T and the odd coefficients of a(x) to the second half so
that T = [a0, a2, ..., an

2
−2, a1, a3, . . . , an

2
−1]. The two recur-

sive calls on the even and odd coefficients of a(x) use the
first half and second half of A as temporary space. They are
independent and can be executed in parallel. The two for
loops may also be parallelized.

Letting F (n) be the number of multiplications done in Zp

done by this FFT. We have F (n) = 2F (n
2

) + n
2

multiplica-
tions for n > 1. Solving the recurrence with F (1) = 0 we
obtain F (n) = n

2
log2 n multiplications (see Theorem 8.15

in [6]).
There are four immediate issues that we address here.

2.1 Memory access of W
The algorithm accesses the elements of W in step 3. It

does so once sequentially as 1, ω, ω2, ω3, . . . with stride =
0. In the two recursive calls where stride = 1, it accesses
the even powers 1, ω2, ω4, . . . twice. If n = 220, in the mid-
dle of the recursion, when n = 1024 it accesses the powers
ω0, ωn, ω2n, . . . 1024 times. This will cause severe cache
misses. Our solution is to append to W all power sequences
of ω that we need. That is we construct

W = [ 1, ω1, ω2, ..., ω
n
2
−1,

1, ω2, ω4, ..., ω
n
2
−2,

1, ω4, ω16, ..., ω
n
2
−4, ..., 1, ωn/4, 1, 0 ]

with a 0 at the end (not used) to make the length a power
of 2. This requires no additional multiplications in Zp but
doubles the space needed for W from n

2
to n. We pass a

pointer in the recursive calls toW+n
2

as shown below so that
the powers ω are always accessed sequentially in memory.

void fft1( int *A, int n, int *W, int p, int *T )

{ ...

// Step 2 : recursive calls

fft1( T, n2, W+n2, p, A );

fft1( T+n2, n2, W+n2, p, A+n2 );

// Step 3 : arithmetic

for( i=0; i<n2; i++ ) {

t = mulmod(W[i],T[n2+i],p);

A[ i] = addmod(T[i],t,p);

A[n2+i] = submod(T[i],t,p); }

return;

}

2.2 The recursion base
This recursive implementation of the FFT has a locality

advantage over an iterative version but this comes at a cost
of recursion overhead in both the serial version with func-
tion call overhead and also the parallel versions with Cilk
overhead. Rather than using a non-recursive version of the
FFT, the serial overhead can be reduced by hard coding the
base for either n = 2, n = 4, n = 8, etc. For example for
n = 2 we may use

if( n==2 ) { int t1,t2;

t1 = addmod( A[0], A[1], p );

t2 = submod( A[0], A[1], p );

A[0] = t1; A[1] = t2; return;

}

Here we have eliminated multiplication by ω = 1 which saves
n
2

multiplications. If we do this for n = 4 we can eliminate
more recursive calls, and save an additional n

4
multiplica-

tions. We found this to be effective also for n = 8. NTL [21]
does this up to n = 4.

Naively parallelizing the recursive calls in fft1 in Cilk C
by doing

spawn fft1( T, n2, W+n2, p, A );

spawn fft1( T+n2, n2, W+n2, p, A+n2 );

sync; // wait till both tasks complete

means all recursive calls can be executed in parallel. How-
ever, the work in the FFT for n under 1000 is too small to
parallelize in Cilk because the Cilk overhead becomes sig-
nificant. It is better to set a cutoff below which the FFT is
simply executed serially as shown below. The optimal value
for the cutoff can be determined by experiment.

#define CUTOFF 100000

cilk void parfft1( int *A, int n,

int *W, int p, int *T )

{ int i,n2,t;

// Step 0 : for small n use serial code

if( n<CUTOFF ) return fft1( A,n,W,p,T );

...

// Step 2 : recursive calls

spawn parfft1( T, n2, W+n2, p, A );

spawn parfft1( T+n2, n2, W+n2, p, A+n2 );

sync;

...

return;

}

2.3 Arithmetic
If p is a 31 bit prime, to multiply a× b mod p we can in

C use a 64 bit integer, a long int, to hold the 62 bit product
a× b before dividing by p. Multiplication is

inline int mulmod(int a, int b, int p)

{ return (long) a * b % p; }

The cost of the hardware division instruction, however, is
prohibitive. On an Intel E5-2680 v2 processor, the integer



multiplication a× b costs 3 cycles but one division of ab by
p costs 21 cycles. There are many papers in the literature
that replace the division by multiplications. We are using
the algorithm described by Möller and Torbjorn in [15]. We
explain the basic idea here.

Let c = ab be the 62 bit integer product. We first com-
pute the quotient q of c ÷ p then the remainder r using
r = c − pq. The idea to compute the quotient is to pre-
compute s = 2k/p to 64 bits of precision then the quotient
is approximately (s× c)/264. This reduces c mod p to two
multiplications plus some shifts and other cheap operations.
Our C implementation for computing ab mod p takes 7.6
cycles in an unrolled loop for a 31 bit prime p.

We noticed, however, that the gcc compiler will automat-
ically replace division by p with multiplications if p is hard-
coded and that the code generated by the compiler takes
3.8 cycles in an unrolled loop. Therefore we have compiled
copies of the code for each prime with the primes hardwired
in the code. We illustrate for p1.

void fft1p1( int *A, int n, int *W, int *T )

{ int i,n2,t,p;

if( n==1 ) return;

p = 2013265921; // p1 = 15 x 2^27 + 1

...

}

If p is a 31 bit prime and we use signed 32 bit integers
then we can encode addition a+ b and subtraction a− b in
Zp without overflow as follows

inline int addmod(int a, int b, int p)

{ int t = a-p+b;

if( t<0 ) t += p;

return t;

}

inline int submod(int a, int b, int p)

{ int t = a-b;

if( t<0 ) t += p;

return t;

}

In step 3, the heart of the FFT, because there is a subtrac-
tion and an addition for every multiplication, these branches
have a huge impact on performance. Replacing the branch
if( t<0 ) t+= p; with t += (t>>31) & p; on modern pro-
cessors, speeds up the entire FFT by a factor of 2. This was
a surprise to us.

2.4 Space used
Figure 2 shows how to multiply c(x) = a(x)×b(x) mod p

using the FFT. The algorithm computes c(x) using

n−1FFT ( FFT (a, ω, n)× FFT (b, ω, n), ω−1, n )

where × denotes point-wise multiplication.
If we want to execute the two forward transforms in steps
4 and 5 in parallel only W can be shared so we will need
arrays for each of A,B,W, T and C of size n thus 5n units
of storage. If we do this for m primes in parallel the to-
tal space needed is 5mn units of storage. To multiply two
polynomials of degree one billion, the FFT will use n = 231.
Since there are no 32 bit primes p with n|p−1 we use two 63
bit primes. Thus the total space needed is 10n words which
is 160 gigabytes. In Section 3.1 we will reduce the space to
3mn units of storage and in Section 3.4 further to 2 2

3
mn.

1 Create W , the array of powers of ω.

2 Create A = [a0, a1, . . . , ada, 0, 0, ..., 0] ∈ Zn
p .

3 Create B = [b0, b1, . . . , bda, 0, 0, ..., 0] ∈ Zn
p .

4 Compute fft1(A,ω, n,W, T, p)

5 Compute fft1(B,ω, n,W,C, p)

6 Compute Ci = Ai ×Bi mod p for i = 0, 1, ..., n− 1.

7 Create array W of inverse powers of ω.

8 Compute fft1(C,ω−1, n,W, T, p)

9 Compute Ci = n−1 × Ci mod p for i = 0, 1, ..., n− 1.

Figure 2: Multiplying a× b using the FFT

Steps 1, 2 and 3 can be executed in parallel. Likewise
steps 6 and 7 may be executed in parallel. Note, in step
7 the inverses can be computed from the original powers
without any additional multiplications from ω−i = −ω

n
2
−i.

In step 9, multiplication by n−1 results in an additional
pass through C. This pass can be eliminated by delaying
multiplication of Ci by n−1 until Chinese remaindering.

We summarize by counting the number of multiplications
M(n) per prime for later reference. The three FFTs in steps
4,5 and 8 do 3F (n) = 3

2
n log2 n− 3

2
n multiplications. There

are n
2
− 1 multiplications in step 1 and n multiplications in

step 6 so M(n) = 3
2
n log2 n+O(1) multiplications.

3. TIME AND SPACE OPTIMIZATIONS

3.1 Optimization 1: Eliminating sorting
Figure 3 below is C code for a alternative radix 2 ver-

sion of the FFT. The two algorithms fft1 and fft2 for
the FFT presented in Figures 1 and 3 are known in the
literature as the decimation in time (DIT) FFT and the
decimation in frequency (DIF) FFT. Both compute F =

[a(1), a(ω), a(ω2), . . . , a(ω(n−1))], the Fourier transform of
a(x).

void fft2( int *A, int n, int *W, int p, int *T )

{ int i,n2,t;

if( n==1 ) return;

n2 = n/2;

// Step 1 : arithmetic

for( i=0; i<n2; i++ ) {

T[i] = addmod(A[i],A[n2+i],p);

t = submod(A[i],A[n2+i],p);

T[n2+i] = mulmod(t,W[i],p); }

// Step 2 : recursive calls

fft2( T, n2, W+n2, p, A );

fft2( T+n2, n2, W+n2, p, A+n2 );

// Step 3 : permute

for( i=0; i<n2; i++ ) {

A[ 2*i] = T[i];

A[2*i+1] = T[n2+i]; }

return;

}

Figure 3: Second FFT construction

To see how the two FFTs differ we first express F = V a
where a = [a0, a1, . . . , an−1]T is the coefficient vector and
V is the associated Vandermonde matrix. For n = 4 with



ω = i the matrix

V =


1 1 1 1

1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

 .

Algorithm fft1 first permutes the input [a0, a1, a2, a3] to be
[a0, a2, a1, a3] using the permutation matrix

P =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .
It then multiplies by A then by B where

A =


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

 and B =


1 0 1 0

0 1 0 i

1 0 −1 0

0 1 0 −i

 .
So fft1 uses the matrix factorization V = BAP . Algorithm
fft2 multiplies first by BT then by A then P , thus using
the matrix factorization V = PABT . Note V T = V and
(BAP )T = PTATBT = PABT .

If we are using the FFT to compute c(x) the product of
a(x)× b(x) in Zp[x] with ω ∈ Zp then we will compute

c(x) = n−1 FFT (FFT (a, ω, n)× FFT (b, ω, n), ω−1, n)

where we can use either fft1 or fft2 for the FFT here. If
we do this as follows

c(x) = n−1
fft1(fft2(a, ω, n)× fft2(b, ω, n), ω−1, n)

then since the permutation P satisfies P 2 = I, the permu-
tation at end of fft2 cancels out the permutation at the
beginning of fft1. Therefore we can simply eliminate both
permutation steps from both fft1 and fft2. Moreover, we
can eliminate T and save half the data movement and one
third of the memory. The two radix 2 FFT codes become

void fft1( int *A, int n, int *W, int p )

{ int i,n2,s,t;

if( n==1 ) return; else n2 = n/2;

fft1( A, n2, W+n2, p );

fft1( A+n2, n2, W+n2, p );

for( i=0; i<n2; i++ ) {

s = A[i];

t = mulmod(W[i],A[n2+i],p);

A[ i] = addmod(s,t,p);

A[n2+i] = submod(s,t,p); }

return;

}

and

void fft2( int *A, int n, int *W, int p )

{ int i,n2,s,t;

if( n==1 ) return; else n2 = n/2;

for( i=0; i<n2; i++ ) {

s = addmod(A[i],A[n2+i],p);

t = submod(A[i],A[n2+i],p);

A[ i] = s;

A[n2+i] = mulmod(t,W[i],p); }

fft2( A, n2, W+n2, p );

fft2( A+n2, n2, W+n2, p );

return;

}

3.2 Optimization 2: Butterfly throughput
We have implemented a Radix-4 FFT for both versions of

the FFT. A recursive Radix-4 FFT does four FFTs of size
n/4. See Chapter 11 of [3] for details. The code for the DIF
FFT is

void fft2( int *A, int n, int *W, int p )

{ int i,n2,n3,n4;

if( n==1 ) return;

if( n==2 ) { ... }

n2 = n/2; n4 = n/4; n3 = n2+n4;

for( i=0; i<n4; i++ ) {

... radix 4 butterfly ...

}

fft2( A, n4, W+n4, p );

fft2( A+n4, n4, W+n4, p );

fft2( A+n2, n4, W+n4, p );

fft2( A+n3, n4, W+n4, p );

return;

}

where the radix 4 butterfly is given by

s1 = Ai +Ai+n
2

s2 = Ai+n
4

+Ai+ 3n
4

t1 = (Ai −Ai+n
2

)ωi

t2 = (Ai+n
4
−Ai+ 3n

4
)ωi+n

4

Ai = s1 + s2
Ai+n

4
= (s1 − s2)ω2i

Ai+n
2

= t1 + t2
Ai+ 3n

4
= (t1 − t2)ω2i

One advantage of the Radix-4 FFT is that we save half the
passes through the data. A second advantage is that the
radix 4 butterfly enables the compiler to improve through-
put. In our implementation we have also unrolled the loop
to count i+=2 to further improve throughput. Also, we only
need to store the following sequences of powers of ω in W

W = [ ωi for 0 ≤ i < n/2,

ω4i for 0 ≤ i < n/8,

ω16i for 0 ≤ i < n/16, . . . ].

Thus the memory needed for W is reduced from n to 2
3
n.

The column labelled radix 2 in Table 2 shows the gain. We
also tried a Radix-8 FFT. The gain was less than 2%.

Because ω
n
2 = −1 it follows that the quantity j = ω

n
4

satisfies j2 = −1 thus j is the complex unit. Therefore
ωi+n/4 = ωij and the radix 4 butterfly can be rearranged as
follows so that there are three multiplications by powers of
ω and one multiplication by j

s1 = Ai +Ai+n
2

s2 = Ai+n
4

+Ai+ 3n
4

t1 = Ai −Ai+n
2

t2 = (Ai+n
4
−Ai+ 3n

4
) j

Ai = s1 + s2
Ai+n

4
= (s1 − s2)ω2i

Ai+n
2

= (t1 + t2)ωi

Ai+ 3n
4

= (t1 − t2)ω3i

In C, multiplication by j is free so this saves one quarter of
the complex multiplications. This makes the Radix-4 FFT
popular for floating point FFT implementations. However,
in Zp, multiplication by j = ωn/4 is no different than mul-
tiplication by other powers of ω so nothing is gained. Are



there any arithmetic optimizations in the Radix-4 butterfly
available to Zp? In the four subtractions of the form (a−b)ωk

the difference a−b can be computed without reduction mod
p in an long accumulator using ((long) a+p-b)*W[k] % p.
This saves an additional 9% of the total FFT time for 31 bit
primes.

3.3 Optimization 3: Chinese remaindering
After using the FFT to multiply ci(x) := a(x) × b(x)

mod pi for m primes p1, p2, . . . , pm we must solve the Chi-
nese remainder problem

{ c̄(x) ≡ ci(x) mod pi for 1 ≤ i ≤ m }

for c̄(x) then we reduce the integer coefficients of c̄(x) mod
q to obtain c(x). Although the Chinese remaindering costs
O(m2n) and the 3m FFTs cost O(mn logn) and m is small,
the cost of the Chinese remaindering is significant even for
large n, so it needs to be done carefully.

Let M = p1 × p2 × · · · × pm. The Chinese remainder
theorem says, given integers u1, u2, . . . , um there exists a
unique integer 0 ≤ u < M satisfying u ≡ ui mod pi.

To compute u many authors, e.g., von zur Gathen and
Gerhard in [6], use the following method. Let

w = w1
M

p1
+ w2

M

p2
+ · · ·+ wm

M

pm
. (1)

If one reduces (1) modulo pi all the terms on the right-hand-
side except one vanish so that if we solve ui ≡ wi(M/pi)
mod pi for wi then the integer w will satisfy w ≡ ui mod pi.
What is attractive about this approach is that we can pre-
compute the inverses (M/pi)

−1 mod pi. Then computing
wi = ui(M/pi)

−1 mod pi requires one multiplication and
one division by pi. And if it were the case that w = u if we
also precompute (M/pi) mod q then we could compute w
mod q using (1) in an accumulator using m multiplications
and only one division by q. Unfortunately w may not be
equal to u, that is, w = u + αM for some α ≥ 0. How big
can w be? We have 0 ≤ wi < pi therefore

w ≤ (p1 − 1)
M

p1
+ (p2 − 1)

M

p2
+ · · ·+ (pm − 1)

M

pm

= mM − M

p1
− M

p2
− · · · − M

pm
.

This maximum for w is attained when ui = −(M/pi) mod pi.
For in this case we have

wi = ui

(
M

pi

)−1

= −M
pi

(
M

pi

)−1

≡ −1 mod pi.

Therefore w approaches m ×M . Thus to obtain u mod q,
one must first construct w, which requires multi-precision
arithmetic in general, then reduce w mod M to get u then
reduce u mod q.

We advocate instead for the mixed radix (Newton) repre-
sentation. Let

v = v1 + v2p1 + v3p1p2 + · · ·+ vmp1p2 . . . pm−1. (2)

We solve (2) modulo p1, p2, . . . , pm for v1, v2, . . . , vm in that
order to get, for example,

v3 = (u3 − v1 − v2p1) (p1p2)−1 mod p3.

Since 0 ≤ vi < pi the maximum value for v occurs when

vi = pi − 1 from which we have

v ≤ (p1− 1) + (p2− 1)p1 + · · ·+ (pm− 1)p1p2 . . . pm−1. (3)

The right hand side of (3) collapses to M−1 therefore v = u.
Furthermore, since our goal is to compute u mod q, we do
not need to explicitly construct v. If we pre-compute p1p2
mod q we can compute v0 + v1p1 + v2p1p2 mod q using an
accumulator with one division by q instead of two. Further
optimizations are possible. Assuming in Figure 2 that we
did not multiply C by n−1 then we must do that here. We
illustrate this for m = 3 primes p1, p2, p3.

We pre-compute n1 = n−1 mod p1, n2 = n−1 mod p2,
z1 = p−1

1 mod p2, z2 = (p1p2)−1 mod p3, and z3 = p1p2
mod q. Now we can compute u mod q using an accumu-
lator as follows using 8 multiplications and 6 divisions per
coefficient of c(x).

1 u1 = n1 × u1 mod p1
2 u2 = n2 × u2 mod p2
3 v1 = u1

4 v2 = (u2 − v1)× z1 mod p2
5 t = (n3 × u3 − v1 − v2 × p1) mod p3
6 v3 = t× z2 mod p3
7 u = (v1 + v2 × p1 + v3 × z3) mod q

3.4 Optimization 4: W parallelization
Recall that the total number of multiplications done per

prime is M(n) = 3
2
n log2 n+O(1). Although computing the

powers 1, ω, ω2, ..., ωn/2−1 requires only n
2
−2 multiplications

which seems few compared with M(n), even at degree 106,
the time spent doing them is enough to significantly limit
parallel speedup. Amdahl’s law says that on a machine with
N cores, parallel speedup Q is bounded by

Q ≤ P + S

P/N + S
(4)

where P is work done in parallel and S is the sequential
work. If we compute W sequentially and everything else in
parallel, then S = n

2
and P = M(n) − n

2
. Evaluating the

right-hand-side of (5) for N = 16 cores, we calculate parallel
speedup Q ≤ 12.8 for n = 220 and Q ≤ 13.7 for n = 230.

For n > 216 we compute W a block at a time with block-
size m = 216. We compute β = ωm using repeated squaring
modulo p then we compute blocks

[βi, ωβi, ω2βi, . . . , ωm−1βi]

for 0 ≤ i < n/m in parallel by calling the routine below
with input m,ω, ω4, βi and pointer W + mi. To improve
throughput we have unrolled the loop.

void Wpowersp1( int m, long w, long w4,

int betai, int *W )

{ int i,p;

p = 2013265921; // p1 = 15 x 2^27 + 1

W[0] = betai; W[1] = w*W[0] % p;

W[2] = w*W[1] % p; W[3] = w*W[2] % p;

for( i=4; i<m; i+= 4 ) {

W[i ] = w4*W[i-4] % p;

W[i+1] = w4*W[i-3] % p;

W[i+2] = w4*W[i-2] % p;

W[i+3] = w4*W[i-1] % p;

return;

}



4. BENCHMARKS
We used an Intel server with 128 gigabytes of RAM run-

ning RedHat Linux. It has two Intel Xeon E5-2680 v2
processors. Each has 10 cores and runs at 2.8 GHz (3.6
GHz turbo). Thus the maximum parallel speedup is 20 ×
2.8/3.6 = 15.55×. The maximum throughput of our assem-
bler code for multiplication modulo a 63 bit prime using the
algorithm from [15] is 5.28 clock cycles.

We multiplied two polynomials of degree 1 billion in Zq[x]
for q = 231 − 1 using two 63 bit primes. The space needed
for the two inputs and output 32 gigabytes and the work-
ing space used by our algorithm is 85.3 gigabytes. The time
on one core was 1376.86 seconds and 82.79 seconds on 20
cores yielding a parallel speedup of a factor of 16.6, more
than the theoretical maximum (linear speedup) which hap-
pens because of improved locality. The throughput achieved

by our FFT code on 20 cores is 82.79×3.0 109×20cores
2M(n)

= 24.9

clock cycles per core for one multiplication, one division, one
addition and one subtraction. Note 2M(n) is the number of
multiplications (see Section 2.4) for the two 63 bit prime
modular multiplications.

Table 1 shows the parallel speedup achieved by our imple-
mentation for multiplying polynomials Zq[x] for q = 231 − 1
and how our code compares with Maple 18 and Magma 2.13
which are using the Kronecker substitution (Section 1). Col-
umn 1 is the degree (in millions) of the input polynomials
a(x) and b(x). Column 2 and 3 are the time to compute a2

and a × b using a serial code (no Cilk). The next columns
use our parallel Cilk code for 1,3,6,10,15 and 20 cores. The
data shows that the Cilk overhead on 1 core is not negligi-
ble. The timings for Maple 18 and Magma 2.13 are similar
because they both use GMP to multiply long integers. The
code we used to generate and multiply the polynomials in
Zq[x] in Maple and Magma is given in the Appendix.

That data shows that our serial code is about 3 times
faster than the Kronecker substitution using GMP 5.0’s in-
teger multiplication in Maple and Magma. It means that our
3 prime FFT implementation is 3 times faster than the GMP
integer multiplication which we think is a very good result.
That data also shows that we get good parallel speedup at
degree 1 million. We are presently trying to tune the various
cutoffs so that we improve parallel speedup for lower degree
without sacrificing speed at higher degree.

Table 2 shows the effect of some of optimizations to the
serial code for multiplying a × b in Zq[x] for q = 231 − 1
using the modular method. Column 1 is the degree (in mil-
lions) of the input polynomials. Columns 2 and 8 (opt) are
timings for fully optimized codes for three 31 bit primes and
two 63 bit primes, respectively. Column 3 (+div) uses hard-
ware division to reduce mod p (see Section 2.3). Columns 4
and 9 (add/sub) are timings with addition and subtraction
using an if statement (see Section 2.3). Columns 5 and 10
(W stride) show the disastrous effect of cache misses if we
do not do the optimization in Section 2.1 for W . Columns
6 and 11 (+sort) is without the optimization in Section 3.1.
Columns 7 and 12 (radix 2) show what happens if we use
simple Radix-2 FFT codes instead of Radix-4 FFT codes
with loop unrolling (see Section 3.2). All of the optimiza-
tions clearly matter if we want good serial code.

Tables 3 and 4 show the impact of reducing parallelism.
In both tables the first column is the degree (in millions)
of the input polynomials a and b. The second and third

columns are the times (in seconds) for multiplying with all
parallelism on for 1 core and 20 cores. The fourth column
is the parallel speedup (the time in column 2 divided by
the time in column 3). The timings in column −ppar are
for using 20 cores but doing each prime sequentially instead
of in parallel. This shows how good the the FFT is paral-
lelized. The timings in column −wpar are for 20 cores with
W constructed sequentially.

Finally, Table 5 shows the improvement on typical desktop
processors at degree 1 million.

5. CONCLUSION AND CURRENT WORK
We have developed serial code for multiplying polynomi-

als in Zq[x] which uses Chinese remaindering. It multiplies
modulo several primes p1, p2, . . . , pm where multiplication
modulo each prime uses the FFT. We have parallelized the
code on the primes and we have parallelized the FFT. We
get good parallel speedup at degree one million on multi-
core platforms. We mention two applications where such
high degree multiplications naturally arise.

The first is to multiply two large integers a×b. If B is the
base of the integer representation (e.g. GMP uses B = 264),
and a = f(B) where f(x) =

∑na
i=0 aix

i and b = g(B) where

g(x) =
∑nb

i=0 bix
i then we can obtain c = a × b by first

multiplying h(x) = f(x) × g(x) in ZB [x] using our parallel
algorithm then evaluating h(x) at x = B to get c.

Another application is sparse polynomial interpolation when
the number of terms t of the polynomial is very large. The
algorithm of Hu and Monagan [10] computes the support of
the polynomial by picking a prime q of a certain form. The
most expensive step of the algorithm requires computation
of the roots of a polynomial λ(z) ∈ Zq[z] of degree t. For
large t fast multiplication in Zq[z] can be used to accelerate
this step. See see Algorithm 14.15 of [6] and Shoup [20]. The
second author is presently implementing these algorithms.
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[15] Niels Möller and Torbjorn Granlund. Improved
division by invariant integers IEEE Transactions on
Computers, 60, 165–175, 2011.

[16] M. B. Monagan. In-place arithmetic for polynomials
over Zn. Proceedings of DISCO ’92, Springer-Verlag
LNCS, 721, pp. 22–34, 1993.
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Appendix
Maple code used for timing multiplication in Zq[x].

q := 2147483647;

d := 10^6;

A := Randpoly(d,x) mod q:

B := Randpoly(d,x) mod q:

time[real]( Expand(A*A) mod q );

time[real]( Expand(A*B) mod q );

Magma code used for timing multiplication in Zq[x].

q := 2147483647;

Fq := FiniteField(q);

P<x> := PolynomialRing(Fq);

d := 10^6;

f := P ! [ Random(Fq) : s in [0..d] ];

g := P ! [ Random(Fq) : s in [0..d] ];

time s := f*f;

time h := f*g;


