
A Fast Parallel Sparse Polynomial GCD Algorithm

Jiaxiong Hu and Michael Monagan
Department of Mathematics, Simon Fraser University

Burnaby, British Columbia, V5A 1S6, Canada
jha107@sfu.ca and mmonagan@sfu.ca

ABSTRACT
We present a parallel GCD algorithm for sparse multivariate
polynomials with integer coefficients. The algorithm com-
bines a Kronecker substitution with a Ben-Or/Tiwari sparse
interpolation modulo a smooth prime to determine the sup-
port of the GCD. We have implemented our algorithm in
Cilk C. We compare it with Maple and Magma’s implemen-
tations of Zippel’s GCD algorithm.

1. INTRODUCTION
Let A and B be two polynomials in Z[x0, x1, . . . , xn]. In

this paper we present a sparse modular GCD algorithm for
computing G = gcd(A,B) the greatest common divisor of
A and B. We will compare our algorithm with Zippel’s
sparse GCD algorithm from [25]. Zippel’s algorithm is the
main GCD algorithm currently used by Maple, Magma and
Mathematica.

Let A = GĀ =
∑dA
i=0 aix

i
0, B = GB̄ =

∑dB
i=0 bix

i
0 and

G =
∑dG
i=0 cix

i
0 where ai, bi and ci are in Z[x1, . . . , xn]. We

will assume gcd(ai) = 1 and gcd(bi) = 1, that is, the con-
tents have already been computed and divided out.

Let #A denote the number of terms in A and let Supp(A)
denote the set of monomials appearing in A.

Let LC(A) denote the leading coefficient of A taken in
x0. Let Γ = gcd(LC(A), LC(B)) = gcd(adA, bdB). Since
LC(G)|LC(A) and LC(G)|LC(B) it must be that LC(G)|Γ
thus Γ = LC(G)∆ for some polynomial ∆ ∈ Z[x1, . . . , xn].

Example 1. If G = x1x
2
0+x2x0+3, Ā = (x2−x1)x0+x2

and B̄ = (x2−x1)x0 +x1 +2 we have #G = 3, LC(G) = x1,
Γ = x1(x2−x1), ∆ = x2−x1 and Supp(G) = {x1x20, x2x0, 1}.

We provide an overview of the GCD algorithm. Let H =
∆ × G and hi = ∆ × ci so that H =

∑dG
i=0 hix

i
0. Our

algorithm will compute H not G. After computing H it
must then compute gcd(hi) which is ∆ and divide H by ∆
to obtain G. We compute H modulo a sequence of primes
p1, p2, . . . , and recover the integer coefficients of H using
Chinese remaindering. The use of Chinese remaindering is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’16, July 19-22, 2016, Waterloo, ON, Canada
c© 2016 ACM. ISBN 978-1-4503-4380-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2930889.2930903

standard. Details may be found in [4, 8]. Let H1 be the
result of computing H mod p1. For the remaining primes
we use the sparse interpolation approach of Zippel [25] which
assumes Supp(H1) = Supp(H). From now on we focus on
the computation of H mod p1.

To compute H mod p the algorithm will pick a sequence
of points β1, β2, . . . from Znp , compute monic images

gj = gcd(A(x0, βj), B(x0, βj)) ∈ Zp[x0]

of G, in parallel, then multiply gj by the scalar Γ(βj) ∈
Zp. Because the scaled image Γ(βj) × gj(x0) is an image
of a polynomial, H, we can use polynomial interpolation
to interpolate each coefficient hi(x1, . . . , xn) of H from the
coefficients of the scaled images.

Let t = maxdGi=0 #hi. The parameter t measures the spar-
sity of H. Let d = maxni=1 degxi H and D = maxdGi=0 deg hi.
The cost of sparse polynomial interpolation algorithms is de-
termined mainly by the number of points β1, β2, . . . needed
and also the size of the prime p needed. These all depend on
t, d and D. Table 1 below presents data for several sparse
interpolation algorithms.

To get a sense for how large the prime needs to be for the
different algorithms we include data in Table 1 for the follow-
ing benchmark problem: Let G, Ā, B̄ have nine variables
(n = 8), degree d = 20 in each variable, and total degree
D = 60 (to better reflect real problems). Let G have 10,000
terms with t = 1000. Let Ā and B̄ have 100 terms so that
A = GĀ and B = GB̄ have about one million terms.

#points size of p benchmark
Zippel [1979] O(ndt) p > 2nd2t2 = 6.4× 109

BenOr/Tiwari [1988] O(t) p > pDn = 5.3× 1077

Monagan/Javadi [2010] O(nt) p > nDt2 = 4.8× 108

Discrete Logs O(t) p > (d+ 1)n = 3.7× 1010

Table 1: Some sparse interpolation algorithms

Notes: the figure O(ndt) for Zippel’s algorithm is for the
worst case. The average case (for random inputs) is O(dt)
points. Also, Kaltofen and Lee showed in [14] how to mod-
ify Zippel’s algorithm so that it will work for primes much
smaller than 2nd2t2.

The primary disadvantage of the Ben-Or/Tiwari algorithm
is the size of the prime. In [12] Javadi and Monagan mod-
ify the Ben-Or/Tiwari algorithm to work for a prime of size
O(nDt2) but using O(nt) points.

The discrete logs method, first proposed by Murao and
Fujise [19], is a modification of the Ben-Or/Tiwari algorithm
which computes discrete logarithms in the cyclic group Z∗p.

We use this method. We give details for it in Section 1.2.
The advantage over the Ben-Or/Tiwari algorithm is that the
prime size is O(n log d) bits instead of O(D logn) bits.

In the GCD algorithm, not all evaluation points can be
used. If gcd(Ā(x0, βj), B̄(x0, βj)) 6= 1 then βj is said to
be unlucky and the image gj cannot be used to interpolate
H. In Zippel’s algorithm, where the βj are chosen at ran-
dom from Znp , unlucky βj , once identified, can simply be
skipped. This is not the case for the evaluation point se-
quences used by the Ben-Or/Tiwari algorithm and the dis-
crete logs method. In Section 1.4, we modify these point
sequences to handle unlucky evaluation points.

Our modification for the discrete logarithm sequence in-
creases the size of p which negates some of its advantage.
This led us to consider using a Kronecker substitution on
x1, x2, . . . , xn to map the GCD computation into a bivari-
ate computation in Zp[x0, y]. Some Kronecker substitutions
result in all evaluation points being unlucky so they cannot
be used. We call these Kronecker substitutions unlucky. In
Section 2 we show (Theorem 1) that there are only finitely
many of them and how to detect them quickly so that a
larger Kronecker substitution may be tried.

If a Kronecker substitution is not unlucky there can still
be many unlucky evaluation points because the degree in
y of the resulting polynomials is exponential in n. This
prompted us to investigate the distribution of the unlucky
evaluation points. Our next contribution (Theorem 2) is a
result for the expected number of unlucky evaluations.

In Section 3 we assemble a Monte-Carlo GCD algorithm
which chooses p and computes H mod p. We have imple-
mented our algorithm in C and parallelized it using Cilk C.
We did this initially for 31 bit primes then for 63 bit primes.
The first timing results revealed that almost all the time
(over 95%) was spent in evaluating A(x0, βj) and B(x0, βj).
We describe an improvement for evaluation and how we par-
allelized it.

In Section 4 we compare our new algorithm with the C
implementations of Zippel’s algorithm in Maple and Magma.
The timing results are very promising. For our benchmark
problem, Maple takes 62,520 seconds, Magma dies with an
internal error, and our new algorithm takes 4.47 seconds on
16 cores. We conclude by discussing some ideas for reducing
the number of evaluation points and the size of p.

The proofs in the paper make use of the Schwartz-Zippel
Lemma and properties of the Sylvester resultant. We state
these results here for later use.

Lemma 1. Let F be a field and A and B be polynomi-
als in F [x0, x1, . . . , xn] with positive degree in x0. Let R =
resx0(A,B) denote the Sylvester resultant of A and B. Then

(i) R is a polynomial in F [x1, . . . , xn] and
(ii) degR ≤ degA degB (Bezout bound).

If α ∈ Fn satisfies degx0 A(x0, α) = degx0(A)
and degx0 B(x0, α) = degx0(B) then
(iii) gcd(A(x0, α), B(x0, α)) 6= 1

⇐⇒ resx0(A(x0, α), B(x0, α)) = 0 and
(iv) resx0(A(x0, α), B(x0, α)) = R(α).

Proofs may be found in Ch. 3 and Ch. 6 of [5]. Note
that the degree condition on α means that the dimension
of Sylvester’s matrix for A and B in x0 is the same as for
A(x0, α) and B(x0, α) which proves (iv).

Lemma 2. (Schwartz-Zippel [22, 25]). Let F be a field
and f ∈ F [x1, x2, . . . , xn] be non-zero with total degree d
and let S ⊂ F . If β is chosen at random from Sn then
Prob[f(β) = 0] ≤ d

|S| . In particular, if F = Zp and S = Zp
then Prob[f(β) = 0] ≤ d

p
.

1.1 Ben-Or Tiwari Sparse Interpolation
Let C(x1, . . . , xn) =

∑t
i=1 aiMi where ai ∈ Z and Mi are

monomials in (x1, . . . , xn). In our context, C represents one
of the coefficients of H = ∆G we wish to interpolate. Let
D = degC and let d = maxni=1 degxi C and let pn denote
the n’th prime. Let

vj = C(2j , 3j , 5j , . . . , pjn) for j = 0, 1, . . . , 2t− 1.

The Ben-Or/Tiwari sparse interpolation algorithm [3] inter-
polates C(x1, x2, . . . , xn) from the 2t points vj . Let mi =
Mi(2, 3, 5, . . . , pn) ∈ Z and let λ(z) =

∏t
i=1(z −mi) ∈ Z[z].

The algorithm proceeds in 4 steps.

1 Compute λ(z) from vj using the Berlekamp-Massey
algorithm [16] or the Euclidean algorithm [2, 24].

2 Compute the integer roots mi of λ(z).

3 Factor the integersmi using trial division by 2, 3, . . . , pn
from which we obtain Mi. For example, for n = 3, if
mi = 45000 = 233254 then Mi = x1

3x2
2x3

4.

4 Solve the following t × t linear system V a = b for the
unknown coefficients ai in C(x1, . . . , xn).

1 1 . . . 1
m1 m2 . . . mt

m1
2 m2

2 . . . mt
2

...
...

...
...

m1
t−1 m2

t−1 . . . mt−1
t




a1
a2
a3
...
at

 =


v0
v1
v2
...

vt−1


(1)

The matrix V above is a transposed Vandermonde matrix.
The linear system V a = b can be solved in O(t2) arithmetic
operations (see [26]). Note, the master polynomial P (Z) in
[26] is λ(z).

Notice that the largest integer in λ(z) is the constant term
Πt
i=1mi which is of size O(tn logD) bits. Moreover, in [13],

Kaltofen, Lakshman and Wiley noticed a severe expression
swell occurs if either the Berlekamp-Massey algorithm or
the Euclidean algorithm is used to compute λ(z) over Q.
For our purposes, because we want to interpolate H modulo
a prime p, we run steps 1,2, and 4 modulo p. Provided p >
maxti=1mi ≤ pDn the integers mi mod p remain unique. The
roots of λ(z) ∈ Zp[z] can be found using Rabin’s algorithm
[21] which has classical complexity O(t2 log p).

In practice, t is not known in advance so the algorithm
needs to be modified to also determine t. For p sufficiently
large, if we compute λ(z) after j = 2, 4, 6, . . . points, we will
see deg λ(z) = 1, 2, 3, . . . , t− 1, t, t, t, . . . with high probabil-
ity. Thus we simply wait until the degree of λ(z) does not
change. This is first discussed by Kaltofen, Lee and Lobo in
[14]. We will return to this in Section 3.1.

Let M(t) denote the cost of multiplying two polynomials
of degree t in Zp[t]. The fast Euclidean algorithm can be
used to accelerate Step 1. It has complexity O(M(t) log t).
See Ch. 11 of [7]. Computing the roots of λ(z) in Step 2
can be done in O(M(t) log t log p). See Ch 14 of [7]. Step 4
may be done in O(M(t) log t) using fast interpolation. See
Ch 10 of [7].

1.2 Ben-Or/Tiwari with discrete logarithms
The discrete logarithm method modifies the Ben-Or/Tiwari

algorithm so that the prime needed is a little larger than
(d+ 1)n thus of size is O(n log d) bits instead of O(D logn).
Murao and Fujise [19] were the first to use this method.
Some practical aspects of it are discussed by van der Hoven
and Lecerf in [11]. We explain how the method works.

To interpolate C(x1, . . . , xn) we first pick a prime p of
the form p = q1q2q3 . . . qn + 1 satisfying qi > degxi C and
gcd(qi, qj) = 1. Finding such primes is not difficult and we
omit presenting an explicit algorithm here.

Next we pick a random primitive element α ∈ Zp which
we can do using the partial factorization p− 1 = q1q2 . . . qn
(see [23]). We set ωi = α(p−1)/qi so that ωqii = 1 and replace

the evaluation points (2j , 3j , . . . , pjn) with (ωj1, ω
j
2, . . . , ω

j
n).

After Step 1 we factor λ(z) in Zp[z] to determine the mi. If

Mi =
∏n
k=1 x

dk
k we have mi =

∏n
k=1 ω

dk
k . To compute dk

in Step 3 we compute the discrete logarithm x := logαmi,
that is, solve αx ≡ mi (mod p) for 0 ≤ x < p− 1. We have

x = logαmi = logα

n∏
k=1

ω
dk
k =

n∑
k=1

dk
p− 1

qk
. (2)

Taking (1) mod qk we obtain dk = x[(p− 1)/qk]−1 mod qk.
Step 4 remains unchanged.

For p = q1q2 . . . qn + 1, a discrete logarithm can be com-
puted inO(

∑n
i=1

√
q
i
) multiplications in Zp using the Pohlig-

Helman algorithm. See [20, 23]. Since the qi ∼ d this leads

to an O(n
√
d) cost. Kaltofen showed in [15] that this can

be made polynomial in log d and n if one uses a Kronecker
substitution to reduce multivariate interpolation to a uni-
variate interpolation and uses a prime p > (d + 1)n of the
form p = 2ks+ 1 with s small.

1.3 Bad and Unlucky Evaluation Points
Let A and B be non constant polynomials in Z[x0, . . . , xn]

with G = gcd(A,B) and let Ā = A/G and B̄ = B/G. Let p
be prime such that LC(A)LC(B) mod p 6= 0.

Definition 1. Let α ∈ Znp and let ḡα(x) = gcd(Ā(x, α),
B̄(x, α)). We say α is bad if LC(A)(α) = 0 or LC(B)(α) =
0 and α is unlucky if deg ḡα(x) > 0.

Example 2. Let G = (x1 − 16)x0 + 1, Ā = x20 + 1 and
B̄ = x20 + (x1 − 1)(x2 − 9)x0 + 1. Then LC(A) = LC(B) =
x1 − 16 so {(16, β) : β ∈ Zp} are bad and {(1, β) : β ∈ Zp}
and {(β, 9) : β ∈ Zp} are unlucky.

The algorithm cannot reconstructG using the image gα(x) =
gcd(A(x, α), B(x, α)) if α is unlucky. Brown’s idea in [4] to
detect unlucky α is based on the following Lemma.

Lemma 3. Let α and gα be as above and hα = G(x, α)
mod p. If α is not bad then hα|gα and degx gα ≥ degxG.

For a proof of Lemma 3 see Lemma 7.3 of [8]. Brown
only uses α which are not bad and the images gα(x) of least
degree to interpolate G. The following Lemma implies if the
prime p is large then unlucky evaluations points are rare.

Lemma 4. Prob[
α is bad

or unlucky
] ≤ degA degB+degA+degB

p−degA−degB
.

Proof: Prob[α is bad] = Prob[LC(A)(α)LC(B)(α) = 0]

≤ deg(LC(A))
p

+ deg(LC(B))
p

≤ degA+degB
p

. To determine

Prob[α is unlucky | α is not bad] we have α is unlucky

⇐⇒ gcd(Ā(x, α), B̄(x, α)) 6= 1 (by definition)

⇐⇒ resx(Ā(x, α), B̄(x, α)) = 0 (by Lemma 1)

⇐⇒ R(α) = 0 where R = resx0(Ā, B̄) (by Lemma 1).

Hence Prob[α is unlucky | α is not bad] ≤ degR
p−degA−degB

(by Schwartz-Zippel). Now the Prob[α is bad or unlucky]
≤ Prob[α is bad] + Prob[α is unlucky | α is not bad] ≤
degA+degB

p
+ degR

p−degA−degB
≤ degR+degA+degB

p−degA−degB
which by

Lemma 1 is ≤ degA degB+degA+degB
p−degA−degB

.

The following algorithm applies Lemma 3 to compute a
lower bound d for degxi G. Note, later in the paper when we
use Algorithm DegreeBound, if it happens that d > degxi G
(α is unlucky) then this won’t affect the correctness of our
algorithm, only the efficiency.

Algorithm DegreeBound(A,B,i)

Input: Non-zero A,B ∈ Z[x0, x1, . . . , xn] and an
integer i satisfying 0 ≤ i ≤ n.

Output: d ≥ degxi(G) where G = gcd(A,B).

1 Set LA = LC(A, xi) and LB = LC(B, xi).
So LA,LB ∈ Z[x0, . . . , xi−1, xi+1, . . . , xn].

2 Pick a prime p� degAdegB such that
LA mod p 6= 0 and LB mod p 6= 0.

3 Pick α = (α0, . . . , αi−1, αi+1, . . . , αn) ∈ Znp at random
until LA(α)LB(α) 6= 0.

4 Compute a = A(α0, . . . , αi−1, xi, αi+1, . . . , αn) and
b = B(α0, . . . , αi−1, xi, αi+1, . . . , αn).

5 Compute g = gcd(a, b) in Zp[xi] using the Euclidean
algorithm and output d = degxi g.

1.4 Unlucky evaluations in Ben-Or/Tiwari
Consider again Example 2 where G = (x1 − 16)x0 + 1,

Ā = x20+1 and B̄ = x20+ (x1−1)(x2−9)x0 +1. For the Ben-
Or/Tiwari points αj = (2j , 3j) for 0 ≤ j < 2t observe that
α0 = (1, 1) and α2 = (4, 9) are unlucky and α4 = (16, 81) is
bad. Since none of these points can be used to interpolate
G we need to modify the Ben-Or/Tiwari point sequence.
For the GCD problem, we want random evaluation points
to avoid bad and unlucky points. The following fix works.

Pick the first s > 0 such that 2s > p so that (2s, 3s, . . . , psn)
mod p is not fixed and use αj = (2j , 3j , . . . , pjn) for s ≤ j <
s+ 2t. Steps 1,2 and 3 work as before. To solve the shifted
transposed Vandermonde system Wc = u

ms
1 ms

2 . . . ms
t

m1
s+1 m2

s+1 . . . mt
s+1

...
...

...
...

m1
s+t−1 m2

s+t−1 . . . ms+t−1
t



c1
c2
...
ct

 =


vs
vs+1

...
vs+t−1


we first solve the transposed Vandermonde system V b = u

1 1 . . . 1
m1 m2 . . . mt

...
...

...
...

m1
t−1 m2

t−1 . . . mt−1
t



b1
b2
...
bt

 =


vs
vs+1

...
vs+t−1



as before to obtain b = V −1u. Observe that the matrix W =
V D where D is the t by t diagonal matrix with Di,i = ms

i .
To solve Wc = u we have

c = W−1u = (V D)−1u = D−1(V −1u) = D−1b.

Thus ci = um−si and we can solve Wc = u in O(t2 + t log s)
multiplications.

Referring again to Example 2, if we use the discrete log-
arithm evaluation points αj = (ωj1, ω

j
2) for 0 ≤ j < 2t

then α0 = (1, 1) is unlucky and also, since ωq11 = 1, all
αq1 , α2q1 , α3q1 , . . . are unlucky. Shifting the sequence to
start at j = 1 and picking qi > 2t is problematic because for
the GCD problem, t may be larger than max #ai,#bi, or
smaller; there is no way to know in advance. This difficulty
led us to consider using a Kronecker substitution.

2. KRONECKER SUBSTITUTIONS
We propose to use a Kronecker substitution to map a

multivariate polynomial GCD problem in Z[x0, x1, . . . , xn]
into a bivariate GCD problem in Z[x, y]. After making the
Kronecker substitution, we need to interpolate H(x, y) =
∆(x, y)G(x, y) where degyH(x, y) will be exponential in n.
To make discrete logarithms in Zp feasible, we follow Kaltofen
[15] and pick p = 2ks+ 1 > degyH(x, y) with s small.

Definition 2. Let D be an integral domain and let f be
a polynomial in D[x0, x1, . . . , xn]. Let r ∈ Zn−1 with ri >
0. Let Kr : D[x0, x1, . . . , xn] → D[x, y] be the Kronecker
substitution Kr(f) = f(x, y, yr1 , yr1r2 , . . . , yr1r2...rn−1).

Let di = degxi f be the partial degrees of f for 1 ≤ i ≤ n.
Observe that Kr is invertible if ri > di for 1 ≤ i ≤ n − 1.
Not all such Kronecker substitutions can be used, however,
for the GCD problem. We consider an example.

Example 3. Consider the following GCD problem

G = x+ y + z, Ā = x3 − yz, B̄ = x2 − y2

in Z[x, y, z]. Since degy G = 1 the Kronecker substitution

Kr(G) = G(x, y, y2) is invertible. But gcd(Kr(Ā),Kr(B̄))
= gcd(Ā(x, y, y2), B̄(x, y, y2)) = gcd(x3−y3, x2−y2) = x−y.
If we proceed to interpolate the gcd(Kr(A),Kr(B)) we will
obtain (x − y)Kr(G) in expanded form from which and we
cannot recover G.

We call such a Kronecker substitution unlucky. Theorem
1 below tells us that the number of unlucky Kronecker sub-
stitutions is finite. To detect them we will also avoid bad
Kronecker substitutions in an analogous way Brown did to
detect unlucky evaluation points.

Definition 3. Let Kr be a Kronecker substitution. We
say Kr is bad if degxKr(A) < degx0 A or degxKr(B) <

degx0 B and Kr is unlucky if degx gcd(Kr(Ā),Kr(B̄)) > 0.

Lemma 5. Let f ∈ Z[x1, . . . , xn] be non-zero and di ≥ 0
for 1 ≤ i ≤ n. Let X be the number of Kronecker substi-
tutions from the sequence rk = [d1 + k, d2 + k, . . . , dn−1 +
k] for k = 1, 2, 3, . . . for which Kr(f) = 0. Then X ≤
(n− 1)

√
2 deg f .

Proof: Kr(f) = 0 ⇐⇒ f(y, yr1 , yr1r2 , . . . , yr1r2...rn−1) = 0
⇐⇒ f mod 〈x1 − y, x2 − yr1 , . . . , xn − yr1r2...rn−1〉 = 0
⇐⇒ f mod 〈x2 − xr11 , x3 − x

r2
2 , . . . , xn − x

rn−1
n−1 〉 = 0.

Thus X is the number ideals I = 〈x2 − xr11 , . . . , xn − x
rn−1
n−1 〉

for which f mod I = 0 with ri = di+1, di+2, We prove
that X ≤ (n− 1)

√
2 deg f by induction on n.

If n = 1 then I is empty so f mod I = f and hence X = 0
and the Lemma holds. For n = 2 we have f(x1, x2) mod
〈x2 − xr11 〉 = 0 =⇒ x2 − xr11 |f. Now X is maximal when
d1 = 0 and r1 = 1, 2, 3, We have∑X
r1=1 r1 ≤ deg f =⇒ X(X+1)/2 ≤ deg f =⇒ X <

√
2 deg f.

For n > 2 we proceed as follows. Either xn − x
rn−1
n−1 |f or it

doesn’t. If not then the polynomial S = f(x1, . . . , xn−1, x
rn−1
n−1)

is non-zero. For the sub-case xn−x
rn−1
n−1 |f we obtain at most√

2 deg f such factors of f using the previous argument. For
the case S 6= 0 we have

S mod I = 0 ⇐⇒ S mod 〈x2 − xr11 , . . . , xn−2 − x
rn−2
n−1 〉 = 0

Notice that degxi S = degxi f for 1 ≤ i ≤ n− 2. Hence, by

induction on n, X < (n − 2)
√

2 deg f for this case. Adding
the number of unlucky Kronecker substitutions for both
cases yields X ≤ (n− 1)

√
2 deg f . 2

Theorem 1. Let A,B ∈ Z[x0, x1, . . . , xn] be non-zero,
G = gcd(A,B), Ā = A/G and B = B̄/G. Let di ≥ degxi G.
Let X be the number of bad and unlucky Kronecker substitu-
tions Krk from the sequence rk = [d1 +k, d2 +k, . . . , dn−1 +
k] for k = 1, 2, 3, Then

X ≤
√

2(n− 1)
[√

degA+
√

degB +
√

degAdegB
]
.

Proof Let LA = LC(A) and LB = LC(B) be the leading co-
efficients of A and B in x0. Then Kr is bad ⇐⇒ Kr(LA) =
0 or Kr(LB) = 0. Applying Lemma 5, the number of bad
Kronecker substitutions is at most

(n−1)(
√

2 degLA+
√

2 degLB) ≤ (n−1)(
√

2 degA+
√

2 degB).

Now let R = resx0(Ā, B̄). We will assume Kr is not bad.

Kr is unlucky ⇐⇒ degx(gcd(Kr(Ā),Kr(B̄)) > 0

⇐⇒ resx(Kr(Ā),Kr(B̄)) = 0

⇐⇒ Kr(resx(Ā, B̄)) = 0

⇐⇒ Kr(R) = 0 (Kr is not bad).

By Lemma 5, the number of unlucky Kronecker substitu-
tions ≤ (n−1)

√
2 degR ≤ (n−1)

√
2 degAdegB by Lemma

1. Adding the two contributions proves the theorem. 2

In algorithm PGCD below, we identify an unlucky sub-
stitution as follows. After computing the first two monic
images g1(x) and g2(x) in step 9 if both degx g1 > d0 and
degx g2 > d0 then with high probability Kr is unlucky so
we try the next Kronecker substitution r = [r1 + 1, r2 +
1, . . . , rn−1 + 1].

It is still not obvious that a Kronecker substitution that is
not unlucky can be used because it can create a content in
y of exponential degree. The following example shows how
we recover H = ∆G when this happens.

Example 4. Consider the following GCD problem

G = wx2 + zy, Ā = ywx+ z, B̄ = yzx+ w

in Z[x, y, z, w]. We have Γ = wy and ∆ = y. For K(f) =
f(x, y, y3, y9) we have gcd(K(A),K(B)) = K(G) gcd(y10x+
y3, y4x+ y9) = (y9x2 + y4)y3 = y7(y5x2 + 1).

One must not try to compute gcd(K(A),K(B)) because
the degree of the content of gcd(K(A),K(B)) (y7 in our ex-
ample) can be exponential in n the number of variables and
we cannot compute this efficiently using the Euclidean algo-
rithm. The crucial observation is that if we compute monic
images gj = gcd(K(A)(x, αj),K(B)(x, αj)) any content is
divided out, and when we scale by K(Γ)(αj) and interpo-
late y in K(H) using sparse interpolation, we recover any
content. We obtain K(H) = K(∆)K(G) = y10x2 + y5, then
invert K to obtain H = (yw)x2 + (y2z).

2.1 Unlucky evaluation points
Even if the Kronecker substitution is not unlucky, after

applying it to input polynomials A and B, because the de-
gree in y may be very large, the number of bad and unlucky
evaluation points may be very large.

Example 5. Consider the following GCD problem
G = x0 + xd1 + xd2 + · · ·+ xdn,
Ā = x0 + x1 + · · ·+ xn−1 + xn, and
B̄ = x0 + x1 + · · ·+ xn−1 + 1.

Using r = [d+ 1, d+ 1, . . . , d+ 1] we need p > (d+ 1)n. But
R = resx0(Ā, B̄) = 1−xn and Kr(R) = 1−yr1r2...rn−1 = 1−
y(d+1)n−1

which means there could be as many as (d+1)n−1

unlucky evaluation points, that is, one in d+ 1.

To guarantee that we avoid unlucky evaluation points with
high probability we would need to pick p � degyKr(R)
which could be much larger than what is needed to inter-
polate Kr(H). But this upper bound based on the resul-
tant is a worst case. This lead us to investigate what the
expected number of unlucky evaluation points is. We ran
an experiment. We computed all monic quadratic and cu-
bic bivariate polynomials over small finite fields Fq of size
q = 2, 3, 4, 5, 7, 8, 11 and counted the number of unlucky
evaluation points to find the following result.

Theorem 2. Let Fq be a finite field with q elements and

f = xl+
∑l−1
i=0(

∑di
j=0 aijy

j)xi and g = xm+
∑m−1
i=0 (

∑ei
j=0 bijy

j)xi

with l ≥ 1, m ≥ 1, and aij , bij ∈ Fq. Let X = |{α ∈
Fq : gcd(f(x, α), g(x, α)) 6= 1}| be a random variable over
all choices aij , bij ∈ Fq. So 0 ≤ X ≤ q and for f and g not
coprime in Fq[x, y] we have X = q. If di ≥ 0 and ei ≥ 0
then E[X] = 1.

Proof: Let C(y) =
∑d
i=0 ciy

i with d ≥ 0 and ci ∈ Fq and fix

β ∈ Fq. Consider the evaluation map Cβ : Fd+1
q → Fq given

by Cβ(c0, . . . , cd) =
∑d
i=0 ciβ

i. We claim that C is balanced,

that is, C maps qd inputs to each element of Fq. It follows
that f(x, β) is also balanced, that is, over all choices for
ai,j each monic polynomial in Fq[x] of degree n is obtained
equally often. Similarly for g(x, β).

Recall that two univariate polynomials a, b in Fq[x] with
degree deg a > 0 and deg b > 0 are coprime with probability
1− 1/q (see Ch 11 of Mullen and Panario [18]). This is also
true under the restriction that they are monic. Therefore
f(x, β) and g(x, β) are coprime with probability 1 − 1/q.
Since we have q choices for β we obtain

E[X] =
∑
β∈Fq

Prob[gcd(A(x, β), B(x, β)) 6= 1] = q(1−(1−1

q
)) = 1.

Proof of claim. Since B = {1, y − β, (y − β)2, . . . , (y − β)d}
is a basis for polynomials of degree d we can write each

C(y) =
∑d
i=0 ciy

i as C(y) = u0 +
∑d
i=1 ui(y − β)i for a

unique choice of u0, u1, . . . , ud ∈ Fq. Since C(β) = u0 it
follows that all qd choices for u1, . . . , ud result in C(β) = u0

hence C is balanced. 2

That E[X] = 1 was a surprise to us. We thought E[X]
would have a logarithmic dependence on deg f and deg g. In
light of Theorem 2, when picking p > degy(Kr(H)) we will
ignore the unlucky evaluation points, and, should the algo-
rithm encounter unlucky evaluations, restart the algorithm
with a larger prime.

3. GCD ALGORITHM
Algorithm PGCD(A,B,Γ)

Input A = alx
l
0 + ... + a0, and B = bmx

m
0 + ... + b0 with

ai, bi ∈ Z[x1, ...xn] and Γ ∈ Z[x1, . . . , xn] satisfying gcd(ai) =
1 (A is primitive) and gcd(bi) = 1 (B is primitive) and
Γ = gcd(al, bm) = LC(G)×∆ where G = gcd(A,B).

Output A prime p and polynomial H ∈ Zp[x0, x1, . . . , xn]
satisfying H = ∆ × G mod p with probability at least 1 −
degA degB+min(degA,degB)

p−degA−degB
.

1 Compute di = DegreeBound(A,B, i) for 0 ≤ i ≤ n−1.
Set ri = 1 + min(degxi A,degxi B, di + degxi Γ) for
1 ≤ i ≤ n− 1.

Kronecker-substitution:

2 Let Y = (y, yr1 , yr1r2 , . . . , yr1r2...rn−1) be the Kro-
necker substitution. Set K(A) = A(x, Y), K(B) =
B(x, Y) and K(Γ) = Γ(Y).

3 If degxK(A) < degx0 A or degxK(B) < degx0 B then
this Kronecker substitution is bad. Set ri = ri + 1 for
1 ≤ i ≤ n− 1 and goto Kronecker-substitution.

Pick-a-Prime:

4 Pick a new prime p > 2Πn
i=1ri of the form p = 2kq+ 1

with q small.

5 If degx(K(A) mod p) < degxA or degx(K(B) mod p) <
degxB then the prime is bad so goto Pick-a-Prime.

6 Set shift s = 1 and j = 0 and compute a random
generator α for Z∗p.

Next-image:

7 Set j = j + 1. If j = p − 1 then we’ve run out of
evaluation points. This could happen if one of the
coefficients hi of H is dense. Goto Pick-a-Prime and
increase the length of p by 10 bits.

8 Compute ai = K(A)(x, αj) and bi = K(B)(x, αj). If
degx ai < degx0 A or degx bi < degx0 B then αj is bad
so set s = j and goto Next-image.

9 Compute gj = gcd(ai, bi) in Zp[x] using the Euclidean
algorithm.

10 Case deg gj < d0 : (the degree bound d0 is wrong)
Set d0 = deg gj , s = j and goto Next-image.

11 Case deg gj > d0 : (αj is unlucky)

11a If this happens for j = s and j = s + 1 then the
Kronecker substitution is very probably unlucky so set
ri = ri + 1 for 1 ≤ i ≤ n − 1 and goto Kronecker-
substitution.

11b If this is the 2nd unlucky evaluation then goto Pick-a-
Prime and double the length of p. Otherwise set s = j
and goto Next-image.

12 Case deg gj = d0: (we have a new image)

12a Scale the image: Set gj = K(Γ)(αj)gj . If s− j is even
then goto compute-next-image – we need at least two
new images for the next step.

12b Run the Berlekamp-Massey algorithm on the coeffi-
cients of the images gs, gs+1, . . . , gs+j to obtain λi(z)
for 0 ≤ i ≤ d0. If any λi(z) changed from the previous
step goto Next-image.

12c Compute the roots of each λi(z). If any λi(z) has fewer
than deg λi(z) distinct roots goto Next-image.

12d Complete the sparse interpolation to obtain polyno-
mials hi(y) ∈ Zp[y]. Note, s is the shift used for the
shifted transposed Vandermonde systems. SetH(x, y) :=∑d0
i=0 hi(y)xi which we hope is equal to ∆(Y)G(x, Y).

12e Invert the Kronecker substitution to obtain H.
If degxi H > min(degxi A,degxi B, di + degxi Γ) for
any 1 ≤ i ≤ n then H 6= ∆G so goto Next-image.

12f Probabilistic check: Pick β ∈ Znp at random until
degA(x0, β) = degx0 A and degB(x0, β) = degx0 B.
Compute gβ = gcd(A(x0, β), B(x0, β)). If H(x0, β) =
Γ(β)gβ then output (p,H). Otherwise either ti is
wrong for some i or d0 > degx0 G or β is unlucky.
In all cases continue goto Next-image.

To prove the claim on the output (p,H) let H =
∑d0
i=0 hix

i
0

and let G =
∑dG
i=0 cix

i
0. We will bound the probability that

algorithm PGCD outputs H 6= ∆G mod p. Notice that if
PGCD outputs H it must be that degx0 H = d0 = degx0 gβ .
Now either d0 > dG or d0 = dG. If d0 > dG then H
is wrong. Now d0 > dG ⇒ β is unlucky thus Prob[d0 >
dG] ≤ Prob[β is unlucky] which is at most degA degB

p−degA−degB
.

If d0 = dG then H is output iff hi(β) = ∆(β)ci(β) mod p
for 0 ≤ i ≤ d0. Let fi = hi − ∆ci mod p. H 6= ∆G im-
plies fi 6= 0 for at least one i, say i = j. The Schwartz-
Zippel lemma implies Prob[fj(β) = 0] ≤ deg fi

p−degA−degB
.

Now the degree condition on degxi H means the total de-
gree deg fi ≤ min(degA,degB) thus Prob[fj(β) = 0] ≤
min(degA,degB)
p−degA−degB

. Adding both probabilities Prob[H 6= ∆G

mod p] ≤ min(degA,degB)
p−degA−degB

+ degA degB
p−degA−degB

and the result fol-
lows.

We are not able to say what the expected running time of
the algorithm is. If we were to choose p > AtB for suitably
chosen constants A and B, then such an analysis should be
possible. But since we do not have a bound for t other than
t < (d+ 1)n, this would lead to a significantly larger prime.

3.1 Determining t
Algorithm PGCD assumes in step 12b that if none of the

λi(z) changed then (j − s + 1)/2 = t but it could be that
(j− s+ 1)/2 < t. Let Vr = (v0, v1, . . . , v2r−1) be a sequence

where r ≥ 1. The Berlekamp-Massey algorithm (BMA) with
input Vr computes a feedback polynomial c(z) which is the
reciprocal of λ(z) if r = t. In PGCD, we determine the t by
computing c(z)s on the input sequence Vr for r = 1, 2, 3,
If a c(z) remains unchanged from the input Vk to the input
Vk+1, then we conclude that this c(z) is stable which implies
that the last two consecutive discrepancies are both zero,
see [16, 14] for a definition of the discrepancy. However, it
is possible that the degree of c(z) on the input Vk+2 might
increase again. In [14], Kaltofen, Lee and Lobo proved (The-
orem 3) that the BMA encounters the first zero discrepancy
after 2t points with probability at least

1− t(t+ 1)(2t+ 1) deg(C)

6|S|
where S is the set of all possible evaluation points. Here is
an example where we encounter a zero discrepancy before
2t points. Consider

f(y) = y7 + 60y6 + 40y5 + 48y4 + 23y3 + 45y2 + 75y + 55

over Z101 with generator α = 93. Since f has 8 terms,
16 points are required to determine the correct λ(z) and
two more for confirmation. We compute f(αj) for 0 ≤
j ≤ 17 and obtain V9 = (44, 95, 5, 51, 2, 72, 47, 44, 21, 59,
53, 29, 71, 39, 2, 27, 100, 20). We run the BMA on input Vr
for 1 ≤ r ≤ 9 and obtain feedback polynomials in the fol-
lowing table.

r Output c(z)
1 69z + 1
2 24z2 + 59z + 1
3 24z2 + 59z + 1
4 24z2 + 59z + 1
5 70z7 + 42z6 + 6z3 + 64z2 + 34z + 1
6 70z7 + 42z6 + 25z5 + 87z4 + 16z3 + 20z2 + 34z + 1
7 z7 + 67z6 + 95z5 + 2z4 + 16z3 + 20z2 + 34z + 1
8 31z8 + 61z7 + 91z6 + 84z5 + 15z4 + 7z3 + 35z2 + 79z + 1
9 31z8 + 61z7 + 91z6 + 84z5 + 15z4 + 7z3 + 35z2 + 79z + 1

The ninth call of the BMA confirms that the feedback poly-
nomial returned by the eighth call is the desired one. But,
by our design, the algorithm terminates at the third call
because the feedback polynomial remains unchanged from
the second call. It also remains unchanged for V4. In this
case, λ(z) = z2c(1/z) = z2 + 59z + 24 has roots 56 and 87
which correspond to monomials y4 and y20 since α4 = 56
and α20 = 87.

The example shows that we may encounter a stable feed-
back polynomial too early. Furthermore, the recovered mono-
mials may have degree higher than the degree of the input
polynomial f(y). Algorithm PGCD must check H for mono-
mials of too high degree in step 12e for the degree argument
in the proof of the claim to be valid.

3.2 Evaluation
Let A,B ∈ Zp[x0, x1, . . . , xn], s = #A + #B, and d =

maxni=1 di where di = max(degxi A,degxi B). If we use a
Kronecker substitution K(A) = A(x, y, yr1 , . . . , yr1r2...rn−1)
with ri = di + 1, then degyK(A) < (d + 1)n. Thus we
can evaluate the s monomials in K(A)(x, y) and K(B)(x, y)
at y = αk in O(sn log d) multiplications. Instead we first
compute β1 = αk and βi+1 = βrii for i = 1, 3, . . . , n− 2 then

precompute n tables of powers 1, βi, β
2
i , . . . , β

di
i for 1 ≤ i ≤ n

using at most nd multiplications. Now, for each term in

A and B of the form cxe00 x
e1
1 . . . xenn we compute c × βe11 ×

· · ·×βenn using the tables in n multiplications. Hence we can
evaluate K(A)(x, αk) and K(B)(x, αk) in at most nd + ns
multiplications. Thus for T evaluation points α, α2, . . . , αT ,
the evaluation cost is O(ndT + nsT) multiplications.

When we first implemented algorithm PGCD we noticed
that often well over 95% of the time was spent evaluating the
input polynomials A and B at the points αk. This happens
when #G� #A+ #B. The following method uses the fact
that for a monomial Mi(x1, x2, . . . , xn)

Mi(β
k
1 , β

k
2 , . . . , β

k
n) = Mi(β1, β2, . . . , βn)k

to reduce the total evaluation cost from O(ndT +nsT) mul-
tiplications to O(nd + ns + sT). Note, no sorting on x0 is
needed in step 4b if the monomials in the input A are are
sorted on x0.

Algorithm Evaluate.

Input A =
∑m
i=1 cix

ei
0 Mi(x1, . . . , xn) ∈ Zp[x0, . . . , xn], T >

0, β1, β2, . . . , βn ∈ Zp, and integers d1, d2, . . . , dn with di ≥
degxi A .

Output A(x0, β
k
1 , . . . , β

k
n) for 1 ≤ k ≤ T .

1 Create the vector C = [c1, c2, . . . , cm] ∈ Zmp .

2 Compute [βji : j = 0, 1, . . . , di] for 1 ≤ i ≤ n.
3 Compute Γ = [Mi(β1, β2, . . . , βn) : 1 ≤ i ≤ m].
4 For k = 1, 2, . . . , T do

4a Compute the vector C := [Ci × Γi for 1 ≤ i ≤ m].
4b Assemble

∑m
i=1 Cix

ei
0 = A(x0, β

k
1 , . . . , β

k
n).

Even with this improvement evaluation still takes most of
the time so we must parallelize it. Each evaluation of A
could be parallelized in blocks of size m/N for N cores. In
Cilk C, this is only effective, however, if the blocks are large
enough (at least 50,000) so that the time for each block is
much larger than the time it takes Cilk to create a task.
For this reason, it is necessary to also parallelize on k. To
parallelize on k for N cores, we multiply the previous N
values of C in parallel by the vector

ΓN = [Mi(β1, β2, . . . , βn)N : 1 ≤ i ≤ m]

Because most of the time is still in evaluation, we are
presently implementing the asymptotically fast method of
van der Hoven and Lecerf [10] and attempting to parallelize
it. For our evaluation problem it has complexity O(nd+ns+
s log2 T) which is better than our O(nd+ ns+ sT) method
for large T .

4. BENCHMARKS
We have implemented algorithm PGCD for 31, 63 and

127 bit primes in Cilk C. For 127 bit primes we use the
128 bit signed integer type __int128_t supported by the
gcc compiler. We parallelized evaluation (see Section 3.2)
and we interpolate the coefficients hi(y) in parallel in step
12e. To assess how good it is, we have compared it with the
serial implementations of Zippel’s algorithm in Maple 2015
and Magma 2.21. For Maple we were able to determine
the time spent computing G modulo the first prime only in
Zippel’s algorithm. It is over 90% of the total GCD time.
For Magma we could not do this so the Magma timings are
for the entire GCD computation over Z.

All timings were made on the gaby server in the CECM at
Simon Fraser University. This machine has two Intel Xeon

E-2660 8 core CPUs running at 3.0 GHz on one core and 2.2
GHz on 8 cores. Thus the maximum parallel speedup is a
factor of 16× 2.2/3.0 = 11.7.

For our first benchmark (see Table 2) we created poly-
nomials G, Ā and B̄ in 6 variables (n = 5) and 9 variables
(n = 8) of degree at most d in each variable. We generated
100d random terms for G and 100 random terms for Ā and
B̄. The integer coefficients of G, Ā, B̄ were generated at ran-
dom from [0, 231 − 1]. The monomials in G, Ā and B̄ were
generated using random exponents from [0, d − 1] for each
variable. For G we included monomials 1, xd0, x

d
1, . . . , x

d
6 so

that G is monic in all variables and Γ = 1. Our GCD code
used the 62 bit prime p = 29 × 257 + 1. Maple used the 32
bit prime 232 − 5 for the first image in Zippel’s algorithm.

New GCD algorithm Zippel’s algorithm
n d t 1 core (eval) 16 cores Maple Magma
5 10 114 0.62s (68%) 0.091s (6.8x) 48.04s 6.97s
5 20 122 1.32s (69%) 0.155s (8.5x) 185.70s 318.22s
5 50 121 3.48s (69%) 0.326s (10.7x) 1525.80s > 104s
5 100 102 7.08s (69%) 0.657s (10.8x) 6018.23s > 104s
5 200 125 14.64s (71%) 1.287s (11.4x) NA NA
5 500 135 38.79s (71%) 3.397s (11.4x) NA NA
8 5 89 0.27s (61%) 0.065s (4.2x) 30.87s 2.39s
8 10 110 0.63s (65%) 0.098s (6.4x) 138.41s 6.15s
8 20 114 1.35s (66%) 0.163s (8.3x) 664.33s 63.49s
8 50 113 3.52s (66%) 0.336s (10.5x) 6390.22s 1226.77s
8 100 121 7.43s (68%) 0.645s (11.5x) NA NA

Table 2: Timings (seconds) for GCD problems.

In Table 2 column d is the maximum degree of the terms of
G, Ā, B̄ in each variable, column t is the maximum number
of terms of the coefficients of G and column eval is the %age
of the time spent evaluating the inputs, that is computing
K(A)(x0, α

j) and K(B)(x0, α
j) for j = 1, 2, . . . , T . The

parallel speedup on 16 cores is shown in parens.
Our second benchmark (see Table 3) is for 9 variables

where the degree of G, Ā, B̄ is at most 20 in each variable.
The terms are generated at random as before but restricted
to have total degree at most 60. The middle row is our
benchmark problem from Section 1.

New GCD algorithm Zippel’s algorithm
#G #A 1 core (eval) 16 cores Maple Magma

103 105 0.66s (68%) 0.100s (6.6x) 341.9s 63.55s
103 106 5.66s (90%) 0.717s (9.4x) 5553.5s FAIL
104 106 48.44s (87%) 4.474s (10.2x) 62520.1s FAIL
103 107 52.102 (92%) 4.591s (11.3x) NA NA
104 107 428.96s (98%) 37.43s (11.5x) NA NA

Table 3: Timings (seconds) for 9 variable GCDs

Tables 2 and 3 show that most of the time is in evaluation.
They show a parallel speedup approaching the maximum of
11.7 on this machine. There was a parallel bottleneck in
how we computed the λi(z) polynomials that limited parallel
speedup to 10 on these benchmarks. For N cores, after
generating a new batch of N images we used the Euclidean
algorithm for Step 12b which is quadratic in the number
of images j computed so far. To address this we now use
an incremental version of the Berlekamp-Massey algorithm
which is O(Nj).

In comparing the new algorithm with Maple’s implemen-
tation of Zippel’s algorithm, for n = 8, d = 50 in Table 2
we achieve a speedup of a factor of 1815 = 6390.22/3.52 on
1 core. Since Zippel’s algorithm uses O(dt) points and our
Ben-Or/Tiwari algorithm uses 2t + O(1) points, we get a
factor of O(d) speedup because of this.

Our improved evaluation gives us a another factor of n
speedup over Maple’s implementation of Zippel’s algorithm.
Another factor is the cost of multiplication in Zp. The reader
should realize that the running time of algorithm PGCD is
proportional to the cost of multiplication in Zp. Maple is
using % p to divide in C which generates a hardware divi-
sion instruction which is much more expensive than a mul-
tiplication. We are using Roman Pearce’s implementation
of Möller and Granlund [17] which reduces division by p to
two multiplications plus other cheap operations.

5. CONCLUSION AND FINAL REMARKS
We have shown that a Kronecker substitution can be used

to reduce a multivariate GCD computation to bivariate by
using a discrete logs Ben-Or/Tiwari point sequence. Our
parallel implementation is fast and practical. Several ques-
tions remain. The Ben-Or/Tiwari method requires 2t+O(1)
points. Can we use fewer points? Can we do anything when
#∆ > 1 which increases t? For polynomials in more vari-
ables or higher degree algorithm PGCD may need a prime p
larger than 127 bits. Can we do anything to reduce the size
of the prime needed?

Algorithm PGCD interpolates H from univariate images
in Zp[x0]. If instead we interpolate H from bivariate images
in Zp[x0, x1], this will likely reduce both t and #∆. For
our benchmark problem this reduces t by a factor of 9 and
the cost of the bivariate GCD computations in Zp[x0, x1],
if computed with Brown’s dense GCD algorithm [4], would
remain negligible compared with the cost of evaluating A
and B. Although we have not implemented this we estimate
a speedup of a factor of 6 on 16 cores.

We cite the methods of Garg and Schost [6], Giesbrecht
and Roche [9] and Arnold, Giesbrecht and Roche [1] which
can use a smaller prime and would also use fewer than 2t+
O(1) evaluations. These methods compute ai = Kr(A)(x, y),
bi = Kr(B)(x, y) and gi = gcd(ai, bi) all mod 〈p, yqi −1〉 for
several primes qi and recover the exponents of y in Kr(H)
using Chinese remaindering. The algorithms differ in the
size of qi and how they avoid or recover from exponent col-
lisions. It is not clear whether this approach can work for
the GCD problem as these methods assume a division free
evaluation but computing gi requires division and y = 1 may
be bad or unlucky. They also require qi � t which means
computing gi will be expensive for large t.

In contrast, the earlier method of Murao and Fujise in
[19], which also uses Chinese remaindering on the exponents,
should work. Another approach is to try to compress the
Kronecker substitution. We are considering the idea sug-
gested by van der Hoven in [11].

6. REFERENCES
[1] A. Arnold, M. Giesbrecht and D. Roche. Faster Sparse

Multivariate Polynomial Interpolation of Straight-Line
Programs. arXiv:1412.4088[cs.SC], December 2014.

[2] N. B. Atti, G. M. Diaz-Toca, and H. Lombardi. The
Berlekamp-Massey algorithm revisited. AAECC 17
pp. 75–82, 2006.

[3] M. Ben-Or and P. Tiwari. A deterministic algorithm
for sparse multivariate polynomial interpolation. In
Proc. of STOC ’20, ACM Press, pp. 301–309, 1988.

[4] W. S. Brown. On Euclid’s Algorithm and the
Computation of Polynomial Greatest Common
Divisors. J. ACM 18:478–504, 1971.

[5] D. Cox, J. Little, D. O’Shea. Ideals, Varities and
Algorithms. Springer-Verlag, 1991.

[6] Sanchit Garg and Eric Schost. Interpolation of
polynomials given by straight-line programs. J. Theor.
Comp. Sci., 410:2659–2662, June 2009.

[7] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, UK, 1999.

[8] K. O. Geddes, S. R. Czapor, and G. Labahn.
Algorithms for Computer Algebra. Kluwer, 1992.

[9] Mark Giesbrecht and Daniel S. Roche. Diversification
improves interpolation. In Proc. ISSAC 2011, ACM
Press, pp. 123–130, 2011.

[10] Joris van der Hoven and Grégoire Lecerf. On the bit
complexity of sparse polynomial multiplication. J.
Symb. Cmpt. 50:227–254, 2013.

[11] Joris van der Hoven and Grégoire Lecerf. Sparse
polynomial interpolation in practice. CCA
48:187–191, September 2015.

[12] Mahdi Javadi and Michael Monagan. Parallel Sparse
Polynomial Interpolation over Finite Fields. In Proc.
of PASCO 2010, ACM Press, pp. 160–168, 2010.

[13] E. Kaltofen, Y.N. Lakshman and J-M. Wiley. Modular
Rational Sparse Multivariate Interpolation Algorithm.
In Proc. ISSAC 1990, pp. 135-139, ACM Press, 1990.

[14] E. Kaltofen, W. Lee, and A. Lobo. Early Termination
in Ben-Or/Tiwari Sparse Interpolation and a Hybrid
of Zippel’s algorithm. In Proc. ISSAC 2000, ACM
Press, pp. 192−201, 2000.

[15] E. Kaltofen. Fifteen years after DSC and WLSS2. In
Proc. of PASCO 2010, ACM Press, pp. 10–17, 2010.

[16] J. L. Massey. Shift-register synthesis and BCH
decoding. IEEE Trans. on Information Theory,
15:122–127, 1969.

[17] Niels Möller and Torbjorn Granlund. Improved
division by invariant integers. IEEE Trans. on
Computers, 60:165–175, 2011.

[18] Gary Mullen and Daniel Panario. Handbook of Finite
Fields. CRC Press, 2013.

[19] Hirokazu Murao and Tetsuro Fujise. Modular
Algorithm for Sparse Multivariate Polynomial
Interpolation and its Parallel Implementation. J.
Symb. Cmpt. 21:377–396, 1996.

[20] S. Pohlig and M. Hellman. An improved algorithm for
computing logarithms over GF(p) and its
cryptographic significance. IEEE Trans. on
Information Theory, 24:106–110, 1978.

[21] Michael Rabin. Probabilistic algorithms in finite fields.
SIAM J. Comput, 9:273–280, 1979.

[22] Jack Schwartz. Fast probabilistic algorithms for
verification of polynomial identities. J. ACM,
27:701–717, 1980.

[23] Douglas Stinson. Cryptography, Theory and Practice,
Chapman and Hall, 2006.

[24] Y. Sugiyama, M. Kashara, S. Hirashawa and T.
Namekawa. A Method for Solving Key Equation for
Decoding Goppa Codes. Information and Control
27:87–99, 1975.

[25] Richard Zippel. Probabilistic algorithms for sparse
polynomials. In Proc. of EUROSAM ’79, pp. 216–226.
Springer-Verlag, 1979.

[26] Richard Zippel. Interpolating Polynomials from their
Values. J. Symb Cmpt. 9:375–403, 1990.

