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Abstract

We present a parallel GCD algorithm for sparse multivariate polynomials with
integer coefficients. The algorithm combines a Kronecker substitution with a Ben-
Or/Tiwari sparse interpolation modulo a smooth prime to determine the support of
the GCD. We have implemented the algorithm in Cilk C for 31, 63 and 127 bit primes.
We compare it with Maple and Magma’s implementations of Zippel’s GCD algorithm.

1 Introduction

Let A and B be two non-constant polynomials in Z[x0, x1, . . . , xn]. Let G = gcd(A,B) and
let Ā = A/G and B̄ = B/G. So G is the greatest common divisor of A and B and the
polynomials Ā and B̄ are called the cofactors of A and B.

In this paper we present a sparse GCD algorithm for computing G. We will compare it
with Zippel’s sparse GCD algorithm from [22]. Zippel’s algorithm is the main GCD algorithm
used by Maple, Magma and Mathematica for polynomials in Z[x0, x1, . . . , xn].

Let A =
∑dA

i=0 aix
i
0, B =

∑dB
i=0 bix

i
0 and G =

∑dG
i=0 cix

i
0 where the coefficients ai, bi and

ci are polynomials in Z[x1, . . . , xn] and adA, bdB and cdG are the leading coefficients of A,B
and G. Let LC(A) denote the leading coefficient of A. Let #A denote the number of terms
in A and let Supp(A) denote the support of A, that is, the set of monomials appearing in A.

We will assume gcd(ai) = 1 and gcd(bi) = 1, that is, the contents have already been
computed and divided out. Let Γ = gcd(adA, bdB). Since LC(G)|LC(A) and LC(G)|LC(B)
it must be that LC(G)|Γ thus Γ = LC(G)∆ for some polynomial ∆ ∈ Z[x1, x2, . . . , xn].

Example 1 For G = x1x
2
0 +x2x0 +3, Ā = (x2−x1)x0 +x2, and B̄ = (x2−x1)x0 +x1 +2 we

have #G = 3, LC(G) = x1, Γ = x1(x2 − x1), ∆ = x2 − x1, and Supp(G) = {x1x20, x2x0, 1}.

We provide an overview of the algorithm. Let H = ∆ × G and hi = ∆ × ci so that
H =

∑dG
i=0 hix

i
0. Our algorithm will compute H not G. After computing H it must then

compute gcd(hi) which is ∆ and divide H by ∆ to obtain G.
We compute H modulo a sequence of primes p1, p2, . . . and recover the integer coefficients

of H using Chinese remaindering. The use of Chinese remaindering is standard. Details may
be found in [4, 8]. Let H1 be the result of computing H mod p1. For the remaining primes we
use the sparse interpolation approach of Zippel [22] which assumes Supp(H1) = Supp(H).
From now on we focus on the computation of H mod p1 where we compute Supp(H) which
is the hard part of the sparse GCD algorithm.
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To compute H mod p the algorithm will pick a sequence of points β1, β2, . . . from Znp ,
compute monic images gj = gcd(A(x0, βj), B(x0, βj) ∈ Zp[x0] of G, in parallel, then multiply
gj by the scalar Γ(βj) ∈ Zp. Then we use Kaltofen’s modification [13] of the Ben-Or/Tiwari
sparse interpolation [3] to interpolate each coefficient hi(x1, . . . , xn) of H, in parallel, from
the coefficients of the scaled images Γ(βj)× gj(x0).

Let t = max #hi be the maximum number of terms of the coefficients of H. Let d =
maxni=1 degxi H and let D = maxdGi=0 deg hi. The cost of sparse interpolation algorithms is
determined mainly by the number of points β1, β2, . . . needed which depends on t, d and D.
The cost also depends on the size of the prime p. Table 1 below presents data for several
sparse interpolation algorithms.

To get a sense for how large the prime needs to be for different algorithms we include
data in Table 1 for the following benchmark problem: Let G, Ā, B̄ have nine variables
(n = 8), degree d = 20 in each variable, and total degree D = 60 (to better reflect real
problems). Let G have 10,000 terms with t = 1000. Let Ā and B̄ have 100 terms so that A
and B have about one million terms.

#points size of p for the benchmark problem
Zippel [1979] O(ndt) p > 2nd2t2 = 6.4× 109.
BenOr/Tiwari [1988] O(t) p > pDn = 1960 = 5.3× 1077.
Monagan/Javadi [2010] O(nt) p > nDt2 = 4.8× 108.
Discrete Logs O(t) p > (d+ 1)n = 3.7× 1010.

Table 1: Data for different sparse interpolation algorithms

Notes: the figure O(ndt) for Zippel’s algorithm is for the worst case. The average case
(for random inputs) is O(dt) points. Also, Kaltofen and Lee showed in [12] how to modify
Zippel’s algorithm so that it will work for primes much smaller than 2nd2t2.

The primary disadvantage of the Ben-Or/Tiwari algorithm is the size of the prime. In
[10] Javadi and Monagan modify the Ben-Or/Tiwari algorithm to work for a prime of size
O(nDt2) but using O(nt) points.

The discrete logs method, first proposed by Murao and Fujise [16], is a modification of
the Ben-Or/Tiwari algorithm which computes discrete logarithms in the cyclic group Z∗p. We
use this method. We give details for it in Section 1.2. The advantage over the Ben-Or/Tiwari
algorithm is that the prime size is O(n log d) bits instead of O(D log n) bits.

In the GCD algorithm, not all points βj ∈ Znp can be used. If gcd(Ā(x0, βj), B̄(x0, βj)) 6= 1
then βj is said to be unlucky and the image gj(x0) cannot be used to interpolateH. In Zippel’s
algorithm, where the βj are chosen at random from Znp , unlucky images, once identified, can
simply be skipped. But this is not the case for the point sequence (2j, 3j, . . . , pjn) used by
the Ben-Or/Tiwari algorithm and the point sequence (ωj1, . . . , ω

j
n) used by the discrete logs

method, because these points are not random.

In Section 2, we modify the prime power sequence (2j, 3j, . . . , pjn) to avoid and handle
unlucky evaluation points. Our modification for the discrete logarithm sequence increases the
size of p which negates some of its advantage over the prime power sequence. This led us to
consider using a Kronecker substitution on x1, x2, . . . , xn to map the GCD computation into
a bivariate computation in Zp[x0, y]. Some Kronecker substitutions result in all evaluation
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points being unlucky so they cannot be used. We call these Kronecker substitutions unlucky.
Our second contribution is to show that are only finitely many of them, and how to detect
them quickly so that a larger Kronecker substitution may be tried.

If a Kronecker substitution is not unlucky there can still be many unlucky evaluation
points because the degree of the resulting polynomials in y is exponential in n. This prompted
us to investigate the distribution of the unlucky evaluation points. Our third contribution
is a result on the mean and variance of the number of unlucky evaluations.

In Section 3 we assemble a Monte-Carlo GCD algorithm which chooses p and computes
H mod p. We have implemented our algorithm in C and parallelized it using Cilk C. We did
this initially for 31 bit primes then for 63 bit primes to handle more polynomials. The first
timing results revealed that almost all the time (over 95%) was spent in evaluating A(x0, βj)
and B(x0, βj). Our fifth contribution is an algorithm that reduces the evaluation cost to
s = #A+ #B multiplications per βj, thus one multiplication per term. Furthermore, since
most of the time is still spent in evaluation, we show how to parallelize the evaluations.

In Section 4 we compare our new algorithm with the C implementations of Zippel’s
algorithm in Maple and Magma. The timing results are very promising. For our benchmark
problem, Maple takes 62,520 seconds, Magma dies with an internal error, and our new
algorithm takes 5.9 seconds on 16 cores. We have also made a 127 bit prime implementation
to be able to interpolate polynomials of higher degree and/or in more variables.

A remaining problem is the extra cost incurred when #∆ > 1 since this likely increases
t. We discuss some things we can do in the Conclusion.

The proofs in the paper make use of the Schwartz-Zippel Lemma and properties of the
Sylvester resultant. We state these results here for later use.

The Sylvester resultant of two polynomials A and B in x, denoted resx(A,B), is the
determinant of Sylvester’s matrix. We gather the following facts about it into Lemma 1
below. Note, in the Lemma degA denotes the total degree of A.

Lemma 1 Let F be a field and let A and B be polynomials in F [x0, x1, . . . , xn] with positive
degree in x0. Let R = resx0(A,B). Then

(i) R is a polynomial in F [x1, . . . , xn] (x0 is eliminated),
(ii) degR ≤ degA degB (Bezout bound).

If α ∈ F n satisfies degx0 A(x0, α) = degx0(A) and degx0 B(x0, α) = degx0(B) then

(iii) gcd(A(x0, α), B(x0, α)) 6= 1 ⇐⇒ resx0(A(x0, α), B(x0, α)) = 0 and
(iv) resx0(A(x0, α), B(x0, α)) = R(α).

Proofs may be found in Ch. 3 and Ch. 6 of [5]. In particular the proof in Ch. 6 of [5]
for (ii) for bivariate polynomials generalizes to the multivariate case. Note that the degree
condition on α means that the dimension of Sylvester’s matrix for A and B in x0 is the same
as for A(x0, α) and B(x0, α) which proves (iv).

Lemma 2 (Schwarz-Zippel [20, 22]). Let F be a field and f ∈ F [x1, x2, . . . , xn] be non-zero
with total degree d and let S ⊂ F . If β is chosen at random from Sn then Prob[f(β) = 0] ≤
d
|S| . In particular, if F = Zp and S = Zp then Prob[f(β) = 0] ≤ d

p
.
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1.1 Ben-Or Tiwari Sparse Interpolation

Let C(x1, . . . , xn) =
∑t

i=1 aiMi where ai ∈ Z and Mi are monomials in (x1, . . . , xn). In
our context, C represents one of the coefficients of H = ∆G we wish to interpolate. Let
D = degC and let d = maxi degxi C and let pn denote the n’th prime. Let

vj = C(2j, 3j, 5j, . . . , pjn) for j = 0, 1, . . . , 2t− 1.

The Ben-Or/Tiwari sparse interpolation algorithm [3] interpolates C(x1, x2, . . . , xn) from the
2t points vj. In practice, t is not known in advance so the algorithm needs to be modified
to also determine t. We will discuss this later. Let mi = Mi(2, 3, 5, . . . , pn) ∈ Z and let
λ(z) =

∏t
i=1(z −mi) ∈ Z[z]. The algorithm proceeds in 4 steps.

Step 1 Compute λ(z) from vj using either the Berlekamp-Massey algorithm [14] or the
Euclidean algorithm [2, 21].

Step 2 Compute the integer roots mi of λ(z).

Step 3 Factor the integers mi using trial division by 2, 3, . . . , pn from which we obtain Mi.
For example, if mi = 45000 = 233254 then Mi = x1

3x2
2x3

4.

Step 4 Solve the t× t linear system
1 1 . . . 1
m1 m2 . . . mt

m1
2 m2

2 . . . mt
2

...
...

...
...

m1
t−1 m2

t−1 . . . mt−1
t




a1
a2
a3
...
at

 =


v0
v1
v2
...

vt−1

 .
V a = b

(1)

for the unknown coefficients ai in C(x1, . . . , xn). The matrix V in (1) is a transposed Van-
dermonde matrix. The linear system V a = b can be solved in O(t2) arithmetic operations
(see [23]). Note, the master polynomial P (Z) in [23] is λ(z).

Notice that the largest integer in λ(z) is the constant coefficient Πt
i=1mi which is of

size O(tn logD) bits. Moreover, in [11], Kaltofen, Lakshman and Wiley noticed a severe
expression swell occurs if either the Berlekamp-Massey algorithm or the Euclidean algorithm
are used to compute λ(z) over Q. For our purposes, because we want to interpolate H modulo
a prime p, we will run steps 1,2, and 4 modulo a prime p. Provided p > maxti=1mi ≤ pDn
then the integers mi mod p remain unique. The roots of λ(z) ∈ Zp[z] can be found using
Rabin’s algorithm [19, 7] which has classical complexity O(t2 log p).

Steps 1, 2, and 4 may be accelerated with fast multiplication. Let M(t) denote the cost
of multiplying two polynomials of degree t in Zp[t]. The fast Euclidean algorithm can be
used to accelerate Step 1. It has complexity O(M(t) log t). See Ch. 11 of [7]. Computing
the roots of λ(z) in Step 2 can be done in O(M(t) log t log p). See Ch 14 of [7]. Step 4 may
be done in O(M(t) log t) using fast interpolation. See Ch 10 of [7].
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1.2 Ben-Or/Tiwari using discrete logarithms in Zp

The discrete logarithm method modifies the Ben-Or/Tiwari algorithm so that the prime
needed is a little larger than (d + 1)n thus of size is O(n log d) bits instead of O(D log n).
Murao and Fujise [16] were the first to use this method. We explain how as follows.

First we pick a prime p of the form p = q1q2q3 . . . qn + 1 with q1 even, gcd(qi, qj) = 1 and
qi > degxi C where C(x1, . . . , xn) is the polynomial we want to interpolate. Finding such
primes is not difficult and we omit presenting an explicit algorithm here.

Next we pick a random primitive element α ∈ Zp which we can do using the partial
factorization p− 1 = q1q2 . . . qn. We set ωi = α(p−1)/qi so that ωqii = 1. In the Ben-Or/Tiwari
algorithm we replace the points (2j, 3j, . . . , pjn) with (ωj1, ω

j
2, . . . , ω

j
n). After Step 1 we factor

λ(z) in Zp[z] to determine the mi. If Mi =
∏n

k=1 x
dk
k we have mi =

∏n
k=1 ω

dk
k . To determine

the degrees dk in Step 3 we first compute the discrete logarithm x := logαmi, that is, solve
αx ≡ mi (mod p) for 0 ≤ x < p− 1. We have

x = logαmi = logα

n∏
k=1

ωdkk =
n∑
k=1

dk logα ωk =
n∑
k=1

dk
p− 1

qk
(2)

= d1(q2q3 . . . qn) + d2(q1q3 . . . qn) + . . .+ dn(q1q2 . . . qn−1). (3)

We now solve (3) mod qk for dk for 1 ≤ k ≤ n to determine Mi. We obtain dk = x[(p −
1)/qk]

−1 mod qk. Note the condition gcd(qi, qj) = 1 ensures (q1 . . . qk−1qk+1 . . . qn) is invertible
mod qk. Step 4 remains unchanged.
For p = q1q2 . . . qn+1, a discrete logarithm can be computed in O(

∑n
i=1

√
q
i
) multiplications

in Zp using the Pohlig-Helman algorithm [18]. Since the qi ∼ d this leads to an O(n
√
d)

cost. Kaltofen showed in [13] that this can be made polynomial in log d and n if one uses
a Kronecker substitution to reduce multivariate interpolation to a univariate interpolation
and uses a prime p > (d+ 1)n of the form p = 2ks+ 1 with s small.

The algorithm can be modified to determine t and hence output λ(z) with high probability
as follows. If we attempt to compute λ(z) after j = 2, 4, 6, . . . , points, we will see deg λ(z) =
1, 2, 3, . . . , t−1, t, t, t, . . . with high probability. Thus we simply wait until the degree of λ(z)
does not change. This is first discussed by Kaltofen, Lee and Lobo in [12].

1.3 Bad and Unlucky Evaluation Points

Let A and B be non constant polynomials in Z[x1, . . . , xn][x0] with G = gcd(A,B) and let
Ā = A/G and B̄ = B/G. Let p be prime such that LC(A)LC(B) mod p 6= 0.

Definition 1 Let α ∈ Znp and let ḡα(x) = gcd(Ā(x, α), B̄(x, α)). We say α is bad if
LC(A)(α) = 0 or LC(B)(α) = 0 and α is unlucky if deg ḡα(x) > 0.

Example 2 Let G = (x1 − 16)x0 + 1, Ā = x20 + (x1 − 1)(x2 − 9)x0 + 1 and B̄ = x20 + 1.
Then LC(A) = LC(B) = x1 − 16 so {(16, β) : β ∈ Zp} are bad and {(1, β) : β ∈ Zp} and
{(β, 9) : β ∈ Zp} are unlucky.

The algorithm cannot reconstruct G using gα = gcd(A(x, α), B(x, α)) if α is unlucky.
Brown’s idea in [4] to detect unlucky α is based on the following Lemma.
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Lemma 3 Let hα = G(x0, α) mod p. If α is not bad then hα|gα and degx0 gα ≥ degx0 G.

For a proof of Lemma 3 see Lemma 7.3 of [8]. Brown only uses α which are not bad and
the images gα of least degree in x0 to interpolate G. The following Lemma implies if the
prime p is large then unlucky evaluations points are rare.

Lemma 4 Prob[α is bad or unlucky] ≤ degA degB + degA+ degB

p− degA− degB
.

Proof: Prob[α is bad] = Prob[ LC(A)(α)LC(B)(α) = 0 ] ≤ deg(LC(A))
p

+ deg(LC(B))
p

≤
degA+degB

p
. To determine Prob[α is unlucky | α is not bad] we have

α is unlucky ⇐⇒ gcd(Ā(x, α), B̄(x, α)) 6= 1 (by definition)

⇐⇒ resx(Ā(x, α), B̄(x, α)) = 0 (by Lemma 1)

⇐⇒ R(α) = 0 where R = resx0(Ā, B̄) (α is not bad).

Hence Prob[α is unlucky | α is not bad]≤ degR
p−degA−degB (by Schwartz-Zippel). Now the Prob[α

is bad or unlucky] ≤ degA+degB
p

+ degR
p−degA−degB ≤

degR+degA+degB
p−degA−degB ≤ degAdegB+degA+degB

p−degA−degB by
Lemma 1.

The following algorithm applies Lemma 3 to compute a lower bound d for degxi G. Note,
later in the paper when we use Algorithm DegBound, if it happens that d > degxi G (α is
unlucky) then this won’t affect the correctness of our algorithm, only the efficiency.

Algorithm DegreeBound(A,B,i)

Input: A,B ∈ Z[x0, x1, . . . , xn] with degA > 0 and degB > 0.

Output: d ≥ degxi(G) where G = gcd(A,B).

1 Set LA = LC(A, xi) and LB = LC(B, xi). So LA,LB ∈ Z[x0, . . . , xi−1, xi+1, . . . , xn].

2 Pick a prime p� degA degB such that LA mod p 6= 0 and LB mod p 6= 0.

3 Pick α = (α0, . . . , αi−1, αi+1, . . . , αn) ∈ Znp at random until LA(α)LB(α) 6= 0.

4 Compute a = A(α0, . . . , αi−1, xi, αi+1, . . . , αn) and b = B(α0, . . . , αi−1, xi, αi+1, . . . , αn).

5 Compute g = gcd(a, b) in Zp[xi] using the Euclidean algorithm and output d = degxi g.

2 Unlucky evaluations and Kronecker substitutions

Consider again Example 2 where G = (x1 − 16)x0 + 1, Ā = x20 + (x1 − 1)(x2 − 9)x0 + 1
and B̄ = x20 + 1. For the Ben-Or/Tiwari points αj = (2j, 3j) for 0 ≤ j < 2t observe that
α0 = (1, 1) and α2 = (4, 9) are unlucky and α4 = (16, 81) is bad. Since none of these points
can be used to interpolate G we need to modify the Ben-Or/Tiwari point sequence. For the
GCD problem, we want random evaluation points to avoid bad and unlucky points. The
following fix works.
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Pick the first s > 0 such that 2s > p so that (2s, 3s, . . . , psn) mod p is not fixed and use
αj = (2j, 3j, . . . , pjn) for s ≤ j < 2t+ s. Step 1 works as before so we obtain λ(z) from which
we determine the mi. To solve the shifted transposed Vandermonde system

ms
1 ms

2 . . . ms
t

m1
s+1 m2

s+1 . . . mt
s+1

...
...

...
...

m1
s+t−1 m2

s+t−1 . . . ms+t−1
t



c1
c2
...
ct

 =


vs
vs+1

...
vs+t−1


W c = u

we first solve the transposed Vandermonde system
1 1 . . . 1
m1 m2 . . . mt
...

...
...

...
m1

t−1 m2
t−1 . . . mt−1

t



b1
b2
...
bt

 =


vs
vs+1

...
vs+t−1


V b = u

as before to obtain b = V −1u. Observe that the matrix W = DV where D is the t by t
diagonal matrix with Di,i = ms

i . To solve Wc = u we have

(DV )c = u =⇒ c = (V −1D−1)u = D−1(V −1u) = D−1b

Thus ci = um−si and we can solve Wc = u in O(t2 + t log s) multiplications.

Referring again to Example 2, if we use the discrete logarithm evaluation points αj =
(ωj1, ω

j
2) for 0 ≤ j < 2t then α0 = (1, 1) is unlucky and also, since ωq11 = 1, all points

αq1 , α2q1 , α3q1 , . . . are unlucky. The obvious fix is to shift the sequence to start at j = 1 and
pick qi > 2t is problematic because we don’t know t at this point. The following fix will
work. Starting at j = 1 if an unlucky evaluation point is encountered at j = qi for some i,
then it is probably because xi = 1 is unlucky so let us restart the algorithm with a new prime
p = q1q2 . . . , qn + 1 but with qi doubled in length. Repeating this if necessary, eventually
this will terminate. But, because of the increase in the length of p we were led to consider
using a Kronecker substitution for the GCD problem.

3 Kronecker Substitutions

We propose to use a Kronecker substitution to map a multivariate polynomial GCD problem
in Z[x0, x1, . . . , xn] into a bivariate GCD problem in Z[x, y]. After making the Kronecker
substitution, we need to interpolate H(x, y) = ∆(x, y)G(x, y) where degyH(x, y) will be
exponential in n. To make discrete logarithms in Zp feasible, we follow Kaltofen [13] and
pick p = 2ks+ 1 > degyH(x, y) with s small.

Definition 2 Let D be an integral domain and let f be a non-zero polynomial in D[x0, x1, . . . , xn].
Let r ∈ Zn−1 with ri > 0. Let Kr : D[x0, x1, . . . , xn]→ D[x, y] be the Kronecker substitution
Kr(f) = f(x, y, yr1 , yr1r2 , . . . , yr1r2...rn−1).
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Let di = degxi f be the partial degrees of f for 1 ≤ i ≤ n. Observe that Kr is invertible if
ri > di for 1 ≤ i ≤ n− 1. Not all such Kronecker substitutions can be used, however, for the
GCD problem. We consider an example.

Example 3 Consider the following GCD problem

G = x+ y + z, Ā = x3 − yz, B̄ = x2 − y2

in Z[x, y, z]. Since degy G = 1 the Kronecker substitution Kr(G) = G(x, y, y2) is invertible.
But gcd(Kr(Ā), Kr(B̄)) = gcd(Ā(x, y, y2), B̄(x, y, y2)) = gcd(x3− y3, x2− y2) = x− y. If we
proceed to interpolate the gcd(Kr(A), Kr(B)) we will obtain (x− y)Kr(G) in expanded form
from which and we cannot recover G.

We call such a Kronecker substitution unlucky. Theorem 1 below tells us that the number
of unlucky Kronecker substitutions is finite. To detect them we will also avoid bad Kronecker
substitutions in an analogous way Brown did to detect unlucky evaluation points.

Definition 3 Let Kr be a Kronecker substitution. We say Kr is bad if degxKr(A) < degx0 A
or degxKr(B) < degx0 B and Kr is unlucky if degx gcd(Kr(Ā), Kr(B̄)) > 0.

Lemma 5 Let f ∈ Z[x1, . . . , xn] be non-zero and di ≥ 0 for 1 ≤ i ≤ n. Let X be the number
of Kronecker substitutions from the sequence rk = [d1 + k, d2 + k, . . . , dn−1 + k] for k =
1, 2, 3, . . . for which Kr(f) = 0. Then X ≤ (n− 1)

√
2 deg f .

Proof: Kr(f) = 0 ⇐⇒ f(y, yr1 , yr1r2 , . . . , yr1r2...rn−1) = 0
⇐⇒ f mod 〈x1 − y, x2 − yr1 , . . . , xn − yr1r2...rn−1〉 = 0
⇐⇒ f mod 〈x2 − xr11 , x3 − xr22 , . . . , xn − x

rn−1

n−1 〉 = 0.

Thus X is the number ideals I = 〈x2 − xr11 , . . . , xn − x
rn−1

n−1 〉 for which f mod I = 0 with
ri = di + 1, di + 2, . . .. We prove that X ≤ (n− 1)

√
2 deg f by induction on n.

If n = 1 then I is empty so f mod I = f and hence X = 0 and the Lemma holds. For
n = 2 we have f(x1, x2) mod 〈x2−xr11 〉 = 0 =⇒ x2−xr11 |f. Now X is maximal when d1 = 0
and r1 = 1, 2, 3, . . .. We have∑X

r1=1 r1 ≤ deg f =⇒ X(X + 1)/2 ≤ deg f =⇒ X <
√

2 deg f.

For n > 2 we proceed as follows. Either xn−xrn−1

n−1 |f or it doesn’t. If not then the polynomial
S = f(x1, . . . , xn−1, x

rn−1

n−1 ) is non-zero. For the sub-case xn − x
rn−1

n−1 |f we obtain at most√
2 deg f such factors of f using the previous argument. For the case S 6= 0 we have

S mod I = 0 ⇐⇒ S mod 〈x2 − xr11 , . . . , xn−2 − x
rn−2

n−1 〉 = 0

Notice that degxi S = degxi f for 1 ≤ i ≤ n − 2. Hence, by induction on n, X < (n −
2)
√

2 deg f for this case. Adding the number of unlucky Kronecker substitutions for both
cases yields X ≤ (n− 1)

√
2 deg f . �
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Theorem 1 Let A,B ∈ Z[x0, x1, . . . , xn] be non-zero, G = gcd(A,B), Ā = A/G and
B = B̄/G. Let di ≥ degxi G and let X count the number of bad and unlucky Kronecker
substitutions Krk from the sequence rk = [d1 + k, d2 + k, . . . , dn−1 + k] for k = 1, 2, 3, . . . .
Then

X ≤
√

2(n− 1)
[√

degA+
√

degB +
√

degA degB
]
.

Proof Let LA be the leading coefficient of A and LB the leading coefficient of B in x0.
Then Kr is bad ⇐⇒ Kr(LA) = 0 or Kr(LB) = 0. Applying the previous lemma we have
the number of bad Kronecker substitutions is

≤ (n− 1)
√

2 degLA+ (n− 1)
√

2 degLB ≤ (n− 1)(
√

2 degA+
√

2 degB).

Now let R = resx0(Ā, B̄). We will assume Kr is not bad.

Kr is unlucky ⇐⇒ degx(gcd(Kr(Ā), Kr(B̄)) > 0

⇐⇒ resx(Kr(Ā), Kr(B̄)) = 0

⇐⇒ Kr(resx(Ā, B̄)) = 0

⇐⇒ Kr(R) = 0 (Kr is not bad).

By Lemma 5, the number of unlucky Kronecker substitutions ≤ 2(n − 1)
√

2 degR ≤ (n −
1)
√

2 degA degB by Lemma 1. Adding the two contributions proves the theorem. �

In algorithm PGCD below, we identify an unlucky substitution as follows. After com-
puting the first two monic images g1(x) and g2(x) in step 9 if both degx g1 > d0 and
degx g2 > d0 then with high probability Kr is unlucky so we try the next Kronecker substi-
tution r = [r1 + 1, r2 + 1, . . . , rn−1 + 1].

It is still not obvious that a Kronecker substitution that is not unlucky can be used
because it can create a content in y of exponential degree. The following example shows how
we recover H = ∆G when this happens.

Example 4 Consider the following GCD problem

G = wx2 + zy, Ā = ywx+ z, B̄ = yzx+ w

in Z[x, y, z, w]. We have Γ = wy and ∆ = y. For K(f) = f(x, y, y3, y9) we have gcd(K(A), K(B))
= K(G) gcd(y10x+ y3, y4x+ y9) = (y9x2 + y4)y3 = y7(y5x2 + 1).

One must not try to compute gcd(K(A), K(B)) because the degree of the content of
gcd(K(A), K(B)) (y7 in our example) can be exponential in n the number of variables and
we cannot compute this efficiently using the Euclidean algorithm. The crucial observation
is that if we compute monic images gj = gcd(K(A)(x, αj), K(B)(x, αj)) any content is
divided out, and when we scale by K(Γ)(αj) and interpolate y in K(H) using our sparse
interpolation, we recover any content. We obtain K(H) = K(∆)K(G) = y10x2 + y5, then
invert K to obtain H = (yw)x2 + (y2z).
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3.1 Unlucky evaluation points

Even if the Kronecker substitution is not unlucky, after applying it to input polynomials A
and B, because the degree in y may be very large, the number of bad and unlucky evaluation
points may also be very large.

Example 5 Consider the following GCD problem
G = x0 + xd1 + xd2 + . . .+ xdn,
Ā = x0 + x1 + . . .+ xn−1 + xn, and
B̄ = x0 + x1 + . . .+ xn−1 + 1.

Using r = [d+ 1, d+ 1, . . . , d+ 1] we need p > (d+ 1)n. But R = resx0(Ā, B̄) = 1− xn and
Kr(R) = 1 − yr1r2...rn−1 = 1 − y(d+1)n−1

which means there could be as many as (d + 1)n−1

unlucky evaluation points, that is, one in d+ 1.

To guarantee that we avoid unlucky evaluation points with high probability we would
need to pick p� degyKr(R) which could be much larger than what is needed to interpolate
Kr(H). But this upper bound based on the resultant is a worst case. This lead us to
investigate what the expected number of unlucky evaluation points is. We ran an experiment.
We computed all monic quadratic and cubic bivariate polynomials over small finite fields Fq
of size q = 2, 3, 4, 5, 7, 8, 11 and counted the number of unlucky evaluation points to find the
following result.

Theorem 2 Let Fq be a finite field with q elements and f = xl +
∑l−1

i=0(
∑di

j=0 aijy
j)xi and

g = xm +
∑m−1

i=0 (
∑ei

j=0 bijy
j)xi with l ≥ 1, m ≥ 1, and aij, bij ∈ Fq. Let X = |{α ∈ Fq :

gcd(f(x, α), g(x, α)) 6= 1}| be a random variable over all choices aij, bij ∈ Fq. So 0 ≤ X ≤ q
and for f and g not coprime in Fq[x, y] we have X = q. Then

(i) if di ≥ 0 and ei ≥ 0 then E[X] = 1 and
(ii) if di ≥ 1 and ei ≥ 1 then Var[X] = 1− 1/q.

Proof (i): Let C(y) =
∑d

i=0 ciy
i with d ≥ 0 and ci ∈ Fq and fix β ∈ Fq. Consider the

evaluation map Cβ : Fd+1
q → Fq given by Cβ(c0, . . . , cd) =

∑d
i=0 ciβ

i. We claim that C is
balanced, that is, C maps qd inputs to each element of Fq. It follows that f(x, β) is also
balanced, that is, over all choices for ai,j each monic polynomial in Fq[x] of degree n is
obtained equally often. Similarly for g(x, β).

Recall that two univariate polynomials a, b in Fq[x] with degree deg a > 0 and deg b > 0
are coprime with probability 1 − 1/q (see Ch 11 of Mullen and Panario [17]). This is also
true under the restriction that they are monic. Therefore f(x, β) and g(x, β) are coprime
with probability 1− 1/q. Since we have q choices for β we obtain

E[X] =
∑
β∈Fq

Prob[gcd(A(x, β), B(x, β)) 6= 1] = q(1− (1− 1

q
)) = 1.

Proof of claim. Since B = {1, y − β, (y − β)2, . . . , (y − β)d} is a basis for polynomials of
degree d we can write each C(y) =

∑d
i=0 ciy

i as C(y) = u0 +
∑d

i=1 ui(y − β)i for a unique
choice of u0, u1, . . . , ud ∈ Fq. Since C(β) = u0 it follows that all qd choices for u1, . . . , ud
result in C(β) = u0 hence C is balanced. �
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That E[X] = 1 was a surprise to us. We thought E[X] would have a logarithmic depen-
dence on deg f and deg g. In light of Theorem 2, when picking p > degy(Kr(H)) we will
ignore the unlucky evaluation points, and, should the algorithm encounter unlucky evalua-
tions, restart the algorithm with a larger prime.

4 GCD Algorithm

Algorithm PGCD(A,B,Γ)

Input A = alx
l
0 + ... + a0, and B = bmx

m
0 + ... + b0 with ai, bi ∈ Z[x1, ...xn] and Γ ∈

Z[x1, . . . , xn] satisfying gcd(ai) = 1 (A is primitive) and gcd(bi) = 1 (B is primitive) and
Γ = gcd(al, bm) = LC(G)×∆ where G = gcd(A,B).

Output A prime p and polynomial H ∈ Zp[x0, x1, . . . , xn] satisfying H = ∆×G mod p with

probability at least 1− degAdegB+min(degA,degB)
p−degA−degB .

Compute di = DegBound(A,B, i) for 0 ≤ i ≤ n− 1.
Initialize ri = 1 + min(degxi A, degxi B, di + degxi Γ) for 1 ≤ i ≤ n− 1.

Kronecker-substitution:

1 Let Y = (y, yr1 , yr1r2 , . . . , yr1r2...rn−1) be the Kronecker substitution.
Set K(A) = A(x, Y ), K(B) = B(x, Y ) and K(Γ) = Γ(Y ).

2 If degxK(A) < degx0 A or degxK(B) < degx0 B then this Kronecker substitution is
bad. Set ri = ri + 1 for 1 ≤ i ≤ n− 1 and goto Kronecker-substitution.

Pick-a-Prime:

3 Pick a new prime p > Πn
i=1ri of the form p = 2ks+ 1 with s small.

4 If degx(K(A) mod p) < degxA or degx(K(B) mod p) < degxB then the prime is bad
so goto Pick-a-Prime.

5 Set shift s = 1 and j = 0 and compute a random generator α for Z∗p.

Compute-next-image:

6 Set j = j + 1. If j = p− 1 then we’ve run out of evaluation points. This could happen
if the number of terms of one of the coefficients of ∆G is dense. Goto Pick-a-Prime
and increase the length of p by 10 bits.

7 Compute ai = K(A)(x, αj) mod p and bi = K(B)(x, αj) mod p. If degx ai < degx0 A
or degx bi < degx0 B then αj is bad so set s = j and goto Compute-next-image.

8 Compute gj = gcd(K(A)(x, αj), K(B)(x, αj)) using the Euclidean algorithm.

9 Case deg gj < d0 : (the degree bound d0 is wrong)

Set d0 = deg gj, s = j and goto Compute-next-image.

11



10 Case deg gj > d0 : (αj is unlucky)

10a If this happens for j = s and j = s + 1 then the Kronecker substitution is very
probably unlucky so set ri = ri + 1 for 1 ≤ i ≤ n − 1 and goto Kronecker-
substitution.

10b If this is the 2nd unlucky evaluation then goto Pick-a-Prime and increase the
length of p by 10 bits. Otherwise set s = j and goto Compute-next-image.

11 Case deg gj = d0: (we have a new image)

11a Scale the image: Set gj = K(Γ)(αj)gj mod p. If s− j is even then goto compute-
next-image – we need at least two new images for the next step.

11b Run the Berlekamp-Massey algorithm on the coefficients of the images gs, gs+1, . . . , gs+j
to obtain λi(z) for 0 ≤ i ≤ d0.

11c If any λi(z) changed from the previous step goto Compute-next-image.

11d Compute the roots of each λi(z). If any λi(z) has fewer than deg λi(z) distinct
roots goto Compute-next-image.

11e Complete the sparse interpolation to obtain polynomials hi(y) ∈ Zp[y].
Note, s is the shift used for the shifted transposed Vandermonde systems.
Set H(x, y) :=

∑d0
i=0 hi(y)xi which we hope is equal to ∆(Y )G(x, Y ).

11f Invert the Kronecker substitution to obtain H(x0, x1, . . . , xn).
If degxi H > min(degxi A, degxi B, di + degxi Γ) for any 1 ≤ i ≤ n then H 6= ∆G
so goto Compute-next-image.

11h Probabilistic check: Pick β ∈ Znp at random until degA(x0, β) = degx0 A and
degB(x0, β) = degx0 B. Compute gβ = gcd(A(x0, β), B(x0, β)). If H(x0, β) =
Γ(β)gβ then output (p,H). Otherwise either ti is wrong for some i or d0 >
degx0 G or β is unlucky. In all cases continue goto Compute-next-image.

To prove the claim on the output (p,H) let H =
∑d0

i=0 hix
i
0 and let G =

∑dG
i=0 cix

i
0. We

will bound the probability that the algorithm outputs H 6= ∆G mod p. Notice that if
the algorithm outputs H it must be that degx0 H = d0 = degx0 gβ. Now either d0 >
dG or d0 = dG. If d0 > dG then H is wrong. Now d0 > dG ⇒ β is unlucky thus
Prob[d0 > dG] ≤ Prob[β is unlucky] which is at most degAdegB

p−degA−degB . If d0 = dG then

H is output iff hi(β) = ∆(β)ci(β) mod p for 0 ≤ i ≤ d0. Let fi = hi − ∆ci mod p.
H 6= ∆G implies fi 6= 0 for at least one i, say i = j. The Schwartz-Zippel lemma implies
Prob[fj(β) = 0] ≤ deg fi

p−degA−degB . Now the degree condition on degxi H means the total degree

deg fi ≤ min(degA, degB) thus Prob[fj(β) = 0] ≤ min(degA,degB)
p−degA−degB . Adding both probabilities

Prob[H 6= ∆G mod p] ≤ min(degA,degB)
p−degA−degB + degAdegB

p−degA−degB and the result follows.
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4.1 Determining t

Algorithm PGCD assumes in step 12b that if none of the λi(z) changed then (j−s+1)/2 = t
but it could be that (j−s+1)/2 < t. Let Vr = (v0, v1, . . . , v2r−1) be a sequence where r ≥ 1.
The Berlekamp-Massey algorithm (BMA) with input Vr computes a feedback polynomial
c(z) which is the reciprocal of λ(z) if r = t. In PGCD, we determine the t by computing
c(z)s on the input sequence Vr for r = 1, 2, 3, . . . . If a c(z) remains unchanged from the input
Vk to the input Vk+1, then we conclude that this c(z) is stable which implies that the last
two consecutive discrepancies are both zero, see [14, 12] for a definition of the discrepancy.
However, it is possible that the degree of c(z) on the input Vk+2 might increase again. In
[12], Kaltofen, Lee and Lobo proved (Theorem 3) that the BMA encounters the first zero
discrepancy after 2t points with probability at least

1− t(t+ 1)(2t+ 1) deg(C)

6|S|

where S is the set of all possible evaluation points. Here is an example where we encounter
a zero discrepancy before 2t points. Consider

f(y) = y7 + 60y6 + 40y5 + 48y4 + 23y3 + 45y2 + 75y + 55

over Z101 with generator α = 93. Since f has 8 terms, 16 points are required to determine
the correct λ(z) and two more for confirmation. We compute f(αj) for 0 ≤ j ≤ 17 and
obtain V9 = (44, 95, 5, 51, 2, 72, 47, 44, 21, 59, 53, 29, 71, 39, 2, 27, 100, 20). We run the BMA
on input Vr for 1 ≤ r ≤ 9 and obtain feedback polynomials in the following table.

r Output c(z)
1 69z + 1
2 24z2 + 59z + 1
3 24z2 + 59z + 1
4 24z2 + 59z + 1
5 70z7 + 42z6 + 6z3 + 64z2 + 34z + 1
6 70z7 + 42z6 + 25z5 + 87z4 + 16z3 + 20z2 + 34z + 1
7 z7 + 67z6 + 95z5 + 2z4 + 16z3 + 20z2 + 34z + 1
8 31z8 + 61z7 + 91z6 + 84z5 + 15z4 + 7z3 + 35z2 + 79z + 1
9 31z8 + 61z7 + 91z6 + 84z5 + 15z4 + 7z3 + 35z2 + 79z + 1

The ninth call of the BMA confirms that the feedback polynomial returned by the eighth call
is the desired one. But, by our design, the algorithm terminates at the third call because the
feedback polynomial remains unchanged from the second call. It also remains unchanged for
V4. In this case, λ(z) = z2c(1/z) = z2 + 59z + 24 has roots 56 and 87 which correspond to
monomials y4 and y20 since α4 = 56 and α20 = 87.

The example shows that we may encounter a stable feedback polynomial too early. Fur-
thermore, the recovered monomials may have degree higher than the degree of the input
polynomial f(y). Algorithm PGCD must check H for monomials of too high degree in step
12e for the degree argument in the proof of the claim to be valid.
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4.2 Evaluation

Let A,B ∈ Zp[x0, x1, . . . , xn], s = #A + #B, di = maxni=1(degxi A, degxi B) and d =
maxni=1 di. If we apply a Kronecker substitution and computeK(A) = A(x, y, yr1 , . . . , yr1r2...rn−1)
with ri = di + 1, then degyK(A) < (d + 1)n. To evaluate K(A)(x, y) at y = αk we can
evaluate any monomial in y in K(A) in O(n log d) multiplications. Instead we first com-
pute β1 = αk and βi = β

ri−1

i−1 for i = 2, 3, . . . , n − 1. To compute A(x, β1, . . . , βn) and

B(x, β1, . . . , βn) we first precompute n tables of powers 1, βi, β
2
i , . . . , β

di
i for 1 ≤ i ≤ n using

at most nd multiplications. Now, for each term of A and B of the form cxe00 x
e1
1 . . . xenn we

can compute c×βe11 × . . .×βenn using the tables in n multiplications. Hence we can evaluate
A(x, αk) and B(x, αk) in at most nd+ns multiplications in Zp. Thus for T evaluation points
α, α2, . . . , αT , the evaluation cost is O(nT (d+ s)) multiplications.

When we first implemented algorithm PGCD we noticed that often over 95% of the time
was spent evaluating the input polynomials A and B at the points αk. This happens when
#G� #A+#B. The following method uses the fact that for a monomial Mi(x1, x2, . . . , xn)

Mi(β
k
1 , β

k
2 , . . . , β

k
n) = Mi(β1, β2, . . . , βn)k

to reduce the total evaluation cost from O(nT (s+d)) multiplications in Zp to O(sT+nd+ns)
thus one multiplication per term instead of n. Note, no sorting on x0 is needed in step 4b if the
monomials in the input A are are sorted in in lexicographical order with x0 > x1 > . . . > xn.

Algorithm Evaluate.

Input Polynomial A(x0, x1, . . . , xn) =
∑m

i=1 cix
ei
0 Mi(x1, . . . , xn) ∈ Zp[x0, . . . , xn]

T > 0, β1, β2, . . . , βn ∈ Zp, and integers d1, d2, . . . , dn with di ≥ degxi A .

Output A(x0, β
k
1 , . . . , β

k
n) for 1 ≤ k ≤ T .

step 1 Create the vector C = [c1, c2, . . . , cm] ∈ Zmp of coefficients.

step 2 Compute tables of powers βji for j = 0, 1, . . . , di for 1 ≤ i ≤ n.
step 3 Compute the vector Γ = [Mi(β1, β2, . . . , βn) for 1 ≤ i ≤ m].
step 4 For k = 1, 2, . . . , T do

step 4a Compute the vector C := [Ci × Γi for 1 ≤ i ≤ m].
step 4b Assemble

∑m
i=1Cix

ei
0 = A(x0, β

k
1 , . . . , β

k
n).

Algorithm Evaluate serializes evaluation on k. To parallelize it on k for N cores, we replace
steps 3 and 4 with those below. To simplify notation, for vectors u, v ∈ Zmp let u

⊗
v =

[u1v1, u2v2, . . . , umvm] denote point-wise product.

step 3 Compute Γ1 = [Mi(β1, β2, . . . , βn) for 1 ≤ i ≤ m] and B1 = C
⊗

Γ1.

step 4a For k = 2, 3, . . . , N do compute Γk := Γ1

⊗
Γk−1 and Bk := Γk

⊗
Bk−1.

step 4b For i = N, 2N, 3N, . . . while i < T do
For k = 1, 2, . . . , N while i+ k < T in parallel do

Compute Bk := Bk

⊗
ΓN .

Assemble
∑m

j=1Bk,jx
ej ∈ Zp[x] = A(x0, β

k
1 , . . . , β

k
n).
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Notice that once step 3 is completed, evaluation is reduced to a sequence of pointwise
vector products. Each of these vector products could be parallelized in blocks of size m/N
for N cores. In Cilk C, this is only effective, however, if the blocks are very large (at least
50,000) so that the work done in a block is much larger than the time it takes Cilk to create
a task. For this reason, it is necessary to also parallelize on k.

If N is large and T is not much larger than N step 4a will become a parallel bottleneck.
We parallelized step 4a by first computing Γ2 then computing Γ3 and Γ4 in parallel from Γ1

and Γ2, then computing Γ5,Γ6,Γ7,Γ8 in parallel from Γ1,Γ2,Γ3,Γ4, etc.
The space used is Nm words of memory for Γ1,Γ2, . . . ,ΓN and a further Nm words for

B1, . . . , BN . For inputs A and B both of size 108 terms, on our 16 core machine (N = 16), we
exceeded the soft memory limit of 32 gigabytes. We saved a factor of 2 in space by recycling
the memory Γ1,Γ2, . . . ,ΓN−1 for B1, B2, . . . , BN−1 in step 4. We also decided to parallelize
each pointwise multiplication Bk = Bk

⊗
ΓN in two blocks of size m/2 so we do N/2 points

at a time instead of N in step 4 to save a further factor of 2 in space.

5 Benchmarks

We have implemented algorithm PGCD for 31, 63 and 127 bit primes in C. For 127 bit
primes we use the 128 bit signed integer type __int128_t supported by the gcc compiler.
We have parallelized parts of the algorithm using Cilk C. To assess how good it is, we have
compared it with the implementations of Zippel’s algorithm in Maple 2015 and Magma 2.21.
For Maple we were able to determine the time spent computing G modulo the first prime
only in Zippel’s algorithm. It is over 90% of the total GCD time. For Magma we could not
do this so the Magma timings are for the entire GCD computation over Z.

All timings were made on the gaby server in the CECM at Simon Fraser University. This
machine has two Intel Xeon E-2660 8 core CPUs running at 3.0GHz on one core and 2.2GHz
on 8 cores. Thus the maximum parallel speedup is a factor of 16× 2.2/3.0 = 11.7.

For our first benchmark (see Table 2) we created polynomials G, Ā and B̄ in 6 variables
(n = 5) and 9 variables (n = 8) of degree at most d in each variable. We generated 100d
random terms for G and 100 random terms for Ā and B̄. The integer coefficients of G, Ā, B̄
were generated at random from [0, 231 − 1]. The monomials in G, Ā and B̄ were generated
using random exponents from [0, d − 1] for each variable. For G we included monomials
1, xd0, x

d
1, . . . , x

d
6 so that G is monic in all variables and Γ = 1. Our GCD code uses the 62 bit

prime p = 29 × 257 + 1. Maple uses the 32 bit prime 232 − 5 for the first image in Zippel’s
algorithm. Magma is using 23.5 bit primes so that it can use floating point arithmetic.

In Table 2 column d is the maximum degree of the terms of G, Ā, B̄ in each variable,
column t is the maximum number of terms of the coefficients ofG and column eval is the %age
of the time spent evaluating the inputs, that is computing K(A)(x0, α

j) and K(B)(x0, α
j)

for j = 1, 2, . . . , T where T is slightly more than 2t.
Our second benchmark (see Table 3) is for our 9 variable benchmark problem from Section

1 where the degree of G, Ā, B̄ is at most 20 in each variable. The terms are generated at
random as before but restricted to have total degree at most 60. The 62 bit prime is 29×259+1
and the 127 bit prime is 4085× 2115 + 1.

Tables 2 and 3 show that most of the time is in evaluation. They show a parallel speedup
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New GCD algorithm Zippel’s algorithm
n d t 1 core (eval) 4 cores 16 cores Maple Magma
5 10 114 0.66s (72%) 0.225s 0.096s 48.04s 6.97s
5 20 122 1.46s (74%) 0.473s 0.187s 185.70s 318.22s
5 50 121 3.38s (72%) 1.050s 0.397s 1525.80s > 104s
5 100 102 7.01s (73%) 2.126s 0.760s 6018.23s > 104s
5 200 111 15.03s (74%) 4.522s 1.629s NA NA
5 500 128 41.10s (74%) 12.389s 4.425s NA NA
8 5 89 0.35s (70%) 0.133s 0.065s 30.87s 2.39s
8 10 110 0.65s (71%) 0.221s 0.089s 138.41s 6.15s
8 20 114 1.44s (72%) 0.466s 0.176s 664.33s 63.49s
8 50 113 3.65s (73%) 1.102s 0.410s 6390.22s 1226.77s
8 100 121 7.32s (73%) 2.168s 0.792s NA NA
8 200 need 127 bit primes NA NA

Table 2: Timings (seconds) for GCD problems.

New (62 bit prime) 126 bit prime Maple Magma
#G #A 1 core (eval) 16 cores (eval) 1 core (eval)
103 105 0.83s (72%) 0.137s (61%) 4.80s (59%) 341.9s 63.55s
103 106 6.73s (88%) 0.732s (79%) 32.22s (93%) 5553.5s FAIL
104 106 61.23s (91%) 5.895s (82%) 248.23s (70%) 62520.1s FAIL

Table 3: Timings (seconds) for large 9 variable problems (FAIL = Internal error).

approaching a factor of 10. This is good but not great. There is a parallel bottleneck in
how we compute the λi(z) polynomials. For N = 16 cores, after generating a new batch of
N/2 = 8 images we run the Berlekamp-Massey algorithm to see if we have enough points to
interpolate the next coefficient of H. The algorithm is serial and quadratic in t which limits
parallel speedup for t = 100. We are not sure how to improve this.

In comparing the new algorithm with Maple’s implementation of Zippel’s algorithm, for
n = 8, d = 50 in Table 2 we achieve a factor of 1748 = 6390.22/3.654 speedup on 1 core.
Since Zippel’s algorithm uses O(dt) points and our Ben-Or/Tiwari algorithm uses 2t+O(1)
points, we get a factor of O(d) speedup because of this.

Our improved evaluation gives us a another factor of n speedup over Maple’s imple-
mentation of Zippel’s algorithm. Another factor is the cost of multiplication in Zp. The
reader should realize that the running time of algorithm PGCD is proportional to the cost
of multiplication in Zp. Maple is using % p to divide in C which generates a hardware
division instruction which is much more expensive than a multiplication. We are using Ro-
man Pearce’s implementation of Möller and Granlund [15] which reduces division by p to
multiplications and other cheap operations.
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6 Conclusion and Final Remarks

We have shown that a Kronecker substitution can be used to reduce a multivariate GCD
computation to bivariate by using a discrete logs Ben-Or/Tiwari point sequence. Our parallel
implementation is fast and practical. Several questions remain. The Ben-Or/Tiwari method
requires 2t + O(1) points. Can we use fewer points? Can we do anything when #∆ � 1
which increases t?

We note that if either A or B is monic in some xi then if we interchange x0 with xi then
Γ = 1 hence ∆ = 1. Similarly, if either A or B have a constant term, then we can reverse
the coefficients of both A and B in x0 so that Γ = 1 and ∆ = 1.

Our algorithm interpolatesH from univariate images in Zp[x0]. If instead we interpolateH
from bivariate images in Zp[x0, x1], this will likely reduce both t and #∆. For our benchmark
problem this would reduce t by a factor of 5 and the cost of the bivariate GCD computations
in Zp[x0, x1], if computed with Brown’s dense GCD algorithm, would be negligible compared
with the cost of evaluating A and B. Although we have not implemented this we estimate
a speedup of a factor of 3 on 16 cores.

For polynomials in more variables or higher degree algorithm PGCD may need primes
larger than 127 bits. We cite the methods of Garg and Schost [6], Giesbrecht and Roche
[9] and Arnold, Giesbrecht and Roche [1] which can use a smaller prime p and would also
use fewer than 2t+O(1) evaluations. These methods would compute ai = Kr(A)(x, y), bi =
Kr(B)(x, y) then gi = gcd(ai, bi)) all mod 〈p, yqi − 1〉 for several primes qi and recover the
exponents of y using Chinese remaindering. The algorithms in [6, 9, 1] differ in the size of
qi and how they avoid or recover from exponent collisions. It is not clear whether this can
be made to work for the GCD problem as these methods assume a division free evaluation.
Computing gi requires division and y = 1 may be bad or unlucky. It is also not clear
whether these methods would be faster as they require qi � t which means computing gi
will be expensive for large t.
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